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abstract

In this paper we present a hierarchical network model to estimate the connection block-
ing for large hierarchical networks. As networks grow in size, nodes tend to form clusters
geographically and hierarchical routing schemes are more commonly used, and it is impor-
tant that network modeling methods have scale-up capabilities. Loss networks and reduced
load/�xed point models are often used to approximate call blocking probabilities and hence
throughput in a circuit switched network. We use the same idea for estimating connection
blocking in a data network with certain QoS routing schemes. However so far most work
being done in this area is for 
at networks with 
at routing schemes. We aim at developing
a more e�cient approximation method for networks that have a natural hierarchy and/or
when some form of hierarchical routing policy is used. We present hierarchical models in de-
tail for �xed hierarchical routing and dynamic hierarchical routing policies, respectively, via
the notion of network abstraction, route segmentation, tra�c segregation and aggregation.
Computation is done separately within each cluster (local) and among clusters (global), and
the �xed point is obtained by iteration between local and global computations. We present
results from both numerical experiments and discrete event simulations.

keywords
Hierarchical routing, Scale-up, QoS routing, Loss network, Reduced load/�xed point approx-
imation, Connection blocking.

Introduction

In this paper we present a hierarchical model for estimating connection blocking prob-
abilities in a hierarchical network and/or when some form of hierarchical routing is used.

�This work was supported by the Center for Satellite and Hybrid Communication Networks, under NASA

cooperative agreement NCC3-528
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The objective is not to arti�cially introduce hierarchy into a network model, but rather to
develop a more e�cient and scalable way of performance analysis for networks that bear a
natural hierarchy. The loss network model has been extensively studied and used to esti-
mate call blocking probability in a circuit switched network [1, 2, 3], [4]. In recent years,
studies claim that this technology can be applied to packet switched networks as well, via
the technique of e�ective bandwidth [5, 6]. We observe that this type of modeling can be
used to study performance for data networks employing QoS routing. The notion of quality
of service (QoS) has been proposed to capture the qualitatively or quantitatively de�ned
performance contract between the service provider and the user applications. QoS routing
aims at satisfying requested QoS requirements for every admitted connection by selecting
network routes with su�cient resources. QoS routing is normally connection-oriented with
resource reservation to provide the guaranteed service. Therefore meeting the QoS require-
ment of each individual connection and reducing the connection blocking rate are important
in QoS routing, while overall throughput, average response time, etc., are the critical issues
in traditional best e�ort routing [7].

One important routing strategy is hierarchical routing. Modern networks are getting
larger and larger, and it is necessary that network engineering tools have scale-up capabilities.
With the increase in size, a network tends to have clusters of nodes geographically, and
hierarchical routing schemes are more commonly used in order to cope with large network
size. On the other hand, research in this area has almost all on 
at networks with 
at routing
schemes [1, 8, 2, 9]. This has provided us with strong motivation as well as applicability to
develop a hierarchical model to estimate connection blocking.

We examine two types of hierarchical routing schemes and the corresponding end-to-
end connection level models. One is �xed or near �xed routing with the typical example
being OSPF [10], which is widely used for the Internet IP based routing. Under this routing
scheme, routes are established based on shorted distance principle, with ties broken according
to lower IP address. Considering the fact that links normally fail on a much larger time
scale compared to connection durations, this is a �xed routing scheme. In this case, the
hierarchy of the network is primarily geographical, which comes from the fact that each
workstation/network node within a LAN is connected to remote nodes via gateways on
di�erent levels. The abstraction of the physical network results in interconnected gateways
on higher layer(s).

The other type is dynamic hierarchical routing with a typical example being PNNI.
Various proposals for QoS routing in the Internet also fall under this category [11, 12]. In
this case, the centering point is \partial information". Networks are divided into clusters or
peer groups that consist of neighboring nodes, some of which being \border nodes" that are
connected to other peer groups. All non-border nodes are only aware of its own group, and
all border nodes are aware of its own group and border nodes of other groups. Border nodes
represent some form of aggregation of the rest of the network to non-border nodes within
the same group. Routes are established on di�erent layers based on complete information
within a group and aggregated information between groups.
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Our goal is to build a hierarchical end-to-end model that closely couples with the hierar-
chical nature of routing and uses only partial information on di�erent layers. By segregating
network into layers we can also develop models for situations where di�erent routing schemes
are used from group to group, or from layer to layer.

In the next section we brie
y describe the loss network model and reduced load ap-
proximation we use as the building blocks for our hierarchical model. We then describe
network abstraction and aggregation in Section 3. Hierarchical models for �xed hierarchical
routing and dynamic hierarchical routing are presented in Section 4 and 5, respectively. In
Section 6 we present numerical results for �xed hierarchical routing, which gained 3-4 fold
improvement in computational cost. We also present the results of our model on dynamic
hierarchical routing compared to simulation. Section 7 concludes this paper.

Reduced Load Approximation in a Hierarchical Model

For self-su�ciency purposes we brie
y describe in this section the reduced load approxi-
mation method that has been extensively studied for loss networks.

In a loss network a connection requires certain amount of bandwidth on every link on a
path between the source and the destination. If the network has the required bandwidth on
those links when the request arrives (usually as a Poisson process), the connection is admitted
and the requested capacities are reserved till the connection is completed. Otherwise the
request is rejected. Connection blocking probability is the probability that a request �nds
the network unavailable when it arrives and is thus rejected.

The computational complexity of loss networks [13] leads to various type of approximation
schemes, of which the reduced load approximation or �xed point approximation is extensively
studied and widely used. The construction of a reduced load model relies on two assumptions,
the link independence assumption, which assumes that the blocking occurs independently
from link to link so that the probability that a call is accepted on a certain route is the
product of the probabilities that the call is accepted on each individual link on that route,
and the Poisson assumption, which assumes that the tra�c 
ow onto each link is Poisson
and that the corresponding tra�c rate is the original o�ered rate thinned by blocking on
other links of that route, thus called the reduced load. It can be shown that for �xed routing
under certain limiting regime the assumptions hold [1].

Therefore for �xed routing, the reduced load �js on link j of tra�c type s is

�js =
X

r

�rsbjsI[j 2 r]
Y

i2r;i6=j

ais

where �rs is the o�ered tra�c load of class s on route r, bjs is the bandwidth requirement of
class-s tra�c on link j, I is the indication function, and ajs is the probability that a class-s
connection is accepted on link j. ajs can be computed from the �nite state Markov chain
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model of link j, e.g., the Kaufman recursion [3]

ajs =
Cj�bjsX

n=0

pj(n)

where Cj is the link capacity and the state distributions

npj(n) =
X

s

bjs
�js

�rs

pj(n� bjs); n = 1; :::; Cj;

with �rs being the departure rate of the connection. The end-to-end blocking probability is
thus

Brs = 1�
Y

i2r

ais:

More complicated reduced load approximations, as well as the mapping from �js to
ajs, have been developed to model di�erent routing schemes, e.g., alternative routing and
adaptive routing, and call admission control, e.g., trunk reservation, which is beyond the
scope of this paper [14, 9], [2, 8].

To summarize, the input to a reduced load model is the o�ered tra�c load between nodes
and the iteration process computes updates of the reduced load and the blocking probability
for each link until it converges. Finally the end-to-end blocking probability is calculated
using the link blocking probability and the link independence assumption.

The idea behind the hierarchical models we present in subsequent sections is to apply the
reduced load approximation to di�erent parts (clusters and layers) of the network separately
so that computation is localized. Each local computation (for a single cluster) takes as input
the results from other local computation and global computation (for portions of the network
between clusters { higher layer) by using the link independence assumption. For di�erent
layers or clusters di�erent reduced load model can be used depending on the routing schemes
under consideration. By doing so we want to achieve the following:

� Faster approximation while generating the same results compared to a 
at approxima-
tion model;

� A method of modeling networks with hierarchy and where di�erent routing schemes
are used at parts of the network.

A central component of this model is thus to derive the o�ered tra�c load for each clusters
so that the reduced load model can be applied. We obtain this by route segmentation, tra�c
segregation and aggregation.

Network AbstractionWe only consider large networks that have either physical hierarchies
or routing hierarchies vs. a complete mesh since a hierarchical model promises clear incentives
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Figure 1: Network with three clusters{ Layer One

only for the former if it is at all possible for the latter. Throughout the paper we use a two-
layer example shown in Figure 1.

There are three clusters in this example, with the dash-circles surrounding each one.
Each group has a label/address, e.g., 1:1 indicates Layer 1, Peer Group 1. Each node has an
address as well, e.g., 1:1:3 is Node 3 of Peer Group 1:1. All border nodes are shown in black
and non-border nodes are shown in white. A cluster can have a single or multiple border
nodes. A border node can be connected to di�erent clusters, e.g., Node 1:3:1. A non-border
node does not necessarily have a direct link connected to border nodes, although this is often
true with IP networks. Note that all links on this layer are actual, physical links.

The way aggregation and abstraction are done is as follows:

� All border nodes are kept in the higher layer { in this case Layer 2;

� Border nodes belonging to the same cluster are fully connected via \logical links".

This results in the Layer 2 abstraction shown in Figure 2.
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Figure 2: Network with three clusters { Layer Two

A logical link may corresponds to an actual link on the lower layer, e.g., Link 1:1:1 !
1:1:5. The real logical links are shown in dashed lines, indicating a feasible path rather than
a direct link.

5



As pointed out in [15], creating a logical link between each pair of border nodes is the
full-mesh approach, while collapsing the entire group into a single point is the symmetric-
point approach. Our aggregation approach is a full-mesh one. While it may not be the
most economic way of aggregation, this model clearly couples best with the underlying net-
work physical structure and routing structure. It's worth pointing out that a bandwidth
parameter is often assigned to a logical link, e.g., representing the maximum/average avail-
able bandwidth on the paths between two border nodes, and this may cause problems when
di�erent paths overlap [12]. It is obvious that some form of aggregated information has to
be associated with either the logical links or the border nodes. However, as we will see in
subsequent sections a bandwidth parameter is not necessarily the parameter in our model
for calculation on the higher layer, thus avoiding the aforementioned problem. In our model,
for the �xed routing case, this parameter is the blocking probability resulted from previous
iterations within the group, and for the dynamic routing case, this parameter can be implies
costs, hop number or other criteria based on the dynamic/QoS routing policies being used.

Hierarchical Model for Fixed Routing

Notations
G(1:n): the nth cluster/peer group on Layer 1, where n = 1; :::; N1; and N1 is the total
number of clusters in Layer 1.

1:n:xi: node x in cluster G(1:n), where i = 1; :::; Xn; and Xn is the total number of nodes
in G(1:n).

1:n:yi: border nodes in cluster G(1:n), where i = 1; :::; Yn; and Yn is the total number of
border nodes in G(1:n).

1:n:x1 �! 1:n:x2: link from node 1:n:x1 to node 1:n:x2. Links in our model are direc-
tional.

�s(1:n1:x1 �! 1:n2:x2): o�ered load for class-s tra�c from source 1:n1:x1 to destination
1:n2:x2, where s = 1; :::; S; and S is the total number of di�erent tra�c classes. It is also
written as �ps with p as the pth source-destination node pair.

P : (1:n1:x1 �! 1:n2:x2): the route between node 1:n1:x1 and 1:n2:x2. Pp is the route
for the pth node pair.

Route and Route Segments
For our modeling purposes, each route is broken down into route segments as follows.

Path P(1:n1:x1 �! 1:n2:x2) is a sequence of directed links with beginning and ending
nodes. We break down a route into segments whenever a route exits or enters a cluster. So
a route segment can be one of the following: source �! destination (when both source and
destination nodes belong to the same cluster, same as original route); source �! border
node; border node �! border node; border node �! destination.
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Therefore, a typical route P(1:n1:x1 �! 1:n2:x2) is segmented into the following k seg-
ments, assuming that n1 6= n2 and that neither (1:n1:x1) nor (1:n2:x2) is a border node:

P1 : (1:n1:x1 �! 1:n1:y2)

P2 : (1:n1:y2 �! 1:ni:y1)

P3 : (1:ni:y1 �! 1:ni:y2)

:::

Pk�1 : (1:nj:y2 �! 1:n2:y1)

Pk : (1:n2:y1 �! 1:n2:x2)

where y1 represents a border node from which tra�c enters a cluster, and y2 represents a
border node from which tra�c exits a group. These vary depending on the source-destination
node pair. Note that when a segment P(1:ni:y1 �! 1:ni:y2) exists, the route traverses an
intermediate cluster before reaching the destination cluster. We denote the set of route
segments for the pth source-destination node by P

0

p, and the segments P1
p ; :::;P

k
p , respectively.

The reason for a segmentation like the above is to segregate local computation (within
each cluster) and higher layer (inter-cluster) computation.

Initial O�ered Load and Local Relaxation
With the segmentation of routes, we need a corresponding way of representing the o�ered
tra�c load prior to running the hierarchical algorithm.

The o�ered load of class-s tra�c of the pth node pair (1:n1:x1; 1:n2:x2) is �
0
s(1:n1:x1 �!

1:n2:x2). We substitute this with a combination of the following, in a similar way as route
segmentation:

�0
ps(1:n1:x1 �! 1:n1:y2) source cluster tra�c

�0
ps(1:n1:y2 �! 1:ni:y1) inter-cluster tra�c

�0
ps(1:ni:y1 �! 1:ni:y2) cluster i tra�c

:::

�0
ps(1:nj:y2 �! 1:n2:y1) inter-cluster tra�c

�0
ps(1:n2:y1 �! 1:n2:x2) destination cluster tra�c

These terms all take the value of the initial o�ered load �0
s(1:n1:x1 �! 1:n2:x2). Thus we

have complete tra�c input information (together with route segments) for each cluster.

For the ith cluster, o�ered loads indexed with same node pair are added up to represent
the aggregated tra�c for this node pair. We assume that at least one of the nodes is a border
node since no aggregation process is needed in cases where both nodes are non-border nodes
within the same group. Without loss of generality, assume that the destination node is a
border node,

�1
s(1:ni:x1 �! 1:ni:y2) =X

fp:(1:ni:x1�!1:ni:y2)2P
0

pg

�0
ps(1:ni:x1 �! 1:ni:y2): (1)
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Note that the source node x1 can also be a border node.

In doing so, we assume initial condition of zero inter-cluster blocking, and zero blocking
in remote clusters. This is part of the initial values and blocking on inter-cluster links are
calculated in the next step of the algorithm.

The reduced load model for �xed routing is then applied to every cluster separately using
these o�ered loads to calculate group-wide blocking probabilities:

Bs(P
1) = Bs(1:n1:x1 �! 1:n1:y2)

Bs(P
3) = Bs(1:ni:y1 �! 1:ni:y2)

:::

Bs(P
k) = Bs(1:n2:y1 �! 1:n2:x2)

Reduced Load and Higher Layer Relaxation
On the higher layer (second layer in our example), only border nodes exist. We construct a
new network with border nodes, inter-group links and logical links as illustrated in Figure 2.
For this logical network we consolidate the previous route segments into three parts: within
the source cluster (P1), between source and destination clusters (Po = P2 [ ::: [ Pk�1)
and within the destination cluster (Pk). We have the following o�ered load for the second
segment:

�1
s(1:n1:y2 �! 1:n2:y1) =

�0
s(1:n1:y2 �! 1:n2:y1) +X

fp:(1:n1:y2�!1:n2:y1)2P
0

pg

�0
ps(1:n1:y2 �! 1:n2:y1) �

Bs(1:n1:x1 �! 1:n1:y2) �Bs(1:n2:y1 �! 1:n2:x2)

i.e.,

�1
s(P

o) = �0
s(P

o) +
X

fp:Po2P 0

pg

�0
ps(P

o
p) �Bs(P

1
p ) �Bs(P

k
p ):

This is the initial o�ered load thinned by blocking in both the source and destination
clusters.

We now have the complete tra�c input on the higher layer. We apply again the reduced
load approximation to this layer and calculate second-layer end-to-end blocking probabilities.
Note that on this layer, we do not have a \capacity" parameter for the logically links, but
instead, an end-to-end blocking probability resulted from previous approximation within the
cluster (local approximation). This is kept �xed throughout the approximation on this layer
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and is only updated through local approximation. The result of this step is the blocking
probability between border nodes:

Bs(1:ni:y1 �! 1:ni:y2) and

Bs(1:ni:y2 �! 1:nj:y1):

Iterations
Using the results from the higher layer approximation, update the o�ered load in (1) with
the blocking probabilities calculated from the higher layer:

�1
s(1:ni:x1 ! 1:ni:y2) =X

fp:(1:ni:x1!1:ni:y22P
0

pg

�0
ps(1:ni:x1 ! 1:ni:y2) �

Y

fk:Pk 6=(1:ni:x1!1:ni:y2)g

Bs(P
k
p ): (2)

This is essentially the original o�ered load thinned by blocking on inter-group links and
remote groups. This becomes the new input for local relaxation. Local and higher layer
relaxations are then repeated till the di�erence between results from successive iterations
are within certain criteria.

Hierarchical Model for Dynamic Hierarchical Routing

There are numerous existing and proposed dynamic/QoS hierarchical routing schemes,
each of which results in di�erent end-to-end performances determined by the scope and
design trade-o� of the routing scheme. Our primary goal here is not to design an end-to-end
model for each of these schemes. Rather, we attempt to present an end-to-end performance
modeling framework that considers a generic type of dynamic hierarchical routing, which
captures some of the most basic properties of a majority of such routing schemes. We make
assumptions for simplicity purposes, but our work shows how an end-to-end performance
model can be closely coupled with routing policies to provide an e�cient way of analysis.
Furthermore, our model enables us to analyze situations where di�erent routing schemes are
used on di�erent levels of a networks.

Dynamic Hierarchical Routing
One key property of any dynamic hierarchical routing is inaccurate/incomplete information
[16]. A node has complete information on its own group, but only aggregated information
on other groups advertised by the border nodes. So a node typically sees its own group
in detail but other groups \vaguely", in form of certain representation of the aggregated
information, which is inevitably incomplete and inaccurate. This aggregated information
can be one or more of various metrics speci�ed by the routing algorithm: implied cost
of a group (cost/additional blocking incurred by allowing a tra�c stream to go through),
maximum available bandwidth between border node pairs, delay incurred by going through
a group, etc.. This information is typically associated with and advertised by border nodes.
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In source routing, a path is selected with detailed hop-by-hop information in the origi-
nating group but only group-to-group information beyond the originating group. The de-
tailed routing within each other group is determined locally. For example, a route from
1:1:7 to 1:3:3 is selected from the source point of view as 1:1:7 �! 1:1:6 �! 1:3, or as
1:1:7 �! 1:1:1 �! 1:2 �! 1:3. The choice of routes within a group is determined using
shortest path routing, least loaded routing and so on, along with the aggregated information
advertised by border nodes. We do not specify the details in formulating the model since
they do not a�ect the general method of analysis. However we give speci�c examples for
numerical and simulation studies.

In our model, we focus on dynamic hierarchical source routing where routes are selected
in a way described above. We do not consider crankback in which a connection is routed on
an alternative route if the �rst choice is not available. A call is blocked if the route selected
according to the dynamic routing policy does not have the required bandwidth.

Probabilistic O�ered Load Distribution and Tra�c Aggregation
With dynamic hierarchical routing the model becomes more complicated because there is
no longer a single �xed route between nodes. The key point of the model is to successfully
separate tra�c from cluster to cluster. In order to do so, we made the following observation.
One of the main advantages of dynamic routing is load balancing, i.e., dynamically distribute
tra�c 
ow onto di�erent paths of the network to achieve greater utilization of network
resources. We argue that under steady state, a particular tra�c 
ow (de�ned by class,
source-destination node pair) is distributed among all feasible routes, and among multiple
border nodes that connect to other groups. (This problem does not exist when there is only
one border node. Routes are still dynamically chosen, but all routes ultimately go through
that single border node.) The fraction of a tra�c 
ow that goes through a certain border
node is directly related to the aggregated information/metrics for the group-to-group route
the border node advertises, and remains relatively �xed under steady state.

Based on this, for a pair of nodes belonging to di�erent clusters, the feasible route set
is divided into three subsets: route segments within the source cluster, route segments
between clusters and route segments within the destination cluster. In this section we use P
to represent a set of routes since multiple routes are allowed for each node pair in dynamic
hierarchical routing.

To simplify notation, assume the route does not traverse an intermediate cluster (exten-
sions can be made). For route set P(1:n1:x1 �! 1:n2:x2) the subsets are:

P1 : (1:n1:x1 �! 1:n1:yi);

P2 : (1:n1:yi �! 1:n2:yi); and

P3 : (1:n2:yi �! 1:n2:x2);

where yi indicates all possible border nodes. Each of these segments presents possibly many
routes. We are simply breaking down the initial source-destination into multiple interme-
diate source-destination node pairs so that routes within a group and between groups are
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segregated.

We rewrite the second subset as P2(1:n1 ! 1:n2), a collection of routes from source
cluster 1:n1 to the destination cluster 1:n2. For each route in P1, we have the initial o�ered
load

�0
ps(1:n1:x1 ! 1:n1:yi) = ai�

0
s(1:n1:x1 ! 1:n2:x2)

where �0
s(1:n1:x1 ! 1:n2:x2) is the o�ered load of the class-s tra�c for node pair (1:n1:x1 !

1:n2:x2), and each border node yi gets to route a portion ai of the tra�c with
P

i ai = 1.

The tra�c is further distributed to each route in P2 based on the underlying routing
scheme used on the second layer:

�0
ps(1:n1:yi ! 1:n2:yj) = aiqij�

0
s(1:n1:x1 ! 1:n2:x2)

where
P

j qij = 1 for all i, and can be calculated based on the reduced load mode used for
this layer.

Finally for the routes in the destination cluster, P3, the initial o�ered load is

�0
ps(1:n2:yj ! 1:n2:x2) =
X

i

aiqij�
0
s(1:n1:x1 ! 1:n2:x2)

assuming the initial condition of zero blocking else where.

Within each cluster the tra�c is then aggregated over all node pairs that have the same
route in ones of there route sets, similar to what we described in the previous section.

Updates and Iterations
From the aggregate tra�c we apply the reduced load model to each cluster and compute

Bs(1:n1:x1 ! 1:n1:yi);

Bs(1:n1:yi ! 1:n2:yj);

Bs(1:n1:yj ! 1:n2:x2):

As discussed earlier, the distribution of tra�c 
ow onto the di�erent inter-cluster routes
should match the aggregated information (delay, blocking probability, implied cost, available
bandwidth, etc.) advertised by di�erent border nodes. Ultimately one of the goals for any
dynamic routing scheme is to balance tra�c load on di�erent alternative routes, and the
end result is that these alternative routes should have equivalent QoS under steady state.
For example, if we use blocking probability as a criteria to adjust the tra�c distribution
ai; i = 1; 2; :::; n, with n being the total number of border nodes in a cluster, then the border
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node with a blocking probability higher than median gets a decreased portion, and border
nodes with a blocking probability lower than median gets an increased portion:

ai := ai + � if Bs(1:n1:yi ! 1:n2) < Bm;

ai := ai � � if Bs(1:n1:yi ! 1:n2) > Bm;

where Bs(1:n1:yi ! 1:n2) is the average blocking over all routes from 1:n1:yi to 1:n2, and �

is a small incremental value and Bm is the median blocking probability among all routes.
Alternatively ai can be set to be inversely proportional to the blocking probabilities with
sum 1. Other means of relating tra�c distribution to route QoS can also be speci�ed.

qij is updated accordingly based on the reduced load model we use for the second layer.
An example in least-loaded routing can be found in [17].

Using these new distribution values along with the blocking probabilities we update the
aggregated tra�c load for node pairs within the same cluster, similar to the �xed routing
scenario. Another round of iteration is then started and the process continues until both the
distribution ai and the link blocking probabilities converge.

Numerical Results

In this section we present numerical experiment results for the network example shown in
1 using �xed hierarchical routing scheme, and dynamic hierarchical routing scheme. This is
a 21-node, 30-link, 3-clusters, 2-layer network model. We use single class of tra�c requiring
unit bandwidth. Link capacities varies from 80 to 160. We use the o�ered tra�c load
between node pairs at a \nominal" level. The intensity of this tra�c load is shown in Table
1, in which load is de�ned as the ratio between the total rate of tra�c coming out of a node
and the total out-going link bandwidth connecting to this node. At the nominal level, the
value of this ratio for each node is around 0:05. In addition to this o�ered tra�c load we
also de�ne a \weight" in our experiment as a multiplier to the nominal tra�c, so that we
get twice, three times of the nominal tra�c, etc.. The complete data on link capacities and
tra�c rates can be found in [18].

Fixed Hierarchical Routing
Since when using �xed hierarchical routing a network can always be treated as 
at, we
compare the performance of 
at �xed-point approximation (FPA) and the hierarchical �xed-
point approximation. It can be shown [1] that under certain limiting regime for �xed routing
the �xed point approximation is asymptotically correct.

Results of Flat FPA and Hierarchical FPA
Table 2 is a comparison between 
at �xed-point approximation and hierarchical �xed-point
approximation on individual link blocking probabilities (end-to-end blocking probabilities
are computed directly from these for �xed routing). We used seven times nominal tra�c
(weight = 7).
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Table 1: Nominal o�ered tra�c load

Node Rate Cap. load

1.1.1 11.15 270 0.041296

1.1.2 7.20 160 0.045000

1.1.3 10.60 180 0.058889

1.1.4 7.90 150 0.052667

1.1.5 8.60 210 0.040952

1.1.6 8.95 220 0.040682

1.1.7 10.45 180 0.058056

1.2.1 8.95 210 0.042619

1.2.2 8.80 220 0.040000

1.2.3 6.65 130 0.051154

1.2.4 9.15 180 0.050833

1.2.5 9.70 180 0.053889

1.2.6 7.95 140 0.056786

1.3.1 9.55 230 0.041522

1.3.2 12.0 290 0.041379

1.3.3 3.70 80 0.046250

1.3.4 7.90 140 0.056429

1.3.5 8.25 160 0.051562

1.3.6 9.00 180 0.050000

1.3.7 8.00 130 0.061538

1.3.8 5.75 100 0.057500

We see that the hierarchical scheme gives very close results compared to that of the 
at
approximation scheme, but achieved 3 � 4-fold improvement in computation.

Varying Tra�c Load
Figure 3 is a comparison between the runtime of 
at FPA and hierarchical FPA while varying
the tra�c load by increasing the value of \weight", which is multiplied to the nominal tra�c
rate.

We see that as the tra�c load increases, the gain in computation savings becomes signif-
icant. More importantly, the computation of the hierarchical FPA only increases marginally
with the increase of tra�c load.

Varying Cross-group Link Capacity
Since the sequence of iteration is determined by clusters, it is reasonable to expect that
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Table 2: Comparison of results, weight = 7.

link Hier. FPA Flat FPA

(1.1.1-1.1.5) 0.235701 0.235704

(1.1.1-1.2.1) 0.409961 0.409955

(1.1.2-1.2.6) 0.526158 0.526159

(1.1.4-1.1.6) 0.148341 0.148333

(1.1.5-1.1.6) 0.006189 0.006190

(1.1.2-1.1.7) 0.000000 0.000000

(1.1.5-1.3.1) 0.004523 0.004523

(1.1.6-1.3.2) 0.054767 0.054766

(1.2.2-1.3.1) 0.122970 0.122967

(1.2.2-1.2.4) 0.000007 0.000007

(1.3.3-1.3.5) 0.000000 0.000000

time (sec) 13.90 42.76

changes to capacities of links in a particular cluster/layer will have an e�ect on how much
faster the hierarchical scheme runs comparing to the 
at scheme.

Figure 4 is a comparison between the runtime of 
at FPA and hierarchical FPA while
varying the capacities of links connecting two di�erent clusters. We see that the run time
di�erence does not change much with the increase in link capacities. However the gain
slightly increases when the link capacities are reduced. A possible explanation is that these
links can easily become bottlenecks when the capacities are reduced, and by separating the
global computation from local computation we get faster convergence.

Dynamic Hierarchical Routing
We use the same network example, with shortest path routing within each cluster, but use
least-loaded routing between clusters. Least-loaded routing (LLR) is a form of bandwidth-
optimization QoS routing [7]. A source node chooses a border node based on the advertised
average blocking between the border node and the destination cluster Bs(1:n1:yi ! 1:n2)),
and a border node chooses the route that has the most free capacity among all route from
itself to the destination cluster. We used the reduced load model for least-loaded routing we
developed in [17]. The distribution of tra�c among border nodes is inversely proportional
to the advertised blocking probability. and the distribution qij is the probability that route
(1:n1:yi ! 1:n2:yj) has the most free bandwidth.

The following tables show the comparison between the results of the hierarchical model
and the discrete event simulation (DES), with weight being 5, 10, 15 and 20, respectively.

We see as the tra�c increases, the model generates better approximations. Overall the
approximation is satisfactory. The run time for the approximation is around 11-15 seconds
while the simulation typically takes 5-20 minutes to converge depending on the tra�c load.
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Figure 3: Run time vs. tra�c load.
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Figure 4: Run time vs. link capacities.

Conclusion

In this paper we presented the hierarchical reduced load approximation method for net-
works with either �xed hierarchical routing or dynamic hierarchical routing policies. It can
also be used in cases where di�erent routing schemes are used in di�erent regions of a net-
work. Our numerical experiment results showed signi�cant improvement in computational
cost, and the validity of this method. Our experiment network is relatively small, however
we believe that this is a novel approximation method for e�cient and scalable performance
analysis for much larger networks.
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Table 3: Comparison of results, weight = 5.

Node Pair Hier. FPA DES

(1.1.3-1.3.3) 0.00077 0.00000

(1.1.2-1.2.4) 0.00000 0.00000

(1.1.6-1.3.7) 0.00000 0.00000

(1.1.1-1.2.3) 0.00000 0.00000

(1.2.1-1.2.6) 0.00191 0.00453

(1.3.1-1.3.8) 0.00000 0.00000

(1.3.5-1.3.6) 0.00000 0.00000

Table 4: Comparison of results, weight = 10.

Node Pair Hier. FPA DES

(1.1.3-1.3.3) 0.28784 0.25235

(1.1.2-1.2.4) 0.00470 0.00166

(1.1.6-1.3.7) 0.09745 0.09995

(1.1.1-1.2.3) 0.10185 0.11089

(1.2.1-1.2.6) 0.35567 0.36216

(1.3.1-1.3.8) 0.06322 0.05275

(1.3.5-1.3.6) 0.00000 0.000000
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