
Facilitating Network Data Exploration with Query Previews:
A Study of User Performance and Preference

Egemen Tanin14, Amnon Lotem1, Ihab Haddadin2,
Ben Shneiderman14, Catherine Plaisant4, and Laura Slaughter3

egemen@cs.umd.edu, lotem@cs.umd.edu, u-ihaddadin@bss2.umd.edu, ben@cs.umd.edu,
plaisant@cs.umd.edu, lauras@oriole.umd.edu

1Department of Computer Science, 2Department of Systems Engineering,
3College of Library and Information Services, 4Human-Computer Interaction Laboratory, and Institute for

Advanced Computer Studies

University of Maryland
College Park, Maryland 20742, USA

2 / 19 / 1998

Abstract
Current network data exploration systems which use
command languages (e.g. SQL) or form fill- in interfaces fail
to give users an indication of the distribution of data items.
This leads many users to waste time posing queries which
have zero-hit or mega-hit result sets.  Query previewing is a
novel visual approach for browsing huge networked
information warehouses.  Query previews supply data
distribution information about the database that is being
searched and give continuous feedback about the size of the
result set for the query as it is being formed.  Our within-
subjects empirical comparison studied 12 subjects using a
form fi ll- in interface with and without query previews.  We
found statistically significant differences showing that query
previews sped up performance 1.6 to 2.1 times and led to
higher subjective satisfaction.

Keywords
User Interface, Direct Manipulation, Dynamic Query, Query
Preview, Form Fill- in.

1. Introduction
Retrieving information from huge data warehouses in
computerized environments has always been an important
issue in computer science. Introduction of networked
information systems and frequent changes in the amount,
type, and format of data make the problems even more
challenging.

A common example of information-seeking tools is search
engines on the World Wide Web. Users enter keywords to a
user interface that has text entry fields [10]. This form fil l-in
approach requires an explicit submission of a form to a
search engine with three possible results:
•  a small set of possibly related documents that users are

looking for,

•  a huge set (mega hit) of related or most probably
unrelated documents that is burdensome to browse, or

•  zero hits.

Users always wish for the first result in any query that they
submit. Nobody likes to browse a huge set of documents
only a few of which might be related to their needs. Even
worse, the case of zero hits lead users to a feeling that they
have done something wrong (without indicating whether a
spelling mistake or lack of data is causing the problem).
Often, network resources, time of the users, and processing
power of the search engine are wasted.

A common problem in this approach is that the interface
that is supposed to guide users to a reasonable result
confuses them.  It takes control away and does not give
guidance that leads to a successful result.

Recent research showed that improved methods exist for
more effi cient querying. For example, the Butterfly System
[7] and the Harvest System [2] show that efficient querying
is possible on the World Wide Web. These systems also
attack the problem from the information processing and
system util ization sides. Veersamy and Navathe [11]
address the problem of the relevance of the results of a
query to the keyword set and propose a user interface
solution.

Dynamic queries [1,9,12] use a direct manipulation
approach to facil itate query formulation with a visual
representation of query components and results. They
enable a rapid, incremental, and reversible control of the
query. They also give continuous feedback to users for
guidance in query formulation. Figure 1 shows an example
dynamic query interface.



The application of dynamic querying to networked querying
environments might be useful. On the other hand, high
system-resource demands make dynamic querying less
applicable to huge networked information warehouses. One
solution to this problem uses data aggregation in tandem
with dynamic queries [5]. Another solution to this problem
might be the division of the bigger problem into several
smaller problems, as in query previews and overviews
[3,4,8]. The paradigm is to give an overview of the database
to users before the details are visualized.

A good overview should enable users to see the necessary
detail in order to make the final query and understand the
distribution of data in the database. The querying process is
divided into steps to reduce the resources needed to form the
final query. So a multi-phase incremental querying process
will  hopefully lead to desired results using less resources
and time.

Dynamic query interfaces have been implemented for
NASA’s Global Change Master Directory and the web-site
is in the process of being made public.

1.1. Two-Phase Querying
In the two-phase approach the designer chooses a few of the
most discriminating attributes of the database to design a
direct manipulation user interface. The rest of the attributes
should be kept for a second phase that wil l also include
these discriminating attributes.

When the querying environment is activated the first
interface (query preview) appears immediately. Users make
some decisions on this first interface and then move to the
second one (query refinement) to complete the query.

1.1.1. Query Preview
The query preview is a powerful tool to define rough ranges
on the data set that is being explored. It shows the
discriminating attributes in the database so that any
selection would lead to a smaller subset of the database. It
consumes modest system resources because only a small
number of attributes from the overall database are used at
this phase.

To guide users in the query formulation process the preview
should be supplied with aggregate information about the
database (e.g., possible number of hits to the query  to be
formed). Distribution of data over attribute values can also
be shown as a pie or bar chart.

When users select a value on any of the attributes of the
preview panel the rest of the user interface (e.g., bars)
should be updated in well under one second. This is called
tight coupling. Therefore, for each action users take,
feedback is given.

As users see the potential size of their query result before
refining the rough ranges, there is less chance that they wil l
get zero or mega hits. The system load should drop
drastically because users don’t waste their time with zero hit
queries or consume network resources in downloading
useless results.
Perhaps the greatest advantage of the query preview for
users is that they only need to download the aggregate
information about the data distribution at this phase. So
whatever the database size, only the distribution information
of the data is needed to form a preview, thereby decreasing
the system resource demands. An example query preview is
given in Figure 2. Three major attributes of the database
were chosen for this query preview. The distribution of data
over these attributes is shown with bars and the possible
result set size is displayed as a bar at the bottom part of the
interface.

1.1.2. Query Refinement
The query refinement phase works after the query preview
and hence inherits the constraints and the data set sent from
the first phase. This phase can easily be implemented as a
dynamic query interface to browse the remaining data.
When a desired result set is obtained, it can be saved.

If the data is not a collection of documents or values but a
set of pictures the refinement phase becomes another phase
in querying. Using a similar approach a third phase can be
added to the first two phases (in picture databases this can
be a tool to analyze a picture in more detail). Figure 3 shows
a sample query refinement implemented using the dynamic
querying paradigms. All of the attributes of this sample data
set are displayed on this dynamic query interface. The initial
query, specifi ed on the query preview, can be refined at this
level by just selecting the desired values of the attributes of
the database.

1.2. User Study
Since query preview interfaces add another phase to query
formulation, there is the possibili ty that user performance
would deteriorate and that they would be annoyed by a two-
phase approach. Our study analyzed the effects of the query
preview on user performance and preference. We believe
that query previewing guides users in forming a query. It
helps narrow down the huge search space to a manageable
size by giving information about the distribution of the data.
For better control, our study was done in a non-networked
environment but advantage of the query previews should be
greater in a networked environment due to the additional
delays during the downloading process.

2. Experiment

2.1. Introduction
This experiment examines the benefits of query previews
when the access to the data sources is immediate, that is, all



data is on a local server. Our claim is that the advantage is
greatest when the users’ search tasks require repetitive
submissions, and a query preview can give task-related
insights to the database. Unclearly specified tasks usually
require several submissions. In such tasks the user’s
constraints and preferences cannot be specified in a simple
way. For example, in searching for a fi lm to view from a
fil m library, the users’ preferences might be "an award
winning comedy from the last two years", but if  none is
available "the most popular science fiction" should be
retrieved. Clearly specified tasks have a straight forward and
an accurate definition (known-item searches), e.g. "Find the
earliest film of John Wayne". Practically, the query preview
cannot supply a database overview based on all the data
attributes. The subset of attributes that are used in the query
preview might be relevant or irr elevant to the user’s tasks.

The three task types in the experiment varied in the clarity
of their specifi cations and in the degree of relevance of the
specified attributes to the query preview. Twelve subjects
performed a set of tasks, once by using a form fill -in
interface and once by using an interface that included a
query preview and form fil l-in. The time for completion of
the tasks and the subjective preferences of the subjects were
measured.

2.2. Hypothesis
Our hypotheses were: (1) For unclearly specified tasks, the
form fi ll- in interface with a query preview yields faster
performance than a form fi ll- in interface without a query
preview. (2) For clearly specified tasks, the form fil l-in
interface without a query preview yields faster performance.
(3) Users prefer query preview interfaces regardless of their
performance.

The independent variable was the interface type and the
treatments were:
•  Form fil l-in interface with a query preview
•  Form fil l-in interface without a query preview

We examined the two interfaces using three different types
of tasks:
•  Clearly specified tasks in which the query preview

attributes are not relevant to the task.
•  Unclearly specifi ed tasks in which some of the query

preview attributes are relevant to the task.
•  Unclearly specifi ed tasks in which all  of the query

preview attributes are relevant to the task.
 

The dependent variables were the time to complete the tasks
in each interface (not including setup times) and the
subjective preferences of the users.

2.3. Subjects
Twelve computer science graduate students were used as
subjects. Al l of them use a computer almost every day and

have at least five years experience in using computers. All ,
except one, regularly or frequently use Internet or database
searching tools.

2.4. Materials
The materials include a form fill-i n interface for querying a
fil m database (including 500 fi lms), a query preview panel
for the same database, a set of tasks to be performed by the
subjects, a subject background survey, and a subject
preference questionnaire.

 
2.4.1. Form Fill-in Interface
The form fill-i n interface (Figure 4) is used to perform
queries on a film database. There are ten attributes for a
fil m: category (horror, action, comedy, etc.), award winner
(yes or no), rating (R, PG-13, PG, and G), year of
production, length, popularity, lead actress, director, lead
actor, and title. The output of a query is the list of fil ms
matching the specifi cations of the query. Vertical and
horizontal scroll-bars can be used for scanning the list. The
form fi ll- in interface was developed in C using the Motif
library.

 
2.4.2. Query Preview
In the query preview (Figure 5) users select values for three
attributes of the database: the category (horror, action,
comedy, etc.), whether the fi lm won an award or not, and
the rating (R, PG-13, PG, and G). Multiple selections are
available for each of these attributes (using check boxes).
The number of films for each attribute value is shown on a
separate preview bar. Each preview bar consists of a frame
and an internal rectangle (gauge). The length of the frame is
proportional to the number of fi lms in the database that
match the value of that attribute. The length of the gauge is
proportional to the portion of these fi lms which match the
values specifi ed for the other attributes as well (the number
of matches appears to the left of the bar). Users formulate
queries by selecting the attribute values. As each value is
selected, the preview bars in the other attribute groups
adjust to reflect the number of films available (this is called
tight coupling). For example, users might be interested only
in films that won awards. By selecting "Award Winners",
the gauges of the preview bars of the selected categories and
ratings change immediately to reflect only films with
awards. The query preview bar at the bottom of the screen
changes its length to il lustrate the total number of fil ms that
match the current conditions.

When the "Refine" button is pressed, the query preview
submits the specified partial query to the search engine and
all the fi lms that satisfy the query are downloaded for the
query refinement phase. The query preview is closed and
the form fil l-in interface is loaded to refine the query
(displaying initially all the fi lms selected in the query
preview). The query preview was also developed in C using
the Motif library.



2.4.3. Tasks
The tasks given to subjects were to find a film or a list of
fil ms in the database satisfying constraints that we provided.
Three types of tasks were used:

T1: a clearly specifi ed task in which none of the query
preview attributes is relevant for the task, e.g. "Find the
latest fi lm by Alfr ed Hitchcock" (known-item search). For
that type of task, users can typically find the answer by
submitting a single form fil l-in query. The query preview
has no advantages since its attributes are not relevant to the
query;

T2: desired films are vaguely specified. In this type of task,
some of the query preview attributes are relevant, e.g. "Find
a PG-13 musical which was produced between 1991 and
1995, if  no such film is available, find a war fi lm from the
same years with the same rating, if  not, try a musical or a
war film from 1970-91, and as the last possibil ity, try a
comedy from 1970-95". This type of task is typical when
users have a complex set of acceptable results, with clear
preferences. To perform such a search in the form fi ll- in
interface users must issue several queries, when the
preferred choice is not available in the database. In the
query preview, users can get some insight about what is
available in the database and what is not. However, since
not all the attributes in the specifi cation appear in the query
preview, the form fil l-in is required for refining the query;
and

T3: formed in a similar way to T2. A series of preferences
for films are specified. In this case however, the query
preview attributes are fully relevant to the task
specifications. Example: "Find at least 30 fi lms of the same
category which are R rated and have no awards" (for
example, in order to organize a fil m festival). In the form
fill -in interface this task requires several queries to examine
the number of fi lms in each category. The query preview on
the other hand, gives an immediate picture of the relevant
categories. The form fill- in is required only to get an explicit
list of the films.

For each of the above task types, six were prepared (18
tasks in total, see appendix A).

 
2.4.4. Subject Background Survey
The survey included 8 questions which ascertained the
experience level of the subjects with computers in general
and with search engines in particular.

2.4.5. Subjective Preference Questionnaire
The subjective preference questionnaire included 8
questions aimed at finding out which of the two interfaces (a
form fi ll- in with or without a query preview) the subjects
preferred and what their attitudes are toward adding query
previews.

2.5. The Experiment Design
The experiment used a within-subject counter-balanced
design with 12 subjects. Each subject was tested on both of
the interfaces, but the order of the interfaces was reversed
for half of the users. A parallel set of tasks was used on the
second interface to reduce the chance of performance
improvement. Each set of tasks included the three types of
tasks (T1, T2, T3), with three tasks for each of these types.
The order of the task types within a task set was also
reversed (each of the six permutations was experienced by
two subjects). The order of the tasks within each task type
was fixed.

2.6. Procedure
The subjects signed a consent form, fi lled out a background
survey, received a brief demo of the form fi ll- in interface
and the query preview, and a 10 minute training session in
which they used the two interfaces (similar tasks to the
actual tasks were used). During the experiment each subject
performed 18 tasks (9 in each of the interfaces). At the end
of the experiment the subjects fi lled in the preference
questionnaire. The experiment took 50-60 minutes including
the training and the questionnaires.

 
2.7. Administration
Two experimenters were present. One administered the
experiment, performed the demo, presented the tasks, and
measured the task execution times. The other experimenter
was a viewer who recorded notes about the way subjects
coped with the tasks and about problems during the
experiment. The time that the subjects spent in using each of
the interfaces was recorded (successful completion time of a
task). These times did not include setup times of the
programs.

3. Results

3.1. Time for Completing the Tasks
Table 1 summarizes the times for completing each of the
task types for novices (clearly specified: T1, unclearly
specified and partially relevant: T2, unclearly specified and
fully relevant: T3) for each of the interfaces (with and
without preview). Figure 6 presents these results as a bar
chart.

For T1 tasks the interface with the query preview yielded
slower performance than the interface without a query
preview (t(35) = 2.44, p < 0.05). For T2 and T3 tasks the
interface with the query preview yielded faster performance
than the interface without a query preview (t(35) = 8.77, p <
0.05, and t(35) = 14.70, p < 0.05, respectively). The
statistical analysis used one-tailed paired two-sample t-test
for means. Each task is considered separately leading to
degrees of freedom of 35.



3.2. Expert Performance
Two expert users (the developers of the two interfaces)
performed the same tasks (average completion times appear
in Table 2). These results are meant to indicate the potential
for performance after experience. No statistical analysis was
performed.

3.3. Subjective Satisfaction
The subjects answered six questions about their preferences,
quantifying their preferences on a 1 to 9 scale (with higher
numbers indicating stronger preferences). The first question
examined the general preference of subjects for using a form
fill -in interface with or without a query preview (Table 3
and Figure 7).

The results showed a statistically signifi cance diff erence
(t(11) = 2.82, p < 0.05) for the interface with a query
preview over the interface without a query preview. The rest
of the questions examined more specifi cally what the
subjects thought about the interfaces. The results (average
scores, standard deviations, minimums, and maximums)
appear in Table 4. Figure 8 presents these results in a
histogram.

The scores for all of the questions were statistically
significantly above the mid-point scale value of 5.0 (t(11) =
3.86, 6.20, 7.71, 2.24, and 2.58 respectively, p < 0.05).

4. Discussion
Our findings support the hypothesis that for the unclearly
specified tasks the interface with a query preview yields
more rapid performance than the interface without a query
preview. For both types of the unclearly specified tasks the
improvement in performance was signifi cant (at the level of
0.05): 1.6 times faster for T2 tasks and 2.1 times faster for
T3 tasks. For the clearly specified tasks (T1), as expected,
the form fil l-in performed slightly better. The results with
two expert users (the developers of the interface) showed
similar outcomes (slightly slower for T1 tasks, 2 times faster
for T2 tasks, and 2.4 times faster for T3 tasks).

4.1. Clearly Specified Tasks (T1)
As expected, users of the form fi ll- in interface for clearly
specified tasks performed more rapidly since they were able
to find the answer by submitting a single form fill -in query.
The query preview had no advantage since its attributes
were not relevant to the query. However, users of the
interface with the query preview performed only slightly
worse (10% slower). The users spent 2-3 seconds in the
query preview, identifi ed that its attributes are not relevant
for the task and continued to the refinement phase.

4.2. Unclearly Specified Tasks, with Partial Relevance of
the Query
Preview Attributes (T2)

Although not all the attributes in the task specification could
be specifi ed using the query preview, the insight gained
from the query preview enabled users to eliminate some
potential zero hit queries in advance, concentrating in the
refinement phase on a much smaller set of possible queries.
Apparently, the query preview enabled the users to reduce
the search space significantly, and therefore find the answer
more quickly.

4.3 Unclearly Specified Tasks, with Full Relevance of the
Query
Preview Attributes (T3)
 For unclearly specified tasks the full  power of the query
preview was used. The query preview enabled the users to
see immediately which of the possible queries should be
submitted. The users loaded the refinement phase only for
submitting the query and viewing the results. The users
performed the refinement phase with a high confidence that
they would get the expected results. On the other hand, in
the interface without a query preview, the users had no clue
about which of the possible queries wil l give the expected
result. They had to try several possible queries, submitting
5-6 queries on average until  they got a satisfactory answer.
Although the response time for each such query was
immediate (1 second), the time for fil l-ing in the
specifications of each query (5-10 seconds) caused the
significant differences in performance.

4.4. Performance Improvement
The following simple model for the performance time in the
refinement stage can be used to explain the results:

performance_time = no_of_queries × query_time

where:

 query_time = fil l-in_time + response_time + analysis_time

The fil l-in_time, response_time, and analysis_time are the
average times for fil l-ing in a query, getting a response and
analyzing the results, respectively. The response time is a
function of several parameters such as the complexity of the
query, the size of the database, the load on the database
server, the number of the retrieved entities and the load on
the network. The time for analyzing the results is
determined by the number of retrieved elements. In our
experiment the response time was short (1 second), the
average analysis time was small (analysis of zero hits).
Thus, the main factors were no_of_queries and fill- in_time.
For the T3 and T2 tasks, the query preview achieved the
performance improvement by reducing the no_of_queries,
yielding a situation in which:

preview_time + (no_of_queriesrefinement × query_time) <
no_of_queriesform_fil l-in × query_time



In the common situation where the access to the database
would be through a network, the response time would be
typically larger than one second and the performance
improvement which is achieved for T2 and T3 tasks would
be even greater.

The results show that for different types of tasks the query
preview achieves different rates of performance
improvement in comparison with the traditional form fill -in
interface (from 0.1 times slower in T1 to 2.1 times faster in
T3). The performance improvement which follows from the
reduction in the number of required queries depends on
several parameters. One parameter is the clarity of the task
specifications. In clearly specifi ed tasks the number of
queries required in a form fill- in interface is small, hence
there is no potential for improvement. Another important
parameter is the relevance of the query preview attributes to
the task. Two additional parameters are the significance of
the query preview attributes in pruning the search space and
the resolution of the attribute values. For example, if rating
R is required and almost all  the films in the database are of
rating R, this attribute, although relevant, has insignificant
contribution to the performance improvement. When
numeric attributes such as the year of production or length
of the fi lm are presented in a query preview, the possible
values for these attributes are presented using some pre-
defined resolution (for example, a 10 year resolution). Tasks
which require higher resolution for an attribute than the one
provided in the preview will  gain a smaller benefit from the
preview.

In our experiment, the query preview yielded a greater
performance improvement for T3 tasks (full relevance of the
query preview attributes) than for T2 tasks (partial relevance
of the query preview attributes). That result might support
the assumption that better relevance of the query attributes
to the task yields a greater performance improvement.
However, as other parameters might be involved, for
example, significance of attributes, additional experiments
are needed.

4.5. Learning to Use a Query Preview
We found that it was easy for users with experience in
querying a database using the form fil l-in interface, to learn
the query preview interface and take advantage of the
information it supplies. After 10 minutes of training, novice
performance was only 20-30% slower than experts.
However, some of the users, during training and in few
cases during the experiment, continued to the refinement
phase too early, skipping the examination of one of the
relevant attributes. That happened when not all the task
attributes could be found in the query preview. For example,
when performing a task with conditions on rating (in the
query preview), year (not in the query preview) and
category (in the query preview), the fact that the year could
not be specified in the query preview, caused some of the

subjects to continue to the refinement stage without
examining the information for the category attribute. That
problem seemed to diminish with experience.

4.6. Subjective Satisfaction
The users statistically signifi cantly preferred the interface
with the query preview over the interface without it. They
stated that the query preview was helpful, enabling them to
search faster and learn more about the database (scores for
these questions were statistically signifi cantly above the
mid-point). We believe that this subjective satisfaction
comes not only from the improvement in performance time
which is experienced by the subjects but also from getting
better control in performing the tasks.

The suggested improvements related to user interface issues:
supplying a way to clear a group of related check boxes in
one step, a more immediate refreshing of the preview bars
when changing attribute values in the query preview, etc.

The signifi cant preference that subjects showed for
including query previews in search engines they currently
use (in addition to the objective performance improvement
for two of the task types), encourages more effort in
understanding and developing query preview interfaces.

5. Conclusions

5.1. Impact for Practitioners
This user study shows that query previews are powerful
tools for browsing data warehouses. Query previews give an
insight about the database that is being searched and guide
users in the query formulation process.

Tasks that have unclear definitions generally lead to longer
task completion times in regular form fil l-in interfaces.
Query previews are very useful in these situations. The
benefits obtained depend highly on the relevance of the
query attributes to the attributes used in the preview. The
costs introduced by the preview are negligible with respect
to the benefits (e.g., short delays in query preview load time,
implementation costs, extra training for the preview, etc.).

We saw that tasks that have a clear definition (regardless of
the relevance of the task to the query preview) were easily
executable on a regular form fi ll- in interface. Query
previews were not needed in these situations and, as
anticipated, they introduced small delays.

In networked environments, we expect greater benefits from
a query preview than the ones we observed in this
experiment. As the database size gets larger, we think that
the benefits of a query preview wil l be more appreciated by
the user.



An interesting outcome of this study is that the expert user
performance and the novice user performance are similar.
Hence, the previews are shown to be easy to use, learn, and
possibly remember. Besides, due to the application of
dynamic querying paradigms (e.g., visual representation of
query components, immediate feedback, reversible actions,
etc.) they are also highly fault tolerant.

Most of the users preferred the query preview. This is
probably due to the fact that users gain greater control and
insight about the database while using a preview. Viewing
the data distribution over the whole space of records was
very helpful for the users. Immediate feedback that was
given to users was also found to be very useful. However,
relevance of the preview attributes to the most commonly
used attributes should be high to maximize the benefits.

5.2. Suggestions for Future Researchers
We suggest that future experimenters explore:
•  experiments in networked environments should be run,
•  experiments in tandem with other interface types (e.g.,

dynamic querying) should be considered,
•  other task types should be explored, less relevant, less

clear, etc.,
•  experiments with variety of users should be conducted

(with more than two experts from different domains),
•  other parameters that effect the query preview usage

should be analyzed,
•  other data types should be explored: picture, sound,

non-relational, etc.,
•  a concrete measure of clearness and relevance of the

query should be defined, and
•  scalabili ty of the query previews with the database size

should be analyzed.

5.3. Refining the Theory and Other Suggestions
This experiment is the first user study done on query
previews. Previous work suggests [3,4,7] that query
previews form a useful means of information exploration in
networked systems. This user study on query previews
shows that it is a powerful approach to database browsing
for various tasks even in non-networked environments.

The experiment shows that task types play a critical role in
performance. With this study a taxonomy of task types for
querying with query previews was introduced (clear vs.
unclear, relevant vs. irrelevant). More concrete measures for
clearness and relevance are needed. We recommend that
administrators of future studies define the task types in more
detail.

The results obtained from this experiment support our
hypotheses. We observed numerous benefits in using a
query preview. However, there are people who are used to
form-fil l-in-only approaches. These users might continue

using the form-fil l-in-only approach and skip extensions to
it (unless they receive the necessary amount of feedback).
The extensions should enable a smooth and easy transition
between the interfaces.

Acknowledgements

This work was partially supported by NASA grant NAG
52895.

References
 
1. C. Ahlberg and B. Shneiderman, Visual Information

Seeking: Tight Coupling of Dynamic Query Filters with
Starfield Displays, Proceedings of the ACM CHI ‘94
Conference, 1994, pp. 313-317.

 
2. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber,

and M. F. Schwartz, The Harvest  Information
Discovery and Access System, Proceedings of the
Second International Conference on the World Wide
Web, NCSA, 1994, pp. 763-771.

 
3. K. Doan, C. Plaisant, and B. Shneiderman, Query

Previews in Networked Information Systems,
Proceedings of the Forum on Advances in Digital
Libraries, IEEE Society Press, 1996, pp. 120-129.

 
4. K. Doan, C. Plaisant, B. Shneiderman, and T. Bruns,

Query Previews in Networked Information Systems: A
Case Study with NASA Environmental Data, ACM
SIGMOD Record, 6, 1, March 1997, pp. 75-81.

 
5. J. Goldstein and S. F. Roth, Using Aggregation and

Dynamic Queries for Exploring Large Data Sets,
Proceedings of the ACM CHI ’94 Conference, 1994,
pp. 23-29.

 
6. D. Heppe, W. S. Edmondson, and R. Spence, Helping

both the Novice and Advanced User in Menu-driven
Information Retrieval Systems, Proceedings of HCI ’85
Conference, British Computer Society, 1985, pp. 92-
101.

 
7. J. D. Mackinlay, R. Rao, and S. K. Card, An Organic

User Interface for Searching Citation Links,
Proceedings of the ACM CHI ’95 Conference, 1995,
pp. 67-73.

 
8. C. North, B. Shneiderman, and C. Plaisant, User

Controlled Overviews of an Image Library: A Case
Study of the Visible Human, Proceedings of the 1st
ACM International Conference on Digital Libraries,
1996, pp. 74-82.

 



9. B. Shneiderman, Dynamic Queries for Visual
Information Seeking, IEEE Software, 11, 6, 1994, pp.
70-77.

 
10. B. Shneiderman, D. Byrd, and W. B. Croft, Clarifying

Search: A User-Interface Framework for Text Searches,
D-Lib Magazine, January 1997, available online from
the site address:
http://www.dlib.org/dlib/january97/retrieval.

 

11. A. Veerasamy and S. Navathe, Querying, Navigating
and Visualizing a Digital Library  Catalog. Proceedings
of the Second International Conference on the Theory
and Practice of Digital Libraries, 1995, available
online at http://www.csdl.tamu.edu/DL95.

12. C. Will iamson and  B. Shneiderman, The Dynamic
Home Finder: Evaluating Dynamic Queries in a Real-
Estate Information Exploration System, Proceedings of
ACM SIGIR ’92 Conference, 1992, pp. 338-346.

Appendix A: Task List
Type1-1) Find a film that satisfies the following constraints given in the following preference order:

•  Year 90-95
•  Popularity 5-8

•  Length 90-120 minutes
•  That is related with “Devils”

Type1-2) Find a film that satisfies the following constraints given in the following preference order:

•  Year 30-40
•  Popularity 0-5

•  Length 80-100 minutes
•  That is related with “Agents”

Type1-3) Find a film that satisfies the following constraints given in the following preference order:

•  Year 85-95
•  Popularity 5-5

•  Shortest available film

Type1-4) Find a film that satisfies the following constraints given in the following preference order:

•  Year 82-85
•  Popularity 6-7

•  Longest available film

Type1-5) Find a film that satisfies the following constraints given in the following preference order:

•  Latest film by Hitchcock Alfred

Type1-6) Find a film that satisfies the following constraints given in the following preference order:

•  Earliest film by Wayne John

Type2-7) Find a film that satisfies the following constraints given in the following preference order:

•  PG-13
•  Year 91-95

•  Musical
•  War

•  Year 70-91
•  Musical



•  War
•  Year 70-95

•  Comedy
•  Musical

Type2-8) Find a film that satisfies the following constraints given in the following preference order:

•  Award Winning
•  Length 80-85

•  Action
•  Horror

•  Length 90-95
•  Science Fiction
•  Action

•  Length 85-130
•  Western
•  Musical

Type2-9) Find a film that satisfies the following constraints given in the following preference order:

•  PG-13
•  Popularity 5-6

•  Science Fiction
•  War

•  Popularity 7-8
•  Science Fiction
•  War

•  Popularity 6-8
•  Drama
•  War

Type2-10) Find a film that satisfies the following constraints given in the following preference order:

•  Award Winning
•  Year 60-60

•  Action
•  Horror

•  Year 70-70
•  Science Fiction
•  Action

•  Year 65-66
•  Comedy
•  Horror

Type2-11) Find a film that satisfies the following constraints given in the following preference order:

•  PG-13
•  Popularity 7-7

•  War
•  Musical

•  Popularity 8-8
•  War



•  Musical
•  Popularity 6-7

•  Comedy
•  Horror

Type2-12) Find a film that satisfies the following constraints given in the following preference order:

•  Award Winning
•  Length 90-100

•  Science Fiction
•  Action

•  Length 100-120
•  Science Fiction
•  Action

•  Length 110-130
•  Drama
•  Action

Type3-13) Find AT LEAST 5 but LESS THAN OR EQUAL TO 10 films and then form a collection from these fi lms. Note
that the films should be from the SAME CATEGORY and they should satisfy the following constraints:

•  Award Winning
•  R

Type3-14) Find AT LEAST 30 but LESS THAN OR EQUAL TO 40 films and then form a collection from these fi lms.
Note that the fil ms should be from the SAME CATEGORY and they should satisfy the following constraints:

•  No Awards
•  R

Type3-15) Find AT LEAST 5 but LESS THAN OR EQUAL TO 10 films and then form a collection from these fi lms. Note
that the films should be from the SAME CATEGORY and they should satisfy the following constraints:

•  No Awards
•  PG-13

Type3-16) Find AT LEAST 3 but LESS THAN OR EQUAL TO 5 fi lms and then form a collection from these fil ms. Note
that the films should be from the SAME CATEGORY and they should satisfy the following constraints:

•  Award Winning
•  G

Type3-17) Find AT LEAST 40 but LESS THAN OR EQUAL TO 50 films and then form a collection from these fi lms.
Note that the fil ms should be from the SAME CATEGORY and they should satisfy the following constraints:

•  No Awards
•  G

Type3-18) Find AT LEAST 3 but LESS THAN OR EQUAL TO 4 fi lms and then form a collection from these fil ms. Note
that the films should be from the SAME CATEGORY and they should satisfy the following constraints:

•  No Awards
•  PG


