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To ensure that estimates of risk and reliability inform design and resource allocation decisions

in the development of complex engineering systems, early engagement in the design life cycle is

necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept

development is the limited amount of high fidelity design and failure information available on

the actual system under development. Applying the human ability to learn from experience and

augment our state of knowledge to evolve better solutions mitigates this limitation. However, the

challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally

human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets

of generalization, Bayesian inference, and probabilistic risk analysis.

We introduce an integrated framework for inferring the reliability, or other probabilistic

measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our

framework is based on learning from the performance of precedent designs and then applying the

acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process.

This dissertation presents a method for inferring properties of the conceptual variant using a

pseudo-spatial model that describes the spatial configuration of the family of systems to which the

concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial

model based on rank-ordered subjective expert perception of design similarity between systems

that elucidate the psychological space of the family. By a novel extension of Kriging methods for

analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a

Bayesian inference model that allows prediction of the probabilistic measure of interest.
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1 Introduction

Learning and adaptation comprise a feedback system through which evolution can be realized.

Humans learn from past experiences, adapt to conditions, adverse or otherwise, and ultimately

evolve to ensure continued optimality.

This process of evolution through learning and adaptation is reflected in most human

endeavors; from military conflict, governance, economic strategy, and financial planning, to

architecture, urban development, technology development, and the design of engineering systems.

Although far from being a new concept, learning from experience remains an essential and highly

utilitarian tool in the set of cognitive abilities humans are endowed with.

Considering the foregoing, it is not surprising that most significant design efforts begin with

a precedent analysis geared towards answering the questions: what worked and what failed in the

past? Are improvements necessary or is the status quo acceptable? How should improvements,

when deemed necessary, be implemented? To address these questions, a comparison between the

sources of learning, i.e. the precedent, and the desired optimal design, i.e. the concept, must be

carried out. The salient points from the learning and comparison exercise can then be applied to

the design effort to evolve an improved or optimal system.

We propose an integrated framework for inferring the reliability, or other probabilistic

measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our

framework is based on learning from the performance of precedent designs and then augmenting

the limited knowledge regarding the new system with the information available and acquired from

the precedent system to enable inference on the properties of the concept. The premise of this thesis

is the use of accumulated experiences and engineering knowledge to draw conclusions about the

unknown attribute of interest by metering such historical information with a degree of adjustment

determined by similarity with the concept. To achieve this, we coalesce elements of generalization

theory from the field of psychometrics, classification schemes from phylogeny, spatial data analysis,

and uncertainty propagation in subjective inference from the Bayesian paradigm, into a prediction

and an analysis framework to formulate and implement this thesis.

1.1 Motivation and Rationale

To ensure that estimates of risk and reliability inform design and resource allocation decisions

in the development of complex engineering systems, early engagement in the design life cycle is

necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept
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development is the limited amount of high fidelity design and failure information available on

the actual system under development. Applying the human ability to learn from experience and

augment our state of knowledge to evolve better solutions mitigates this limitation. However, the

challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally

human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets

of generalization, Bayesian inference, and probabilistic risk analysis.

Difficulties with transforming the large volume of related but disjointed knowledge pertaining

to a system into a structured format for interpretation and use increases the challenge, hence the

need for a knowledge collection, organization [1], and knowledge use framework. This thesis is

therefore motivated by the need for a formal framework for augmenting limited system information

with historical data in order to facilitate an assessment of the chances of success of a system in

early development. The rationale being that uncertainty is dictated by degree of knowledge;

• The more we know about a system, the more certain we are about our assessment of its

attributes

• Knowledge of a system under development increases as the design itself matures in time.

• The point of least knowledge, and hence highest uncertainty, occurs at the inception of the

concept idea

• The value of risk analysis as a decision tool increases as uncertainty increases

The implication of this knowledge-to-uncertainty relationship is that uncertainty is typically

elevated at the beginning of large-scale design and development projects, and as a result, large

amounts of resources are committed to evaluation of concepts and feasibility studies. We have

developed a risk-informed tool for making decisions early in the design process that is applicable

at a period of elevated uncertainty, which requires minimal effort but yields higher fidelity results

than is presently available,

1.2 Statement of Objectives

This thesis has developed a prediction methodology to support system or product design decisions

relatively early in the development process by providing engineers and decision makers estimated

success probabilities based on past performance of similar systems. The following sections state

the objective of the research.

• Research Objective 1(RO1) - Establish a framework for estimating probabilistic attributes of

any conceptual system still in early design, based on a quantified metric of dissimilarity with

2



precedent systems and use of historical performance data. The following are attributes of the

prediction framework

– RO1.1 – quantifies the impact of intrinsic and extrinsic dissimilarity as a measure of

difference between system design attributes

– RO1.2 – allows the introduction of data at any level of a system’s hierarchy

– RO1.3 – is implementable with minimal amount of design or performance data

• Research Objective 2 (RO2) – Establish a formal process for quantifying the level of system

dissimilarity using expert opinion and based on a comparison between actual precedent

systems and a concept system.

• Research Objective 3 (RO3) - To demonstrate that pseudo-spatial1 representations, created

from subjective expert opinion of proximity of complex engineered systems, provide a

mechanism through which the attributes of systems within that pseudo-space can be inferred

1.3 Contributions

This thesis provides the following technical contributions to the field of risk and reliability analysis

of products in early design phase:

• A Bayesian reliability analysis framework for complex systems in early design phase that

leverages information from multiple precedent systems. The framework is novel in its

treatment of the quantification and application of the similarities between the system under

development and precedent systems. Our treatment of all parameters in the framework

with Bayesian principles results in a probabilistic view of risk that reflects the uncertainties

inherent in our estimates.

• A framework that allows use of mixed-level data of many types such that simultaneous

updating of probabilistic metrics at all levels of indenture within the system’s hierarchy is

possible.

• A methodology for converting elicited psychological measures of proximity between engi-

neered systems into quantified distance measures that give rise to the similarity topology of a

family of such engineered systems

• An extension and application of spatial modeling and multi-variate analysis in which a

recovered pseudo-spatial solution from a multidimensional scaling technique is used to

derive Gaussian field representation of a family of complex systems

1The phrase pseudo-spatial is used to mark the distinction between spatially or geographically referenced data with
longitude, latitude, and altitude, and the perceptual map of proximity of entities derived from subjective opinion
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1.4 Thesis Organization

This dissertation is organized to emphasis the incremental nature of the process through which

the methodology was developed. We open with a traditional introductory section in which the

motivation and rationale for pursuing this investigation are laid out. This section also includes a

concise set of objectives and contributions.

In Section 2, we discuss a variety of literature that lend, in varying degrees, to the foundational

elements of the methodology. This is followed by discussion in Section 3 of the various methods

employed in the actual formulation of the method and its implementation.

Sections 4, and 5, provide full description of the methodology including discussion on the

various data input and output to be expected from the process.

We provide demonstration and validation exercises in Sections 6, and 7 and close out with a

discussion on limitation and possibilities for future work in 8 and 9.

1.5 Notations and Abbreviations

Table 1.1 is a summary of notations and variables that feature in this document. Table 1.2 is a list

of abbreviations.
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Table 1.1
Table of Notation

Notation Description

Si, Sj ith and jth Stimuli
Ri, Rj ith and jth Response
Dij Interpoint distance calculated from from observed dissimilarity
δij subjective observed dissimilarity (expert input)
dij transformed dissimlairity
N Number of entities for comparison
Y Vector of independent random variables of observations
T Observations at Y
T̂ Mean T
Y(s) Observations at s
s location s
β vector of regression coefficients
W(s) spatial effects at s
ε(s) error term in stationary Gaussian process at location s
σ2 Spatial effect variance (partial sill)
H(φ) covariance function
φ decay rate for detemining range
θ vector of spatial model parameters
2γ variogram
E(x) observations at x
r the distance at which the spatial correlation is negligible (less than .1)
ρ correlation function parameterized by phi and dependent on di
Σ Covariance matrix of a multivariate Gaussian
Σ−1 Inverse of the covariance matrix of a multivariate Gaussian
E[·] Expectation
κ SPDE parameter
τ non-spatial effect variance, nugget, SPDE parameter
ν Matérn covariance parameter
τ non-spatial effect variance, nugget, SPDE parameter
α SPDE smoothness parameter, related to ν
∆ the Laplacian in SPDE
Ω Model performance measure
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Table 1.2
Table of Abbreviations

Abbreviations Description

APFR Anomaly, Problem, Failure Report
C&DH Command and Data Handling
Comm. Communications Subsystem
EPS Electrical Power System
GF Gaussian Field
GMRF Gussian Markov Random Field
GNC Giudance Navigation and Control
INLA Integrated Nested Laplace Approximation
MCMC Markov Chain Monte Carlo
MDS Metric Multidimensional Scaling
Mech. Mechanisms and Structures
NMDS Nonmetric Multidimensional Scaling
PCA Principal Component Analysis
PO Polar Ordination
Prop Propulsion
S/C Spacecraft
SPDE Stochastic Partial Differential Equation
TCS Thermal Control Subsystem
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2 Literature Review

2.1 Preamble

The field of engineering is faced with the steady evolution of science and technology. As a result,

engineers must deal with the repercussions of adopting new, novel ideas into design solutions.

There is, therefore, a need for accurate estimation of the expected behavior of new products owing

to evolution from precedents. The ability to estimate a future product’s performance metrics

is beneficial in making a wide range of decisions; from financial feasibility, risk reduction, and

warranty terms, to assessment of design alternatives, simulation of performance, and overall

product appeal. To enable such decisions relatively early in product development and prior to

commitment of resources, several approaches founded on comparison with existing products have

been investigated. Our review of related literature provides a look at different methods developed

in the past in support of reliability estimation based on historical information. It also includes a

review of literature on classical and Bayesian methods of statistical data modeling and analysis.

We additionally present a review of methods for introducing and aggregating expert opinion as a

source of data given its importance to the implementation of the proposed methodology,.

Since our research is founded on a comparative assessment of products with a view towards

applying historical data to the appropriate elements of a concept product, we seek to develop a

method that is based on the degree of similarity between the items being compared. To determine

the nature and extent of similarity, and invariably, the degree of adjustment necessary, the proposed

methodology explores ideas founded in biological, ecological, behavioral, and psychological

sciences, specifically, stimulus-response theories and the concept of generalization of attributes.

These ideas integrate concepts from classification, to cladistics, and from gradient analysis to

ordination techniques. Appropriately, we present a review of literature of these areas to draw the

parallels and extract the extensions to our proposed methodology. Finally, a review of the literature

on evaluation of consequence, severity, and criticality of various types of anomalies is presented to

provide additional context for the treatment of failure data.

2.2 Risk Analysis Based on Partially Relevant Data

A Bayesian procedure for analyzing failure data of mechanical components in a reliability demon-

stration test is presented in Automotive Reliability Inference Based on Past Data and Technical Knowledge

[2]. Making the case that many new products are evolutionary and not revolutionary, Guida
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and Pulcini postulate that failure data relative to an earlier version of a product, when available,

can be used in concert with the designer’s confidence in the efficacy of design improvements

to judge the reliability of the new version. The procedure allows for inference on the reliability

of a new version of an automobile component by using failure data on previous versions and

prior information on the effectiveness of design changes that have been introduced in the newer

version. The authors first establish a process for making prior inference on the reliability of the

new version. By stating the combined impact of prior failure behavior and design modifications on

the prediction of future failure behavior, Guida and Pulcini decompose the prior inference in a

Bayesian framework into two realms: formulation of a likelihood function which incorporates the

past data from a non-homogeneous set of components; and definition of the prior belief on the

effectiveness of design modifications.

Of note in the decomposition process is the fact that, in addition to acknowledging the

non-homogeneous nature of the component population, the decision is made to model the past

data with a time-terminated Bernoulli process with pass/fail criteria determined by component

failure before or after the prerequisite time. The latter part of this process limits applicability of the

method proposed by the authors to data modeled explicitly via a Bernoulli process.

Usher, Alexander, and Thompson propose a method for predicting system reliability from

historical data built on the theory of “competing risk” in System Reliability Prediction Based on

Historical Data, [3]. Usher et. al describe the development and implementation of a computer-based

reliability prediction model designed to utilize historical life-test data to predict reliability of newly

developed and untested products at IBM. An aspect of their approach is the added ability for

analysis of a “pooled set of life data”. The authors define pooled life data as data from different

types of systems.

Usher, Alexander, and Thompson present traditional reliability estimation methods and

highlight the challenges associated with them in the specific context of early product reliability

estimation at IBM. The methods they discussed include life testing to develop characteristics

of device life and reliability prediction based on component reliability data and system design

and configuration. Given the limitations of the aforementioned methods, Usher, Alexander, and

Thompson propose an alternative approach for estimating component reliability through the

analysis of historical system life data.

Usher, Alexander, and Thompson propose an early phase reliability prediction based on a

scalable hierarchy that maps the system-to-component hierarchy of the concept. The authors list

the implementation issues associated the proposed model. The first is the classification of large
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numbers of components into categories and assuming that the components in each category have

identical life distributions. Although this reduces the number of parameters that would have

to be estimated for the components, it begs the question of the applicability of the model. The

second implementation issue is identifying instances of failure for every component or component

category. This issue leads to the concept of pooling data. Component failure data from different

systems tests are pooled together to get a more comprehensive set of failures that would include

all the component categories. The final implementation issue is the masking of specific component

failures when the failure root cause is not identifiable. Usher, Alexander, and Thompson point to

literature where general likelihood expressions for masked data have been explored in the case of a

series-system of three components with exponentially distributed lives. The results of the work

lead Usher, Alexander, and Thompson to conclude that maximum likelihood analysis of masked

data will require complex numerical procedures. As a consequence, they state as a necessity the

need to find the exact cause of a system’s failure and ascribe it to the right component.

Miyakawa presents parametric and nonparametric methods for reliability estimation in a

competing risk scenario and with incomplete data in Analysis of Incomplete Data in Competing

Risks Model [4]. Specifically, consideration is given to cases where failure times are observed

but not the actual failure cause. Maximum likelihood estimators are developed, in the case of

a two-failure mode system, for the failure rates of components within the system. We apply

Bayesian methodology rather than Miyakawa’s maximum likelihood estimators to this competing

risk approach for treatment of masked data such as historical observations at a system level.

Neil et. al.’s Using Bayesian Belief Networks to Predict the Reliability of Military Vehicles [5]

presents the use of a Bayesian Belief Network (BBN) as a means of incorporating all available and

relevant evidence into the reliability and maintainability assessment of proposed United Kingdom

Ministry of Defense military vehicles. The proposed approach seeks to combine “hard” information

(failure counts, modes, and exposure periods), used in traditional reliability analysis, with “soft”

information (manufacturer reputation, design staff experience, etc.). The approach rides on the

fact that Bayesian probability allows the expression of uncertainty with a unifying framework. The

result of the method development effort is a software tool, Transport Reliability Assessment and

Calculation System (TRACS) that predicts the probability that non-combat land vehicles will meet

their mission requirements using soft and hard data in a single decision model. The BBN approach

proposed by Neil et. al. for estimating the parameter of interest, a failure rate in this instance,

is analogous to a hierarchical Bayesian modeling. The intent in the Neil approach is “learning a

failure rate distribution from samples of similar subsystems”[5]. In the TRACS BBN, weights are
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used to model bias towards data sources based on the subjective belief on the degree of applicability

to the unknown system. In hierarchical Bayesian modeling this is similar to making inference on a

specific individual’s trait based on traits exhibited by a group to which the individual belongs. Neil

et al, however do not provide an approach for eliciting the subjective opinion and transforming it

to the bias defining weights.

Lough et. al. provide a study on the relationship between function and risk in early design in

The Risk in Early Design Method, [6]. The authors present a mathematical construct for mapping

product function to risk assessment, which can be used in the conceptual design phase. The method

is aimed at enabling a preliminary risk assessment that can be used to, not only identify risks, but

also to reduce the subjectivity of the likelihood and consequence value of a risk. The Risk in Early

Design (RED) utilizes the 5x5 risk grid approach introduced by the ‘Risk Management for Defense

Acquisition’ (Office of the Under Secretary of Defense 1999) in which risk is presented as a product

of likelihood, consequence, and severity. The RED method provides closed form mathematical

equations for estimating the so-called L1-Prod, L2-Agg, C1-Max, and C2-Agg which respectively

refer to the first and second likelihood mapping and the first and second consequence mapping

from historical systems to the product under development.

The concept of functional mapping as a means of comparing existing systems and less

mature design concepts has veritable importance to our proposed methodology since the high

level functional requirements of any concept can be defined even in the absence of specific design

detail. The issue with the risk estimation method proposed by Lough, et. al. is that it yields point

estimates that convey neither the aleatory nor epistemic uncertainties attendant in the method’s

representation of the system’s failure processes and the state-of-knowledge regarding the risk

elements. By applying Bayesian probabilistic methods, our proposed method allows for the

inclusion and propagation of uncertainty in the estimation of risk elements.

The Groen et. al. report Reliability Data Collection and Analysis System [7] describes the

Reliability Data Collection and Analysis System (ReDCAS) software tool developed for Ford

Motor Company for collection and analysis of reliability data. The tool leverages Bayesian data

analysis methods to predict reliability based on warranty data, test data, and engineering judgment.

ReDCAS has been used for performing reliability assessments for products in development.

ReDCAS is structured to enable assessment of the reliability of components that are in the early

stage of design despite lack of data from the component itself. Developers of the ReDCAS

methodology posit that if a reliability assessment for future products is desired, the reliability

behavior observed for existing products can provide a source of evidence as long as perceived
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differences are accounted for. A relevance factor, akin to the weights used to account for bias in [5],

is used to describe the applicability of the data emanating from historical comparators and scale

the impact of the data. The same issue of eliciting and quantifying the subjective opinion on the

relevance factor present in the [5] is also attendant in [7].

Pan and Sanchez proposed a method in their paper titled An Enhanced Parenting Process:

Predicting Reliability in Products Design Phase[8] in which, again, the resounding issues associated

with reliability prediction at a product’s early design stage are acknowledged and referenced as

motivation. The authors propose an approach to predicting a new product’s reliability in early

development by using reliability information from the existing products, referred to as “parents”,

in the so-called “parenting process”.

Pan and Sanchez integrate the mathematical foundation of the parenting process with an

expert opinion elicitation method to formulate a strategy in which a new product with similar

reliability or failure structure as its parent product is examined. The reliability or failure structure

is used to determine the relationship between failure modes (mi) and causes (ci). Expert opinion is

then used to evaluate the impact of design changes and improvements on each failure cause by

comparing parent and child, and finally the reliability of the new product is estimated.

Parent selection defines a baseline reliability structure of the new product. On the premise

that if no new failure modes are introduced due to design changes, the reliability structure of the

new product is definitive and sets the basis for reliability estimation.

Pan and Sanchez propose a process for eliciting expert opinion based on the guidelines and

principles put forth by [9]. The survey elicits two responses from each expert, a “best estimate” for

the median of the parameter that represents the magnitude of change from the parent to the new

product for the failure cause, and a “degree of uncertainty” associated with the estimate. These

two values are treated as the parameters of the distribution of a “parent factor”, which is then used

as a multiplier for scaling the parameter of interest for the new product.

In reviewing relevant works in early design phase reliability analysis, numerous approaches

of reliability prediction based on historical data in other industries have been proposed. Guida

and Pulcini proposed a method relying on Bayesian inference, which provides an approach for

quantifying and propagating of uncertainty within a Bayesian framework. Usher, Alexander, and

Thompson, provide an approach that relies on the analyst’s ability to trace and ascribe exact failure

causes to culprit systems and then using maximum likelihood estimation procedures, identify the

parameters of interest on which to build the necessary predictive model.

Usher et. al., Miyakawa et. al. discuss methods of addressing masked data from life test,
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while Neil et. al. also cast the use of historical data in a Bayesian framework. Lough et. al describe

a concept product in terms of its intended functions but quantify risk through a formalism based on

the “risk index” and “likelihood and severity” paradigm. Groen and Droguett’s ReDCAS software

tool extend the boundaries of use of historical data similar to [5] by adopting Bayesian inference

combined a weighted posterior method for aggregating data and expert opinion. A benefit of the

ReDCAS methodology is the analyst’s ability to make use of the extensive warranty information on

generations of a heritage product with chronologically decreasing dissimilarity. The large amount

of data available for the implementation of the ReDCAS allows the development of failure rate ratio

of successive generations as a measure reliability impact [7]. This however confines the method to

analysis in a data-rich environment. ReDCAS also allows the assessment of the impact of design

fixes and results of extensive test programs. Despite the promising attributes of ReDCAS, the

question of how a method reliant on historical-data for reliability assessment can be implemented

in a data-poor or data-rich and database agnostic environment remains.

Although not explicitly presented as a method of reliability estimation, Mosleh and Droguett,

in Bayesian Treatment of Model Uncertainty for Partially Applicable Models[10] extend their initial work

in [11] to incorporate additional types of information about a model such as subjective views

pertaining to model credibility and applicability outside the domain of its intended use. This

extension provides a comparative view of models where the possibility of estimating an unknown

of interest exists from various models. The parallels from this construct to the proposed research

are easily drawn; using subjective knowledge and other available data regarding the relatedness of

two or more well-defined systems, models, or attributes, to infer the nature of a similar but less

well-defined system, model, or attribute.

2.3 Theories of Learning, Stimulus-Response, and Generalization

In Towards a Statistical Theory of Learning [12], Estes proposes a form for all fundamental laws that

relate behavioral response, R, and environmental stimulus, S, variables; where response behavior

is a function of environmental stimulus. He maintains that all response-inferred laws must be

based on such a relationship but points out the issues that attend the simplified view of stimulus

and response as reducible units. Issues such as the need to hypothesize the processes that account

for variations in observed responses or behavior. In offering an approach to address this issue,

Estes adopts a statistical interpretation of stimulus-response, an interpretation that by its stochastic

nature accounts for the variability in response and stimulus, to derive quantitative laws, which

12



dictate behavior systems.

In this formalism, records of behavior are regarded as dependent variables possessing

quantitative properties, while statistical distributions of environmental events are independent

variables. Through this construct, the probability relations between changes in behavioral and

environmental variables are obtainable, specifically, the probability of a response. Estes however

provided no rationale for the internal workings of organisms; rather he proposed “that the theory be

evaluated solely by its fruitfulness in generating quantitative functions relating various phenomena

of learning and discrimination” [12].

Roger Shepard in Stimulus and Response Generalization: A Stochastic Model Relating Generalization

to Distance in Psychological Space [13] introduces the concept of “psychological distances” as an

alternative approach to applying stochastic models of learning, as proposed in [12], to generalization

phenomena. According to Shepard, in a stimulus-response process, (S− R) , the error in which the

response assigned to, or expected of, a stimulus Sj, follows the presentation of another, Si, is known

as generalization errors and the probability of generalization errors decrease with decreasing

dissimilarity between the two stimuli. In lieu of dissimilarities, Shepard introduces the concept

of distances between stimuli. These distance measures most conform to explicit metric axioms

in [13]. Shepard states, “Any set of elements for which a distance function that satisfies the

metric axioms has been defined is called a metric space. The space may be called a physical

or psychological space depending upon whether the distances are determined from physical or

psychological data.” Judgments of psychological distance, i.e. psychological data, are obtained in

terms of dis/similarity [14]. Shepard assumes that there is a function that relates the conditional

probability of generalization error (that a response, Rj, will be elicited from a stimulus, Si that has

its own assigned response, Ri) to the inter-stimuli distance, Di,j.

Figure ??, recreated from [13], illustrates the S− R process in which every stimulus has an

associated response. It follows from Shepards Theory of Generalization that response confusability

can be dictated by stimulus confusability and that the degree of confusability increases or decreases

as the similarity of stimuli increases.

Our objective is the inference of the unknown response Rj, given the known response, Ri,

that has been associated with Si, and the measure of proximity between the stimuli, Dij. Rj

is a monotonicaly decreasing function of Dij and Ri and we must determine the pseudo-spatial

arrangement of designs or stimuli that will enable quantification of Dij, and subsequently determine

the function that maps Ri to Rj.
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Figure 2.1
Stimulus-Response confusion as a function of proximity. Source: [Shepard, 1957]

Though previous studies indicate that this function is a monotonically decreasing function,

Shepard points out the lack of consistency in specifying its form with precision. He attributes this

to the fact that most measures of dissimilarity are derived from physical scale data and the number

of noticeable differences. Alternatively, Shepard adopts a process of estimating the so-called

psychological distance between stimuli and then progresses to using multidimensional scaling

methods to convert psychological data or similarity judgments to inter-stimulus distances [13], [14].

By starting with the probability of generalization errors, Shepard proceeds in reverse to determine

the function, which will transform the probabilities into distance measures that satisfy the metric

axioms. With additional assumptions introduced to increase the stringency of the metric axioms,

he posits that an exponential decay function describes the generalization relationship. Shepard

points to data from other generalization studies that are consistent with this premise.

Toward A Universal Law of Generalization for Psychological Science [15] is a treatise, supporting

the proposed universal law, in which a psychological space is resolved for any set of stimuli based

on metric measures of separation between the stimuli “. . . such that the probability that a response

learned to any stimulus will generalize to any other is a monotonically decreasing function of the

distance between the pair of stimuli”.

Positing on the primacy of generalization, Shepard’s states, “Differences in the way individuals

of different species represent the same physical situation implicate, in each individual, an internal

metric of similarity between possible situations”. Researchers in psychology “have obtained

empirical gradients of stimulus generalization relating the strength, probability, or speed of a learned
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response to some measure of difference between each test stimulus and the original training

stimulus”.

Shepard introduces his premise by first obviating the conclusions of behavioral scientists,

Karl S. Lashley, and the mathematical learning theorists, Robert R. Bush and Fredrick Mosteller,

regarding the noninvariance of generalization as a concept. Their conclusions where based on

research results defining the independent variable in a generalization gradient as the physical

differences between stimuli and these results revealed wildly varying generalization gradients,

some even nonmonotonic in any direction.

As an alternative to Lashley, Bush, and Mosteller, Shepard proposes that for a law to be

invariant across perceptual dimensions, or other entities, it must be formulated “with respect to

the appropriate abstract psychological space”. He attributes the variations in previously attained

gradients of generalization to differences in the psychophysical function, which operates uniquely

for individuals, in mapping physical parameters to psychological space. On the assumption that if

a purely psychological function relates generalization to distance in a psychological space, then

invariance of the law would be achieved.

Shepard approached the proof of the law’s universality by considering generalization data as

his starting point and then investigating if there is a monotonic function whose inverse will trans-

form the data into distances in a metric space. By applying his, and Kruskal’s multi-dimensional

scaling ordination techniques, Shepard uncovers the universality of the exponential law relating

gradients of generalization to psychological space. Figure 2.2 are Shepard’s plots of generalization

gradient data demonstrating the monotonic exponential decay behavior.

The remainder of the paper works out the mathematical formalism that underpins Shepard’s

derivation of the exponential law. He defines a consequential region as the space around an entity’s

psychological space around which generalization can be made on the basis that the “psychophysical

function that maps physical parameter space into a species’ psychological space has been shaped

over evolutionary history so that consequential regions for that species, although variously shaped,

are not consistently elongated or flattened in particular directions”. Shepard dictates the following

conditions regarding this region of consequence:

1. All locations are equally probable

2. The probability that the region has a size, s, is given by the density function, p(s) with a finite

expectation µ

3. The region is convex, finite, and centrally symmetric

Owing to condition 2, the conditional probability that x is contained in the consequential
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Figure 2.2
Generalization gradients (Source: [@Shepard1987])

region is the measure of the overlap to the whole region [15] m(s,x)
m(x) , see Figure 2.3 (recreated from

[15]).

By integrating over all possibilities of s given prior belief about p(s), Shepard concludes that

the result is the probability that a response learned to the stimulus, 0 (for example, a precedent

characteristic centered at 0), will generalize to x, g(x) =
∞∫
0

p(s)m(s,x)
m(x) ds (the concept’s characteristic

at a distance x from the precedent’s characteristic centered at 0). This expression for the probability
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of generalization from stimulus 0 to x satisfies the law of total probability:

∞∫
0

p(s)ds = 1

and,
∞∫

0

s · p(s)ds = µ < ∞

Figure 2.3
The volumetric measure of ovelap indicates the conditional probability of interest (Source: [@Shepard1987])

Shepard continues for the one-dimensional case, stating that the consequential region is an

interval of length, s, and the measure of overlap is s− |x| such that g(x) becomes:

g(x) =
∞∫

0

p(s)
s− |x|

s
ds

For a one-dimensional space, the distance between the two stimuli, 0 and x, as derived by

Shepard is d = |x|, and thus:

g(d) =
∞∫

0

p(s)ds− d
∞∫

0

p(s)
s

ds

The underlying probability density function in the expression for g(d), p(s) determines the

generalization function, however, Shepard found that an exponential decay function reasonably

describes g(d) regardless of the choice of p(s), however the Erlang probability density function

(with a shape parameter of 2) exactly yields an exponential form for g(d):

p(s) = (
2
µ
)2s× e−

2
µ s

and

g(d) = e−2 d
µ s
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In this thesis, we apply the notion of a universal generalization gradient as a function of

the quantified similarity or distance between two stimuli to the present problem of inferring the

behavior of a conceptual engineered system based on the behavior of precedent systems. This

extends the concept of generalization from sentient or living organisms to non-biological systems

by leveraging human cognition and the ability to affect system design as the bridge between

Shepard’s application and ours.

2.4 Ordination Techniques

Ordination is the arrangement or ordering of species or sample units along gradients [16] with a

view to representing typically high-dimensional sample and species relationships in much lower-

dimensional space. We review relevant literature on ordination which inform our approach to

reconstructing the Euclidean spatial configuration of entities under comparison. Although used

largely as reduction techniques for high-dimension data, our interest in these methods stems from:

1. The possibility of uncovering metric measures of similarity from psychological perceptions of

nearness

2. Determining the underlying parameter in the relationship between these metric measures

and the probability of generalization for each case of comparison

With our focus on quantification of similarities in relation to distances between entities, we

proceed by examining distance-based ordination techniques. Methods such as Principal Coordinate

Analysis (PCA), Polar Ordination (PO), Metric Multidimensional Scaling, and Nonmetric Multidi-

mensional Scaling (NMDS) are all commonly used approaches for reducing the dimensionality of

data, however the ability to achieve this reduction by rank ordering intuitive measures of proximity

makes NMDS most appropriate for our research due to the rank-ordered nature of the expert

opinion used in the methodology.

Our review begins with an in-depth look at the seminal works in the literature that propelled

NMDS. In The Analysis of Proximtities: Multidimensional Scaling with an Unknown Scaling Function. I

[17], Shepard describes a process, which he calls Analysis of Proximtities, intended to “reconstruct

the metric configuration of a set of points on the basis of nonmetric information about that

configuration”. His proposed program is intended for analysis of psychological data which reflects

the degree of similarity between stimuli, thereby revealing the underlying structure of such data.

Shepard adopts the more abstract and generic term proximity to be inclusive of both measures of

association and of similarity. Accordingly, proximity captures the idea of psychological nearness,
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closeness, or degree of proximity, [17], and Shepard calls the number “representing the closeness of

the relation between a pair of entities” a proximity measure for that pair.

NMDS methods move n points representing the n stimuli (usually by steepest descent) until

the stationary configuration is achieved that minimizes an explicitly defined measure of departure

from a monotonic relation between the generalization measures gij and the corresponding distances

dij, [15].

The plot of the generalization measures gij against the distances dij between points in the

resulting configuration is interpreted as the gradient of generalization. It is a psychological rather

than a psychophysical function because it can be determined in the absence of any physical

measurements on the stimuli [15].

First acceding that although an objective definition of proximity is largely applicable to

objects in physical space, the natural tendency is to extend this notion to situations where the

physical representation of a measure of nearness is not explicit. Shepard postulates that this natural

tendency is a result of “a rough isomorphism between the constraints that seem to govern all

of these measures of similarity or association, on the one hand, and the metric axioms (which

formalize some of the most fundamental properties of physical space), on the other”. He then

offers the following thoughts to illustrate the loss of precision that gives rise to this isomorphism:

“to the metric requirement that distance be symmetric, there is the corresponding intuition that if A

is near B then B is also near A. To the metric requirement that the length of one side of a triangle

cannot exceed the sum of the other two, there is the corresponding intuition that, if A is close to B

and B to C, then A must be at least, moderately close to C”.

According to Shepard, the use of the words “very” and “moderately”, points to the shift from

the objectively defined concept of distance to the more psychological concept of proximity. However

he is motivated to apply the well-established quantitative methods for assessing metric distance

into the more nebulous area of psychological perceptions of proximity. This motivation is driven

by the need for a data reduction approach in analysis of proximity data. Shepard cites research

in the investigation of factors that dictate confusion between Morse code signals where there are

36 individual signals but an immense 630 pairwise similarity measures between them. This turns

the investigation of patterns or structure into a rather onerous effort. He concludes that if an

underlying spatial structure can be discovered, then the path would be opened for investigation of

the structure’s relationship with the physical properties of the stimuli. Shepard’s method seeks to

find the “monotonic transformation of the proximity measures” through a distance function that

would convert the psychological data to explicit distance measures such that the spatial structure
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contained latently in the psychological data is recoverable. This would result in a reduction of the

data since the initial large number of proximity measures can be reconstructed from a smaller set

of coordinate points for the Euclidean space. Shepard lists his three paramount objectives:

1. Minimum dimensionality in Euclidean space such that the distances are monotonically related

to the proximity measures

2. A set of coordinates for points in this space

3. A plot showing the shape of the initially unknown function relating proximity to distance

The remainder of [17] is devoted to the mathematical formalism which underscores the

Analysis of Proximities method such that it achieves the intended objectives. In the sequel paper

to [17], The Analysis of Proximtities: Multidimensional Scaling with an Unknown Scaling Function. II

[18], Shepard demonstrated applications of the methodology in two cases. By first applying it

to data simulated from monotonically transforming the interpoint distances in a known spatial

configuration, he shows that recovering the original metric configuration is independent of the

distance function used to transform the data. The second, and more relevant to our goals, is the

application to measures of inter-stimulus similarity and confusability (probability of generalization

errors) obtained from psychological experiments.

Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis by J. B. Kruskal

[19] is another seminal work on ordination methods in search of a method for representing a set

of objects geometrically by a set of points equal to the number of objects such that the interpoint

distances are indicative of the similarities they share. Kruskal sets out to establish that a monotone

relationship, increasing or decreasing, exists between measurements of similarity, dissimilarity,

confusion probabilities, correlation coefficients, or dissociations and the distances in the spatial

configuration of the interpoint distances.

He points to the advances made by Shepard in [17] towards the goal of establishing mono-

tonicity between similarity and distance. These advances resulted in demonstration of the fact

that rank order of similarities or dissimilarities is sufficient to determining a satisfactory spatial

configuration. Kruskal contends that Shepard offered no mathematically definitive intimation of

what constitutes a solution. By focusing on Shepard’s concept of a measure of departure from the

condition of montonicity, Kruskal arrives at a technique that minimizes this measure of departure

through the use of least-squares regression. Essentially, Kruskal’s method incorporates performing

a “monotone regression of distance upon dissimilarity and use if the residual variance,. . . , as our

quantitative measure”. Kruskal terms this element the stress, which is a measure of how well

the proposed spatial configuration matches the initial proximity data. On defining a minimum
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acceptable stress, the solution is regarded as the best fitting configuration of points. We utilize

Kruskal’s measure of stress in evaluating the adequacy of the resulting spatial configuration.

2.5 Uncertainty Analysis

Droguett and Mosleh present a Bayesian methodology for the assessment of model uncertainty

where models are treated as sources of information on the unknown of interest in Bayesian

Methodology for Model Uncertainty Using Model Performance Data, [11]. This framework is applied to

a case where models provide point estimates about an unknown and information about model

performance are available in the form of pairs of experimental observations and model predictions

[6]. We extend the approach proposed by Droguett and Mosleh in evaluating the associated

uncertainty in the performance of our methodology.

US Nuclear Regulatory Commission Regulation (NUREG), NUREG-1855 [20], Guidance on

the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making main report

authored by Drouin et. al. provides relevant guidance on the modeling and identification of the

different sources of epistemic uncertainty; parameter, model, and completeness. It also provides

different approaches for addressing them. For example, in characterizing the parameter uncertainty

associated with a PRA basic event, uncertainty is introduced via the choice of the basic event

model and via the choice of the parameters within the model. Three methods for describing

the uncertainty of parameters within basic event models are proposed in NUREG-1855; 1) the

frequentist method, 2) Bayesian updating, and 3) expert judgment. We adapt the latter two in the

development of our framework.

Smith presents an approach for characterizing the uncertainties in an analytic model by using

a multivariate Taylor series expansion implemented through a spreadsheet package Uncertainty

Propagation Using Taylor Series Expansion and a Spreadsheet [21]. The fundamentals of the method are

easily transferable to modern spreadsheet packages and other scientific analysis tools.

Smith’s approach is based on the premise that if a representative mathematical formula exists

for a system, or an attribute of a system, then a value for that system or system attribute can be

obtained by evaluating the formula using estimates for the variables in the formula. Recognizing

the widely held belief in the risk analysis community that point estimates lack credibility without

justification for their selection over other possibilities, Smith proffers the Taylor series expansion

method via spreadsheet implementation as means to addressing the uncertainty with using point

estimates. Smith’s approach harkens to simulation methods that form the bedrock of Bayesian
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computation and the evaluation of non-closed form multivariable integrands.

Recognizing that decisions are sometimes based on beliefs concerning the likelihood of

uncertain events Tversky et. al investigate the determinant of such beliefs in their paper, Judgment

under Uncertainty: Heuristics and Biases, [22]. In asserting that subjective assessment of probability

is similar to the subjective assessment of physical quantities, such as distance, Tversky et. al.

claim that judgments are based on data of limited validity, which are governed by heuristic

rules. The authors describe three heuristics that are relevant in the assessment of probabilities;

representativeness, availability, and adjustment or anchoring. We apply these heuristics in the

evaluation of expert opinion.

These papers and articles offer approaches for addressing the various types of uncertainty

that can be anticipated in modeling, analysis, and expert judgment. From model uncertainty

to error propagation through parameters, we are presented with methods for guarding against

misleading results from data use.

2.6 Anomaly Effect and Criticality

Haga and Saleh apply the concepts of epidemiology – the study of the patterns, causes, and effects,

of health and disease conditions in defined populations – to a population of geosynchronous

communications spacecraft and its on-orbit anomalies and failures in Epidemiology of Satellite

Anomalies and Failures: A Subsystem-centric Approach, [23]. This work provides insight to the

prevalence of different types of anomalies across spacecraft subsystems. Lutz et. al. present the

results of an investigation of safety-critical software anomalies occurring during operations in

the similarly titled Empirical Analysis of Safety-Critical Anomalies During Operation [24]. Drawing

data from Jet Propulsion Laboratory’s (JPL) institutional database of anomaly reports for multiple

missions, the authors base their study on existing literature on defect analysis methods, specifically,

the Orthogonal Defect Classification (ODC) developed at IBM. The ODC method provides a means

of “extracting signatures from defects” and to correlate the defects to attributes of the development

process.

A 2005 study of on-orbit spacecraft failures resulted in the identification of 156 failures

from 1980 to 2005 on civil and military satellites [25]. Tafazoli analyzes these failures to compare

different spacecraft subsystems and estimate their impact on the mission in A Study of On-Orbit

Spacecraft Failures. Grottke et. al. analyze faults discovered in the on-board software for 18 JPL

missions. These faults were documented in over 13,000 anomaly reports recorded after launch
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and operationalization of the systems. Grottke et al. present the proportion of different types of

faults and their time-dependent evolution. They also provide definitions of three distinct types

of software faults; Bohrbugs, Mandelbugs, and Aging-related bugs in An Empirical Investigation of

Fault Types in Space Mission System Software, [24].

A fundamental piece of the framework proposed in [24] is the analysis and assessment of the

impact of documented anomalies and failures with the objective of ascribing to specific parts of a

concept product. The works reviewed in this section provide a reference base for quantifying the

criticality of these observed anomalies.

2.7 Elicitation and Use of Expert Opinion as Evidence in a Bayesian Frame-
work

Elicitation and use of expert opinion can be divided into two broad categories; mathematical and

behavioral approaches. While mathematical methods individually elicit opinion on probabilities

and then apply mathematics to combine and aggregate subjective assessments, behavioral methods

seek to build consensus of opinion. Among mathematical approaches are Bayesian methods and

non-Bayesian axiomatic methods. Behavioral methods include the Delphi method and the Nominal

Group method. Fumika Ouchi presented a literature review on the use of expert opinion in

probabilistic risk analysis in a World Bank Policy Research working paper, [26], in which several

important works on the topic were addressed extensively.

Mathematical methods for aggregating and incorporating expert opinion were presented by

Mosleh and Apostolakis in [27]. Mosleh and Apostolakis proposed a model for the use of expert

opinion in their paper. The authors propose a Bayesian framework in which expert estimates are

treated as evidence that must be evaluated by a decision-maker and incorporated into existing

body of knowledge. The Bayesian paradigm presented a natural process for implementing this

model and they subsequently proposed approaches based on the normal and log-normal likelihood

functions.

In Expert Elicitation for Reliable System Design, [28] Bedford et al review the role of expert

judgement in support of reliability assessments within the systems engineering design process. They

differentiate between the role of expert judgment in the design context versus in risk assessment by

considering the former to be more like statistical process control than pure statistical assessment of

an unknown.

Mosleh and Apostolakis, [29], applied a method for assessment of probability distributions
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derived from expert opinion to the assessment of seismic fragility curves. Their methodology

hinged on eliciting estimates of percentiles of an unknown distribution in a bid to address the

sparsity of data attendant in risk analysis of rare events. They develop a Bayesian-based method

where the parameters of a log-normal fragility curve are allowed to vary and use a state-of-

knowledge distribution to describe the variability. On the premise that each pair of values of the

parameters define one fragility curve, they derive a family of curves such that the probability of

a particular curve being the true curve is the equal to the probability of the pair of parameter

values that define it. Using Bayes Theorem, they derive the state-of-knowledge distribution in

two-dimensional space of the parameters incorporating expert opinion as evidence.

Similar to the ascription of anomaly and failure data, another cornerstone of the proposed

methodology is the use of expert opinion to draw the parallels between an existing, in service or

retired product and a dissimilar concept product. Such a concept is not novel and in the next few

paragraphs some existing works in the literature are highlighted.

Bedford et. al’s Expert Elicitation for Reliable System Design is a review of the use of subjective

expert judgment methods to assess reliability in the design process. Citing research in experi-

mental psychology, Bedford et. al. state that accurate subjective probabilities are unobtainable by

asking someone to provide a probability number, prompting the need for an elicitation process.

They further state that most research into elicitation has been focused on the reduction of bias –

motivational, cognitive, anchoring, and availability [28].

In their paper Combining Probability Distributions from Experts in Risk Analysis, Clemen and

Winkler explore mathematical and behavioral approaches to combination or aggregation of proba-

bility distributions obtained from experts, [30]. The authors describe mathematical aggregation

as consisting of analytic models that operate on the individual probability distribution and range

from measures such as arithmetic and geometric means of probabilities to procedures based on

axiomatic approaches.

Ayyub [31] provides a comprehensive overview of the use of expert elicitation and the

increasing need for its use in scientific investigation in his book, Elicitation of Expert Opinions for

Uncertainty and Risks. He cautions against the attendant pitfalls if the biases introduced by personal

and group experiences are not adequately addressed. Cook [32] provides a survey of literature on

the use of expert opinion in various science disciplines. His book, Experts in Uncertainty: Opinion and

Subjective Probability in Science, provides insight on the definition of an expert, the representation of

an expert’s uncertainty, the determination of the value and quality of an expert’s opinion, and how

multiple expert opinions may be combined. Cook notes the importance of using a mathematical
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basis for the incorporation of expert opinion in science and suggests three well-known methods;

classical, Bayesian, and psychological scaling.

2.8 Closing

The diversity of literature that address the many aspects of risk analysis in general, and the use

of historical data, within the constraints of limited design information for attribute estimation, in

particular, is indicative of the relevance of this field of research. The gap is the nonexistence of a

unifying framework that coalesces the elements of risk assessment in a comparison-based approach

while enabling a quick and agile analysis effort that generates meaningful, trustworthy results.

Reiterating the core of our objective; the use of partially relevant data, this research effort seeks to

bridge that gap by providing such a framework.
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3 System Characterization and Similarity Quantification Meth-
ods

There is a tangible dissimilarity between a white, cotton, dress shirt manufactured in Australia

and a black, wool, sweater manufactured in New Zealand with respect to the garment’s cooling

performance in hot weather. Conceptually, quantification of the dissimilarity is possible given a

discrete set of dimensions along which to compare the garments;

• material properties - cotton versus wool

• color - white versus black

• environmental conditions - Summer versus winter

• manufacturing process - Austrialian standards versus New Zealandan standards

• the wearer’s body type - Lean versus obese

• the wearer’s perception of thermal comfort - High tolerance versus low tolerance

The conclusion from the foregoing is that entities under comparison must be at least partially

characterized, and a context of comparison must be defined for there to be a degree of reasonable-

ness associated with the similarity or dissimilarity measures. Whether considering evolutionary

variants of a product or species, or two completely unrelated objects, it is also rational to expect that

uncertainty about any estimated measures of similarity increases given fewer pertinent dimensions

and fewer identifiable common characteristics.

While there maybe general agreement that there is always some relative measure of similarity

or difference between any two items, the challenge lies in actually quantifying and measuring it.

Before we present the theoretical foundation and methods brought to bear in our approach on

quantifying similarity and characterizing entities, let us establish some nomenclature and general

rules with regards to measurements.

3.1 Scales of Measurement for Characteristics, Attributes, and Features

Information and knowledge required to implement our methodology, have to be placed in the

appropriate data category. Understanding of the scale of measurement for any discrete dimension

of comparison will facilitate the comparison process. To compare white versus black garments

with respect to thermal performance on sunny day, one may look to the reflective properties of

colors. We may then draw some conclusions based on the information encoded in the measure of

reflectivity.

In general, scales of measurement describe the nature of information within the numbers
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assigned to variables and comparators [33]. We provide a very brief discussion on the various

scales to further lay the groundwork for the invesitgation of similarity quantification.

3.1.1 Nominal Scale

The nominal scale is a scale of measurement in which items are labeled using numerals. The

numerals may indicate membership to a class or be unique identifiers of individuals within a class

[33]. The important statistic from nominal data is the number of instances of a class or a member of

a class; the actual value of the label is quantitatively useless as no mathematical computation can

be performed on them. Nominal data, however allows the measurement of frequency of occurrence

and the central tendency of a class.

A rule for using the nominal scale for evaluating records of failure is that the same label

cannot be assigned to different classes or different numerals to the same class.

Examples of information on a nominal scale include: country, manufacturer, space mission

sponsor agency, etc. These groupings can be used as associative weighting measures based on

shared membership. The higher the number of shared nominal data between systems, the higher

the similarity between the systems.

3.1.2 Ordinal Scale

The ordinal scale is an data categorization method that maintains the ordered series of

relationships between entities. Rank ordering of information results in ordinal data. Ordinal data

communicates relative increment or decrement of an entities position. However, the ordinal scale

does not indicate the distance between consecutive values.

Ordinal scales can describe levels of performance (e.g, “poor” to “fantastic”). As applies to

our model, it can be used to collect opinion data on proximity of shared attributes with respect to

a measure or context of interest. More specifically, the ordinal data and the possibility of ordinal

regression allow us to estimate the effects of change (evolution or decline). Given a degree of

familiarity and experience with a number of comparable entities, human perceptive and cognitive

abilities can very readily assign an order of preference, or importance to the group. As a matter

of fact, product marketing research draws heavily on the idea of perceptual mapping based on

rank-order data collected from surveys. Such perceptual maps are akin to Shepard’s psychological

space.
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3.1.3 Interval Scale

Interval scale allows measurement of quantitative data where no true zero value can be

determined. As a consequence, interval scales typically have zero points specified as a matter of

convention. Examples of measurements on the interval scale include, time and temperature. It

is then a rather trivial exercise to quantify the similarity of information presented on an interval

scale. Given two temperature readings, basic arithmetic reveals the difference. In implementating

of our methodology, we leverage interval data when available and when absolutely pertinent to the

metric of interest.

3.1.4 Ratio Scale

Ratio scale is the most complete scale measurement because it allows determination of the

four relational measures; equality, rank-order, equality of intervals, and equality of ratios [33]. All

statistical measures are applicable in ratio scale data. The number scale, which captures the true

meaning of “how many”, is the most representative of the ratio scale. Knowing “how many” or

“how much” allows answering the fundamental question of similarity, “how close”.

Before closing on scales of measuresment there are, two distinctions to be made within ratio

scale; fundamental ratio scale data and derived ratio scale data. Fundamental ratio measurements

include, length, weight, electrical resistance, etc, while derived ratio measurements address density,

force, and elasticity. [33]. The latter are derived because they contain the inherent relationships

between fundamental measurements. As with interval scale data, ratio scale information when

available, and pertinent to the context of comparison provides an excellent ingredient to quantifying

similarity.

3.2 Measures of Similarity: The Output of Inter-system Comparison

Establishing measures of similarity between entities largely depends on the scale of measure-

ment appropriate for the dimensions and variables along which they are to be compared. Similarity

measures for continuous data is a matter of comparing the metric value which communicates, for

each entity, the rating of an attribute (e.g.thrust output of a solid rocket engine). For categorical

comparators that are nominal or rank ordered, the idea of similarity is a more nebulous concept,

requiring a more subjective and qualitative perception of attributes. However, once information

has been properly categorized according to its proper scale, then comparison of entities described

28



by the set of data can proceed. The following sections describe methods of similarity quantification

for both metric data and categorical data.

3.2.1 Distance-Based Measures

Distance-based measures are typically used to calculate the distance between pairs of multi-

variate entities. The three most common are Euclidean Distance, L2 Norm, the Manhanttan L1 Norm,

and the Mahalanobis Distance. These measures conform to the metric axioms listed below and thus

satisfy the conditions for use in our methodology.

• Distance is positively defined for any ith and jth entities dij ≥ 0

• Distance between an entity and itself is dii = 0

• Distance is symmetrical, dij = dji

• Distance satisfies the triangle inequality dik ≤ dij + djk

By conforming to these metrics, distance measures used in our methodology for N entities

can be represented in at most N − 1 dimensions.

3.2.1.1 Euclidean Distance - The Minkowski L2 Norm Given ratio or interval scales for

measuring multivariate attributes, the L2 Norm distance provides a measure of proximity of pairs

in multidimensional space. Also commonly known as the Euclidean distance, this measure reflects

the shortest straight line between two points. Mathematically, it is defined, Equation (3.1) as the

shortest line segment between two points and is derived from Pythagoras’ Theorem.

dij =

√
∑
k

(
xik − xjk

)
(3.1)

where dij is the Euclidean distance between two entities i and j, and k is the number of dimensions.

The variables X take on values x for each entity along any of the given dimensions.

3.2.1.2 Manhattan Distance - The Minkowski L1 Norm The Minkowski p-metric is a

general class of distance measures defined by Equation (3.2) ;

dij(p) = p

√
∑
k
| xik − xjk |p (3.2)

The Euclidean measure is a special case of the Lp measure when p = 2. Another case of the

Lp measure is when p = 1
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dij(1) = ∑
k
| xik − xjk | (3.3)

Equation (3.3) is commonly referred to as the city block, Manhattan distance, or the L1 norm,

since it is equivalent to from point A to point B in a city with perpendicular street arrangement.

In two-dimensional space, the L1 and L2 norms are distinguished by the fact that around any

point, the contours of equal distance and generalization are circluar for p = 2 and rhombic for

p = 1 [15]

3.2.1.3 Mahalanobis Distance A separate class of distance measures from the

Minkowskian L2 and L− 1 norms is the Mahalanobis Distance. It is a measure of distance that

reflects any inherent covariance in the data [34]. It is given by Equation (3.4)

d2
ij = (xi − xj)

′Σ−1
(xi − xj) (3.4)

3.2.2 Feature Matching Measures

Matching measures are appropriate when dealing with nominal scale attributes. Since

distance-based measures cannot be applied to nominal attributes, the usual approach is then to

match attributes. In this case, the degree of similarity is couched in terms of the extent to which

entities share attributes and are derived from feature matching functions described in the following

sections.

3.2.2.1 The Contrast Model

The Tversky Contrast Model is a measure of similarity introduced by Tversky [35] as part of

his feature set theoretics for comparing variants among entities. To define the similarity of a to b,

s(a, b), Tversky establishes three assumptions of 1) matching, 2) monotonicity, and 3) independence.

For matching, s(a, b) is defined as a function of three arguments where s is an ordinal measure of

similarity

s(a, b) = F(A ∩ B, A− B, B− A) (3.5)

where A ∩ B is the set of features common to both a and b, A− B is the set of features that

belong to a and not b, and B− A is the set of features that belong to b not a. For monotonicity;
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s(a, b) ≥ s(a, c) (3.6)

whenever;

A ∩ B ⊃ A ∩ C,

A− B ⊂ A− C,

and,

B− C ⊂ C− A

For independence;

s(a, b) ≥ s(a′, b′) (3.7)

if and only if

s(c, d) ≥ s(c′, d′)

In addition to the three assumptions, Tversky includes invariance and solvability. Invariance ensures

that equivalence of intervals is preserved, while solvability requires that the feature space be

sufficiently populated such that similarity equations be solvable {35}.

Under all five conditions, the contrast model introduces a similarity scale S and a nonnegative

scale f such that for all entities a, b, c, d in a set,

S(a, b) ≥ S(c, d)

iff

s(a, b) ≥ s(c, d)

S(a, b) = θ f (A ∩ B)− α f (A− B)− β f (B− A) (3.8)

Equation (3.8) is the matching function that defines the Contrast Model for feature matching given

weighting coefficients θ, α, β ≥ 0 and interval scales for f and S.
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3.2.2.2 The Ratio Model The ratio model, Equation (3.9) expresses similarity between ob-

jects as a ratio of the measures of their common and distinctive attributes[36]. It was also introduced

by Tversky and essentially normalizes similarity such that S is bounded between 0 and 1. It gener-

alizes other set-theoretic models such as Jaccard, Dice, and Tanimoto, which differ only based on

the values assigned to the weighting coefficients in the matching function.

S(a, b) =
f (A ∩ B)

f (A ∩ B) + α f (A− B)− β f (B− A)
(3.9)

3.2.2.3 Jaccard Index The Jaccard index, Equation (3.10) for measuring set similarity results

from setting the importance parameters α = β = 1:

Jaccard(a, b) =
f (A ∩ B)
f (A ∪ B)

=
f (A ∩ B)

f (A) + f (B)− f (A ∩ B)
(3.10)

3.2.2.4 Dice Coefficient The Dice index, also known as the Sorensen index, Equation (3.11)

for measuring set similarity results from setting the importance parameters α = β = 1
2 :

Dice(a, b) =
2 f (A ∩ B)

f (A) + f (B)
(3.11)

3.2.2.5 Tanimoto Coefficient Extension of the Jaccard coefficient to sets whose members

are not resticted to binary forms yields the Tanimoto coefficient. It assumes that the sets are vectors

of set members and the similarity index is given by;

Tanimoto(a, b) =
f (A ∩ B)

f (A)2 + f (B)2 − f (A ∩ B)
(3.12)

The index reduces to the Jaccard index for binary set members.

The distance measures discussed above provide opportunities for similarity input to our

methodology. With the proper measures of scale, and the appropriate distance quantification

method, we can assess the relatedness of entities and proceed. However since we are concerned

with not only attibute-to-attribute comparisons, but with more ethereal concept of applicability of

historical data to new systems, we turn to the concept of evolution of entities for insight on why

and how things change.
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3.3 Methods-I: Evolution as Input to Similarity Quantification

Several definitions of “evolution” aptly illustrate elements of this thesis. Of the various definitions

listed by the Merriam Webster Dictionary, we restate the three most relevant to our context:

• a process of change in a certain direction

• a process of continuous change from a lower, simpler, or worse to a higher, more complex, or

better state

• descent with modification from preexisting species: cumulative inherited change in a pop-

ulation of organisms through time leading to the appearance of new forms: the process by

which new species or populations of living things develop from preexisting forms through

successive generations

Merriam-Webster, additionally, quotes Stephen Jay Gould on evolution, “the scientific theory

explaining the appearance of new species and varieties through the action of various biological

mechanisms”.

Evidence of evolution is manifested through observable changes in the characteristics and

behavior of species and products. Evolutionary biology, a sub-discipline of biology that studies

evolutionary processes including the descent of species, has given rise to formalized methods

for inter- and intra-species comparison such as phylogenetic comparative methods (PCMs) for

studying trait evolution [37]. According to [37], PCMs include ancestral state reconstruction,

phylogenetically independent contrasts (PICs), and phylogenetic generalized least squares (PGLS).

Such formal methods can be leveraged for studying the evolution of engineered systems and

making inter-product and intra-product evolution comparisons. However while PCMs are aimed

at elucidating the mechanisms at the origin of diversity of species [38], our focus in this thesis is

on determining the degree of similarity between engineered systems by subjectively assessing the

degree to which they have evolved.

From the foregoing, one can regard majority of engineered systems as the result of the

evolution of an existing or previous design. On this premise, the degree of change or evolution

from precedent to concept may provide a measure of the similarity between both. As a matter of

fact, biologists under the same premise quantify similarity between species, whether physical or

behavioral. Comparison of species in various stages of evolution is possible when the evolutionary

path is known. For example, human evolution is typically illustrated as progression from hominids

to Homo sapiens as shown in Figure 3.1. From comparing these inter-species variants, measures of

similarity with respect to any chosen characteristic can be quantified. For example, hominids can
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be compared with homo sapiens along several metric (i.e. measurable), or non-metric/categorical

dimensions of comparison , uprightness, height, intelligence, average weight, strength, etc. By

evaluating variants along particular dimensions of comparison a metric for similarity, whether

metric or categorical, can be ascertained.

Figure 3.1
Human Evolution (Source: http://kingofwallpapers.com/evolution.html)

In reliability engineering, system designs are modified to address known failure modes and

perhaps reduce the probability of occurrence in newer models and future variants. Design changes

however, may not always to be aimed at improving the reliability of a previous design; safety,

performance, cost, and product appeal are typical considerations that factor into the decision to

modify systems. These other considerations are possible dimensions for comparison of engineered

systems but in this thesis, the primary concern is with product evolution that impact the reliability

of a system.

Where changes due to other considerations explicitly contribute to the failure behavior of

the system, such contributions are accounted for in probabilisitc failure analysis. Nonetheless, a

prerequisite for using evolution as input to quantification of similarity is having a clear picture

of the evolutionary path a product has taken such that there is a physical, visual, or intrinsic

attribute, and a set of behavior-influencing external circumstances that make differentiation of

variants possible.

To set the stage for quantifying the similiarity of attributes between engineering system,

consider the following analogy between biological system evolution and the evolution of engineered

system.

3.3.1 Biological Analogy to Evolution of Engineered Systems

Biological evolution, triggered by adverse events, reflect adaptation of the evolving species for the

purpose of finding the most optimal attributes for its continued existence and movement towards a
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higher state of being. There are five mechanisms of biological evolution: mutation, genetic drift,

natural selection, gene flow, and non-random mating [39] of which, the natural selection process is

highly analogous to the process of design or technological evolution in an engineering setting.

According to biologists, evolution by natural selection occurs “when the environment exerts a

pressure on a population so that only some phenotypes survive and reproduce successfully”[40].

This is analogous to the engineering design process where deliberate choices are made by system

developers and design engineers that affect the behavior of an engineering system. In designing

for reliability, design choices are intended to mitigate failure processes previously documented for

existing variants. This design selection process by human actors who are reacting to adverse events

like failures of previous variants is analogous to the external influences on biological species. While

biological species possess phenotypes which “refer to all the manifold biological appearances,

including chemical, structural and behavioral attributes, that we can observe about an organism

but excludes its genetic constitution” [41] that evolve via natural selection, engineered systems

possess design characteristics, material properties, and functional attributes affected through

human intervention that dictate their performance.

Design choices made during the evolution of an engineered system are manifested in ob-

servable changes in the system’s analogue to species’ phenotypes. A summary of the foregoing is

presented in the following bullets to explicitly state the underlying connection between human

experiential learning and engineering evolution:

• Engineering systems evolve because humans interfere and impose a natural selection of

attributes through the design process

• The motivation to evolve designs may be derived from observations of past failure, as implied

by the learning and adaptation feedback mechanism inherent in all sentient forms.

• System designs evolve in response to human experiences, and invariably, human experience

changes as system designs evolve

Evolution of engineered systems as an outcome of human experience raises the possibility of

extending theories of stimulus-response and generalization that have thus far only been applied

in psychometry, psychology, and behavioral sciences to this thesis. We make this extension by

regarding manifestations such as the observed failures and anomalous behavior (human experience)

of precedent systems as the response, and the system design with its underlying failure modes

or failure-susceptible elements as the stimulus. As is the case in [12], and [13], we propose a

nuanced stimulus-response relationship where relative system design is the independent variable

that predicts an observable response. The nuance lies in the interpretation of “relative” in “relative
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system design”, implying that the independent variable is a quantifiable degree of similarity

between an evolved system and its precedent.

3.3.2 Evolution of Engineered Systems

In the previous section, the case has been made that engineered systems indirectly evolve as a

result of a human-induced natural selection process. Examples of the evolution of engineered

systems are all around us; model year-to-model year changes for automobiles reflect shifting trends

in technology and societal preference. Also, spacecraft platforms evolve to suit mission needs

based on shifting science focus, national security objectives, and commercial factors.

Other evidence of quantifiable evolution of engineered systems is abundant as we see

elimination of obsolete or lower forms of technologies across a variety of engineering sectors; for

example computing systems are updated to take advantage of faster processing speeds, increased

memory and storage capabilities, and new materials with improved properties are introduced.

These changes, while largely heralded as improvements, sometimes force a rethinking of

engineering processes due to subsequent introduction of new failure modes in systems. These

new failure modes, not previously accounted for, once experienced become a catalyst for the

learning and adaption feedback process. Notwithstanding the impacts of change, the fact remains

that a measure of any such change can be leveraged in predicting the “response” of the evolved

system, bearing in mind the description of “response” as the manifestation of failure or anomalous

behavior.

To measure the degree of change, or evolution, one not only has to have two or more systems

or circumstances, but also have an established basis or dimension for the comparison, hence the

need for a classification scheme that categorizes the so-called phenotypes and characteristics of the

system. In the next section, we define a hierarchical structure for describing systems to facilitate a

context-based system-to-system comparison.

3.4 Methods-II: Taxonomy for Characterization of Engineered Systems

Through the use of a taxonomic approach that establishes the common framework for comparison

of systems, we define a vocabulary for a finite set of system components and their functional and

structural relationships.
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3.4.1 Hierarchical Taxonomy for Inter-system Comparison

Taxonomy is the process of grouping species according to categorized characteristics. Engineering

systems typically have an invariant set of attributes that allows identification of their essential

subsystems such that taxonomy can be adapted for the purpose of grouping systems. Every car has

tires, an engine, a body structure, a steering wheel, and so on. These are universally accepted as

“parts of” the automobile system. The specific type of tire or engine is a differentiator and provides

a basis for comparison between cars along that characteristic. Universally accepted “parts” of a

system provide an ideal starting point for a comparison framework. Conceptually, one can then

compare the specific instances, or “types”, within the “parts” to ascertain the degree of similarity.

There are a variety of options available to designers when making decisions on type; manual

versus automatic transmission, 4-cylinder versus 6-cylinder engine, spin-stabilization versus three-

axis stabilization, mono-propellant versus bi-propellant propulsion system. These options are

variables that determine the taxonomic contribution with respect to the context of comparison.

Further decomposition of the “types” in turn re-categorize them as “parts”, albeit at a lower level

of the system’s overall structure.

When adequately specified for an engineered system such as a spacecraft, a hierarchical

taxonomy establishes the common framework for comparison of such complex systems. By defining

a vocabulary for a finite set of spacecraft attributes, their functional and structural relationship, a

taxonomy would provide the common ground for evaluating spacecraft design similarity upon

specification of the “types” inherent within the taxonomy. Furthermore, by representing the

system under development in a manner such that the relationships between its various subsystems,

components and parts are maintained and clearly delineated as the design matures, a failure model

of the system in the form of a reliability block diagram or a fault tree can be developed. Such a

model reflects the configuration of those functional relationships between the various elements of

the system to the extent that quantification of their contributions to the reliability of the system can

proceed.

Taxonomies are a classification scheme that can be used to categorize information [1] such as

the features of a system and they consequently provide an approach for establishing the common

framework for comparison that we seek. Figure 3.2 is an example of a space mission taxonomy that

illustrates the hierarchical relationship of subsystems common among most variants of spacecraft.

The figure illustrates the parts of a space mission, where only the color-shaded systems are

expanded to maintain compactness. The complete space mission hierarchy is included in the
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appendices. With further insight into a specific spacecraft’s design, it is possible to generate a fault

tree or reliability block diagram given this general taxonomy.

Figure 3.2
Spacecraft Taxonomy

3.4.2 Context of Comparison: Failure Contributors And Mitigators

Evaluation of similarity between two systems for the purpose of inferring the behavior of one system

based on observations of another should be conducted in context with the stimuli that elicit the

response behavior. Our similarity evaluations are in the context of failure- and anomaly-inducing

attributes or success-enhancing and mitigating attributes of the systems. To this end, we compare

attributes that either exacerbate or mitigate failure modes. For example, if the thickness of thermal

insulation is uniquely indicative of the effectiveness of mitigating a temperature-induced failure,

then one can compare the insulation thickness in both systems as an indicator of effectiveness

against temperature-induced failure and conclude that the design with higher insulation properties

is better all else being equal.

We introduced the notion of a “taxon variable” as an instance of a taxon. For context-based

comparison, the taxon variable should contribute to, mitigate, or be susceptible to the failure modes

of its taxon. As in Figure 3.2, i, indicates the hierarchical level and the taxon variables for any taxon

in Leveli include the variables for the lower level taxa associated with it.
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3.5 Methods-III: Use of Ordination Methods to Develop Pseudo-spatial Con-
figurations of Engineering Systems

Ordination techniques have a wide range of applications, from plant community-species studies

in ecology and spatial models of voting in political science to genetics and psychometrics. None

of these applications extend the use of discovered relative distances between pairs as a means of

estimating the applicability of data between pairs of variants.

Ordination methods refer to multivariate or multidimensional analysis techniques which con-

form a set of entities with N variables to at most an N-1 dimensional spatial configuration such that

the axes of the space reveal any underlying patterns inherent in the original data. The techniques

are commonly applied to data sets with numerous attributes. Consider a one-dimensional spatial

arrangement of variants of a system in which the single context of comparison is the weight of

the variants. These variants can be ordered according to their weights yielding a one-dimensional

linear configuration of the variants. Adding a second dimension which represents another ob-

servable attribute of the variants, color, provides another axis along which to order the variants.

By adding a dimension for every observable attribute, the resulting configuration of variants is

a high-dimensional space from which one cannot deduce any meaningful pattern, structure or

relationships. Nonmetric Multi-dimensional Scaling (NMDS) produces a spatial configuration

which retains an “all dimensions considered” ordering of variants in as few dimensions as possible.

Further analysis of the spatial solution reveals the principle dimensions along which the variants

have been structured. By discovering an underlying spatial configuration of the entities in a

low-dimensional space, a measure of quantitative distance (such as Euclidean distance) between

pairs of entities can be obtained.

Through a combination of metric and subjective measures of proximity, we create the spatial

configuration of entities with respect to attributes of interest, and consequently establish a mecha-

nism for not only quantifying similarity but also for relating the quantified similarity to the degree

of data relevance. Such a mechanism in ideal circumstances has the following qualities [42]:

1. Recovers gradients without distortion.

2. Reveals existent clusters in the ordination solution.

3. Does not produce nonexistent clusters.

4. Yields consistent results every time for a given set of entities.

5. Relates entity similarity to proximity in ordination space.

6. Separates signal from noise

Several methods of ordination have been proposed and have widespread use. These methods
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can be grouped into two broad categories; indrect gradient analysis and direct gradient analysis

[42] as shown in Table 3.1.

Table 3.1
Ordination Methods

Indirect Gradient Analysis Direct Gradient Analysis
Distance-based
Methods

Eigen analysis-Based
Methods Linear and Unimodal

Polar ordination, PO
(Bray-Curtis ordination)

Principal Components
Analysis

Redundancy Analysis
(RDA)

Principal Coordinates Analysis
(Metric multidimensional scaling)

Correspondence Analysis
CA(Reciprocal Averaging)

Canonical Correspondence
Analysis (CCA)

Nonmetric Multidimensional
Scaling (NMDS) Detrended Correspondence Analysis Detrended Canonical

Correspondence Analysis
Principal Components Analysis

Distance-based ordination techniques such as PCoA or MDS, NMDS, rely on a distance matrix

as input. Not to be confused with the resultant ordination distances obtained from the solution,

the input distance matrix is generated from observed or subjective measures of proximity making

distance-based methods suitable for our purpose. PCoA/MDS methods maximize the linear

correlation between the distances in the input matrix where as NMDS maximizes and maintains

the rank order of distances. This feature of NMDS relaxes the requirement for using input distance

matrices that are based on explicit metric measures of proximity since rank order preferences and

judgments can be easily generated using an ordinal scale.

3.5.1 Metric Multidimensional Scaling

Metric Multidimensional Scaling or Classical Multidimensional Scaling also commonly known as

Principle Coordinates Analysis is a multidimensional scaling technique that is based on distance

matrices derived strictly from metric distances with no confusion as to the interpretation of

“distance”. It is a method that produces a spatial representation of the relative position of a number

of objects based on an input matrix of distances called a proximity matrix that directly arise from

empirical measurements or a correlation matrix. The method tries to preserve the original metric

distances in the proximity matrix.

To illustrate the idea behind the technique, consider a data set consisting of distances between

pairs of objects pulled from a list of four objects, A, B, C, D. By iteration we seek to find a

multidimensional arrangement of the objects that results in the original distances between pairs. If

a priori, we have coordinate data (Table 3.2) on the four objects in two-dimensional space with an

x- and y-axis, the spatial configuration is represented by a scatterplot of the cordinates as shown in
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Figure 3.3

Table 3.2
Coordinates of four objects in 2-dimensional space

Object X-coordinate Y-coordinate
A 2 2
B 3 4
C 4 3
D 1 6

Figure 3.3
Scatter Plot of 4 objects in 2D Space

From the plot, we can assess proximity of the objects, where the distance between pairs dij

is given by the Euclidean distance where d is the number of dimensions and dij is the distance

between the ith and jth objects.

dij =

√√√√ d

∑
n=1

(xin − xjn)2
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The resultant symmetric matrix of interpoint distances is given in Table 3.3:

Table 3.3
Proximty matrix of 4 objects in 2D space

A B C D
A 0
B 2.236068 0
C 2.236068 1.414214 0
D 4.123106 2.828427 4.242641 0

The objective in metric MDS is to recreate the scatterplot starting with only a matrix of

interpoint distances, however this task is complicated by the fact that ordination techniques, as

discussed earlier, can produce results in up to N-1 dimensions where N is the number of objects.

Additionally, the multiple solutions can yield the same distances but with different configurations;

for example, rotating the scatterplot maintains the distances but results in shifts in the coordinate

of the objects, implying that different sets of x-coordinate and y-coordinate data, as in Table 3.2

could have produced the same proximity matrix.

In furtherance of our objective of determinining similarity between objects through ordination,

we consider the situation where the x- and y-axes of the scatterplot each represent some continuous

measure of attribute values for the objects. On this premise, one can conclude that B and C are

most similar among all pairs along both axis and as such have a higher degree of similarity. Given

the ordinated distances, we can find the monotone function of distance which would relate the

objects in the ordination solution. For the case where the input matrix is identical to the ordinated

distances, the monotone function would have unit slope. Visualization of the monotone relationship

between observed dissimilarity and the ordinated distances is called a Shepard plot; Figure 3.4

shows the resuling Shepard for our simple four object metric ordination.
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Figure 3.4
Shepard plot of four-object coordinate data

3.5.2 Nonmetric Multidimensional Scaling

As defined earlier, NMDS method yields ordination based on a distance or dissimilarity matrix by

resolvng a number of points into a prespecified number of dimensions while maintaining, as much

as possible, the rank-ordered pairwise or inter-point dissimilarities between the points. Input to

the ordination process is based on results of a survey where respondents provide their subjective

assessment of the proximity between pairs of entities. These pairwise measures of proximity can

then be rank-ordered regardless of the actual distances. The measure of departure from the inital

rank-order is called the stress [19] of the solution. Mathematically, Kruskal defined stress as:

Stress =

√√√√√∑
(

f
(
dij)− Dij

)2
)

∑ D2
ij

(3.13)

f (dij) is the optimal monotonic transformation of the dissimilarities which minimizes the

ordination stress and Dij are the interpoint distances determined from the observed dissimilarities,

δij. Monotonic transformation is a least-squares smoothing process accomplished through a

monotone regression and results in transformed distances such that dij and δij have the same rank

order. In NMDS, our aim is to uncover a configuration such that the Dij and the δij have the same

rank order. For example, assuming the interpoint distance between two entities ranks fourth in the
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set of subjective δijs, then they should also rank fourth in the ordination solution. Points, dij on the

monotonic curve f (dij) are the prediction values from regressing Dij on δij and the goodness of the

fit is measurable by comparing the Dij to dij. Kruskal provided guidelines based on empirical data

for assessing goodness of fit using stress values.

Table 3.4
Kruskal’s Guidelines for Assessment of Stress

Kruskal’s Stress Goodness of Fit
0.2 Poor

0.05 Good
0.00 Perfect

While NMDS solutions are obtainable in up to N − 1 dimensions for N points, the penalty

for a lower, and often, more desirable solution is a higher stress. Figure 3.5 is a plot of stress as a

function of dimensionality, referred to as scree plots. It provide a useful visualization for evaluating

the miniminal stress for a desired number of dimensions.
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Figure 3.5
Scree Plot

3.6 Methods-IV: Analysis of Spatial Data through Kriging Interpolation

Given that we have successfully developed a spatial configuration which communicates the

proximity of the entities of interest, our next task is to infer properties of one entity from those of

44



another as a function of their spatial proximity and the parameters of the spatial field.

By ordinating the proximity measures elicited from the comparison of engineered systems

via NMDS, [19] [17], we construct a pseudo-spatial arrangement of designs which lends to spatial

analysis and invocation of Tobler’s “First Law of Geography”; “Everything is related to everything

else, but near things are more related than far things” [43]. This law has utility in various

applications including geology, soil sciences, meteorology, political science, etc. Our thesis proves

the viability of this theory of relatedness as a function of distance when considering spatial

representations and spatial data obtained based on rank-ordered, intuitive measures of proximity.

Akin to Shepard’s psychological space [15], the pseudo-spatial arrangement of engineered

systems exhibits the invariant relationship between response generalization and the distance

between locations. However, while Shepard establishes the single parameter exponential function

as that invariant relationship between generalization and distance, the so called generalization

gradient, we seek a more descriptive relationship for capturing spatial correlation. To this end, we

draw from the field of geostatistics and specifically, the analysis of spatially correlated data using

point-refernced data models.

Kriging is a method of spatial interpolation, also known as Gaussian process regression,

for estimating variables at an unmeasured location from values at surrounding locations. The

approach, is based on the work of Daniel G. Krige, the South African miner, who devised the

method for estimating the distribution of gold based on samples from few locations. Kriging

yields optimal interpolation of the target variable based on regression against actual observatons

weighted with respect to the implict, field-specific, spatial correlation of locations.

Fundamentally, Kriging interpolation methods calculate the metric of interest at the target

location as a weighted sum of values from neighbouring locations. Determination of Kriging

weights, consistent with Tobler’s Law, is based on monotonically decreasing functions that ensure

decreasing weight as a function of spatial proximity. However, the actual parameterized weighting

function is derived from the point-referenced data of the spatial field. As with any interpolation

method, Kriging results in good estimates of the unknown of interest given a well characterized

spatial field, i.e., underlying parameters of the field parameters are estimated with absolute

certainty in the face of infinite data. Furthermore, Kriging results typically underestimate the high

end of the unknown of interest and overestimate the low end. This behavior is also consistent with

traditional averaging techniques.

We present a brief overview of the Kriging estimation process and different types of Kriging.

45



3.6.1 Kriging

Kriging methods are derived from minimum mean square error prediction. Following derivations

presented in the literature, specifically [44], we let Y and T represent vectors of random variables

that take on observed values and a random variable we wish to predict from the observations of Y

respectively. Point estimation of observations of T is obtained from any function;

T̂ = f (Y)

and the mean square prediction error MSE of T̂ is given by:

MSE(T̂) = E[(T̂ − T)2]

Where the expectation, E[·], is with respect to the joint distribution of T and Y . The form of the

Kriging estimator which minimizes MSE(T̂) is the expectation of T conditional on Y :

T̂ = E[(T | Y)]

Resulting from Equation (3.14) [44], is the relationship:

MSE(T̂) = EY[Var(T | Y)] (3.14)

where Var(T | Y) is the prediction variance. Its value, given the observed values of Y , estimate

the mean square error of estimates of T. Equation (3.14) provides the basis for the minimum error

kriging estimator.

Assuming that observations in Y are descibed by a stationary Gaussian process, such that:

Y(s) = µ(s)β + W(s) + ε(s) (3.15)

where ε ∼ N(0, τ2) is the error term, µ(s) = ST(s)β is the mean2, and W(s) | σ2, φ ∼ N(0, σ2H(φ))

accounts for spatial correlation. We leverage the general results from multivariate normal theory in

predicting observations at locations in T given spatially correlated observations in Y .

From multivariate normal theory, if

2The mean is a function of spatial covariates S and regression coefficients, β
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Y(s)

T(t)

 ∼ N


µ(s)

µ(t)

 ,

Σ11 Σ12

Σ21 Σ22




then the joint distribution of two random variables Y(s) = (Y(s1), ..., Y(sn))′, and T(t) =

(T(t1), ..., T(tm))′ given a collective set of distribution parameters θ, is given by Equation 3.16

(Y(s), T(t) | θ) ∼ MVN

µ1m+n ,

Σ11 Σ12

Σ21 Σ22


 (3.16)

Furthermore, the conditional distribution of unobserved location values, T(t), given the observed

location values, Y(s), and model parameters θ, is given by Equation (3.17);

(Y(s), T(t)) | θ) ∼ MVNm(µ2.1, Σ2.1) (3.17)

where the mean is, µ2.1 = µ1m + Σ21Σ−1
11 (Y(s)− µ1n), and the variance is, Σ2.1 = Σ22 − Σ21Σ−1

11 Σ12

Equation (3.17), extended to pseudo-spatial maps derived from ordinated, subjective measures

of proximity between precendent and conceptual systems informs our Bayesian analysis framework.

3.6.2 Simple Kriging

In Simple Kriging, it is assumed that the mean of a spatial process is constant over the entire spatial

field with no covariate effect resulting in:

Y(s) = µ + W(s) + ε(s) (3.18)

3.6.3 Ordinary Kriging

In Ordinary Kriging, the mean of the spatial process is assumed to be constant only in the

immediate neighborhood of each observed location si and meter the unobserved locale means by

constraining the kriging weight to sum to 1. The least squared error expression, Equation (3.14),

(i.e the linear predictor of the mean that minimizes the expectation of variance);

Y(s) = µ(s)β + W(s) + ε(s) (3.19)
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3.6.4 Universal Kriging

Universal kriging is similar to ordinary kriging except that in addition to the local trend in the

mean, a global trend based on coordinates of each loaction is fit to the overall spatial field. This is

the same as in Equation (3.15). Recall that the mean of the process is defined as a funcion of spatial

covariates and regression coefficients.

µ(s) = β0 +
M

∑
m=1

βms (3.20)
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4 Towards Analysis of Pseudo-spatial Models of Comparable
Systems

4.1 Overview

As shown in Figure (4.1), the analysis framework consists of two broad aspects. First is a charac-

terization and comparison phase in which Methods I and Methods II are used for defining the

systems intended for comparison. This is with a view to identifying the attributes that are pertinent

to the target of inference. In this phase, categorical and numerical proximity measures elicited

from expert comparison provide input to Methods III used in creation of the perceptual map of the

systems. Implicit in the use of these methods are some general assumptions; 1) a general taxonomy

is adequate for characterization of a system, including concepts, 2) the similarity between entities

is symmetric, 3) the interpoint distance between systems in the generated spatial map conforms to

metric axioms discussed in Chapter 3.

Following characterization of the systems, is a knowledge integration and inference phase. In

this phase we leverage spatial modeling methods, Methods IV, and Bayesian principles to develop

the posterior probability densities of the spatial process parameters with which to estimate the

metric of interest

Figure 4.1
Overview of methodology
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4.2 Data Sources

Risk and reliability models are representations of reality through which various contributors to a

system’s behavior can be studied. However, due to the aleatory uncertainty associated with the

models representing the reality of interest, understanding of those contributors is often cloudy. Our

methodology attenuates the aptness of the chosen models through an adjustment derived from a

measure of similarity between entities. To exercise the methodology, we require three distinct types

of input:

1. A record of demonstrated behaviors ascribable to a specific, existing or, previously existing,

system in a defined environment. These behaviors may include failure rate information,

degradation data, lifetime data, or dichotomous response-on-demand data

2. A characterization of the existing or, previously existing, system and it’s particular operational

environment together with a conceptual design of a system which belongs to the same general

class and potential use environments. These characterizations may include design information,

descriptions of environments and use scenarios. Additionally, a taxonomy of the general class

of such systems that elucidates all fundamental attributes required for the system’s intended

function. These may include a functional descriptions of categories within the general class

3. An expert trained and knowledgeable in the design, engineering, and use of the general

class of such systems and equiped to provide comparisons between concepts and precedents

within a particular, given context (reliability, affordability, manufacturability, etc.)

4.2.1 Record of Anomalous Behavior

We define a precedent system as one developed for the same general purpose as the concept.

Existing automobile models may provide precedence for new models. In aerospace, existing or

retired spacecraft platforms may serve as precedence for new spacecraft. To implement the proposed

methodology, we need to determine the body of evidence, which represents the historical failure

information and serves as the precedent’s record of demonstrated behavior. Collection of failure

and anomaly data is common practice across various industries. These data are typically stored in

warranty databases and industry-required failure reporting and corrective action databases.

In an aerospace application of the methodology, on-orbit anomaly and failure information on

spacecraft missions and major subsystems of a spacecraft provide input towards quantifying the

demonstrated reliability of existing platforms. These data can inform design choices as new systems

are developed. Failure data required to implement the methodology are obtainable from numerous
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sources. For spacecraft data, one repository of satellite information, The Satellite Encyclopedia

(TSE), provides comprehensive data on various platforms, thus allowing analysis of performance

trends across multiple missions. TSE is a subscription-based web service based in Europe and

owned by Tag’s Broadcasting Service. Other sources include; NASA Goddard Spaceflight Center’s

Spacecraft On-orbit Anomaly Reporting System (SOARS).

Generally, most large-scale engineering development projects adhere to and maintain in-

ternational quality standards that mandate the storage of Quality Management System records.

These records range from failure reporting and root cause analysis repositories, product warranty

databases, anomaly and problem reporting systems and provide an excellent resource for records

of anomalous behavior.

4.2.2 Design and Use Environment Data

We regard precedent systems as any operational or previously operational system that has com-

pleted its primary mission for which manufacturing, project management, and test and operational

performance data have been documented. The comparison and characterization process accounts

for the operational and environmental effects due to the differences in use between precedents and

concepts. Multiple precedents can be utilized in augmenting the data for defining the spatial field

of the family of systems.

4.2.3 Expert Opinion Data

An expert is an individual with a high level of skill and knowledge pertaining to the system

or system attribute of interest. This individual is conversant with technologies and processes

associated with the particular system or subsystem characteristic and is able to assess the impact

of design decisions with respect to both the precedent and concept systems. The expert has the

ability to assess alternative attributes and provide relative qualitative and quantitative measures

of attribute proximity with respect to the context of comparison. Essentially, the expert provides

opinion on the effects, on engineered systems, of natural selection indirectly imposed during the

design process.

Opinion data is either 1) intuited, when comparing categorical or qualitative attributes such

as color, gender, country, organization, or 2) based on quantitative or numerical variables, when

comparing quantifiable attributes such as fuel efficiency, mass, power output, or temperature.

The result of the elicitation is a set of pairwise measures of proximity, δi,j, representing the
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psychological distance for categorical variables, and for numerical variables, di,j representing

the actual quantitative distance between the ith and jth attribute. Table below is a grouping

of comparable variables as either categorical or numerical. Pairwise assessments of proximity

between entities for any of the variables in Table 4.1 can be performed provided a clear context of

comparison.

Table 4.1
Examples of Categorical and Numerical Variables

Categorical Variables Numerical Variables
Gender Fuel Efficiency
Color Mass
Organization Power Output
Country Grade Point Average
Spacecraft Stabilization Height
Spacecraft Type Spacecraft Delta-V

4.3 Spatial Configuration from Subjective Measures of Proximity

In the preceding section, we outlined the broad aspects of a model for estimating a probabilistic

metric of interest of a system based on relevant historical data. We also delineated the general

types of data necessary to feed such a model while tacitly implying that a transformation of the

subjective data is necessary, i.e., subjective rank-ordered proximity from expert opinion δi,j have to

be transformed into quantitative measures of similarity, Di,j .

To achieve this, we develop spatial models based on the multivariate analysis technique of

nonmetric multidimensional scaling. Our resultant spatial models are geometric in that they use

relative positions in an abstract space to represent objects that can interpreted as distance data [45].

As discussed in Section 3, NMDS is an ordination technique intended to reduce the degrees

of dimensionality of data so that they can be spatially represented with consideration of only

rank-ordered proximity, δi,j. NMDS methods are designed to produce a spatial configuration

that consolidates the information in a data set into a map-like graphical representation such that

the axes of the map align with latent dimensions of variation in the data. The difference in our

application is that we prescribe these latent dimensions as the context of comparison and then

evaluate attributes of pertinence to that context.

The reliance on rank orders alone sets NMDS apart from other ordination methods such

as Principal Coordinate Analysis that require Euclidean distances as input. The advantage and

flexibility offered through the use of rank orders allows extension of ordination techniques to the

assessment of psychological estimates of proximity regardless of the entities being compared.
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NMDS methods are traditionally used to investigate the attributes in multidimensional

data which most influence psychological judgments of proximity or preference by reducing the

dimensions and reconstructing the spatial configuration that best preserves the rank order of the

judgments with minimal stress. In our utilization of NMDS, we, a priori, prescribe the context

(e.g. reliability), and dimensions of comparison through the hierarchical decomposition of the

system as illustrated in Figure 3.2 and Appendix E.1.

Given a set of subjective pairwise proximity values for a family of objects, we first find the

spatial configuration of that family of systems and calculate the interpoint distances between all

members within that family.

4.3.1 Spatial Configuration of Colors

Using data from Ekman’s experiment on dimensions of color vision, [46], we illustrate the process

of recovering the relational map of entities which conveys proximity.

For a family of N systems, a total of N(N − 1) pairwise measures of proximity can obtained

from a comparison of inter-family systems. If similarity is assumed to be symmetric, then these

subjective pairwise measures of proximity provide N(N−1)
2 input measures from which to obtain

the spatial solution of lowest stress in at most N − 1 dimensional space.

Consider, then, the pairwise qualitative measures of similarity obtained from participants

in Ekman’s experiment. The color data consists of 31 individual, pairwise judgements of color

similarity between 14 colors, resulting in a total of 91 similarity measures. In the original data,

the higher scores indicates that the colors are more similar. The 31 individual ranks are averaged.

Ekman’s original similarity matrix converted to normalized dissimilarity values is shown in Table

4.2. The resultant matrix is a zero-diagonal symmetric matrix used as the input distance matrix to

multidimensional scaling.

We perform a non-metric multidimensional scaling using the Stress Majorization of a Compli-

cated Function (SMACOF) package [47] of the open source language R [48] on the dissimilarity

matrix. The spatial configuration of the colors in two dimensions is obtained with a stress of 0.016,

indicating a good solution has been found. From this spatial configuration, the inter-color distances

or ordination distances can be computed. Figure 4.2 represents the two-dimensional ordination

solution derived from the subjective measures of color proximity with each of the 14 colors labeled

based on its particular wavelength in nanometers. It closely matches the traditional visualization of

color arrangement, the well-known “color circle”, which we have super-imposed on the configura-
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Table 4.2
Color dissimiliarity based on psychological measures of proximity (Ekman 1954)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1.4 5.8 5.8 8.2 9.4 9.3 9.6 9.8 9.3 9.1 8.8 8.7 8.4
2 1.4 0 5 5.6 7.8 9.1 9.3 9.3 9.8 9.6 9.3 8.9 8.7 8.6
3 5.8 5 0 1.9 5.3 8.3 9 9.2 9.8 9.9 9.8 9.9 9.5 9.7
4 5.8 5.6 1.9 0 4.6 7.5 9 9.1 9.8 9.9 9.9 9.9 9.8 9.6
5 8.2 7.8 5.3 4.6 0 3.9 6.9 7.4 9.3 9.8 9.8 9.9 9.8 9.9
6 9.4 9.1 8.3 7.5 3.9 0 3.8 5.5 8.6 9.2 9.8 9.8 9.8 9.9
7 9.3 9.3 9 9 6.9 3.8 0 2.7 7.8 8.6 9.5 9.8 9.8 9.9
8 9.6 9.3 9.2 9.1 7.4 5.5 2.7 0 6.7 8.1 9.6 9.7 9.8 9.8
9 9.8 9.8 9.8 9.8 9.3 8.6 7.8 6.7 0 4.2 6.3 7.3 8 7.7
10 9.3 9.6 9.9 9.9 9.8 9.2 8.6 8.1 4.2 0 2.6 5 5.9 7.2
11 9.1 9.3 9.8 9.9 9.8 9.8 9.5 9.6 6.3 2.6 0 2.4 3.8 4.5
12 8.8 8.9 9.9 9.9 9.9 9.8 9.8 9.7 7.3 5 2.4 0 1.5 3.2
13 8.7 8.7 9.5 9.8 9.8 9.8 9.8 9.8 8 5.9 3.8 1.5 0 2.4
14 8.4 8.6 9.7 9.6 9.9 9.9 9.9 9.8 7.7 7.2 4.5 3.2 2.4 0

tion solution to highlight the accuracy of the solution. This configuration, progressively and in a

radial pattern, places colors adjacent to each other with respect to their proximity.

Considering that color wavelength is a metric measure which can be used to linearly organize

colors along the spectrum of wavelengths, one would expect a one-dimensional spatial solution

would adequately encode and replicate the subjective measures of dissimilarity. However, exami-

nation of the resulting scree plot from ordination of the color data shows a significant decrease,

marked by a distinct “knee”, as we move from the one-dimensional to the two-dimensional solu-

tions. This indicates that there may be additional factors other than differences in wavelength when

it comes to human perception in judging proximity of colors. Moving past the second dimension,

there is little reduction in the Kruskal stress, suggesting that two dimensions are adequate for the

evaluation.

We use this illustration to establish the progression of our methodology. From pairwise

comparison of proximity, ordination returns the underlying spatial configuration of entites. Next

we investigate if attributes of these entities can be estimated from the spatial configuration. The

obvious, if trivial answer, in light of the color exercise, is yes. One can potentially interpolate

between a spatial arrangement of wavelengths to estimate a wavelength at an unknown location

around the color circle. For completenes, however, we demonstrate this spatial inference capability

in application of the developed model in Chapter 6.
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Figure 4.2
Spatial configuration of 14 Colors based on subjective dissimilarity values

Figure 4.3
Scree plot of color dissimilarity ordination
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Through multidimensional scaling, the true spatial configuration of colors with respect to

their similarity has been determined based entirely on subjective ideas of color similarity. The

spatial arrangement, together with the implicit coordinate locations of each color, provides a means

for extracting interpoint distances between the colors. More importantly, the collection of color

location and possible observations at each location fits a class of data ideal for spatial analysis.
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5 Bayesian Inference Model for Pseudo-spatial Processes

Given geographically referenced data across disciplines including public health, political science,

meteorology, etc., it is common practice to carry out statistical analysis tasks like modeling of

trends, estimation of parameters, or prediction of outcomes at unmonitored sites. However, our

research interest is whether the same inference methods apply to pseudo-spatial data when the

spatial relatedness is deduced from largely intuitive ideas of proximity?

Fundamentally, the primary objective of this thesis, applicability of partially relevant data

in inference tasks, is essentially a conditional probability statement and therefore tailor-made for

Bayesian methods. It follows that any equivocation or uncertainty on the applicability of underlying

methods can be completely handled in the Bayesian paradigm. We proceed, then, with confidence

in the notion that pseudo-spatial data can be treated as being spatially referenced and explicate

our Bayesian inference model for pseudo-spatially referenced data.

Spatial data sets are classified into three basic types. From [49];

1. Point referenced data - where E(x) is a random vector at a location x ∈ Rr, x varies continuously

over D, a fixed subset of Rr fix

2. Area or Lattice data - D is a fixed subset of the space Rr, however it is partitioned into irregular

areas or regular lattices and the realizations of the random vector, E(x), is averaged over each

areal unit.

3. Point pattern data - the fixed study area or spatial domain, D, is itself a collection of random

points. This means that not only are the realizations at point random, but the locations are

also random. The location of trees in a forest, combined with the height of a tree given its

location is a good example of this type of data.

Of the three types of spatial data, point-referenced data is the best suited to the data structure for

our problem. We summarize our data structure as follows:

• A number of systems from a family of systems form a fixed subset, D, of the entire family-

specific

• Individual designs occupy specific locations marked by coordinates, x, such that identical

designs coincide in the space

• System performance, E(xi) for each design xi, are measurable observations such as records

of failure

Point referenced spatial data models are underscored by a stochastic process that can be defined as;
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{E(x) : x ∈ D} (5.1)

where x varies continuously over D, a fixed subset of a d−dimensional Euclidean space for which

interpoint distances, di,j, can be determined via Equation (3.1). The process is said to be a spatial

process where r > 1, [49]. E(x) represents an observation at location x and our data set consists

of observations at finite locations x1, ..., xn [49]. These observations are a partial realization of the

stochastic process on the continuum D, and our task is to infer E(x), the true stochastic process,

replete with its parameters, in order to predict at new locations based on the partial realization.

5.1 Gaussian Spatial Process Models

Consider a set of spatial point referenced data, let the spatial process at a location in the field,

x ∈ D be described by the Gaussian process in Equation (3.15), modified and restated here for ease

of reference.

E(x) = µ(x)β + W(x) + ε(x) (5.2)

W(x), as before, is a zero-mean stationary Gaussian process that accounts for spatial depen-

dence whose variance is parameterized by {σ2, φ}, reducible to {σ, φ}, if necessary.

To enable Bayesian inference we cast the point process in Equation (5.1) as a multivariate

Gaussian process with a linear predictor for its mean given by Equation (5.2), such that, given a

set of realizations at source locations, Y ≡ {E(si)} and coordinates xi, i = 1, ..., n, the multivariate

Gaussian would allow inference at target locations, T ≡ {T(ti)}. We note that the spatial process

includes covariate data for both observed and unobserved locations and set the point process

in Equation (5.1), E(x) = {Y(s), T(t)} in Equation (3.15). Recognizing that our location vector x

includes s and t we rewrite equation Equation (3.17) as:

E(x)|µ(x)β, θ ∼ MVN(µ(x)β, Σ(θ)), (5.3)

where µ(x)β is the mean of the process, Σ(θ)ij covariance between design responses E(xi) and

E(xj), and θ is the vector of parameters, σ2, τ2, and φ (for the exponential case), that defines the

covariance function. The covariance is given by:

Σ(θ) = σ2H(φ) + τ2 I (5.4)
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The process is Gaussian if, for any integer, n ≥ 1 and set of locations {x1, .., xn}, the joint

distribution of E = (E(x1), .., E(xn))T is a multivariate Gaussian. Furthermore, locations, x1, ..., xn,

uniquely identify the positions occupied by designs variants within a family of engineering systems

in a pseudo-spatial configuration of designs.

If the mean is constant, µ(x) = µ, as in simple kriging, then the process is weakly stationary,

and, for any integer, n ≥ 1, any set of locations {x1, .., xn}, and a separation vector, d, in the

d−dimensional Euclidean space, the covariance between observations at any pair of locations is

solely a function of the inter-point distance dij (in d ) and underlying parameters θ of the spatial

field;

Cov(Y(x), Y(x + d)) = C(d) = f (θ, dij) (5.5)

For example, the exponential form for the covariance can be written as:

C(dij) = σ2e−φdij (5.6)

Parameters σ2 and φ are referred to as the partial sill (or spatial effect variance), and the

exponential decay parameter respectively. The decay parameter is used to define the range of the

covariance function r = 1/φ. In the case that dij = 0, plausible when i = j, a non-spatial effect

variance called the nugget, τ2 is included in the exponential covariance specification and together

with the spatial effect variance , defines the sill, σ2 + τ2.

The Gaussian process, Equation (5.1), has intrinsic stationarity, meaning that the expectation

E[·];

E[E(x + d)− E(x)] = 0

Therefore,

E[E(x + d− E(x)]2 = Var(E(x + d)− E(x)) = 2γ(d) (5.7)

Equation (5.7) is valid when the variance depends only on the separation vector d. Expanding

the right side of Equation (5.7) further:
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2γ(d) = Var(E(x + d)−Y(x))

= Var(E(x + d)) + Var(E(x))− 2Cov(E(x), E(x + d))

= C(0) + C(0)− 2C(d)

The term, 2γ(d) is called the variogram. The variogram of a spatial stochastic process is given by

the function:

Variogram(x, x + d) =
1
2

Var[Y(x + d)− E(x)] (5.8)

It is related to the covariance function by:

γ(d) = C(0)− C(d),

where γ(d) is the semivariogram.

For an isotropic process, the semivariogram is related to the separation vector through its

length ||d|| and any valid variogram is constrained to being a negative definite function. This means

that for any set of locations x1, ..., xn, and any set of constants a1, ..., an, such that ∑i ai = 0, if γ(d)

is valid, then

∑
i

∑
j

aiajγ(xi − xj) ≤ 0 (5.9)

In [49], Banerjee develops the proof of this and also describes the positive definiteness condition

for covariance functions.

Finally, the process is ergodic if C(d)→ 0 as ||d|| → ∞, where ||d|| is the length of vector d.

This characteristic implies that the covariance between realizations at two locations diminishes

as the locations become further separated, consistent with Tobler’s law and Shepard’s theory of

generalization.

Such Gaussian processes are typically used to model irregular, real-valued, spatial surfaces,

however we extend them to pseudo-spatial surfaces created from psychological perceptions of

proximity. In so doing, we investigate the appropriateness of the parameterized semivariogram for

describing the distance-dependent spatial correlation function we seek.

Having enumerated the necessary properties of the Gaussian random field that represents
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our pseudo-spatial data, there are a number of families for valid covariance functions for spatial

models, including exponential, Gaussian, and the Matern, available for use in our methodology.

The Matern family include the exponential and Gaussian as special cases and transitioning between

both is enabled by an additional parameter, ν, that controls the underlying smoothness of the

process, and not surprisingly called the smoothness parameter. Given the generality of the Matern

family, it becomes our choice of isotropic covariance functions that depend solely on distance.

We have introduced the possibility of using pseudo-spatially referenced data generated from

ordination of perceptions of similarity between complex engineered systems, and the subsequent

use of spatial inference methods to predict the unknown metric of interest. The problem becomes

a matter of optimal spatial prediction; i.e., provided observations of a random field, E(x =

E(x1), ..., E(xn)), how do we predict the random variable E at a location x0 where no responses

have been observed based on the realizations of the Gaussian process, E, from a collection of other

locations in the spatial field? Our primary thesis objective is the conditional statement given in

Equation (5.10) and is analogous to the question at hand.

E(x0)|E (5.10)

By treating the collection of observed data and associated unknown parameters of the spatial

field as random variables, Bayes Theorem, Equation (5.11), provides a structure for combining

evidence with subjective opinion or other information to update the state of knowledge regarding

the uncertain random variables.

p(E(x0) | E(x)) =
L{E(x) | E(x0)} × p(E(x0))∫

E(x0)

L(E(x | E(x0)) p(E(x0))dE(x0)
(5.11)

Eq.(5.11) is the Bayesian expression of the posterior distribution of an observation at an unmonitored

location, x0, given the partial realization of the stochastic Gaussian process to which it belongs.

The likelihood term in Eq.(5.11) connotes a mapping of the partially relevant information

from one system to another different system and that given the true value of the parameters used in

predicting the realization, the same stochastic Gaussian process would result. Given the colloquial

description of Eq.(5.11), part of the task is ensuring that the data from the precedent is metered in

accordance with the degree of similarity between both systems in order to accurately update the

prior value of E(x0).

Before delving into the inference problem, i.e., predicting observations E(x0) at unmonitored
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locations (or performance of an unbuilt system), we must first characterize the spatial process,

Equation (5.1), that contains the unobserved coordinates of interest. This means that we have

to estimate the posterior distribution of the underlying parameters of the family-specific spatial

process.

Examining Equation (5.3), we note that it is essentially the likelihood expression for the

realization of the multivariate Gaussian process. Based on this observation, we can write the

complete, albeit in compact notation, form of the Bayesian expression for the joint posterior

distribution of the Gaussian process:

p(θ | E(x)) =
L(E(x) | θ)× p(θ)∫

θ

L(E(x) | θ) p(θ)dθ
(5.12)

Eq.(5.12) is the Bayesian expression of the joint posterior distribution of a set unknown of

parameters and covariates, θ, associated with the pseudo-spatial process to which both concept

and precedent systems belong conditional on the partial realizations of the process.

5.2 Non-Gaussian Spatial Process Models - Implications for the Likelihood

The likelihood term in Eq.(5.12) must address the degree of applicability of the model through

which the precedent failure data is generated to the concept’s design or underlying failure process.

In Bayesian analysis, the likelihood term conceptually represents the process through which data is

generated. In our methodology, observations can be modeled as random events or, alternatively, in

combination with deterministic physical phenomena. Modeling of both random and deterministic

failure processes through the use of probabilistic physics of failure models combined with statistical

models for random processes determine the likelihood function for the particular system under

study. Our focus in this section is to develop the likelihood expressions for realizations of a spatial

point process that are not necessarily Gaussian.

The foregoing is extended to non-Gaussian process where the realizations of the process

manifest as either dichotomous data e.g. the presence or lack thereof of a signal, or count data,

e.g. the number of anomalies over a finite period. In these cases, it is important that the underlying

data generating process be accurately modeled. The general linear Gaussian process is still

well-suited to handle these data.
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5.2.1 Dichotomous Data

Extension of spatial process models to dichotomous data is achieved by redefining the likelihood

expression in Equation (5.12) as follows:

E(x) | π ∼ Bernoulli(π) (5.13)

where π is linked to the latent spatial field parameters, θ, via the cumulative density function of a

standard Gaussian distribution, Φ(·), i.e.;

π = Φ(θ)

As before, θ is a collection of parameters that characterize the latent spatial field effect.

5.2.2 Count Data

Similarly, spatial count data can be modeled by redefining the likelihood as:

E(x) | λ ∼ Poisson(λ) (5.14)

where λ is the average count of events linked to the latent spatial field parameters via a logarithm

link function, i.e.;

log(λ) = θ

5.3 Gradient of Generalization - The Matern Family of Covariance Functions

In Chapter 2, we reviewed literature [13], [15] in which the probability of generalization, derived

from a gradient, is defined as the conditional probability of eliciting a response from a stimulus that

has been associated with a different stimulus. It has been postulated [14] that if metric measures

of similarity are recovered from psychological measures of proximity [17], then owing to the

invariance of psychological space, a monotonically decreasing function relates the conditional

probability of generalization to the separation distance. This relationship between the conditional

probability of generalization and the separation distance is the gradient of generalization.

Mathematically, the gradient must reflect a probability of generalization that approaches

unity as the dissimilarity approaches zero, and a diminishing probability of generalization as
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dissimilarity or distance increases. In the context of our model, the gradient of generalization

determines the degree to which attributes of one entity or a collection of entities can be associated

with neighbors. Obviously, if entities occupy the same location in a psychological space, then they

are identical and the chances of generalizing attributes from one to the other is total.

In describing a stationary, isotropic Gaussian process for point-referenced data, the covariance

between any pair of points or locations in the same Gaussian field, is strictly a parameterized

function of the inter-point proximity. Within the Gaussian field, the parameterized covariance

between the ith and jth points is given in Equation (5.15). When normalized, the parameterized

covariance function, ρ, of interpoint distance is synonymous with the generalization gradient

captured in Shepard’s Theory of Generalization.

(H(φ))ij = ρ(φ; dij), (5.15)

Expressed as an exponential decay function, in Equation (5.6) the normalized covariance is

a bounded, non-negative, and differentiable value [50] that depends on the continuous random

variable di,j and the underlying vector of parameters, θ = {σ, φ}. Figure 5.1 below illustrates the

dependence of the conditional probability on the underlying rate parameter, φ and the distance

measure, di,j. The three curves are exponential decay functions with different rate parameters and a

partial sill, σ2, of one. Irrespective of the rate parameter, we see that the probability of generalization

or the normalized covariance is 1 when the distance is zero, i.e. the designs occupy the same

location in the Gaussian field therefore all of the precedent failure data, or other observations can

be generalized from one design to the other with complete certainty.

Figure 5.1 is a monotonically decreasing function whose decay rate, in conjunction with

the distance measure, determines the value of the probability of generalization. θ parameterizes

the gradient of generalization and can be estimated from evidence through the use of Bayesian

methods, Equation 5.12.

As previously stated, the exponential function, as an option for ρ, is a particular case of the

more flexible Matern family of covariance, which we adopt for modeling pseudo-spatial correlation.
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Figure 5.1
Exponential correlation function

Equation (5.16) is the Matern variogram and Equation (5.17) is the corresponding Matern

covariance.

γ(d) =


τ2 + σ2

[
1− (2

√
νdφ)

2ν−1Γ(ν)Kν(2
√

νdφ)
]

if d > 0

τ2 otherwise
(5.16)

C(d) =


σ2

2ν−1Γ(ν) (2
√

νdφ)νKν(2
√

νdφ) if d > 0

τ2 + σ2 otherwise
(5.17)

The covariance function, Equation (5.17), allows specification of the parametric form of ρ, the

valid correlation function in Equation (5.15).

ρ(φ; dij) =
1

2ν−1Γ(ν)
(2
√

νdφ)νKν(2
√

νdφ) (5.18)

Kν in Equations (5.16), (5.17), and (5.18) is the modified Bessel function, Kν(·), of order ν, [51],

where ν is a smoothness parameter that returns the Matern function to an exponential function
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Figure 5.2
Matern correlation function

when ν = 0.5.

Figure 5.2 illustrates a plot of three Matern correlation functions for different values of ν and

φ. Recall that φ is the decay rate parameter that determines the range, the distance at which the

probability of generalization (spatial correlation) is becomes negligible. The range is typically set

as the distance at which the spatial correlation drops to 0.1 or below.

5.4 Bayesian Estimation of Spatial Field Parameters

To estimate the Gaussian process parameters, we adopt a two-stage hierarchical model. The

Gaussian process, Equation (5.2), accounts for the possibility of a latent Gaussian field of random

effects that have spatial correlation through the term W(x). We previously defined this term as a

zero-mean Gaussian with a variance of σ2H(φ) + τ2 I, where H(φ) is defined in Equation (5.15)

and ρ is a valid correlation function parameterized by φ and, dij = xi − xj (the Euclidean distance

between the ith and the jth elements. Incorporating into Equation (5.3);
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E(x)|µ(x)β, θ ∼ MVN(µ(x)β, σ2H(φ) + τ2 I), (5.19)

and reintroducing the Gaussian process non-spatial variance term τ2, we get the first-stage specifi-

cation of the hierarchical model;

E(x)|µ(x)β, W ∼ MVN(µ(x)β + W , τ2 I), (5.20)

and a second-stage specification of the latent Gaussian field of spatial effects;

W |σ2, φ ∼ N(0, σ2H(φ)), (5.21)

Equations (5.20), and (5.21), combined with (5.18) can be used to redefine the Bayesian model,

Equation (5.12), for estimating the parameters of the spatial process. This results in Equation (5.22),

a compacted, vector form of the two-stage hierarchical Bayesian model.

p(θ, W |E) ∝ f (E|θ, W)p(W |θ)p(θ), (5.22)

5.5 Bayesian Computation via Laplace Approximation

At the core of Bayesian computation is the need to, at times, evaluate mathematically intractable,

multi-dimensional integrals. With the advent of high-speed computing, the use of sampling

techniques such as Markov chain Monte Carlo (MCMC), Hamiltonian Monte Carlo (HMC), has

eliminated most of the early roadblocks that faced Bayesian computation. However, modeling

spatial fields as Gaussian processes requires operations involving the spatial covariance function

Σ and its determinant. Due to the computing capability needed for matrix operations on high-

dimensionality covariance matrices; the so-called “big n” problem [49], sampling algorithms are

slow in effectively exploring proposal distributions required to implement Bayes.

5.5.1 Integrated Nested Laplace Approximation

Based on the classical method of Laplace Approximation, in which the integrand is approximated

with a second-order Taylor-series expansion around the mode and then analytically integrated,

a version, Integrated Nested Laplace Approximations [52] has been developed. INLA is a nested

extension of classical Laplace approximations that incorporates the use of sparse matrices to the
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extent that factorization of high dimensional matrices required in spatial modeling is significantly

reduced.

In lieu of Monte Carlo sampling methods, we adopt INLA in conjunction with the stochastic

partial differential equation (SPDE) approach [53] for our Bayesian computation.

5.5.2 Stochastic Partial Differential Equations

The SPDE approach involves representing the spatial process or Gaussian Field (GF) using a

discretely indexed spatial random process such as a Gaussian Markov Random Field (GMRF)3. See

[54] for details. The approach is based on linear fractional stochastic partial differential equation,

Equation (5.23), [55]:

(κ2 − ∆)α/2(τξ(s) = W(s) (5.23)

where s ∈ Rd, ∆ is the Laplacian, α is a smoothness, κ is a positively defined scale parameter, τ

controls variance and W(s) is a Gaussian spatial process. From [55], “the exact and stationary

solution to this SPDE is the stationary GF ξ(s) with Matern covariance function. . . ” The following

expressions provide the link between the SPDE terms and the Matern covariance function of

Equation (5.16):

Smoothness;

ν = λ = α− d/2

considering the two-dimensional case, d = 2, therefore

ν = λ = α− 1

Marginal variance;

σ2 =
Γ(ν)

Γ(ν)(4π)d/2κ2ντ2

Decay rate;

φ =
κ

2
√

ν

An SPDE solution is approximated using a finite element method with a function defined on

a triangulation of the fixed spatial domain. See [55, p. 196] for further details on implementation of

3A GMRF is a Gaussian random variable with Markov properties
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the SPDE approach.

5.6 Model Performance

To enable correction of model predictions given the possibility of model uncertainty, as discussed

in, Mosleh and Droguett, [11], we formulate two simple metrics for assessing model performance.

Additionally, these two metrics will provide bookend mechanisms for comparing the model against

other possible estimation approaches.

5.6.1 Accuracy

Consider partial realization of a Gaussian process that includes location and observation data.

Using the set of process realizations, one can conceivably withhold observations from the field

and then make predictions for the locations “absent” observations. By systematically removing

single realizations and then obtaining predictions for them, a set of model performance data can

be generated.

The result is a set of actual observations and corresponding predictions had the observations

been unknown. Defining a model performance measure Ω as:

Ω = 100× (1− [Predicted− Actual]
Actual

)

For every iith prediction, we obtain a measure of model performance, Ωi, yielding a vector of

performance measures Ω. By treating Ω as a positively-defined, continuous random variable

with possible realizations [Ω1, ..., Ωn] for n pairs of model predictions and actual values, we can

implement a Bayesian approach to estimating its true value.

Let Ω ∼ Lognormal(Ωµ, σΩ) represent the prior distribution of the performance measure and

[Ω1, ..., Ωn] represent evidence, EΩ for Bayesian updating. Then joint posterior distribution of the

hyperparameters µΩ, and σΩ is:

p(µΩ, σΩ | EΩ) =
L(EΩ | µΩ, σΩ)p(µΩ, σΩ)∫

µΩ

∫
σΩ

L(EΩ | µΩ, σΩ)p(µΩ, σΩ)
(5.24)

Equation (7.9) provides a mechanism for characterizing the model uncertainty and possibly

updating predictions.
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5.6.2 Error

As a corollary to the %Accuracy, we define a simple measure for the error in model prediction.

%Error = 100× [Actual − Predicted]
Actual

This measure easily conveys the deviation of the prediction from the actual demonstrated

value. Being centered on zero, a standard normal distribution provides an excellent likelihood for

updating this measure with evidence from the five predictions.
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6 Demonstration: Estimating Color Wavelength

Although seemingly a trivial exercise to approximate the wavelength of a color based on those

of adjacent colors, we exercise our methodology in this “controlled” test where the outcomes are

well-documented to illustrate its utility to inference based on pseudo-spatial data. The data in this

exercise, obtained from Ekman’s experiment on Dimensions of Color Vision has been discussed in

Chapter 3.

6.1 Color Data

To recap, the data is a set of pairwise subjective measures of color proximity elicited from partici-

pants in Ekman’s experiment. These proximity measures yield a spatial configuration from which

color location coordinates are determined. We then combine the coordinate data with associated

color wavelengths and estimate wavelengths at “unobserved”4 locations.

6.2 Prediction Fields

We first estimate the generalization gradient or Matern correlation function parameters for the

pseudo-spatial field resulting from ordinating the opinion data. Again, note that the prediction

field, contains coordinate and observation data for all colors except for the target color. This results

in a set of 14 unique prediction fields, Field 1 through Field 14, with field-specific parameters

for each of the predictions. Figure 6.1a is the mesh triangulation of Field 5 for estimating the

wavelength of color W490, while Figure 6.1b is the equivalent field for estimating the wavelength

of color W537. The red dot marks the target coordinate location, while the black dots are color

locations with associated wavelengths included in the data.

6.3 Wavelength Estimation Results

Estimates for all 14 colors are provided in Table 6.1. From the table, it is apparent that estimates of

the 14 color wavelengths are very close to the actual associated values, albeit with some uncertainty.

This demonstrates the efficacy of the algorithm and verifies that it can provide consistently accurate

estimates.

4at unobserved locations we withold the wavelength information for the target color
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(a) Prediction Field for Color 5, 490nM (b) Prediction Field for Color 7, 537 nM

Figure 6.1
Prediction Fields for Pseud-spatial configuration of Colors

Table 6.1
Summary of color wavelength prediction results

Color ID Wavelength (nM) SD % AccuracyActual Predicted
1 434 447 10 97.00
2 445 436 9 99.54
3 465 467 8 99.57
4 472 469 8 99.36
5 490 493 32 95.55
6 504 515 21 97.82
7 537 532 49 99.07
8 555 555 20 100.00
9 584 555 20 95.03
10 600 597 20 99.50
11 610 604 15 99.02
12 628 638 9 98.41
13 651 651 7 100.00
14 674 658 12 97.63
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7 Application: Spacecraft Anomaly Prediction

We apply the framework in estimating the count of anomalies for a given mission duration for

a set of US government-sponsored space science missions to illustrate its utility in infererring

probabilistic measures of engineered systems. The plan for validation was to select a “concept”

from a family of spacecraft for which a record of on-orbit data such as anomalies and failures have

been documented. Within the family of systems, the “concept” is regarded as the system still in

development but comparable to other members of the family. Then agnostic of the demonstrated

anomaly rate for the “concept” we estimate its anomaly rate using operational data collected on the

other in-family spacecraft. Finally, we compare our estimates to the demonstrated anomaly rate for

the “concept”. Again, the “concept” system in this illustration is an operational spacecraft however

we perform our comparison with its precedents based on the early design-phase level information.

7.1 Data Collection

The methodology requires three types of information; record of anomalous behavior for the

precedent systems, design, development and use environment information, and expert opinion for

comparison. In total, we collected data on 11 individual spacecraft.

7.1.1 Spacecraft Data

7.1.1.1 Design Information The family of spacecraft selected for comparison consisted of

the nine previous space missions designed and integrated, inclusive of the concept, by a U.S-based,

internationally recognized, space mission integrator over a period of 25 years.

Information regarding the design, development, testing, and use of each spacecraft was

collected from a variety of sources. These include NASA mission websites and other public

curators of spacecraft design and mission data. However, the most pertinent source of design

knowledge came from the experts, whose familiarity with the family of spacecraft ensured an

understanding of impacts of design differences.

Of the nine individual spacecraft, there are two pair of identical designs; Spacecraft G and

Spacecraft H serve in multi-spacecraft missions, however unique records are still maintained for
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each individual. We identify them as:

• Spacecraft G.A and Spacecraft G.B

• Spacecraft H.A and Spacecraft H.B

Another significant difference between the space missions is that one of the nine, Spacecraft F, is a

deep space, transit mission while the rest are in orbit around various planetary bodies.

7.1.1.2 Anomalies The data for this case study is sourced from the Anomaly, Problem,

and Failure Reporting (APFR) database of the spacecraft developer. A redacted version of the

data is included in the Appendices. The database is used to maintain records of anomalies and

problems for each spacecraft starting from design, manufacturing, integration and test, through

launch, commissioning and on-orbit operations. For the analysis, the anomaly data used is limited

to all spacecraft anomalies recorded post-commissioning and attributed to spacecraft systems, not

instruments or payloads, for each of the missions.

Records of anomalies for operational spacecraft are typically maintained by the organization.

However, of the nine spacecraft missions considered, no performance records are available in the

current reporting system on four, Spacecraft A, Spacecraft B, Spacecraft C, and Spacecraft D. This

is due to the fact that three of the missions are totally operated by the sponsor organization rather

than the spacecraft developer, and as a result on-orbit issues are maintained at the sponsor site. The

fourth spacecraft experienced a catastrophic failure very early in its mission life and no on-orbit

performance data was collected.

Two of the remaining five missions are designed with a pair of identical spacecraft (Spacecraft

G.A, Spacecraft G.B, and Spacecraft H.A, Spacecraft H.B) maintaining similar orbits but separated

in time. Anomaly records were maintained for each individual spacecraft.

7.1.1.3 Mission Duration Mission duration is available for all the space mission considered

in this case study. The launch date, adjusted for time to orbital insertion, up till the present date

was used as the effective duration for each system.

Although launched at the same time the duration data for Spacecraft H.A, and Spacecraft

H.B slightly different. Communication with Spacecraft H.B was lost for a duration of 690 mission

days. The significance of this is discussed further in the Results Section.
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7.1.2 Expert Pool

Thirty-three experts, all employees of the integration organization, were invited to participate

in the expert elicitation process. Of the 33, invitations, there were 13 respondents. Three of the

13 respondents recused themselves from pairwise comparisons which they felt they had limited

experience to opine on. Results of the elicitation are in Appendix B. The expert data shows the

respondents and the recusal instances. To ensure diversity of opinion, the pool of invitees consisted

of the following roles from the project teams:

• Program Management

• Principal Investigators

• Mission Systems Engineers

• Spacecraft Systems Engineers

• Spacecraft Propulsion Engineers

• Guidance Navigation and Control Lead Engineers

• Electrical Power Systems Lead Engineers

• Mechanical Systems Lead Engineers

• Organization Executive Leadership

• Spacecraft Integration and Test Leads

• Mission Assurance Managers

• Spacecraft Integration Technicians

The selection of the invitees was based on two criteria; 1) the invitee had been employed by

the organization for the period during which the spacecraft were developed and 2) the invitee

participated in the development projects in an expert or lead role.

7.1.3 Expert Elicitation Process

To develop the pseudo-spatial configuration of the 9 spacecraft designs, we first elicited subjective

measures of proximity from experts in the spacecraft design and development teams. The expert

opinion elicitation process was governed by ground rules established to ensure consistency and to

minimize bias. The elicited proximity values represent intuitive yet subjective views of similarity

that were transformed to quantitative measures of similarity and dissimilarity for the purpose of

data analysis. Respondents were asked to rank the similarity between each pair of spacecraft based

on the scales of values for similarity in given in Table 7.1.

Additionally, they were asked to consider the 8 minimum factors as part of their evaluations.
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Table 7.1
Scale of Values for Similarity

Value Similarity Implication
1 Absolutely Different
2 Different
3 Different w/minor applicability of lower level elements
4 Different w/significant applicability of lower level elements
5 Interchangeable design solution
6 Interchangeable; few identical elements
7 Interchangeable; many identical elements and implementation schemes
8 Interchangeable; many identical elements, components and implementation schemes
9 Identical

These minimum factors, Table 7.2, represent a qualitative aggregation of all 42 contributory factors

at the fourth level of the system hierarchy. Table 7.3 is one expert’s responses on the pairwise

comparison. The full set of attributes, including all 42 at the lowest level of the hierarchy, are

shown in Appendix E.1.

Table 7.2
Minimum factors for pairwise comparison of spacecraft

1. Institutional philosophy on design
2. Institutional philosophy on integration and testing
3. Quality management and reliability approach
4. State of maturity of technologies used in the design
5. Effectiveness of adopted failure mitigating approaches
6. Relevant technical expertise of the project team
7. Expertise of leadership and management
8. Environmental factors and overall mission design

Table 7.3
Pairwise comparison of 9 spacecraft from Expert 33

Spacecraft A B C D E F G H I
A 9.00 7.00 7.00 6.00 4.00 5.00 3.00 5.00 6.00
B 7.00 9.00 8.00 7.00 5.00 6.00 4.00 6.00 7.00
C 7.00 8.00 9.00 7.00 5.00 6.00 4.00 6.00 7.00
D 6.00 7.00 7.00 9.00 6.00 8.00 5.00 7.00 8.00
E 4.00 5.00 5.00 6.00 9.00 6.00 5.00 8.00 7.00
F 5.00 6.00 6.00 8.00 6.00 9.00 5.00 7.00 8.00
G 3.00 4.00 4.00 5.00 5.00 5.00 9.00 6.00 6.00
H 5.00 6.00 6.00 7.00 8.00 7.00 6.00 9.00 7.00
I 6.00 7.00 7.00 8.00 7.00 8.00 6.00 7.00 9.00

With the 36 pairwise comparisons of the 9 spacecraft within the family of systems, we

determined the average ranking for each pair from the rankings of all the respondents. We then

used the average similarity, Table 7.4 value for each pair as the single subjective measure of

proximity.

For implementation of non-metric multidimensional scaling, we converted the average prox-
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Table 7.4
Average similarity rankings from all responding experts

Spacecraft A B C D E F G H I
A 9.00 4.48 5.14 4.36 3.15 2.95 4.24 4.62 3.98
B 4.48 9.00 5.28 3.98 4.12 3.43 3.68 4.00 4.82
C 5.14 5.28 9.00 5.61 4.82 4.09 3.31 4.24 4.81
D 4.36 3.98 5.61 9.00 5.22 5.76 3.83 4.67 5.38
E 3.15 4.12 4.82 5.22 9.00 5.44 3.46 4.94 4.24
F 2.95 3.43 4.09 5.76 5.44 9.00 3.49 4.47 4.13
G 4.24 3.68 3.31 3.83 3.46 3.49 9.00 5.15 4.14
H 4.62 4.00 4.24 4.67 4.94 4.47 5.15 9.00 4.43
I 3.98 4.82 4.81 5.38 4.24 4.13 4.14 4.43 9.00

imity measures into normalized dissimilarities as follows. First for our rank-ordered proximity

measures are converted to dissimilarities by inverting each;

Dissimilarity, δ′ij =
1

ProximityMeasure

We then normalize δ′ij to a range [0, 1] by rescaling as follows;

δij =
δ′ij −min(δ′ij)

max(δ′ij)−min(δ′ij)

Table 7.5 shows the resultant normalized dissimilarities elicited from our experts. This matrix,

generated from the rank-ordered average proximty measures from all respondents, is the key input

to the ordination process.

Table 7.5
Matrix of normalized subjective measures of dissimilarity, δi,j among spacecraft

Spacecraft A B C D E F G H 1
A 0.000 0.492 0.368 0.519 0.907 1.000 0.548 0.463 0.615
B 0.492 0.000 0.344 0.616 0.580 0.792 0.705 0.611 0.424
C 0.368 0.344 0.000 0.295 0.424 0.587 0.841 0.548 0.426
D 0.519 0.616 0.295 0.000 0.354 0.274 0.659 0.454 0.330
E 0.907 0.580 0.424 0.354 0.000 0.320 0.782 0.402 0.548
F 1.000 0.792 0.587 0.274 0.320 0.000 0.771 0.494 0.577
G 0.548 0.705 0.841 0.659 0.782 0.771 0.000 0.365 0.574
H 0.463 0.611 0.548 0.454 0.402 0.494 0.365 0.000 0.504
I 0.615 0.424 0.426 0.330 0.548 0.577 0.574 0.504 0.000

7.2 Pseudo-spatial Configuration of Spacecraft Designs

With the normalized dissimilarities in Table 7.5 serving as our input distance matrix we

performed nonmetric multidimensional scaling using the Stress Majorization of a Complicated

Function (SMACOF)[56] method. The transformation of dissimilarities in the input distance
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matrix into the configuration distances preserves the rank order of the dissimilarities which

are initially recorded on an ordinal scale. The resulting configuration of spacecraft designs

is given in Figure 7.1. We regard this perceptual map as a pseudo-spatial configuration of

entities with quantifiable Euclidean separation distances, location coordinates, and location-specific

measurements or observations (in the form of demonstrated anomalies) that can collectively be

described by a spatial Gaussian process.

Figure 7.1
Spacecraft Configuration resulting from NMDS

The NMDS provides a number of different output. As we previously discussed, coordinates

along each dimension of the acceptable solution is available in the output. In this particular case

we accept the 3-dimensional solution due to the fact that it results in a Kruskal Stress value of

0.05622501, just above Kruskal’s recommendation of 0.05 for a good fit. This is shown in the Scree

Plot. Figure 7.2.
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Figure 7.2
Scree Plot

From Figure 7.1, it is apparent that each spacecraft occupies a location space in the pseudo-

space, with the exception of the set of identical pairs, Spacecraft H and Spacecraft G. These pairs

have the same coordinates and therefore coincide in space. In Figure 7.1, we show the 2 dimensional

representation of the space. Coordinates along Dimension 3 are used as altitude markers in the

pseudo-spatial analysis.

The ordination solution, determined through NMDS, results in the ordination distances listed

in Table 7.6. We treat these distances as quantitative measures of similarity between spacecraft with

respect to the probabilistic measure of interest.

Table 7.6
Spacecraft coordinates in pseudo-spatial solution

X Y Z
Spacecraft A -0.63 -0.10 -0.33
Spacecraft B -0.46 -0.48 0.36
Spacecraft C 0.00 -0.55 -0.11
Spacecraft D 0.22 -0.15 -0.35
Spacecraft E 0.63 -0.11 0.16
Spacecraft F 0.72 0.19 -0.28
Spacecraft G -0.51 0.79 0.18
Spacecraft H -0.01 0.42 -0.10
Spacecraft I 0.05 -0.02 0.47
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7.3 Bayesian Parameter Estimation

Resulting from the ordination of subjective proximity measures are a set of coordinates that locate

specific spacecraft designs in the collective psychological space of experts as seen in Figure 7.5.

Recall that our primary objective is prediction of a response at an unobserved location given a

set of locations and location-specific observations. However, to enable inference, we must first

estimate the parameters of the pseudo-spatial process represented by our spacecraft 2-dimensional

configuration. Equation (5.22) is the two-stage hierarchical Bayesian expression for estimating these

parameters.

Equation (5.1) denotes the pseudo-spatial process associated with the occurrence of anomalies

at point locations in the spacecraft spatial configuration. Since the observations in this particular

example represent counts of anomalies, the parameter of interest is the average number of anomalies

for over the duration of the mission. We define the distribution of the observations as:

yi ∼ Poisson(λi)

where the Laplace approximation of the Poisson distribution is performed via INLA and λi is

related to a linear predictor, ηi via a logarithm link function:

ηi = log(λi) = β0 +
M

∑
m=1

βmxim + W(xi) + ε(xi)

where β is the vector of regression coefficients and xim is the value of the mth covariate for the ith

spacecraft. The covariates or response predictors in our Poisson regression model are the location

coordinates which characterize the pseudo-spatial field, and the mission duration.

For the case study, we specify the single covariate “Duration” and the spatial field effect.

Again, the target of our Bayesian regression effort is estimating the regression coefficients and the

parameters of the pseudo spatial field to enable inference of response at unobserved coordinate

locations.

ηi = β0 + β1 · Duration + W(xi) + ε(xi)

Finally we select a Matern correlation function for ρ(H(φ)) for the covariance matrix of W(xi),

and then group the collection of model parameters and hyper-parameters in the vector,

θ = {β, τ2, σ2, φ}
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and choose independent priors for p(θ) such that

p(θ) = p(β)p(σ2)p(τ2)p(φ)

thus completing the model specification. Figure 7.3 is the graphical representation of the model for

Bayesian estimation of the parameters.

Figure 7.3
Model for estimation of pseudo-spatial field paramters

We choose vague priors for the regression coefficients β and the pseudo-spatial field parameter.

Specification of the priors for the parameters and hyper parameters is done within the R-INLA

environment using the parameterization given in [55] and the expressions relating the SPDE terms

to the Matern parameters. Equations (7.1) and Equation (7.2) give the prior distributions used in

the Bayesian estimation, while the anomaly data set (the realization of the pseudo-spatial process)

is provided as Appendix D.

By setting the internal R-INLA paramaters, θ1 and θ2, to Normal(0, 1), the folowing priors are

derived for the SPDE parameters, κ and τ, and the set of relationships between these parameters

and the Matern correlation function are provided in Section 5.5.2;

κprior ∼ Lognormal(−0.58, 1.01) (7.1)

τprior ∼ Lognormal(−0.68, 1.42) (7.2)
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We subsequently estimate the posterior marginal distributions of each parameter using

Integrated Nested Laplace Approximation (INLA) of stochastic partial differential equations (SPDE)

using the R script in Appendix C.2.

Owing to the nature of the data, there are several different partial realizations of the process.

This is due to the fact that the parameters of the pseudo-spatial field can be estimated by any

combination of the spacecraft. We focus the parameter estimation on the pseudo-spatial field for

five specific configurations; for each configuration, we hold one particular design as the target

prediction location while the remainders are the source locations where observations are made.

This allows post-inference comparison of the predicted response against the actuals recorded for

the target in each field.

Table 7.7 lists the summary statistics of the marginal posterior distributions of the parameters

and the regression coefficients of the model, while Figure 7.4 presents visualization of the posterior

probability distributions. The five subtables and subplots, Table 7.7a, through Table 7.7e, and Figure

7.4a, through Figure 7.4e, respectively, represent the summaries for each of the five variations of

the field. In each variation, anomaly information is withheld from the model, effectively altering

the partial realization of the pseudo-spatial process.
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Table 7.7
Posterior estimates (mean, standard deviation and quantiles for spatial parameters)

(a) Posterior parameters of Field 1

Parameter mean sd 2.50% 97.50%
τ 0.21 1.71 0.07 0.56
κ 0.79 1.97 0.21 3.02
r 3.57 1.97 0.94 13.50
σ2 2.39 3.26 0.24 25.21
β0 1.00 8.33 −17.49 18.95
β1 0.0008 0.0003 0.0003 0.0014

(b) Posterior parameters of Field 2

Parameter mean sd 2.50% 97.50%
τ 0.32 1.88 0.08 0.97
κ 0.71 2.11 0.17 3.20
r 3.98 2.11 0.88 16.52
σ2 1.31 3.64 0.11 17.24
β0 1.32 7.84 −15.99 18.14
β1 0.0007 0.0002 0.0003 0.0013

(c) Posterior parameters of Field 3

Parameter mean sd 2.50% 97.50%
τ 0.21 1.65 0.07 0.53
κ 0.78 1.95 0.21 2.90
r 3.65 1.95 0.97 13.44
σ2 2.52 3.19 0.26 25.18
β0 0.70 8.54 −18.25 19.16
β1 0.0008 0.0003 0.0003 0.0014

(d) Posterior parameters of Field 4

Parameter mean sd 2.50% 97.50%
τ 0.25 1.65 0.09 0.61
κ 0.69 1.90 0.19 2.40
r 4.13 1.90 1.19 14.81
σ2 1.97 3.09 0.23 19.26
β0 2.61 8.39 −16.05 20.34
β1 0.0004 0.0004 −0.0004 0.0012

(e) Posterior parameters of Field 5

Parameter mean sd 2.50% 97.50%
τ 0.23 1.63 0.08 0.56
κ 0.89 2.07 0.22 3.78
r 3.18 2.07 0.75 12.99
σ2 1.64 3.43 0.14 18.25
β0 0.73 7.46 −15.45 16.57
β1 0.0009 0.0003 0.0004 0.0015

Posterior marginals of parameters of each field variation are extremely consistent with each

other indicating that a fairly stable field has been established for the family of spacecraft. This

observation is consistent with the fact that the Kruskal Stress of the ordination solution is within

the acceptable range of ≤ 0.05. The largest discrepancy in the posterior marginals is observed

in the τ parameter; recall that τ, the nugget, is a measure of non-spatial effect variance which is

included in the Matern covariance to capture measurement error. Notice the minimal dispersion of

the spatial effect variance parameter, σ in Figure 7.4b.
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(a) Posterior marginal distributions of tau (b) Posterior marginal distributions of sigma

(c) Posterior marginal distributions of the range (d) Posterior marginal distributions of kappa

(e) Posterior marginal distributions of b0

Figure 7.4
Posterior marginal distributions of model parameters for all five variations of the pseudo-spatial field
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7.4 Anomaly Prediction

To proceed with prediction of the response, i.e. the number of anomalies for a given design, we note

that the spatial field parameters were estimated without the actual observations at the validation

(concept design) location. In the input data set, the concept anomaly count is withheld so as to not

influence the prediction.

With the intent of generating predictions for each spacecraft that could be compared with

actual anomaly counts, the prediction process was repeated five times using the five variations of

the pseudo-spatial field, for a total of six predictions. We run five predictions since Spacecraft G.A

and G.B, and Spacecraft H.A and H.B pairs of identical designs.

7.4.1 Prediction Locations

For each of the five prediction runs, we selected a particular spacecraft (or identical pair in the

case G and H) as the validation or concept design and withheld its response from the data set.

The locations and duration of the four missions that have no anomaly records are also maintained

in the spatial process since their locations are part of the fixed study area. However, this has no

effect on the inference of the spatial process parameters because every instance of the process

additionally requires the associated observations at that location.

Figure 7.5 is the visualization of the R-INLA mesh triangulation of the five field variations.

We distinguish the prediction target locations from the source locations as follows:

• the black dots are the source locations used to characterize the parameters of the field

• the red dot in each field is the prediction location, where anomaly/response information has

been withheld

• the yellow dots represent the locations of spacecraft with no anomaly records
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(a) Field 1 - Spacecraft E (b) Field 2 - Spacecraft F

(c) Field 3 - Spacecraft G.A and G.B (d) Field 4 - Spacecraft H.A and H.B

(e) Field 5 - Spacecraft I

Figure 7.5
Mesh prediction fields for all five variations of the pseudo-spatial field
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7.4.2 Sensitivity

We tested the sensitivity of the model to a range of conditions. By adjusting the priors on the

parameters of the spatial field while leaving the dissimilarity matrix (input to the ordination process)

constant. As expected, changes to the posterior marginal distributions of the field parameters

and the expectations of anomaly are observed. This is typical in Bayesian analysis, where the

reassignment of crediblity is dictated by the strength of both the evidence and the prior. In this

example, however, our focus is on determining if subjectively created spatial fields can lend to

location-specific inference. We leave as future work, the study of the implicit relationship between

the input to ordination and the parameters of a spatial solution.

Testing the sensitivity of the predictions to the dissimilarity input, we note an influence on

the mean predicted anomalies. These changes first manifest as alternative spatial solutions from

the ordination of opinion data. The variability of the result is expected given that a totaly new

Gaussian spatial process would result from assigning observations to the coordinates of this new

pseudo-space. Consequently, we focus the rest of the assesment on investigating this sensitivity to

uncover any attendant implications.

We anticipate that increasing the number of complete instances of the process, i.e. locations

together with observations, will significantly improve the model’s performance. Essentially adding

more precedent spacecraft together with their anomaly records will better populate the field and

increase the accuracy of the kriging interpolation.

Recall that the distance matrix is an aggregation of the subjective opinions of several experts.

We subdivide the responding experts based on area of expertise and use one subgroup’s aggregated

dissimilarity scores to create other spatial configurations and then perform further pseudo-spatial

inference.

Of our pool of experts, Mission System Engineers and Spacecraft Systems Engineers are the

most conversant with all aspects of a a spacecraft by virtue of their role. These engineers are

conversant with all spacecraft systems in contrast with subject matter experts such as subsystem

lead engineers. With this in mind, we filter the expert opinion data and limit the input to responses

from only the Systems Engineers in our pool, forming a sub-group of 10. This effectively provides

us with alternative spatial solutions with which to test the model’s sensitivity.

Repeating the data preparation process, we recreate the pseudo-spatial configuration based

on this Subgroup. Figure 7.7 shows the resultant configuration from ordination of the Subgroup

opinion data. Figure 7.8 is the Scree Plot from ordination of the sub-group opinion data. The
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3-dimensional solution lies just outside the range of Kruskal’s recommendation for a “Good” fit

with a Stress value of 0.061. As a result we select the 4-dimensional solution, again setting the

coordinates along Dimension 3 as altitude markers, and discarding Dimension 4 as signal noise.

It is apparent in Figure 7.6, the ordination plot for all seven dimensions, that the configuration

solution becomes relatively stable beyond the fourth dimension. This indicates that the Kruskal

Stress can no longer be significantly reduced by adding dimensions.

Figure 7.6
Spacecraft configuration resulting from NMDS using all expert opinion
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Figure 7.7
Spacecraft configuration resulting from NMDS using sub-group expert opinion
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Figure 7.8
Scree Plot: Sub-group Ordination

7.4.3 Model Prediction Accuracy

To measure the model’s accuracy, we derive a simple expression for percent accuracy. This allows

us to compare improvements in prediction as we introduce changes in the spatial field.

Ω = %Accuracy = 100× (1− [
|Predicted− Actual|

Actual
]) (7.3)

7.4.4 Model Performance Measure Updating

In the previous chapter, we introduced a Bayesian process for describing the uncertainty in the

model’s performance. We proposed using a comparison between actual anomalies and predicted

anomalies evidence for updating a vague prior on the performance measure. In this spacecraft

example, we define the performance measure Ω by Equation (7.3).

Figure 7.9 depicts the directed acyclic graph for the Bayesian updating of the model perfor-

mance measure given the five instances.
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Figure 7.9
Bayeian DAG for performance measure updating

The posterior distribution of the performance measure parameters given the evidence, Ω =

{Ωi : i = 1, .., 5} is:

p(µΩ, σΩ|Ω) ∝ L(Ω|µΩ, σΩ)× p(µΩ, σΩ) (7.4)

We specify a Lognormal likelihood on the performance measure with a logarithmic mean,

µΩ, and a logarithmic standard deviation, σΩ. Under assumption of independence between the

parameters, we choose a diffuse normal prior for the parameter, µΩ with hyperparameters µ, σ,

and wide uniform prior on σΩ with hyperparameters l, h.

Figure 7.10 and Figure 7.11 show histograms of MCMC samples generated from simulations

of the posterior distributions of the mode, mean, and standard deviation of the performance

measure, while Figure 7.12. The JAGS code for the model is attached as an Appendix.
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Figure 7.10
Histogram of posterior mode and mean distribution samples

Figure 7.11
Histogram of posterior standard deviation distribution samples
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Figure 7.12
Histogram of samples from posterior distributions of hyperparmeters

7.5 Prediction Results

Table 7.8a lists the predicted mean anomalies for each spacecraft in the 5 fields based on the pseudo-

space generated with input from all the respondents, while Table 7.8b shows the predictions using

the ordination results from the sub-group. These results are from the Gaussian approximations of

the Poisson distribution of anomalies, hence the fractional values instead of discrete numbers as

would be expected from a Poisson. For sufficiently large values of the mean, the normal distribution

is a good approximation of the Poisson, with a variance equal to the mean.

Comparison of the results in both tables shows a general increase in prediction accuracy

when using expert opinion from the sub-group particularly for the Spacecraft E prediction.

The posterior Poisson distributions of the predicted anomalies for each spacecraft is shown

in Figure 7.14. The blue line is the predicted mean while the red line marks the actual recorded

number of anomalies. Predictions for Spacecraft F is poor in both cases and merits further analysis.

For Spacecraft E, the performance improves significantly switching from the total group opinion

input to the sub-group.
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Table 7.8
Summary of prediction results

(a) Results from entire group of experts

Spacecraft Duration Anomalies
Actual meanPred % Error % Accuracy

E 3922 163.00 107.98 33.76 0.66
F 4088 224.00 168.26 24.88 0.75
G.A 1673 16.00 9.63 39.80 0.60
G.B 1673 14.00 9.63 31.20 0.69
H.A 3808 67.00 63.97 4.52 0.95
H.B 3118 31.00 49.85 -60.80 0.39
I 5592 125.00 468.16 -274.52 -1.75

(b) Results from sub-group of experts

Spacecraft Duration Anomalies
Actual meanPred % Error % Accuracy

E 3922 163.00 167.45 -2.73 0.97
F 4088 224.00 158.41 29.28 0.71
G.A 1673 16.00 11.94 25.39 0.75
G.B 1673 14.00 11.94 14.73 0.85
H.A 3808 67.00 65.07 2.89 0.97
H.B 3118 31.00 49.11 -58.43 0.42
I 5592 125.00 125.27 -0.22 1.00
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Figure 7.13
Posterior distributions of expected anomalies using all opinion data
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Figure 7.14
Posterior distributions of expected anomalies using all opinion data
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Figure 7.15
Posterior distributions of expected anomalies using SubGroup opinion data

97



Figure 7.16
Posterior distributions of expected anomalies using SubGroup opinion data

98



7.6 Comparison with Point-Estimate of Population Mean

To compare the performance of our methodology against a simple estimate of the expectation

of anomalies we treat the family of spacecraft as a homogeneous population and calculate an

average. For a total of 640 anomalies from seven spacecraft, the population average is 91 anomalies.

Comparing this expected value with the actual anomalies recorded for each spacecraft in Table 7.8

reveals how poorly such a point-estimate performs. Our methodology, on the other hand, estimates

the individual mean anomalies with a much higher degree of accuracy for most of the spacecraft.

7.7 Alternative Trend Models

In reliability engineering, failure is typically regarded as an inevitable function of time; the longer

a system operates, the higher the chances of it failing. This same trend is seen in the results of our

model where the number of anomalies clearly increases as a function of mission duration. Given

the anomaly and duration data in Table 7.8, we investigate other possible regressions, using the

mission duration as the only explanatory variable in order to compare against our results.

7.7.1 Linear Trend

We first assume a linear trend fit to the data, as shown in Figure 7.17 and determine point estimates

for the trend line parameters. Similar to the unique prediction fields for the pseudo-spatial analysis,

the paramaters for the linear fit must be determined for each variation of the data set. That is, we

must withhold the prediction point from the data set, estimate the trend line parameters, and then

estimate and compare against the recorded number of anomalies. The Microsoft Excel© workbook

for this is attached as Appendix F.

The results of the linear trend of anomalies as a function of mission duration is provided in

Table 7.9. We also include the %Error associated with the prediction to enable comparison with the

results from our pseudo-spatial trend.

7.7.2 Exponential Trend

We performed an exponential regression using the anomaly and duration data to round out the

comparison against the performance of the pseudo-spatial model results. Similar to the linear

trend, the coefficient and exponent parameters of the exponential fit lines are determined as point

estimates for each of the five variations of the field. We provide the Microsoft Excel © worksheet
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Figure 7.17
Linear fit to spacecraft anomaly data

Table 7.9
Anomaly prediction using a linear trend

Spacecraft Duration Anomalies
Actual Linear Prediction LP Accuracy %Error

E 3922 163 101.92 0.63 37.47
F 4088 224 95.27 0.43 57.47
G.A 1673 16 47.44 -0.97 -196.50
G.B 1673 14 47.44 -1.39 -238.86
H.A 3808 67 114.91 0.28 -71.51
H.B 3118 31 88.25 -0.85 -184.68
I 5592 125 244.77 0.04 -95.82

for this estimation as Appendix F.

Figure 7.10 below is the exponential curve fit to the entire data set. Again, for each prediction,

the target location is witheld from the data set prior to estimation and used only to assess the

percentage error associated with the prediction.

Table 7.10 provides the set of predictions based on the data-specific exponential fit parameters.

7.8 Discussion

Bearing in mind that within the expert elicitation ground-rules, we relaxed the fidelity of the

evaluation by reducing the dimensions of comparison from 42 to 8, the predictions for each

spacecraft still falls well-within the one-order of magnitude target of the framework.
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Figure 7.18
Exponential curve fit to spacecraft anomaly data

Table 7.10
Anomaly prediction using a exponential trend

Spacecraft Duration Anomalies
Actual Exp Pred EP Accuracy %Error Exp

E 3922 163 71.49 0.44 56.14
F 4088 224 75.28 0.34 66.39
G.A 1673 16 32.74 0.05 -104.63
G.B 1673 14 32.74 0.34 -133.86
H.A 3808 67 84.25 0.74 -25.75
H.B 3118 31 52.68 0.30 -69.94
I 5592 125 617.44 2.94 -393.95

From the model predictions using the sub-group data, we observe an improvement in the

%Accuracy and a reduction in the %Error of the mean predicted anomalies. This finding indicates

that the comparison process should be vetted to ensure expertise is applicable across all dimensions

of comparison. The proposed methodology is fundamentally driven by the goodness or accuracy

of the expert input as evidenced by the sensitivity of the ordination solution to the dissimilarity

matrix. By limiting the input to experts with broader-range expertise, enough to cover all pertinent

attributes, we have improved the accuracy of the results. This suggests a potential trade between

the degree of expertise sought and the desired depth of the comparison, but with the caveat that

the comparison be limited to the specific attribute in question. The hierarchical taxonomy provides

a structure to ensure that even such targeted comparison output can be upwardly incorporated in
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the overall assessment by virtue of its representation of the system.

The results from predictions suggest that there is indeed an underlying symbiance between

the psychological space that subjectively creates proximity measures and applicability of hard data.

We are extremely encouraged by these findings.

Comparing the performance results of the pseudo-spatial model with the linear trend and

exponential trend, shown in Table 7.115, it is apparent the pseudo-spatial model, particularly the

sub-group model, performs better in the five cases tested. By accounting for the pseudo-spatial

correlation determined based on subjective opinion, our model improves on more traditional re-

gression methods. While these regression approaches could conceivably include more explanatory

variables to improve accuracy, the pseudo-spatial process is unique in that it provides a method-

ical approach to encoding the amorphous concept of subjective measures of system proximity.

Additionally, we recognize the shortcomings of conducting point-estimation of the linear and

exponential trend parameters; a fuller picture of the comparison may be obtained via Bayesian

regression such that the attendant parameter uncertainty is also characterized. We defer these

activities since our interest is in a quick comparison of expected performance.

Table 7.11
%Error Comparison; lower absolute values indicate smaller error

Spacecraft % Error PSM % Error PSM-SubGroup %Error (LP) %Error Exp
E 33.76 -2.73 37.47 108.09
F 24.88 29.28 57.47 -17.66
G.A 39.80 25.39 -196.5 36.21
G.B 31.20 14.73 -238.86 52.78
H.A 4.52 2.89 -71.51 36.19
H.B -60.80 -58.43 -184.68 3.91
I -274.52 -0.22 -95.82 99.92

An anecdotal detour; initial predictions for Spacecraft I estimated an average count of

anomalies of 156 over its mission duration, however the actual number of anomalies recorded

over the same duration in the database was eight. On discussing this discrepancy with the

mission developer’s chief engineer, who also was the mission systems engineer for Spacecraft I,

we discovered that within the reporting system, a total of 117 anomalies and failures had been

nested within other reports, effectively masking them from initial review of the data. The spacecraft

maintains an orbit in which it is periodically exposed to increased harsh environments and as

result certain anomalies reoccur. With the adjustment of the anomaly count and based on the

associated error with this prediction has been significantly reduced.

5PSM: Pseudo-spatial model, EP: Exponential Predictor, LP: Linear Predictor
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8 Limitations and Future Work

A number of elements impacted the course of this research. Of significance was the choice to

aggregate the primary input to the spatial ordination given the eventual sensitivity of the results to

its value. This is rather contrary to the Bayesian paradigm where every attempt is made to use all

relevant evidence. The distance measure itself ought to reflect the variability in opinion such that a

distribution of ordination solutions can be obtained. While Bayesian ordination is gaining ground,

combining its results with the spatial modeling produces another challenge, hence the choice to

adopt a singular representation of the pseudo-space.

In using the SPDE via Integrated Nested Laplace Approximations, we traded computing

efficiency for a more intuituve handling of the Bayesian process. Although the transformation of the

correlation function parameters to the SPDE parameters is explicitly defined in the literature and

addressed in this discourse, the consequence of multiple transformations necessitate the assumption

of independence to simplify the process. This limitation, though, is purely an implementation issue

that can be addressed with a deeper study into the relationship between the dissimilarity matrix

and the Matern parameters of the pseudo-spatial field.

From a qualitative perspective, the choice to condense the dimensions of comparison was

made to ensure adequate number of participants in the study. From the results of the sub-group

analysis, we believe that a more comprehensive assessment would have provided even better results.

But we adusted our expectations based on the fact that the method must work with minimal input.

Eliciting evaluations on 36 pairs of systems across 42 attributes may have led to no affirmative

responses to our elicitation invitation based on the daunting scope of performing 1512 pairwise

comparisons. Developing a process for evaluation of the importance of attributes to aid in reducing

the pairwise comparisons, even with stated pertinence to the context of comparison, would be of

benefit in consolidating attributes.

The methodology presented in this research provides a tool for assessing the relevance of

information across variants of any engineered system such that probabilistic assessment of any

conceptual variant can be conducted by quantifying similarity. The framework however can serve as

a springboard for integrating other analysis elements that would fill some of the stated limitations.

Hence motivated by the foregoing revelations of issues encountered in this study, we present a few

possibilities for expanding on and improving the resultant methodology.
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8.1 Bayesian Ordination

Key to the success of the method is the expert judgment with which to formulate the pseudo-spatial

configuration of the family of systems. Our assessment of the sensitivity of the model results

indicate that variability of the pseudo-space resulting from the opinion data is a significant driver of

the results. In seeking to capture the uncertainty due to the possible variations in the pseudo-spatial

configuration, we turn Bayesian inference once again.

By treating the pairwise elements of the dissimilarity matrix that is fed into the ordination

process as random variables, and implementing a Bayesian multidimensional scaling, one can

generate a probability density of possible ordination plots. Such a probability density will contain

the uncertainty propagated through the random-valued pairwise dissimilarity measures.

8.2 Integration of Metrically and Subjectively Derived Psuedo-spatial Config-
urations

Another aspect of the methodology is the integration of metric measures of similarity with

subjectively derived distance measures. Metric attributes pertinent to the context of comparison

can be directly compared to determine degree of similarity. This would yield dissimilarity matrices

that can then be used in metric multidimensional scaling.

We have focused so far on using psychological measures of proximity to build a dissimilarity

structure, an extension of the methodology would develop an integration scheme that would result

in a pseudo-spatial configuration derived from both metric and nonmetric ordination.

8.3 Bayesian Importance Analysis of Comparison Attributes

We also envision incorporating a probabilistic treatment of the importance of attributes in inter-

variant comparison. By ascribing degrees of importance to different attributes or attributes with

respect to the context of comparison, one can potentially attenuate the impact of those attributes

on the results, or altogether eliminate them from the assessment. The degree of importance could

be handled as a random variable updated with evidence through a Bayesian process.
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9 Conclusion

On the premise that there exists a single metric of proximity between all manner of things when

contextually compared, we sought to develop a methodological and systematic approach for

inference based on historical information convinced that such a metric would determine the

appropriateness of the information. With the seminal work of Roger N. Shepard on the universal

law of generalization in psychological sciences serving as a springboard for our investigation, we

proposed that the concept of a psychological space is valid in assessing proximity of engineered

systems.

In advancement of our research, we first ascribe the learning and adaptation elements

attendant in the mapping of stimulus-response processes in behavioral sciences to the human design

engineering context. The link being that a designer implicitly imparts, albeit indirectly, learning on

exisitng engineered systems such that the systems gradually evovle over time. These existing, or

conceptual, systems represent comparable stimuli that can be mapped to demonstrated behavior or

responses such that, as system designs become more similar, the chances of generalizing behavior

from one to another increases. With the foregoing, our task crystallized into the quantification of

proximity between stimuli as a singular metric in psychological space, and utilizing the invariant

exponential law of spatial relatedness to aid the inference or response mapping endeavor.

This thesis, has furthered exisiting work in the area of generalization and behavior mapping

by demonstrating that inferential analysis on engineered systems, when informed largely by

subjective but expert, human judgement, can lead to valid quantitative results. Along the way, we

have developed an assessment framework for using historical information in probabilistic analysis

in which demonstrated behavior informs future behavior. The critical input to the framework are

the rank-ordered proximity values which enable the construction of a geometric representation of

psychological space, which subsequently bridges the gap between the physical and the conceptual.

Combined with potential areas of future research discussed previously, we foresee the

expansion of our methodology in several applications of risk analysis in early design. Numerous

instances abound of the use of subjective input in characterizing the applicability of information.

Often times, these devolve into making educated cases. While not necessarily a poor estimation

strategy, the lack of mathematical rigor in ascribing the “guess”, coupled with potentially high

consequences of ill-informed guesses, entrench the demure attitude of large scale development

projects towards such opinion-based methods of risk assessment.

By demonstrating the viability of our methodology, we have established a traceable and
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structured process for assessing risk with very limited design information, but with adequate design

know-how. To introduce a mathematical formalism to the guessing process, we deconstructed

the problem into elementary parts, adopted proven but seemingly out of context methods for

addressing each element, and finally, leveraged the elegance of Bayesian theory to re-integrate the

elements into a functional framework.

In closing, it is our belief that through the use of pseudo-spatial models of comparable

engineered systems, development projects faced with the heightened risk of conceptual design

phase, coupled with the uncertainty of new technology, will be equipped to, non-comittally, and

for a fraction of the cost of traditional feasibility studies, obtain a high-level understanding of risk.
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A Elicitation Invitation

Good afternoon,

I am writing to request your participation in a brief survey intended to elicit your opinion on

the degree of similarity between a selection of redacted designed and built spacecraft. Your years

of experience at redacted and the varying degrees to which you have participated on spacecraft

development projects will ensure the completeness of the survey data, hence my appeal.

Although I have received approval from redacted to conduct this survey, the effort is not tied

to any redacted project. The data collected will be used to validate the results of my research in the

use of psychological/intuitive measures of proximity in characterizing the spatial relationship of a

family of complex systems. The effort is not a referendum on the soundness of redacted-designed

spacecraft and all references to sponsors, projects, and survey participants will be redacted in my

dissertation and any other publications.

The survey question, your opinion of the similarity on a scale of 1 to 9 between 36 pairs of

spacecraft, will take approximately 45 minutes to complete. Please email me confirmation of your

willingness to participate and I will provide you with the survey material.

I sincerely hope that you will agree to participate and I look forward to sharing the details

and results of my research with you. Thank you to those that have already committed their time to

this effort.

Sincerely, Obi Ndu
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B Elicitation Results

X Pair.ID Expert.1 Expert.2 Expert.3 Expert.15 Expert.16 Expert.17

Pairs NA x x x x x x

A-B 1 7 6 4 4 2

A-C 2 8 5 4 7 3

A-D 3 8 5 7 4 2

A-E 4 8 2 3 5 2

A-F 5 6 2 3 4 2

A-G 6 7 6 6 5 1

A-H 7 7 8 7 5 1

A-I 8 7 5 3 5 2

B-C 9 6 5 2 5 8

B-D 10 6 3 4 3 2

B-E 11 6 5 4 5 3

B-F 12 7 1 3 4 2

B-G 13 8 6 4 4 1

B-H 14 7 5 4 4 1

B-I 15 7 8 3 4 2

C-D 16 8 6 7 7 4 3

C-E 17 8 4 7 5 5 3

C-F 18 6 3 6 5 5 3

C-G 19 7 3 3 4 4 2

C-H 20 7 3 6 5 5 2

C-I 21 7 4 7 6 5 4

D-E 22 8 3 7 8 5 3

D-F 23 6 3 8 6 6 7

D-G 24 7 3 3 4 4 2

D-H 25 7 3 6 5 4 2
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Expert.20 Expert.25 Expert.28 Expert.30 Expert.31 Expert.32 Expert.33

x NA x x x x x

5 4.33 4 5 1 7

7 4.50 5 5 1 7

2 4.00 3 5 2 6

1 2.67 2 4 1 4

1 3.50 1 4 1 5

4 3.67 1 4 6 3

6 3.83 2 5 1 5

4 3.83 3 4 1 6

4.83 4 7 3 8

4.33 2 6 2.5 7

3.17 2 5 3 5

3.33 1 5 2 6

3.83 1 4 1 4

4.00 1 5 3 6

4.17 3 5 5 7

6 4.83 7 5 2.5 7

4 3.67 6 5 4 3 5

3 4.17 3 5 3 1 6

2 4.00 2 5 1 2 4

3 4.17 2 6 3 3 6

4 4.50 4 5 3 2 7

4 3.17 7 6 2.5 6

3 4.17 4 7 7 8

3 4.00 3 6 2 5

5 4.50 3 7 2.5 7

109



C Algorithms

C.1 Spacecraft Ordination via SMACOF

The following redacted R code, was developed using the SMACOF package, [@DeLeeuw2009]

##----SpacecraftSMACOFchunk----

graphics.off()

rm(list=ls(all=TRUE))

rm(list=ls())

# library (vegan)

library(MASS)

library(xlsx)

library(smacof)

library(XLConnect)

Spacecraft.data <- read.xlsx ('R_INLA_Models/Final_ExpertData.xlsx', 8,

row.names = 1, head = T)

names (Spacecraft.data) <- rownames (Spacecraft.data)

ndim = 7

Spacecraft.Results = vector("list", ndim)

for(i in 1:ndim){

Spacecraft.Results[[i]] = smacofSym(Spacecraft.data, ndim = i, type = c( "ordinal"),

weightmat = NULL, init = "torgerson", ties = "primary", verbose = FALSE,

relax = FALSE, modulus = 5, itmax = 1000, eps = 1e-06,

spline.degree = 2, spline.intKnots = 2)

}

summary(Spacecraft.Results[[3]])

110



ab = Spacecraft.Results[[3]]$stress

ab4 = Spacecraft.Results[[4]]$stress

xD1 = t(t(Spacecraft.Results[[3]]$conf[,1]))

yD2 = t(t(Spacecraft.Results[[3]]$conf[,2]))

zD3 = t(t(Spacecraft.Results[[3]]$conf[,3]))

SpacecraftStress = sapply(Spacecraft.Results,

function(Spacecraft.Results)Spacecraft.Results$stress)

x11(type = "cairo", height = 4, width = 6)

plot(1:ndim, SpacecraftStress[1:ndim],

xlab = "Dimensions", ylab = "Kruskal Stress",

type = "o", pch = 21, cex = 1, bg = "red", lwd = 1, font = 2)

abline(h = ab, lwd = 1, lty = 2, col = "red")

C.2 Anomaly Prediction via R-INLA

The following redacted code was developed using methods descibed in [blangiardo2015]

graphics.off()

rm(list=ls(all=TRUE))

rm(list=ls())

library(ggplot2)

library(INLA)

library(xlsx)

library(data.table)

library(mcmcplots)

library(Matrix)

library (vegan)

library(MASS)

library(xlsx)
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library(calibrate)

library(smacof)

# library(fields)

library(GoFKernel)

library(geoR)

library(gridExtra)

library(png)

library(grid)

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# Data Preparation

# Import coordinates from the the SMACOF Spatial Configuration

# The coordinates have been shifted but the configuration is unaffected

# Select which data set

# SpacecraftFile = as.data.frame(read.xlsx("SpacecraftCoords copyAugmented.xlsx", 2))

SpacecraftFile = as.data.frame(read.xlsx("SpacecraftCoords copyCorrected_.xlsx", 2))

# SpacecraftFile = as.data.frame(read.xlsx("SpacecraftCoords.xlsx", 2))

# SpacecraftFile = as.data.frame(read.xlsx("SpacecraftCoords2A.xlsx", 1))

est.coords = as.matrix(na.omit(cbind(SpacecraftFile$xShiftedEst,

SpacecraftFile$yShiftedEst)))

est.data = as.matrix(na.omit(SpacecraftFile$AnomalyEst))

est.rate.data = as.matrix(na.omit(SpacecraftFile$RateEst))

est.duration = as.matrix(na.omit(SpacecraftFile$DurationEst))

est.z = as.matrix(na.omit(SpacecraftFile$AltitudeEst))

val.coords = as.matrix(na.omit(cbind(SpacecraftFile$xShiftedVal,

SpacecraftFile$yShiftedVal)))

val.coords.2 = val.coords[-5,]
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val.data = as.matrix(na.omit(SpacecraftFile$AnomalyVal))

val.z = as.matrix(na.omit(SpacecraftFile$AltitudeVal))

val.duration = as.matrix(na.omit(SpacecraftFile$DurationVal))

domainX = as.matrix(na.omit(as.data.frame(SpacecraftFile$domainX)))

domainY = as.matrix(na.omit(as.data.frame(SpacecraftFile$domainY)))

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# To create domain, look at plot of coords in excel

domain = matrix(cbind(domainX, domainY), ncol = 2)

mesh = inla.mesh.2d(loc.domain = domain,

max.edge = c(0.04, 0.2),

cutoff = 0.05,

offset = c(0.1, 0.1))

x11(type = "cairo")

plot(mesh, main ="")

points(est.coords, pch = 21, bg = 1, col= "white", cex = 1.8)

points(val.coords, pch = 21, bg = "red", col= "black", cex = 1.8)

points(val.coords.2, pch = 21, bg = "yellow", col= "black", cex = 1.8)

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# Select which plot to save, be sure to match with data set

# savePlot(filename = paste("SpacecraftTriangulation.png", sep = "."),

type = c("png"), device = dev.cur())

savePlot(filename = paste("F1_Mesh_Spacecraft.png", sep = "."),

type = c("png"), device = dev.cur())

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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vertices = inla.spde2.matern(mesh, alpha = 2)$n.spde #+++++++> returns the

number of vertices for a mesh

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Spacecraft.est = inla.spde.make.A(mesh = mesh, loc = est.coords)

Spacecraft.val = inla.spde.make.A(mesh = mesh, loc = val.coords)

dim(Spacecraft.est)

table(apply(Spacecraft.est, 1, nnzero))

table(apply(Spacecraft.est, 2, sum) > 0)

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

#+++++++ Estimation of model parameters ++++++++++++++++++++++++++++++++

# 1. create a Matern SPDE object

range0 = 5

sigma0 = 1

kappa0 = sqrt(8)/range0

tau0 = 1/(sqrt(4*pi)*kappa0*sigma0)

Spacecraft.spde = inla.spde2.matern(mesh = mesh, alpha = 2,

B.tau = matrix(c(log(tau0),-1,+1), nrow = 1, ncol = 3),

B.kappa = matrix(c(log(kappa0),0,-1), nrow = 1, ncol = 3),

# B.tau = matrix(c(0,1,0), nrow = 1, ncol = 3),

# B.kappa = matrix(c(0,0,1), nrow = 1, ncol = 3),

# prior.tau = c(.05),

# prior.kappa = c(7))

theta.prior.mean = c(0,0),

theta.prior.prec = c(1,1))

# 8. Alternative estmation of parameters using STACK

s.index = inla.spde.make.index(name = "Spacecraft.spatial.field",
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n.spde = Spacecraft.spde$n.spde)

names(s.index)

s.index$Spacecraft.spatial.field = seq(1, Spacecraft.spde$n.spde)

s.index$Spacecraft.spatial.field.group = rep(1, Spacecraft.spde$n.spde)

s.index$Spacecraft.spatial.field.repl = rep(1, Spacecraft.spde$n.spde)

Spacecraft.stack.est = inla.stack(data = list(y = est.data),

A = list(Spacecraft.est, 1), #increase effects list if you add more

effects = list( c(s.index, list(intercept = 1)),

list(Duration = est.duration)),

# list(Altitude = est.z)),

tag = "est") # Estimation

Spacecraft.stack.val = inla.stack(data = list(y = NA), #predict and compare

A = list(Spacecraft.val, 1),

effects = list( c(s.index, list(intercept = 1)),

list(Duration = val.duration)),

list(Altitude = val.z)),

tag = "val") # Estimation

Spacecraft.join.stack = inla.stack(Spacecraft.stack.est, Spacecraft.stack.val)

formula = y~ -1 + intercept + Duration +f(Spacecraft.spatial.field, model = Spacecraft.spde)

Spacecraft.output = inla(formula,

data = inla.stack.data(Spacecraft.join.stack, spde= Spacecraft.spde),

family = "poisson", E = 1,

control.predictor =list( A=inla.stack.A(Spacecraft.join.stack), compute=TRUE),

control.compute = list(cpo = TRUE, dic=TRUE))

# Prediction at the validation locations

index.val = inla.stack.index(Spacecraft.join.stack, "val")$data
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post.mean.val =

round(Spacecraft.output$summary.linear.predictor[index.val, "mean"], 4)

post.sd.val =

round(Spacecraft.output$summary.linear.predictor[index.val, "sd"], 4)

# Prediction at the estimation locations

index.est = inla.stack.index(Spacecraft.join.stack, "est")$data

post.mean.est =

round(Spacecraft.output$summary.linear.predictor[index.est, "mean"], 4)

post.sd.est =

round(Spacecraft.output$summary.linear.predictor[index.est, "sd"], 3)

summary(Spacecraft.output)

exp(post.mean.val)

exp(post.mean.est)

output.test = inla.spde2.result(inla = Spacecraft.output,

name = "Spacecraft.spatial.field",

spde = Spacecraft.spde, do.transf = TRUE)

summary(output.test$marginals.kappa$kappa.1)

inla.emarginal(function(x) x, output.test$marginals.kappa[[1]])

meanPred = EstimatedAnomalies_1

Actual = 163

Model.Percent.Accuracy = 1-abs(meanPred - Actual)/Actual

Spacecraft_E_Results = data.frame(meanPred, Stand.dev_1,

Model.Percent.Accuracy, row.names = "Spacecraft E")

Spacecraft_E_Results

write.xlsx(Spacecraft_E_Results, "SpacecraftResults_corrected.xlsx",

"Spacecraft_E_Results", append = TRUE)
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C.3 Model Prediction Perfomance Updating via RJAGS

The following code was developed based on material in John Kruschke’s Doing Bayesian Data

Analysis ??? Edition, [57].

#1. THE DATA

ModelPerformance.Data = read.xlsx("SpacecraftResults.xlsx", 6)

ModelPerformance.Data.SubGroup = as.vector(na.omit( ModelPerformance.Data$X..Accuracy1))

Perf = ModelPerformance.Data.SubGroup

LogPerf = log(ModelPerformance.Data.SubGroup)

Ndata = length(LogPerf)

trueLogM = mean(LogPerf)

trueLogSD = sd(LogPerf)

y = Perf

N = length(y)

meanOfLogY = mean(log(y))

sdOfLogY = sd(log(y))

ModelPerformance.Data.List = list(

y = y ,

N = N ,

meanOfLogY = meanOfLogY ,

sdOfLogY = sdOfLogY

)

#X. THE MODEL

ModelPerformance = "

model {

for( i in 1 : N ) {

y[i] ~ dlnorm( muOfLogY , 1/sigmaOfLogY^2 )

}
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sigmaOfLogY ~ dunif( 0.001*sdOfLogY , 1000*sdOfLogY )

muOfLogY ~ dnorm( meanOfLogY , 1/(10*sdOfLogY)^2 ) # updated 8/16/2017

muOfY <- exp(muOfLogY+sigmaOfLogY^2/2)

modeOfY <- exp(muOfLogY-sigmaOfLogY^2)

sigmaOfY <- sqrt(exp(2*muOfLogY+sigmaOfLogY^2)*(exp(sigmaOfLogY^2)-1))

} # Close model

"

writeLines(ModelPerformance, con="ModelPerformance.txt")

library('rjags')

parameters = c("muOfLogY" , "sigmaOfLogY" , "muOfY" , "modeOfY" , "sigmaOfY" )

# Create, initialize, and adapt the model:

jagsModel = jags.model( "ModelPerformance.txt" , data=ModelPerformance.Data.List ,

n.chains=nChains , n.adapt=adaptSteps)# inits = initsList )

# Burn-in:

cat( "Burning in the MCMC chain...\n" )

update( jagsModel , n.iter=burnInSteps )

# The saved MCMC chain:

cat( "Sampling final MCMC chain...\n" )

mcmcCoda = coda.samples( jagsModel , variable.names=parameters ,

n.iter=15000 , thin=thinSteps )

summary(mcmcCoda)
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D Anomaly Data

Anomaly Data for Spacecraft E are attached as a spearate spreadsheet.
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E Space Mission Taxonomy

Generic hierarchical taxanomy of spacecraft

Figure E.1
Command and Data Handling Taxonomy
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Figure E.2
Communications Subsystem Taxonomy

Figure E.3
GNC Subsystem Taxonomy
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Figure E.4
Structures and Mechanisms Taxonomy

Figure E.5
Thermal Control Subsystem Taxonomy
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Figure E.6
Electrical Power Subsystem Taxonomy
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F Linear and Exponential Trend

Spreadsheets are attached.
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