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Models are the medium by which we reflect and express our understanding 

of some aspect of reality, a particular unknown of interest. As it is virtually 

impossible to grasp any situation in its entire complexity, models are representations 

of reality that are always partial resulting in a state of uncertainty or error.  However 

the question of model error from a pragmatic point of view is not one of accounting 

for the difference between models and reality at a fundamental level, as such 

difference always exists. Rather the question is whether the prediction or 

performance of the model is correct at some practically acceptable level, within the 

model’s domain of application. 



 

Here lays the importance of assessing the impact of uncertainties about 

predictions of a model, modeling the error and trying to reduce the uncertainties 

associated as much as possible to provide better estimations. 

While the methods for assessing the impact of errors on the performance of a 

model and error modeling are well established in various scientific and engineering 

disciplines, to the best of our knowledge no substantial work has been done in the 

field of Software Reliability Modeling despite the fact that the inadequacy of the 

present state and techniques of software reliability estimation has been recognized 

by industry and government agencies. In summary, even though hundreds of 

software reliability models have been developed, the software reliability discipline 

is still struggling to establish a software reliability prediction framework. 

This work intends to improve the performance of software reliability models 

through error modeling. It analyzes the errors associated with a set of five software 

Reliability Prediction Systems (RePSs) and attempts to improve their prediction 

accuracy using a model uncertainty framework. In the process, this work also 

statistically validates the performances of the RePSs. It also provides a time and cost 

effective alternative to performing experiments that are required to assess the error 

form which is integral to the process of application of the model uncertainty 

framework. 
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Chapter 1 Introduction 

1.1 The Issue 

Despite the fact that hundreds of software reliability models have been 

developed to date [Smidts02], the software reliability discipline is still struggling to 

establish a software reliability estimation and prediction framework. 

This work intends to improve the performance of software reliability models 

through error modeling. It analyzes the errors associated with a set of five software 

Reliability Prediction Systems (RePSs) [Smidts00, Smidts02] and attempts to 

improve their prediction accuracy using a model uncertainty framework.  

Models are the medium through which we reflect and express our understanding 

of some aspect of reality, a particular unknown of interest. As it is virtually 

impossible to grasp any situation in its entire complexity, models are representations 

of reality that are always partial. In other words, what we know about the true nature 

of the unknown of interest is generally incomplete, resulting in a state of 

uncertainty. This uncertainty is termed as “error” and is defined as the difference 

between the true value of the unknown of interest and the value predicted by the 

model. The error in model predictions can arise from uncertainties in the values 

assumed by the model parameters, uncertainties and errors associated with the 

structure of the model stemming from simplifications, assumption and 

approximations.  
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Model uncertainty arises in natural sciences and engineering when in addressing 

a situation of interest when there is [Droguett02] 

• No plausible model 

• A single model, generally accepted, but not completely validated 

• Conceptually accepted and validated models, but of uncertain quality of 

implementation 

• A single model covering some but not all relevant aspects of the problem 

• Multiple plausible models, none of which is completely validated 

• Competing theories with contradictory predictions 

• Multiple models each covering different aspects of the reality of interest 

• Composite models formed from sub-models with different degrees of 

accuracy and credibility 

In evaluating the uncertainties associated with a model various sources of 

information might be available. This includes comparison of actual measurements 

and results of experiments directly or indirectly related to model predictions. 

Information concerning a particular model itself may also be available.  

Thus, the central question is what we can say about the unknown of interest given 

all the available sources of information. Can the information be used to obtain a 

better performance of the model? 

Model performance is to be seen in the context of its objective and scope. 

The question of model error/uncertainty from a pragmatic point of view is not one 

of accounting for the difference between models and reality at a fundamental level, 

as such difference always exists. Rather the question is whether the prediction or 
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performance of the model is correct at some practically acceptable level, within the 

model’s domain of application. 

Here lays the importance of assessing the impact of the uncertainties about 

predictions of a model, modeling the errors, and trying to reduce the uncertainties 

associated as much as possible to provide better estimation. 

While the methods for modeling the errors to assess the impact of 

errors/uncertainties on the performance of a model are well established in various 

scientific and engineering disciplines [Albert01, Badar05, Cromlry02, Cho04, 

Bierman95, Bessler03], to the best of our knowledge no work has been done in the 

field of Software Reliability Modeling.  

The inadequacy of the present state and techniques of software reliability 

estimation has been recognized by industry and government agencies. For instance, 

the nuclear industry usually uses IEEE STD 7-4.3.2-1993, “Standard Criteria for 

Digital Computers in Safety Systems of Nuclear Power Generating Stations.” While 

the Nuclear Regulatory Commission (NRC) endorsed this standard in Regulatory 

Guide 1.152, Revision 1 (January, 1996), it did not endorse Section 5.15, 

“Reliability” as a sole means of meeting the Commission’s regulations for reliability 

of digital equipment used in safety systems. The applicable Section 5.15 of the 

standard states “when qualitative or quantitative reliability goals are required, the 

proof of meeting the goals shall include software used with hardware.” The NRC 

did not endorse that section because there is no general agreement that a 

measurement methodology currently exists that provides a credible method to 

measure software reliability [NRC96, NRC97, Smidts00].  
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The aircraft industry standard for software is RTCA/DO-178B [RTCA92], 

“Software Considerations in Airborne Systems and Equipment Certification.” It 

states in section 12.3.4 ‘Software Reliability Methods’ that “currently available 

methods do not provide results in which confidence can be placed to the level 

required for this purpose.” Hence this document does not provide guidance for 

software failure rates.  

In summary, despite the fact that hundreds of software reliability models 

have been developed to date [Smidts02], the software reliability discipline is still 

struggling to establish a software reliability estimation and prediction framework. 

This work intends to improve the performance of software reliability models 

through error modeling. It analyzes the errors associated with a set of five software 

Reliability Prediction Systems (RePSs) [Smidts00, Smidts02] and attempts to 

improve their prediction accuracy using a model uncertainty framework.  

1.2 The Objectives 

 
The objectives of this work are as follows 

• Statistically validate the performance of a set of five software Reliability 

Prediction Systems (RePSs).  A detailed discussion on the RePSs is provided 

in Chapter 3.  

• Analyze and determine the nature of the errors associated with the RePSs, 

classify the errors and once that is accomplished, apply the results to the 

model uncertainty framework to better the performances of the models. This 

should allow a better estimation of reliability. 
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•  Provide a platform for generalizing model uncertainty problems to the 

software reliability modeling domain and suggest an approach to improve 

model performance using the model uncertainty approach. 

• Suggest alternate methods which are cost and time effective to determine the 

nature of errors. Determining the nature of the errors is integral to applying 

the model uncertainty framework and is sometimes infeasible from a cost or 

time perspective. The objective is also to validate these alternate methods.    

1.3 The Approach 

 
Simulations were carried out to determine the nature of the errors. 

Traditionally the nature of the errors is determined experimentally. That includes the 

extensive and difficult task of designing the experiment in a way that counter threats 

to validity, and executing it. Each experiment requires a minimum number of data 

points (the larger the number, the better) in order to statistically validate it. This 

approach is expensive not only from a cost perspective but also from a time 

perspective. Sometimes carrying out an experiment is just not feasible due to lack of 

resources. Simulation is an alternative which provides a solution to the above 

problems. Moreover, simulation allows us to use a wide range of inputs. This not 

only provides a broader spectrum of possibilities but also acts as a catalyst for 

sensitivity analysis of the inputs/values. 

This work also validates the results obtained from the simulation on the nature 

of the error models and their prediction accuracies. This validation was important to 

establish the level of accuracy of each RePSs and confirm/reject/refine the error 
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models associated with the RePSs.  This validation was also important to confirm 

whether the assumptions made in the simulation process can be validated and 

whether the simulation process can be generalized as an alternative to an 

experimental approach. The validation was also significant from the perspective of 

generalizing the assumptions and the simulation approach to construct error models 

for simulation from other software reliability models.  Therefore an in-vitro 

experiment was designed [Field03], [Hughes71] involving eight different 

applications to validate the findings from simulation.  

1.4 The Contents 

 
The rest of this work is organized as follows. Chapter 2 provides a detailed 

discussion on model and model uncertainty. The discussion includes the definitions 

of a model, the reasons for model uncertainty, the taxonomy of model uncertainty, 

the model uncertainty framework and the applications of the framework. It also 

provides examples of domains where error modeling has been applied. 

Chapter 3 provides a detailed discussion on the theory of RePSs and the 

process of construction of the five RePSs from five software engineering measures: 

Defect Density, Bugs per Line of Code, Requirements Traceability, Function Point 

and Test Coverage. This provides the foundation for the construction of error 

models for the simulation. 

Error models for each of the RePSs are then built for the simulation. Chapter 4 

enumerates the importance of simulation and provides the rationale and assumptions 
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behind the construction of error models for simulation. It then summarizes the 

results and discusses them.  

Chapter 5 presents an experiment involving eight software applications to 

establish the level of accuracy of each RePSs and confirm/reject/refine the error 

models associated with the RePSs. This includes the experiment design, the 

objectives, the hypotheses, the threats to validity and the execution process of the 

experiment. It also provides the experimental results and statistically analyzes them. 

The results obtained from simulation are compared to the experimental results and 

are analyzed for similarity.  

Chapter 6 applies the model uncertainty framework to the results obtained 

from the experiment and the simulation. It then presents a new and more robust 

software reliability prediction. The predictive ability of the new model is also 

assessed. 

  Finally Chapter 7 summarizes and concludes this research. It identifies the 

contributions of this work, provides the limitations, and then suggests possible 

future avenues of research. 
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Chapter 2 Literature Review 
 

This chapter presents an overview of recently published research on model 

uncertainty and the applications of error modeling to different scientific and 

engineering disciplines.  It also then presents an overview of the research done to 

assess the impact of errors in software reliability modeling domain.  

2.1 Model and Model Uncertainty  

 
This section presents a discussion on model and model uncertainty. The 

discussion includes definitions of a model, the reasons for model uncertainty, the 

taxonomy of model uncertainty, the model uncertainty framework and the 

applications of the framework.  

2.1.1 Definition of “model”  

The Concise Oxford Dictionary [Thompson95] defines model as one of the 

following:  

• a representation in three dimensions of an existing person or thing or of a 

proposed structure, especially on a smaller scale (a model train) 

•  a simplified (often mathematical) description of a system, etc., to assist 

calculations and predictions 

•  a particular design or style of a structure or commodity.  

Why is modeling an integral part of our lives? That is because modeling is 

necessary to explain any real event. Modeling takes place in the quest of handling a 

specific problem.  
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2.1.2 Uncertainty 

 
Uncertainty is a reflection of the lack of knowledge. There have been different 

schools of classification of uncertainty. According to one classification, and the 

most widely accepted, uncertainty is of basically two types:  

• Epistemic uncertainty (also known as subjective uncertainty, knowledge 

uncertainty, reducible uncertainty): it arises from lack of knowledge about 

the state of reality under study and is thus a property of the analysts 

performing the study [Helton96A] 

• Aleatory uncertainty (also known as stochastic uncertainty, variability 

uncertainty, irreducible uncertainty):  it arises because the reality under 

study can behave in many different unpredictable ways and is thus a 

property of reality [Helton96A]. That is, there are aspects of reality that are 

inherently stochastic. This is due to the inherent variability of nature. This 

also leads to the assertion that such a type of uncertainty is irreducible even 

in principle, i.e., further knowledge or better understanding of the natural 

phenomena underlying the process under investigation is not useful.  

2.1.3 Model Uncertainty 

 
As discussed before, reducing reality into a model inevitably results in an 

error, reflecting the discrepancies between the reality portion of interest and its 

model representation. These errors can be associated with the structure of the model 

stemming from simplifications, assumption and approximations or due to 

uncertainties in the values assumed by the model parameters or due to errors in the 
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measurement process itself.  This error can be viewed as a measure of how good a 

model is in representing reality.  

2.1.4 Quantifying Model Uncertainty 

 
A number of approaches for quantifying model uncertainty have been 

proposed in the literature with varying degrees of complexity, strength of theoretical 

foundation, and capability in addressing different model uncertainty situations.  

Among them, two approaches have seen wider practical applications. One approach 

involves averaging of predictions of multiple models, the Model Averaging method 

and the other uses model adjustment factors and is also known as Correction Factor 

method or the Uncertainty Factor Approach. The following sections provide a brief 

theoretical description of the Model Averaging and Uncertainty Factor approaches 

and a discussion regarding each methodology’s major features and highlight their 

respective advantages and disadvantages. 

2.1.4.1 Model Averaging Method 
 

The Model Averaging (MA), also known as Alternate Hypotheses approach 

[Zio96] or the P{Mi} approach [Mosleh95], considers each available model a 

representation of a set of plausible hypotheses about a system that, in light of 

available evidence, provides predictions about a common quantity of interest. The 

predictions of available and plausible models are then combined probabilistically 

via mixture of distributions, thus requiring a set of mutually exclusive and 

collectively exhaustive models.  
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The MA approach is employed either implicitly or explicitly in various 

domains. de Finetti [deFinetti72], Davis [Davis79], Draper et al. [Draper87], Draper 

[Draper95, Draper98], Hodges [Hodges87], Madigan and Raftery [Madigan94, 

Madigan96], Laskey [Laskey95, Laskey96], Chatfield [Chatfield96] have used it in 

the fields of  statistics and decision theory. Apostolakis [Apostolakis90, 

Apostolakis95] addressed the issue of model uncertainty through this approach in 

probabilistic risk assessments. Chhibber et al. [Chhiber91] applied the MA 

procedure to the quantification of model uncertainty in the context of distributed 

environmental contamination. Zio and Apostolakis [Zio96] used the MA framework 

in the performance assessment of radioactive waste depositories, particularly 

dealing with models of groundwater flow and contaminant transport.  The MA 

procedure has also been suggested and applied in other areas. Hoeting et al. 

[Hoeting98] provided an extensive discussion of the methodology and applied it in 

dealing with the uncertainty in the treatment of primary biliary cirrhosis of the liver 

and from the prediction of percent body fat using 13 alternate body measurements in 

a multiple regression model. 

2.1.4.1.1 The MA Theory 

 
The Model Averaging (MA) approach, as mentioned, combines the 

predictions of various plausible models probabilistically via a mixture of 

distributions and computes the average value [Zio96].  

A mathematical model may be represented [Droguett02] as xi = Mi(Θi, Si)  , 

where xi is the prediction of the model about a reality aspect of  interest, Si 
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represents the model’s form reflecting a set of assumptions and simplifications 

encoded into the mathematical model Mi, and Θi = (θ1, θ2, . . .)  is a finite set of 

model parameters. In a general case of a discrete set of n models Ω, each model 

Mi(Θi, Si), i=1,2…n,  represents an alternate form of Si with given set of parameters 

Θi. Each model in the set Ω provides an estimate about the quantity of interest X in 

the form of a predictive probability distribution p(x |Mi)  =  p(x | Θi,Si) . 

The Model Averaging (MA) method treats the model  Mi(Θi, Si), as a 

variable or a parameter and integrates over uncertainty about both the model form Si 

and model parameters Θi [Draper95]. Given available evidence E and the set ∆ of 

possible models’ forms, the posterior distribution of quantity X is provided by the 

standard Bayesian estimator  

])|,(),,|([)|( iiiii dESpSExpExp
i i

ΘΘΘ=∑ ∫
∆ Θ

                                  (2-1) 

representing a weighted average of the conditional predictive distributions p(x 

|E,Mi) using the posterior model probabilities p(Mi|E) as weights. Now, writing the 

posterior model probabilities p(Mi|E) as  

)|(),|()|,( ESpSEpESp iiiii Θ=Θ ,                                                   (2-2) 

the posterior distribution p(x |E) can be rewritten as follows: 

])|(),|(),,|([)|( iiiiii dESpSEpSExpExp
i i

ΘΘΘ=∑ ∫
∆ Θ

                   (2-3) 

The posterior probability distribution for a model Mi can then be obtained by 

Bayes theorem. The probability of a specific model M is given in terms of its form 

Si, i.e., p(Si|E) .  
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The MA framework is an intuitive approach. Furthermore, all probability 

distributions involved in the MA approach can be updated via Bayes’ theorem. In 

particular, given new evidence, posterior model probability distributions can be 

obtained. 

2.1.4.1.2 The Pros and Cons 
     

However, the MA approach has several drawbacks. First of all, the concept of 

assessing a probability distribution over the available model set necessarily leads to 

the question of how to interpret the probabilities p(Si ). This interpretation is implied 

by, the two fundamental assumptions on which the MA approach is based:  

• the set of alternate models should be mutually exclusive and 

•  the set of alternate models should be collectively  exhaustive. Simply put, 

the model probabilities should sum up to one (as required by the summation 

in eq. (2-3)).  

Both of these assumptions are hardly satisfied in practice. The collective 

exhaustiveness, for example, implies that not only the probability attributed to a 

model, say p(Si ),  is “correct” but also that the correct model be one of the alternate 

models M1, . . .,Mn. As stated by Winkler [Winkler96], “in most real world 

situations, the possible existence of a correct model is questionable at best.” 

Moreover, the set of plausible models is unavoidably incomplete. 

The mutual exclusiveness assumption of the plausible models M1, . . ., Mn 

implies that it is not possible to explicitly model dependence among the set of 
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alternate models under the MA framework. This assumption imposes a strong 

restriction in practical situations.  

An illustration of cases where models are not mutually exclusive and 

collectively exhaustive has been provided by Bier [Bier95]. 

2.1.4.2 Uncertainty-Factor Methodology 
 

The Uncertainty-Factor (UF) method [Siu85], also known as Error-Factor 

approach [Chhiber91], accounts for model uncertainty by modifying the prediction 

given by a single “best” model (also called the reference model) by means of a 

correction factor, which is usually uncertain, in order to estimate the true value of a 

quantity of interest [Siu92]. In terms of applications, Siu et al. [Siu92] applied the 

UF method in the context of fire risk assessment, more precisely in the estimation of 

the velocity of flame spread over a horizontal cable tray. Zio and Apostolakis 

[Zio96] present an application of the uncertainty-factor methodology to the 

performance assessment of radioactive waste depositories in which it is used as a 

second-stage model uncertainty assessment procedure following the identification of 

the single “best” available model via quantification of posterior model probabilities 

under the MA approach. 

2.1.4.2.1 The UF Theory 

 
The Uncertainty-Factor (UF) approach [Siu92] consists of introducing an 

adjustment directly on the predictions provided by a single model. Formalizing, let 

xi = Mi(Θi, Si)  , where xi is the prediction of the model about a reality aspect of  

interest, Si represents the model’s form reflecting a set of assumptions and 
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simplifications encoded into the mathematical model Mi, and Θi = (θ1, θ2, . . .)  is a 

finite set of model parameters. A factor ξ  is introduced which may be 

multiplicative (ξm) or additive (ξa) so that the assessment about the unknown 

quantity of interest X is given by  

  aMXX ξ+=        (2-4) 

in the additive case, or 

  mMXX ξ/=       (2-5)  

for the multiplicative case.  

The correction factor (ξa or ξm ) modifies the prediction of the model M in order to 

arrive at the true value of the quantity of interest X.  

Considering the simple case where X is a deterministic single valued 

quantity and adopting the multiplicative uncertainty-factor model given by eq. (2-4), 

in order to determine the uncertainty distribution of ξm, Siu [Siu92] suggests that if 

the model’s parameters Θi are known, then the ratio of XM/X (or equivalently XM – X 

in the additive case) is fixed for a given experiment (where each experiment 

corresponds to any situation in which data can be gathered). However, ξm is likely to 

vary from experiment to experiment. This variability is expressed by the correction 

factor ξm population variability distribution (its uncertainty distribution). Now if  Λ 

= {λ1, . . ., λm} is a finite set of m parameters, as per Bayes’ Theorem,  

   
∫
Λ

ΛΛΛ

ΛΛ
=Λ

dEL

EL
E

()|(

)()|(
)|(

0

0

π

π
π    (2-6) 

where E is the evidence on model performance, E. 
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where L(E| Λ) is the likelihood function and πo(Λ) is the prior distribution on the set 

of parameters Λ = {λ1, . . ., λm}. Under the restriction of n independent experiments, 

the likelihood function is given by  

  )|()|(
1

Λ=Λ ∏
=

n

i

mi
fEL ξ     (2-7) 

where ξmi   = 
i

M

X

X
i or ξai = 

iMX - iX  in the additive case, and Xi is the measured 

value of the quantity of interest X in experiment i and XMi is the corresponding 

predicted value by model . The posterior population variability, f(ξm|E) , is obtained 

by averaging over all possible values of the parameter set Λ , 

ΛΛΛ= ∫
Λ

dEfEf mm )|()|()|( πξξ                 (2-8) 

The modeler’s final goal is to estimate the probability distribution of the quantity of 

interest X given the prediction provided by the model and any additional 

performance data E. This distribution can be obtained from eq. (2-5)  

2.1.4.2.2 The Pros and Cons 

 
A positive aspect of the uncertainty-factor approach with a population 

variability distribution for the error term ξm is that it allows for the use of a model 

outside its intended domain of application. The uncertainty-factor tries to correct the 

predictions provided by model M by means of the correction factor ξ , and make 

them applicable to the situation at hand which the model was not initially designed 

to handle. Thus, ξ can be interpreted as a factor that indicates how far are the current 

application’s conditions and assumptions to those for which the model was intended 
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for [Zio96]. The uncertainty-factor method allows for the incorporation of 

experimental data into the assessment of model uncertainty.  

In this work, since one of the objectives is to validate each of the five 

models, it is desired to use each of the models separately. Also, it can not be 

assumed that the models are mutually exclusive and collectively exhaustive (Section 

2.1.4.1.2). Therefore, a generalized version of the Uncertainty Factor Approach 

suggested by [Droguett02] is used in this work to analyze the five RePS models. 

This approach is Bayesian in nature, simple to use, allows us to incorporate 

experimental data and update the estimates made by the models. It can be applied to 

additive and multiplicative error models. Chapter 6 discusses the approach in greater 

details.  

2.2 Error Modeling 

 
In this section, the importance of error modeling is reiterated and the 

applications of error modeling to various scientific and engineering domains are 

discussed. Error is the difference between the reality and the model representation 

of the reality behavior. 

A mathematical model may be represented as xi = Mi(Θi, Si), where xi is the 

prediction of the model about a reality aspect of  interest, Si represents the model’s 

form reflecting a set of assumptions and simplifications encoded into the 

mathematical model Mi, and Θi = (θ1, θ2, . . .)  is a finite set of model parameters. 

Now error is defined as the difference between the real value of unknown quantity 

of interest X and xi, the value predicted by Mi. Errors are analyzed to determine their 
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nature and their sources. This information is then used to model the errors. 

Modeling the errors provides a better understanding of the impact of the errors and 

how they affect the real value X in different scenarios. By different scenarios it 

means different contexts in which the models are used, their impact if there are 

changes in the parameters etc. It provides a sensitivity analysis of the models.  

Error modeling is widely conducted in the field of mechanical and industrial 

engineering. Various approaches are proposed for machine tool error modeling and 

compensation. Some of these approaches are described below. 

Different mathematical models such as coordinate transformation are given by 

[Schultschik77], [Ferreira86]. Other approaches, including empirical, trigonometric, 

and error matrix methods are proposed by [Ferreira86]. A simulation study is 

conducted in [Wang06] to illustrate an error compensation procedure. 

[Badar05] presents an adaptive sampling procedure, which uses manufacturing 

surface error patterns and optimization search methods to reduce sample size, while 

improving accuracy. Surface errors for different processes are quantified and 

validated using previously published models. The initial points for sampling are 

identified through such a characterization of the process and its effect on the 

workpiece. These sampled points are fit using the least-squares method to complete 

the form evaluation. Points are added to the initial set using optimization search 

heuristics. The final tolerance value obtained is compared with that obtained from a 

large population sample to check the accuracy. With such an adaptive approach, it is 

proposed that the number of points sampled is potentially less than that which 

would be expected to achieve the same level of accuracy using traditional sampling 
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methods. This paper demonstrates the error modeling and validation aspects of this 

adaptive sampling procedure. 

Error modeling has been widely used in the field of construction 

engineering. [Cho04] proposes a correction to improve the position error in 

automated construction manipulators. Hydraulically actuated construction 

equipment is rapidly being retrofitted with robotic control capabilities by several 

major manufacturers. However, position control errors caused by several factors are 

significant in these types of construction equipment. Errors are amplified if the 

manipulator and its operator must measure and locate objects in the equipment's 

fixed reference frame. Both mechanistic and statistical approaches to correcting 

position errors are possible. [Cho04] reports a statistical approach validated through 

experiments with a computer-controlled large-scale manipulator (LSM). The LSM 

is sufficiently representative of several types of construction equipment to be able to 

serve as a general test bed. In the regression analysis, three factors which are 

measurable in real time: distance, hydraulic pressure, and payload, are varied to 

determine their influence on position errors in the LSM. It is shown that with an 

integrated multivariable regression model, about 30% of the mean positioning error 

of the LSM can be reduced without the use of fixed external reference systems. The 

model is implemented as simple, real-time regression equations. 

Error modeling has also been used extensively in the fields of biometrics and 

medical sciences. Two models of disease progression among healthy persons with a 

history of a precancerous lesion and the errors associated with them are studied by. 

[Goldie03]. Evaluating cancer screening often requires modeling the underlying 
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disease process and not the observed disease, particularly in the absence of direct 

evidence linking screening to a survival benefit. Two models with four basic health 

states (disease free, presence of a precancerous lesion, presence of cancer, dead), are 

studied and the errors associated are analyzed. This modeling error's magnitude is 

examined under a variety of assumptions and finally certain errors when modeling 

the underlying disease process in evaluating screening programs for cancers 

associated with precancerous states are removed. 

The assessment and management of exploited fish and invertebrate 

populations is subject to several types of uncertainty. This uncertainty translates into 

risk to the population in the development and implementation of fishery 

management advice. Here, risk is defined as the probability that exploitation rates 

will exceed a threshold level where long term sustainability of the stock is 

threatened. [Fogarty96] studies the different sources of errors: (a) stochasticity in 

demographic rates and processes, particularly in survival rates during the early life 

stages; (b) measurement error resulting from sampling variation in the determination 

of population parameters or in model estimation; and (c) the lack of complete 

information on population and ecosystem dynamics. Short term stochastic 

projections are then made accounting for uncertainty in population size and for 

random variability in the number of young surviving to enter the fishery.  

Error modeling is also widely used in the fields of economics and trade and 

commerce. [Bessler03] examines dynamic relationships among wheat prices from 

five countries for the years 1981-1999. Error correction models and directed acyclic 

graphs are employed with observational data to sort-out the dynamic causal 
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relationships among prices from major wheat producing regions: Canada, the 

European Union, Argentina, Australia, and the United States. The empirical results 

show that Canada and the U.S. are leaders in the pricing of wheat in these markets 

and that the U.S. has a significant effect on three markets excluding Canada. 

Error modeling has been applied in the field of safety critical systems like 

nuclear power plants, in the aviation industry etc. Air traffic control automation 

synthesizes aircraft trajectories for the generation of advisories. Trajectory 

computation employs models of aircraft performances and weather conditions. In 

contrast, actual trajectories are flown in real aircraft under actual conditions. Since 

synthetic trajectories are used in landing scheduling and conflict probing, it is very 

important to understand the differences between computed trajectories and actual 

trajectories. [Jackson96] examines the effects of aircraft modeling errors on the 

accuracy of trajectory predictions in air traffic control automation. Three-

dimensional point-mass aircraft equations of motion are assumed to be able to 

generate actual aircraft flight paths. Modeling errors are described as uncertain 

parameters or uncertain input functions. A typical trajectory is defined by a series of 

flight segments with different control objectives for each flight segment and 

conditions that define segment transitions. A constrained linearization approach is 

used to analyze trajectory differences caused by various modeling errors by 

developing a linear time varying system that describes the trajectory errors, with 

expressions to transfer the trajectory errors across moving segment transitions. A 

numerical example is presented for a complete commercial aircraft descent 

trajectory consisting of several flight segments. 
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[Brannigan93] studies the computerized fire risk assessment models and 

proposed a set of guidelines for their regulatory use. To do that he analyzes the 

errors associated with the models. He outlined the sources of errors in these models: 

mainly the assumptions taken into account while building these models like 

equivalence of buildings, special cases like arson etc. 

Even though error modeling application traverses a variety of fields, to the best 

of our knowledge it has not been used in the field of software reliability modeling. 

However the impact of errors in software reliability models has been studied. 

[Brocklehurst90] analyzes the predictive accuracy of several software reliability 

growth models using “u-plot”, which allows a user to estimate the relationship 

between the estimated reliability and the true reliability using the past performance 

data. Then the future estimates are improved by a process of recalibration. 

Recalibration is done assuming that there is a consistent bias (i.e. consistent over-

estimation or under-estimation) between the estimated reliability and the true 

reliability.  

[Li93] argues that there is no way to tell exactly how close an estimation will be 

to the actual value using the recalibration process mentioned in [Brocklehurst90]. 

The authors simply measure the bias of the estimation of the software reliability at 

each past point of time and then take the average of these bias values and deduct this 

average bias from the model projection. They also show that this simple approach is 

superior to the recalibration method. 

[Matsumoto88] evaluate software reliability growth models in the context of a 

software project conducted in a university. A compiler was implemented and tested 



 

 23 

by five students. The test data was used to evaluate three different software 

reliability growth models. Evaluation of the three models is based on the magnitude 

of the relative error of the prediction. The relative error is defined as the ratio of the 

difference between the actual number of defects detected during the testing process 

and the number of defects predicted by the models, to the actual number of defects.   

[Malaiya92] evaluate five different software reliability growth models using 18 

datasets collected from a wide variety of software systems. The size of the projects 

range from 1000 Lines of Code to 1 million Lines of Code and come from different 

domains. These datasets are used to estimate the parameters of the five models. 

Evaluation of the models is based on the mean relative error of the prediction. Here 

also the relative error of a model is defined as the error in the prediction of total 

number of faults in a specific dataset by a model over the actual number of faults in 

that dataset.  

[Lyu96] discusses a study where linear combination of results, even in their 

simplest format, appears to provide more accurate predictions. The following 

strategy is adopted in forming linear combination models.   

• Identify a basic set of models (component models):  If possible select models 

whose assumptions are close to the actual environment. Also, select those 

models whose predictive biases tend to cancel each other. (Models can have 

optimistic or pessimistic biases) 

• Apply certain criteria to ascribe weights to the component models and form 

a combination model for the final predictions.  
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The authors experimented with three different models. The authors, in their 

investigation, found that these models perform well. Moreover, with the data sets 

that the models were analyzed with, one of the models tended to be optimistic, one 

pessimistic and one went either way.  They also experimented with statically 

weighted combinations and dynamically weighted combinations. In statically 

weighted combinations, each component model has a constant weighing which 

remains the same throughout the modeling process. In dynamically weighted 

combinations, the weights are dynamically assigned incorporating the latest 

information on the models. 

Even though there has been some study on the evaluation of software 

reliability models, error modeling has not been done to analyze and then improve 

the estimations. This work generalizes the domain of application of error modeling 

approaches to the software reliability field. It analyzes and evaluates the prediction 

accuracy of Reliability Prediction Systems (RePSs) that are constructed from 

software measurements like Requirements Traceability, Defect Density, Function 

Point count, Test Coverage and Bugs per Line of Code. The errors for each of the 

RePSs are modeled and the impact of the errors for different parameters is 

determined. The nature of the errors associated with the RePSs (multiplicative or 

additive) is also determined, which is then applied to the model uncertainty 

framework to update the estimates.  
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2.3 Summary 

 
This chapter described the error modeling applications and approaches in 

different scientific and engineering fields. The various approaches to error modeling 

include empirical, trigonometric, statistical, error matrix methods, simulation 

studies, coordinate transformation methods etc. Many of the approaches of error 

modeling were applied in real-time to reduce the errors. The approaches looked at 

sources of variations/errors and tried to rectify the sources itself. The approaches 

also looked at different types of errors such as model errors and parametric errors 

and found that most of the errors resulted from assumptions made by the models and 

the parameters.   

This chapter also discussed various studies on the evaluation of software 

reliability models.  However, it was also noted that error modeling approaches has 

not been applied to the software reliability modeling field. This work aims to apply 

error modeling approaches to the software reliability field.  
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Chapter 3 Literature Review: Software Reliability 
Modeling and Reliability Prediction Systems (RePSs) 

 
 

This chapter first enumerates some of the widely used software reliability 

models and then discusses the advantages of RePSs and the theory behind the 

construction of the RePSs.  

3.1 Software Reliability Models 

 
Before introducing the concept of software reliability, few other concepts 

need to be understood. The concepts in question are those of errors, faults, and 

failures. Following are the IEEE [IEEE90] definitions of these concepts. 

Errors are human actions that result in the software containing a fault. 

Examples of such faults are the omission or misinterpretation of the user’s 

requirements, a coding error, etc. 

Faults are manifestations of an error in the software. If encountered, a fault 

may cause a failure of the software. In this work, the term “defect” and “fault” are 

used interchangeably. 

Failure is the inability of the software to perform its mission or function 

within specified limits. Failures are observed during testing and operation.  

Now, Software Reliability is defined as the probability that the software will 

not cause the failure of a product for a specified time under specified conditions; 

this probability is a function of the inputs to and usage of the product, as well as a 

function of the existence of faults in the software. The inputs to the product 

determine whether an existing fault is encountered or not. 
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Software reliability models may be categorized into Early Prediction Models 

that can predict the reliability of software during the requirement, design or coding 

phases of the Software Development Life Cycle (SDLC) and Late Prediction 

Models that can predict the reliability when comprehensive testing starts 

[Smidts02]. 

Models for early prediction are few in number and most models can be 

categorized in the late prediction category. The Late Prediction Models mostly 

consists of the Software Reliability Growth Models. Input Domain Models and 

Error-Seeding Models are also late prediction models. Some of the widely used 

models are discussed below. 

The Rome Air Development Center (RADC) Reliability Metric was one of the 

first early prediction models [ASFC87] to be used. A large range of software 

programs and related failure data were analyzed in order to identify the 

characteristics that would influence software reliability. The model identifies three 

characteristics: the application type (A), the development environment (D), and the 

software characteristics (S). A new software is examined with reference to these 

different characteristics. Each characteristic is quantified, and reliability R in terms 

of number of faults per executable line of code is obtained by multiplying these 

different metrics 

R=A×D×S                  where 

The application type (A) is a basic characteristic of software. Examples of 

application types that were initially used by RADC are airborne systems, process 

control systems, developmental systems (such as software development tools), etc. 



 

 28 

An initial value for the reliability of the software to be developed is based only on 

the application type. This initial value is then modified when other factors 

characterizing the software development process and the product become available. 

Development environment (D) is divided into three categories [Boehm81]. 

• Organic mode: Small software teams develop software in a highly familiar, 

in-house environment. Most software personnel are extremely experienced 

and knowledgeable about the impact of this software development on the 

company's objectives. 

• Semidetached mode: Team members have an intermediate level of expertise 

with related systems. The team is a mixture of experienced and 

inexperienced people. Members of the team have experience with some 

specific aspects of the project. 

• Embedded mode: The software needs to operate under tight constraints. In 

other words, the software will function in a strongly coupled system 

involving software, hardware, regulations, and procedures.  

The software characteristics (S) metric includes all characteristics of the software 

that are likely to impact software reliability like the size, complexity etc. 

Software reliability growth models (SRGM) relates the cumulative number 

of failures experienced during software testing (or the time-interval between 

software failures) to the test duration.   

Some of the widely used SRGMs are discussed below. 

Jelinski and Moranda's Model [Jelinksi72]:  Jelinksi and Moranda developed 

one of the earliest reliability models. The main assumptions are: 
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• All faults in a program are equally likely to cause a failure during test 

• The hazard rate is proportional to the number of faults remaining and is 

piecewise constant i.e it changes at each fault correction by a constant 

amount but remains constant between corrections. 

• No new defects are introduced into the software as testing and debugging 

occur i.e. debugging is perfect. 

 Originally, the model assumed only one fault was removed after each failure, but an 

extension of the model, credited to Lipow [Lipow74], permits more than one fault to 

be removed. 

Goel and Okumoto [Goel78] developed a modification of the Jelsinki-

Moranda model for the case of imperfect debugging. 

Musa Basic Execution Time Model [Musa75] assumes that failures occur as 

a non-homogeneous Poisson process (NHPP). The important assumption in this 

model is that the per-fault hazard rate is constant. The per-fault hazard rate is 

defined as the ratio of initial failure intensity to the number of faults inherent in the 

code [Musa87]. Failure intensity function is defined as the instantaneous rate of 

change of the expected number of failures with respect to time.  Moreover, in this 

model, Musa postulated that software reliability theory should be based on 

execution time, which is the actual processor time utilized in executing the program, 

rather than on calendar time. Hence, failure intensity is measured in terms of 

numbers of failures per unit (CPU) time. A Bayesian approach to software 

reliability measurement was taken by Littlewood and Verrall [Littlewood73]. Most 

models postulate that the hazard rate is a function of the number of faults remaining, 
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whereas as Littlewood and Verrall modeled it as a random variable. One of the 

parameters of the distribution of this random variable is assumed to vary with the 

number of failures experienced which characterizes reliability change. The authors 

proposed various functional forms for the description of this variation. The values of 

the parameters of each functional form that produce the best fit for that form is 

determined and then the functional forms are compared and the best fitting form is 

selected. 

In Musa-Okumoto Logarithmic Poisson Execution Time Model [Musa84], 

the underlying software failure process is modeled as a logarithmic Poisson process 

wherein the total number of failures in the system is "infinite in infinite time". The 

intensity function decreases exponentially with the number of failures. This model 

assumes that repair of the first failure has the greatest impact in reducing failure 

intensity and the impact of each subsequent repair decreases exponentially. 

The Delayed S-shaped SRGM was originally proposed by Yamada et al. 

[Yamada83] and is a simple modification of the NHPP to obtain an S-shaped 

growth curve for the cumulative number of failures detected. This model’s software 

fault detection process can be viewed as a learning process in which the software 

testers become familiar with the testing environments and tools and as time 

progresses, these testers’ skills gradually improve and then level off as the residual 

faults become more difficult to uncover. 

Input-domain models consider the software input space from which test 

cases are chosen and the studied quantity is the probability that an input datum 

randomly chosen according to the operational profile, will lead to a failure. By 



 

 31 

recording the output results for a series of test cases, this probability can be 

estimated using some statistical sampling techniques. Two well known input 

domain models are Nelson's model [Nelson78] and Ramamoorthy and Bastani’s 

model [Ramamoorthy82]. 

Fault seeding models assume that a known number of faults, called “seeded” 

faults, are inserted into the software and both seeded faults and inherent faults are 

detected during testing. The number of faults remaining after testing can then be 

estimated from the numbers of seeded faults and inherent faults uncovered during 

the testing. Mills fault seeding model [Mills72] is an example of this kind of 

models. 

3.2 Theory of RePSs 

 
This section discusses the pros and cons of early and late prediction models 

and the importance of RePSs and the theory behind it. Early prediction models are 

of paramount importance since they provide early identification of cost overruns, 

resource allocation, software development process issues, trade-off and risk 

analysis, optimal development strategies, etc. Unfortunately, research in this area 

has been sparse and results are not universally accepted due to a lack of systematic 

validation and the rapid obsolescence of results due to shifts in software engineering 

paradigms [Li06]. Late prediction models also have inherent flaws. The main issue 

is the need for exorbitant amounts of testing (especially in case of safety critical 

systems) and the availability of failure data. As an example, to assure 10 E-15 

probability of failure per demand one will need to run and order of 10E14 test cases 
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[Butler93]. This, at the rate of 0.1 seconds per test case, would require more than 

10E5 years of continuous, uninterrupted testing [Butler93].  

The inadequacy of the present state and techniques of software reliability 

estimation has been recognized by industry and government agencies [NRC96, 

RTCA92]. In summary, despite the fact that hundreds of software reliability models 

have been developed to date [Smidts02], the software reliability discipline is still 

struggling to establish software reliability estimation and prediction model as the 

hardware reliability discipline did years ago. This is mainly due to the fact that most 

of these models either require failure data information and trends observed in the 

failure data or need exorbitant amount of testing and assume that the  failure data is 

available (especially in case of safety critical systems) to predict reliability. 

Moreover most of these models have not been verified and validated extensively.  

Reliability prediction systems, [Li00, Smidts00] RePSs provides an alternative 

to these models. RePS are constructed from software measurements. The 

measurements are obtained from different phases of the software development life 

cycle (SDLC) and hence do not rely upon the availability of just the failure data. In 

addition, these predictions do not require extensive amount of testing which in turn 

saves time and money. From an organization’s perspective, the time required to 

estimate these measures and their cost effectiveness make them ideal candidates for 

reliability estimation. The RePSs can be used alone or with existing 

methods/techniques of reliability estimation as a check of conformance.  

Fig 3-1 depicts the constitution of a RePS [Li00, Smidts00]. Construction of a 

RePS starts with the “Measure”, which is also the “root” of a RePS. “Support 
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measures are identified to connect the measure to reliability. The set of the 

“measure” and “support measures” constitutes a RePS. The “model” between 

“Reliability” and RePS is also termed “software reliability model”.  

Measure
Support
Measure 1

Support
Measure 2

Support
Measure m

Model

...

RePS

Reliability

 

Figure 3-1 RePS Constitution [Li00] 

The set of five RePS taken into account in this study are Defect Density, Bugs per 

Line of Code, Function Point, Requirements Traceability and Test Coverage. [Li00, 

Li04, Smidts00, Smidts04] discusses the RePS construction from these measures in 

details. However a summary of the RePSs is provided below in order to set the 

foundation for the simulation. 

3.2.1 Defect Density RePS 

Defect density is defined as the number of defects remaining unresolved in 

an application divided by the number of lines of code in the application. The Defect 

Density RePS is constructed taking into account the defects discovered by 

independent inspection. However, please note that this is an approximation of the 

defect density measure. Although the defect density ratio is traditionally meaningful 

as an indicator of the quality of development, only the defects themselves that are 
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detected through inspection is taken into account for the reliability estimation 

[Smidts00]. 

Software fails due to the defects introduced during the development process. 

A defect leads to a failure if it meets the following conditions: first, it needs to be 

triggered (executed); then such execution should modify the computational state; 

and finally such abnormal state should propagate to the output and manifest itself as 

an abnormal output, in other words, a failure [Thompson93, Voas92]. 

The PIE concept [Voas92] was used to describe such failure mechanism in 

[Smidts00]. The acronym PIE corresponds to the above three program 

characteristics: the probability that a particular section of a program (termed 

“location”) is executed (termed “execution” and noted as E), the probability that the 

execution of such section affects the data state (termed “infection” and noted I) and 

the probability that such an infection of the data state has an effect on program 

output (termed “propagation” and noted P). Thus the failure probability per demand 

pf is given in (3-1).  

∫ ∗∗=
i

f iEiIiPp )()()(          ( 3-1 ) 

where 

P(i) the propagation probability for the ith defect 

I(i) the infection probability for the ith defect 

E(i) the execution probability for the ith defect. 

A simple, convenient and effective method using an extended finite state 

machine model (EFSM) [Wang93] can be used to determine failure probability.  



 

 35 

EFSMs describe a system’s dynamic behavior using hierarchically arranged states 

and transitions. A state describes a condition of the system; and the transition 

visually describes the system’s new state as a result of a triggering event.  

3.2.2 Test Coverage RePS 

In this section the RePS construction from Test Coverage is examined. Test 

coverage was designed to reveal the efficiency of software testing. Some empirical 

studies [Malaiya94] correlated test coverage and the number of defects in the 

software. The RePS utilizes such relationship and obtains software reliability based 

on the number of defects obtained from the test coverage. Section 3.1.2.1 discusses 

the issues with the traditional definition of Test Coverage and how it was resolved 

in [Smidts00] and Section 3.1.2.2 provides the approach given by the authors to 

estimate reliability from the modified Test Coverage. 

3.2.2.1 Test Coverage Modification to Take Missing Functionalities into 

Account 

The software engineering literature [IEEE98] defines multiple test coverage 

measures such as block (also called statement) coverage, branch coverage and data 

flow coverage. Only the statement coverage was selected in [Smidts00]. Statement 

coverage is defined as [IEEE98]: 

Statement Coverage = 
Total

Tested

LOC

LOC
  

(3-2) 

where 
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LOCTested  number of lines of code implemented that are being executed 

by the test data  documented in the test plan [Lockheed98C]. 

LOCTotal  total number of lines of code [Lockheed98B]. 

However, (3-2) does not take the unimplemented functions specified in the 

requirements into consideration. Since these functions were not implemented, the 

portion of code these would have constituted had they been implemented is 

unknown. An equivalent line of code count for these unimplemented functionalities 

was calculated by: 1) counting the number of function points corresponding to the 

missing functionalities, 2) using documented backfiring rules [Jones96] to compute 

an equivalent line of code count for the missing functionalities.  

Therefore, (3-2) was modified in [Smidts00] to take the missing functionalities into 

account. This yielded: 

Statement Coverage = 
MissIMPL

MissTested

LOCLOC

LOCLOC

+

+
  

(3-3) 

where 

LOCMiss The number of lines of code for the missing functionalities 

LOCIMPL The number of lines of code implemented 

Now using the backfiring rule (the number of lines of code of software is 

empirically proportional to the number of function points),  

LOC = k * FP (3-4) 

where 

LOC The number of lines of code in the software  
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k The backfiring coefficient, dependent on the specific programming 

language used 

FP The number of function points contained in the software 

So now (3-3) was written as 

Statement Coverage = 
MissIMPL

MissTested

FPkLOC

FPkLOC

*

*

+

+
  

   (3-5) 

where 

FPMiss The number of function points corresponding to the missing functionalities 

in the requirements specifications 

The backfiring coefficient for C++ is available in the public data domain, and ranges 

from 40 to 140 (mode 55) LOC/FP in [Jones96].  

3.2.2.2  Reliability Estimation from the Modified Test Coverage 

      Given the modified value of test coverage defined in Section 3.1.2.1, the number 

of defects remaining in the software, N, was estimated using Malaiya’s results 

[Malaiya94, Malaiya98] which can be summarized as  

N = N
0
/C

0 
                                                                                        (3-5) 

where N0
 The number of defects found by test cases provided in the test plan,  

  C
0
 The defect coverage, which is defined in [Malaiya94, Malaiya98] as the 

fraction of defects found by test cases given in the test plan. C0
 is given as  

C
0 = a0 * ln(1 + a1(exp(a2*C1)-1)                                                (3-6) 
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Where, a0, a1, a2 are coefficients and C1 is the statement coverage defined in Section 

3.1.2.1. The coefficients can be estimated from field data [Malaiya94, Malaiya98]. 

Hence knowing C1 one obtains C
0 and knowing N0, N is obtained.  

Now, the number of defects remaining that contributes to failure is (N – Nrepaired ) 

where Nrepaired is the number of defects fixed from among N
0 , however, we do not 

have information about what these unknown defects are and where they are located. 

Therefore an approximation is made to find the probability of failure per demand, pf. 

i.e. 

)(1 )(
repairedK

NN

f NNep repairedK −×≈−= −− νν                                                 (3-7) 

where Kν  is an average value that can be estimated from the known failure 

probability and the number of defects remaining in the software[Smidts00]. For 

instance  

repaired

f

K
NN

p

−
=

0

0

ν  
                                                                                   (3-8) 

where  pf
0 the failure probability caused by the number of known defects 

remaining, N0
- Nrepaired 

3.2.3 Requirements Traceability RePS 

In this section the approach in [Smidts00] of constructing a RePS from the 

Requirements Traceability measure is described. 

The measure “Requirements Traceability” is defined in [IEEE98] as:  
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%100
2
1
×=

R

R
RT  

(3-9) 

where 

RT The value of the measure “Requirements Traceability” 

R1 The number of requirements implemented in the source code 

R2 The number of final requirements. We know that R2 is a function of time as 

requirements gets added or deleted during the software life cycle. However the 

model used here assumes that R2 is the final set of requirements. 

This definition requires the count of R1 and R2. Unfortunately, [IEEE98] 

does not provide rules to perform such counting. [Smidts00] thus utilized the 

concept of Master Requirements Lists (MRLs) [Lockheed98A] to decompose the 

requirements specifications.  

Each MRL can be further decomposed into a number of verbs or verb 

phrases that represent end-user meaningful requirements primitives. For instance, 

the requirements “Any failure of the system shall default to a ‘Access Denied’ 

message to the reader and a message to the attending guard ‘System Failure.’ The 

system shall default to a locked-gate with guard override capability” can be 

decomposed into the following four MRLs: 

MRL1: Any failure of the system shall default to a ‘Access Denied’ message to the 

reader 

MRL2: and a message to the attending guard ‘System Failure.’ 

MRL3: The system shall default to a locked-gate 

MRL4: with guard override capability. 
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Quantities R1 and R2 are then counted at this primitive level. Each 

unimplemented function was considered as a defect. Any functionality not defined 

in the requirements and implemented was also considered a defect.  

Once the set of defects is identified, the EFSM technique is then used to calculate 

the failure probability propagating this specific set of defects. 

3.2.4 Function Point RePS 

Function point is designed to determine the functional size of the software. 

This measure can be determined at any stage of the software life cycle starting from 

the requirements specification phase as a basis to assess software quality, costs, 

documentation and productivity. Function points have gained acceptance as a 

primary measure of software size. Function points measure the size of an entire 

application as well as that of software enhancements, regardless of the technology 

used for development and/or maintenance.  

Jones summarized the state-of-the-practice of the U.S. averages for delivered 

defects in [Jones96]. Table 3.46 in [Jones96] provides the average numbers of 

delivered defects per function point for different types of software systems (end-

user software, management information systems, outsourced and contract software, 

commercial software, system software, and military software).  The number of 

delivered defects can be obtained using the table by interpolation. Since the a priori 

knowledge of the defects’ type and location and their impact on failure probability 

is not available, the EFSM technique cannot be applied to quantify the failure 

likelihood. Therefore the traditional relationship below was applied: 
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τN
T

K

s
Lep

−

=   
(3-10) 

Where 

ps             is the probability of success per demand. A demand is an execution of the 

software representing its usage. 

K fault exposure ratio, the average value is 4.2 x 10–7 failure/fault in [Musa87, 

Musa98]  

TL linear execution time. 

N number of defects 

τ  average execution time per demand 

τ is obtained by analyzing the reliability testing data (total testing time divided by 

number of test cases). In order to estimate the linear execution time, a piece of linear 

code is created using the same language as the original application. The statements 

in this simulated code follow the same pattern as the application. By pattern, it 

means the coding style and frequency at which a type of statement appears. The 

simulated code is at best an approximation of the actual code [Li06]. The simulated 

code is executed multiple times and the average execution time per run is obtained.  

3.2.5 Bugs per Line of Code RePS 

[Smidts00] also constructed a RePS to estimate failure probability from the 

bugs per line of code metric. Gaffney [Gaffney84] established that the number of 

defects remaining in the software (N) could be expressed empirically as a function 

of the number of line of codes. That is, 
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∑
=

+=
M

i

iSN
1

3/4 )0015.02.4(  
(3-11) 

where 

i The module index 

M The number of modules 

Si The number of lines of code for the ith module. 

A module is defined as “an independent piece of code with a well-defined interface 

to the rest of the product” [Scach93], and since this definition is satisfied by the 

notion of class, we can substitute the idea of “module as a subroutine” to the idea of 

“module as a class”. 

The reliability estimation from this measure follows (3-10). The parameters 

TL and τ are obtained in the same manner as mentioned in Section 3.1.4. 

3.3 Summary 

 
This chapter discussed the RePSs in details. The construction of RePSs is an 

analytical approach that links measures to defects and then defects to reliability estimation. 

The rationale behind the construction of RePSs provides the basis of construction of 

error models for the simulation. The next chapter illustrates the construction of error 

models for the simulation in details. 
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Chapter 4 Simulation and Simulation Results 
 

In this chapter the theory behind the simulation that was carried out to 

determine the nature of the errors/correction factors is provided. Subsequently the 

results of the simulation are also presented.  

4.1 Theory behind Simulation 

 
Simulations were carried out to determine the nature of the errors for a variety 

of reasons. Traditionally the nature of the errors is determined experimentally which 

includes the extensive and difficult task of designing the experiment in a way to 

counter threats to validity, and executing it. Also each experiment needs a minimum 

number of data points (the larger the number, the better) in order to statistically 

validate it. This is expensive not only from a cost perspective but also from a time 

perspective. Sometimes carrying out an experiment is just not feasible due to lack of 

resources. Simulation is an alternative which provides a solution to the above 

problems. Moreover, simulation allows us to use a wide range of inputs. This not 

only provides a broader spectrum of possibilities but also acts as a catalyst for 

sensitivity analysis of the inputs/values. In this section, the rationale behind the 

simulation of each of the error forms is provided. 

However, in order to simulate the error, which is defined as the difference 

between the real failure probability and the failure probability predicted by the 

model, the real failure probability requires to be modeled. As again, we do not know 

the reality in its totality. Therefore our goal is to model the real failure probability as 

it deems appropriate in the context of the models and the model uncertainty 
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framework. From the model uncertainty framework perspective, the experimental 

value is assumed to be the real value and is compared against the value predicted by 

the model. Therefore we simulate the experimental process to obtain the real 

reliability.  The experimental failure probability is obtained through reliability 

testing. The steps are:  

1) Construction of an EFSM [Wang93, Li06] representing the user’s 

requirements and embedding user’s operational profile information. Testmaster tool 

[Testmaster99] was used for this purpose. 

2) Execution of the model to evaluate the impact of the defects. A large 

number of test cases are run through the application and the ratio of number of test 

cases failed over the total number of test cases run, gives the real failure probability. 

Test cases were generated from the models using Winrunner [Winrunner01]. 

As we can see, the total number of defects and their impact provide the key 

to the real failure probability. In order to simulate the real failure probability, the 

number of defects and their impacts require to be determined.  

The number of defects is obtained from [Jones96], Table 3.46, which is US averages 

for delivered defects per function point. Jones’s [Jones96] analysis is based on more 

than 6700 software projects.  

The fault exposure probability of each defect is considered in order to assess 

the impact of these defects. Fault exposure probability is defined as the probability 

that a fault leads to failure. Therefore if there are N defects remaining in an 

application the real failure probability of the application is the sum of the fault 



 

 45 

exposure probability, k, of each of these, i.e.,  the real probability of failure is ∑
=

=

Ni

i

ik
1

, 

where ki  is the fault exposure probability of defect i. The assumption here is that the 

defects are mutually exclusive of each other. This is a fair enough assumption as it 

only excludes the case in which one fault masks others [Wu93]. As long as this 

situation does not happen frequently, the mutually exclusive faults assumption will 

be a fairly good approximation [Wu93].  

Moreover, mutual exclusiveness of defects assumption gives the maximum 

failure probability. This is because it assumes that the defects are on different paths 

of the program and contribute independently to the failure probability. So, if there is 

interaction among defects, which arises when a defect masks another defect, the 

failure caused by the masked defect either will not appear in the execution of the 

program [Wu93] or will appear partially. Therefore the assumption of mutual 

exclusiveness gives a conservative value for the failure probability.  

Most importantly, in this study we are concerned with the error rather than 

the absolute value of the real failure probability. Section 4.1.1 through Section 4.1.5 

discusses the construction of error models in great details but they can be 

summarized as follows. The error  

∑∑
=

=

=

=

−=
1

1

*

1

Ni

i

i

Ni

i

i kke  i.e. the difference between the real failure probability given by 

∑
=

=

Ni

i

ik
1

 and predicted value of failure probability given by∑
=

=

1

1

*
Ni

i

ik . N is actual number 

of defects present in the application and N1 is the number of defects detected. k and 

k* are similar and the difference in k and k* may arise due to the modeler’s 
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subjective understanding of the system which may lead to mapping of the defects at 

different spots/levels of the EFSM [Wang93, Li06]. This may happen in very large 

and complex systems and can lead to either overestimation or underestimation of 

errors.  Since the assumption of mutual exclusiveness is also extended to the 

modeling of the predicted failure probability, the overestimation of failure 

probability cancels out to a large extent. 

Figure 4-1 shows the real error vs. the modeled error. Since both the real and 

the modeled failure probabilities are overestimated, it is reasonable to believe that 

the real error is similar to the modeled error.  However this will depend on the 

amount of overestimation made for the real failure probability and the estimated 

failure probability. If there are N defects actually residing in the application and all 

the defects are detected, the overestimation made for the real failure probability and 

the estimated failure probability are the same. However as the number of defects 

detected decreases, the difference between the overestimation for the estimated 

failure probability and the overestimation for the real failure probability increases. 

This is because of the way the error is modeled (eq(4-1)). This similarity of real and 

modeled errors can be studied further and is an avenue of future research. Appendix 

C provides further investigation on the mutual exclusiveness of defects and possible 

directions for future research. 

An experiment was conducted to determine the similarity between real and 

simulated errors. The experimental results presented in Section 5.6.3 statistically 

show that there is not enough evidence to reject the hypothesis that the simulated 

errors are similar to the real errors. 



 

 47 

 

 

Figure 4-1 Real error vs. modeled error 

 
The following examples illustrate that assumption of mutual exclusiveness 

provides a conservative value for the failure probability. The “real” versus the 

“modeled” failure probabilities are also discussed.  

Case1: 

Let us consider a program structure as shown in the following flow diagram 

 

S1 S3S2

D,(1-e2)

C,e2,k2

B, (1-e1)

A, e1, k1

 

Figure 4-2 Control flow graph -1 

 
Say S1, S2, S3 are predicates and A, B, C, D, are the different paths taken. 

The shaded paths A and C contain a defect each with a fault exposure probability of 

k1 and k2.  
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 i.e  k1 = e1× I1×P1End   where e1 is the execution probability of path A, I1 

is the infection probability of the defect in path A and P1End is the probability that 

the defect propagates to the end. Similarly,  

k2 = e2× I2×P2End  where e2 is the execution probability of path B, I2 is the 

infection probability of the defect in path B and P2End is the probability that it 

propagates to the end. 

Thus the real failure probability is equal to k1 + k2 – k1×k2. However the 

modeled failure probability is k1+ k2 and is thus a conservative estimate.  

In this case the if both the defects are detected, the actual estimated failure 

probability is k1* + k2* - k1*×k2* and the estimated failure probability as modeled 

is k1* + k2*. Therefore the modeled error (k1 + k2 –k1* + k2* ) on an average is 

equal to zero. The actual error (k1 + k2 – k1×k2 - ( k1* + k2* - k1*×k2*)) on an 

average is also equal to zero. If one of the defects is detected the actual error is (k1 

+ k2 – k1×k2  - k1*), where as the modeled error is (k1 + k2 - k1*) , which is also a 

conservative estimate. Moreover since fault exposure probability values are less 

than one, their multiplicative values are small and tend towards zero.  

Case2: 

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A,e1, k1, k2

 

Figure 4-3 Control flow graph - 2 
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Let us assume that there are two defects on the path A, each with a fault 

exposure probability k1 and k2. Now, the effect of the masked defect may not show 

at all. For example in the above case, the real failure probability is equal to k1. 

However the modeled failure probability is k1+k2 and is also a conservative 

estimate. The table below provides an example where the effect of the masked 

defect may not show at all. 

Correct Code Incorrect Code 

………. 
if(x !=1 ) 
{ 
      y =  4×  (x-1); 
      z = y/6; 
} 
else 
{ 
……….. 

………. 
if(x !=1 ) 
{ 
      y =  4×  (x-2); 
      z = y/3; 
} 
else 
{ 
……….. 

Table 4-1 Code that shows that the masked defect may not have any effect 

 
As can be seen there are two defects in the incorrect code and both are in the 

same path. Now, if x equals 2, y in the case of incorrect code will always be equal to 

0 and the value of z is also always equal to zero. Here the defect in the statement “z 

= y/3” does not affect the failure probability.  

In the above case with two defects on the path A (Figure 4-3), the defects 

may cancel each other in which case the real failure probability is zero whereas the 

modeled failure probability is k1+k2 and is also a conservative estimate. The table 

below provides an example where the defects may cancel each other. 
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Correct Code Incorrect Code 

………. 
if(x < 10 ) 
{       
      y = x+1; 
      z = y+4; 
      w = y+z; 
} 
else 
{ 
……….. 

………. 
if(x !=1 ) 
{ 
      y = x+2; 
      z = y+2; 
      w = y+z; 
} 
else 
{ 
……….. 

Table 4-2 Code that shows two defects may cancel each other 

 
As can be seen from the above table, in case of the correct code,  

 w = y+z = y+y+4 = 2(x+1)+4 = 2x+6;  

and in the case of incorrect code,  

w = y+z = y+y+2 = 2(x+2)+2 = 2x+6. Hence the defects cancel each 

other.  

Now consider Figure 4-4. Paths A, C and D contain a defect each. Now, the 

real failure probability is equal to k1 + k2 + k3 - k1×k2 - k1×k3. Please note that e2 

+ e3 + e4 is equal to one. The modeled failure probability is k1 + k2 + k3 which is 

a conservative estimate. 

In this case, real estimated failure probability if all three defects are found is 

k1* + k2* + k3* - k1*×k2* - k1*×k3*. Here also the error remains the same i.e. 

equal to zero. If two of the three defects are detected, the real estimated failure 

probability is k1* + k2* - k1*×k2*. Therefore the real error is ( k1 + k2 + k3 - 

k1×k2 - k1×k3 - (k1* + k2*  - k1*×k2*)) whereas the modeled error is ( k1 + k2 + 

k3 –( k1* + k2*) ).  
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S1 S3S2

A, e1, k1

E, e4

C, e2, k2

B, (1-e1)

D, e3, k3

 

Figure 4-4 Control flow graph – 3 

 
Now consider the following program structure. In this case the predicate S1 

has a defect with a fault exposure probability k1 and path A has a defect with fault 

exposure probability k2. However the failure probability will be less than or equal to 

k1+ k2. This is because if the defect in S1 does not affect the path A at all, the two 

defects together will be mutually exclusive of each other and the total failure 

probability will be k1 + k2. However, if the defect in S1 also affects the path A, the 

total failure probability will be less than k1+ k2.  

S1, e1, k1 S3S2

A, e2, k2

F

D

B

C

E

 

Figure 4-5 Control flow graph – 4 

 
In the same manner it can be shown that the mutual exclusiveness 

assumption always provides a conservative estimate. Moreover the modeled errors 

are also similar to the real errors. In fact, they are equal to zero if all the defects are 

detected. On an average (with a data set of 6700 software projects from various 

domains, languages and sizes) 80% of the defects are detected [Jones96], and also 

since the fault exposure probabilities are less than one (the multiplicative values of 
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the fault exposure probabilities approach to zero), the assumption that the real and 

the modeled errors are similar is reasonable for all practical purposes. In fact, 

Capers Jones, in one of his latest talks on the state of the art of software quality in 

2005 (http://www.umsec.umn.edu/files/SQA05l.pdf), says that defect removal 

efficiency, on an average, is 85%. However, as mentioned before, the similarity of 

real and modeled errors can be studied further and is an avenue of future research.  

4.1.1 Defect Density Error Model Simulation: 

 
The rationale behind the error form for Defect Density is simple.  The 

predicted failure probability is the sum of the fault exposure probabilities of the 

number of defects that were identified through inspection, say N1. [Jones96] 

suggests that on an average N1 is equal to 0.8N. Therefore the error term is the 

difference between the real failure probability given by ∑
=

=

Ni

i

ik
1

 and predicted value of 

failure probability given by∑
=

=

1

1

*
Ni

i

ik  i.e. 

The error form for defect density is given by 
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i kke                                                                                 (4-1) 

where  

• e denotes the error 

• k is the real value of the fault exposure probability  

o k has a lower bound of 10-24 . This is because in safety critical 

applications, failure probabilities in the order of 10-9 are not unheard 
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of. Butler [Butler93] mentions the fact that ultra-reliable safety 

critical systems are required to have failure probabilities of 10-7-10-9 

per hour. He also mentions that it is not unusual to find "iteration 

rates" of 10-100 cycles per second. Considering 100 cycles per 

second, a failure rate of the order of 10-12-10-14 per demand 

[Butler93] is obtained. 10-24   is taken to be the lower bound as a 

conservative estimate. Any evidence of a failure probability lower 

than that does not exist. 

o The upper bound of k is varied in order to simulate a population of 

software. This would give us a better picture with a range of failure 

probabilities. The upper bound of  k is set at 10-1, 10-2, 10-3, 10-4,  

10-5, 10-6 for different sets of simulations. This set covers the lower 

and the moderately reliable applications [Butler93]. Moreover, the 

characteristics of the error did not change and were predictable for 

lower order of failure probabilities. However, an upper bound of  

10-13 is also considered to represent ultra-reliable applications. 

o k is log-normally distributed within the above range (which is also 

taken as the six sigma range) . Various studies suggest that software 

failure rate is log-normally distributed [Mullen98A, Mullen98B]. 

The main reasoning is that since event rates in software systems are 

generated by multiplicative processes there is reason to believe that 

the distribution of rates of events, including, failure rates, is 

lognormal. Also many previously published empirical studies show 
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that the failure rate distributions are well fit by the lognormal 

probability distribution [Mullen98A, Mullen98B]. 

• k* is the predicted value of fault exposure probability.   

Models, as we know are the means by which we reflect and express 

our understanding of some aspect of reality, a particular unknown of 

interest.  Even though the difference between models and reality at a 

fundamental level always exists, the issue is whether the prediction 

or performance of the model is correct at some practically acceptable 

level, within the model’s domain of application. [Musa87] studied 

the performance of various software reliability models and found 

them to be fairly good approximations of reality. Intuitively, we can 

say that k* should be of the same nature as k and close to k. 

Moreover the difference in k and k* may arise due to the modeler’s 

subjective understanding of the system which may lead to mapping 

of the defects at different spots/levels of the EFSM [Wang93, Li06]. 

This may happen in very large and complex systems and can lead to 

either overestimation or underestimation of errors. Hence a 

reasonable assumption is to take k* as normally distributed around k 

ie with a mean of k.  

o The standard deviation of k* is varied in order to simulate the 

different population of software and/or models. Musa et al [Musa87] 

have noticed that the error in the prediction of different software 

reliability models vary to a maximum of about 30%. [Malaiya92] 
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studied four software reliability growth models and found similar 

results.  For the simulation purposes, the value of standard deviation 

is varied between 0.01k*, 0.05k*, 0.1k*, 0.15 k*, 0.20 k*, 0.25 k*, 

and 0.3 k* and 0.4k*.   

• N is the number of defects remaining in the application and is obtained from 

[Jones96], Table 3.46, which is US averages for delivered defects per 

function point. We wanted to simulate different sizes of software 

applications. Therefore functional size is also varied and the different 

functional sizes taken into account are 75, 150, 300, 600, 1200 and 2400 and 

10,000 functional points. As per Jones [Jones96], one function point refers to 

128 lines of code in C. Therefore 10,000 function points refer to more than a 

million lines of code in C. 

• N1 is the number of defects found and removed. As per Jones [Jones96], the 

defect removal efficiency on an average is 80%. Therefore N1 is equal to 

0.8*N. However for the simulation purposes, N1 is varied from 0.1*N to 

0.8*N with an interval of 0.1. N1 is selected uniformly from among N.  This 

means that every defect has equal probability of getting detected irrespective 

of its fault exposure probability. In the vast literature, software inspection 

and reviews have been studied extensively over the years. Primarily these 

studies have been to understand the efficacy of software inspection and the 

events or sources that help detecting a defect. There is no evidence that fault 

exposure probability influences the detectability of a defect. [Porter98] 

studied the sources of variation in software inspections and found that the 
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inspection experience, language familiarity and application experience of the 

reviewers; the language familiarity and application experience of the code 

author, the type of change, functionality, code structure, code size and pre-

inspection testing of the code units are the main sources of variation of the 

efficacy of inspection. Pre-inspection testing refers to unit testing performed 

by developers before the inspection. Another significant research work is 

presented in [Chaar93] where the authors studied the events that   helps 

detect such a defect. [Anda02], [Porter95A], [Porter95B], [Kelly03], 

[Kelly00], [Dunsmore01], [Laitenberger99] and numerous other studies on 

software inspection do not consider fault exposure probability at all.  

The observation that software defect detection during software 

inspection is independent of the fault exposure probability of the defect can 

be justified because before or during inspection, the fault exposure 

probabilities of the defects are usually never known. Moreover the 

inspection techniques (ad-hoc, checklist based or scenario based 

[Porter95A]) do not require the knowledge of fault exposure probabilities of 

the defects. Therefore it can be assumed that the detectability of the defects 

is independent of the fault exposure probability of a defect. 

However, if the historical data of a certain organization hints at a 

relationship between the detectability of a defect and its fault exposure 

probability, such a relationship can be explored and established and then 

incorporated into the error model. 
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4.1.2 Test Coverage Error Model Simulation 

 
Let the number of defects before the testing process begins be Nbefore_test. Let 

the number of defects detected through testing be Ntest. The defects are then repaired 

and if ρ is the defect repair probability, the number of defects repaired,  

Nrepaired = ρ* Ntest.       (4-2) 

Now the number of defects which are either not repaired or are the ones which when 

repaired lead to addition of new faults is equal to (1-ρ)* Ntest.   If the number of 

defects added due to bad fixes is Nbad_fix., the true number of defects remaining after 

test,  

Nafter_test =  Nbefore_test - Nrepaired  +  Nbad_fix    (4-3) 

Therefore the real probability of failure is ∑∑
=

−

=

+
fixbadrepairedtestbefore N

i

i

NN

i

i kk
__

1

'

1

. Here the ks’ refer 

to the fault exposure probabilities and are sampled from among the fault exposure 

probabilities already selected for the defects, Nbefore_test, and 
'k  refers to new fault 

exposure probability that exists due to addition of new faults. 

In order to predict the failure probability, the number of defects remaining in 

the code is considered as always. The number of defects estimated to be in the code 

is Ntest/C
0
 where C

0 is the defect coverage .The defect coverage is defined in 

[Malaiya94, Malaiya98][Jones96] as the fraction of defects found by test cases 

given in the test plan. In the RePS construction from the Test Coverage measure, a 

perfect repair probability was considered. Hence the number of defects repaired is 

Ntest. Therefore the number of defects remaining that contributes to failure is Ntest/C
o
 

- Ntest. 
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Thus the estimated failure probability is  
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where 
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*

 is the average value of fault exposure probability per fault. This 

corresponds to Kν in Section 3.1.2.2. 

Therefore the error form for Test coverage is given by 
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                 (4-5) 

where 

• e denotes the error 

• The first two terms of (4-5) denotes the real failure probability. The fault 

exposure probabilities, k and 'k  are simulated in the same manner as 

mentioned before in Section 4.1.1.  

• As per Jones [Jones96] the defect removal efficiency of a formal testing 

process by itself is 53% (median value). Therefore Ntest is equal to 0.53* 

Nbefore_test. However since the upper and lower bound for defect removal 

efficiency of a formal testing process by itself is 60% and 37% respectively, 

simulations were conducted for these values also. 

o   Nbefore_test is the number of defects remaining in the application and 

is also obtained from [Jones96] 

o The functional size is varied as before  
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• Nafter_test  is the true number of defects remaining after test and is equal to 

Nbefore_test - ρ* Ntest+  Nbad_fix 

o As far as the defect repair probability is concerned, Jones states 

[Jones96] that the defect removal efficiency is 85%. This value takes 

into account the bad fixes defects as well. Bad fixes defects are the 

defects that are accidentally injected while fixing an existing defect 

[Jones97]. The survey presented at www.softwaremetrics.com 

suggests a similar value. For the simulation, a ρ value of 0.62, 0.85, 

and 0.96, which are the lower bound, median and the upper bound 

values, are considered. 

o According to [Jones96, Musa87] bad fix defects are about 5% of all 

defects. Therefore, Nbad_fix will approximately be equal to 0.05*Ntest. 

In fact, Capers Jones, in one of his latest talks on the state of the art 

of software quality in 2005 

(http://www.umsec.umn.edu/files/SQA05l.pdf), says that bad fix 

defects on an average is 8%. Therefore simulation for bad fix defects 

was conducted at 5% and 8%. Moreover, according to [Jones96, 

Table5.3], 0% of all the Severity-1 (most critical, system or program 

is inoperable) failures are caused by bad fix errors.  [Sullivan91] also 

suggests that bug fix errors have little impact on the system 

availability. The authors have studied five years of field data on 

software defects to develop a taxonomy of defects, providing insight 

into their behaviour and impact. The data comes from IBM’s field 
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service database called RETAIN. Based on these evidences, we 

believe that the bug fix defects will not have fault exposure 

probabilities higher than the fault exposure probability initially 

considered to be the upper bound. 

• k* is the predicted value of fault exposure probability and with the same 

reasoning as presented in Section 4.1.1, is normally distributed around k i.e. 

with a mean of k. The standard deviation of k* is varied between 0.1*k to 

0.4*k as before. Here the ks’ refer to the real fault exposure probabilities and 

are sampled from the fault exposure probabilities already selected for the 

defects, Nbefore_test. 

• As mentioned before, C0 is the defect coverage and can range from 0.0 to 1.0 

depending on the efficacy of the test cases. For the simulation, different 

values of C0
 from 0.1 to 1.0 with an interval of 0.1 are considered.  

4.1.3 Requirements Traceability Error Model Simulation 

 
Here again the logic is similar to that of the Defect Density error form 

simulation. If there are N defects remaining in an application, the real failure 

probability of the application is the sum of the fault exposure probability, k, of each 

of the defects. Therefore the real probability of failure is ∑
=

=

Ni

i

ik
1

with the same 

assumptions as in Section 4.1.1. The predicted failure probability is the sum of the 

fault exposure probability of the number of defects that were found through 

Requirements Traceability, say N1. Therefore the error term is the difference 
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between the real failure probability given by ∑
=
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 and the predicted value of failure 

probability given by∑
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where  

• e denotes the error 

• The first term of (4-6)  i.e. ∑
=

=

Ni

i

ik
1

 is the same as in (4-1)  and denotes the real 

failure probability     

• k* is the predicted value of fault exposure probability and has the same 

properties as in Defect Density. 

• N1 is the number of defects detected by Requirements Traceability. Since the 

literature does not provide an estimate of the efficiency of requirements 

traceability analysis, a set of values from 1.0 to 0.8 with an interval of 0.1 is 

considered to represent different requirements traceability efficiencies.  The 

higher bound is taken to be 0.8 because that is the maximum defect removal 

efficiency as per Jones [Jones96]. The functional size is also varied as 

mentioned in Section 4.1.1. 

4.1.4 Function Point Error Model Simulation 

 
The error form for Function Point is given by the difference between the real 

failure probability and the predicted failure probability. Here the real failure 
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probability is computed as before.  As mentioned before, in the construction of 

RePS from Function Point, since the a priori knowledge of the defects’ type and 

location and their impact on failure probability is not available, the EFSM technique 

could not be applied to quantify the failure likelihood. Therefore the traditional 

relationship as in (3-10) is applied. Hence to simulate this error, K, or the fault 

exposure ratio proposed by Musa [Musa87, Musa98] is used. Therefore  

e = ∑
=

=

Ni

i

ik
1

- 1** NK
TL

τ
                          (4-7) 

where  

• e denotes the error 

• The first term of (4-7)  ie ∑
=

=

Ni

i

ik
1

 is same as (4-1)  and denotes the real failure 

probability   

• It is usually seen [Lockheed98] that the times taken per demand τ, and the 

linear time of execution of the program are usually of the same order. 

[Malaiya93] also suggests same order of average time per execution and 

linear execution time. In fact the authors cite the cases where the ratio of 

average execution time over linear execution time may be greater than or 

less than one. They say that if a program is loop dominated, i.e. the program 

execution involves a large number loops, the ratio may be greater than one. 

For a branch dominated program, the ratio may be smaller than one since 

during a single execution, many branches would not be executed. Therefore 
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to represent various populations of software we vary the  
LT

τ
 ratio and the 

values taken into account are 0.1, 0.01, 0.001, 1, 10, 100 and 1000.  

• K  is the fault exposure ratio proposed by Musa [Musa87, Musa98] and is 

4.2 * 10-7 failure/fault. 

• N1 is the number of defects estimated as a function of number of Function 

Points and is obtained from [Jones96]. The functional size is also varied as 

before. 

4.1.5 Bugs per Line of Code 

As mentioned before, Gaffney [Gaffney84] established that the number of 

defects remaining in the software (N1) could be expressed empirically as a function 

of the number of line of codes. That is, 

∑
=

+=
M

i

iSN
1

3/4
1 )0015.02.4(  

              (4-8) 

Therefore, the predicted failure probability is given 

by ∑
=

=

+
Mi
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i

L

SK
T 1

)0015.02.4(**
τ

. Also, during the construction of RePS from Bugs 

per Line of Code the relationship as in (3-10) was used to determine the failure 

probability instead of the EFSM technique as again, the a priori knowledge of the 

defects’ type and location and their impact on failure probability is not available.  

Therefore, the error term is given as  

e = ∑
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where  

• e denotes the error 

• The first term of (4-9)  ie ∑
=

=

Ni

i

ik
1

 is same as (4-1)  and denotes the real failure 

probability  

• We vary the  
LT

τ
 ratio in a similar fashion as mentioned in Section 4.1.4. 

• K  is the fault exposure ratio proposed by Musa [Musa87, Musa98] and is 

4.2*10-7  failure/fault 

• The term ∑
=

+
M

i

iS
1

3/4 )0015.02.4( gives the number of defects N1, as 

established by Gaffney [Gaffney84].  Here, M is the number of modules in 

the application. In order to estimate M, the following steps are taken.  

o The functional size is varied as before. For each functional size, the 

number of lines of code for the application is calculated as kb*FP, 

where kb is the backfiring coefficient and FP is the number of 

function points of the application. The backfiring coefficient of the 

most used languages ie C, C++, FORTRAN and VB is taken into 

account [Jones96] 

o There is no official standard for the number of lines of code per 

module. Every organization has its own standard which it tries to 

conform to. However there is evidence [Hatton97] that when one 

plots defect density versus module size, the curve is U-shaped and 

concave upwards which means very small and very large modules 
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are associated with more bugs than those of intermediate size. The 

curve looks roughly logarithmic up to a ‘sweet spot’ where it flattens 

(corresponding to the minimum in the defect density curve), after 

which it goes up. Hatton's empirical results imply that the sweet spot 

lies between 200 and 400 lines of code that minimizes probable 

defect density, all other factors (such as programmer skill) being 

equal. This size is also independent of the language being used.  

Banker and Kemerer [Banker89] and Withrow [Withrow90] have 

also observed similar results.  Based on this evidence, we vary the 

value of lines of code per module between 200, 300 and 400.  

o The number of modules M is then given by  

Number of Lines of Code for the application / Number of 

Lines of code per module. 

4.2 Simulation Results 

 
Once the simulation for each of the error forms was designed, it was executed 

using the SAS statistical tool (www.sas.com). This section discusses SAS and the 

characteristics of statistical tests that were carried out using SAS to determine the 

results. It also discusses the tool that was developed to carry out the simulation. 

Finally it discusses the simulation results in great details.  
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4.2.1  Statistical tests that were carried out to determine the simulation 
results 

 
SAS, originally called "Statistical Analysis Software," has generally been 

preferred primarily due to the power of its programming language and the 

acceptability of its results. SAS has developed a reputation of being powerful and 

full-featured statistical software that allows the user to manipulate and analyze data 

in many different ways. Because of its capabilities, this software package is used in 

many disciplines, including medical sciences, biological sciences, social sciences, 

and education [Chen03]. SAS has changed a lot across versions, with most of the 

changes catering to the business community. We used SAS version 9.1, the latest 

version available at this point of time, for the statistical tests.   

Normality and log normality tests for the errors were conducted at an  α = 

.05. For the log normality tests, normality tests on the natural logarithm of error 

values were carried out. The values provided by Shapiro Wilk tests are the most 

powerful. The Shapiro-Wilk test, proposed in 1965, calculates a W statistic that tests 

whether a random sample, x1, x2, ..., xn comes from (specifically) a normal 

distribution . Small values of W are evidence of departure from normality and 

percentage points for the W statistic, obtained via Monte Carlo simulations, were 

reproduced by Pearson and Hartley [Pearson72]. This test has done very well in 

comparison studies with other goodness of fit tests.  The W statistic is calculated as 

follows:  
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where the x(i) are the ordered sample values (x(1) is the smallest) and the ai are 

constants generated from the means, variances and co-variances of the order 

statistics of a sample of size n from a normal distribution [Pearson72]. For more 

information about the Shapiro-Wilk test please refer to the original Shapiro and 

Wilk paper [Shapiro65] and the tables in Pearson and Hartley [Pearson72]. 

For each set of conditions, the simulation for each error form was ran 50,000 

times. By a set of conditions, we mean the specifics of the data set, i.e., a particular 

size of the application, upper bound of failure probability, requirements traceability 

efficiency (if applicable), 
LT

τ
 ratio (if applicable), language in which the application 

is coded (if applicable) etc.  For every run of simulation 25 to 50 data points1 (error 

values) were generated. That is because a really good normality test in SAS requires 

close to 30 data points but too many data points may result in overly sensitive tests 

in normality [Douglass04]. The final results for each error form are given below 

along with the stem and leaf and box plots. 

The stem and leaf plot is simply a horizontal histogram. In a stem-and-leaf 

plot each data point is split into a "stem" and a "leaf". The first two or three digits of 

the value of each data point are used as the stem and the next digits are used as the 

                                                 
1 A data point is a value of the variable on which  statistical tests are performed 
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leaf. This forms a histogram that not only provides the frequency of each class but 

also the actual values for each observation/data point. For example, in Figure 4-7, 

which is a stem and leaf plot, there are 30 data points. And the values of each data 

point are: 0.65, 0.5, 0.34, 0.38, 0.38 and so on.  

 

Figure 4-6 Stem and Leaf Plot 

The Box Plot is an efficient method for displaying data. . The box plot is interpreted 

as follows: 

• the box itself contains the middle 50% of the data. The upper edge (hinge) of 

the box indicates the 75th percentile of the data set, and the lower hinge 

indicates the 25th percentile.  

• the bar in the center anchored with the ‘*’ represents the median value of the 

data. 

• the ‘+’ in the center of the box represents the mean 

• the ends of the vertical lines or "whiskers" indicate the minimum and 

maximum data values, unless outliers are present in which case the whiskers 

extend to a maximum of 1.5 times the inter-quartile range. 
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• The points outside the ends of the whiskers, if present, are outliers and are 

marked as ‘o’. 

4.2.2 The Tool 

 
As mentioned before, a tool was developed to simulate the error models. 

This section describes the overall framework of the tool, the type of inputs and the 

output generated by the system.  

The tool is developed using SAS programming language. The development 

platform is Windows. Figure 4-7 shows the block diagram of the tool.  

Input Data

Implementation

and Execution of

SAS program

Error Model

Reasoning

OutPut Data in

Excel Sheet or

.SAS file

 

Figure 4-7 Framework of the Error simulation Tool 

 
The input data can be incorporated into the SAS program. The SAS program 

along with the error model reasoning (Section 4.1.1 – Section 4.1.5) is then 

executed. The results can be saved in .SAS files. The tabular results can be exported 

into an Excel file. 

The snapshot showing the incorporation of input data and a portion of the 

program is shown in Figure 4-8.  
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Figure 4-8 Snapshot of the program showing the incorporation of the input 

data 

 
 

As can be seen, the input data can be incorporated at the beginning of the 

program. Figure 4-9 is a snapshot of the output results showing real probability of 

failure values, predicted probability of failure values and the error values 
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Figure 4-9 Snapshot of the results showing the probability of failure values 

 

Figure 4-10 is a snapshot of the output results showing the mean and 

standard deviation of the error and Figure 4-11 shows the results of the normality 

tests on the error. 
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Figure 4-10 Snapshot of the results showing mean and standard deviation of 

the error values 

 

Figure 4-11 Snapshot of the results showing the tests of normality on the error 

values 
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4.2.3 Simulation Results 

As can be seen, there was enough evidence to assume that the Defect 

Density error model  
 follows an additive distribution. The statistics for the same 

are given below. 

 

 

Figure 4-12 Statistics for the Defect Density Error 

 
There was enough evidence to assume that Bugs per Line of Code error model  

 

follows a multiplicative distribution. The statistics for the same are given below. 

 



 

 74 

 

Figure 4-13 Statistics for the Bugs per Line of Code Error 

 

There was enough evidence to assume that Function Point error model  
 follows a 

multiplicative distribution. The statistics for the same are given below. 

 

 

 

Figure 4-14 Statistics for the Function Point Error 
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There was enough evidence to assume that Requirements Traceability error model  
 

follows an additive distribution. The statistics for the same are given below. 

 

 

Figure 4-15 Statistics for the Requirements Traceability Error 

 
There was enough evidence to assume that Test Coverage error model  

 follows an 

additive error model. 
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Figure 4-16 Statistics for the Test Coverage Error 

4.2.4 Summary of the Simulation Results  

Simulation was conducted on the different values that were considered as 

per the design, for example, different functional sizes, different bounds of the fault 

exposure probabilities, different inspection efficiencies etc. The error form did not 

change for any of these variations, i.e., the error form followed an additive error 

model for the Defect Density, Requirements Traceability, and Test Coverage errors 

and followed a multiplicative error model for Bugs per Line of Code and Function 

Point errors. In this section the mean and standard deviation of some of the results 

obtained for different sets of simulation is provided. The relative error percentages 

for some of the results are also provided.  Relative error is defined as the ratio of the 

absolute value of the error over the real value of failure probability. More results are 

provided in Appendix A.  

The results are then discussed in details. The change of the errors with 

variation of different parameters is shown through graphs.  
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean .09 1.1 1.4 1.7 2.4 3.0 4.9 Defect 
Density 

 Std. Dev 0.04 1.1 1.3 1.2 1.6 2.4 3.1 

Mean 0.1 1.1 1.3 1.6 2.3 2.7 4.7 Requirements 
Traceability 

 Std. Dev 0.05 1.1 1.1 1.2 1.4 2.4 2.2 

Mean 0.01 1.5 1.7 2 2.5 3 5.7 Test 
Coverage 

 Std. Dev 0.05 1 1.1 1.5 2.3 2.2 2.8 

Mean 1.1 2.1 3.8 4.0 4.4 5.4 9.6 Function 
Point 

 Std. Dev 1.9 1.6 2.5 2.6 2.3 1.8 2.6 

Mean 1.3 2.4 3.2 3.8 4.6 5.5 9.6 Bugs per Line 
of Code 

 Std. Dev 1.9 1.7 3.0 3.2 1.9 2.7 2.3 

 

Table 4-3 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-2 

(Multiply each value by 10**-2) 
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean . 09 1.245 1.2 1.7 2.2 2.6 4.7 Defect 
Density 

 Std. Dev .04 1.3 .9 1.2 1.7 2.0 2.9 

Mean 0.10 1.2 1.4 1.8 2.3 2.7 4.7 Requirements 
Traceability 

 Std. Dev 0.04 1.3 1.1 1.3 1.9 2. 4 2.7 

Mean 0.12 1.3 1.6 1.9 2.4 3.0 5.6 Test 
Coverage 

 Std. Dev 0.06 1.2 1.1 1.7 1.8 2.0 2.8 

Mean -9.3 -17.5 -39.4 -76.2 -255.3 -660.9 -2787 Function 
Point 

 Std. Dev 2.9 10.6 11.2 13.3 23.3 27.3 32.6 

Mean -41.2 -81.3 -155.3 -315.3 -645.2 -1184 -4789 Bugs per Line 
of Code 

 Std. Dev 3.8 8.6 11.4 20.5 24.2 34.4 39.2 

Table 4-4 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-6 

(Multiply each value by 10**-6) 

 
For a better understanding of the errors, the tables below provide the average 

percentages of the relative errors for varying functional sizes with upper bound of 

fault exposure probability of 10E-2, 10E-4 and 10E-6. Results for upper bounds of 

fault exposure probabilities 10E-1 are provided in Appendix A.  
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Functional 
Size 

Error 

75 150 300 600 1200 2400 10000 

Defect Density 
 

9.29 38.36 38.56 44.54 50.45 54.09 58.45 

Requirements 
Traceability 

 
10.45 38.45 39.76 43.28 50.91 53.69 57.72 

Test Coverage 
 

12.16 43.34 43.87 48.43 57.27 60.83 67.38 

Function Point 
 

99.89 99.91 99.91 99.57 99.54 99.01 98.89 

Bugs per Line of 
Code 
 

99.86 99.87 99.45 99.43 99.32 99.03 99.00 

Table 4-5 Relative error percentages for varying functional sizes with upper 

bound of fault exposure probability of 10E-2 

 
 
 

Functional 
Size 
Error 

75 150 300 600 1200 2400 10000 

Defect Density 
 

9.68 37.45 39.31 42.93 50.36 53.84 57.42 

Requirements 
Traceability 

 

9.54 38.74 39.33 43.06 49.97 53.17 59.37 

Test Coverage 
 

13.07 42.99 43.67 48.43 56.29 60.33 66.35 

Function Point 
 

58.89 67.86 94.28 77.5 62.21 22.22 185.56 

Bugs per Line of 
Code 
 

51.67 57.14 48.57 15.00 42.22 118.51 395.83 

Table 4-6 Relative error percentages for varying functional sizes with upper 

bound of fault exposure probability of 10E-4 
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Functional 
Size 
Error 

75 150 300 600 1200 2400 10000 

Defect Density 
 

9.18 37.45 38.47 44.51 48.99 53.02 60.21 

Requirements 
Traceability 

 

9.86 34.98 38.54 45.14 48.98 52.60 60.72 

Test Coverage 
 

13.17 44.75 46.76 49.05 56.73 59.95 70.73 

Function Point 
 

760 950 1114 1904 5667 11700 28400 

Bugs per Line of 
Code 
 

3400 3681 4428 8076 14300 21142 48867 

Table 4-7 Relative error percentages for varying functional sizes with upper 

bound of fault exposure probability of 10E-6 

4.3 Discussion of the Simulation Results: 

 
Table 4-3 through Table 4-7 tells us how the errors/relative errors vary across 

different sizes and different failure probabilities. They also provide information on 

the prediction accuracies of the RePSs.  

As we can see, Defect Density and Requirements Traceability errors are very 

close to each other. That is expected because of the similarities in the RePSs 

constructions from these measures. Moreover, in all the results provided above, the 

defect removal efficiency of Requirements Traceability is 80%, which is the same 

as the defect removal efficiency of Defect Density.  

The relative error for defect density is around 9% for an application with a 

functional size of 75 function points, 37% for a functional size of 150 function 

points, 39% for a functional size of 300 function points, 44% for a functional size of 

600 function points, 48% for a functional size of 1200 function points and 53% for a 

functional size of 2400 function points and 59% for a functional size of 10,000 
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function points. The percentages of relative errors across different orders of failure 

probabilities remained similar for Defect Density, Requirements Traceability and 

Test Coverage.  Figure 4-17 shows the relative error percentages across application 

of varying order of failure probabilities for a functional size of 75 function points. 

The points in X-axis correspond to applications of different order of failure 

probabilities (10E-1, 10E-2, 10E-4 and 10E-6). As can be seen, the percentages of 

relative errors across different orders of failure probabilities remained similar.  
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Figure 4-17 Variation of relative error percentages across different order of 

failure probabilities for a functional size of 75 FP 

 

  The error across functional sizes is progressively greater which is also 

expected because of the increase in the number of defects across functional sizes. 

Therefore the number of defects that contribute to the error (which is 20% of the 

total number of defects for the results provided above) also increases leading to an 

error bloat. The increase of error is sub-linear in nature. 
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Table 4-8 gives the variation of Requirements Traceability errors across 

different requirements traceability efficiencies. The upper bound of failure 

probability is 10E-1. The percentages of errors remained the same when the upper 

bound of failure probability was varied between 10E-2 and 10E-6. The results are 

the same for Defect Density errors when the inspection efficiency is varied 

accordingly. This is because the error functions for both the error models are the 

same (eq(4-1) and eq(4-6)). 

Functional 

Size 

RT/Inspection 

Efficiency 

 75 150 300 600 1200 2400 

Mean 0.13 1.38 1.67 2.00 2.62 3.0 60% 

 
Std. Dev 0.04 1.09 1.15 1.76 2.70 2.23 

Mean 0.43 1.47 1.75 2.43 2.94 3.43 40% 

 
Std. Dev 0.14 1.98 1.23 1.24 1.65 2.12 

Mean 0.87 1.8 2.83 3.25 3.87 4.67 20% 

 
Std. Dev 0.15 1.09 1.17 1.7 2.54 2.21 

Mean 1.19 2.12 3.4 3.9 4.5 5.74 10% 

 
Std. Dev 0.19 1.68 2.80 2.56 2.17 1.64 

Table 4-8 Mean and Standard Deviation for Requirements 

Traceability/DefectDensity error forms for varying functional sizes and 

requirements traceability/inspection efficiencies with upper bound of fault 

exposure probability of 10E-1 (Multiply each value by 10**-1) 

 
Test Coverage error percentage follows a similar graph as that of the Defect 

Density and the Requirements Traceability errors. However, the error percentage is 

higher than that of the Defect Density and Requirements Traceability errors. This is 
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also expected since the number of defects detected through testing alone is less than 

the number of defects detected through inspection for the Defect Density errors. 

Moreover, for a Requirements Traceability defect removal efficiency of about 60%, 

Test Coverage and Requirements Traceability errors were similar. Figure 4-18 

shows the variation of relative error percentages of Defect Density, Requirements 

Traceability and Test Coverage RePSs across different sizes. As can be seen, Test 

Coverage error follows a similar graph as that of Defect Density but the error 

percentage is higher for any specific size.  Also, it shows that the relative error 

percentages for Defect Density, Requirements Traceability and Test Coverage errors 

increase across functional sizes.   
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Figure 4-18 Relative error percentages for varying functional sizes with upper 

bound of fault exposure probability of 10E-2 

 
When the testing efficiency for Test Coverage error is varied, the relative 

error percentage also varies. Figure 4-19 shows the variation of the Test Coverage 

relative error for different testing efficiencies. The X-axis represents the different 

sizes taken into consideration in increasing order.  
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Figure 4-19 Test Coverage relative error percentages for varying functional 

sizes and varying testing efficiency with upper bound of fault exposure 

probability of 10E-2  

 
When the percent of bug fix errors was changed from 5% to 8%, the results 

for test coverage errors did not change significantly. However, when the defect 

repair probability was varied, the errors changed significantly. The figure below 

shows the change in relative error percentages when the repair probability is 

changed. The test efficiency is 0.53.  From Figures 4-20 and 4-21 it can be seen that 

the errors are similar for the applications with smaller sizes. The error difference 

across functional sizes gets progressively greater because of the rapid increase in the 

number of defects across functional sizes.  



 

 85 

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Size

F
a
il
u
re
 P
ro
b
a
b
il
it
y

Repair Rate = 0.85

Repair Rate= 0.96

Repair Rate = 0.62

 

Figure 4-20 Test Coverage relative error percentages for varying functional 

sizes and varying repair probabilitys with upper bound of fault exposure 

probability of 10E-2 

Also in the results provided above (Table 4-3 – Table 4-8) the standard 

deviation of k* is 0.01k. When the standard deviation increases, the error also 

increases but is not very significant. Figure 4-21 and 4-22 provides the relative error 

percentages of an application with failure probability of the order 10E-1 and 

functional sizes 75 and 10,000 function points respectively.  The values 1, 2, 3, 4, 5 

across the X-axis refer to the Defect Density, Requirements Traceability, Test 

Coverage, Bugs per Line of Code and Function Point error models respectively. 

There are noticeable differences in the Defect Density, Requirements Traceability 

and Test Coverage relative error percentages in case of the application with a 

functional size of 10,000 function points. This is again because of the increase in 

number of defects that contribute to the error.  
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Figure 4-21 Relative error percentages for an application with failure 

probability of the order 10E-1and functional size of 75 FP 
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Figure 4-22 Relative error percentages for an application with failure 

probability of the order 10E-1 and functional size of 10,000 FP 

 

However it is a very different situation for the Function Point and the Bugs 

per Line of Code errors. First, the error percentages are much higher than that of 
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Defect Density, Requirements Traceability and Test Coverage. The relative 

error percentages are almost 100% across applications with different functional 

sizes for failure probabilities of the order 10E-1 and 10E-2. This is because the 

probabilities of failures predicted by the two models are insignificant in these 

cases due to the prevalence of Musa’s fault exposure ratio K (Section 3.1.4, 

Section3.1.5) whose value is of the order of 10E-7. Therefore the predicted 

probabilities are of the order of 10E-4 to 10E-6 (eq.(4-7) and eq.(4-9)).  Please 

note that the  
LT

τ
 ratio for the results provided above is considered to be unity. 

When the real failure probability is of the order of 10E-3, the prediction errors 

are lesser in case of applications of larger sizes. The reason is the same i.e. the 

predicted failure probabilities become more significant in these cases (eq.(4-7) 

and eq.(4-9)). In the cases where real failure probability is of the range 10E-4-

10E-5, it can be seen that the prediction error is very little or negative. When the 

real failure probability is of the order of 10E-6 or lower, we get only negative 

errors and the relative error percentages is very high. Figure 4-23 shows this 

variation for different order of failure probabilities. All these observations 

follow the same rationale. The negative values stem from the fact that the 

predicted probabilities are higher than the real probabilities. These observations 

not only tell us that the prediction accuracies of the Function points and the 

Bugs per Line of Code RePSs are weaker, but also speak volumes about the 

irrelevance of Musa’s fault exposure ratio K in most of the cases. They show 
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that it provides good estimations of failure probabilities for very specific 

application sizes and when the real failure probabilities are of a specific order. 
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Figure 4-23 Relative error percentages for Function Point Error for 

applications of different order of failure probabilities 

It is also observed that when the 
LT

τ
 ratio was varied, the results were the 

same but for a different set of sizes and order of failure probabilities. 

The results above (Table 4-3 through Table 4-8) have taken 200 lines of 

code per module into account for Bugs per Line of Code error values. When the 

number of lines of code per module was increased to 300 and 400, the predicted 

failure probabilities were lower (eq (4-9)) and hence the error results were 

slightly worse for higher orders of failure probabilities and were slightly better 

for lower orders of failure probabilities. Figure 4.24 and Figure 4.25 show the 

variation of the percentages of relative errors for 200 and 300 lines of code per 

module with 10E-1 and 10E-6 as upper bound of failure probabilities. The X-
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axis refers to the different sizes in increasing order. However the results are not 

significantly different. 

 

Figure 4-24 Relative error percentages for an upper bound of failure 

probability of 10E-1 and varying LOC per module 

 

 
 

Figure 4-25 Relative error percentages for an upper bound of failure 

probability of 10E-6 and varying LOC per module 
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Moreover, the results provided in Table 4-3 through Table 4-8 have taken C++ 

as the coding language for Bugs per Line of Code error values. The median C++ 

backfiring coefficient as per Jones [Jones96] is 55. The errors varied only slightly 

when the coding language was changed to Visual Basic, FORTRAN or C. The 

backfiring coefficients for these languages are 32 (Visual Basic 3), 71 (FORTRAN 

95) and 128 respectively. An increase in backfiring coefficient leads to an increase 

in number of modules (eq(4-9)) and hence an increase in the predicted failure 

probability. This leads to better estimates for higher order of failure probabilities 

and worse estimates for lower order failure probabilities (eq(4-9)). 

4.4 Summary 

 
In this chapter, the error models for the simulation were constructed. We 

believe that error models for simulation can be constructed in a similar fashion for 

any model with a thorough knowledge of the models. Simulation has been used to 

determine the nature of the errors in some engineering disciplines. [Jiao04] 

conducted a simulation to study the impacts of error structure on stock–recruitment 

(S-R) models. S-R models are fishery models that predict the amount of juvenile 

recruitment or production as a function of the parent stock. The authors observed 

through simulation that S-R models are less effective especially when there is a 

smaller data set. Simulation therefore provides a better alternative. [Kim98] 

conducted a simulation study to assess the impact and sources of errors in 

distributed decision support systems (DSS). DSS are computer technologies which 
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allow users to collect and analyze data in more sophisticated and complex ways and 

thus help in making a decision. 

One would probably need to make some assumptions for the simulation, but 

they can be well augmented and justified either through previous work that exists or 

through validation/experimentation. Simulation is well worth the effort because of 

its flexibility and the range of applications it can simulate. Error values for any 

application can be generated through simulation.  

Not only that, it helps understand the modeling approach better and identifies 

the fallacies of the models to a greater extent. It also is very effective from cost, 

time and effort perspective. Simulation may provide the only alternative in some 

cases, for example, an application with very low order of failure probability which 

may take hundreds of years [Butler93] of testing to estimate the failure probability. 

It is also a desirable and feasible alternative for very large applications.  
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Chapter 5 Experiment 

An experiment was designed to validate the results obtained from the 

simulation on the prediction accuracies of the RePSs and the nature of their error 

models. This was important to establish the level of accuracy of each RePSs and 

confirm/reject/refine the error models associated with the RePSs.  This was also 

consequential to validate the assumptions made in the simulation process. This 

chapter provides a detailed discussion of the experiment and the experimental 

results. 

5.1 The Experiment Design 

 
An in-vitro experiment was designed [Field03], [Hughes71] involving eight 

different applications to validate our findings. This section provides the objective, 

hypotheses, design, threats to validity, subjects and the execution of the experiment 

in details. 

5.2 The Objectives of the Experiment 

 
There were three main objectives of the experiment.  

• to investigate the accuracy of the RePSs  

• to determine the form of the “errors” ie whether they are additive or 

multiplicative in order to apply the information to the model uncertainty 

framework 

• to validate the assumptions of the simulation  
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5.3 Hypotheses of the Experiment 

 
This section gives the different sets of hypotheses that were used to verify the 

objectives.   

5.3.1 First set of hypotheses 

 
This section provides the hypotheses to statistically evaluate the prediction 

accuracies of the five RePSs. For this purpose, we defined a term ‘relative error’ (pe) 

for each RePS which is equal to  

s

ss
e

p

PSpp
PSp

−
−

=
1

|)(Re|
)(Re

*

                                (5-1)               

Where 

       pe (RePS)    The relative error for a particular RePS  

      ps The probability of success per demand obtained from reliability 

testing. 

     ps
*(RePS) The probability of success per demand predicted by the particular 

RePS  

This definition implies that the lower the value of pe, the better the 

prediction. Statistical tests were then conducted on the relative error of each of the 

five RePSs.  

As a rule of thumb, the relative error should ideally be less than or equal to 

one. This rule of thumb derives from the fact that a regulator will at least want a 

reliability estimate of the correct order of magnitude. However, we wanted to 



 

 94 

further understand the limitations of each RePS and thus experimented on a broader 

set of hypotheses rather than confining ourselves to just one particular value. 

Therefore three sets of hypotheses were formulated. The first set of general 

hypothesis is that the relative error for each of the RePSs is less than equal to one; 

the second is that it is less than 0.50 and the third is that it is less than 0.30.   

Table 5-1 gives the null (H0) and alternate (HA) hypotheses [Field03], [Hughes71] 

that the relative errors are less than unity. 

RePS Null Hypotheses Alternate Hypotheses 

Bugs per Line of Code H0BLOC : pe BLOC <= 1 HABLOC :  pe BLOC > 1 

Defect Density H0DD : pe DD <=1 HADD : pe DD > 1 

Function Point H0FP : pe FP <=1 HAFP : pe FP > 1 

Requirements Traceability H0RT : pe RT <=1 HART : pe RT > 1 

Test Coverage H0TC : pe TC <=1   HATC : pe TC > 1 

Table 5-1 Null and alternate hypothesis that the relative errors is less than 

unity 

Where pe BLOC  = relative  error in the Bugs per Lines of code RePS model  

pe DD =  relative error in the Defect Density RePS model 

pe FP = relative  error in the Function Point RePS model 

pe TC = relative  error in the Requirements Traceability RePS model 

pe TC = relative  error in the Test Coverage RePS model 

Similarly the null and alternate hypothesis that the relative error is less than 0.5 is 

given by Table 5-2. 
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RePS Null Hypotheses Alternate Hypotheses 

Bugs per Line of Code H0BLOC : pe BLOC <= 0.5 HABLOC :  pe BLOC > 0.5 

Defect Density H0DD : pe DD <= 0.5 HADD : pe DD > 0.5 

Function Point H0FP : pe FP <= 0.5 HAFP : pe FP > 0.5 

Requirements Traceability H0RT : pe RT <= 0.5 HART : pe RT > 0.5 

Test Coverage H0TC : pe TC <= 0.5  HATC : pe TC > 0.5 

Table 5-2 Null and alternate hypothesis that the relative error is less than 0.5 

Table 5.3 gives the null and alternate hypothesis that the relative error is less than 

0.3. 

RePS Null Hypotheses Alternate Hypotheses 

Bugs per Line of Code H0BLOC : pe BLOC <= 0.3 HABLOC :  pe BLOC > 0.3 

Defect Density H0DD : pe DD <= 0.3 HADD : pe DD > 0.3 

Function Point H0FP : pe FP <= 0.3 HAFP : pe FP > 0.3 

Requirements Traceability H0RT : pe RT <= 0.3 HART : pe RT > 0.3 

Test Coverage H0TC : pe TC <= 0.3  HATC : pe TC > 0.3 

Table 5-3 Null and alternate hypothesis that the relative error is less than 0.3 

5.3.2 Second set of hypotheses 

 
The second objective of the experiment was to determine the form of the 

“errors” i.e. whether they are additive or multiplicative. The simulation results were 

used to build the general hypothesis. 

Therefore the null (H0) and alternate (HA) hypotheses for the error models are given 

as: 
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Error Model Null Hypotheses Alternate Hypotheses 

Bugs per Line of Code H0BLOC : eBLOC is 
multiplicative 

HABLOC : eBLOC is  not 
multiplicative 

Defect Density H0DD : eDD is additive  HADD : eDD is not additive 

Function Point H0FP : eFP is multiplicative HAFP : eFP is not 
multiplicative 

Requirements Traceability H0RT : eRT is additive HART : eRT is not additive 

Test Coverage H0TC : eTC is additive HATC : eTC  is not additive 

Table 5-4 Null and alternate hypotheses for the error models 

Where eBLOC  =  error in the Bugs per Lines of code RePS model  

eDD = error in the Defect Density RePS model 

eFP = error in the Function Point RePS model 

eRT = error in the Requirements Traceability RePS model 

eTC = error in the Test Coverage RePS model 

In order to determine the error form, normality and lognormality tests were 

conducted on each of the error models. 

5.3.3 Third set of hypotheses 

 
The results obtained from simulation and those obtained from experiment 

were compared in order to validate the third objective. The general hypothesis is 

that they are equal.  

Therefore the null (H0) and alternate (HA) hypothesis is given by  
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RePS Null Hypotheses Alternate Hypotheses 

Bugs per Line of 
Code 

H0BLOC : simulatione BLOC = 

erimenteexp BLOC 

HABLOC :  simulatione BLOC ≠ 

erimenteexp BLOC 

Defect Density H0DD : simulatione DD = 

erimenteexp DD 

HADD : simulatione DD ≠ 

erimenteexp DD 

Function Point H0FP : simulatione FP = 

erimenteexp FP 

HAFP : simulatione FP ≠ 

erimenteexp FP 

Requirements 
Traceability 

H0RT : simulatione RT = 

erimenteexp RT 

HART : simulatione RT ≠ 

erimenteexp RT 

Test Coverage H0TC : simulatione TC = 

erimenteexp TC 

HATC : simulatione TC ≠ 

erimenteexp TC 

Table 5-5 Null and alternate hypotheses that the simulation and the 

experimental errors are similar 

Where PSesimulationRe is the simulation error for a particular RePS and 

PSe eriment Reexp is the experimental error for that RePS. 

5.4 The Design 

 
An in-vitro experiment was designed to achieve the objectives described in 

Section 5.2.  The experiment was conducted in two parts. First was the development 

phase of different software applications. The second was the measurement phase 

where RePSs were constructed for the five models. 
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5.4.1 Design of the Development phase 

 
This part was conducted in the class on Software Quality Assurance (SQA), 

a graduate course offered at the University of Maryland during Spring 2004. The 

SQA course consisted of 22 students, three of whom were off-campus students. The 

on-campus students were divided amongst five different groups, Group ATM, 

Group SRQS, Group WPU, Group SSP and Group LOCAT with six, five, four, two 

and two students each. 

ATM, SRQS, WPU, SSP and LOCAT were the five different applications. 

ATM is the largest, SRQS and WPU were of medium sizes and SSP and LOCAT 

were of smaller sizes.  

Each of these groups was divided into two subgroups. The experiment 

design for each group is shown below 

 RR SDesign SDR Coding UT CI ST 

Subgroup1 √  √ √ √ √  

Subgroup2 √ √ √   √ √ 

Table 5-6 Experiment design for development phase 

 where  

RR: Software Requirements Review                            SDesign : Software Design 

SDR      : Software Design Review                              Coding     : Software Coding 

UT         : Unit Test                                                       CI          : Code Inspection 

 ST         : System Test 
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The three off-campus students developed different versions of LOCAT 

individually. These three applications will henceforth be referred to as LOCAT-I, 

LOCAT-II and LOCAT-III.   

The experiment design for off-campus students is  

5.4.2 Design of the Measurement phase 

 
The second part of this experiment, the measurement phase, was carried out 

in the (Software Reliability Engineering) SRE lab. Seven students were involved in 

this experiment. RePSs were constructed from five different measures: 

Requirements Traceability, Defect Density, Function Point, Test Coverage and Bugs 

per Line of Code for each of the eight applications. Each RePS had different 

numbers of support measures (ranging from one to seven). In total, more than 150 

tasks were performed. By task we mean estimating the support measures, modeling 

the systems as Finite State Machine (FSM) models and computing the final 

 RR SDesign SDR Coding UT CI ST 

Student1 LOCAT-I 

LOCAT-II 

LOCAT-II LOCAT-I 

LOCAT-II 

LOCAT-I LOCAT-I LOCAT-I 

LOCAT-II 

LOCAT-III 

Student2 LOCAT-
II, 

LOCAT-
III 

LOCAT-III LOCAT-II, 

LOCAT-III 

LOCAT-II LOCAT-II LOCAT-II, 

LOCAT-III 

LOCAT-I 

Student3 LOCAT-
III, 

LOCAT-I 

LOCAT-I LOCAT-III, 

LOCAT-I 

LOCAT-
III 

LOCAT-III LOCAT-III, 

LOCAT-I 

LOCAT-II 

Table 5-7 Experiment design for the off-campus students for the 

development phase 



 

 100 

reliabilities. The design for the measurement phase is provided as an appendix 

(Appendix B).   

The work was designed to avoid any bias. For example, support measures 

for the construction of Defect Density RePS and support measures for the 

construction of Requirements Traceability RePSs were measured by different 

subjects due to similarity in their structure. The similarity stems from the fact that 

both RePSs are defect oriented and the defects considered in the construction of 

RePS from Defect Density are a superset of the defects considered in the 

construction of RePS from Requirements Traceability. This is because the defects 

considered in the construction of RePS from Defect Density are found through 

inspection of requirements specifications, design specifications and the code where 

as the defects considered in the construction of RePS from Requirements 

Traceability are found by tracing the requirements to design and code. Moreover the 

construction of both the RePSs uses the EFSM technique to propagate the defects. 

5.4.3 Threats to Validity 

 
The experiment design minimizes the effects of threats to validity 

[Campbell63]. This section discusses threats to validity during the development 

phase and threats to validity during the measurement phase. 

5.4.3.1 Threats to Validity during the Development Phase 
 

Threats due to selection of respondents which can introduce disparity in 

development groups are eliminated through randomization. The students were 
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monitored through log sheets on their daily performances. This gave us a chance to 

observe any effects due to History and Maturation. [Campbell63] 

One of the most prominent threats to external validity is caused by the use of 

students as subjects. However, the students were graduate students of computer 

engineering, computer sciences and electrical engineering disciplines, and many of 

them had part-time or full time jobs in software companies. (see Section 5.5.1.1). 

Most of them were familiar with software engineering concepts and had a lot of 

experience in software development. Moreover they were trained in course of the 

class on all issues pertaining to the experiment. Another threat to external validity is 

that of representativeness of the applications i.e. if they are representative of the real 

world scenario. Although this is an impossible task to achieve, the judicious choice 

of applications tries to alleviate this problem. The applications chosen are of varying 

sizes and come from different application domains that include database 

applications, real time applications, word processors etc.   The applications were 

developed in different languages like C, C++, and VB.  

5.4.3.2 Threats to Validity during the Measurement Phase 

Here also, threats due to selection of respondents which can introduce 

disparity in measurement groups are eliminated through randomization. As before, 

the students were monitored through log sheets on their daily performances which 

gave us a chance to observe any effects due to History and Maturation.  The effect 

of instrumentation is minimized because the measurements were performed 

according to unique guidelines and tools. As mentioned before, one of the most 

prominent threats to validity is caused by the use of students as subjects. For the 
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measurement phase all the students were from the SRE lab and were familiar with 

the measurement process and with the use of Testmaster [Testmaster99]  and 

Winrunner [Winrunner01] which were the two main tools used. They were also 

given specific instructions and manuals etc on the measures and the measurement 

process.  

The threats due to repeatability in the measures have also been taken care of. 

Even though there were a large number of common support measures [Smidts00, 

Li04], in each of the five RePSs, they were measured separately for repeatability 

concerns. Any discrepancies in the measures were analyzed, the measurement 

process was made more robust and unambiguous and the measurements were re-

done if necessary. 

5.5 Experiment Execution 

This section discusses the execution process in details including the pre-

experiment preparation and the final execution of the experiment. 

5.5.1 Pre-experiment preparation for Development phase 

 
In this section the steps taken as a pre-experiment preparation for the actual 

execution of the experiment are provided. 

5.5.1.1 Subjects 
 

The subjects for the development phase were students of a graduate level 

course on SQA at the University of Maryland. These students had comprehensive 

experience in the software development and testing field. Eight of these students 

were PhD students. There were three Computer Science graduate students, three 
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computer engineering graduate students, one electrical engineering graduate student, 

three systems engineering students and eight reliability engineering students. The 

following table provides information on the background of the students.  

Profile  Number of Students 

Currently working full time in software companies 4 

Currently working part-time in software companies 2 

Full time jobs in software industry in the past 4 

Currently conducting research in the software field 18 

Table 5-8 Subjects’ Experience Profile 

The students were not notified about the experiment to ensure that they 

would not be influenced by the knowledge of the experiment. The experiment was 

presented as a class project mandatory for the course, ensuring the necessary 

motivation. Preventive steps were taken to ensure that the students had no un-

wanted communications during the course. Though it was an experiment per se, it 

was in line with the course and was conducted as a course project. 

5.5.1.2 Applications 

 Applications from various domains, sizes and coding languages were chosen to 

ensure diversity and representativeness. 

 ATM [Ghose04C] or the Automated Teller Machine is the largest application 

of around 2500 SLOC. It was developed in Visual C++. The software performs the 

following activities: 

 Verification of customer identification, selection of services, deposition of 

cash or check, withdrawal of cash, transfer of funds between the customers' 
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accounts and inquiry of customers' account balances. 

SRQS and WPU are the two medium sized applications of sizes of around 

1500 SLOC each. SRQS [Ghose04D] or the Student Registry Query System is a 

database application and is designed for students to create and manage their 

accounts online. Registry DB is a database that maintains student SSN, student login 

ID, student password, course information, and registration information.  SRQS 

generates SQL queries for retrieval of data from Registry DB. The result of the 

query is returned to the user interface. 

SRQS performs the following activities: Create a student account, manage it 

by adding or dropping a course, view a particular course’s schedule, booklist, 

waitlist etc and edit Registry DB by authorized personnel. This application was 

developed in Visual Basic.  

 WPU [Ghose04E] or the Word Processing Unit was designed to perform 

word processing functions such as adding text, deleting text, checking for errors, 

counting words and characters etc. The application performs these functions based 

on user inputs. User inputs are accepted either from direct keyboard entry or from 

ASCII source Input file. The output is written to a file. WPU was developed in C. 

SSP [Ghose04B] or Small Search Program is a database application with 

around 600 SLOC. It has a database called Search PUBS created in Microsoft 

Access with information about authors and their publications. The database has 

three tables named authors, titles and titleauthor. The application asks the user for 

search options and generates SQL queries on the basis of the search options. SSP 

was developed in Visual Basic. 
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LOCAT [Ghose04A] is a real time simple projectile tracking system. It 

calculates the projectiles coordinates at any point of time. It was developed in 

Visual Basic and consists of around 500 SLOC.  

LOCAT-I [Ghose04F], LOCAT-II [Ghose04G] and LOCAT-III [Ghose04H] 

are different versions of LOCAT and have different functions like finding range, 

angle, and velocity of the projectiles. LOCAT-I was developed in FORTRAN, 

LOCAT-II was developed in Visual Basic and LOCAT-III was developed in C++. 

5.5.1.3 Groups 
 

The students were given a questionnaire on the first day of the class. The 

questionnaire was mainly a background check of the students including their 

experience in the software field, the types of application/computer languages they 

have worked with, and the research that they were involved with. It also consisted of 

some coding and testing questions. Three groups were then formed: those proficient 

in C/C++, those proficient in VB and those conversant with testing. (Please note that 

C, C++ and VB were the only languages that were specified in the requirements 

specifications of the applications). Based on this information, the subjects were 

randomly assigned to a team/sub-group in a way so that each team was evenly 

balanced in terms of proficiency.  

5.5.1.4 Execution 
 

The experiment was run for a span of sixteen weeks. Each class, each week 

was 2 hrs and 40 min long. Students were trained before each round of assignments. 

Apart from the theory presentations, the sessions consisted of in class assignments. 

Questions were encouraged during the class but no interactions were allowed among 
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students outside the class. All questions to the instructor, outside the class were 

through e-mails or through help sessions. Events in the lecture and the help sessions 

were recorded and so were the questions through e-mails. The students were also 

given log-sheets and were demonstrated how to use them. 

The subjects were provided with Software Requirements Specifications 

(SRS) of the applications and the experiment commenced with the review of these 

SRSs. They were formatted as per IEEE specification standards [IEEE84]. Every 

document, deliverable, review etc was formatted according to IEEE standards.  

5.5.2 Pre-experiment preparation for the Measurement phase 

 
In this section, the steps taken as a pre-experiment preparation for the actual 

execution of the measurement phase are provided. 

5.5.2.1 Subjects 
 

The “Measurement phase” is the phase of the experiment where RePS’s 

were constructed from the five different software measures:  Requirements 

Traceability, Defect Density, Function Point, Test Coverage and Bugs per Line of 

Code for each of the above eight applications. The subjects were seven graduate 

students of the Software Reliability Engineering Lab at the University of Maryland. 

Five of these were PhD candidates, one was a Post Doctoral student and one was a 

Masters student. All the students were conversant with different part/parts of the 

measurement process and were ideally suited for constructing RePSs.  
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5.5.2.2 Execution 
 

As mentioned before more than 150 tasks were performed to construct the 

RePSs and compute the estimated failure probability. Detailed procedure to carry 

out the tasks is provided in [Smidts00]. These tasks were divided amongst the seven 

subjects. Care was taken to avoid any biases that were suspected to be present. 

The subjects were first given a questionnaire to appraise their knowledge on the 

measurements. They were then given a lecture on the whole measurement process. 

This part of the experiment lasted for 8 weeks/two months. The design is provided 

in Appendix B. 

The rules and regulations for the measurement phase were the same as those 

for the development phase. Questions were encouraged but no interactions were 

allowed among students. The students were also given log-sheets and were 

demonstrated how to use them. 

The subjects were provided with requirements specifications, design 

specifications, code, and test plan of the applications as required, to perform their 

task. Moreover they were given manuals which had specific guidelines to carry out 

their task.  

5.6 Experiment Results 

 
This section provides the results of the experiment along with a statistical 

analysis of the results. 
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5.6.1 Statistical Analysis of the results to accept/reject the first set of 

hypotheses 

The table below gives the final RePS values for the five different models and 

the real reliability values for each of the applications. Theoretically, it is not 

possible to compute the real reliability of an application. Therefore, by real 

reliability we mean the experimental reliability value that is obtained through 

extensive testing.   

The steps taken to estimate this value are:  

1) Construction of an EFSM [Wang93, Li06] representing the user’s 

requirements in detail and embedding user’s operational profile information. 

Testmaster tool [Testmaster99] was used for this purpose.  This model is also the 

oracle for the application as the modeler is the person who knows the correct user 

specifications.  

2) Execution of the model to evaluate the impact of the defects. A large 

number of test cases are run through the application and the ratio of number of test 

cases failed over the total number of test cases run, gives the real failure probability. 

Test cases were executed using Winrunner [Winrunner01]. 

Through reliability testing, it is taken care that all the defects that were 

discovered during the process of RePS constructions are represented and taken into 

account. Therefore, it is equivalent to four different persons testing the application. 

The first person discovers defects through inspection of the requirements, design 

and the code, the second person discovers defects through requirements traceability 

and the third person discovers defects through system testing. The fourth person is 
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the one that models the oracle and does extensive testing using Winrunner. 

Therefore, the application is not only tested by four different persons, it is also 

tested from different perspectives focusing in different techniques of finding 

defects. Boundary value analysis was performed for all the applications. Also, 

during this testing, enough test cases were generated not only to ensure complete 

functional testing of the application but also to ensure an all- path testing from the 

perspective of user’s requirements, i.e., all the paths of the EFSMs were tested.  The 

following table provides the details of the reliability testing. The 95% confidence 

interval and the standard error of reliability are determined assuming a binomial 

process. 

 

Applications Number 

of Test 

Cases 

Number 

of Failed 

Test 

Cases 

Estimated 

Reliability 

95% Confidence 

Interval for 

Reliability 

Standard 

Error of 

Reliability 

ATM 300 8 0.97 (0.95,0.99) 0.009 

SRQS 198 100 0.49 (0.42,0.56) 0.035 

SSP 96 51 0.43 (0.33,0.53) 0.050 

WPU 200 91 0.54 (0.47,0.61) 0.035 

LOCAT 92 7 0.076 (0.022,0.130) 0.027 

LOCAT_I 100 24 0.76 (0.67,0.84) 0.042 

LOCAT_II 22000 0 1 (1,1) 0.0 

LOCAT_III 50 6 0.88 (0.78,0.97) 0.045 

Table 5-9 Details of the reliability testing of the applications 
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Applications BLOC DD FP RT TC Real 

Reliability 

ATM 0.999998 0.99805 1 0.9956 0.94995 .9733 

SRQS 0.9992074 0.95346 0.99998 0.98548 0.7334 .4949 

 SSP 0.962761 0.69059 0.99993   0.68259 .46875 

WPU 

 

0.999938 0.627 1 0.58119   .545 

LOCAT 0.9986872 0.4 0.99993 0.1 0.10955 .0761 

LOCAT_I 0.9965977 1 0.99935 1 1 .76 

LOCAT_II 0.9999982 1 1 1 1 1.00 

LOCAT_III 0.9999931 0.89 0.99982 1 1 .88 

Table 5-10 Real reliability and reliability values predicted by the different 

RePSs 

 
Table 5-10 provides the real reliability and the reliability values as estimated 

by the five RePSs for all the applications. The columns BLOC, DD, FP, RT, and TC 

refer to the reliability values obtained from the Bugs per Lines of Code, Defect 

Density, Function Point, Requirements Traceability and Test Coverage RePS 

respectively. The Real Reliability value corresponds to the experimental value 

which is obtained after extensive testing.  

The missing value in case of Requirements Traceability RePS for SSP is due 

to the fact that the SSP application could not be compiled in the measurer’s machine 

due to platform/operating system issues and the missing value in case of Test 

Coverage RePS of WPU is because the measurer was not able to find a bug in the 

application. And this RePS is based on the assumption that the application has at 

least one bug. Moreover, no defects were found in LOCAT-II and the real reliability 
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was computed as one. Since, theoretically it is not possible to have a completely 

bug-free application, it was considered an outlier. Therefore, this application was 

not taken into consideration for the statistical analysis.  

The errors were computed from the above table as the difference between 

real reliability and the predicted reliability.  

Table 5-11 provides the error data and their mean and standard deviation for 

each application for each of the RePSs. Table 5-12 provides the relative error for 

each of the RePSs for each application. Relative error is defined as the ratio of the 

error to the real value of failure probability. 

 

Table 5-11 Error Data and Their Mean and Standard Deviation 

 
 

Applications Bugs/LOC DD FP RT TC 

ATM 0.026 0.024 0.02 0.022 -0.02 

SRQS 0.50 0.45 0.50 0.49 0.23 

 SSP 0.49 0.22 0.53  0.21 

WPU 0.45 0.082 0.45 0.03  

LOCAT 0.92 0.32 0.92 0.023 0.03 

LOCAT_I 0.23 0.24 0.23 0.24 0.24 

LOCAT_III 0.11 0.01 0.11 0.2 0.12 

Mean  0.39 0.19 0.40 0.16 0.13 

Standard 
Deviation 

0.30 0.16 0.30 0.18 0.11 
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Applications pe BLOC   pe DD pe FP pe RT pe TC 

ATM 
0.99 0.92 0.99 0.83 0.87 

SRQS 
0.99 0.90 0.99 0.97 0.47 

SSP 
0.92 0.41 0.99  0.402 

WPU 0.99 
0.18 1 0.079  

LOCAT 
0.99 0.35 0.99 0.025 0.036 

LOCAT_I 
0.98 1 0.99 1 1 

LOCAT_III 
0.99 0.083 0.99 1 1 

Table 5-12 Relative errors for each of the five models for each application 

Statistical significance tests are conducted to test the first set of hypotheses 

with α= 0.05. The SAS tool is used for all the tests. Normality tests are performed to 

assess the normality of the data. If the data is normal, a one sample t-test allows us 

to test whether a sample mean significantly differs from the hypothesized 

value. [Field 03].   

If the data is not normal, non-parametric Sign tests are performed to infer on 

the null-hypothesis. The results show that only Defect Density and Test Coverage 

data follow a normal distribution. 

  The results are given in the tables below. The H0RePS:  pe RePS <= 1, H0RePS : 

pe RePS <= 0.5, H0RePS : pe RePS <= 0.30 denote first set of hypotheses. Estimate refers 

to the mean value of the relative error and DF denotes the number of degrees of 

freedom. t-value is the t-test statistic and M-value is the Sign test statistic. 
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Error 
Model 

Estimate DF t-value 
H0RePS : 
 pe RePS <= 

1 

Pr > |t| 
H0RePS : 
 pe RePS 

<= 1 

t-value 
H0RePS : 
 pe RePS <= 

0.5 

Pr > |t| 
H0RePS : 
 pe RePS 

<= 0.5 

t-value 
H0RePS : 
 pe RePS 

<= 0.30 

Pr > |t| 
H0RePS : 
 pe RePS 

<= 0.30 

pe DD 0.55 
 
 

6 -3.08 
 

0.98 0.36 
 

0.36 1.73 
 

0.066 

pe TC 0.63 
 

5 -2.31 
 

0.96 0.82 
 

0.22 2.07 
 

0.046 

Table 5-13 Statistics of the t-tests on the first set of hypotheses 

Error 
Model 

Estimate DF M-value 
H0RePS : 
 pe RePS <= 

1 

Pr > |M| 
H0RePS : 
 pe RePS 

<= 1 

M-value 
H0RePS : 
 pe RePS <= 

0.5 

Pr > |M| 
H0RePS : 
 pe RePS 

<= 0.5 

M-value 
H0RePS : 
 pe RePS 

<= 0.30 

Pr > |M| 
H0RePS : 
 pe RePS 

<= 0.30 

pe BLOC   0.98 
 

6 -3.5 
 

0.99 3.5 
 

0.0078 3.5 
 

0.0078 

pe FP 0.99 
 

6 -3.0 
 

0.98 3.5 
 

0.0078 3.5 
 

0.0078 

pe RT 0.65 
 

5 -2.0 
 

0.93 1 
 

0.34 1 
 

0.34 

Table 5-14 Statistics of the Sign tests on the first set of hypotheses 

We can conclude from above that there isn’t enough evidence to reject the 

null hypotheses (since p-value > 0.05) for all the five RePSs for the null hypotheses 

that pe RePS <= 1.  For the null hypotheses that pe RePS <= 0.5, we reject the null 

hypotheses for pe FP and pe BLOC only and for the null hypotheses that pe RePS <= 0.3, 

we reject the null hypotheses for pe BLOC, pe FP, and pe TC. From the above tests it is 

observed that   the relative error for all the five models passed the basic criterion of 

being less than or equal to one which is encouraging. Among the five RePSs, the 

relative errors for only Defect Density and Requirements Traceability RePSs are 

less than equal to 0.30 and seem to have better predictive ability than the others. 

Even though Test Coverage RePS did not pass the test that its relative error is less 
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than 0.3, it produced much better results than Bugs per Lines of Code and Function 

Point RePSs. 

5.6.2 Statistical Analysis of the results to accept/reject the second set of 
hypotheses 

 
The second objective was to determine the form of the “errors” i.e. whether 

they are additive or multiplicative. Normality and log normality tests for the errors 

are conducted at α = .05. For the log normality tests, normality tests [Hughes71] on 

the natural logarithm of error values are carried out. The results are given below. 

The Stem-Leaf and Box Plots for each of the error models are also provided. 

There isn’t enough evidence to reject the null hypothesis that eBLOC follows a 

multiplicative distribution and therefore we accept the null hypotheses. The 

statistics for the same are given below. 

 

Figure 5-1 Statistics of the log-normality tests on eBLOC 
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Similarly as seen below, there is enough evidence to assume that eDD  

 follows an 

additive distribution.  

 

 

 

Figure 5-2 Statistics of the normality tests on eDD 

Also, we accept the hypotheses that eFP follows a multiplicative distribution. 
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Figure 5-3 Statistics of the log-normality tests on eFP 

 

For eRT, we accept the hypotheses that it follows an additive distribution. The 

statistics are given below. 

 

 

Figure 5-4 Statistics of the log-normality tests on eRT 

Similarly eTC can be assumed to follow an additive distribution with the following 

statistics. 
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Figure 5-5 Statistics of the log-normality tests on eTC 

5.6.3 Statistical Analysis of the results to accept/reject the third set of 

hypotheses 

The third objective was to compare the error results obtained from 

simulation and from experiment to check if they are similar. The error form has 

been observed to be the same for the simulation and the experiment (Section 4.6.2). 

However we wanted to simulate the experimental data set and compare the results. 

We believe that doing so would give a better comparison as both the data set will be 

similar. Therefore equal number of data points with the same characteristics as that 

of the experiment were generated. By same characteristics, we mean that the sizes 

of the applications, their order of failure probabilities etc were kept the same for the 

simulation as that of the experiment. The set of characteristics for each application 

is given in Table 6-1. 

Table 5-14 provides the mean and standard deviation of the simulation results 

. 
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Statistical significance tests were conducted to test the third set of 

hypotheses with α= 0.05. An F-test [Snedecor89] was used to test if the standard 

deviations of the two populations (errors from the simulation and errors from the 

experiment) are equal. The results showed that they are equal.  t-tests were 

conducted for the data set that followed normal distribution i.e. Defect Density, 

Requirements Traceability and Test Coverage error data. Wilcoxon two-sample 

non-parametric tests were conducted for non-normal data i.e. Bugs per line of code 

and Function Point error data. The results are given in the tables below. t-value is 

the t-test statistic, W-value is the Wilcoxon test statistic. 

RePS t-value 

H0RePS :  PSsimulatione Re = 

PSerimente Reexp  

Pr > |t| 

H0RePS :  PSsimulatione Re = 

PSerimente Reexp  

DD 
-0.08 

0.6 

RT 
-0.35 

0.6 

TC 
-0.31 

0.6 

Table 5-16 Statistics of the t-tests on the third set of hypotheses 

 
 
 
 
 

RePS BLOC DD FP RT TC 

Mean  0.48 0.20 0.46 0.19 0.15 

Std. Dev 0.36 0.14 0.38 0.18 0.14 

Table 5-15  Mean and standard deviation of the simulation results 
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RePS W-value 

H0RePS :  PSsimulatione Re = 

PSerimente Reexp  

Pr > |W| 

H0RePS :  PSsimulatione Re = 

PSerimente Reexp  

BLOC   
-1.022 

0.30 

FP 
-0.50 

0.61 

Table 5-17 Statistics of the Wilcoxon-tests on the third set of hypotheses 

We can conclude from above that there isn’t enough evidence to reject the 

null hypotheses (since p-value > 0.05) for all the five RePSs for the third set of 

hypotheses. Therefore, simulation and experimental errors for all the five RePSs not 

only follow the same distribution but also have similar values of errors which is 

encouraging. However, further research may be conducted to analyze the simulation 

results for applications with larger sizes and smaller order of failure probabilities.   

5.7 Summary  

 
In summary, it was seen that the Defect Density, Requirements Traceability, 

and Test Coverage performed better than the Bugs per Line of Code and Function 

Point RePSs. It was also observed that the Defect Density, Requirements 

Traceability, and Test Coverage error models follow an additive distribution and 

Bugs per Line of Code and Function Point error models follow a multiplicative 

distribution. Moreover results also showed that there wasn’t any significant 

difference between the findings from the simulation and the findings from the 

experiment. 
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Chapter 6 Updating the Estimations Based on    

                       Error Forms 

In this chapter, we illustrate the technique of the uncertainty quantification 

procedure. First a general Bayesian Framework [Droguett02] to update a model’s 

estimate in case of additive and multiplicative error models is presented. This is a 

generalized version of the Uncertainty Factor approach. The framework is then 

applied to the software applications considered in this study as examples. The 

results obtained from the application of the framework are then presented.  

6.1 Additive Error Model 

 
If there are n experimental results x1

e
 ,….., xn

e and corresponding model 

estimates are x1
*
 , …..,xn

*
 and the form of the error is known, it can be used to 

construct the likelihood function.  

The model estimate is considered as a random variable, X , which is the sum 

of the true but  unknown value, x, and a random error term E: X* 
= x + E. In terms 

of realizations ( i =1, …,n) of the random variables X*, we have xi
* 
= xi

t
 + Ei where  

xi
* and Ei   are realizations of the random variables X

*
, and E respectively, ( i =1, 

…,n). xi
 t
 is the true value of quantity X at i . Therefore, each realization Ei of E 

represents the difference between the model’s estimate xi
* and the true value of 

quantity X at i, xi
 t. 

Under the assumption of no experimental error, xi
e 
= xi

t.  
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Thus, evidence on model M might be given as D = {E1,…,En} where Ei is the error 

factor of i. 

Now L(x* | θ, x) is a parametric likelihood function where the set of 

parameters θ is estimated from the performance data D ={E1,…,En} via Bayes’ 

theorem. A simple, flexible, and practical form for the likelihood function L(x* | θ, 

x) is a Normal distribution  with mean obtained as x+b, where b =average(E) is the 

bias factor and standard deviation σ. The set of parameters is now given by θ = {b, 

σ}. The likelihood can now be written as 

2
*

)
)(

(
2

1
**

2

1
),,|(),|( σ

πσ
σθ

bxx

ebxxLxxL

+−
−

==       (6-1)      

Now, the posterior distribution of the set of parameters θ  = {b, σ} is 
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where the likelihood function is constructed considering that each pair of 

experimental results and corresponding model estimates for each realization i are 

independent, that is, {E1,…,En}  are independent realizations of the random variable 

E. Therefore,  

∏
=

=
n

i
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1
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Using the additive error model ,  
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=
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n
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Now substituting in (5-2) 
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 is a normalizing constant and 

),(0 σπ b is the prior distribution on b and σ. 

Therefore now the likelihood function L(x
*
|D,x) is given as  
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6.2 Multiplicative Error Model 

 
The development of the procedure using the multiplicative error model is 

analogous to the additive error model, with the modification that the model estimate 

X is now modeled as the product of the true but unknown value, x, and an error term 

E: 

Therefore, for each realization of X*, where xi
* 

= xi
t
Ei where xi

* and Ei   are 

realizations of the random variables X*
, and E respectively, ( i =1, …,n) and xi

 t
 is 

the true value of quantity X at i.  The multiplicative error term is now given as 

Ei = xi
*
/xi

t
. Under the restriction of no experimental error, we have that Ei = xi

*
/xi

e
. 

By taking logarithms, lnX
*
 = lnX + lnE as in the previous case, the likelihood 

function is given as  

2
*
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)ln(lnln
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Now, if πo(b, σ) is a prior distribution of b and σ, the posterior distribution of the set 

of parameters θ ={b, σ} is  

∏
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where k2 is normalizing constant and the likelihood function is constructed 

considering that each pair of experimental results and corresponding model 

estimates for each realization i are independent, that is, {E1,…,En}  are independent 

realizations of the random variable E.  

Therefore, the likelihood function becomes  
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6.3 Examples 

 
In this section we illustrate the uncertainty assessment of the software 

reliability of the applications given the estimates by the five RePSs. In order to 

assess the uncertainty of the RePSs estimates, some assumptions are made as 

required by the model uncertainty framework [Droguett02]. Different data sets were 

generated using the same set of conditions/characteristics as that of the applications. 

Table 6-1 provides the set of characteristics of each of the applications. 

  A homogenous population assumption is made concerning the error data.  

Given that the data sets that were used to update the failure probability prediction 

comprised only of results from the same set of characteristics, this is a reasonable 

assumption.  
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Applicatio

ns 

Size 

(LOC) 

Language Real 

Failure 

Probability 

Defect 

removal 

efficiency of 

Inspection 

and 

Reviews 

(%) 

Requirements 

Traceability 

Efficiency 

(%) 

Defect 

detection 

efficiency 

of testing 

(%) 

Defect 

repair 

proba

bility 

(%) 

LT

τ
 

ratio 

ATM 

 

2500 VC++ 0.0267 60 60 100 80 6.86 

SRQS 1500 Visual 
Basic 

0.5051 18 9 56 54 0.44 

WPU 

 

1500 C 0.53125 78 71 N/A N/A 0.889 

SSP 600 Visual 
Basic 

0.455 44 33 55 75 11.2 

LOCAT 500 Visual 
Basic 

0.9239 14 86 83 40 37.9 

LOCAT

_I 

200 FORTRAN 0.24 0 0 0 N/A 1.28 

LOCAT

_III 

250 C++ 0.120 100 0 0 N/A 1.37 

Table 6-1 Characteristics of the applications 

Now the posterior distribution of the of the true unknown, x, (in this case the failure 

probability) given the available evidence D, is given as 

∫
=

x

dxxxDxL

xxDxL
Dxx

)(),|(

)(),|(
)*,|(

0
*

0
*

π

π
π      (6-10) 

 Based on the simulation and the experimental results it is assumed that the error E 

representing the divergence between an estimate and an experimental measurement 

is described by the multiplicative error model for Bugs per Line of Code and 

Function point RePSs and additive error model for Defect Density, Requirements 

Traceability and Test Coverage RePSs. As a result, the parametric likelihood 

function for Bugs per Line of Code and Function point RePSs are  modeled as 

Lognormal distributions and Defect Density, Requirements Traceability and Test 

Coverage RePSs are  modeled as Normal distributions with parameters set θ ={b, 

σ}, where b and σ are defined as before. Furthermore, let us consider that the 



 

 125 

analyst’s prior belief is negligible compared to the evidence provided by the 

performance data set D and the new estimate *x . Thus, a flat prior πo(x) is adopted.   

Now, the mean value of posterior failure probability is given by  

dxDxxx
x

)*,|(π∫ ×        (6-11) 

The sections below provide examples and illustrate the different ways of 

obtaining an updated estimate.   

6.3.1 Updates based on evidence on the order of failure probability 

 
In this section, the process of application of model uncertainty framework 

based on evidence on the order of the failure probability of the application is 

discussed. Usually obtaining evidence on the order of failure probability of an 

application is tough as that would need comprehensive testing of the application. 

This also loses the purpose of estimation of failure probability. However, there may 

be cases like having different versions of the same application where there may be 

some idea on the order of failure probability of the application. Updates can then be 

made on the estimation of failure probability. Now, say that we know that SRQS has 

the same order of failure probability as that of SSP, WPU and LOCAT-I. Therefore 

the estimates for SRQS can be updated based on the experimental results obtained 

for SSP, WPU and LOCAT-I. Table 6-2 provides the updated predictions of failure 

probability for SRQS. Figure 6-1 provides the plots of the updated failure 

probability predictions vs. the initial failure probability predictions for SRQS. The 

five data points along the X-axis (1, 2, 3, 4, 5), refer to the five RePSs: Bugs per line 

of Code, Defect Density, Function Point, Requirements Traceability and Test 
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Coverage respectively. The updated values are much closer to the experimental 

value.  

RePSs Updated 

Predictions 

Bugs per Line of Code 0.37 

Defect Density 0.34 

Function Point 0.38 

Requirements 
Traceability 

0.35 

Test Coverage 0.53 

Table 6-2 Updated predictions of failure probabilities of SRQS 
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Figure 6-1 Plots of initial and updated values of failure probabilities of SRQS 

 

6.3.2 Updates in the lack of any evidence  

If there is no evidence at all of the order of the failure probability of an 

application, the values estimated by the RePSs may be considered as the upper 

bound of fault exposure probability. Figure 6-2 provides the plots of the updated 

failure probability predictions vs. the initial failure probability predictions for SRQS 
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considering the estimated values as the upper bound of fault exposure probability. 

The five data points along the X-axis (1, 2, 3, 4, 5), refer to the five RePSs as 

before: Bugs per line of Code, Defect Density, Function Point, Requirements 

Traceability and Test Coverage. 
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Figure 6-2 Plots of initial and updated values of failure probabilities 

As can be seen, the updated estimates are better than the original estimates. 

However the degree to which the estimates get updated depends on how good the 

estimates already are. The table below provides the percentage of improvement in 

the estimates after they are updated. Percentage of improvement is defined as  

100*
_exp

__

valueerimental

estimateinitialestimateupdated −
 . As can be seen, the percentage of 

improvement is very small for the Bugs per Line of Code and Function Point errors. 

This is because the initial estimates are very low and close to zero. Therefore even a 

100% improvement on the initial estimates is still close to zero.       
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 ATM SRQS WPU SSP LOCAT LOCAT-
I 

LOCAT-
III 

DD 27 8 25 30 30 0 0 
RT 28 2.6 33 N/A 11 0 0 
TC .06 19 N/A 28 .8 0 0 
BLOC 1.7*10^-6 0.02 .07 .2 .3 .6 .34 
FP 2*10^-5 2*10^-

4 
.08 .007 .035 .06 .66 

Table 6-3 Percentages of improvement in the estimates based on no evidence of 

order of failure probability 

6.3.3 Updates based on evidence on the accuracy of the models 

It has been observed from the simulation and the experimental results that 

Defect Density, Requirements Traceability and Test Coverage RePS provide better 

estimates. Therefore in absence of any other evidence, the estimates provided by 

these RePSs can be averaged to obtain an idea regarding the real failure probability 

of the application and the estimates can be updated based on the averaged value. 

Figure 6-3 provides the plots of the updated failure probability predictions vs. the 

initial failure probability predictions for ATM. The five data points along the X-axis 

(1, 2, 3, 4, 5), refer to the five RePSs: Bugs per line of Code, Defect Density, 

Function Point, Requirements Traceability and Test Coverage respectively. The 

average value is the average of the Defect Density, Requirements Traceability and 

Test Coverage RePS estimates. 
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Figure 6-3 Plots of initial and updated values of failure probabilities of ATM 

 
Here the failure probability for Test Coverage is overestimated initially. 

Since the defect detection efficiency of testing is 100% for ATM, the updated 

failure probability is similar to the initial failure probability.  The failure 

probabilities for Bugs per Line of Code, Defect Density, Function Point and 

Requirements Traceability are updated as shown. 

6.3.4 Updates based on evidence on the accuracy of the models and 
using an weighted average procedure  

 
We now formalize the previous method of updating the estimates based on 

the average value of Defect Density, Requirements Traceability and Test Coverage 

RePS estimates. In this process, an weight is ascribed to each of the RePSs and an 

weighted average estimate is obtained. The procedure of making the updates is 

discussed below.  

First, the average value of Defect Density, Requirements Traceability and 

Test Coverage RePS estimates, AEst (Average Estimate), is used to obtain the error 
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percentages of all the five RePSs. Based on the error percentages, a weight, WRePS, is 

ascribed to each of the RePSs and then a weighted average estimate, WAE, is 

obtained for the application. Now this estimate can be used to make the final 

updates on the RePSs.  

Formulating the weighted average procedure, the average estimate, of an 

application, 

 
3

___ TCRTDD EstimateInitialEstimateInitialEstimateInitial
AEst

++
=                  (6-12) 

Based on AEst, the average errors, AErr are determined for all the RePSs, for the 

specific application using simulation. Now, the average error ratio for an RePS, 

ERRePS,  is defined as the ratio of  average error for that RePS over the average 

estimate AE, i.e. 
AEst

PSAErr
ER PS

)(Re
Re =                                     (6-13) 

A new term, Accuracy_IndexRePS, is coined to represent the accuracy of the 

RePS and is equal to (1-ERRePS ). If the accuracy index of a RePS is negative, it can 

be discarded. This is because as a rule of thumb, the average error should ideally be 

less than or equal to one. This rule of thumb derives from the fact that a regulator 

will at least want a reliability estimate of the order of magnitude [Li06]. 

 The weight of the RePS, WRePS, is equal to 

∑
=

PS

PS

PS

PS
IndexAccuracy

IndexAccuracy
W

Re
Re

Re
Re _

_
                                                                   (6-14) 

Therefore the weighted average estimate, WAE, is equal to, 

∑=
PS

PSPS EstimateInitialWWAE
Re

ReRe _*         (6-15) 
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Simulation can then be run based on the weighted average estimate for each of the 

RePSs and the values can be updated accordingly. Figure 6-4 illustrates the 

weighted average update procedure.  
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Initial_EstimateRePS

3

___ TCRTDD EstimateInitialEstimateInitialEstimateInitial
AEst

++
=

AErr(RePS)

Average Error Ratio,

Accuracy_IndexRePS = 1-ERRePS

AEst

PSAErr
ER PS

)(Re
Re =

∑
=

PS

PS

PS
PS

IndexAccuracy

IndexAccuracy
W

Re
Re

Re
Re _

_

∑=
PS

PSPS EstimateInitialWWAE
Re

ReRe _*

Final Average

Error Estimates

Simulation considering application characteristics

and WAE  as the order of failure probability

Final Updates

Update using Model Uncertainty Framework

Simulation considering application characteristics

and AEst  as the order of failure probability

 

Figure 6-4 The weighted average update procedure 
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We now illustrate the weighted average procedure using examples. Let us 

consider the ATM application. The average estimate,  

AEst = (0.00195+0.0044+0.05005)/3 =   0.0188 failure per demand. 

Using the average estimate value as the order of failure probability and 

considering the characteristics of the application, (Appendix C), the average errors 

are obtained through simulation. The average errors are 0.018789, 0.00846, 

0.018799, .00840 and 0.001 failures per demand for Bugs per Line of Code, Defect 

Density, Function Point, Requirements Traceability and Test Coverage RePS 

respectively. The error ratio for Bugs per Line of code, ERBLOC, = 
.0188

0.018789
= 

0.999415.  Similarly the error ratios are 0.45, 0.999947, .446809 and .053191 for 

Defect Density, Function Point, Requirements Traceability and Test Coverage RePS 

respectively. The Accuracy_Index is now calculated as 0.000585, 0.55, 5.32E-05, 

0.553191and  0.946809 for Bugs per Line of Code, Defect Density, Function Point, 

Requirements Traceability and Test Coverage RePS respectively.  

Now the weights associated with each of the RePSs can be estimated. The weight 

for BLOC is equal to 
946809.553191.0532.555.000585.0

000585.0

++−++ E
 = 0.000285. 

Similarly the weights are 0.268209, 2.59E-05, 0.269766, 0.461714 for Defect 

Density, Function Point, Requirements Traceability and Test Coverage RePS 

respectively.  
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Finally the weighted average estimate is calculated as 0.000285*2E-6 + 

0.268209*.00195 + 2.59E-05*3E-6 + 0.269766*.0044 + 0.461714*0.05005 = 

0.024819 failure per demand.  

Based on the weighted average estimate, average errors are then obtained 

through simulation and the initial estimates are updated.  The results of the updates 

are shown in Figure 6-5.  

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

RePSs

F
a
il
u
re
 P
ro
b
a
b
il
it
ie
s

old value

new value

WAE

experimental value

 

Figure 6-5 Plots of initial and updated values of failure probabilities of ATM taking 

WAE into account 

 The updated estimates are much closer to the experimental value. As can be 

seen from Figure 6-2 and 6-5, the updated estimates considering WAE are better 

than the updated estimates considering initial estimates by themselves. 

The weighted average error procedure is now applied to the SRQS application. 

Table 6-2 provides the intermediate results for SRQS and Figure 6-5 shows the plots 

of initial and updated values. AEst for SRQS is 0.16383 and WAE is 0.19859.  
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RePS 
Old Pf ERRePS 

Accuracy_ 
Index Weights New Pf 

Bugs per Line 
of Code 0.00079 0.99 2.13E-05 2.46E-05 0.19 

Defect Density 
0.0465 0.85 0.14 0.17 0.20 

Funtion Point 
2E-05 0.99 0.0001 0.00011 0.19 

Requirements 
Traceability 0.0145 0.89 0.103 0.11 0.18 

Test Coverage 
0.266 0.38 0.61 0.70 0.34 

Table 6-4 SRQS update results taking WAE into account 
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Figure 6-6 Plots of initial and updated values of failure probabilities of SRQS taking 

WAE into account 

As seen from the results above, the updated values are much closer to the 

experimental value than the initial estimates. Figures 6-7 through 6-10 provide the 

initial and final estimates for SSP, WPU, LOCAT and LOCAT-III. The initial 

estimates for LOCAT-I for Defect Density, Requirements Traceability and Test 

Coverage are equal to zero. Therefore the initial average estimate (AEst) is also 

equal to zero and hence the updated estimates are also equal to zero.  Table 6-5 

provides the percentage of improvement in the estimates for all the applications 
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after they are updated. The four RePSs across X-axis for SSP (Figure 6-7) are 

Defect Density, Bugs per Line of Code, Function Point and Test Coverage 

respectively and the RePSs across X-axis for WPU are Defect Density, Bugs per 

Line of Code, Function Point and Requirements Traceability. 
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Figure 6-7 Initial and final estimates for SSP 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4

RePs

F
a
il
u
re
 p
ro
b
a
b
il
it
ie
s

New Pf

Old Pf

experimental

value

WAE

 

Figure 6-8 Initial and final estimates for WPU 
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Figure 6-9 Initial and final estimates for LOCAT 
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Figure 6-10 Initial and final estimates for LOCAT-III 

 
RePSs SRQS ATM WPU SSP LOCAT LOCAT-

I 
LOCAT-
III 

BLOC 38.88 89.5 85 53 87 0 50 
DD 31.35 44.76 12 26 35 0 0 
FP 39.56 89.13 85 56 87 0 50 
RT 33.61 41.27 0.26 N/A 8 0 58 
TC 15.8 0.59 N/A 23 10 0 58 

Table 6-5 The percentages of improvement in estimation 
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As mentioned before, the percentages of improvement for Locat-II are zero 

since AEst for Locat-II is equal to zero.  The percentage of improvement for Bugs 

per Line of Code and Function Point ranges from 39% to 90%. The high percentage 

of improvement is because of the fact that the initial estimates were not good and 

were close to zero (Table 5-9). The percentage of improvement for Defect Density 

and Requirements Traceability varied from 0% to about 60%. The percentage of 

improvement are dependent on various factors such as how good the estimates 

already are and the specific set of characteristics of the application. For example, for 

Locat-III the initial estimate for Defect Density RePS is close to the experimental 

value (Table 5-9) and the defect removal efficiency is 100% (Table 6-1). Therefore 

the average error is zero and hence there is no improvement in the estimate. 

However in case of ATM, defect removal efficiency is 67% and therefore there is an 

error in the estimate and the estimate is improved by 44.67%.  The percentage of 

improvement in test coverage RePSs also vary between 10% to 60%. The reasoning 

for the variation is the same as the Defect Density RePS variation.  

 Also, from Table 6-3 and Table 6-5, it can be seen that the percentage of 

improvement in estimation of RePSs are higher in case of the weighted average 

update procedure than in cases where just the initial estimates (Section 6.3.2) are 

used. Also, since evidence on the order of failure probability may not be available in 

most of the cases, the weighted average update procedure is recommended. The 

table below provides the initial average (AEst) and the weighted average (WAE) for 

each of the application.  
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 ATM SRQS SSP WPU LOCAT LOCAT-I LOCAT-III 
AEst 0.018 0.11 0.31 0.39 0.79 0 0.036 
WAE 0.026 0.19 0.30 0.39 0.81 0 0.076 

Table 6-6 Initial average and weighted average estimates of failure probability 

As far as recommending a single RePS is concerned, it depends on the 

characteristics of the application and/or the organization. It has already been 

observed from the experimental and simulation results that the Defect Density, 

Requirements Traceability and Test Coverage RePSs provide better estimations. 

According to Jones [Jones96], on an average the inspection procedure is 80% 

efficient in detecting faults. Therefore Defect Density RePS may be used to estimate 

the failure probability. The defects detected through Requirements Traceability 

RePS construction are a subset of the defects detected through Defect Density RePS 

(For reasoning, please refer to Section 5.4.2). However, detecting defects through 

Requirements Traceability is usually easier than detecting defects through 

inspection. Moreover, inspection procedures may not be followed strictly rendering 

the inspection less effective. In such cases Requirements Traceability RePS should 

be used. The historical data of the organization may be used to determine the 

efficiency of Defect Density and Requirements Traceability and the one with better 

efficiency should be used.  

For the Test Coverage RePS, the testing efficiency as well as the test coverage 

ratio are instrumental in estimating the failure probability. It is seen from the 

simulation that with 53% testing efficiency and 70% test coverage, the relative error 

for Test Coverage RePS is similar to the relative error of Defect Density RePS at 

60% inspection efficiency.  ( As illustrated in Figure 6-12, the third point in the Test 

Coverage plot corresponds to 70% test coverage and the corresponding equivalent 
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inspection efficiency is 60% (the third data point in the inspection efficiency plot)). 

Figures 6-11 through 6-13 provide the equivalent inspection efficiency for varying 

Test Efficiency and Test Coverage that provide similar relative errors in estimation 

of failure probability. 
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Figure 6-11 Inspection Efficiency for varying Test Coverage when the Test 

Efficiency is 30% 

 
Figure 6-11 provides the inspection efficiency equivalent for varying test 

coverage when the test efficiency is 30%.  From Figure 6-11, it can be seen that 

when the test efficiency is low (30%), and the test coverage increases, the error 

increases and therefore the equivalent inspection efficiency decreases. The error is 

the least when the test coverage is the same as the test efficiency, i.e, 30%, which 

means that when a 30% of test coverage detects the same percentage of faults, Test 

Coverage RePS provides good estimation.  Please note that the estimated failure 

probability of the application will be high in this case since only 30% of the defects 

have been detected, but this estimation is closer to the real value and therefore the 
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error is small. In order for the Defect Density RePS to obtain such accuracy, the 

equivalent inspection efficiency is 90%.  

Similarly, when test coverage is 80%, which also means that 80% of test 

coverage detected only 30% of the faults, the failure probability is under-estimated 

and the error in the failure probability estimation is very high. Hence the inspection 

efficiency equivalent that gives the same amount of error is 20%. 
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Figure 6-12 Inspection Efficiency for varying Test Coverage when the Test 

Efficiency is 50% 

Figure 6-12 provides the inspection efficiency equivalent for varying test 

coverage when the test efficiency is 50%.  As before, it can be seen that the error is 

the least when the test coverage is the same as the test efficiency, i.e, 50%, which 

means that a 50% of test coverage detects the same percentage of faults. Therefore, 

in order for the Defect Density RePS to obtain such accuracy, the equivalent 

inspection efficiency is about 90%. 
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Similarly, when test coverage is 80%, which also means that 80% of test 

coverage detected only 50% of the faults, the failure probability is under-estimated 

and the error in failure probability estimation is high. Hence the inspection 

efficiency equivalent that gives the same amount of error for the Defect Density 

RePS estimation is 45%. However when the test coverage is low (30%), which 

means that 30% of test coverage detected 50% of the faults, the failure probability is 

over-estimated and the inspection efficiency equivalent that gives the same amount 

of error in this case is 65%. 
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Figure 6-13 Inspection Efficiency for varying Test Coverage when the Test 

Efficiency is 80% 

 
 Figure 6-13 provides the inspection efficiency equivalent for varying test 

coverage when the test efficiency is 80%.  As before, it can be seen that the error is 

the least when the test coverage is the same as the test efficiency. However, when 

the test coverage is low (30%), which means that 80% of the defects are detected by 

30% of the test coverage, the Test Coverage RePS provides gross over-estimation of 
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the failure probability and the error is very high. An inspection efficiency that gives 

the same amount of error is 5%. 

The results presented in the table above can be used as a guideline to 

determine which RePS to use. The historical data of the organization can be used to 

determine the testing efficiency and inspection efficiency and then the plots can be 

used to determine the RePS that provide a better estimate. Test Coverage can be 

determined using tools available commercially. For example, say that it is usually 

seen that a certain organization has typically a testing efficiency of 30%. The test 

coverage is measured as 60%. This means that the equivalent inspection efficiency 

that gives the same error is about 48% (Figure 6-11). Therefore if the organization 

typically has lesser inspection efficiency, it is better to use Test Coverage RePS. 

Else, Defect Density RePS should be used.   

6.4 Summary:  

As seen from the results, the updated failure probability values are much 

closer to the experimental value. The results also show that even in the absence of 

any evidence, the estimates can still be updated using simulation data. The updated 

estimates are better than the original estimates but the degree to which the estimates 

get updated depends on how good the estimates already are. 

Moreover, updates can be made from the knowledge of the accuracy of the 

models even though there is no evidence like the order of failure probability of the 

application. Appropriate weights can be ascribed to each of the models and updates 

can be made accordingly. 
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We also would like to note that the approach of model improvement provided 

above can be generalized to other reliability models. The evidence on these models 

can be obtained either through experiment or through simulation. However we feel 

that the values obtained through simulation usually fit the homogenous assumption 

of the data set better. This is because the data is generated for a specific set of 

characteristics of the application. Moreover simulation saves time, effort and cost.  

This chapter also provided guidelines to determine which RePS to use based 

on application/organization characteristics. The guidelines help choose the RePS 

with least relative error.  
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Chapter 7 Conclusion 
 

We have achieved the objectives set out at the beginning of the dissertation. In 

this chapter we conclude by summarizing our achievements and the contributions 

made by this research. We also identify the limitations of our work. Avenues for 

future research are subsequently identified. 

7.1 Contributions of this Research 

 
• The research contributes to measurement-based software reliability 

modeling by statistically analyzing and validating five different software 

reliability prediction systems, RePSs. The RePSs are constructed from 

software engineering measures such as Defect Density, Bugs per Line of 

Code, Function Point, Requirements Traceability and Test Coverage. An 

experiment was designed to obtain data on the RePSs and statistically 

investigate their prediction performance.  

• It generalizes the domain of application of model uncertainty approaches to 

the field of software reliability modeling. As illustrated in Chapter 6, a 

Bayesian approach of model uncertainty quantification has been used to 

update the estimates of failure probability. Therefore, the first steps to foray 

into the domain of model uncertainty have been taken in this research.  

• It contributes to software reliability modeling intellect and the industry by 

providing more robust reliability estimates. As shown in Table 6-5, the 

updated estimates of failure probability were better than the initial estimates.  



 

 146 

The percentage of improvement for Bugs per Line of Code and Function 

Point ranges from 39% to 90%. The percentage of improvement for Defect 

Density and Requirements Traceability varied from 0% to about 60%. 

• We also provide an alternate approach of determining the error forms which 

is integral to the application of the model uncertainty framework: simulation. 

Simulation allows us to use a wide range of inputs. This acts as a catalyst for 

sensitivity analysis of the models and helps determining the error for 

different scenarios. The values assumed such as the defect removal 

efficiency etc can be fine-tuned as per the specific organization’s software 

engineering practices. Traditionally the nature of the errors is determined 

experimentally. It includes the extensive and difficult task of designing the 

experiment in a way to counter threats to validity, and executing it. Also 

each experiment needs a minimum number of data points (the larger the 

number, the better) in order to statistically validate it. This is expensive not 

only from a cost perspective but also from a time perspective. Sometimes 

carrying out an experiment is just not feasible due to lack of resources. 

Simulation is an alternative which provides a solution to the above problems.  

o We also compared the results obtained from the simulation and from 

the experiment and found similarities between them. This 

corroborates our claim that simulation can be an alternative to 

determine the nature of errors.   
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o A tool was developed in the course of this research to simulate the 

error models. The tool can be used to estimate the errors on the 

failure probabilities predicted by the RePSs for applications of 

varying sizes, languages and domains. The error values can then be 

used to update and provide better predictions. 

• The research also contributes to the understanding of some of the root causes 

of error in the software reliability model building processes leading to 

possible improvements of these.  For example, it is almost customary to use 

Musa’s K [Musa87, Musa98] in the estimation of software reliability. 

However in the course of simulation we realized the irrelevance of Musa’s K 

in most of the cases. The simulation results showed that it can be used for a 

very specific order of failure probabilities and application sizes.  

7.2 Limitations of this Research 

 
Like everything else, this research has its limitations which are enumerated below. 

• Assumptions in the simulation:  

o The assumption that the defects are independent of each other only 

excludes the case in which one defects masks others [Wu93]. This is 

a fair enough assumption as long as this situation does not happen 

frequently. However, this assumption may limit the research in some 

manner especially when there are many defects masking one another, 

and needs to be investigated.  Moreover the real and the simulated 
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errors are assumed to be similar in this study. This assumption also 

needs to be investigated to provide better results.  

o Usage of defect removal efficiency values etc are only an average 

value and may not be reflective of the participating organization’s 

own standards. Moreover they are dynamically changing due to the 

ever-changing software engineering paradigms and/or practices.  

o In Chapter 4, we use only certain values of defect removal efficiency, 

defect repair probability, backfiring coefficient and any other 

variable obtained from [Jones96]. This may lead to a certain amount 

of uncertainty on the error.  

• We realize that the experimental data set is still very small. There are no data 

points on applications with very low failure probability or very large size. 

This may limit the inferences made especially on these kinds of applications. 

Moreover we are unable to compare the performance of the simulation at 

this level. 

7.3 Future Work 

 
Following are some possible areas of future research. 

• Development of a larger data set: As mentioned before a large data set is 

essential and integral to validate any study. In the data set that is available, 

there are no applications with very low order of failure probabilities or very 

large sizes. Such applications should be included in the data set. This shall 
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allow for the scalability of the approach. Moreover it can be compared to the 

simulation data in a more appropriate manner. 

• The assumptions in the simulation process such as independence of defects 

can be studied to better the estimate of errors in the simulation process. Also 

we assume that defects detected during software inspection are independent 

of their fault exposure probabilities as there are no evidences to believe 

otherwise. However this area may be explored to confirm such assumptions.   

• We feel that this approach can be generalized to any software reliability 

model. Studies may be done to validate this hypothesis. From an 

organization’s perspective this would allow for a better estimation of 

reliability while using the technique existing in the organization. 

• Further work may also include correlation among models. A major issue in 

the assessment of model uncertainty is the possibility of dependence among 

the models considered in the weighted average error assessment. Possible 

reasons for dependence among models include [Droguett02]:  

� As they are representations of the same reality aspect, the 

models might share common theoretical principles, 

� Common implementation procedures, such as mathematical 

approximations, 

� They might have been conceptualized and implemented by 

individuals sharing the same basic training, 

� As a result of sharing similar modeling processes, they would 

share, to some degree, the available limited information 
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sources and have the tendency to be redundant with regards to 

some of their inputs. 

The dependence of models in the model uncertainty framework should be 

studied and incorporated into the framework.  

• Extension of error modeling to software systems with redundant 

components. In safety critical systems, a fault tolerance approach may be 

employed to obtain high reliability. The basic strategy of the software fault-

tolerance approach is to design several versions of a program from the same 

specification and to employ a voter of some kind to protect the system from 

bugs. The voter can be an acceptance test (i.e., recovery blocks) or a 

comparator (i.e., N-version programming) [Butler93]. This system does not 

fail unless there is a co-incident error i.e. both the versions produce 

erroneous outputs in response to the same input [Butler93].  This research 

was solely aimed at software systems with single components and does not 

handle software systems with redundant systems.  Further work may be done 

to extend error modeling to such systems and analyze the errors in the 

estimation of reliability of such systems.  
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Appendix A: Results of the simulation of error forms 
 
 
This appendix provides the mean and standard deviation of the results obtained for 

different sets of simulation. 

Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean .099 1.14 1.30 1.77 2.39 2.96 4.56 Defect Density 

 

Std. 
Dev 

.044 1.42 1.09 1.21 1.73 2.66 3.89 

Mean .104 1.13 1.29 1.79 2.52 2.81 4.51 Requirements 
Traceability 

 
Std. 
Dev 

.046 1.10 1.13 1.23 1.58 2.64 3.78 

Mean .11 1.42 1.67 2.09 2.69 3.27 5.46 Test Coverage 

 

Std. 
Dev 

.041 1.07 1.16 1.60 2.69 2.28 4.83 

Mean 1.15 2.02 3.70 3.97 4.36 5.60 9.87 Function Point 

 

Std. 
Dev 

1.99 1.68 2.80 2.56 2.17 1.64 2.55 

Mean 1.25 2.26 3.50 3.76 4.47 5.53 9.56 Bugs per Line 
of Code 

 
Std. 
Dev 

1.90 1.71 3.07 3.00 2.22 1.56 2.22 

Table A-1 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-1 

(Multiply each value by 10**-1 ) 
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean 0.12 1.24 1.56 1.80 2.16 2.57 5.01 Defect Density 

 

Std. 
Dev 

0.12 1.31 1.60 1.74 2.04 2.80 2.16 

Mean 0.12 1.40 1.56 1.80 2.34 2.70 4.92 Requirements 
Traceability 

 
Std. 
Dev 

0.13 1.13 1.57 1.68 2.02 2.94 2.12 

Mean 0.14 1.55 1.77 2.04 2.46 2.83 5.14 Test Coverage 

 

Std. 
Dev 

0.14 1.54 1.57 1.88 2.18 2.98 2.19 

Mean 1.73 2.19 3.46 3.92 4.23 4.88 7.09 Function Point 

 

Std. 
Dev 

1.81 2.05 3.40 3.99  4.79 5.25 4.04 

Mean 1.55 2.09 3.20 3.33 3.57 3.84 5.12 Bugs per Line 
of Code 

 
Std. 
Dev 

1.60 1.94 3.28 3.58 4.24 5.12 2.66 

 

Table A-2 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-3 

(Multiply each value by 10**-3) 
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean .080 1.01 1.38 1.65 2.43 3.01 4.66 Defect Density 

 

Std. 
Dev 

0.034 1.15 1.34 1.34 1.35 2.39 2.67 

Mean 0.11 1.14 1.28 1.56 2.13 2.24 4.57 Requirements 
Traceability 

 
Std. 
Dev 

0.033 1.16 1.17 1.65 1.98 1.99 2.00 

Mean 0.14 1.48 1.69 2.00 2.54 3.17 5.82 Test Coverage 

 

Std. 
Dev 

0.054 1.12 1.16 1.87 2.35 2.98 2.83 

Mean 1.06 1.90 3.38 3.18 2.84 -1.24 -18.23 Function Point 

 

Std. 
Dev 

1.76 1.67 2.34 2.24 2.98 1.98 10.65 

Mean .93 1.61 1.69 .65 -1.90 -6.48 -38.12 Bugs per Line 
of Code 

 
Std. 
Dev 

1.76 1.88 1.76 2.87 1.92 3.78 12.54 

 

Table A-3 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-4 

(Multiply each value by 10**-4) 
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean .07 1.13 1.28 1.66 2.28 2.56 4.87 Defect Density 

 

Std. 
Dev 

.034 1.12 1.09 1.56 1.89 2.97 3.09 

Mean 0.10 1.24 1.43 1.70 2.25 2.89 4.86 Requirements 
Traceability 

 
Std. 
Dev 

0.65 1.34 1.57 1.36 1.99 2.76 2.13 

Mean 0.12 1.37 1.70 1.99 2.77 3.34 5.97 Test Coverage 

 

Std. 
Dev 

.087 1.18 1.14 1.70 2.01 2.00 2.83 

Mean .15 .0026 -0.54 -4.20 -22.04 -51.15 -278.02 Function Point 

 

Std. 
Dev 

1.88 1.65 2.98 2.65 2.18 1.94 22.66 

Mean -1.35 -6.05 -12.50 -28.34 -60.54 -115.4 -476.76 Bugs per Line 
of Code 

 
Std. 
Dev 

1.89 1.67 3.23 3.07 8.33 12.99 29.45 

 

Table A-4 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-5 

(Multiply each value by 10**-5) 
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean . 09 1.24 1.28 1.74 2.26 2.65 4.78 Defect Density 

 

Std. 
Dev 

.045 1.32 .98 1.23 1.76 2.01 2.98 

Mean 0.10 1.24 1.41 1.80 2.30 2.79 4.78 Requirements 
Traceability 

 
Std. 
Dev 

0.04 1.31 1.11 1.36 1.98 2. 47 2.76 

Mean 0.12 1.34 1.69 1.99 2.45 3.02 5.69 Test Coverage 

 

Std. 
Dev 

0.06 1.23 1.13 1.76 1.86 2.03 2.87 

Mean -9.35 -17.56 -39.45 -76.24 -255.3 -660.9 -2787 Function Point 

 

Std. 
Dev 

2.98 10.67 11.26 13.32 23.34 27.34 32.665 

Mean -41.23 -81.36 -155.3 -315.3 -645.2 -1184 -4789 Bugs per Line 
of Code 

 
Std. 
Dev 

3.86 8.67 11.43 20.59 24.298 34.453 39.234 

 

Table A-5 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-6 

(Multiply each value by 10**-6) 
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Functional 

Size 

Error 

 75 150 300 600 1200 2400 10000 

Mean . 067 1.14 1.38 1.67 2.28 2.56 4.87 Defect Density 

 

Std. 
Dev 

.02 1.23 1.02 1.53 1.87 2.17 2.92 

Mean 0.10 1.32 1.54 1.69 2.35 2.78 4.65 Requirements 
Traceability 

 
Std. 
Dev 

.076 1.33 1.17 1.35 1.99 2.13 2.14 

Mean 0.13 1.49 1.78 2.00 2.76 3.40 5.97 Test Coverage 

 

Std. 
Dev 

0. 09 1.13 1.13 1.34 2.00 2.19 2.82 

Mean -1.2E8 -1.2E8 -1.2E8 -1.2E8 -1.2E9 1.2E9 1.2E10 Function Point 

 

Std. 
Dev 

19813 15674 29845 26653 218567 219887 929998 

Mean -4.27E8 -4.27E8 -4.28E8 -4.28E8 -4.28E9 -4.28E9 -4.3E10 Bugs per Line 
of Code 

 
Std. 
Dev 

21813 18675 31987 34554 329877 314657 999456 

 

Table A-6 Mean and Standard Deviation for different error forms for varying 

functional sizes with upper bound of fault exposure probability of 10E-13 

(Multiply all values by 10**-13) 
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The table below provides the percentage of the relative error for varying functional 

sizes with upper bound of fault exposure probability of 10E-1. Relative error is 

defined as the ratio of the absolute value of the error over the real value of failure 

probability. 

 

Functional 

Size 

Error 

75 150 300 600 1200 2400 10000 

Defect Density 

 

9.09 39.31 37.34 43.54 51.76 53.43 57.42 

Requirements 
Traceability 

 

10.03 39.14 39.35 44.65. 51.65 52.97 58.87 

Test Coverage 

 

13.06 43.45 44.56 52.65 59.65 61.45 65.43 

Function Point 

 

99.98 99.91 99.86 99.68 99.46 99.34 99.12 

Bugs per Line 
of Code 

 

99.99 99.99 99.96 99.96 99.86 99.87 99.32 

 

Table A-7 Relative error percentages for varying functional sizes with upper 

bound of fault exposure probability of 10E-1 
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Appendix B: Experiment Design for the Measurement 

Phase 

ATM   Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 

 B/LOC        
  Si   1     
  TL   1     
  τ    1     
  pf   1     
 DD         
  DD Defects   1     
  FSM, pf   1     
 FP         
  FP  1      
  N  1      
  TL  1      
  τ   1      
  pf  1      
 RT         
  RT Defects  1      
  FSM,pf  1      
 TC         
  FP   1     
  FPMiss   1     
  LOCTested 1       
  LOCIMPL 1       
  TL 1       
  τ  1       
  FSM,pf 1       
SRQS         
 B/LOC        
  Si    1    
  TL    1    
  τ     1    
  pf    1    
 DD         
  DD Defects    1    
  FSM, pf    1    
 FP         
  FP      1  
  N      1  
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  TL      1  
  τ       1  
  pf      1  
 RT         
  RT Defects      1  
  FSM,pf      1  
 TC         
  FP     1   
  FPMiss     1   
  LOCTested 1       
  LOCIMPL 1       
  TL 1       
  τ  1       
  FSM,pf 1       
WPU          
 B/LOC        
  Si 1       
  TL 1       
  τ  1       
  pf 1       
          
 DD         
  DD defects       1 
  FSM, pf       1 
          
 FP FP       1 
  N       1 
  TL       1 
  τ        1 
  pf       1 
 RT         
  RT Defects    1    
  FSM,pf    1    
 TC         
  FP  1      
  FPMiss  1      
  LOCTested  1      
  LOCIMPL  1      
  TL  1      
  τ   1      
  FSM,pf  1      
          
SSP          
 B/LOC        
  Si    1    
  TL    1    
  τ     1    
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  pf    1    
 DD         
  DD Defects    1    
  FSM, pf    1    
 FP         
  FP     1   
  N 1       
  TL 1       
  τ  1       
  pf 1       
 RT         
  RT Defects     1   
  FSM,pf     1   
 TC         
  FP   1     
  FPMiss   1     
  LOCTested   1     
  LOCIMPL   1     
  TL   1     
  τ    1     
  FSM,pf   1     
          
LOCAT         
 B/LOC        
  Si      1  
  TL      1  
  τ       1  
  pf      1  
 DD         
  DD Defects     1   
  FSM, pf     1   
 FP         
  FP     1   
  N       1 
  TL       1 
  τ        1 
  pf       1 
 RT         
  RT Defects      1  
  FSM,pf      1  
 TC         
  FP   1     
  FPMiss   1     
  LOCTested    1    
  LOCIMPL    1    
  TL    1    
  τ     1    
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  FSM,pf    1    
          
LOCAT_Frank        
 B/LOC        
  Si   1     
  TL   1     
  τ    1     
  pf   1     
 DD         
  DD Defects     1   
  FSM, pf     1   
 FP         
  FP      1  
  N      1  
  TL      1  
  τ       1  
  pf      1  
 RT         
  RT Defects      1  
  FSM,pf      1  
 TC         
  FP       1 
  FPMiss       1 
  LOCTested       1 
  LOCIMPL       1 
  TL       1 
  τ        1 
  FSM,pf       1 
          
LOCAT_James        
 B/LOC        
  Si     1   
  TL     1   
  τ      1   
  pf     1   
 DD         
  SRS,DDR 1       
  FSM, pf 1       
 FP         
  FP  1      
  N  1      
  TL  1      
  τ   1      
  pf  1      
 RT         
  RT Defects     1   
  FSM,pf     1   
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 TC         
  FP       1 
  FPMiss       1 
  LOCTested       1 
  LOCIMPL       1 
  TL       1 
  τ        1 
  FSM,pf       1 
          
LOCAT_Barker        
 B/LOC        
  Si   1     
  TL   1     
  τ    1     
  pf   1     
 DD         
  DD Defects  1      
  FSM, pf       1 
 FP         
  FP    1    
  N    1    
  TL    1    
  τ     1    
  pf    1    
 RT         
  RT Defects 1       
  FSM,pf 1       
 TC         
  FP   1     
  FPMiss   1     
  LOCTested   1     
  LOCIMPL   1     
  TL      1  
  τ       1  
  FSM,pf    1    

 

Table B-1 The experiment design for the measurement phase 

The “1” in a column implies that the task was performed by the corresponding subject. DD 

defects refer to defects found for construction of the Defect Density RePS. These defects 

were found through requirements, design and code inspection for each application. RT 

defects refer to the defects found for the construction of the Requirements Traceability 

RePS. These defects were found by tracing the code to requirements and finding out the 
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requirements that were amiss. Sub1 through Sub7 refers to the seven different subjects who 

participated in the Measurement Phase. 
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Appendix C: Further Investigation on Interaction of 

Defects 

In this section the interaction among defects is further investigated and their 

effect on the failure probability is analyzed. This may provide the direction of future 

research on the assumption of the mutual exclusiveness of defects. It also discusses 

how the interaction of defects may affect the modelling of the error forms.  

Case1: 

Let us consider a program structure as shown in the following flow diagram 

 

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A, e1

 

Figure C-1 Control flow graph -1 

 
Say S1, S2, S3 are predicates and A, B, C, D, are the different paths taken. 

The shaded paths A and C contain a defect each, D1 and D2 respectively.  Figure C-

2 shows the interaction among defects.  

Now, the failure probability when defects interact mutually exclusively is k1 + k2 

where  

k1 = e1× I1×PD1->S2 ×e2’×  PS2->D2×PD2->End and  

k2 = e1×e2× I2×PD2->End + (1-e1)×e2× I2×PD2->End.  This is also the real failure 

probability as modeled by the simulation error form. 
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The failure probability with interaction of defects is e1× I1×PD1->S2 ×e2’×  

PS2->D2×  P’D2->End + e1× I1’×  e2× I2 ×  PD2->End + (1-e1)×e2× I2 ×  PD2->End. This is 

also the real failure probability and is equal to k1× ( P’D2->End/ PD2->End) + k2 – 

I2×e1×e2× I1×PD2->End. which is equal to k1×α + k2× β  where 

  α  = P’D2->End/ PD2->End and β  = 1-e1× I1. 

Please note that β  is always less than one.  

Therefore the difference between modeled failure probability and the real failure 

probability is k1 + k2 – k1×α  - k2× β .   This will be a conservative estimate if α  

is less than one. 
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Figure C-2 Flow Graph showing interaction among defects 

 

In this case if both the defects are detected, the modeled error is k1 + k2 – (k1* + 

k2*) and the actual error is k1×α  + k2× β  - (k1*×α * + k2*× β *). If one of the 

defects (D1 say) is detected the actual error in the estimate is k1×α  + k2× β  - k1 

where as the modeled error is k1 + k2 – k1*.   
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Case 2: 

Now consider the following: 

 

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A,e1

 

Figure C-3 Control flow graph – 2 

 
Let us assume that there are two defects on the path A, D1 and D2. Figure C-4 

shows the interaction among defects. 
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Figure C-4 Flow Graph showing interaction among defects 

 
Now, the failure probability when defects interact independently is k1 + k2  

where  

k1 = e1× I1×PD1->D2 ×PD2->End and k2 = e1× I2 ×  PD2->End.  This is also the real 

failure probability as modeled by the simulation error form. 

The failure probability with interaction of defects is e1× I1×PD1->D2×P’D2->End + 

e1× I1’× I2×PD2->End. This is also the real failure probability. This is equal to k1×α  

+ k2× 'β  where 'β =1 – I1’
. Therefore the difference between modeled failure 
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probability and the real failure probability is k1 + k2 – k1×α  - k2× 'β .   This will 

be a conservative estimate if α  is less than one. 'β  is always less than one. 

In this case if both the defects are detected, the modeled error is k1 + k2 – (k1* + 

k2*) and the actual error is k1×α  + k2× 'β  - (k1*×α * + k2*× 'β *). If one of the 

defects (D1 say) is detected the actual error in the estimate is k1×α  + k2× 'β  - k1 

where as the modeled error is k1 + k2 – k1*.   

Case3:   

S1 S3S2

D,(1-e2)

C,e2

B, (1-e1)

A, e1

 

Figure C-5 Control Flow Graph – 3 

 
Let us assume that there are two defects, on the predicate S1 and on the path A.  If 

the defect in S1 affects the path A only, it will be equivalent to two defects on path 

A and the failure probability can be calculated as in Case 2. If the defect affects only 

path B, the case is equivalent to two defects that are mutually exclusive and the real 

failure probability is the sum of the failure probabilities of the defects in Path A and 

Path B. If the defect affects both the branches, it will be equivalent to two defects in 

A (D1 and D2, say) and one defect in path B (say D3). Now the real failure 

probability is k1×α  + k2× 'β + k3, where, k1, α , k2, 'β , are the same as in case 2 

and  k3 is the fault exposure probability of defect D3.  The modeled failure 
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probability is k1+k2+k3. Therefore the difference between modeled failure 

probability and the real failure probability is k1 + k2 – k1×α  - k2× 'β  as in Case 2.  

 
 
Case 4:  

S1 S2

B, (1-e1)

C,1-e2

A, e1

D, e2
 

Figure C -6 Control Flow Graph – 4 

 
 
The different paths of execution are S1-A-S2-End, S1-B-S2-End, S1-A-S2-D-S1-A-

S2-End, S1-A-S2-D-S1-B-S2-End, S1-B-S2-D-S1-A-S2-End, and S1-B-S2-D-S1-

B-S2-End. The paths of execution with interaction of defects are S1-A-S2-D-S1-A-

S2-End, S1-A-S2-D-S1-B-S2-End, S1-B-S2-D-S1-A-S2-End and S1-B-S2-D-S1-B-

S2-End. The assumption here is that the loop S2 to S1 is traversed at most once. 

Therefore the execution probability of C after the loop is traversed once, is equal to 

one.  

Paths similar to S1-A-S2-D-S1-B-S2-End and S1-B-S2-D-S1-A-S2-End have been 

analyzed in Case 1. Paths similar to S1-B-S2-D-S1-B-S2-End have been analyzed in 

Section 4-1.  
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The path which remains to be studied is S1-A-S2-D-S1-A-S2-End. Figure C-7 

shows the flow graph depicting the interaction of defects. The continuation of the 

flow graph is shown in Figure C-8. 

The assumption here is that once a previous defect has propagated to a location 

where another defect exists, infection due to the second defect always occurs. This 

is a reasonable assumption because the data has already been infected and the 

second defect executes on the already infected data. [Malaiya92] states that 

infection is the probability that a change to the program causes a change in the 

resulting internal computational state of the program. Therefore when a defect 

executes on a data state that is already infected, the probability that the defect would 

infect the data state can reasonably be assumed to be one. 
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Figure C-7 Control Flow Graph showing interaction of defects 
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Figure C-8 Continuation of the flow graph for case 4 

 
Now, the failure probability when defects interact independently is k1 + k2 

where  

k1=e1× I1×P1D1->S2×e2’×P1S2->D2×P1D2->S1×e1’×P1’’S1->D1×P1’’D1->S2×1×P1S2-

>End and k2=e1×e2× I2×P2D2->S1×e1’×P2’S1->D1×P2’D1->S2×1×P2S2->End. This is 

also the failure probability as modeled by the simulation error form. 

The failure probability with interaction of defects is  

e1× I1×P1D1->S2×e2’×P1S2->D2×P12D2->S1×e1’’× I11×P11D1->S2×1×P’’S2->End +  

e1× I1×P1D1->S2×e2’×P1S2->D2×P12’D2->S1×e1× I1×P1D1->S2×1×P1S2->End + 

e1× I1×P1D1->S2×e2’×P1’S2->D2× I2×P2D2->S1×e1a’’× I11a× P11aD1->S2×1×  

Pa’’S2->End+ 

e1× I1×P1D1->S2×e2’×P1’S2->D2× I2×P2’D2->S1×e1b× I1b×P1bD1->S2×1×P1bS2-

>End+ 

e1× I1×P1D1->S2×e2’×P1’S2->D2× I2’× e1c× I1c×P1cD1->S2×1×P1cS2->End + 

e1× I1×P1’D1->S2×e2× I2×  P2dD2->S1×e1d’’× I11d×P11dD1->S2×1×Pd’’S2->End+ 

e1× I1×P1’D1->S2×e2× I2×  P2’D2->S1×e1f ×  I1f ×P1fD1->S2×1×P1fS2->End + 

e1× I1×P1’D1->S2×e2×  I2g’×  e1g×  I1g×P1gD1->S2×1×P1gS2->End+ 



 

 174 

e1× I1’×e2× I2h×P2hD2->S1×e1h’’× I11h×P11hD1->S2×1×Ph’’S2->End+ 

e1× I1’×e2× I2j×P2j’D2->S1×e1j×  I1j×P1jD1->S2×1×P1jS2->End+ 

e1× I1’×e2× I2k’×e1k×  I1k×P1kD1->S2×1×P1kS2->End..  

As can be seen, the relationship between the above expression and the 

modeled failure probability (k1 + k2) is not directly observable. One of the avenues 

of future work is to investigate the interaction of defects and establish the 

relationship between the real and modeled failure probability. An experiment may 

be conducted to analyze and investigate the interaction of defects and incorporate 

the results into the error models. 
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