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Insect herbivores have a decidedly higher nitrogen and phosphorus than their host 

plants, an elemental mismatch that places severe constraints on their ability to meet 

nutritional demands.  This study examined the consequences of macronutrient (nitrogen 

and phosphorus) limitation for two wing-dimorphic, phloem-feeding planthoppers with 

very different life-history strategies: the sedentary Prokelisia dolus and the migratory 

Prokelisia marginata.  As a consequence of the constraints dispersal imposes on 

ingestion capacity, I argue that species using dispersal as a strategy for acquiring limiting 

nutrients are unable to adequately obtain nutrients when dispersal is not an option.  The 

effect of nitrogen and phosphorus limitation for planthopper performance (Chapter 1) and 

homeostatic regulation of macronutrient composition (Chapter 2) were determined, as 



were the constraints dispersal places on other traits (ingestion capability) used to cope 

with nutrient limitation (Chapter 3).

The planthopper species responded differently to nutrient limitation.  The 

survival, body size, and development rate of both species was adversely affected on 

nutrient-deficient host plants, but P. marginata was more negatively affected than P. 

dolus.  Nitrogen was more limiting than phosphorus for both species.  Prokelisia

marginata was also less able to regulate its macronutrient composition (C:N:P) and 

incurred greater growth penalties than P. dolus.  Overall, the migratory species was far 

more sensitive to nutrient limitation.  

Divergent life-history strategies (migratory versus sedentary) and the differential 

muscle allocation patterns associated with such strategies provide the mechanism 

underlying the consistently different performance responses of the two planthopper 

species on nutrient-deficient host plants.  Morphometric and gravimetric measures of 

investment in flight versus feeding indicate that the sedentary P. dolus allocates more 

muscle mass to feeding whereas P. marginata  invests more heavily in flight.  Due to its 

greater investment in feeding musculature and associated enhanced ingestion rate, the 

immobile P. dolus is better equipped to meet macronutrient demands when faced with 

nutrient-poor food than the migratory P. marginata.  Results of this research demonstrate 

the importance of considering life-history strategies, and associated constraints imposed 

on ingestion, when assessing how the macronutrient stoichiometry of plants (C:N:P 

content) interfaces with the nutritional requirements of phytophagous insects to affect 

their growth and performance.  
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Chapter 1: Nitrogen requirement is greater than phosphorus for two 

phytophagous insect species with divergent life-history strategies

Introduction

Insect herbivores have a decidedly higher nitrogen (~9% N) and phosphorus 

(~0.5% P) content than their host plants (~1.5% N, ~0.05%P) (Elser et al. 2000a, Fagan 

et al. 2002).  In the context of maintaining body elemental concentrations (Chapter 2), 

this stoichiometric mismatch places severe constraints on the ability of insect herbivores 

to meet their nutritional demands (Mattson 1980, Strong et al. 1984, Elser et al. 2000a).  

Thus, it comes as no surprise that nutrient limitation for phytophagous insects has been 

widely documented in an endless number of systems (see reviews by (McNeill and 

Southwood 1978, Mattson 1980, Waring and Cobb 1992, White 1993, Awmack and 

Leather 2002, Huberty and Denno 2004).

The importance of nitrogen and phosphorus for the growth of invertebrates has 

been demonstrated by experiments that either limit or remove the nutrient in question 

(Busch and Phelan 1999, Bentz and Townsend 2001) or increase its concentration in food 

resources (Chen and Welter 2002, Richardson et al. 2002).  Physiologically, nitrogen is 

essential for growth (Kainulainen et al. 1996, Rossi et al. 1996, Kerslake et al. 1998), 

survival (Salim and Saxena 1991, Rossi et al. 1996, Ayers et al. 2000, De Bruyn et al. 

2002) and reproduction (van Emden 1966, Rossi and Strong 1991, Bentz and Townsend 

2001) due to its role in amino acid production and protein synthesis (Sterner and Elser 

2002).  Collectively, these studies demonstrate that nitrogen is consistently limiting for 
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most invertebrates including terrestrial species (Slanksy and Feeny 1977, McNeill and 

Southwood 1978, Mattson 1980, White 1993, Elser et al. 2000a) and aquatic taxa (Urabe 

and Watanabe 1992, Downing 1997, Hassett et al. 1997, Elser et al. 2000a), and it has 

been championed as the most limiting macronutrient for phytophagous insects (McNeill 

and Southwood 1978, Mattson 1980, Strong et al. 1984, White 1993, Polis 1999).

For phytophagous insects in particular, phosphorus has not been considered as 

important or limiting as nitrogen, perhaps due to the paucity of research focus on this 

element.   However, for the few studies that have investigated the effects of phosphorus 

limitation on insects, there is evidence showing that it can be an important determinant of 

survivorship (Clancy and King 1993, Ayers et al. 2000), fecundity (Popp et al. 1989), 

body size (Janssen 1994, Busch and Phelan 1999), oviposition (Skinner and Cohen 

1994), growth rate (Perkins et al. 2004) and population density (Schade et al. 2003).  By 

contrast, phosphorus limitation has been documented widely in many species of aquatic 

invertebrates, particularly in Daphnia (Urabe et al. 1997, Elser et al. 2001).  Low levels 

of ambient phosphorus can result in protracted growth rates for many species of aquatic 

invertebrates (Urabe and Watanabe 1992, DeMott et al. 1998, Sterner and Schulz 1998, 

Elser et al. 2001, Makino et al. 2002, Urabe et al. 2002, Xenopoulos et al. 2002) as well 

as changes in competitive superiority in zooplankton and phytoplankton species 

(Andersen 1997).  The relationship between phosphorus concentration, cellular function, 

and growth rate has been developed by Elser and colleagues and is termed the growth 

rate hypothesis (Hessen and Lyche 1991, Elser et al. 1996, Elser et al. 2000b).  This 

hypothesis assumes that phosphorus, because it is required for RNA synthesis, can 
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impose severe consequences for the growth rate of consumers when it is limiting (Sterner 

and Elser 2002).

Stoichiometric reasoning suggests that phosphorus may be a much more 

important component for the growth of phytophagous insects that was previously 

thought, due to its important link to growth rate in aquatic invertebrates (Sterner and 

Elser 2002).  Daphnia, for example, when faced with low levels of phosp horus in its food 

exhibits slow growth, an effect attributed to the lesser amount of RNA available for 

protein synthesis (Sterner and Elser 2002).  Moreover, phosphorus limitation is also 

strongly implicated for phytophagous insects because the stoichiometric mismatch in 

food quality is even greater than that for aquatic invertebrates.  For example, even though 

the body N:P ratio for aquatic and terrestrial invertebrates is similar the elemental content 

of their food differs dramatically with terrestrial plants having significantly higher 

Carbon:N and C:P ratios than aquatic plants (Elser et al. 2000a).  Because phosphorus 

limitation is well documented for aquatic invertebrates and because terrestrial insects face 

similar stoichiometric mismatches in both N and P body content compared to their food 

resources, not only should nitrogen limitation exist for phytophagous insects as 

previously demonstrated but phosphorus limitation should occur as well (Elser et al. 

2000a). 

To date, no study has simultaneously investigated the consequences of nitrogen 

and phosphorus limitation for the performance of terrestrial herbivorous insects.  Using a 

combination of factorial experiments in the laboratory and field, whereby levels of soil 

nitrogen and phosphorus are manipulated in a crossed design, this study tests the 



4

hypothesis that both macronutrients will limit the performance and population size of 

phytophagous insects via their cascading effects on host plant quality.  

For my investigation, I selected two species of phloem-feeding herbivores, 

namely the salt marsh-inhabiting planthoppers Prokelisia dolus and P. marginata

(Hemiptera: Delphacidae).  These species were purposefully chosen because of dramatic 

differences in their sensitivity to variation in host-plant nitrogen (Cook and Denno 1994, 

Denno et al. 2002), competitive ability (Denno et al. 2000), population dynamics (Denno 

et al. 1996), and risk of predation (Denno et al. 2003).  Most notable is a dramatic 

difference in dispersal capability between the two species, with P. marginata being an 

exceedingly migratory species and P. dolus being comparatively sedentary (Denno et al. 

1996, Denno and Peterson 2000).   Facilitating the assessment of migratory capability in 

planthoppers is the fact that they are wing-dimorphic with both flight-capable adults 

(macropters) and flightless adults (brachypters) present in the same population  (Denno et 

al. 1989, Denno et al. 1996, Zera and Denno 1997).  Thus, a rough assessment of 

dispersal ability can be obtained by comparing the fraction of macropters in populations, 

which is high for P. marginata (>90%) and low for P. dolus (<20%) (Denno et al. 1996).  

Inversely associated with dispersal capability in these two species is their ability to 

tolerate low plant nitrogen via feeding compensation (Denno et al. 2000, Chapter 3).  

This relationship derives from an apparent trade-off between flight musculature and the 

cibarial musculature associated with the ingestion of phloem sap and thus their ability to 

enhance food intake on nutrient-deficient host plants (Chapter 3).  Thus, these two 

species apparently cope with deteriorating host-plant quality in two fundamentally 

different ways, P. marginata by migrating to better quality host plants in other habitats 
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and P. dolus by tolerating periods of low plant quality until nutrient conditions improve 

(Cook and Denno 1994, Denno et al. 2000, Chapter 3).

Given the fundamentally discrepant mechanisms that underlie the ability of these 

two species to cope with deteriorating plant quality, I anticipated that nitrogen and 

phosphorus limitation would affect them differently.  Based on differences in feeding 

compensation, I predicted that when confined to nitrogen-poor and phosphorus-deficient 

host plants that the sedentary species (P. dolus) and wing-form (brachypterous adults of 

both species) would incur fewer performance penalties than their long winged 

counterparts (P. marginata in general and macropterous adults of both species).

This research aims to elucidate the singular and interactive effects of nitrogen and 

phosphorus limitation on the performance of two abundant phytophagous insects and to 

examine the interface between life-history strategy and the consequences of 

macronutrient limitation.  Moreover, this work will contribute to a broader need to 

understand the relative roles of nitrogen and phosphorus limitation in the nutritional 

ecology of phytophagous insects, two macronutrients that have important consequences 

for species interactions, food-web dynamics, and ecosystem function (Coll and Guershon 

2002, Sterner and Elser 2002, Vanni et al. 2002, Denno and Fagan 2003, Denno and 

Kaplan in press.).

Study Site and System

Study Site

The effects of nitrogen and phosphorus limitation on the performance and 

elemental composition of Prokelisia planthoppers and their cordgrass host plant Spartina
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alterniflora were studied in the field on an expansive intertidal marsh in the Great Bay-

Mullica River estuarine system at the end of Great Bay Boulevard and just north of the 

Rutger's University Marine Station, Tuckerton, Ocean County, New Jersey (39° 30.8’ N, 

74° 19.0’ W).  The vegetation of this marsh and other mid -Atlantic marshes is dominated 

by the perennial cordgrass Spartina alterniflora, where it grows in extensive pure stands 

within the intertidal zone (Denno 1983, Gallagher et al. 1988, Mendelssohn and Morris 

2000).  

Evidence for macronutrient variability and limitation in Spartina alterniflora

Within the intertidal zone, the structure and nutritional content of Spartina 

alterniflora varies dramatically with elevation due to differences in nutrient subsidy by 

tides/groundwater and salinity that alters nutrient uptake (Denno 1983, Webb 1983, 

Gallagher et al. 1988, House et al. 1998).  Moving up the elevational gradient from low-

marsh habitats (tidal creek banks) to high-marsh plateaus (meadows), Spartina plants 

generally decrease in nutrient content (nitrogen and phosphorus) and height (Denno 1983, 

Ornes and Kaplan 1989).  In particular, nitrogen uptake can be limited on the high marsh 

under conditions of elevated salinity that arise from evaporation (Mendelssohn 1979, 

Webb 1983).  However, salt stress in Spartina promotes increases in the concentration of 

nitrogen-containing osmoprotectants that may benefit phytophagous insects (Cavalieri 

and Huang 1981, Bacheller and Romeo 1992, Naidoo et al. 1992).  However, under 

conditions of increased soil salinity cell turgor is adversely affected in Spartina (Drake 

and Gallagher 1984), which may reduce a phloem feeder’s access to elevated nitrogen 

(Huberty and Denno 2004).  Thus, natural variation in the nitrogen and phosphorus 
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content of Spartina occurs in the field presenting potential local problems to plant-

feeding insects that must meet their nutrient demands.

Nitrogen-limitation has been documented extensively in Spartina alterniflora, 

particularly in high-marsh habitats dominated by short-form plants (Smart and Barko 

1980, Broome et al. 1983, Osgood and Zieman 1993).  Phosphorus limitation, although it 

has been suggested for Spartina alterniflora (Broome et al. 1975, Broome et al. 1983), is 

much less likely given that salt-marshes and estuaries have been espoused as long-term 

phosphorus sinks (Billen and Lan 1991, House et al. 1998).  Nonetheless, there are 

somewhat mixed results for phosphorus limitation in Spartina marshes (Patrick and 

Delaune 1976, Broome et al. 1983, Osgood and Zieman 1993).  At the very least, adding 

phosphorus to Spartina elevates its concentration in plant tissues even though plant 

biomass does not necessarily increase (Patrick and Delaune 1976, Boyer et al. 2001), a 

result that may benefit phosphorus-limited insects.

Evidence for macronutrient limitation in Prokelisia planthoppers

Prokelisia marginata and P. dolus are the most abundant herbivores on Atlantic 

coastal marshes where they feed exclusively on Spartina alterniflora (Denno 1977, 

Denno et al. 2002).  Responses of the two Prokelisia species to the nitrogen content of 

Spartina suggest that both species are nitrogen limited, but that P. marginata is more 

sensitive to fluctuating plant nitrogen than its congener (Cook and Denno 1994, Denno et 

al. 2002, Denno et al. 2003).  For example, although both species select the most 

nitrogen-rich plants or plant parts on which to feed and oviposit, P. marginata colonizes 

nitrogen-enriched plants at tremendously high densities whereas P. dolus does not 
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(Denno 1983, Roderick 1987, Denno et al. 2002).  Moreover, what little data exists 

suggests that both species exhibit enhanced survival and performance on nitrogen-

fertilized Spartina, but that P. marginata shows a stronger response (Denno 1985, Denno 

and McCloud 1985, Denno et al. 1996, Olmstead et al. 1997).  Prokelisia dolus  also has 

the ability to withstand nitrogen-deficient plants better than P. marginata.  For instance, 

previous feeding by Prokelisia planthoppers significantly reduces the amino nitrogen 

content of their Spartina host (Olmstead et al. 1997), an effect that has far greater fitness 

consequences for P. marginata than P. dolus (Denno et al. 2000).  The ability of P. dolus

to better compensate for nutrient-deficient phloem sap by increasing its ingestion rate 

likely underlies its reduced sensitivity to depleted plant nitrogen (Chapter 3).  Altogether, 

existing observations and data suggest that nitrogen is likely limiting for both planthopper 

species.  Notably, nothing is known about phosphorus limitation in these planthoppers 

and how it might interact with plant nitrogen to affect their performance.

Methods

Factorial experiments in the laboratory and field were conducted to test the effects 

of variable nitrogen and phosphorus subsidies on (1) the nitrogen and phosphorus 

contents of Spartina and both Prokelisia species, (2) the biomass and mortality of 

Spartina, and (3) the performance (body size and development time), survival and 

population density of both planthoppers raised on Spartina that was grown under the 

various macronutrient treatment conditions.  
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Laboratory Experiment

A 4x4 full factorial experiment was initiated in May 2000 to test the direct and 

interactive effects of nitrogen and phosphorus subsidies on the growth, performance, and 

elemental composition (N and P content) of Spartina and both Prokelisia species.  Potted 

Spartina plants (3-5 plants per pot grown in sand substrate) were greenhouse grown in 

flats (80 pots per flat in each of two flats) exposed to four levels of nitrogen subsidy 

(0,10,30,60g/m2) and four levels of phosphorus addition (0,2,6,12g/m2), all crossed.  To 

achieve the desired treatments, plants in each treatment combination were fertilized every 

three weeks from May until July.  Nitrogen was applied as ammonium nitrate (0, 5g, 16g, 

32g / flat / application) and phosphorus was supplied as triple super phosphate (0g, 0.8g, 

2g, 5g / flat / application).  The macronutrient treatments are hereafter referred to as 0N, 

10N, 30N and 60N for nitrogen and 0P, 2P, 6P and 12P for phosphorus.  The range of N 

and P fertilization rates was chosen to bracket those used in previous laboratory 

experiments and to include the spectrum of Spartina nutrient contents that occurs 

naturally in the field (Denno et al. 2000). Plants for this experiment were grown from 

seed obtained from Environmental Concern, Inc. St. Michaels, MD. 

Effect of Nutrient Subsidies on Spartina Mortality, Biomass and N and P Content

Treatment effects on Spartina mortality (assessed on 13 July) and Spartina

biomass and nutrient content (N and P) (measured on 26 July) were determined on plants 

that were never exposed to planthoppers.  Nutrient subsidy effects were determined at the 

pot level by measuring plant mortality (number of dead plants per pot/total number of 

plants per pot) and biomass (g dry mass of Spartina per pot) in 25-30 randomly chosen 
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pots within each treatment.  Effects of the nutrient treatments on the nutrient content of 

Spartina (%N and %P of plants per pot) were determined from 6 randomly chosen pots 

per treatment.  Foliar N content was used as an index of the phloem nitrogen available to 

planthoppers because the two plant nitrogen variables are related (Youssefi et al. 2000).  

For biomass and nutrient determination, plants were harvested, oven dried for 48 hours at 

60°C, and weighed.  Subsequently, plant leaves were ground in a Wiley Mill and 

analyzed for %N using a Perkin-Elmer 2400 CHN analyzer, and for %P by persulfate 

digestion (Clesceri et al. 1998).  The grand mean of all experimental treatment plants was 

used to assess the overall N and P content of Spartina, a statistic that was used ultimately 

to assess the mismatch in (N and P) stoichiometry between plants and planthoppers.

Effect of Nutrient Subsidies on Planthopper Performance, Survival and N and P Content

Cohorts of 3 to 5 first instar nymphs of each Prokelisia species were placed 

separately onto caged treatment plants (20 initial replicate cohorts per treatment) on 17 

July (see Denno et al. 2000 for cage design).  Nymphs were obtained from lab cultures 

initiated from ovipositing adults collected from the Tuckerton field site.  There was 

severe plant mortality in the 30N and 60N treatments, resulting in the loss of these 

treatments.  Thus, the effect of the nutrient treatments on planthopper performance was 

assessed using a 2x4 factorial design (0N and 10N and 0P, 2P, 6P, and 12P).  Plant death 

in the remaining treatments resulted in uneven replication such that 3-12 replicates 

remained per treatment per species.  The survival (%), development time (days to adult 

molt), and tibia length (mm, a surrogate for body size (Denno and McCloud 1985)) for 

both Prokelisia species was determined at the time of adult emergence.  Emerging adult 
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planthoppers of each species were pooled by replicate (all sexes and wing forms) and 

oven dried prior to analysis for N and P content as above (Clesceri et al. 1998).

Statistical Analyses

Treatment effects on Spartina biomass, mortality, %N, and %P were each 

analyzed as a 4x4 factorial mixed-model ANOVA with nitrogen (4 levels) and 

phosphorus (4 levels) as fixed effects (SAS 2002).   Treatment effects on planthopper 

survival (arcsin squareroot transformed) were analyzed for each species separately using 

2x4 mixed-model ANOVA (sexes and wing forms pooled).  For each species, treatment 

effects on development time (days to adult) and body size (tibia length in mm) were each 

assessed using a 2x4x2 factorial (2 levels of N, 4 levels of P and two wing forms 

(brachypter and macropter) respectively) mixed-model weighted analysis of variance.  

For the analyses on development time and body size, only females were used, because 

few male brachypters of P. marginata were produced.  Because multiple insects were 

placed onto caged treatment plants, the mean development time or mean body size per 

pot was used for each analysis, and means were weighted by the number of observations 

per pot.  A mixed-model ANOVA was also used to compare the average nitrogen and 

phosphorus contents of Spartina, P. dolus, and P. marginata (organisms were pooled 

across all treatments for this analysis).

Prior to analysis, data (residuals) were assessed for normality and homogeneity of 

variances (SAS 2002).  If residual variances were heterogeneous, variance partitioning 

was conducted and the best model was chosen using Bayesian Information Criterion.  

The degrees of freedom were calculated using the Kenward-Roger method.  All means 
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comparisons were conducted using a Tukey adjustment to account for inflated 

comparison-wise error rates.  If data was transformed for statistical analysis, means and 

standard errors are presented as untransformed data.

Field Experiment

A 2x2x2 full factorial experiment was conducted in May 2000 at Tuckerton to test 

the direct and interactive effects of nitrogen fertilization (0, 80g/m2), phosphorus addition 

(0, 80g/m2), and habitat (meadow and tidal creek) on the biomass of Spartina, the 

population density of both Prokelisia species, and the N and P content of Spartina and 

both planthoppers.  The design was a randomized complete double-block design with two 

sites (marsh areas) each containing 2 habitat types and each of these containing 2 blocks 

of the 4 treatment combinations. Thus, each nutrient treatment combination was 

replicated 8 times for a total of 32 plots.  Fertilizer treatments (0N0P, 0N+P, +N0P, 

+N+P) were randomly assigned to a single plot (2x2m2) within each block.  Nitrogen was 

applied as ammonium nitrate (0 or 236g / plot / application) and phosphorus was added 

as triple super phosphate (0g or 176g / plot / application) on four dates (May 9 and 21, 

June 4 and 17).  This range of N and P fertilization rates was selected because it includes 

rates used by others to achieve Spartina nutrient contents that occur naturally in the field 

(Patrick and Delaune 1976, Denno et al. 2000).  Treatments were established in both 

habitat types to ensure the presence of both Prokelisia species; P. marginata occurs 

abundantly in low-marsh Spartina whereas P. dolus predominates in Spartina meadows 

(Denno et al. 1996).  Habitat type was also included in the design because ambient 

nutrient availability decreases from tidal creek habitat to meadow habitats, Spartina is 
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relatively more nutrient limited on the high marsh (Ornes and Kaplan 1989), and thus 

Spartina may respond differently to fertilization in the two habitats with regard to 

nutrient uptake and biomass.

Effect of Nutrient Subsidies on Spartina Biomass and N and P Content

Spartina biomass was determined twice during the time course of the experiment, 

once on 9 May prior to fertilizer application and again at the end of the experiment on 22 

July.  Live biomass was assessed by clippin g all above-ground vegetation within a 

0.047m2 wire frame (Denno et al. 2002) and one sample was taken from each plot on 

each date.  Spartina leaves were subsequently dried at 60oC for 48 hours before 

weighing.  The N and P content of Spartina was assessed 6 times (May 9 and 21, June 4, 

17, and 24, and July 22) during the experiment by taking 5 snippets (leaves of 5 different 

Spartina stems) per plot per date.  Snippet samples were oven dried, ground in a Wiley 

Mill, and the powder was analyzed for N and P content as above (Clesceri et al. 1998).  

The grand mean of all experimental treatment plants was used to assess the overall N and 

P content of Spartina, a statistic that was used ultimately to assess the mismatch in 

elemental composition (N and P) between plants and planthoppers.

Effect of Nutrient Subsidies on Planthopper Density and N and P Content

Planthopper density was determined by sampling once in each plot on 22 July 

using a D-vac suction sampler (2, 8-second placements of the sampling head per plot) 

(see Denno et al. 2002).  Planthoppers were placed into 70% alcohol, sorted to species 

and wing form, and counted.  The N and P content of the two Prokelisia species was 
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determined from samples taken in each plot on 24 June.  Insect collections were kept on 

ice until reaching the laboratory where they were stored at -20°C.  Subsequently 

planthoppers were sorted to species, wing form, and sex and then dried.  Three 

individuals of each species, wing form, and sex were taken from each plot and analyzed 

for their N and P content as above (Clesceri et al. 1998).

Statistical Analyses

Treatment and habitat effects on Spartina biomass were analyzed as a 2x2x2 

ANCOVA (2 levels of N, 2 levels of P, and 2 habitat types) with initial plant biomass 

(May 9) as the covariate (SAS 2002) and site, block and site*block as random effects.  

The effect of treatment and habitat on the nutrient content (%N and %P) of Spartina was 

analyzed as a repeated measures 2x2x2x6 factorial (2 levels of N, 2 levels of P, 2 habitat 

types, and 6 sampling dates) mixed-model analysis of variance, with the site, block and 

site*block as random effects.  A separate mixed-model factorial analysis of variance (2 

levels of N, 2 levels of P, 2 habitat types, and with site, block, and site*block as random 

effects) was run to assess treatment effects on the N and P content of Spartina on June 

24, the same date on which planthoppers were collected for elemental analysis. 

Treatment effects on the density of each Prokelisia species (log transformed) 

were analyzed as 2x2x2x2x2 factorial (2 levels of N, 2 levels of P, 2 habitat types, 2 

wing-forms, and 2 sexes) mixed-model ANCOVAs, with plant biomass as the covariate 

and site, block and site*block as the random effects.  A mixed-model ANOVA was used 

to compare the average nitrogen and phosphorus contents of Spartina, P. dolus, and P. 

marginata on June 24 (organisms were pooled across all treatments for this analysis).  
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Prior to analysis, residuals were assessed for normality and homogeneity of variances, 

variance partitioning was conducted and the best model was chosen using Bayesian 

Information Criterion, degrees of freedom were calculated using the Kenward-Roger 

method and means were compared using a Tukey adjustment to account for inflated 

comparison-wise error rates (SAS 2002).

Results

Laboratory Experiment

Effect of Nutrient Subsidies on Spartina Mortality, Biomass and N and P Content

In general, enhancing nitrogen and phosphorus subsidies resulted in increases in 

the nitrogen and phosphorus content of Spartina (Figure 1.1).  Increasing the nitrogen 

subsidy resulted in a remarkable increase in the nitrogen content (%) of Spartina that 

ranged from approximately 1% N in the 0N treatment to 8% N in the 60N treatment 

(main effect of N fertilization, F3, 126 = 843.30, P < 0.0001) (Figure 1.1A).  The addition 

of phosphorus also significantly affected the %N content of Spartina (F3, 130 = 12.28, P =

0.0001).  However, this effect was slight and was apparently driven by the higher than 

expected nitrogen content of Spartina in the 10N0P treatment.  Fertilizing with either P 

(F3, 131 = 158.67; P < 0.0001) or N (F3,136 = 20.65; P < 0.0001) significantly increased the 

phosphorus content (%) of Spartina (Figure 1.1B).  However, adding phosphorus 

fertilizer alone (0N with either 2P, 6P or 12P treatments) resulted in a significantly lower 

P content of Spartina than adding P fertilizer along with the N treatments, suggesting that 
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phosphorus uptake is positively influenced by N fertilization (significant N*P interaction, 

F9, 132 = 12.19; P < 0.0001).  

Fertilization with both N and P resulted in an increase in Spartina biomass, but 

biomass did not increase linearly with fertilizer application rate (Figure 1.2A) (significant 

N*P interaction, F9,176 = 23.3; P < 0.0001).  For example, nitrogen fertilization at the 10N 

level resulted in the greatest Spartina biomass, followed by the biomass achieved at the 

30N, 60N and 0N treatments (significant N main effect on biomass; F3, 176 = 65.04; P <

0.0001).  Also, Spartina exhibited significantly greater biomass when phosphorus 

fertilizer was added at rates of 2P, 6P, 12P compared to when no fertilizer was added 

(0P)(significant P main effect on biomass; F3,176 = 75.48, P < 0.0001), but there was no 

significant increase in Spartina biomass from the 2P to the 12P treatment levels (Figure 

1.2A).  

The nitrogen subsidy treatments also had non-linear effects on Spartina mortality 

with the least mortality occurring in the 10N, significantly higher mortality occurring in 

the 0N and 30N treatments, and the highest mortality arising in the 60N treatment 

(significant main effect on mortality; F3,250 = 14.11; P < 0.0001) (Figure 1.2B).  There 

was no significant effect of phosphorus fertilization on Spartina mortality (F3, 297 = 0.57; 

P = 0.6) (Figure 1.2C).  The high mortality of plants in the 60N treatment, and the 

eventual damping off of plants in the 30N treatment, precluded the use of these 

treatments for assessing fertilization effects on Prokelisia performance.
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Mismatch in N and P content between Spartina and Prokelisia

There was a striking difference in the nitrogen (%) and phosphorus (%) content of 

Spartina when compared to both Prokelisia species (Figure 1.3).  The nitrogen content of 

Spartina was 3 times less than that for either planthopper species (F2,110 = 304.10; P <

0.0001), suggesting that Spartina presents a low-nitrogen food source relative to the 

inherent nitrogen demands of Prokelisia (Figure 1.3A).  Similarly, the phosphorus 

content of Spartina was also three times less than that for either Prokelisia species 

(F2,110=310.15; P < 0.0001), a mismatch that further highlights the poor nutrient quality 

of Spartina for planthoppers (Figure 1.3B).  Notably, P. dolus had a slightly higher body 

phosphorus content than P. marginata, although their nitrogen contents did not differ 

(Figures 1.3A and B).

Effect of Nutrient Subsidies on Planthopper Performance and Survival 

Overall, the nutrient mismatch between Spartina and the Prokelisia species 

(Figure 1.3) translated into survival and performance penalties when planthoppers were 

raised on nutrient deficient plants.  For example, the survival of P. dolus was 

significantly enhanced when it was raised on plants with higher nitrogen content (10N 

versus 0N treatment) (Figure 1.4A) (main effect of N on survival; F1, 99 = 8.31; P =

0.005).   Its survival, however, was not significantly affected by phosphorus fertilization 

(main effect of P on survival; F1,99 = 0.71; P = 0.5).  For P. marginata, raising it on plants 

with increased nitrogen or phosphorus content did translate into improved survival (main 

effect of N on survival, F1,90 = 15.77; P = 0.0001) (main effect of P on survival; F3, 90 =



18

7.4; P = 0.002) (Figure 1.4B), and there was a significant interaction as the effect of P on 

survival was non-linear (N*P; F3,90 = 5.92; P < 0.0001).

In general, enhancing Spartina quality via nitrogen and phosphorus fertilization 

also had significant positive effects on the body size of female planthoppers, although P. 

marginata benefited relatively more.  For instance, P. dolus exhibited a significant 

increase in body size (tibia length) when raised on N-fertilized Spartina (main effect of N 

on tibia length F1,75 = 9.37; P = 0.003), but showed no response to P-subsidized plants 

(main effect of P on tibia length; F3,75 = 1.11; P = 0.3) (Figure 1.5A).  In contrast, 

fertilization of Spartina with both N (main effect of N on tibia length; F1,61 = 38.82; P <

0.0001) and P (main effect of P on tibia length; F3,61 = 2.5; P = 0.06) resulted in a 

significant increase in the body size of P. marginata (Figure 1.5B).  There was no effect 

of wing form on body size nor was their any interactive effect with either N or P 

fertilization (P >0.05).

Feeding on nitrogen-rich Spartina (10N) decreased the development time of P. 

dolus females by 4 days compared to when they were reared on 0N treatment plants (F1,75

= 10.5; P = 0.002), but there was no significant change in development time on plants 

fertilized with increasing amounts of phosphorus (F3,75 = 0.19; P = 0.8) (Figure 1.6A).  

As with survival and body size, both N and P fertilization of Spartina promoted faster 

development in P. marginata (Figure 1.6B).  Adding N fertilizer to Spartina resulted in a 

significant 8 day reduction in the development time (main effect of N on development 

time; F1,61 = 37.44; P < 0.0001).  With increasing P fertilization of Spartina, there was a 

non-linear change in development rate; the most rapid development occurred on plants in 

the 6P treatment compared to the remaining treatments (main effect of P on development 
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time; F3,61 = 3.64; P = 0.02).  There was no effect of wing form on development time nor 

was there any interactive effect with either N or P fertilization (P > 0.05).

Field Experiment

Effect of Nutrient Subsidies on Spartina Biomass and N and P Content

Both N and P fertilization significantly increased the nitrogen content (%N) of 

Spartina in the field (Figures 1.7 and 1.8).  Overall, nitrogen subsidy increased the N 

content of Spartina from 1.86 ± 0.03 % to 2.86 ± 0.30 % (main effect of N on %N; F1,124

= 472.20; P < 0.0001).  Phosphorus fertilization enhanced nitrogen uptake and resulted in 

a more modest increase in the nitrogen content (%) of Spartina from 2.27 ± 0.03 % to 

2.45 ± 0.03 % (main effect of P on %N; F1,124 = 14.27; P = 0.0002).

The habitat where the N fertilization treatment was applied also significantly 

influenced the nitrogen content of Spartina.  On average, the nitrogen content of Spartina

growing in the meadow habitat (2.5 ± 0.03 %, Figure 1.7A) was significantly greater than 

the nitrogen content of Spartina growing in the tidal creek habitat (2.25 ± 0.03 %; F1,124 =

23.68; P < 0.0001) (Figure 1.7B).  

On the date planthoppers were sampled (July 22), the nitrogen content of Spartina

was significantly higher in plots receiving the nitrogen subsidy (3.1 ± 0.08 %) than in 

plots that did not (2.1 ± 0.08 %;  F1,23 = 65.97; P < 0.0001).  Likewise, the N-content of 

Spartina was significantly greater in plots fertilized with phosphorus (2.7 ± 0.08 %) 

compared to controls (2.4 ± 0.08 %; F1,23 = 9.63; P = 0.005) (Figure 1.7C).  On this date 

there was no difference in the nitrogen content of plants between the meadow and tidal 

creek habitats (main effect of Habitat; F1,23 = 0.37; P = 0.5).  
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There was a significant interactive effect of fertilization treatment, date, and 

habitat on the phosphorus content (%) of Spartina (N*P*Date*Habitat; F4,94.3 = 2.65; P =

0.03; Figures 1.8A-B).  In control plots (0N0P) and in nitrogen- subsidized plots (+N), the 

P content of Spartina declined from May to July in both habitats, and there was no 

difference in the P content of Spartina in these two treatments.  By contrast, in the 

meadow habitat, there was a significant increase in the P content of Spartina in plots 

receiving a phosphorus subsidy (0N+P) and a synergistic seasonal increase in the P 

content of Spartina in plots receiving both N and P subsidies (+N+P) compared to 

controls (Figure 1.8A).  In the tidal creek habitat, although phosphorus fertilization 

resulted in an increase in the P content of Spartina, the seasonal increase in P content in 

response to the +N+P treatment seen in meadow Spartina (Figure 1.8A) was not as 

evident in tidal creek plants (Figure 1.8B).  The difference in the P content of Spartina

between plants in the meadow and tidal creek habitats that received both N and P 

subsidies was particularly evident on the date planthopper were sampled (Figure 1.8C).  

On this date, meadow plants contained twice as much foliar phosphorus as those in the 

tidal creek habitat (N*P*Habitat, F1,24 = 16.8; P = 0.0004).

There was a significant interactive effect of the fertilization treatments and habitat 

on the aboveground biomass of Spartina (N*P*Habitat; F1,17.3 = 5.94; P = 0.03; Figure 

1.9).  Nitrogen fertilization resulted in a significant increase in Spartina biomass in the 

meadow habitat, a response that did not occur in plants growing in the tidal creek.  

Neither phosphorus fertilization nor the application of both N and P significantly altered 

Spartina biomass in the meadow habitats relative to controls.  However, the biomass of 
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plants receiving the phosphorus subsidy was significantly less than those that were 

fertilized with only nitrogen.  

Mismatch in N and P content between Spartina and Prokelisia

The mismatch in nitrogen (%) and phosphorus (%) content between Spartina and 

both planthopper species was even more extreme than that observed in the laboratory 

data (compare Figure 1.10 with 1.3).  The nitrogen content of Spartina growing in the 

field was 5 times less than that for either planthopper species (F2,75.4 = 1334; P < 0.0001) 

(Figure 1.10A), and more than three times less in phosphorus content than either 

Prokelisia species (F2,77.2 = 221, P < 0.0001) (Figure 1.10B). 

Effect of Nutrient Subsidies on Planthopper Density

Although both Prokelisia  species responded with population increases on 

nitrogen-subsidized Spartina, P. marginata exhibited a relatively stronger response than 

P. dolus (Figure 1.11).  Nitrogen fertilization of Spartina promoted a significant increase 

in the density of P. dolus (main effect of N; F1,55 = 30.47; P < 0.0001), and there was a 

greater increase in the density of macropters than flightless brachypters on plots that 

received a nitrogen subsidy compared to those that did not (N*Wing form; F1,54.9 = 6.49; 

P = 0.01) (Figures 1.11A-B).  The density of P. dolus was not affected by phosphorus 

fertilization (main effect of P; F1,55 = 0.08; P = 0.8).  Overall, P. dolus was found in 

greater densities in the meadow habitat than on tidal creek Spartina (main effect of 

Habitat; F1,55 = 5.46; P = 0.02) (Figures 1.11A-B).  
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For P. marginata, macropters selectively colonized N-subsidized Spartina a 

density response not observed for flightless brachypters (N*Wing form; F1, 96 = 20.06; P

< 0.0001), and the increase in macropter density on nitrogen fertilized Spartina was 

greater in the tidal creek habitat than the meadow habitat (N*Wing form*Habitat; F1,96 =

4.11; P = 0.046) (Figures 1.11C-D).  There was no density response of P. marginata to P-

subsidized Spartina in either habitat (main effect of P; F1,96 = 0.19; P = 0.7). For both 

planthopper species, there was no difference in the response of males and females to 

fertilized plants, and plant biomass was not a significant covariate (P > 0.05).  

Discussion

Nutrient-limitation in Spartina alterniflora

Spartina responded vigorously to nitrogen fertilization in both laboratory and 

field experiments.  In the laboratory, high rates of nitrogen subsidy (30N and 60N) 

resulted in a remarkably high nitrogen content of Spartina (~7 %N) (Figure 1.1A), but 

also promoted severe mortality (Figure 1.2B), suggesting that nitrogen fertilization has a 

toxic effect at high application rates.  Furthermore, the greatest increase in plant biomass 

occurred at a moderate level of nitrogen addition (10N) and not at the highest fertilization 

levels (Figure 1.2A), further suggesting the adverse effects of excess nitrogen input.  

In the field, nitrogen fertilization resulted in increased Spartina biomass in the 

meadow habitat, but not in the tidal creek habitat (Figure 1.9).  Also, the nitrogen content 

of field plants, particularly those in the meadow habitat, was further enhanced by the 
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application of both N and P (Figure 1.7), suggesting that nitrogen uptake is influenced by 

ambient levels of phosphorus.

Phosphorus fertilization in the laboratory did not result in dramatic changes in the 

elemental content or biomass of Spartina compared to nitrogen fertilization.  Although 

the P content of Spartina increased with P fertilization, a greater response occurred when 

both N and P were added to growing Spartina (Figure 1.1B), suggesting that nitrogen 

facilitates phosphorus uptake.  Plant biomass did increase with P addition, but the 

increase occurred only when a comparison was made to plants deprived of P altogether

(Figure 1.2A).  Spartina mortality was unaffected by phosphorus subsidy in the 

laboratory (Figure 1.2C).  Phosphorus fertilization had only minor effects on Spartina

plants in the field as well.  Phosphorus fertilization alone resulted in a slight increase in 

the P content of Spartina (Figure 1.8) and no increase in plant biomass (Figure 1.9).  

Only when phosphorus was applied along with nitrogen did the P content of Spartina

increase, a response that was more evident in meadow Spartina.  Notably, phosphorus 

fertilization did not affect the biomass of Spartina in either habitat.

Overall, there is extensive data suggesting that Spartina is strongly nitrogen 

limited and that evidence for phosphorus limitation is weak, suggesting that Spartina has 

a greater physiological demand for nitrogen than phosphorus.  Previous research on other 

Atlantic coastal marshes also shows greater N-limitation than P-limitation in Spartina

(Patrick and Delaune 1976, Broome et al. 1983, Osgood and Zieman 1993).  That the 

greatest effects of phosphorus subsidy on the P content of Spartina were seen when both 

nitrogen and phosphorus were applied compared to when phosphorus was applied alone, 
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suggesting that nitrogen demands are more crucial and must be met first (Patrick and 

Delaune 1976).  

In the field, Spartina growing in meadow habitats exhibited a greater growth 

response to nitrogen fertilization compared to plants growing in the tidal creek habitat

(Figure 1.9), a response that has been documented previously (Broome et al. 1975, 

Mendelssohn 1979, Broome et al. 1983, Webb 1983).  This result is consistent with 

reports in the literature that Spartina is more nitrogen limited in high marsh habitats that 

incur less tidal subsidy of nutrients and face problems of nutrient uptake under salt 

stressed conditions (Webb 1983, Gallagher et al. 1988, Ornes and Kaplan 1989, House et 

al. 1998, Osgood and Zieman 1998).  

Nutrient-limitation and its consequences for Prokelisia planthoppers

The nitrogen and phosphorus content of Spartina alterniflora is remarkably low 

compared to the body nitrogen content of both Prokelisia species (Figure 1.3 and 1.10), 

suggesting that both N and P may limit their performance and adversely influence their 

density.  When P. dolus and P. marginata were raised on plants with an enriched nitrogen 

signature, they survived better, grew to a larger size, and developed more rapidly than 

when they developed on nitrogen-deficient plants (Figures 1.4, 1.5 and 1.6).  Moreover, 

both species achieved significantly higher densities on nitrogen-subsidized plants in the 

field (Figure 1.11).  Although both planthopper species responded positively to nitrogen-

fertilized Spartina, P. marginata experienced greater fitness consequences that P. dolus

under nitrogen-deficient plants.  For P. marginata, its survival declined by 50%, its body 

size was reduced 12%, and its development time to adult was extended by 8 days when 
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reared on nitrogen-deficient compared to nitrogen-enriched Spartina.  In contrast, P. 

dolus suffered only 25% reduction in survival, a 6% decrease in body size, and a 4-day 

developmental delay when raised on the same nitrogen-poor plants. 

Phosphorus limitation was not as severe as nitrogen limitation for P. marginata,

and was not detected at all in P. dolus even though there was a significant mismatch 

between the phosphorus content of Spartina and that of both Prokelisia species.  

Nonetheless, P. marginata did show a significant increase in survival and body size on 

phosphorus-enhanced plants compared to controls, but like P. dolus failed to show a 

positive density response to phosphorus-fertilized Spartina in the field (Figures 1.4, 1.5 

and 1.6).  

The tempered response of P. dolus to nitrogen- and phosphorus-deficient Spartina

compared to P. marginata may be due to a greater investment in feeding musculature and 

hence its ability to compensate for nutrient deficiencies by increasing its ingestion rate of 

phloem (Denno et al. 2000, Chapter 3).  Planthoppers and leafhoppers feed by inserting 

their stylets into phloem and xylem tissues respectively (Backus 1985, Cook and Denno 

1994).  Then using a cibarial pump (modified esophagus), cell sap is ingested.  The 

cibarial pump is driven by a series of dilator muscles that insert on the interior of the face, 

and face size is positively related to the cross-sectional mass and thus the power of the 

cibarial muscles to ingest cell sap (Backus 1985). For Prokelisia planthoppers, P. dolus

has a much broader face and likely commitment to subtending cibarial musculature than 

P. marginata (Denno et al. 1987, Denno et al. 2000) Chapter 3).  Prokelisia dolus is 

likely more capable than P. marginata of increasing food uptake in response to any 

reductions in plant nitrogen, and thus its reduced sensitivity to host plant nutrition. Data 
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suggest that species-level differences in cibarial pump investment and subsequent feeding 

ability dictate planthopper responses to N and P limitation for both species, as wing 

forms within a species performed equally.

Compensatory feeding and the ability to maintain adequate performance on 

nutrient limited host plants has been documented in several species of insect herbivores, 

particularly chewing insects (Raubenheimer and Simpson 1993, Kingsolver and Woods 

1998, Lavoie and Oberhauser 2004).  Also, a xylem-feeding leafhopper has also been 

shown to increase consumption in relation to low nitrogen availability (Brodbeck et al. 

1999). 

Phosphorus limitation in Spartina had only minor adverse effects on the 

performance of both Prokelisia species.  Given the discrepancy in phosphorus content 

between Spartina and Prokelisia, a mismatch that was a large as that for nitrogen content, 

I fully expected phosphorus limitation to have very adverse effects on planthopper 

performance growth, as has been observed in other organisms (Urabe and Watanabe 

1992, DeMott et al. 1998, Sterner and Schulz 1998, Elser et al. 2001, Makino et al. 2002, 

Urabe et al. 2002, Xenopoulos et al. 2002).  However, the unusually high N content of 

both species (approximately 11%), which is approximately the same as that for predators 

and significantly greater than the average for phytophagous herbivores (9.65%N) (Fagan 

et al. 2002b), may impose unusual nitrogen demands and underlie the relatively more 

important role of nitrogen than phosphorus in the nutritional ecology of Prokelisia.  

Considering that predators feed at a trophic level with a more comparable N content 

(difference between 11%N and 9%N) than herbivores feeding on plants (difference 
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between 9%N and 1.5%N), the extremely high N content of Prokelisia planthoppers is 

remarkable.

The two Prokelisia species have evolved very different strategies for coping with 

nutrient deficiencies in their host plant.  Data suggests that P. dolus uses compensatory 

feeding (Chapter 3), whereas P. marginata has evolved a dispersal strategy that allows it 

to effectively track spatial changes in host plant quality (Denno 1983, Roderick 1987, 

Denno et al. 2002, Denno et al. 2003, Figure 1.11).  In fact, all data points to a 

phenotypic trade-off between the two strategies with a greater commitment to flight 

musculature in P. marginata and a greater investment in the musculature associated with 

enhanced ingestion in P. dolus.  When its option of dispersal is eliminated, and P. 

marginata is confined on nutrient-deficient host plants, its performance is drastically 

affected, far more so than that of P. dolus.  Thus, despite similar body nitrogen and 

phosphorus content, and extremely analogous mismatch in N and P composition 

compared to Spartina, the two Prokelisia species incur the penalties of depleted host-

plant nutrition quite differently.  This research underscores the importance of interfacing 

an understanding of herbivore life-history strategies with ecological stoichiometry in 

order to interpret the consequences of macronutrient limitation on herbivore performance 

and population dynamics.
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Figure Descriptions

Figure 1.1.  Effect of 4 levels of nitrogen fertilization (0N, 10N, 30N, and 60N) and 4 

levels of phosphorus fertilization (0P, 2P, 6P, and 12P) on the (A) nitrogen 

content (%) and (B) phosphorus content (%) of Spartina alterniflora plants grown 

under laboratory conditions.  Note that the nitrogen content of Spartina  increased 

significantly with the addition of N and P fertilizer.  Spartina also exhibited a 

significantly greater increase in phosphorus content with the addition of both N 

and P fertilizer treatments.  Means (± SE) are reported.

Figure 1.2.  (A) Effect of 4 levels of nitrogen fertilization (0N, 10N, 30N, and 60N) and 4 

levels of phosphorus fertilization (0P, 2P, 6P, and 12P) on the aboveground 

biomass (g/m2) of Spartina alterniflora plants grown under laboratory conditions.  

Note that maximum biomass was achieved in the 10N treatment, and that any 

level of phosphorus subsidy above 0P resulted in increased biomass.  (B) Effect of 

4 levels of nitrogen fertilization (0N, 10N, 30N, and 60N) and (C) 4 levels of 

phosphorus fertilization (0P, 2P, 6P, and 12P) on the mortality (%) of Spartina 

alterniflora plants.  Plant mortality was highest on the 60N treatment plants and 

the phosphorus treatments had no effect on mortality.  Means (± SE) with the 

same letter are not significantly different.

Figure 1.3.  The (A) nitrogen content (%) and (B) phosphorus content (%) of Spartina 

alterniflora, and the planthoppers Prokelisia dolus and Prokelisia marginata
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raised on S. alterniflora plants grown under laboratory conditions.  Means (± SE) 

with the same letter are not significantly different.

Figure 1.4.  Effect of 2 levels of nitrogen fertilization (0N and 10N) and 4 levels of 

phosphorus fertilization (0P, 2P, 6P, and 12P) applied to Spartina alterniflora on 

the survival (%) of (A) Prokelisia dolus and (B) Prokelisia marginata raised on 

the 8 treatment combinations of plants in the laboratory.  Nitrogen fertilization of 

Spartina resulted in an increase in survival of both Prokelisia species.  Means (± 

SE) are reported.

Figure 1.5.  Effect of 2 levels of nitrogen fertilization (0N and 10N) and 4 levels of 

phosphorus fertilization (0P, 2P, 6P, and 12P) applied to Spartina alterniflora on 

the body size (tibia length in mm) of female (A) Prokelisia dolus and (B) 

Prokelisia marginata raised on the 8 treatment combinations of plants in the 

laboratory.  Nitrogen fertilization of Spartina resulted in an increase in the body 

size of both Prokelisia species.  Means (± SE) are reported.

Figure 1.6. Effect of 2 levels of nitrogen fertilization (0N and 10N) and 4 levels of 

phosphorus fertilization (0P, 2P, 6P, and 12P) applied to Spartina alterniflora on 

the development time (days to adult molt) of female (A) Prokelisia dolus and (B) 

Prokelisia marginata raised on the 8 treatment combinations of plants in the 

laboratory.  Nitrogen fertilization of Spartina promoted rapid development in both 

Prokelisia species.  Means (± SE) are reported.
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Figure 1.7.  Effect of nitrogen and phosphorus fertilization treatments (0N0P, N, P, and 

both N and P) on the nitrogen content (%) of Spartina alterniflora growing in (A) 

a high-marsh meadow habitat and (B) a low-marsh tidal creek habitat at 

Tuckerton, New Jersey.  (C) Effect of the same fertilization treatments on the 

nitrogen content of Spartina growing in meadow and tidal creek habitats on 22 

July 2002, the date on which planthoppers were sampled.  Nitrogen subsidy 

enhanced the nitrogen content of Spartina in both habitats. Means (± SE) are 

reported.

Figure 1.8.  Effect of nitrogen and phosphorus fertilization treatments (0N0P, N, P, and 

both N and P) on the phosphorus content (%) of Spartina alterniflora growing in 

(A) a high-marsh meadow habitat and (B) a low-marsh tidal creek habitat at 

Tuckerton, New Jersey.  (C) Effect of the same fertilization treatments on the 

nitrogen content of Spartina growing in meadow and tidal creek habitats on 22 

July 2002, the date on which planthoppers were sampled.  The combination of 

nitrogen and phosphorus fertilization resulted in the highest phosphorus content of 

Spartina, particularly in the meadow habitat. Means (± SE) are reported.

Figure 1.9.  Effect of nitrogen and phosphorus fertilization treatments (0N0P, N, P, and 

both N and P) on the biomass (g dry mass) of Spartina alterniflora growing in a 

high-marsh meadow and a low-marsh tidal creek habitat at Tuckerton, New 
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Jersey.  Nitrogen subsidy resulted in a significant increase in biomass only in the 

meadow habitat.  Means (± SE) with the same letter are not significantly different.

Figure 1.10.  The (A) nitrogen content (%) and (B) phosphorus content (%) of Spartina 

alterniflora, and the planthoppers Prokelisia dolus and Prokelisia marginata

sampled on S. alterniflora plants in the field on a salt marsh at Tuckerton, New 

Jersey.  Means (± SE) with the same letter are not significantly different.

Figure 1.11.  Population density [log(N+1)/m2] of the wing forms (macropters and 

brachypters) of Prokelisia dolus in (A) meadow and (B) tidal creek habitats in 

plots of Spartina fertilized with nitrogen (+N) or in plots not receiving a nitrogen 

subsidy on a salt marsh at Tuckerton, New Jersey.  Density responses of the wing 

forms of Prokelisia marginata to the same nitrogen treatments are shown in (C) 

meadow habitat and (D) tidal creek habitats.   Macropters of P. dolus were more 

abundant on fertilized Spartina compared to non-fertilized control plots only in 

the meadow habitat, and flightless brachypters showed no density response to 

fertilized Spartina in either habitat.  Macropters of P. marginata were more 

abundant on fertilized Spartina compared to controls in both habitats, a response 

that was particularly strong in the tidal creek.  Flightless brachypters of this 

planthopper showed no density response to fertilized Spartina in either habitat.  

Means (± SE) with the same letter are not significantly different.
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Figure 1.2.
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Figure 1.3.
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Figure 1.4.
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Figure 1.5.
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Figure 1.6.
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Figure 1.8.

Sp
ar

tin
a 

P
ho

sp
ho

ru
s 

C
on

te
nt

 (
%

) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

May June

Date

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Control (0N0P)
Nitrogen (+N0P)
Phosphorus (0N+P)
Nitrogen + Phosphorus (+N+P)

A. Meadow Habitat

B. Tidal Creek Habitat

July

May June July

Fertilizer Treatment
Control +N0P 0N+P +N+P

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Meadow Habitat
Tidal Creek Habitat

July 22, 2002

C. 



52

Figure 1.9.
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Figure 1.10.
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Figure 1.11.
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Chapter 2: Homeostatic regulation of body elemental composition and its 

consequences for growth in two phytophagous insects

Introduction

Ecological stoichiometry provides an integrative approach for analyzing 

community and food web structure because all organisms are composed of the same 

major elements [carbon (C), nitrogen (N), and phosphorus (P)], whose balance affects 

species interactions, production, nutrient cycling, and food-web dynamics (Elser et al. 

1996, Huxel 1999, Fagan et al. 2002b, Sterner and Elser 2002, Denno and Fagan 2003).  

Of these three major elements, nitrogen in particular has been cited as the essential 

nutrient that is most limiting to phytophagous insects (McNeill and Southwood 1978, 

Mattson 1980, Strong et al. 1984, White 1993).  Phosphorus, however, has been largely 

overlooked as a potentially important nutrient for phytophagous insects, but recent 

studies suggest that P may be far more important in terrestrial systems than previously 

thought (Ayers et al. 2000, Elser et al. 2000a, Schade et al. 2003).  Notably, carbon 

occurs in surplus in terrestrial plants (Elser et al. 2000a), and eliminating excess carbon 

may prove costly to insect herbivores (Raven 1983, White 1993). 

Food webs, particularly those in terrestrial systems, are built on an extremely 

nutrient-poor but carbon-rich autotroph base (high C:N and C:P ratios) (Elser et al. 

2000a).  By contrast, terrestrial consumers have significantly lower C:N and C:P ratios, 

indicating a dramatic elemental mismatch in body elemental composition relative to their 

food resources.  Thus, phytophagous insects face two problems; not only must these 
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herbivores obtain nutrients from nutrient-limited food resources, but they must also 

process excess amounts of carbon to acquire limited nutrients (Raven 1983).  

Despite the elemental inequalities between phytophagous insects and their host 

plants, herbivores are able to maintain their elemental body composition via homeostasis.  

Homeostasis is the ability to regulate elemental body composition despite feeding on 

stoichiometrically mismatched food resources, and is a general tenet of ecological 

stoichiometry (Sterner and Elser 2002).  Homeostatic regulation in phytophagous insects 

can occur through mechanisms such as the differential disposal (excretion or respiration) 

of excess elements (Slanksy and Feeny 1977, Elser et al. 1996, DeMott et al. 1998, 

Darchambeau et al. 2003, Trier and Mattson 2003).  The physiological regulation of 

elemental body content in invertebrates was originally thought to be strict, such that 

elemental composition was maintained despite wide variation in the elemental 

composition of food resources (Sterner and Elser 2002).  Recent studies, however, 

indicate that individuals may alter their body elemental content when they are exposed to 

food resources that deviate significantly from their own elemental composition (Plath and 

Boersma 2001, Cross et al. 2003, Elser et al. 2003).  Thus, organisms may struggle to 

regulate their optimal elemental composition when faced with nutrient-poor and carbon-

rich food resources.  The result of homeostatic regulation, especially when organisms 

feed on nutrient-deficient food, is a cost that is often imposed on performance, namely 

decreased growth rate (Elser et al. 1996, Plath and Boersma 2001, Sterner and Elser 

2002, Elser et al. 2003, Raubenheimer and Simpson 2004).  Growth rate penalties occur 

because organisms use limited nutrients for maintenance, which are then unavailable for 

maximizing performance (Sterner and Elser 2002).
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Not surprisingly, insect herbivores have evolved a variety of life-history strategies 

and physiological mechanisms that allow them to increase their intake of limiting 

nutrients (McNeill and Southwood 1978, White 1993).  One mechanism for coping with 

deteriorating plant nutrition is to disperse to better quality host plants in other habitats 

(Denno et al. 2002).  Alternatively, remaining on poor quality plants and waiting for 

nutritional conditions to improve may be an option if herbivores are able to compensate, 

either by storing nutrients as a buffer against times of poor food quality (Woods et al. 

2002), by increasing the volume of food they ingest (feeding compensation) (Lavoie and 

Oberhauser 2004, Raubenheimer and Simpson 2004) or by increasing their nutrient 

assimilation efficiency (Prestidge 1982b, Brodbeck et al. 1996, Lavoie and Oberhauser 

2004, Raubenheimer and Simpson 2004).  

This study is the first to employ a stoichiometric framework to the homeostatic 

regulation of elemental body composition (C, N and P) and its consequences for the 

growth of terrestrial insect herbivores.  Using two phytophagous planthoppers (Prokelisia 

dolus and P. marginata: Hemiptera: Delphacidae) with divergent life-history strategies, 

this research identifies a mismatch in elemental composition between these herbivores 

and their host plant, examines life-history related differences in the homeostatic 

regulation of elemental body composition, and identifies any costs imposed by 

homeostasis.  The life-history trait that differs so strikingly between these two 

planthoppers is their dispersal ability; P. marginata is a migratory species whereas P. 

dolus is comparatively sedentary (Denno et al. 1996, Denno and Peterson 2000).  Both 

planthopper species are wing-dimorphic with both flight-capable adults (macropters that 

can disperse long distances) and flightless adults (brachypters) present in the same 
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population (Denno et al. 1989, Denno et al. 1996, Peterson and Denno 1997, Zera and 

Denno 1997).  An approximate assessment of dispersal ability can be obtained by 

comparing the fraction of macropters in populations, which is high for P. marginata

(>90%) and low for P. dolus (<20%) (Denno et al. 1996).  

Species-related differences in dispersal ability may indicate that these two 

planthoppers use different mechanisms to cope with deteriorating host-plant nutrition 

(Denno et al. 2002).  Prokelisia marginata is known to disperse and colonize nitrogen-

enriched host-plant patches in the field whereas P. dolus is a poor colonizer of such 

patches (Denno 1983, Roderick 1987, Denno et al. 2002).  When confined to nutrient-

deficient host plants, P. marginata exhibits reduced performance (Chapter 1), suggesting 

that dispersal may be the primary mechanism used by this species to escape nutrient 

limitation.  Although the performance of both Prokelisia species is adversely affected 

when they develop on low-quality plants, P. dolus has the ability to survive on and 

tolerate nitrogen- and phosphorus-deficient plants better than does P. marginata (Denno 

et al. 2002, Chapter 1).  Thus, inversely associated with dispersal capability in these two 

species is their ability to tolerate poor plant nutrition, probably via differences in feeding 

compensation (Denno et al. 2000, Chapter 3).  This relationship potentially derives from 

a potential trade-off between flight musculature and the cibarial musculature associated 

with the ingestion of phloem sap and thus their ability to enhance food intake on nutrient-

deficient host plants (Chapter 3).  Apparently, these two species cope with deteriorating 

host-plant quality in two fundamentally different ways, P. marginata by migrating to 

better quality host plants in other habitats and P. dolus by tolerating periods of low plant 
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quality until nutrient conditions improve (Cook and Denno 1994, Denno et al. 2000, 

Chapter 3).

Using a blend of laboratory and field experiments, the objectives of this study 

were three: (1) to establish any mismatch in the elemental composition of macronutrients 

(C, N, and P) between planthoppers and their host plant, (2) to investigate homeostatic 

differences between the Prokelisia species in their ability to maintain their body 

elemental composition when fed a range of plants differing in elemental stoichiometries, 

and (3) to determine any species-specific growth costs associated with homeostasis.  The 

elemental currencies used for this study were the ratios of C:N, C:P, and N:P and how 

they differed between host plants and the Prokelisia species.  Carbon:nutrient ratios 

examine the potential consequences of limited N or P in the context of excess C, whereas 

N:P can be used to examine the relative importance of N or P in homeostatic regulation 

(Sterner and Elser 2002).

I hypothesize that both Prokelisia species will maintain their body elemental 

composition (e.g., C:N ratio) when fed a range of plants that vary in their elemental 

stoichiometry (e.g., C:N ratios).  However, the cost of homeostasis (decreased growth) 

will be greater for P. marginata than P. dolus and for macropters compared to 

brachypters.  This prediction derives from the enhanced ability of P. dolus and 

brachypters of both species to compensate for nutrient deficiencies by increasing their 

ingestion rate (Chapter 3).  Moreover, dispersive species may have greater nutrient 

demands than sedentary species due to investments in flight fuel (Cook and Denno 1994, 

Denno 1994, Dudley 2000). Thus, a greater investment in dispersal should restrict the 

compensatory feeding ability of P. marginata, as well as the macropters of both species, 
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and result in decreased growth rate on nutrient-deficient plants.  Overall, the divergent 

strategies should favor P. dolus and penalize P. marginata when confined to and 

challenged by nutrient-poor host plants.  This study will be among the first to examine 

the interaction between life-history strategy, homeostatic ability, and the consequences 

for growth of stoichiometric imbalances in macronutrients between insect herbivores and 

their host plants.

Study Site and System

Study Site

The relationship in elemental composition (C, N, and P) between Prokelisia

planthoppers and their cordgrass host plant Spartina alterniflora were studied in the 

laboratory and in the field on an expansive intertidal marsh in the Great Bay-Mullica 

River estuarine system at the end of Great Bay Boulevard and just north of the Rutger's 

University Marine Station, Tuckerton, Ocean County, New Jersey (39° 30.8’ N, 74° 19.0’ 

W).  The vegetation of this marsh and other mid-Atlantic marshes is dominated by the 

perennial cordgrass Spartina alterniflora, where it grows in extensive pure stands within 

the intertidal zone (Denno 1983, Gallagher et al. 1988, Mendelssohn and Morris 2000).  

Macronutrient variability in Spartina alterniflora 

Within the intertidal zone, the structure and nutritional content of Spartina 

alterniflora varies dramatically with elevation due to differences in nutrient subsidy by 

tides/groundwater and salinity that alters nutrient uptake (Denno 1983, Gallagher et al. 
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1988, House et al. 1998).  Moving up the elevational gradient from low-marsh habitats 

(tidal creek banks) to high-marsh plateaus (meadows), Spartina plants generally decrease 

in nutrient content (nitrogen and phosphorus) and height (Denno 1983, Ornes and Kaplan 

1989).  In particular, nitrogen uptake can be limited on the high marsh under conditions 

of elevated salinity that arise from evaporation (Mendelssohn 1979, Webb 1983).  Thus, 

natural variation in the nitrogen and phosphorus content of Spartina occurs in the field 

presenting potential local problems to plant-feeding insects that must meet their nutrient 

demands.

Responses to host-plant nutrition and population dynamics of Prokelisia planthoppers

Prokelisia marginata and P. dolus are the most abundant herbivores on Atlantic 

coastal marshes where they feed exclusively on Spartina alterniflora (Denno 1977, 

Denno et al. 2002).  Responses of the two Prokelisia species to the nitrogen content of 

Spartina suggest that both species are nitrogen limited, but that P. marginata is more 

sensitive to fluctuating plant nitrogen than its congener (Cook and Denno 1994, Denno et 

al. 2002, 2003, Chapter 1).  For instance, although both species select the most nitrogen-

rich plants or plant parts on which to feed and oviposit, P. marginata colonizes nitrogen-

enriched plants at higher densities than P. dolus (Denno 1983, 1985, Roderick 1987, 

Denno et al. 2002).  Moreover, what little data exists suggests that both species exhibit 

enhanced survival and performance on nitrogen-fertilized Spartina, but that P. marginata

shows a stronger response (Denno 1985, Denno and McCloud 1985, Denno et al. 1996, 

Olmstead et al. 1997).  Prokelisia dolus also has the ability to withstand nitrogen-

deficient plants better than P. marginata (Denno et al. 2000, Chapter 1).  Existing data 
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suggests that nitrogen is limiting for both Prokelisia species, that phosphorus is less 

limiting than nitrogen, and that the performance of P. marginata is more adversely 

affected by N- and P-deficient host plants than its congener (Chapter 1).  

There is a dramatic difference in population dynamics between the two Prokelisia

species.  Prokelisia dolus is a relatively sedentary species (most adults are flightless) that 

is restricted primarily to high-marsh meadows of Spartina (Denno et al. 1996).  By 

contrast, P. marginata is a highly mobile species (most adults are macropterous) along 

the Atlantic coast and undergoes annual inter-habitat migrations between overwintering 

sites on the high-marsh and more favorable low-marsh habitats where development 

occurs (Denno et al. 1996).  Outbreaks of both planthopper species are associated with 

nitrogen-rich host plants, but most striking are the outbreaks of P. marginata that occur 

frequently on low-marsh Spartina (Denno and Peterson 2000)

Methods

Experiments were conducted in the laboratory and field to: (1) determine the 

mismatch in elemental composition (C, N, and P) between Prokelisia planthoppers and 

their Spartina host plant, (2) evaluate the ability of both Prokelisia species to maintain 

their elemental body composition when fed a range of host plants varying in elemental 

stoichiometry, and (3) discover any growth penalties that arise from homeostasis on 

nutritionally-deficient host plants.
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Laboratory Assessment

A 4x4 factorial fertilization regime was initiated in May 2000 to create a range of 

host plant elemental compositions (C:N, C:P, and N:P ratios) on which the stoichiometry, 

homeostatic ability, and growth of Prokelisia planthoppers was assessed.  Potted Spartina

plants (3-5 plants per pot grown in sand substrate) were grown in flats (80 pots per flat in 

each of two flats) in the greenhouse and exposed to four levels of nitrogen subsidy 

(0,10,30,60g/m2) and four levels of phosphorus addition (0,2,6,12g/m2), all crossed.  To 

achieve the desired treatments, plants in each treatment combination were fertilized every 

three weeks from May until July.  Nitrogen was applied as ammonium nitrate (0, 5g, 16g, 

32g / flat / application) and phosphorus was supplied as triple super phosphate (0g, 0.8g, 

2g, 5g / flat / application).  The macronutrient treatments are hereafter referred to as 0N, 

10N, 30N and 60N for nitrogen and 0P, 2P, 6P and 12P for phosphorus.  The range of N 

and P fertilization rates was chosen to bracket those used in previous laboratory 

experiments and to include the spectrum of Spartina nutrient contents that occurs 

naturally in the field (Denno et al. 2000). Plants for this experiment were grown from 

seed obtained from Environmental Concern, Inc. St. Michaels, MD.  Most plants in the 

30N and 60N treatments eventually died creating imbalance in the number of plants 

available for use in experiments (Chapter 1).  

Elemental Composition (C:N:P) of Spartina

The mean elemental composition of Spartina (C:N:P) due to the fertilization 

treatments was determined for 6 randomly chosen pots containing planthopper-free plants 

harvested on 26 July.  Foliar nutrient content was used as an index of the phloem 
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nutrients available to planthoppers because the two plant variables are related (Youssefi 

et al. 2000).  Harvested plant samples (sample = aboveground leaf material in each pot 

(no culms)) were oven dried for 48 hours at 60°C and ground in a Wiley Mill.  The leaf 

powder was then analyzed for N and C content using a Perkin-Elmer 2400 CHN 

analyzer, and for P content using persulfate digestion (Clesceri et al. 1998).  All 

elemental ratios used in analyses (e.g., C:N) are atomic ratios.  The mean elemental 

composition (C:N, C:P, N:P) for Spartina for each fertilization treatment was used as the 

dependent variable for the homeostasis and growth rate analyses below.  A grand mean 

for Spartina elemental composition (C:N, C:P, N:P) was also determined as stated below 

to compare plant and herbivore stoichiometries.

Elemental Composition and Growth Rate of Prokelisia Species

To determine the effects of nutrient treatment on the growth rate of planthoppers, 

cohorts of 3 to 5 first instar nymphs of each Prokelisia species were placed separately 

onto caged treatment plants (20 initial replicate cohorts per treatment) on 17 July (see 

Denno et al. 2000 for cage design).  The original design was for each Prokelisia species 

to be raised on 16 different treatment combinations (4 levels of N and 4 levels of P 

fertilization) of Spartina.  However, severe plant death in the 30N and 60N treatments, 

and sporadic plant death in the remaining treatments resulted in uneven replication such 

that 3-12 replicates remained per treatment.  Emerging adult planthoppers were sorted to 

species, sex, and wing form prior to determining their development time to adult (days), 

body size (indexed as tibia length in mm) and C, N, and P content.  Nymphs for the 
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experiment were obtained from lab cultures initiated by ovipositing adults collected from 

the Tuckerton field site.  

Growth rate was assessed as tibia length gained per day and was calculated as 

final tibia length (mm)-initial tibia length (mm)/development time (days).  For this 

calculation, initial tibia length was determined independently for ten 1st-instar nymphs for 

both species (1st instars are less than 0.1mm in body length).  The average growth rate for 

each replicate cohort was determined for use in forthcoming analyses.  Following the 

measurement of tibia length, adult planthoppers were pooled by replicate (2-5 

individuals) and oven dried prior to analysis for C, N and P content as above (Clesceri et 

al. 1998).  Only female planthoppers were used in these determinations because too few 

adult males emerged during the experiment.  Thus, growth rate and elemental 

composition was determined for females (both wing forms) of both Prokelisia species.

Mismatched Elemental Stoichiometry between Spartina and the Prokelisia Species

To establish that the elemental composition of Spartina differed from that of the 

Prokelisia planthoppers, the overall average C:N, C:P, and N:P of Spartina was 

compared to the overall average C:N, C:P, and N:P of Prokelisia dolus and P. marginata

using a mixed-model analysis of variance with organism type ( P. dolus, P. marginata or 

Spartina) as the independent variable.  The grand means of all experimental treatment 

plants and planthoppers raised on those plants were used to generate the elemental ratios. 
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Homeostatic Regulation of Body Elemental Composition in Prokelisia

To determine if planthoppers were able to maintain their elemental composition 

when reared on plants of different elemental compositions, I calculated H, which 

measures the strength of homeostasis and varies from 1 to infinity (Sterner and Elser 

2002).  Homeostasis is calculated as: H = 1/[absolute value of slope of the relationship 

between log (insect elemental composition) versus log (plant elemental composition)].  If 

the slope of the relationship =1, then H=1, and there is a direct positive relationship 

between the elemental composition of the herbivore and that of its host plant (you are 

what you eat), and there is no evidence for homeostasis.  With an H > 1, variation in 

elemental body composition of the herbivore is small compared to variation in host plant 

composition and homeostasis exists.  To determine the slope of the relationship between 

insect elemental composition and plant elemental composition, a weighted regression 

approach was used.  Mean plant elemental composition (Spartina C:N, C:P, or N:P) for 

each fertilizer treatment combination was log-transformed and used as the continuous 

independent variable.  The dependent variable for each analysis was the log-transformed 

planthopper body elemental composition C:N, C:P, or N:P of females.  Each planthopper 

species and wing form combination was analyzed separately.  The slopes from these 

analyses were then used to calculate HC:N, HC:P, and HN:P for each planthopper species 

and wing form combination.

However, there are degrees of homeostatic regulation that are determined by the 

significance of the slope of the relationships articulated above.  Homeostasis is 

considered strictly regulated if the slope is not significantly different from zero, and only 

strongly regulated if the slope, although not 1, is significantly different from zero.  Thus, 
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the significance of the slope of the relationships was examined to ascertain the strength of 

homeostasis.  As such, a significant slope indicates the failure of planthoppers to 

maintain a constant elemental body composition against a changing background of host-

plant stoichiometry.  Contrasts were used to test for differences in slope (homeostasis 

regulation) between wing forms within a species.

Growth Cost Associated with Homeostasis

To evaluate the cost of maintaining a constant elemental body composition for 

each Prokelisia species (females only) and wing form, growth rate (tibial length 

gained/day) was regressed against plant elemental composition (separate analyses for 

C:N, C:P, N:P; weighted regression).  A significant negative slope indicates that growth 

is reduced with a decrease in plant quality (e.g., with an increase in C:N).  Contrasts were 

used to test for differences in slope (growth penalty) between species or wing forms.

Field Assessment

A 2x2x2 factorial fertilization experiment was initiated in May 2000 at Tuckerton 

to create a range of host plant elemental compositions (C:N, C:P, and N:P ratios) on 

which the relationship between Spartina elemental composition and Prokelisia

planthopper elemental composition was assessed.  Two levels of nitrogen fertilizer (0, 

80g/m2) and phosphorus fertilizer (0, 80g/m2) were applied to small plots (2m2) in each 

of two habitats (meadow and tidal creek).  The design was a randomized double-block 

design with two sites (marsh areas) each containing 2 habitat types and each of these 

containing 2 blocks of the 4 treatment combinations. Thus, each nutrient treatment 
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combination was replicated 8 times for a total of 32 plots.  Fertilizer treatments (0N0P, 

0N+P, +N0P, +N+P) were randomly assigned to a single plot (2x2m2) within each block.  

Nitrogen was applied as ammonium nitrate (0 or 236g / plot / application) and 

phosphorus was added as triple super phosphate (0g or 176g / plot / application) on four 

dates (May 9 and 21, June 4 and 17).  This range of N and P fertilization rates was 

selected because it includes rates used by others to achieve Spartina nutrient contents that 

occur naturally in the field (Patrick and Delaune 1976, Denno et al. 2000).  Treatments 

were established in both habitat types to ensure the presence of both Prokelisia species; 

P. marginata occurs abundantly in low-marsh Spartina whereas P. dolus predominates in 

Spartina meadows (Denno et al. 1996).  

Elemental Content (C, N, and P) of Spartina

The elemental composition of Spartina plants (C:N, C:P, N:P) in each plot was 

determined on 24 June, the date planthoppers were sampled.  The elemental content of 

Spartina was determined by taking 5 snippets (leaves from the upper third of different 5 

Spartina stems) per plot.  Snippet samples were oven dried at 60oC for 48 hours, ground 

in a Wiley Mill, and the powder was analyzed for C, N and P content as above (Clesceri 

et al. 1998).   The mean C:N, C:P, and N:P content of Spartina was determined for each 

plot and used as the dependent variable in the regression analysis below.  The grand mean 

of Spartina C:N, C:P, and N:P was determined and used to evaluate the trophic disparity 

in elemental composition between Spartina and the Prokelisia species as described 

below.  
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Elemental Content (C, N, and P) Prokelisia Planthoppers

Planthopper adults were collected once in each plot on June 24, 2002.  A D-vac 

suction sampler was used to remove all available adults from the center of each plot by 

suctioning for approximately 3 minutes in each plot.  Care was taken not to collect within 

0.3 meters of the edge of each plot to decrease the probability of new immigrants from 

being sampled.  Planthopper samples were kept on ice until reaching the laboratory where 

they were stored at -20°C.  Subsequently planthoppers were sorted to species, wing form, 

and sex and then dried.  Up to twenty individuals of each species, wing form, and sex 

were taken from each plot and analyzed for their C, N and P content as above (Clesceri et 

al. 1998).

Mismatch in Elemental Stoichiometry between Spartina and the Prokelisia Species

To establish that the elemental composition of Spartina differed from that of the 

Prokelisia planthoppers (females), the overall average C:N, C:P, and N:P of Spartina was 

compared to the overall average C:N, C:P, and N:P of Prokelisia dolus and P. marginata

using a mixed-model analysis of variance with organism type (P. dolus, P. marginata or 

Spartina) as the independent variable.  The grand means of all experimental treatment 

plants and planthoppers raised on those plants were used to generate the elemental ratios. 

Homeostatic Regulation of Body Elemental Composition in Prokelisia

To determine if female planthoppers were able to maintain their elemental 

composition when developing on plants of different elemental compositions in the field, 

weighted regression analyses (using log-transformed means of plant and insect elemental 
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compositions from the 32 plots) were performed to determine the relationship between 

plant elemental composition and planthopper body elemental composition (C:N, C:P, and 

N:P analyzed separately) for both wing forms of both Prokelisia species.  A significant 

slope indicates the failure of planthoppers to maintain a constant elemental body 

composition against a changing background of host-plant stoichiometry.  

Statistical analyses

Prior to analysis, data (residuals) were assessed for normality and homogeneity of 

variances (SAS 2002).  If residual variances were heterogeneous, variance partitioning 

was conducted and the best model was chosen using Bayesian Information Criterion.  

The degrees of freedom were calculated using the Kenward-Roger method.  All means 

comparisons were conducted using a Tukey adjustment to account for inflated 

comparison-wise error rates.  

Results

Laboratory Assessment

Mismatch in Elemental Stoichiometry between Spartina and the Prokelisia Species

There was a remarkable difference in elemental stoichiometry between both 

Prokelisia species and that of their Spartina host plant (Figure 2.1).  Both Prokelisia

species had a significantly lower C:N (F2,130 = 116.81; P < 0.0001; Figure 2.1A) and C:P 

ratio (F2,124 = 44.46; P > 0.0001; Figure 2.1B) than their host plant, suggesting that 

Spartina is a nutrient-deficient food source relative to the inherent nitrogen and 
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phosphorus demands of Prokelisia.  Also, the N:P ratio of Spartina was significantly 

higher than that for either Prokelisia species and P. marginata had a slightly greater N:P 

ratio than P. dolus (F2,114 = 7.86; P = 0.0006; Figure 2.1C), suggesting that N occurs in 

excess of P in Spartina relative to planthopper stoichiometry.

Homeostatic Regulation of Body Elemental Composition in Prokelisia

All evidence suggests that P. dolus was able to maintain its body C:N and C:P 

composition despite having been raised on Spartina plants with highly variable elemental 

composition (Figure 2.2).  All H values were greater than one suggesting some level of 

homeostasis (HC:N = 500, HC:P = 25, HN:P = 33).  Moreover, no slope of the relationship 

between the C:N or C:P elemental ratio of P. dolus and that of Spartina differed 

significantly from 0 indicating strict homeostasis (βC:N = 0.002, P = 0.9, Figure 2A; βC:P = 

0.04, P = 0.3, Figure 2.2B).  Also, there was no significant difference in the homeostatic 

regulation of C:N or C:P body content between the brachypterous and macropterous wing 

forms of P. dolus (P >0.05).  There was evidence for strong but not strict homeostatic 

regulation of N:P (βN:P = 0.03, P = 0.01), a result that was evident for both wing forms 

(HN:P, Macropter  = 11, βN:P, Macropter = 0.09, P = 0.05; HN:P, Brachypter  = 12, βN:P, Brachypter = 0.08, 

P = 0.06; Figure 2.2C).  

For P. marginata at the species level (wing forms pooled), there was evidence for 

strong but not strict homeostasis (Figure 2.3).  Although H values were all greater than 

one (HC:N = 9, HC:P = 14, HN:P = 12) indicating some homeostatic regulation of elemental 

composition, slopes of the relationship between the C:N, C:P and N:P contents of 

planthoppers and that of Spartina differed significantly from zero or were marginally 
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significant (βC:N = 0.11, P = 0.06; βC:P = -0.07, P = 0.02, βN:P = 0.08, P = 0.06) suggesting 

that homeostasis was not strict (Figure 2.3 A, B and C).  A closer examination revealed 

that the significant species level responses of P. marginata were largely attributable to 

differences in the homeostatic ability of each wing form.  Although brachypters were able 

to maintain strict homeostatic regulation of their C:N and C:P body stoichiometry (HC:N = 

50, βC:N = -0.02, P = 0.9, Figure 2.3A; HC:P = 14, βC:P = -0.07, P = 0.2, Figure 2.3B), 

macropters were not (HC:N = 4, βC:N = 0.24, P = 0.002, Figure 2.3A; HC:P = 14, βC:P = -

0.07, P = 0.06, Figure 2.3B).  There was weak evidence that macropters (HN:P = 14, βN:P

= 0.07, P = 0.2) but not brachypters (HN:P = 4, βN:P = 0.23, P = 0.04) regulated their N:P 

stoichiometry (Figure 2.3C).  However, the slope of the relationship for brachypters is 

driven by one point, and coupled with the lack of this wing form emerging on the high 

N:P plant treatments, this significance of the relationship must be interpreted with 

caution.  Overall, evidence suggests that P. dolus is better able to regulate its elemental 

body composition than P. marginata, and that the brachypters of P. marginata are better 

capable of homeostatic regulation than are the macropters of this species.  

Growth Costs Associated with Homeostasis

The growth rate of both P. dolus and P. marginata declined as the C:N and C:P 

content of Spartina increased (βC:N, P. dolus = -0.0002, P < 0.0001; βC:N, P. marginata = -

0.00036, P < 0.0001; βC:P, P. dolus = -1.7 x 10-6, P < 0.0001; βC:P, P. marginata = - 4.3 x 10-6, P

= 0.008; Figures 2.4 and 2.5 respectively).  However, the slopes of the relationships were 

significantly different between the two Prokelisia species, and significantly steeper in 

both cases for P. marginata than P. dolus (species contrasts; C:N, P = 0.001; C:P, P = 
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0.07).  Thus, as the nutritional quality of Spartina decreased with regard to either C:N or 

C:P, the growth of P. marginata was protracted relatively more than that for P. dolus

raised on the same plant treatments, suggesting a greater cost associated with the 

maintenance of body stoichiometry.  There was no significant relationship between 

growth rate and the N:P content of Spartina for either Prokelisia species (βN:P, P. dolus = -

0.00001, P = 0.09; βN:P, P. marginata = 5.2 x 10-6, P = 0.7; Figure 2.6).  Wing form did not 

affect the relationship for either species (P > 0.05).

Field Assessment

Mismatch in Elemental Stoichiometry between Spartina and the Prokelisia Species

When evaluated in the field, there was also a striking difference in elemental 

stoichiometry between both Prokelisia species and that of their Spartina host plant 

(Figure 2.7).  Both Prokelisia species had a significantly lower C:N (F2,65.8 = 56.29; P < 

0.0001; Figure 2.7A) and C:P ratio (F2,67.7 = 38.36; P < 0.0001; Figure 2.7B) than their 

host plant, suggesting that Spartina is a nutrient-deficient food source relative to the 

inherent nitrogen and phosphorus demands of Prokelisia.  Unlike results from the 

laboratory experiment, the N:P ratio of Spartina was significantly lower than that for 

either Prokelisia species and P. marginata had a slightly lower N:P ratio than P. dolus

(F2,69.3 = 12.43; P < 0.0001; Figure 2.7C), suggesting that P occurs in excess of N in 

Spartina relative to planthopper elemental composition.
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Homeostatic Regulation of Body Elemental Composition in Prokelisia

There was no relationship between the C:N content of brachypters and that of 

their Spartina host plant for either P. dolus or P. marginata suggesting strict homeostasis 

(HC:N, P.dolus = 100, βC:N, P. dolus = -0.01, P = 0.8; HC:N, P. marginata = 500, βC:N, P. marginata = -

0.002, P = 0.9; Figures 2.8A and 2.9A).  In contrast, there was a significant negative 

relationship between the C:N content of the macropters of both species and the C:N 

content of Spartina (HC:N, P.dolus = 11, βC:N, P. dolus = -0.09, P = 0.01; HC:N, P. marginata =  12, 

βC:N, P. marginata = -0.08, P = 0.02; Figures 2.8A and 2.9A).  These results suggest that plots 

with the highest quality Spartina plants in the field (those with the lowest C:N content) 

contained macropters that on average were characterized by a higher C:N content.

With regard to C:P stoichiometry, there was no relationship between the C:P body 

content of either P. dolus or P. marginata and that of their Spartina host plant (HC:P, P.dolus

= 16, βC:P, P. dolus = 0.06, P = 0.09; HC:P, P. marginata = 200, βC:P, P. marginata = -0.005, P = 0.9; 

Figures 2.8B and 2.9B).  Brachypterous individuals of both species exhibited a positive 

relationship between body N:P content and that of Spartina (HC:N, P.dolus = 7, βN:P, P. dolus = 

0.13, P = 0.0005; HC:N, P. marginata = 5, βN:P, P. marginata = 0.19, P = 0.02; Figures 2.8C and 

2.9C respectively).  Macropters did not exhibit any association between body N:P content 

and Spartina N:P content (HC:N, P.dolus = 33, βN:P, P. dolus = 0.03, P = 0.4; HC:N, P. marginata = 

25, βN:P, P. marginata = 0.4, P = 0.2; Figure 2.8C and Figure 2.9C).

Discussion
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The C:N and C:P elemental ratios in Spartina are vastly higher than those for 

either Prokelisia species, underscoring the relatively poor nutrient quality of their host 

plant resource (Figures 2.1 and 2.7).  This macronutrient mismatch between 

phytophagous insects and their host plant resources is widely documented in the 

literature, especially with regard to nitrogen (McNeill and Southwood 1978, Mattson 

1980, Waring and Cobb 1992, White 1993, Awmack and Leather 2002, Huberty and 

Denno 2004).  Moreover, the C:N ratio of Spartina used in the laboratory experiment 

(C:N ~ 22) was higher than that for plants in the field (C:N ~ 26), a result probably 

attributable to the higher rates of nitrogen application used in the laboratory.  However, 

C:P ratios were similar (C:P ~ 550) between lab and field plants.  The elevated N content 

of fertilized Spartina in the lab relative to P resulted in a higher N:P ratio for lab plants 

(N:P ~ 45) than field plants (N:P ~ 25).  This difference translated into a higher N:P ratio 

for lab plants than either Prokelisia species (N:P ~ 30), whereas the reverse was the case 

when the N:P ratio of field plants is compared.  In general, published N:P ratios for 

phytophagous insects are similar (mean = 26.4) than those recorded for their host plants 

(mean = 28.0) (Elser et al. 2000a, Perkins et al. 2004).

Despite extreme variation in the elemental stoichiometry (C, N, and P 

composition) of their Spartina host plant, both Prokelisia species maintained a relatively 

constant elemental balance of macronutrients in their bodies, thereby exhibiting some 

level of homeostasis.  However, there was a clear difference in the strength of 

homeostatic ability between the two Prokelisia species, as evidenced from the laboratory 

experiment where planthoppers were confined on plants with particular elemental 

compositions.  There was evidence for strict homeostasis in P. dolus (both wing forms) 
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with regard to C:N and C:P regulation (Figure 2.2), whereas P. marginata exhibited only 

strong homeostasis (Figure 2.3).  This species-level difference was attributable to the 

macropters of P. marginata that, unlike brachypters of this species, were unable to 

maintain a constant C:N and C:P body composition when reared across a range of plants 

with variable elemental compositions (Figure 2.3A and B).  For less than strict 

homeostasis, the expectation is for a positive relationship, however weak, between the 

elemental composition of the herbivore and that of the plant, as was the case for the 

macropters of P. marginata with regard to their C:N composition (Figure 2.3A).  The 

negative relationship between the C:P of macropters and that of their host plant (Figure 

2.3B), although it provides general support for imperfect homeostasis (Sterner and Elser 

2002), was unexpected.  This negative C:P relationship may derive from macropters 

accumulating P as a result of increasing ingestion rate to meet nitrogen demands on 

treatment plants also very deficient in N.  Notably, nitrogen is more limiting than 

phosphorus for P. marginata (Chapter 1) and this planthopper is unable to completely 

meet its nitrogen requirements on nitrogen-poor plants as evidenced by an elevated C:N 

ratio (Figure 2.3A).  Thus, the low C:P ratio of macropters on P-deficient plants may 

have resulted from phosphorus accumulation and storage, a phenomenon known to occur 

in other insect herbivores (Woods et al. 2002).  As in P. marginata, recent studies have 

also shown that strict homeostatic regulation may not be as universal as stoichiometric 

dogma once predicted (Plath and Boersma 2001, Cross et al. 2003, Elser et al. 2003).  

Homeostatic regulation of macronutrient composition in invertebrates including 

insect herbivores is achieved by a combination of mechanisms.  Increased consumption 

rate and/or assimilation rate of scarce nutrients (often N and P), coupled with the 
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selective excretion of excess nutrients (often carbon), can provide an essential balance 

(Prestidge 1982b, Raubenheimer and Simpson 2004).  Gut modifications, such as the 

filter chamber present in planthoppers and aphids, facilitate the elimination of excess 

carbon (sugars) and the assimilation of amino nitrogen (Raven 1983, Abisgold et al. 

1994, Rhoades et al. 1997).  Surplus carbon can be eliminated as well by increasing 

respiration rate when feeding on carbon-rich food resources (Zanotto et al. 1993, Zanotto 

et al. 1997).  Such diet- induced thermogenesis is a well-recognized mechanism of carbon 

elimination in the nutritional ecology of vertebrates, may also be a mechanism employed 

by invertebrates (Trier and Mattson 2003).  There are physiological limits, however, to 

achieving homeostatic regulation, especially for herbivorous insects faced with 

eliminating copious amounts of carbon in order to meet their nitrogen (and perhaps also 

P) demands.  For example, gut capacity and throughput time may limit the degree to 

which increased ingestion can compensate for eating nutrient-poor food (Denno and 

Fagan 2003).  Moreover, compensatory feeding on low-quality food can lead to increased 

levels of dietary toxins, toxins that can have negative consequences for fitness, especially 

for insect herbivores (Slanksy and Wheeler 1992).  In general, metabolic and growth 

costs attributed to homeostasis can be severe (Plath and Boersma 2001).  Although the 

presence of nitrogen-synthesizing endosymbionts, like those that occur in planthoppers, 

can partially diminish the costs of feeding on nutrient-deficient plants (Hongoh and 

Ishikawa 2000, Wilkinson and Ishikawa 2001), they clearly do not eliminate them 

altogether.  As evidenced by this study, there are clear growth penalties for both 

Prokelisia species associated with homeostasis and feeding on nutrient-deficient food, 

but the consequences are particularly severe for P. marginata (Figures 2.4 and 2.5).
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One can ask why P. dolus is better able to regulate its body C:N and C:P 

composition and suffers fewer developmental costs in terms of reduced growth on 

nutrient-deficient plants than P. marginata.  The answer may lie with a major difference 

in their life history strategies that underlies the way they cope with landscape-level 

changes in host-plant quality.  Data suggests that P. dolus employs compensatory feeding 

when plant quality deteriorates (Denno et al. 2000, Chapter 3), whereas P. marginata has 

evolved a dispersal strategy that allows it to exploit temporary habitats and effectively 

track spatial changes in host plant quality, particularly nitrogen (Denno 1983, Roderick 

1987, Denno et al. 2002, Denno et al. 2003).  In fact, most data points to a phenotypic 

trade-off between the two strategies with a greater commitment to flight musculature in 

P. marginata and a greater investment in the musculature associated with enhanced 

ingestion (cibarial musculature) in P. dolus (Chapter 3).  When the option of dispersal is 

eliminated, and P. marginata is confined on nutrient-deficient host plants, both 

homeostatic capability and growth are more adversely affected than for P. dolus.  Not 

surprisingly, macropters, the wing form with a greater investment in flight musculature 

than cibarial musculature (Denno et al. 1987, Denno et al. 1989, Denno and Fox 

unpublished data, Chapter 3), exhibit poorer homeostatic capability than the brachypters 

of this species (Figure 2.3A).  Thus, despite very similar body nitrogen and phosphorus 

contents, and a very similar mismatch in N and P stoichiometry compared to Spartina, 

the two Prokelisia species differ considerably in the ways they cope with deteriorating 

host plant nutrition (dispersal versus compensatory feeding), a difference that I argue 

affects their ability to regulate body stoichiometry and buffer potential associated growth 

penalties.
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There was one evident inconsistency in particular between laboratory and field 

results.  In the lab, there was no relationship (slope not different from 0) between the C:N 

of P. dolus (both macropters and brachypters) and that of Spartina, providing clear 

evidence for strict homeostasis (Figure 2.2A).  Likewise, the brachypters, but not 

macropters, of P. marginata exhibited strict homeostatic regulation of body C:N (Figure 

2.3A).  Notably, the slopes of C:N the relationship for macropters of both Prokelisia

species were positive in the lab with P. marginata showing a slope that was significantly 

greater than zero.  By contrast, field-sampled macropters of both Prokelisia species 

exhibited significant negative slopes of the relationship between body C:N and plant C:N, 

a relationship that occurred because macropters with a high body C:N were collected 

from low C:N treatment plants (Figures 2.8A and 2.9A).

Unlike the laboratory experiment where planthoppers were confined to specific 

nutrient treatments, there was no clear way to determine if field-collected planthoppers 

developed on the treatment plants from which elemental composition was determined.  

This is particularly true for macropters of Prokelisia that consistently emigrate from 

nitrogen-deficient plants to colonize better quality plants elsewhere (Cook and Denno 

1994, Denno et al. 2002).  Brachypters are much more likely to have developed as 

residents as they are far less mobile and can move only a few meters during their adult 

lifetime (Denno 1983, 1994, Denno et al. 1996).  Notably, the brachypters of both species 

showed strict homeostasis of C:N and C:P body composition both in the lab and the field.  

Why then the discrepancy for macropters between lab and field results?   In general, 

macropters selectively seek out nitrogen-rich hosts to colonize (Cook and Denno 1994, 

Denno et al. 2002).  Moreover, macropterous adults, especially those of P. marginata, are 
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likely to reflect the C:N composition of the plants on which they developed (Figure 

2.3A).  Thus, macropters with a high C:N ratio are more likely to have emerged from 

nitrogen-poor plants with a high C:N content.  I argue that such nitrogen-deficient 

individuals will have higher nitrogen demands than macropters emerging from better 

quality plants.  The only way that they can recover penalties imposed during development 

(slow growth and small body size, Figure 2.4) is to colonize nitrogen-rich plants where 

survival and fecundity can be vastly improved (Cook and Denno 1994).  This argument is 

particularly true for females, the sex employed to determine all stoichiometric 

relationships in this study, because they have nitrogen demands for reproduction that far 

exceed those of males (Cook and Denno 1994, Denno 1994).  Thus, in the field where 

dispersal dynamics occur, I contend that the negative relationship between the C:N 

content of macropters and that of Spartina is the result of selective colonization of N-rich 

plants by N-poor dispersers.

Alternatively, theory posits that stoichiometric demands of consumers can be best 

met by feeding of food with an identical elemental composition (Sterner and Elser 2002).  

Thus, high C:N macropters should colonize high C:N plants whereas low C:N dispersers 

should do the reverse.  However, this paradigm may not prevail if the absolute amount of 

nitrogen in food is very low, as can be the case for Prokelisia planthoppers on very 

nitrogen-deficient Spartina (<1.5% N)(Cook and Denno 1994, Chapter 1).  Under such 

carbon-rich conditions fitness penalties can be severe (Cook and Denno 1994, Chapter 1), 

and the ingestion/assimilation costs of obtaining sufficient nitrogen may be extreme 

given that phloem feeders are known to regulate their carbon intake (sucrose) by reducing 

ingestion rate (see Abisgold et al. 1994).
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Another unlikely explanation for the occurrence of high C:N marcropters on low 

C:N plants in the field stems from possible ontogenetic differences in C:N stoichiometry 

and the demands they impose that are known to occur in other invertebrates (Villar-

Argaiz et al. 2002).  For aquatic crustaceans, both C:N and C:P ratios decrease during 

development from immatures to adults, suggesting that the nutritional demands of adults 

differ from those of early developmental stages (Villar-Argaiz et al. 2002).  For instance 

dispersing adults (macropters), including those of delphacid planthoppers, use carbon-

rich flight fuels (glycogen and lipids) during migration ((Kisimoto and Rosenberg 1994, 

Dudley 2000).  Thus, one might expect adults, especially dispersing macropters, to have

high-energy (carbon) demands that are satisfied to some extent by colonizing carbon-rich 

host plants.  Using this line of reasoning, macropters, especially those characterized by a 

high C:N content, should selectively colonize high C:N plants to meet high carbon 

demands, when in fact they do the reverse (Figures 2.8A and 2.9A).  All arguments 

considered, the most likely explanation for the colonization of low C:N plants by high 

C:N macropters lies in meeting their nitrogen demands.

There was widespread evidence from both the lab and the field that females of 

both Prokelisia species, especially brachypterous ones, showed a significant positive 

relationship between body N:P and Spartina N:P content, suggesting strong but not strict 

homeostasis (Figures 2.2C, 2.3C, 2.8C and 2.9C).  The N:P content of an organisms can 

be used to examine the relative importance of N or P in homeostatic regulation (Sterner 

and Elser 2002).  That the N:P content of Prokelisia planthoppers was elevated above 

homeostatic expectations on high N:P plants likely reflects the relatively greater demands 

for nitrogen than phosphorus.  Thus, nitrogen may be selectively ingested or assimilated 
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to meet high demands.  Because females have increased nitrogen requirements during 

reproduction, and because brachypters have a higher reproductive rate than macropters 

(Denno et al. 1989, Cook an Denno 1994, Denno 1994), they may selectively assimilate 

more nitrogen that macropters as was evidenced by the steeper slopes for brachypters of 

the relationship between body N:P and plant N:P.  Overall, N:P relationships observed in 

this study are consistent with the finding that nitrogen is more limiting than phosphorus 

for both Prokelisia species and that its scarcity in Spartina has relatively greater fitness 

consequences (Chapter 1).

This research is among the first studies to determine homeostatic regulation of 

macronutrient content and its consequences for growth in terrestrial insect herbivores.  

Both Prokelisia species were somewhat able to regulate their macronutrient body 

composition despite that of their host plant, but P. dolus was better able to do so and 

suffered fewer associated growth penalties than P. marginata.  The disparity in 

homeostatic regulation between the two planthoppers is clearly associated with a life-

history difference, namely dispersal ability.  Moreover, dispersal ability appears to 

constrain ingestion rate and vice versa.  Specifically, there appears to be an allocational 

trade-off between flight musculature and thus dispersal (overdeveloped in P. marginata) 

and the cibarial musculature required to extract phloem sap (overdeveloped in P. dolus), 

especially under conditions of plant stress (Chapter 1, Huberty and Denno 2004).  Thus, 

the two closely related planthoppers employ two somewhat mutually exclusive strategies 

for meeting their nitrogen requirements, especially when nutrients are limiting.  

Prokelisia marginata disperses to nitrogen-rich patches elsewhere, whereas P. dolus

employs feeding compensation that allows it to increasing its feeding rate on nutrient 
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deficient plants and pre-adapts it for homeostatic regulation and reduced growth costs.  

This research emphasizes the importance of considering the life history strategies of 

consumers when examining their homeostatic abilities and associated consequences for 

growth.  Because the Prokelisia species play keystone roles in their community (Denno et 

al. 2002), and because they differ so dramatically in their growth and elemental 

composition in response to host-plant stoichiometry, the consequences of plant 

stoichiometry could cascade differentially throughout the food web to affect interactions 

with herbivores, risk of predation, intraguild predation, and food-web dynamics at large 

(Denno et al. 2000, Denno and Fagan 2003, Fagan and Denno 2004, Matsumura et al. 

2004).
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Figure Descriptions

Figure 2.1.  The (A) C:N content, (B) C:P content, and (C) N:P content of Spartina

alterniflora, and the planthoppers Prokelisia dolus and Prokelisia marginata

raised on Spartina plants grown under laboratory conditions.  Means (± SE) with

the same letter are not significantly different.

Figure 2.2.  Relationship between (A) the C:N content, (B) C:P content, and (C) N:P 

content of the macropters and brachypters of P. dolus and the respective 

elemental content of the Spartina host plant on which they were raised in the 

laboratory.  The lack of a significant relationship for both wing forms in A and B 

indicates strict homeostasis.  C. Species-level relationship (both wing forms 

pooled) between N:P content of P.dolus and Spartina was significantly positive 

[P. dolus N:Pspecies=1.36 + 0.07 (Spartina N:P); R2 = 0.17; P = 0.01], as was the 

relationship between N:P content of brachypters [P. dolus N:Pbrachypters = 1.35 + 

0.08 (Spartina N:P); R2=0.14; P = 0.06] and macropters [P. dolus N:Pmacropters = 

1.31 + 0.09 (Spartina N:P); R2=0.40; P = 0.05] and their Spartina host plant.  The 

positive relationship between the N:P content of brachypters and that of Spartina

is driven by a single observation.  Regression line shown is the species-level 

relationship. 

Figure 2.3.  Relationship between (A) the C:N content, (B) C:P content, and (C) N:P 

content of the macropters and brachypters of P. marginata and the respective 

elemental content of the Spartina host plant on which they were raised in the 
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laboratory.  The lack of a significant relationship for brachypters in A and B and 

for macropters in C indicates strict homeostasis.  The slopes of the elemental 

relationships for macropters in A and B differed from 0 indicating strong but not 

strict homeostasis.  The positive relationship between the N:P content of 

brachypters (C) and that of Spartina is driven by a single observation.  Regression 

lines shown are for the significant macropter relationship in A [P. marginata

C:Nmacropters = 0.41 + 0.24 (Spartina C:N), R 2 = 0.35; P = 0.002] and B [P. 

marginata C:Pmacropters = 2.38 + - 0.08 (Spartina C:P), R2 = 0.14; P = 0.06] and the 

significant brachypter relationship in C [P. marginata N:Pbrachypters = 1.22 + 0.23 

(Spartina N:P), R2 = 0.24; P = 0.05].

Figure 2.4.  Relationship between the growth rate of (A) P. dolus and (B) P. marginata

and the C:N content of the Spartina plants on which they were raised in the 

laboratory.  Although both species exhibited a negative relationship (P. dolus

Growth RateC:N = 0.32 + -0.00020 (Spartina C:N), R2 = 0.15, P < 0.0001; P. 

marginata Growth RateC:N = 0.36 + -0.00036 (Spartina C:N), R2 = 0.29, P < 

0.0001), the slope was significantly steeper for P. marginata than P. dolus (P = 

0.001) suggesting that its growth was reduced relatively more as plant quality 

decreased (increase in C:N).  Wing forms (macropters and brachypters) did not 

differ in their growth response.

Figure 2.5.  Relationship between the growth rate of (A) P. dolus and (B) P. marginata

and the C:P content of the Spartina plants on which they were raised in the 
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laboratory.  Although both species exhibited a negative relationship [P. dolus

Growth RateC:P = 0.029 + -1.7 x 10-6 (Spartina C:P), R2 = 0.03, P < 0.0001; P. 

marginata Growth RateC:P = 0.031 + -4.33 x 10-6 (Spartina C:P), R2 = 0.05, P < 

0.0008], the slope was marginally steeper for P. marginata than P. dolus (P = 

0.07) suggesting that its growth was reduced relatively more as plant quality 

decreased (increase in C:P).  Wing forms (macropters and brachypters) did not 

differ in their growth response.

Figure 2.6.  Relationship between the growth rate of (A) P. dolus and (B) P. marginata 

and the N:P content of the Spartina plants on which they were raised in the 

laboratory.  The relationship was not significant for either species, and wing 

forms (macropters and brachypters) did not differ in their growth response.

Figure 2.7.  The (A) C:N content, (B) C:P content, and (C) N:P content of Spartina

alterniflora, and the planthoppers Prokelisia dolus and Prokelisia marginata

occurring on Spartina plants growing in the field on a salt marsh at Tuckerton, 

New Jersey.  Means (± SE) with the same letter are not significantly different.  

Figure 2.8.  Relationship between (A) the C:N content, (B) C:P content, and (C) N:P 

content of the macropters and brachypters of P. dolus and the respective 

elemental content of the Spartina host plant on which they occurred on a salt 

marsh at Tuckerton, New Jersey.  The lack of a significant relationship for the 

brachypters in A and B and the macropters in B and C indicates strict 
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homeostasis.  Slopes of the relationship differed from 0 for macropters in A [P. 

dolus C:Nmacropters = 0.89 + - 0.09 (Spartina C:N), R2 = 0.19, P = 0.01]  and for 

brachypters in C [P. dolus N:Pbrachypters = 1.32 + 0.13 (Spartina N:P), R2 = 0.34, P

= 0.0005] suggesting strong but not strict homeostasis.  Regression lines shown 

are for (A) macropters and (C) brachypters.

Figure 2.9.  Relationship between (A) the C:N content, (B) C:P content, and (C) N:P 

content of the macropters and brachypters of P. marginata and the respective 

elemental content of the Spartina host plant on which they occurred on a salt 

marsh at Tuckerton, New Jersey.  The lack of a significant relationship for the 

brachypters in A and B and the macropters in B and C indicates strict 

homeostasis.  Slopes of the relationship differed from 0 for macropters in A [P. 

marginata C:Nmacropters = 0.90 + - 0.08 (Spartina C:N), R2 = 0.16, P = 0.02]  and 

for brachypters in C [P. marginata N:Pbrachypters = 1.27 + 0.19 (Spartina N:P), R2 = 

0.24, P = 0.02] suggesting strong but not strict homeostasis.  Regression lines 

shown are for (A) macropters and for (C) brachypters.
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Figure 2.1.
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Figure 2.2.
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Figure 2.3. 
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Figure 2.4.
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Figure 2.5
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Figure 2.6.
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Figure 2.7.
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Figure 2.8.
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Figure 2.9.
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Chapter 3: Trade-off between dispersal and feeding morphology in two 

phytophagous insects

Introduction

Dispersal by flight provides organisms the opportunity to synchronize 

reproduction with favorable resources across spatially diverse landscapes, and thus plays 

a key role in the evolution of insect life history strategies (Southwood 1977, Roff 1990, 

Roff and Fairbairn 1991, Denno 1994, Zera and Denno 1997).  For example, dispersal is 

thought to be essential for the success of species that exploit ephemeral habitats or must 

negotiate complex-structured, three-dimensional space (Denno et al. 1991, Denno et al. 

1996, Denno et al. 2001).  Specifically, dispersal allows for the effective tracking of 

changing resources (e.g., nutrient-rich host plants, optimal oviposition sites, and 

favorable over-wintering habitats).  In addition to its pivotal role in life-history theory, 

dispersal also acts as a stabilizing force in metapopulation dynamics (den Boer 1981, 

Hanski 1999), influences species interactions (Denno et al. 2000), and directly affects 

gene flow and the genetic structure of populations (Peterson and Denno 1997, 1998, Mun 

et al. 1999).  Moreover, a high incidence of dispersal is characteristic of many of our 

severe agricultural and forest insect pests (Berryman 1988, Pedgely 1993, Kisimoto and 

Rosenberg 1994).  Thus, dispersal has wide-spread consequences for both population 

ecology and pest management (Rabb and Kennedy 1979, Cappuccino and Price 1995, 

Denno et al. 2001).

Dispersal, however, does not occur without costs, costs that are often imposed on 
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life-history traits associated with reproduction (Roff 1986, Roff and Fairbairn 1991, Zera 

and Denno 1997).  Moreover, wing-dimorphic insects such as planthoppers, aphids, 

crickets, and true bugs have proved invaluable for investigating trade-offs between 

dispersal and other life history traits because flight-capable and flightless forms are so 

easily recognized (Solbreck 1978, Denno et al. 1991, Roff and Fairbairn 1991, Tanaka 

1993, Dixon 1998, Zera and Brink 2000).  Populations of most wing-dimorphic insects 

contain both flightless adults (brachypters with reduced wings or wingless apterae) and 

flight-capable adults (macropters or alates) that possess fully-developed wings and can 

disperse long distances, distances over 1000 km in some cases (Denno 1994, Kisimoto 

and Rosenberg 1994, Dixon 1998).  Traditionally, dispersal costs have been evaluated by 

comparing reproductive traits between brachypters and macropters or between apterae 

and alates with the expectation of reduced reproductive effort in the flight-capable morph 

(Zera and Denno 1997).  Indeed, for females of wing-dimorphic insects, there is 

widespread evidence that macropters have reduced fecundity, extended age to first 

reproduction, or reduced offspring size compared to their flightless counterparts 

(Solbreck 1978, Roff 1986, Denno et al. 1989, Roff and Fairbairn 1991, Denno 1994, 

Zera and Denno 1997).  More recently, similar trade-offs between dispersal and siring 

capability have been found in the males of wing-dimorphic insects (Langellotto et al. 

2000, Langellotto and Denno 2001).  Underlying antagonistic trade-offs between

dispersal and reproduction are differences in resource allocation between macropters and 

brachypters, given a limited energy and/or nutrient budget.  For example, in macropters, 

relatively more resources are allocated to flight muscles and the biochemistry associated 

with muscle maintenance and flight, whereas in brachypters assimilated and synthesized 



108

nutrients are allocated more to reproductive effort (Zera et al. 1998, Zera and Brink 2000, 

Zhao and Zera 2002).

Historically, phenotypic trade-offs involving dispersal have focused almost 

exclusively on differences in allocation between flight and reproduction (Zera and Denno 

1997).  However, resource investments in dispersal may also result in reduced resource 

allocation to other so-called “third-party traits” (e.g., compensatory feeding) that are not 

directly associated with reproduction (Zera et al. 1998).  Such traits, however, remain 

largely uninvestigated for any insect despite their potential importance for performance 

and survival.  In this chapter I provide evidence that investment in the musculature 

associated with ingestion, and thus the ability to compensate for nutrient-poor food 

resources, trades off with dispersal capability in two wing-dimorphic planthoppers 

(Prokelisia marginata, P. dolus: Hemiptera, Delphacidae).  Clues to identifying a 

potential trade-off between dispersal and compensatory feeding lie in differences in life 

history strategy, response to nutrient limitation, competitive ability, and population 

dynamics between these two phloem-feeding insects.  For example, P. marginata invests 

far more in dispersal ability than P. dolus (Denno et al. 1991).  An approximate 

assessment of dispersal ability can be obtained by comparing the fraction of macropters 

in populations, which is high for P. marginata (>90%) and low for P. dolus (Denno et al. 

1991, Denno et al. 1996).  Moreover, there is evidence for a greater investment in flight 

apparatus per individual in species that are characterized by a high fraction of 

macropterous adults (e.g., P. marginata) compared to species that are primarily 

brachypterous (e.g., P. dolus) (Fairbairn and Desranleau 1987, Fairbairn 1994).  Despite 

its greater investment in flight capability, P. marginata performs and survives far poorer 
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on nutrient-deficient host plants low in nitrogen and phosphorus content, and is less able 

to regulate its own macronutrient composition (nitrogen to carbon and phosphorus to 

carbon ratio) than P. dolus (Chapters 1 and 2).  Moreover, P. marginata is a poor 

interspecific competitor compared to P. dolus, an ability that is mediated by tolerance to 

feeding induced reductions in plant quality (Denno et al. 2000).  The common 

denominator underlying these differences in performance and competitive ability 

between the Prokelisia species may be the ability to increase ingestion rate as food 

quality decreases and thus compensate for nutrient reductions (Slanksy and Feeny 1977, 

Raubenheimer and Simpson 1993, Cook and Denno 1994, Lavoie and Oberhauser 2004).  

Compensatory feeding ability may be particularly critical given that phytophagous insects 

in general face a food resource that is extremely nutrient poor (e.g., low nitrogen and 

phosphorus contents) compared to their own body composition (e.g., high nitrogen and 

phosphorus content), a nutrient mismatch that imposes tremendous nutrient demands on 

consumers with potentially drastic consequences for growth (McNeill and Southwood 

1978, Mattson 1980, White 1993, Cook and Denno 1994, Ayers et al. 2000, Elser et al. 

2000a, Schade et al. 2003, Huberty and Denno 2004).  

For planthoppers, compensatory feeding occurs when ingestion rate is increased 

as the concentration of macronutrients (e.g., amino nitrogen) in the host plant decreases 

(Waloff 1980, McNeill and Prestidge 1982, Prestidge 1982a, Backus 1985, Cook and 

Denno 1994).  Perhaps this is made possible by a large commitment to the musculature 

associated with ingestion.  Planthoppers feed by inserting their stylets into phloem tissues 

(Backus 1985, Cook and Denno 1994).  Then using a cibarial pump (modified 

esophagus), cell sap is ingested.  The cibarial pump is driven by a series of dilator 
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muscles that insert on the interior of the face (clypeus), and face size is positively related 

to the cross-sectional mass and thus the power of the cibarial muscles to ingest cell sap 

(Backus 1985).  For Prokelisia planthoppers, P. dolus has a much broader face than P. 

marginata (Denno et al. 1987), suggesting a greater investment in subtending cibarial 

musculature.  Preliminary data suggests that P. dolus  invests more in cibarial musculature 

than P. marginata at the species level with a trend toward greater cibarial pump 

musculature in brachypters compared to macropters for both species (Denno and Fox, 

unpublished data). 

Although dispersal and compensatory feeding have been discussed as alternative 

strategies for coping with deteriorating plant nutrition and meeting nutrient demands 

(McNeill and Southwood 1978, Cook and Denno 1994), they have never been linked by 

virtue of a phenotypic trade-off.   If a trade-off indeed exists, then dispersal ability should 

constrain compensatory feeding to some extent and vice versa.  In this context, the 

objectives for this study were to: (1) compare differences in investment in the flight and 

feeding morphology between P. dolus, P. marginata, and between the brachypters and 

macropters of both species, and (2) compare differences in feeding compensation 

(ingestion rate) between the two species and their wing forms.  Differences in flight and 

feeding musculature were measured indirectly by comparing head metrics (face widths 

and areas, head weights) and thoracic metrics (width, length, area, weight) between the 

two planthopper species and wing forms.  Differences in feeding compensation 

(ingestion) between the species and wing forms were assessed by measuring honeydew 

production (liquid excretory product) on host plants differing in nutritional quality (% 

nitrogen, % phosphorus, and C:N and C:P ratios).  In phloem-feeding insects such as 
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planthoppers, ingestion and excretion rates are positively related (Prestidge 1982a, 

Brodbeck et al. 1993, Brodbeck et al. 1995, 1996);  thus, honeydew production was used 

as a surrogate for ingestion rate.

If a trade-off between dispersal and compensatory feeding is in place at the 

species level, I expect P. marginata will show a relatively greater investment in flight 

(larger and heavier thorax) than cibarial apparatus (reduced face area and head weight), 

and that P. dolus will show the reverse.  Likewise, with a presumed greater investment in 

cibarial musculature and thus enhanced compensatory feeding, I predict that P. dolus will 

exhibit greater honeydew production than P. marginata, especially on nitrogen-deficient 

host plants.  I also predict that macropters compared to brachypters will exhibit a greater 

investment in flight than feeding morphology (cibarial musculature) and will produce less 

honeydew.  By examining patterns of investment in dispersal and feeding apparatus 

between the species and wing forms of Prokelisia planthoppers, I aim to identify for the 

first time a “third party trait,” namely compensatory feeding, that is negatively associated 

with flight capability.  Identifying such a trade-off between dispersal and a non-

reproductive trait should mandate a broader view of life history theory and the selective 

pressures affecting the evolution of particular life-history strategies.

Study System

Prokelisia planthoppers were used to test hypotheses concerning differential 

investment in flight and feeding as it affects compensatory feeding as a mechanism to 

cope with nutrient limitation.  Prokelisia marginata and P. dolus are the most abundant 
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herbivores on Atlantic coastal marshes where they feed exclusively on Spartina 

alterniflora (Denno et al. 2002, Denno et al. 2003).  Both species are wing dimorphic 

with flight-capable macropters (adults with fully-developed wings) and flightless 

brachypters (adults with vestigial hind wings) present in the same population (Denno et 

al. 1991, Denno et al. 1996).  However, most adults of P. marginata are macropterous 

(>90%) whereas those of P. dolus are primarily brachypterous (>80%), a difference that 

reflects a marked difference in population dynamics between the two species.  Prokelisia 

dolus is a relatively sedentary species that is restricted primarily to high-marsh meadows 

of Spartina (Denno et al. 1996).  By contrast, P. marginata is a highly mobile species 

along the Atlantic coast and undergoes annual inter-habitat migrations between 

overwintering sites on the high-marsh and more favorable low-marsh habitats where 

development occurs (Denno et al. 1996).  Outbreaks of both planthopper species are 

associated with nitrogen-rich host plants, but most striking are the outbreaks of P. 

marginata that occur frequently on low-marsh Spartina (Denno and Peterson 2000). 

Although both P. marginata and P. dolus exhibit population increases on 

nitrogen-enriched Spartina, all evidence suggests that the two species cope with nutrient-

deficient Spartina differently (Cook and Denno 1994, Denno et al. 2002, Denno et al. 

2003, Chapters 1 and 2).  For instance, both species select the most nitrogen-rich plants 

or plant parts on which to feed and oviposit but the macropters of P. marginata colonize 

nitrogen-rich plants at tremendously high densities compared to P. dolus (Denno 1983, 

1985, Denno et al. 2002).  Moreover, both species exhibit enhanced survival and 

performance on nitrogen-fertilized Spartina, (Cook and Denno 1994, Olmstead et al. 

1997) but P. marginata shows a much stronger response (Chapter 1).  Prokelisia dolus
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also has the ability to withstand nitrogen-deficient plants better than P. marginata (Denno 

et al. 2000, Chapters 1 and 2).  Thus, existing data suggests that nitrogen is limiting for 

both Prokelisia species, but that P. marginata copes with spatial changes in host-plant 

quality by dispersal to more favorable habitats, whereas P. dolus is able to remain on site 

and wait out periods of inadequate plant nutrition (Cook and Denno 1994, Denno et al. 

2000).

Methods

Investment in flight versus feeding morphology in Prokelisia planthoppers

Head and thorax metrics

Patterns of investment to flight and feeding morphology (head and thorax metrics) 

in the Prokelisia species (both wing forms) and were determined from laboratory-reared 

planthoppers.  Upon emergence, adults were sorted to species and wing form and were 

stored in ethyl alcohol (70%) prior to measurement of head and thorax features using an 

optical micrometer.  Following measurement, adult bodies were separated into heads and 

thoraces (wings removed) that were dried at 60°C for 48 hours and then weighed 

individually.  In all, measurements and weights were made on 15 adult females of P. 

dolus (5 macropters and 10 brachypters) and 20 females of P. marginata (10 macropters 

and 10 brachypters).  
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 Investment in feeding musculature was assessed indirectly by measuring several 

head metrics: face (clypeus) width (mm) and face area (width x length in mm) as indexes 

of the surface available for cibarial muscle attachment, and head weight (mg) as a 

surrogate for cibarial muscle mass.  Investment in flight morphology was determined 

from several thorax metrics: width of mesothorax (mm), width of metathorax (mm), 

average thorax width (mesothorax width + metathorax width ÷ 2), length of mesothorax 

+ metathorax (mm), and length (mm) and weight (mg) of entire thorax (prothorax + 

mesothorax + metathorax).  The area of the entire thorax (mm2) was calculated in three 

ways: entire length (prothorax to metathorax) x mesothorax width, entire length x meta-

thorax width, and entire thorax length x average thorax width.  The prothorax was 

included in the determination of thorax length (despite lacking wings) because it is small 

compared to the other thoracic segments and yet allows a more precise estimate of thorax 

length.  Individual tibia lengths (mm) were also measured and used to control for 

differences in body size between individuals.

Area (face and thorax) and weight (head and thorax) measurements were also 

used to calculate two indexes of relative investment in flight versus feeding capability: 

face area/thorax area (entire thorax length x average thorax width) and head 

weight/thorax weight.  Higher ratios suggest a greater investment in feeding relative to 

flight morphology.

Statistical analysis

The effects of species, wing form, and their interaction on head metrics, thorax 

metrics, and investment indexes were determined using ANCOVA with tibia length as 
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the covariate (SAS 2002).  Prior to analysis, data (residuals) were assessed for normality 

and homogeneity of variances (SAS 2002).  If residual variances were heterogeneous, 

variance partitioning was conducted and the best model was chosen using Bayesian 

Information Criterion.  The degrees of freedom were calculated using the Kenward-Roger 

method.  All means comparisons were conducted using a Tukey adjustment to account 

for inflated comparison-wise error rates.  If data were transformed for statistical analysis, 

means and standard errors are presented as untransformed data.

Spartina and planthopper culture

Planthoppers for this experiment were reared on fertilized plants to control for any 

possible nutrient-deficiency effects on muscle allocation.  Potted Spartina plants (3-5 

plants per pot grown in sand substrate) were greenhouse grown from seed in flats (80 

pots per flat in each of eight flats) exposed to a fertilization regime of nitrogen and 

phosphorus that supports optimal Spartina and Prokelisia growth (Chapter 1).  Nitrogen 

subsidy was 10gN/m2 (supplied as 5g ammonium nitrate / flat / application) and 

phosphorus subsidy was 12gP/m2 (supplied as 5g triple super phosphate / flat / 

application).  To achieve the desired treatments, plants in each treatment combination 

were fertilized every three weeks from April 2003 until June 2003.  Plants for this 

experiment were grown from seed obtained from Environmental Concern, Inc. St. 

Michaels, MD. 

Prokelisia nymphs were reared to adult by placing 3 to 5 first instar nymphs of 

each Prokelisia  species onto caged plants on 1 July 2003 (see Denno et al. 2000 for cage 

design).  Approximately 500 cohorts of each species were started in order to assure the 
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emergence of the rarer wing forms of each species (macropterous P. dolus and 

brachypterous P. marginata, respectively).  Nymphs were obtained from lab cultures 

initiated from ovipositing adults collected from the Tuckerton field site.  

Honeydew production in planthoppers as an index of ingestion and feeding compensation

Honeydew production in planthoppers on plants of variable nutrient quality

Feeding compensation is the ability to increase ingestion rate as host plant quality 

decreases, which can be measured indirectly as excretion rate (honeydew production)

(Prestidge 1982a, Brodbeck et al. 1993, Brodbeck et al. 1995, 1996).   Honeydew 

production was determined for both Prokelisia species by feeding them Spartina grown 

under different nutrient regimes.  Potted Spartina plants (3-5 plants per pot) were 

greenhouse grown from seed in flats (80 pots per flat, two flats per treatment) and 

exposed to one of three fertilization treatments to create a range of plant qualities: 10g/m2

of nitrogen only, 12g/m2 of phosphorus only, or both.  To achieve the desired treatments, 

plants in each treatment combination were fertilized every three weeks from April until 

June 2003.  Nitrogen was applied as 5g ammonium nitrate / flat / application and 

phosphorus was supplied as 5g triple super phosphate / flat / application.  Plants for this 

experiment were grown from seed obtained from Environmental Concern, Inc. St. 

Michaels, MD.   The macronutrient treatments are hereafter referred to as +P (only 

phosphorus fertilization), +N (only nitrogen fertilization), and +N+P (both phosphorus 

and nitrogen fertilization).
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Honeydew production was determined from planthoppers confined in clip cages 

on treatment plants.  After adult emergence from cultures (see above), cohorts consisting 

of 10 females of a single species and wing form combination were placed into small 

cylindrical clip cages (1.5 cm in diameter x 6cm in length and made of clear cellulose 

butyrate plastic) that contained a cup-shaped piece of pre-weighed filter paper.  Cohorts 

were then randomly assigned to plants in one of 3 fertilized Spartina treatments (+P, +N, 

+N+P).  Because few brachypterous females of P. marginata emerged during the rearing 

process, only macropters of this species were available for testing.  Both wing forms of P. 

dolus were sufficiently abundant for assessment of honeydew production. 

Leaves were positioned in the tops of clip cages to ensure that honeydew fell 

down and collected on filter paper below.  After 48 hours of feeding, cohorts were 

removed and the filter paper was re-weighed.  Honeydew production (mg/48 hrs) was 

measured as the difference between pre- and post- filter paper weight.  Thirteen replicate 

cohorts were established for each wing form by plant nutrition-treatment combination for 

P. dolus as well as 14 replicates of each plant-treatment combination for the macropters 

of P. marginata.  Eleven planthopper-free “control cages” were also placed onto plants in 

each of the 3 treatment categories for 48 hours and filter paper was re-weighed ensure 

that any change in filter paper weight was due to the presence of planthoppers. 

Effect of fertilization treatments on plant nutrient content  

To determine the effect of the fertilization treatments on the nutrient content (% 

nitrogen, % phosphorus, % carbon) of Spartina, six replicates per treatment of 

planthopper-free Spartina leaves (all aboveground living biomass in each pot) were 
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harvested just prior the start of the honeydew production experiment (15 August 2003).  

Foliar nutrient content was used as an index of the phloem nutrients available (Youssefi 

et al. 2000).  Leaves were oven dried for 48 hours at 60°C, ground in a Wiley Mill and 

subsequently analyzed for %C and %N using a Perkin-Elmer 2400 CHN analyzer, and 

for %P by persulfate digestion (Clesceri et al. 1998).  All elemental ratios used for 

analyses are atomic ratios.

Statistical analysis

The effect of the plant-nutrition treatments on honeydew production (mg/48 hrs) 

was analyzed separately for the two Prokelisia species and the wing forms of P. dolus

using ANOVA (SAS 2002).  To confirm that changes in filter paper weight were due to 

honeydew production, filter paper weight in planthopper-free controls (averaged across 

plant fertilization treatments) was compared to that in the planthopper-containing 

treatment (averaged across species, wing forms and plant fertilization treatments) using 

ANOVA.  For the control treatment, change in filter paper weight over the 48 hour 

experimental period (initial versus final weight) was compared using a t-test.  The effect 

of the plant-nutrition treatments on the nutrient content of Spartina (%N, %P, C:N, C:P) 

was assessed using ANOVA.   Prior to analysis, residuals were assessed for normality 

and homogeneity of variances, variance partitioning was conducted and the best model 

was chosen using Bayesian Information Criterion, degrees of freedom were calculated 

using the Kenward-Roger method and means were compared using a Tukey adjustment 

to account for inflated comparison-wise error rates (SAS 2002).
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Results

Investment in flight versus feeding morphology in Prokelisia planthoppers

Brachypters of P. dolus had wider faces (clypeus) and a larger facial area than 

macropters of this species and both the brachypters and macropters of P. marginata, 

which did not differ from each other [significant Species*Wing form interaction for both 

face width (F1,31 = 6.8, P = 0.01) and face area (F1,30 = 10.7, P = 0.003)] (Figure 3.1A and 

B).  Thus, there is a greater surface for the attachment of cibarial dilators in the 

brachypters of P. dolus, suggesting a greater potential for increasing ingestion rate when 

need be.  Because brachypters are the predominant wing form in populations of P. dolus

whereas macropters dominate populations of P. marginata, P. dolus may have a 

generally greater potential for compensatory feeding than P. marginata.

In general, thoracic metrics (widths and areas of mesothorax, metathorax, and 

entire thorax) indicated little difference in thorax size between the wing forms of P. 

dolus, whereas in P. marginata macropters had consistently larger thoraces than 

brachypters (Figure 3.2A, C and D; Figure 3.3 A, B, and C).  Significant Species*Wing 

form interactive effects on thoracic metrics document this pattern: width of mesothorax 

(F1,30 = 7.8, P = 0.009), length of mesothorax + metathorax (F1,30 = 8.07, P = 0.008), 

length of entire thorax (F1,30 = 6.9, P = 0.01), and area of the thorax calculated as length x 

mesothoracic width (F1,30 = 13.47, P = 0.001), length x metathoracic width (F1,30 = 6.56, P

= 0.02), and length by average thoracic width (F1,30 = 9.8, P = 0.004).  The only exception 

to this general pattern was the absence of a species effect (F1,30 = 0.09, P = 0.8), wing 
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form effect (F1,30 = 1.6, P = 0.2) and their interactive effect on the width of the 

metathorax (F1,30= 2.65, P = 0.1)(Figure 3.2B). 

Brachypters of P. dolus had heavier heads than macropters of this species, a 

difference in head weight that was not evident between the wing forms of P. marginata

(significant Species*Wing form interaction; F1,27 = 7.96, P = 0.009; Figure 3.4A).  

Prokelisia marginata had a heavier thorax (0.1 ± 0.004 mg) than P. dolus (0.09 ± 0.005 

mg) when averaged across wing forms (F1,30 = 3.95, P = 0.05; Figure 4B).  Also, 

macropters of both species had heavier thoraces than brachypters (F1,30 = 8.43, P = 

0.007), and there was no interactive effect of species and wing form on thorax weight 

(F1,30 = 0.8, P = 0.4) (Figure 3.4B).

Indices of investment suggest differential allocation to flight and feeding 

morphology in the two Prokelisia species.  As evidenced by the face-area-to-thorax-area 

index, P. dolus as a species exhibited a significantly greater investment in feeding (1.6 ±

0.004) than P. marginata (1.4 ± 0.003), which allocated more to flight (F1,31 = 14.89, P = 

0.0005; Figure 3.5A).  This index also showed that brachypters allocated more to feeding 

morphology (0.17 ± 0.003) than macropters (0.14 ± 0.004) which invested more in flight 

(F1,31 = 28.81, P < 0.0001), a pattern that occurred for both Prokelisia species (no 

significant interactive effect of species and wing form; F1,31 = 1.87, P = 0.2).  The head-

weight-to-thorax-weight index indicated that brachypters of P. dolus allocated more to 

feeding than macropters of this species, whereas the wing forms of P. marginata showed 

no difference in allocation (significant Species*Wing form interaction, F1,26 = 4.42; P = 

0.05; Figure 3.5B).
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Altogether, head and thorax metrics as well as investment indices indicated that: 

(1) P. dolus invests more in feeding morphology than P. marginata, which allocates more 

to flight and (2) brachypters in general invest more in feeding and less in flight than 

macropters.  Moreover, discrepancies in investment in feeding and flight between the 

wing forms were exaggerated differently in the Prokelisia species: (3) brachypters 

invested more in feeding than macropters, a difference that was relatively greater in P. 

dolus than P. marginata, and (4) macropters allocated more to flight than brachypters, a 

difference that was enhanced in P. marginata compared to P. dolus.

Honeydew production in planthoppers as an index of ingestion and feeding compensation

Fertilization produced a range of plants with different nutrient contents on which 

planthopper honeydew production could be assessed (Figure 3.6).  There was a 

significant treatment effect on the nitrogen content of Spartina, which varied from 2.3%N 

for plants that received only phosphorus to 3.5%N for plants subsidized only with 

nitrogen (F2,15 = 30.54, P < 0.001; Figure 3.6A).  In general, these values are high 

compared to those for Spartina plants in the field that usually average less that 1.5% 

nitrogen content (Denno 1983, Ornes and Kaplan 1989, Denno et al. 2002, Chapter 1).  

Phosphorus content also differed significantly among treatments with values ranging 

from 0.1% (N only treatment) to 0.3% (N+P treatment) (F2,13 = 78.87, P < 0.0001; Figure 

3.6B), values that are far more representative of those for field plants (Ornes and Kaplan 

1989, Chapter 1).   The fertilization treatments also resulted in significant effects on the 

C:N and C:P contents of Spartina (FC:N,2,11.6 = 36.23, P < 0.001; FC:P,2,13 = 118.76, P < 

0.001) (Figures 3.6C and D, respectively).  Thus, because nitrogen is far more limiting 



122

than phosphorus for Prokelisia planthoppers (Chapter 1), the poorest quality plants 

(lowest %N and highest C:N ratio) were those in the +P treatment followed by plants in 

the +N+P treatment; plants in the +N treatment were of the highest quality.

Honeydew production by P. dolus did not differ across plant treatments, despite

variation in plant quality (F2,20 = 0.35, P = 0.7: Figure 3.7A).  Moreover, neither wing 

form nor its interactive effect with fertilization treatment affected honeydew production 

(Wing form, F1,20 = 0.24, P = 0.6; Wing form*Treatment, F2,20 = 0.22, P = 0.8) (Figure 

3.7A).  Thus, there was no evidence that P. dolus altered its ingestion/excretion rate in 

response to variable plant quality.

Species-level comparisons of honeydew production were also made using 

macropters.  Even though there was no effect of the plant-nutrition treatments on 

honeydew production for either species (F2, 14.9 = 0.28, P = 0.7), the excretion rate of P. 

dolus (0.56 ± 0.1 mg/48 hours) was more than twice that for P. marginata (0.22 ± 0.06 

mg/48 hours) (F1,14.8 = 8.02, P = 0.01; Figure 3.7B).  Although there was no interactive 

effect of species and plant treatment on honeydew production (F2,14.9 = 0.44, P = 0.6), 

there was a non-significant trend for P. marginata to excrete more honeydew on less 

nutritious plants (+P compared to +N+P treatment), a trend that was not evident in P. 

dolus (Figure 3.7B). 

Two pieces of information suggest that honeydew excretion was accurately 

assessed.  First, there was as significant increase in filter paper weight (the substrate on 

which honeydew collected) over the time course of the experiment in cages containing 

planthoppers (F2,35 = 15.7, P < 0.0001).  Second, there was no change in filter paper 

weight in planthopper-free control cages (t1,35 = 0.6, P = 0.6).  
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Discussion

Using wing-dimorphic Prokelisia planthoppers, the aim of this study was to 

establish the existence of a trade off between dispersal ability and a “third party trait,” 

namely compensatory feeding that allows an organism to cope with deteriorating plant 

quality.  The essence of the trade off is a predicted allocational difference in thoracic 

muscle mass that allows for long-distance flight verses the cibarial musculature that 

governs the ability to ingest phloem sap.  Thus, the expectation was that investment in 

dispersal would impose costs on compensatory feeding and vice versa, and that 

individuals could not maintain both a high commitment to dispersal and an efficient 

compensatory feeding ability.   Accordingly, my approach was to compare head and 

thorax morphology between two planthopper species, P. dolus a sedentary species (most 

adults are brachypterous) and P. marginata a migratory species (most adults are 

macropterous), and to assess their abilities to compensate for poor plant quality by 

increasing their ingestion rate.  I extended my investigation to include an intraspecific 

assessment of the head and thorax morphology of the flightless and volant wing forms of 

both species and to assess their respective abilities for compensatory feeding.

Overall, my results provided robust evidence for a species-level trade-off between 

the morphology associated with flight and that related to feeding.  The head and thorax 

metrics I used as surrogates for cibarial and flight musculature indicated that P. dolus

invests more in feeding than flight morphology, whereas P. marginata exhibits the 

reverse allocation pattern.  Moreover, the same metrics suggest that investments in flight 
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by macropters (heavy thoraces) occur at the expense of feeding morphology (light heads) 

and that the reverse pattern occurs in brachypters with relatively light thoraces and heavy 

heads compared to macropters (Figure 3.4).  However, the allocation pattern is complex 

in that the discrepancy in head and thorax morphology between the wing forms is 

exaggerated differently between the two Prokelisia species.  Although brachypters 

generally invested more in feeding morphology (larger faces and heavier heads) than 

macropters, this difference was relatively greater in P. dolus than in P. marginata (Figure 

3.5).  Likewise, macropters allocated more to flight (larger and heavier thoraces) than 

brachypters, but this difference was generally greater in P. marginata than P. dolus

(Figures 3.2, 3.3, 3.4B and 3.5).  Thus, wing form differences in head morphology, which 

are presumably associated with feeding capability, are far greater in the sedentary species 

which must contend with on site fluctuations in host plant quality.  Similarly, wing form 

differences in thorax morphology are exaggerated in the migratory species which copes 

with deteriorating plant nutrition via dispersal (see Denno 1994, Denno et al. 2000).  

These latter data are consistent with the argument that selection for dispersal favors a 

positive correlation between the proportion of flight-capable adults in the population and 

the flight capability (investment in flight morphology) of the macropterous morph 

(Fairbairn and Desranleau 1987, Fairbairn and Butler 1990, Roff and Fairbairn 1991, 

Fairbairn 1994).  Thus, macropters from predominantly macropterous species are better 

fliers than macropters from species that are largely brachypterous (Fairbairn and 

Desranleau 1987, Fairbairn and Butler 1990).  Likewise, selection may favor a greater 

investment in the head morphology associated with feeding in the brachypterous morph 

of sedentary species, as my data suggests (Figure 3.5).
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Thus, my data support the contention that species-level differences in life-history 

strategy influence patterns of investment between feeding and flight.  Variation in 

investment between macropters and brachypters within a species occurs largely in traits 

that reflect the major life style of the species.  For example, the wing forms of P. dolus, 

the largely immobile species, showed variation in the head morphology associated with 

compensatory feeding, but minimal differences in allocation to the thoracic morphology 

linked with flight.  Similarly, for the migratory P. marginata, there were great differences 

in thoracic morphology between the wing forms, but only negligible differences in the 

head metrics associated with feeding capability.  Collectively, these data support the view 

that selection for a particular trait (e.g., dispersal) affects a suite of other associated 

physiological traits and patterns of allocation (Fairbairn and Desranleau 1987, Roff and 

Fairbairn 1991, Fairbairn 1994).

One could argue that the head metrics I used as surrogates for cibarial 

musculature are in fact associated with other functions.  The most obvious of these 

alternatives might be vision and associated eyes and optic lobes of the brain.  Thus, the 

larger head of P. dolus, especially the brachypterous morph (Figure 3.5A) may result 

from selective pressures associated with sight rather than feeding.  All evidence points to 

the contrary, because large eyes and visual acuity in flies and bumble bees are associated 

with males that are extremely mobile and rely on dispersal to locate mates (Menzel et al. 

1991, Hornstein et al. 2000).  Accordingly, it should be the macropters of P. marginata

with the largest heads, which in fact is not the case.  Moreover, the cross sectional area of 

the cibarial muscles of P. dolus is larger than that for P. marginata (Denno and Fox 

unpublished data).  Regarding my use of thorax metrics as indicators of flight 
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musculature, there is a positive association between thorax size and flight in insects (Chai 

and Srygley 1990, Hill et al. 1999, Fric and Konvicka 2002).  Thus, I am confident that 

the surrogates I used to assess flight and feeding musculature were accurate indicators.

Based on its greater investment in cibarial musculature (Figures 3.4 and 3.5), the 

expectation was for P. dolus to exhibit a higher ingestion rate and compensatory feeding 

ability than P. marginata.  Likewise, brachypters were expected to have a greater 

ingestion capacity and thus compensatory feeding ability than macropters.  Because 

ingestion and excretion rates are highly correlated in phloem-feeding insects such as 

planthoppers (Prestidge 1982a, Brodbeck et al. 1993, Brodbeck et al. 1995, 1996), I used 

honeydew production as an index of ingestion rate.  Overall, there was little support 

regarding predictions for ingestion and feeding compensation between species and wing 

forms.

Prokelisia dolus  produced more than twice the amount of honeydew as P. 

marginata (Figure 3.7), suggesting a much higher ingestion capacity.  At the level of 

species, the greater ingestion capacity of P. dolus compared to P. marginata is likely 

related to its increased ability to survive, perform, and regulate its macronutrient 

composition on nutrient deficient host plants (Chapters 1 and 2).  However, the species-

specific difference in ingestion rate (honeydew production) is not clearly attributable to 

allocational differences in cibarial musculature.  For instance, despite the dramatic 

discrepancy in honeydew production between the macropters of P. dolus and P. 

marginata, there was no morphological evidence suggesting a greater allocation to 

feeding musculature in the macropters of P. dolus (Figures 3.1, 3.4 and 3.5).  
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Similarly, within-species predictions regarding ingestion rate and feeding 

morphology were not well supported.  For example, there was no difference in honeydew 

production between the wing forms of P. dolus (Figure 3.7), even though brachypters 

apparently invest much more in feeding morphology than macropters (Figure 3.5B).  

Moreover, because honeydew production did not increase on the nutrient-deficient 

treatment plants, there was no evidence for compensatory feeding in P. dolus (Figure 

3.7).  Admittedly, the nitrogen content in all treatment plants was high (> 2%) which may 

not have challenged P. dolus to increase its ingestion rate to meet nutrient demands.  

However, additional evidence suggests that despite extreme variation in host plant quality 

(%N, %P, and C:N), both wing forms of P. dolus regulate their body composition of 

macronutrients equally well (Chapter 2).  Alternatively, nutrient demands might be met 

on poor-quality host plants by increasing the assimilation efficiency of nitrogen rather 

than enhancing ingestion rate (Abisgold et al. 1994).  Thus, the negative association 

between feeding and flight morphology between the wing forms of P. dolus does not 

apparently extend to affect actual differences in consumption capacity.

There is evidence suggesting a trade-off between flight and reproduction in P. 

dolus, with flightless brachypters exhibiting a higher reproductive potential than flight-

capable macropters (Denno et al. 1989), a pattern commonly observed in many wing-

dimorphic insects (Zera and Denno 1997).  However, to document the existence of a 

physiological trade-off, it is necessary to verify that morph-related differences in trait 

investment are the result of differences in resource allocation and not due to the 

differential consumption of nutrients (Zera and Denno 1997, Zera and Harshman 2001).  

Indeed, the similar ingestion rates (honeydew production) of the wing forms of P. dolus
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suggest that the trade-off between reproduction and flight evident in this species does not 

result from differences in nutrient consumption.  Thus, this study provides robust support

for the existence of an actual trade-off between flight and reproduction in P. dolus.

The physiology underlying life history trade-offs in wing dimorphic insects has 

received much attention in the recent years (Zera et al. 1998, Zera and Brink 2000, Zhao 

and Zera 2002).  In the context of this study, life histories bear heavily on the ability of 

phytophagous insects to cope with the fundamental stoichiometric mismatch that exists 

between their nutrient composition and that of their host plants (Elser et al. 2000a, Fagan 

et al. 2002a).  Differences in dispersal ability may influence a species’ response to 

nutrient limitation by virtue of constraints placed on “third party traits” such as 

compensatory feeding.  My results reveal that although investments in flight likely 

constrain feeding morphology that such constraints do not clearly translate into

differences in ingestion rate or compensatory feeding.  Resource allocation differences 

that underlie the strategies used by phytophagous insects to cope with nutrient limitation 

have rarely been identified.   Toward this end, this study presents the first attempt to link 

dispersal and feeding investments as antagonistic traits within and between species.  
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Figure Descriptions

Figure 3.1.  (A) Face width (mm) and (B) face area (mm2) of the female wing forms 

(brachypters and macropters) of Prokelisia dolus and P. marginata.  A larger face 

indicates a greater surface of attachment for the cibarial muscles that control 

ingestion, and thus a greater potential investment in the musculature regulating 

ingestion rate and capacity.  Means (± SE) with the same letter are not 

significantly different.   

Figure 3.2.  Thorax size of the female wing forms (brachypters and macropters) of 

Prokelisia dolus and P. marginata as indexed by the (A) width of mesothorax 

(mm), (B) width of the metathorax, (C) length of the mesothorax + metathorax 

(mm), and (D) length of the entire thorax (prothorax + mesothorax + metathorax 

(mm).  A larger thorax suggests a greater volume for housing flight muscles, and 

thus a greater potential investment in dispersal capability.  Means (± SE) with the 

same letter are not significantly different.

Figure 3.3.  Thorax area (mm2) of the female wing forms (brachypters and macropters) of 

Prokelisia dolus and P. marginata as indexed calculated by (A) length (prothorax 

to metathorax) x mesothorax width, (B) length x meta-thorax width, and (C) 

thorax length x average thorax width.  A larger thorax suggests a greater volume 

for housing flight muscles, and thus a greater potential investment in dispersal 

capability.  Means (± SE) with the same letter are not significantly different.

Figure 3.4.  (A) Head weight (mg) and (B) thorax weight (mg) of the female wing forms 

(brachypters and macropters) of Prokelisia dolus and P. marginata.  A heavier 

head indicates a greater potential mass of cibarial muscles that control ingestion 

and thus a greater investment in the musculature regulating ingestion rate and 

capacity.  A heavier thorax suggests a greater potential mass of flight muscles and 
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thus a greater investment in dispersal capability.  Means (± SE) with the same 

letter are not significantly different.

Figure 3.5.   Indices of investment in feeding versus flight musculature for the female 

wing forms (brachypters and macropters) of Prokelisia dolus and P. marginata.  

Indices were calculated as (A) face area (mm2)/thorax area (mm2) and (B) head 

weight (mg)/thorax weight (mg).  A high value indicates a greater potential 

investment in cibarial musculature compared to flight musculature, whereas a low 

value suggests the reverse.  Means (± SE) with the same letter are not 

significantly different.  

Figure 3.6.  Effect of fertilization treatment [phosphorus only (+P), nitrogen only (+N), 

and both (+N+P)] on the nutrient content of Spartina: (A) nitrogen (%), (B) 

phosphorus (%), (C) C:N, and (D) C:P.  Means (± SE) with the same letter are not 

significantly different.

Figure 3.7.  Effect of disparity in Spartina nutrition, achieved by differential fertilization 

[phosphorus only (+P), nitrogen only (+N), and both (+N+P)], on the honeydew 

production (mg/48 hours) of (A) the female brachypters and macropters of 

Prokelisia dolus, and (B) the female macropters of P. dolus and P. marginata.  

There was no effect of the plant nutrient treatments on the honeydew production 

of either species, but P. dolus excreted more than twice as much honeydew as P. 

marginata (B) suggesting a much higher ingestion rate.  Control clip-cage results 

are shown for illustrative purposes.  Means (± SE) are reported.
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Figure 3.2.
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Figure 3.3.
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Figure 3.4
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Figure 3.5
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Figure 3.6

+P +N +N+P

Sp
ar

tin
a 

N
itr

og
en

 (
%

)

0

1

2

3

4

+P +N +N+P

Sp
ar

tin
a 

Ph
os

ph
or

us
 (

%
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
A. B.

a

b

c a

b

c

+P +N +N+P

Sp
ar

ti
na

 C
:N

0

5

10

15

20

25

+P +N +N+P

Sp
ar

tin
a 

C
:P

0

200

400

600

800

1000
C. D.

a

b

c

a

b

a

Fertilizer Treatments



146

Figure 3.7
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