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             The first part of my dissertation considers the estimation of a 

panel data model with error components that are both spatially and time-

wise correlated. The dissertation combines widely used model for spatial 

correlation (Cliff and Ord (1973, 1981)) with the classical error 

component panel data model. I introduce generalizations of the 

generalized moments (GM) procedure suggested in Kelejian and Prucha 

(1999) for estimating the spatial autoregressive parameter in case of a 

single cross section. I then use those estimators to define feasible 

generalized least squares (GLS) procedures for the regression parameters. 

I give formal large sample results concerning the consistency of the 

proposed GM procedures, as well as the consistency and asymptotic 

normality of the proposed feasible GLS procedures. The new estimators 

remain computationally feasible even in large samples. 

The second part of my dissertation employs a Cliff-Ord-type model to 

empirically estimate the nature and extent of price competition in the US 



wholesale gasoline industry. I use data on average weekly wholesale 

gasoline price for 289 terminals (distribution facilities) in the US. Data on 

demand factors, cost factors and market structure that affect price are also 

used. I consider two time periods, a high demand period (August 1999) 

and a low demand period (January 2000). 

I find a high level of competition in prices between neighboring terminals. 

In particular, price in one terminal is significantly and positively 

correlated to the price of its neighboring terminal. Moreover, I find this to 

be much higher during the low demand period, as compared to the high 

demand period. In contrast to previous work, I include for each terminal 

the characteristics of the marginal customer by controlling for demand 

factors in the neighboring location. I find these demand factors to be 

important during period of high demand and insignificant during the low 

demand period. Furthermore, I have also considered spatial correlation in 

unobserved factors that affect price. I find it to be high and significant 

only during the low demand period. Not correcting for it leads to incorrect 

inferences regarding exogenous explanatory variables. 

 



PANEL DATA MODELS WITH SPATIAL CORRELATION: ESTIMATION 

THEORY AND EMPIRICAL INVESTIGATION OF THE US WHOLESALE 

GASOLINE INDUSTRY 

 
By 

 
Mudit Kapoor 

 
 
 

Thesis Submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy, 

2003 
 
 
 
 
 
 
 

Advisory Committee: 
 
          Professor Roger Betancourt, Chair 
          Professor Ingmar R. Prucha, co-Chair 
          Professor William Evans 
          Professor Harry H. Kelejian 
          Professor Dilip Madan 
 
 



Contents

1 Introduction 3

2 A Model for Spatially Correlated Panel Data 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . 18
2.4 GLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 A Generalized Moment Estimator of the Spatial Autoregres-

sive Parameter for Panel Data . . . . . . . . . . . . . . . . . . 29
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Estimation of Price Competition in a Spatial Model: An
Investigation of the US Wholesale Gasoline Industry 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 US Wholesale Gasoline Industry . . . . . . . . . . . . . . . . . 44
3.3 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Robustness Test . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 Conclusion and Further Extensions . . . . . . . . . . . . . . . 77

4 Appendix to Chapter 2 82

5 Appendix to Chapter 3 141
5.1 A Linear City Model of Product Differentiation with Heteroge-

nous Consumers . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 List of Tables 145
6.1 Table 1: Estimation results, the weighting matrix is based on

measures of closeness by actual road distance, for third week
of August 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Table 2: Estimation results, the weighting matrix is based on
measures of closeness by actual road distance, for third week
of January 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . 146

1



6.3 Table 3: Estimation results, the weighting matrix is based on
measures of closeness by a Euclidean distance, for third week
of August 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4 Table 4: Estimation results, the weighting matrix is based on
measures of closeness by a Euclidean distance, for third week
of January 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Table 5: Estimation results of the robustness test . . . . . . . 149
6.6 Table 6: Estimation results, after including tax as one of the

explanatory variables, for third week of August 1999 . . . . . 150
6.7 Table 7: Estimation results, after including tax as one of the

explanatory variables, for third week of January 2000 . . . . . 151

7 List of Figures 152
7.1 Figure 1: Petroleum Allocation for Defense Districts (PADDs)1 152
7.2 Figure 2: Network of Oil pipelines in the US2 . . . . . . . . . 153
7.3 Figure 3: The FRS companies in 20003 . . . . . . . . . . . . . 154

1This map has been taken from “How Pipelines make the Oil Market Work- Their
Networks, Operation and Regulation,” Allegro Energy Group.

2This map has been taken from “How Pipelines make the Oil Market Work- Their
Networks, Operation and Regulation,” Allegro Energy Group.

3This chart has been taken from “How Pipelines make the Oil Market Work- Their
Networks, Operation and Regulation,” Allegro Energy Group.

2



1 Introduction

There has been a rapid increase in the use of models that account for spatial

interactions in economics. The first part of my dissertation considers the

estimation of a panel data model with error components that are both spa-

tially and time-wise correlated. For the case of a single cross section, a widely

used model for spatial correlation is that of Cliff and Ord (1973, 1981). The

dissertation combines this model with the classical error component panel

data model. I introduce generalizations of the generalized moments (GM)

procedure suggested in Kelejian and Prucha (1999) for estimating the spatial

autoregressive parameter in case of a single cross section. I then use those

estimators to define feasible generalized least squares (GLS) procedures for

the regression parameters. I give formal large sample results concerning the

consistency of the proposed GM procedures, as well as the consistency and

asymptotic normality of the proposed feasible GLS procedures. The new

estimators remain computationally feasible even in large samples.

The second part of my dissertation explores the nature and extent of

price competition in the US wholesale gasoline industry. Competing mod-

els of product differentiation produce contrasting predictions regarding the

nature of price competition among firms. In particular, spatial price com-
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petition models predict that a firm interacts locally with neighboring firms.

In contrast, monopolistic competition models predict low level of strategic

interaction among neighbors. In this paper I employ a Cliff-Ord-type model

to empirically estimate the nature and extent of price competition in the

US wholesale gasoline industry, and to test the competing theories of price

competition. I use data on average weekly wholesale gasoline price for 289

terminals (distribution facilities) in the US. Data on demand factors, cost

factors and market structure that affect price are also used. Geographic In-

formation System (GIS) software is used to compute the actual road distance

between terminals. For each terminal I select the nearest neighbor based on

the shortest road distance. I consider two time periods, a high demand period

(August 1999) and a low demand period (January 2000).

I find a high level of competition in prices between neighboring terminals.

In particular, price in one terminal is significantly and positively correlated

to the price of its neighboring terminal. This finding supports the prediction

of spatial price competition models. Moreover, I find the extent of spatial

correlation to be much higher during the low demand period, as compared

to the high demand period. Clearly, given the strategic relevance of gasoline

for the U.S. economy, it is important to understand what factors determine
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and influence its price. Among other determining factors such as the price of

crude oil and seasonal supply and demand factors, this paper highlights the

significance of competition among distribution facilities as a major factor.

In contrast to previous work, I include for each terminal the characteristics

of the marginal customer by controlling for demand factors in the neigh-

boring location. The marginal customer plays an important role in spatial

price competition models. I find these demand factors to be important dur-

ing period of high demand and insignificant during the low demand period.

Furthermore, I have also considered spatial correlation in unobserved factors

that affect price. I find it to be high and significant only during the low

demand period. Not correcting for it leads to incorrect inferences regard-

ing exogenous explanatory variables. I have also estimated my model using

a Euclidean distance measure between neighbors, as was done in previous

work. I find that a Euclidean distance measure as compared to measur-

ing distance in actual road miles underestimates the extent of correlation in

prices between neighboring terminals.

The organization of the dissertation is as follows. Chapter 2 considers

the estimation of a panel data model with error components that are both

spatially and time wise correlated. Chapter 3 explores the nature and extent
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of price competition in the US wholesale gasoline industry. Chapter 4 is the

appendix to chapter 2. Chapter 5 is the appendix to chapter 3. Tables and

Figures are at the end of appendix.
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2 AModel for Spatially Correlated Panel Data

2.1 Introduction

In recent years there has been a growing interest in spatial issues in empirical

economics.4 These spatial issues typically relate to interaction of various

sorts between cross-sectional units. These interactions could reflect economic

competition forces, externalities, shocks which affects various cross-sectional

units, etc. On a somewhat more formal level, in spatial econometrics these

interactions could relate to the models’ dependent variable, to the exogenous

variables, to the disturbance term, or to various combinations of these three.

The most widely used model to estimate spatial interactions are variations

of the models considered by Whittle (1954) and Cliff and Ord (1973, 1981).

Typically, these models are linear and consider either a spatially correlated

disturbance term or a spatial lag in the dependent variable, or both.5

In the following we specify a panel data model. We assume that the

time dimension is small relative to the number of cross-sectional units. Our

specification may be viewed as a generalization of the models considered by

4Theoretical and empirical issues have been addressed in papers by Case (1991), Conley
(1996), Delong and Summers (1991), Dubin (1988), Kelejian and Robinson (1993), Kelejian
and Prucha (1998, 1999, 2001a,b,c), Moulton (1990), Pinske and Slade (1998, 2002), Quah
(1992),and Topa (1996) among others.

5Anselin (1988) provides a survey of these types of models, as well as estimation and
testing procedures.
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Whittle (1954) and Cliff and Ord (1973, 1981). Furthermore, we generalize

a moments estimator given in Kelejian and Prucha (1999) to our panel data

framework and prove its consistency.

Since Marschaks’ (1939) original suggestion, the use of panel data sets

has become reasonably common in empirical economics.6 This has led to

extensive research in the econometrics of panel data. In the literature, tradi-

tional models such as the Seemingly Unrelated Regressions (SUR), originally

suggested by Zellner (1962), and Error-component models, have been used to

estimate the cross-sectional correlations in the disturbance term via the time

dimension. However, there are many panel data sets that have a large cross-

section but a short time dimension.7 This feature of panel data sets makes

traditional models “less useful” because of severe difficulties in estimating

cross-sectional correlations via a short time dimension. This limitation of

panel data sets has led to the adoption of spatial models which compensate

for a short time dimension by imposing “reasonable” structural restrictions.

Typically the literature has considered a quasi maximum likelihood es-

timator for models of the Cliff and Ord variety which contain a spatially

6Recent overviews include book length surveys by Hsiao (1986), Dielman (1989),
Matyas and Sevestre (1996), and Baltagi (1995) among others.

7For example, the National Longitudinal Survey of Labor Market Experience (NLS)
and the Michigan Panel Study of Income Dynamics.
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correlated disturbance term.8 However, the limitations of the resulting esti-

mator have been discussed in a paper by Kelejian and Prucha (1999), who

show that in many cases involving moderate or large sample sizes in a sin-

gle cross-section, the estimators may not be computationally feasible. This

limitation will prevail when we consider more than one time dimension in

addition to cross-sections.

In our framework the disturbances will be assumed to follow a spatially

autoregressive process. Motivated by the error-component literature the in-

novations entering the process will be modelled as a sum of two error com-

ponents, reflecting unit specific effects and some overall innovation. The

implications of this is that the disturbances will be both spatially and time

correlated. The time correlation is due to the unit specific effects. Our pro-

posed estimator accounts for both the spatial and time correlation of the

disturbance term, and, therefore, it is an important extension of the general

moments estimator introduced in Kelejian and Prucha (1999) where the dis-

turbances were only assumed to be spatially correlated. In deriving the large

sample properties of our estimator we consider the case in which the number

of cross-sectional units increase beyond limit, while the number of time pe-

8Kelejian and Prucha (1999) use the term (quasi) ML estimator rather than ML esti-
mator to cover cases in which the true specification of the disturbance term is not that
specified by the likelihood function which is typically the normal distribution.
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riods is fixed at a finite level. As discussed before, this feature is consistent

with many panel data sets. Among other things we provide an application to

the generalized least squares (GLS) model. We show the asymptotic equiv-

alence between a feasible GLS estimator, which is formulated based on our

consistent general moments estimator, and the true GLS estimator.

It proves helpful to introduce the following notational conventions: Let

AN with N ≥ 1 be some matrix; we then denote the (i, j) − th element

of a matrix AN as aij,N . Correspondingly, we denote the i − th row and

j− th column of AN as ai.,N and a.j,N , respectively. Let D be some vector or

matrix; then we will use the norm ||D|| = [tr(D0D)]1/2. Note that this norm

is submultiplicative, that is, ||DB|| ≤ ||D|| ||B|| , where B is a conformably

defined matrix or a vector. In this study we will also define |D| as vector

or matrix of absolute values. We will say that the elements of sequence of

matrices AN are uniformly bounded in absolute value if

|aij,N | ≤ k <∞

for all 1 ≤ i, j ≤ N ;N ≥ 1, where constant k does not depend on any of the

indices.

10



2.2 Model Specification

Consider the linear regression model

yit,N = x
0
it,Nβ + uit,N , i = 1, . . . , N ; t = 1, . . . , T (1)

where yit,N is the observation on the dependent variable relating to the i−th

cross-sectional unit at time t, xit,N = [x1it,N , . . . , x
K
it,N ]

0 is a corresponding

K × 1 vector of observations on exogenous regressors which may contain

the constant term, and uit,N is the corresponding disturbance term. We

conditionalize our model on the realized value of the regressors and so will

view xit,N as a vector of constants.

Stacking observations over the N cross-sections we have for each time

period the following regression model

yN(t) = XN(t)β + uN(t), t = 1, . . . , T (2)

where yN(t) = [y1t,N , . . . , yNt,N ]
0
, XN(t) = [x

0
1t,N , . . . , x

0
Nt,N ]

0, and uN(t) =

[u1t,N , . . . , uNt,N ]
0
.

We now model the disturbance process in each time period t = 1, . . . , T

as the following spatial autoregressive process of order one:

uN(t) = ρWNuN(t) + εN(t) (3)
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where WN is an N × N matrix of known constants often referred to as a

spatial weighting matrix, ρ is a scalar parameter, which is typically referred

to as a spatial autoregressive parameter, and εN(t) = [ε1t,N , . . . , εNt,N ]
0
is an

N × 1 vector of innovations in period t. For reasons of generality, we permit

the elements of WN and εN(t) to depend on N , that is, to form triangular

arrays.9 In the analysis to follow we maintain, however, that the weighting

matrix WN does not change over time.

As remarked earlier, we consider the case where T is fixed and small;

therefore, our asymptotic results are based on the condition, N → ∞. It

should be clear that the small time dimension makes it impossible to consis-

tently estimate the general correlation structure via the SUR model.

Stacking the observations over both the cross-section and the time di-

mensions we have via (2) and (3)

yN = XNβ + uN (4)

9For a discussion on triangular arrays see Prucha (2002). In this analysis we will allow
for the elements of the weighting matrix WN and the innovation vector εN (t) to depend
on the sample size, N . For example, consider wij,N , which is the (i, j)− th element of the
weighting matrix,WN whose dimensions areN×N, whereN is the sample size. Triangular
array implies that if the sample size changes fromN to eN, then the corresponding (i, j)−th
element of the weighting matrix, W eN will be different from that of WN , that is, wij,N is
different from wij, eN . Same is true for the innovation vector εN (t). This in turn implies that
the elements of the weighting matrix, W and the innovation vector ε should be indexed
by the sample size, N.
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and

uN = ρ(IT ⊗WN)uN + εN (5)

where yN = [yN(1)
0
, . . . , yN(T )

0
]
0
, XN = [XN(1)

0, . . . , XN(T )
0]0, uN = [uN(1)

0
, . . . ,

uN(T )
0
]
0
, and εN = [εN(1)

0
, . . . , εN(T )

0
]
0
.

Finally we assume an error component structure for the innovation vector

εN .10 In particular

εN = (eT ⊗ IN)µN + vN , (6)

where eT is a T × 1 vector of unit elements, IN is an identity matrix of

order N, µN = [µ1,N , . . . , µN,N ]
0
represents the vector of unit specific error

components, and vN = [vN(1)
0
, . . . , vN(T )

0
]
0
where vN(t) = [v1t,N , . . . , vNt,N ]

0

contains the error components that vary both over units and time periods.

In scalar notation the specification in (6) is

εit,N = µi,N + vit,N , i = 1, . . . , N ; t = 1, . . . , T

In what follows we maintain the following assumptions:

Assumption 1 For all 1 ≤ t ≤ T, 1 ≤ i ≤ N , where T is a fixed pos-

itive integer and N ≥ 1, the errors vit,N , are identically distributed with

mean zero and finite variance σ2v, where 0 < σ2v < bv, and where bv is

10See Balestra and Nerlove (1966), Nerlove (1971), Maddala (1971), Hsiao (1986) and
Baltagi (1995) among others.
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a known finite constant. In addition for each N ≥ 1 the error terms,

v11,N , . . . , vN1,N , . . . , v1T,N , . . . , vNT,N are identically and independently dis-

tributed. Also for all 1 ≤ i ≤ N and N ≥ 1, the errors µi,N , are identically

distributed with mean zero and finite variance σ2µ, where 0 < σ2µ < bµ, and

where bµ is a known finite constant. In addition for each N ≥ 1 the error

terms µ1,N , . . . , µN,N are identically and independently distributed. Further-

more, the two processes (vit,N) and (µi,N) are independent of each other.

Assumption 2 (a) All diagonal elements of WN are zero. (b) |ρ| < 1. (c)

The matrix IN − ρWN is non-singular for all |ρ| < 1.

In scalar notation the specification in (3) is

uit,N = ρΣN
j=1wij,Nujt,N + εit,N , i = 1, . . . , N ; t = 1, . . . , T

where wij,N is the (i, j) − th element of the weighting matrix WN . The

nonzero weights wij,N are often specified to be those which correspond to

units which are related in a meaningful way. Such units are often said to be

neighbors. As one example, if the cross-sectional units are geographic regions,

one might make wij,N 6= 0 if the i−th and j−th regions are contiguous, and

wij,N = 0 otherwise. For reasonable time-periods it is fair to assume that

this relationship does not change- i.e., wij,N is constant through time.
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In the above setting, each disturbance term consists of a weighted sum of

disturbances in related regions in each time period and an innovation term

that contains two stochastic “error components”; one “error component” is

unit specific and the other varies both over time and units. Clearly Assump-

tion 2(a) is the normalization of the model. Assumption 2(b) is a stability

condition for certain specifications of the weighting matrix, WN , and As-

sumption 2(c) ensures that the disturbance vector uN is uniquely defined in

terms of the innovation vector εN .

Given the above assumptions it then follows from (6) that EεN = 0 and

the covariance vector matrix of the innovation vector εN is given by

EεNε
0
N = Ωε,N = σ2µ(JT ⊗ IN) + σ2vINT

= σ2vQ0,N + σ21Q1,N (7)

where

σ21 = Tσ2µ + σ2v,

Q1,N =
JT
T
⊗ IN , (8)

Q0,N = INT −Q1,N = (IT − JT
T
)⊗ IN ,

and where JT is a T × T matrix of unit elements, and in general, IK is an

identity matrix of order K. Observing that JT = eTe
0
T where eT is a T × 1
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vector of unit elements, it is readily seen that Q0,N and Q1,N are idempotent,

orthogonal and sum to the identity matrix11. Specifically

Q1,NQ1,N = (
JT
T
⊗ IN)(

JT
T
⊗ IN) = (

JTJT
T 2
⊗ IN) = (

eTe
0
TeTe

0
T

T 2
⊗ IN)

= (
eTe

0
T

T
⊗ IN) = (

JT
T
⊗ IN) = Q1,N ,

Q0,NQ0,N = (INT −Q1,N)(INT −Q1,N) (9)

= INT −Q1,N −Q1,N +Q1,NQ1,N

= INT −Q1,N −Q1,N +Q1,N = INT −Q1,N = Q0,N ,

Q0,NQ1,N = (INT −Q1,N)Q1,N = Q1,N −Q1,N = 0,

Q0,N +Q1,N = INT .

In addition it is readily seen that

tr(Q0,N) = N(T − 1),

tr(Q1,N) = N. (10)

Note that the elements of Q0,N and Q1,N are uniformly bounded by 1.

11Variations of these results are available in Baltagi (1995, Pg. 10).
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It will prove useful to note that for any N ×N matrix AN we have12

(IT ⊗AN)Q0,N = Q0,N(IT ⊗AN),

(IT ⊗AN)Q1,N = Q1,N(IT ⊗AN). (11)

From (5) it follows that

uN = [IT ⊗ (IN − ρWN)
−1]εN . (12)

Thus EuN = 0 and, recalling (7) and (11)

EuNu
0
N = Ωu,N(ρ) = [IT ⊗ (IN − ρWN)

−1]Ωε,N [IT ⊗ (IN − ρW 0
N)
−1]

= Ωε,N [IT ⊗ (IN − ρWN)
−1(IN − ρW 0

N)
−1] (13)

We note that in general, the elements of (IN − ρWN)
−1 will depend on the

sample size of the cross-sectional units N. Subsequently, the elements of uN

will depend on N and thus form a triangular array. Also, in general, the

elements of Ωu,N(ρ) will depend on N. Furthermore, the elements of uN are

heteroskedastic, and spatially correlated, as well as correlated over time. In

the following sections we explore the estimation strategies for the parameters

of the model considered in (4), (5) and (6).

12Observing that Q0,N = (IT − JT
T )⊗IN and Q1,N = JT

T ⊗IN we have (IT ⊗AN )Q0,N =

(IT− JT
T )⊗AN = ((IT− JT

T )⊗IN)(IT⊗AN ) = Q0,N (IT⊗AN ). Similarly, (IT⊗AN )Q1,N =
JT
T ⊗AN = (

JT
T ⊗ IN )(IT ⊗AN ) = Q1,N (IT ⊗AN ).
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2.3 Maximum Likelihood Estimation

Recall our model in stacked form, from (4)-(6)

yN = XNβ + uN ,

uN = ρ(IT ⊗WN)uN + εN ,

εN = (eT ⊗ IN)µN + vN .

Assuming εN v N (0,Ωε,N) we have

uN v N (0,Ωu,N(ρ)).

Therefore,

yN v N (Xβ,Ωu,N(ρ)). (14)

Substituting (7) and (8) into (13) we get

Ωu,N(ρ) = σ2v[(IT −
JT
T
)⊗ (IN − ρWN)

−1(IN − ρW
0
N)
−1] +

σ21[
JT
T
⊗ (IN − ρWN)

−1(IN − ρW
0
N)
−1] (15)

= [(σ2v(IT −
JT
T
) + σ21

JT
T
)⊗ (IN − ρWN)

−1(IN − ρW
0
N)
−1]

18



and thus13

det(Ωu,N(ρ)) = det[(σ2v(IT −
JT
T
) + σ21

JT
T
)⊗ (IN − ρWN)

−1(IN − ρW
0
N)
−1]

= [det(σ2v(IT −
JT
T
) + σ21

JT
T
)]N [det(IN − ρWN)]

−2T (16)

Given (7)-(9) it is not difficult to show that

Ω−1ε,N = σ−2v Q0,N + σ−21 Q1,N (17)

and, therefore, from (13)

Ω−1u,N(ρ) = [IT ⊗ (IN − ρW
0
N)(IN − ρWN)]Ω

−1
ε,N

= [(σ−2v (IT −
JT
T
) + σ−21

JT
T
)⊗ (IN − ρW

0
N)(IN − ρWN)] (18)

Given (16) the likelihood function for the model in (4)-(6) is given by

L = (2π)−NT/2
¯̄
det(Ω−1u,N(ρ))

¯̄1/2
exp(−1

2
[yN −Xβ]0Ω−1u,N(ρ)[yN −Xβ])

= (2π)−NT/2|det(σ2v(IT −
JT
T
) + σ21

JT
T
)]|−N/2 ∗ (19)

| det(IN − ρWN)|T exp(−1
2
[yN −XNβ]

0Ω−1u,N(ρ)[yN −XNβ])

Substituting (16) and (18) into (19) and then taking the logs we have the log

13Recall that if A is an N ×N matrix and B is an M ×M matrix then det(A⊗ B) =
[det(A)]M [det(B)]N . Furthermore, det(A

0
) = det(A) and det(A−1) = [det(A)]−1.

If A is an N ×N matrix and C is an N ×N matrix then det(AC) = det(A) det(C).
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likelihood function

ln(L) = −NT

2
ln(2π)−

N

2
ln

¯̄̄̄
det(σ2v(IT −

JT
T
) + σ21

JT
T
)

¯̄̄̄
+

T ln |det(IN − ρWN)|− (20)

1

2
[yN −XNβ]

0[(σ−2v (IT −
JT
T
) + σ−21

JT
T
)⊗

(IN − ρW
0
N)(IN − ρWN)][yN −XNβ].

As remarked earlier, normality of εN is not one of our maintained assump-

tions, and hence we refer to the maximizers of the above log likelihood as

quasi ML estimators. As is evident from (20), the computation of the quasi

ML estimators involves among other things, the repeated evaluation of the

determinant of the N×N matrix IN−ρWN . To minimize the computational

burden, Ord (1975) suggested that ln |det(IN − ρWN)| in (20) be determined

as ln |det(IN − ρWN)| = ΣN
i=1 ln(|1− ρλi|), where λi denotes the ith eigen-

value of WN . Given that WN is a known matrix its eigenvalues have to be

computed only once at the outset of the numerical optimization procedure

employed in finding the quasi ML estimates and not repeatedly at each of

the necessary numerical iterations. However, this still leaves the researcher

with the task of finding the eigenvalues of the N×N matrixWN . It has been

20



pointed out by Kelejian and Prucha (1999) that this task is typically “chal-

lenging” particularly if N is very large and WN is not properly structured.

They considered the case of an “idealized” symmetric weighting matrix, and

a sample of size 400. For such matrices, all eigenvalues are real. They then

employed a subroutine for computing the eigenvalues of the weighting matrix

from the IMSL program library without imposing symmetry. The routine re-

ported eigenvalues with imaginary parts that differed substantially from zero

by more than 0.5 in absolute value. Only when they employed a subroutine

which utilized the symmetric nature of the weighting matrix were they able

to calculate the eigenvalues accurately. In practice, weighting matrices are

typically not symmetric. The implication is that an accurate computation

of the quasi ML estimator may not be feasible in many cases, even for mod-

erate sample sizes, say 400 or larger. Given the computational problems of

the quasi ML estimator, and the small size of the time series which rules

out an SUR or an error-component model, it is clearly important to have

an alternative estimator of the model parameters which is computationally

feasible for general weighting matricesWN , large cross-sectional units N , and

a reasonably small but fixed time series T.
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2.4 GLS Estimation

Recall our model in stacked form, from (4)-(6)

yN = XNβ + uN ,

uN = ρ(IT ⊗WN)uN + εN ,

εN = (eT ⊗ IN)µN + vN .

As discussed earlier the elements of uN will generally depend on the sample

size and hence those of yN will depend onN . For reasons of generality we will

permit the elements of XN to also depend on N . We maintain the following

assumptions for the regressor matrix XN .

Assumption 3 The elements ofXN are nonstochastic and uniformly bounded

in absolute value by kx, 0 < kx <∞. Also XN has full column rank. We also
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assume

Qxx = lim
N→∞

(NT )−1X 0
NXN ,

Qxx(ρ) = lim
N→∞

(NT )−1X 0
N [IT ⊗ (IN − ρWN)

−1][IT ⊗ (IN − ρW 0
N)
−1]XN ,

Q
xQ0x

(ρ) = lim
N→∞

(NT )−1X 0
N [IT ⊗ (IN − ρW 0

N)]Q0,N [IT ⊗ (IN − ρWN)]XN ,

QxQ0x(ρ) = lim
N→∞

(NT )−1X 0
N [IT ⊗ (IN − ρWN)

−1]Q0,N [IT ⊗ (IN − ρW 0
N)
−1]XN ,

Q
xQ1x

(ρ) = lim
N→∞

(NT )−1X 0
N [IT ⊗ (IN − ρW 0

N)]Q1,N [IT ⊗ (IN − ρWN)]XN ,

QxQ1x(ρ) = lim
N→∞

(NT )−1X 0
N [IT ⊗ (IN − ρWN)

−1]Q1,N [IT ⊗ (IN − ρW 0
N)
−1]XN ,

where the matrices Qxx, Qxx(ρ), [σ
−2
v QxQ0x(ρ)+σ

−2
1 QxQ1x(ρ)], [σ

−2
v Q

xQ0x
(ρ)+

σ−21 Q
xQ1x

(ρ)] are finite and nonsingular for all |ρ| < 1.

We can rewrite the disturbance term in (5) as

[IT ⊗ (IN − ρWN)]uN = εN , (21)

uN = [IT ⊗ (IN − ρWN)]
−1εN .

Premultiplying (4) by [IT ⊗ (IN − ρWN)] we get

y∗N(ρ) = X∗
N(ρ)β + εN , (22)

where

y∗N(ρ) = [IT ⊗ (IN − ρWN)]yN ,

X∗
N(ρ) = [IT ⊗ (IN − ρWN)]XN .
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Given the form of εN , we have what is often called an “error-component

model”.

The GLS estimator for such model is

bβGLS,N = [X∗
N(ρ)

0Ω−1ε,NX
∗
N(ρ)]

−1[X∗
N(ρ)

0Ω−1ε,Ny
∗
N(ρ)]. (23)

Using Ω−1ε,N = σ−2v Q0 + σ−21 Q1,N , we can rewrite (23) as

bβGLS,N = (
X∗

N(ρ)
0Q0,NX

∗
N(ρ)

σ2v
+

X∗
N(ρ)

0Q1,NX
∗
N(ρ)

σ21
)−1 ∗

(
X∗

N(ρ)
0Q0,Ny

∗
N(ρ)

σ2v
+

X∗
N(ρ)

0Q1,Ny
∗
N(ρ)

σ21
),

= (X∗
N(ρ)

0Q0,NX
∗
N(ρ) + δX∗

N(ρ)
0Q1,NX

∗
N(ρ))

−1 ∗ (24)

(X∗
N(ρ)

0Q0,Ny
∗
N(ρ) + δX∗

N(ρ)
0Q1,Ny

∗
N(ρ)),

where

δ =
σ2v
σ21
=

σ2v
σ2v + Tσ2µ

.

Given that Q1,N = INT −Q0,N we can rewrite (24) as

bβGLS,N = [(1− δ)X∗
N(ρ)

0Q0,NX
∗
N(ρ) + δX∗

N(ρ)
0X∗

N(ρ)]
−1 ∗

[(1− δ)X∗
N(ρ)

0Q0,Ny
∗
N(ρ) + δX∗

N(ρ)
0y∗N(ρ)]. (25)
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Let

H = [(1− δ)X∗
N(ρ)

0Q0,NX
∗
N(ρ) + δX∗

N(ρ)
0X∗

N(ρ)],

Fw = H−1[(1− δ)X∗
N(ρ)

0Q0,NX
∗
N(ρ)],

bβQ0,N = [X∗
N(ρ)

0Q0,NX
∗
N(ρ)]

−1[X∗
N(ρ)

0Q0,Ny
∗
N(ρ)], (26)

bβOLS,N = [X∗
N(ρ)

0X∗
N(ρ)]

−1[X∗
N(ρ)

0y∗N(ρ)].

From the above expressions in (26) it is very clear that

I − Fw = I −H−1[(1− δ)X∗
N(ρ)

0Q0,NX
∗
N(ρ)], (27)

where I is an identity matrix.

Premultipying (27) by H we get

H(I − Fw) = H −HFw

= H − (1− δ)X∗
N(ρ)

0Q0,NX
∗
N(ρ) (28)

= δX∗
N(ρ)

0X∗
N(ρ).

The result in (28) implies

I − Fw = H−1[δX∗
N(ρ)

0X∗
N(ρ)]. (29)

Using the above definitions for H, Fw, I − Fw, and by noting that

[X∗
N(ρ)

0Q0,NX
∗
N(ρ)]

bβQ0,N = [X∗
N(ρ)

0Q0,Ny
∗
N(ρ)],

[X∗
N(ρ)

0X∗
N(ρ)]

bβOLS,N = [X∗
N(ρ)

0y∗N(ρ)],

25



we can express (25) as

bβGLS,N = H−1[(1− δ)(X∗
N(ρ)

0Q0,NX
∗
N(ρ))

bβQ0,N + δ(X∗
N(ρ)

0X∗
N(ρ))

bβOLS,N ]
= H−1[(1− δ)X∗

N(ρ)
0Q0,NX

∗
N(ρ)]

bβQ0,N +H−1[δX∗
N(ρ)

0X∗
N(ρ)]

bβOLS,N
= Fw

bβQ0,N + (I − Fw)bβOLS,N .
We note that bβQ0,N corresponds to the OLS estimator of the transformed

model

Q0,Ny
∗
N(ρ) = Q0,NX

∗
N(ρ)β +Q0,NεN .

Furthermore, bβOLS,N corresponds to the OLS estimator of the model
y∗N(ρ) = X∗

N(ρ)β + εN .

The typical element of Q0,Ny
∗
N(ρ) is y

∗
it,N − y∗i.,N . The estimator, bβQ0,N is

based on within group (unit) variation of the data and corresponds to the

within group estimator defined in the literature.14 Clearly if δ = 1 so that

σ2µ = 0, the generalized least squares estimator bβGLS,N reduces to the OLS

estimator bβOLS,N . Furthermore, if δ = 1 then Ωε,N = σ2vINT , in which case

bβOLS,N is the best linear unbiased estimator (BLUE). If normality is assumed
then bβOLS,N would be efficient. However, if δ 6= 1 in which case σ2µ 6= 0, then
bβOLS,N is not BLUE.
14See Greene (2000).
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Clearly

EbβGLS,N = β,

V C(bβGLS,N) = [
X∗

N(ρ)
0Q0,NX

∗
N(ρ)

σ2v
+

X∗
N(ρ)

0Q1,NX
∗
N(ρ)

σ21
]−1. (30)

It is evident that the GLS estimator depends on unknown parameters, in

particular ρ, σ2v and σ
2
1. Therefore, such an estimator is not feasible. In order

to compute the feasible GLS estimator of β we need consistent estimators

of ρ, σ2v and σ21. For the moment assume that consistent estimators of ρ, σ
2
v

and σ21 exist. Define the feasible GLS estimator of β as identical to bβGLS,N
except that ρ, σ2v and σ21 are replaced by any consistent estimators. Given

this, we put forth the following theorem.

Theorem 1 Given that Assumptions 1 to 3 hold:

(a) The true GLS estimator bβGLS,N is a consistent estimator of β, and
(NT )1/2[bβGLS,N − β]

D→ N {0, [σ−2v,NQxQ0x
(ρ) + σ−21,NQxQ1x

(ρ)]−1}

(b) Let bρN , bσ2v,N , bσ21,N be consistent estimators of ρ, σ2v, σ
2
1. Then the true

GLS estimator bβGLS,N and the feasible GLS estimator bβFGLS,N have the same
asymptotic distribution. More specifically,

(NT )1/2[bβGLS,N − bβFGLS,N ] p→ 0 as N →∞.
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(c) Furthermore,

(NT )−1X
0{[IT ⊗ (IN − bρNW 0

N)]bΩ−1ε,N [IT ⊗ (IN − bρNWN)]}X

where

bΩ−1ε,N = bσ−2v,NQ0,N + bσ−21,NQ1,N ,

is a consistent estimator of

σ−2v,NQxQ0x
(ρ) + σ−21,NQxQ1x

(ρ).

In the spatial model we have considered, a rigorous proof of the asymp-

totic distribution of the GLS estimator bβGLS,N requires the use of a central
limit theorem for triangular arrays. We will consider such a theorem in the

appendix.

Note that Theorem 1 will hold for any consistent estimators of ρ, σ2v,

σ21. Therefore, these parameters can be viewed as nuisance parameters. In

our next section we provide a simple estimation strategy which produces

consistent estimators of ρ, σ2v, σ
2
1.
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2.5 A Generalized Moment Estimator of the Spatial
Autoregressive Parameter for Panel Data

Recall our model in stacked form, from (4)-(6)

yN = XNβ + uN ,

uN = ρ(IT ⊗WN)uN + εN ,

εN = (eT ⊗ IN)µN + vN .

As discussed earlier the variance covariance matrix of uN , Ωu,N , depends on

ρ, σ2v and σ
2
1. Therefore, we need consistent estimators of ρ, σ

2
v and σ

2
1 to be

able to formulate the feasible GLS estimator.

In the following we define generalized moments (GM) estimators of ρ,

σ2v and σ21. These GM estimators generalize, in essence, the GM estimators

given in Kelejian and Prucha (1999) for the case of a single cross section.

The estimation procedure involves two steps. In the first step we obtain a

predictor of uN , say euN . In the second step the predictor euN is used in the
GM approach to consistently estimate ρ, σ2v and σ21.

For notational convenience, let

uN = (IT ⊗WN)uN ,

uN = (IT ⊗WN)uN , (31)
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and correspondingly, let

euN = (IT ⊗WN)euN ,
euN = (IT ⊗WN)euN . (32)

Furthermore, let

εN = (IT ⊗WN)εN . (33)

Given Assumptions 1 and 2 we demonstrate in the appendix the following

moments:15

E
1

N(T − 1)ε
0
NQ0,NεN = σ2v,

E
1

N(T − 1)ε
0
NQ0,NεN = σ2vN

−1tr(W
0
NWN),

E
1

N(T − 1)ε
0
NQ0,NεN = 0, (34)

E
1

N
ε
0
NQ1,NεN = σ21,

E
1

N
ε
0
NQ1,NεN = σ21N

−1tr(W
0
NWN),

E
1

N
ε
0
NQ1,NεN = 0.

Our GM estimators of ρ, σ2v, and σ21 are based on the six moments de-

scribed in (34). Note that in light of (5), (31) and (33) we have

εN = uN − ρuN and εN = uN − ρuN . (35)

15See Kapoor, Kelejian and Prucha (2002).
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By substituting the expressions for εN and εN in (35) into the six moments

described in (34) we get the following six-equation systems:

ΓN|{z}
6×4

[ρ, ρ2, σ2v, σ
2
1]
0| {z }

4×1

− γN|{z}
6×1

= 0 (36)
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where

ΓN =
1

N



2Eu
0
NQ0,NuN
T−1

−Eu0NQ0,NuN
T−1 N 0

2Eu
0
NQ0,NuN
T−1

−Eu
0
NQ0,NuN
T−1 tr(W

0
NWN) 0

E(u
0
NQ0,NuN

+u
0
NQ0,NuN)

T−1
−Eu0NQ0,NuN

T−1 0 0

2Eu
0
NQ1,NuN −Eu0NQ1,NuN 0 N

2Eu
0
NQ1,NuN −Eu0NQ1,NuN 0 tr(W

0
NWN)

E(u
0
NQ1,NuN

+u
0
NQ1,NuN)

−Eu0NQ1,NuN 0 0


6×4

,

γN =
1

N



Eu
0
NQ0,NuN
T−1

Eu
0
NQ0,NuN
T−1

Eu
0
NQ0,NuN
T−1

Eu
0
NQ1,NuN

Eu
0
NQ1,NuN

Eu
0
NQ1,NuN


6×1

,
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Γ0,N =
1

N



2Eu
0
NQ0,NuN
T−1

−Eu0NQ0,NuN
T−1 N

2Eu
0
NQ0,NuN
T−1

−Eu
0
NQ0,NuN
T−1 tr(W

0
NWN)

E(u
0
NQ0,NuN

+u
0
NQ0,NuN)

T−1
−Eu0NQ0,NuN

T−1 0


3×3

(37)

Γ1,N =
1

N



2Eu
0
NQ1,NuN −Eu0NQ1,NuN N

2Eu
0
NQ1,NuN −Eu0NQ1,NuN tr(W

0
NWN)

E(u
0
NQ1,NuN

+u
0
NQ1,NuN)

−Eu0NQ1,NuN 0


3×3

. (38)

Note that the elements of upper three rows and the first three columns of

the matrix, ΓN , correspond to the elements of the matrix Γ0,N . Furthermore,

the elements of the lower three rows and the first, second and fourth column

correspond to the elements of the matrix Γ1,N . The usefulness of the matrices

Γ0,N and Γ1,N will be evident later.

Now consider the following analogue to (36) in terms of sample moments

based on euN , euN and euN which are described in (32):
GN|{z}
6×4

[ρ, ρ2, σ2v, σ
2
1]
0| {z }

4×1

− gN|{z}
6×1

= ξN(ρ, σ
2
v, σ

2
1)| {z },

6×1

(39)
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where

GN =
1

N



2eu0NQ0,NeuN
T−1

−eu0NQ0,NeuN
T−1 N 0

2eu0NQ0,NeuN
T−1

−eu0NQ0,N
euN

T−1 tr(W
0
NWN) 0

(eu0NQ0,N
euN

+eu0NQ0,N
euN)

T−1
−eu0NQ0,N

euN
T−1 0 0

2eu0NQ1,N
euN −eu0NQ1,N

euN 0 N

2eu0NQ1,N
euN −eu0NQ1,N

euN 0 tr(W
0
NWN)

(eu0NQ1,N
euN

+eu0NQ1,N
euN) −eu0NQ1,N

euN 0 0


6×4

,

gN =
1

N



eu0NQ0,N euN
T−1

eu0NQ0,NeuN
T−1

eu0NQ0,NeuN
T−1

eu0NQ1,NeuN
eu0NQ1,N

euN
eu0NQ1,N

euN


6×1

,

Since GN and gN are observable and α0 = [ρ, ρ2, σ2v, σ
2
1] is the parameter
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vector to be estimated, we can view the 6×1 vector ξN(ρ, σ2v, σ21) as a vector

of residuals.

We now define our generalized moments estimators of ρ, σ2v and σ21 as a

two step procedure which is similar to the FGLS procedure in the literature.

In the first step we get the nonlinear least squares estimators, say eρNLS,N ,

eσ2v NLS,N and eσ21 NLS,N corresponding to (39). More specifically,

(eρNLS,N , eσ2v NLS,N , eσ21 NLS,N) = argmin{ξN(ρ, σ2v, σ21)0ξN(ρ, σ2v, σ21) :

ρ ∈ [−a, a], σ2v ∈ [0, bv], σ21 ∈ [0, b1]} (40)

where a ≥ 1.

For the second step we define a weighting matrix bΘN . More specifically,

bΘN =

" bΘ1
3×3,N 03×3

03×3 bΘ23×3,N
#
6×6

,

where

bΘ13×3,N = eσ4v NLS,N

(T − 1)


2 2tr(

W 0
NWN

N
) 0

2tr(
W 0
NWN

N
) 2tr(

W 0
NWNW 0

NWN

N
) tr(

W 0
NWN (W

0
N+WN )

N
)

0 tr(
W 0
NWN (W

0
N+WN )

N
) tr(

WNWN+W
0
NWN

N
)


3×3

,

bΘ23×3,N = eσ41 NLS,N


2 2tr(

W 0
NWN

N
) 0

2tr(
W 0
NWN

N
) 2tr(

W 0
NWNW 0

NWN

N
) tr(

W 0
NWN (W

0
N+WN )

N
)

0 tr(
W 0
NWN (W

0
N+WN )

N
) tr(

WNWN+W
0
NWN

N
)


3×3

,
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WN is a spatial weighting matrix, and eσ4v NLS,N and eσ41 NLS,N are consistent

estimators of σ4v and σ41, which are defined in (40).
16 Furthermore, let ΘN

be the weighting matrix which is similar to bΘN except that eσ4v NLS,N and

eσ41 NLS,N are replaced by their true parameters σ
4
v and σ41, respectively.

In the second step we define our generalized moments estimators of ρ, σ2v

and σ21 as a weighted nonlinear least squares estimators, say bρNLS,N , bσ2v NLS,N

and bσ21 NLS,N . More specifically,

(bρNLS,N , bσ2v NLS,N , bσ21 NLS,N) = argmin{ξN(ρ, σ2v, σ21)0bΘ−1N ξN(ρ, σ
2
v, σ

2
1) :

ρ ∈ [−a, a], σ2v ∈ [0, bv], σ21 ∈ [0, b1]} (41)

where a ≥ 1.

Remark 1. If the innovations εN , were normally distributed the matrix,

N−1bΘN , would correspond to the estimated variance-covariance matrix of

the six moment conditions described in (34). Recall that normality of the

error term is not one of our maintained assumptions. However, our Monte

Carlo results show that even in those cases in which the innovation εN is not

normally distributed, using the weighting matrix, bΘN instead of an identity

matrix, improves the efficiency of our general moments estimators defined in

16Consistency of σ̃4v and eσ41 is shown in the appendix.
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(41).17

Remark 2. Note that (41) implies that
¯̄bρNLS,N

¯̄ ≤ a with a ≥ 1.

Since |ρ| ≤ 1, if the bound a is sufficiently large,
¯̄bρNLS,N

¯̄
is essentially

the unconstrained nonlinear least squares estimator of ρ. The existence and

measurability of bρNLS,N , bσ2v NLS,N , and bσ21 NLS,N are ensured by, for example

Lemma 2 in Jennrich (1969).

In the following let PN(ρ) = [IN − ρWN ]
−1. We now specify three addi-

tional assumptions:

Assumption 4 (a) The row and column sums of WN , more specifically

ΣN
j=1 |wij,N | and ΣN

i=1 |wij,N |, are uniformly bounded by, say, kw < ∞ for

all i ≥ 1, j ≤ N, N ≥ 1. (b) The row and column sums of PN(ρ), more

specifically ΣN
j=1 |pij,N(ρ)| and ΣN

i=1 |pij,N(ρ)| , are uniformly bounded by, say,

kp <∞ for all i ≥ 1, j ≤ N, N ≥ 1, |ρ| < 1, where kp may depend on ρ.

Assumption 5 Let euit, N denote the (i, t)−th element of euN . We then as-
sume that there exists (finite dimensional) random vectors dit,N and ∆N

such that |euit,N − uit,N | ≤ ||dit,N || k∆Nk where (NT )−1ΣT
t=1Σ

N
i=1 kdit,Nk2+δ =

Op(1) for some δ > 0 and N1/2 k∆Nk = Op(1).

17Monte Carlo results are available in a paper, Kapoor, Kelejian and Prucha (2002).
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Assumption 6 The smallest eigen value of Γ0
0,NΓ0,N , Γ

0
1,NΓ1,N , Γ

0
NΓN , where

Γ0,N , Γ1,N and ΓN are defined in (37), (38) and (36) respectively, are bounded

away from zero. This implies that, λmin(Γ
0
0,NΓ0,N) ≥ λ∗ > 0, λmin(Γ

0
1,NΓ1,N) ≥

λ∗ > 0, λmin(Γ
0
NΓN) ≥ λ∗ > 0, where λ∗ may depend on ρ, σ2v and σ

2
1.

Remark 3. (a) In practice, spatial models are often formulated in such

a way that each cross-sectional unit has a limited number of “neighbors”

regardless of the sample size (see, for example, Case 1991 and Kelejian and

Robinson 1995). In such cases the weighting matrix WN is sparse for large

N , and so Assumption 4(a) would be satisfied. There are many cases in

which the elements of WN are taken to be non-negative and row normalized

such that ΣN
i=1wij,N = 1. Still in other cases the weighting matrix does not

contain zeros, but its elements are assumed to decline rapidly in certain di-

rections because they are defined in terms of variables such as distance (see

for example, Dubin 1988 and DeLong and Summers 1991). Therefore, under

reasonable conditions, Assumption 4(a) is typically satisfied.

(b) Recall from (15) and the definition of PN(ρ), that Ωu,N(ρ) = [(σ
2
v(IT −

JT
T
) + σ21

JT
T
) ⊗ PN(ρ)PN(ρ)

0]. Assumption 4(b), together with the specifi-

cation that T is fixed, implies that (NT )−1ΣNT
i=1Σ

NT
j=1 |ωij,N(ρ)| is uniformly
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bounded18, where ωij,N(ρ) is the (i, j)−th element of Ωu,N(ρ). Therefore,

Assumption 4(b) restricts the degree of correlation of the elements of uN .

Remark 4. Assumption 5 should be satisfied for most cases in which

euN is based on N1/2-consistent estimators of regression coefficients. We

demonstrate in the appendix that under our maintained assumptions and

the model specification in (4), (5) and (6), the OLS estimator bβOLS,N =

(X 0
NXN)

−1X 0
NyN is N1/2-consistent. Given this we can compute the corre-

sponding residuals euit,N = yit,N − x0it,NbβOLS,N . Furthermore, we show in the
appendix that these residuals satisfy Assumption 5 with dit,N = xit,N and

∆N = bβOLS,N − β.

Remark 5. Assumption 6 is an identifiability condition.

Our basic result is Theorem 2, whose proof is given in the appendix.

Theorem 2 Let bρNLS,N , bσ2v NLS,N , bσ21 NLS,N be the nonlinear least squares

estimators defined by (41). Suppose Assumptions 1 to 6 and the smallest

and largest eigenvalues of the matrices Θ−1N satisfy 0 < λ∗ ≤ λmin(Θ
−1
N ) ≤

λmax(Θ
−1
N ). Suppose furthermore that bβOLS,N and bΘN are consistent estima-

tors of β and ΘN , respectively. Then, the GM estimators bρNLS,N , bσ2v NLS,N ,

18This is demonstrated in the appendix.

39



bσ21 NLS,N defined in (41) are consistent for ρ, σ
2
v, σ

2
1, i.e.,

(bρNLS,N , bσ2v NLS,N , bσ21 NLS,N)
p→ (ρ, σ2v, σ

2
1) as N →∞.

The assumptions relating to eigenvalues of Θ−1N together with Assumption

6 ensure identifiably uniqueness of the parameters ρ, σ2v, σ
2
1. They also ensure

that the elements of Θ−1N are O(1).

2.6 Conclusion

This paper considers the estimation of a panel data model with error compo-

nents that are both spatially and time-wise correlated. The dissertation com-

bines the model for spatial correlation ( that of Cliff and Ord (1973, 1981))

with the classical error component panel data model. I introduce generaliza-

tions of the generalized moments (GM) procedure suggested in Kelejian and

Prucha (1999) for estimating the spatial autoregressive parameter in case of

a single cross section. I then use those estimators to define feasible gener-

alized least squares (GLS) procedures for the regression parameters. I give

formal large sample results concerning the consistency of the proposed GM

procedures, as well as the consistency and the asymptotic normality of the

proposed feasible GLS procedures. The new estimators remain computation-

ally feasible even in large samples.
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3 Estimation of Price Competition in a Spa-
tial Model: An Investigation of the USWhole-
sale Gasoline Industry

3.1 Introduction

Significance of gasoline emerges from the fact that transportation costs ac-

counts for 19% of the average annual expenditure of US households and

gasoline price is an important factor that influence these costs. Having ac-

knowledged this, it is important to understand the factors that determine

gasoline prices. Among several factors such as price of crude oil, seasonal

supply and demand and weather conditions, I highlight the role that com-

petition among distribution facilities play in determining price of gasoline.

More specifically, this paper analyzes the nature and extent of price compe-

tition in the US wholesale gasoline industry.

The nature of competition among wholesale gasoline distributors can

be studied using insights from theoretical models of product differentiation.

While product differentiation, within the gasoline industry arises from differ-

ent sources such as brand names, quality (regular, premium etc.), the location

of distribution facilities is also an important dimension of differentiation. In

theoretical literature, classic models of product differentiation include, among
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others, the spatial models such as linear city model by Hotelling (1929) and

circular city model by Salop (1979) and the Monopolistic Competition mod-

els such as Chamberlin (1933), representative consumer models by Spence

(1976), and Dixit and Stiglitz (1977). These competing models, however,

produce contrasting predictions regarding the nature of price competition

among firms.

In spatial models of product differentiation, each firm is identified with

an “address” in product space.19 In general it can be imagined that the

firms’ products are located in some N-dimensional characteristic space and

the consumers’ optimum points of consumption are distributed over this char-

acteristic space. The unique feature of these models is that firms compete

only for the local customers.20 Therefore, firms compete locally and there

is high level of strategic interaction between them.21 In contrast, monopo-

listic competition models predict that firms compete with all other firms for

customers. This implies that there is low level of interaction between firms

and strategies of one firm do not affect or have negligible effect on payoffs of

other firms.
19Product differentiation between firms selling homogenous products might exist due to

different geographical locations of the firms.
20This result is robust even in the presence of a continuum of firms.
21A crucial assumption that generates this result is that consumers have a sufficiently

high valuation for the products.
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In this paper, while analyzing price competition in the US wholesale gaso-

line industry, I empirically distinguish between spatial model and monopo-

listic competition model of product differentiation. This work is most closely

related to Pinske, Slade, and Brett (2002) who propose an "instrumental vari-

ables series estimator" to investigate the nature of price competition among

firms in a differentiated product market.22 My work, however, makes crucial

innovations along conceptual and methodological grounds. Specifically there

are three main innovations in this paper. Firstly, at a conceptual level, I

account for the marginal customer who plays a significant role in price deter-

mination in spatial models of product differentiation. And while limited data

availability makes empirical identification of the marginal customer a very

challenging task, the proposed variable has the desirable feature in that it

captures the characteristics of the marginal customer and is also empirically

simple to compute. Secondly, this work is based on a very comprehensive

dataset comprising of two time periods - a high demand period (August

1999) and a low demand period (January 2000). Thirdly, my innovation is

at a methodological level where I introduce an estimation strategy that allows

for spatial correlation in the explanatory variables and in the unobserved fac-

22For "instrumental variable series estimator" see Pinske, Slade and Brett (2002).
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tors, in addition to spatial correlation in the dependent variable that has been

considered in Pinske, Slade, and Brett (2002). From my results, it becomes

clear that this new strategy has important implications for the estimation of

parameters of the model as well as in making accurate inferences.

The organization of the paper is as follows. In the next section I describe

the US wholesale gasoline industry. Section 3.3 describes the theoretical

model and the empirical specification and section 3.4 provides a brief descrip-

tion of the estimation strategy. Section 3.5 discusses the data and section 3.6

describes the empirical model. Section 3.7 describes the results and section

3.8 provides the robustness test. Conclusion and further extensions are in

Section 3.9.

3.2 US Wholesale Gasoline Industry

In the US, gasoline is either imported (from Saudi Arabia, Venezuela, etc.) or

produced domestically (refineries in Texas, East Coast, etc.).23 The US pe-

troleum industry is divided into five regions called Petroleum Administration

for Defense Districts (PADDs).24 These are PADD1 (East coast), PADD2

(Midwest), PADD3 (Gulf coast), PADD4 (Rocky Mountain), and PADD5

23Local production here refers to the processing of crude oil which is either imported or
drilled within the US.
24See Figure 1 at the end of the paper for map of the PADDs.
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(West coast). Each of these regions are different in terms of production and

consumption of gasoline, for example, PADD1 has limited refining capacity

and has the highest non-feedstock demand. To meet demand in this region,

output is augmented by imports from the Middle East and shipments from

the Gulf Coast. PADD2s’ regional demand is met by local refineries which is

also supplemented by imports from Canada and Gulf Coast. PADD3 is the

largest supplier of refined products accounting for 47% of the entire supply

in the US. It also accounts for 80% of interregional trade of refined products

among the PADDs. PADD4 has the lowest demand for refined products and

PADD5 is logistically separate from the other regions and all of its production

comes from California.25

On a functional basis, the petroleum industry can be divided into two

main sectors: the upstream market that includes exploration and produc-

tion and the downstream market that includes refining, transportation and

marketing. These markets are highly integrated and there are firms that

25For details on regional differences in production and consumption see “How Pipelines
make the Oil Market Work- Their Networks, Operation and Regulation,” Association of
Oil Pipelines and the American Petroleums Institute’s Pipeline Committee. December
(2001)
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operate in both the sectors. Large companies known as “majors” are fully

integrated and may own and operate establishments in all of these sectors.26

Smaller non integrated companies are referred to as “independents” generally

specializing in one aspect of the industry.

A very complex and an efficient infrastructure exists to transport gasoline

from regions of supply to regions of demand. Four modes of transportation

are available to suppliers of gasoline. They are pipelines, waterways, trucks

and railroads.27 Suppliers, on their part, select the shipping modes that min-

imizes the costs of transportation. Pipelines are the most cost effective and

safest way of shipping refined products over long distances, in particular from

refineries and coastal areas to distribution and storage facilities or terminals

which are typically located near large cities. From these terminals, then,

gasoline is trucked by the wholesalers to the retail outlets.28

Two types of gasoline, “branded” and “unbranded”, are sold and while

26See Figure 3 at the end of the paper for the list of “majors”.
27See Figure 2 at the end of the paper for map of pipelines for refined products in the

US.
28The US has the largest network of oil pipelines of any nation. All of Europe, for

instance, has a pipeline network that is only 1/10 the size of the US network. Suppliers
of gasoline select transportation modes on basis of costs and economics favors pipelines.
Trucking is generally limited to short haul movements where alternatives are often not
available; between distribution facilities or terminals and retail outlets. Railroad is very
expensive compared to pipelines and is far from being universally available in US. Water-
borne shipments can be priced competitively with pipelines, their use is, however, limited
by geography.
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branded gasoline bears the name of a major supplier like Exxon, Shell, etc.,

unbranded gasoline does not bear any brand name. A “major” supplier can

sell unbranded gasoline in addition to branded gasoline, however, this cannot

be resold bearing a brand name. An “independent” supplier, on the other

hand can sell only unbranded gasoline.

Distributors purchase gasoline from suppliers at the terminals and resell

it to retail outlets. There can be two types of distributors, “integrated” and

“independent”. Integrated distributors are owned by the “major” company

and only supply to own brand retail outlets. On the other hand, the in-

dependent distributors buy from any supplier, “major” or “independent”.

If they buy branded gasoline, it can only be resold to retail outlets of the

same brand, however, they can sell unbranded gasoline to any independent

retailers. Market power of a distributor depends on the total number of dis-

tributors in the market as well as on the ability of outside distributors to

enter this market. Entry into the independent distribution market is easier

due to the low costs involved while entry into the integrated market is re-

stricted. This characteristic of the independent distribution sector makes it

very competitive.

Independent distributors play a very important role in price competi-
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tion among suppliers at a terminal and across terminals, particularly in case

of unbranded gasoline. At each terminal they purchase unbranded gasoline

from the supplier with the lowest price. To a large extent this ensures com-

petition among suppliers within the terminal. Furthermore, they also take

advantage of arbitrage opportunities that might exist across terminals, for

example, if the price differential across terminal is larger than the transporta-

tion cost then they will buy from the terminal with the lowest price. Price

competition across terminals, however, is limited due to the transportation

costs involved. Given that unbranded gasoline is a very homogenous product

and competition across terminals is limited, product differentiation within

this industry arises based on the location of the terminal. This feature of

the unbranded gasoline industry makes it interesting and appropriate for my

empirical analysis.29

From policy perspective, the relevance of this industry was highlighted

by Hastings in the hearing before the Committee on Government Affairs,

US Senate, May 2002. He emphasized that the unbranded gasoline market

is necessary to ensure sufficient unbranded gasoline supply at competitive

29Besides this, purchase decision of gasoline depends on dynamic issues like brand loy-
alty, switching costs, long term contracts etc. These issues are difficult to address with
limited data availability. Unbranded gasoline price is not discounted which makes it a true
transaction price: Pinske, Slade and Brett (2002)
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prices, which in turn is crucial for the entry and survival of independent re-

tailers including new chains such as Kmart, Walmart, Costco and RaceTrac.

These independent retailers are important because they increase competition

at the retail level. For this reason it is important to understand the nature

and extent of competition within the unbranded gasoline industry.

3.3 Theoretical Model

The theoretical model used is the same as in Pinske et. al. (2002). The

advantage of this model is that it nests models of spatial competition and

monopolistic competition. This nesting allows me to assess the nature of

competition.

Suppose there are N firms, where N ≥ 1, which produce a differentiated

product in each time period t. Each firm is indexed by a subscript i, where

i = 1, . . . , N . Let qit be the product firm i produces in time period t. Each

product is associated with a unique characteristic yit and is sold at a nominal

price epit in each time period t.

There are K buyers, where K ≥ 1. The model allows for the possibility

that buyers can purchase more than one variety of product at a time. A

buyer is indexed by a subscript k, where k = 1, . . . ,K. Each buyer is located

at a point in a geographical space. Depending on their geographical location,
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buyers will choose an optimal location for the purchase of the product. Then

buyers will resell this product in competitive markets that are indexed by j,

where j = 1, . . . , J . In each of these markets buyers will face a parametric

nominal price evjt. Typically buyers resell in one of these markets, however,
the model can accommodate for the possibility where buyers can resell in

multiple markets.

Let competitive profit of buyer k in time period t be denoted by eπkt(evt, ept, yt),
where evt = (ev1t, . . . , evJt)0, ept = (ep1t, . . . , epNt)

0, yt = (y1t, . . . , yNt)
0. This profit

function implies that buyers do not hold inventories. The justification for this

assumption is that there are huge costs of holding inventories in the gasoline

industry. The aggregate profit function for the entire buying industry in each

time period t is given by

eπt(evt, ept, yt) = KX
k=1

eπkt(evt, ept, yt). (42)

It has been shown that the aggregate profit that is obtained when each firm

maximizes profit separately, taking prices as given, is the same as that which

would be obtained if firms were to jointly maximize profits.30 In brief, there

is no loss of generality in treating the entire buying industry as a single firm.

In order to approximate the profit function of the buying industry, a flexi-

30This has been shown in Koopmans (1957), Mas-Collel et. al. (1995).
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ble functional form is considered. This is a second order approximation of any

arbitrary profit function. Similar to previous work, I simplify the empirical

analysis by using a normalized quadratic functional form.31 Specifically,

eπt(evt, ept, yt) =
JX

j=1

α
(1)
j evjt + NX

i=1

α
(2)
i epit + NX

i=1

α
(3)
i yit

+
1

2

"
NX
i=1

NX
j=1

w
(1)
ij epitepjt + JX

i=1

JX
j=1

w
(2)
ij evitevjt

+
NX
i=1

NX
j=1

w
(3)
ij yityjt +

NX
i=1

NX
j=1

w
(4)
ij epityjt (43)

+
NX
i=1

JX
j=1

w
(5)
ij epitevjt + NX

i=1

JX
j=1

w
(6)
ij yitevjt

#
.

After normalizing by an index of output prices, say Vt, we get32

πt(vt, pt, yt) =
JX
j=1

α
(1)
j vjt +

NX
i=1

α
(2)
i pit + V −1t

NX
i=1

α
(3)
i yit

+
1

2
Vt

"
NX
i=1

NX
j=1

w
(1)
ijt pitpjt +

JX
i=1

JX
j=1

w
(2)
ijt vitvjt

+V −2t

NX
i=1

NX
j=1

w
(3)
ijt yityjt + V −1t

NX
i=1

NX
j=1

w
(4)
ijt pityjt (44)

+
NX
i=1

JX
j=1

w
(5)
ijt pitvjt + V −1t

NX
i=1

JX
j=1

w
(6)
ijt yitvjt

#
,

where πt = V −1t eπt, vjt = V −1t evjt, and pit = V −1t epit. Furthermore, vjts0 are
31Berndt, Fuss, Waverman (1977), McFadden (1978). Also see Jorgenson (1983) and

Diewert (1974) for useful surveys on this topic.
32Similar to previous work I also assume that this index is exogenous to the prices of

the selling industry, pt.

51



normalized output prices in competitive markets and can be treated as con-

stants. This will reduce the expression in (44) to the following

πt(vt, pt, yt) = a1t +
NX
i=1

a2itpit +
NX
i=1

a3ityit +
1

2

NX
i=1

NX
j=1

b
(1)
ijtpitpjt

+
1

2

NX
i=1

NX
j=1

b
(2)
ijtyityjt +

1

2

NX
i=1

NX
j=1

b
(3)
ijtpityjt, (45)

where a1t =
PJ

j=1 α
(1)
j vjt+

Vt
2

PJ
i=1

PJ
j=1w

(2)
ijt vitvjt, a2it = α

(2)
i +

Vt
2

PJ
j=1w

(5)
ijt vjt,

a3it = V −1t α
(3)
i + 1

2

PJ
j=1w

(6)
ijt vjt, b

(1)
ijt = Vtw

(1)
ijt , b

(2)
ijt = V −1t w

(3)
ijt , b

(3)
ijt = w

(4)
ijt .

Moreover, b(1)ijt = b
(1)
jit , b

(2)
ijt = b

(2)
jit and b

(3)
ijt = b

(3)
jit .

Now we can derive quantity demanded for each product by using the

Hotelling Lemma. Taking the derivative of (45) with respect to pit, for i =

1, . . . , N, we get

qit =
∂πt(vt, pt, yt)

∂pit

= a2it +
NX
j=1

b
(1)
ijtpjt +

1

2

NX
j=1

b
(3)
ijtyjt, (46)

where qit is the quantity demanded from seller i at time t.

Next we turn to the sellers. As stated earlier, imperfect competition is

assumed in the seller side of the market. Furthermore, it is assumed that

sellers, indexed by subscript i, face a constant marginal cost Cit, in each

time period t. This marginal cost is a linear function of various cost factors,
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therefore, Cit =
PH

h=1 γhtcit,h, where cit,h is the marginal cost associated

with h cost factor, and h = 1, . . . , H. In each time period t, seller i0s profit

function is denoted by

ϕit = (pit − Cit)qit − Fi, (47)

where Fi is the fixed cost.

By substituting for qit from (46) into (47) we get

ϕit = (pit − Cit)

"
a2it +

NX
j=1

b
(1)
ijtpjt +

1

2

NX
j=1

b
(3)
ijtyjt

#
− Fi, (48)

for i = 1, . . . , N.

In time period t seller i will maximize profits with respect to its own

prices, given the prices of other sellers. Therefore, the first order conditions

(foc) can be solved to yield seller i0s best reply function with respect to the

prices of other sellers in each time period t. Solving the foc yields

pit =
−1
2b
(1)
iit

a2it + NX
j=1
j 6=i

b
(1)
ijtpjt +

1

2

NX
j=1

b
(3)
ijtyjt − b

(1)
iitCit



=
−1
2b
(1)
iit

a2it + NX
j=1
j 6=i

b
(1)
ijtpjt +

1

2

NX
j=1

b
(3)
ijtyjt

+ 12
HX
h=1

γhtcit,h. (49)

Equation (49) is the basis of empirical specification. It is evident from

the above equation that it will not be possible to estimate all the parame-
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ters of the model from a single equation or a short panel data. Therefore,

it is necessary to put restrictions on the parameters of the model. In the

empirical analysis of gasoline industry, the constant term can have several

interpretations. It could capture some overall cost factors which affect all

sellers, for example, price of crude oil. In order to model these phenomena I

use a random effects model where,

−1
2b
(1)
iit

a2it = at + µit,

and where at is some finite constant in time period t and µit is independently

and identically distributed with a zero mean and a finite variance.

Seller i0s reaction curve with respect to seller j0s price, pjt, has a slope

of (− b
(1)
ijt

2b
(1)
iit

). In the literature this has also been referred to as the “short

run market vulnerability”.33 This measures the damage that can be done

to a firm by short-run market action of an opponent. Recall that product

differentiation in this analysis arises from location in geographical space.

Therefore, it is assumed that these ratios will depend on some measure of

distance. In the analysis to follow I assume that

− b
(1)
ijt

2b
(1)
iit

= λtdij,

33See Shubik (1959).
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where λt is the parameter to be estimated and dij is a dummy variable which

takes a positive value if i and j − th cross-sectional units are neighbors by

some measure of closeness and otherwise it is zero.

Similarly− b
(3)
ijt

4b
(1)
iit

measures the slope of the reaction curve with respect to seller

j0s product characteristic, yjt. As before

− b
(3)
ijt

4b
(1)
iit

= ηtd
(1)
ij , i 6= j

− b
(3)
iit

4b
(1)
iit

= δt,

where ηt and δt are the parameters to be estimated and d
(1)
ij is a dummy

variable which takes a positive value if i and j − th cross-sectional units

are neighbors by some measure of closeness and otherwise it is zero. In

the model, variable yjt, for j = 1, . . . , N, define the product characteristics.

In our analysis of gasoline industry, product of each terminal is uniquely

characterized by the location of the terminal. The buyers will have an optimal

choice of location to purchase the product based on price and location of each

seller. In this analysis the distributors purchase gasoline from suppliers at

terminals and resell it to retail outlets. Therefore, I assume that yjt reflect

factors that affect demand for retail gasoline in the region where terminal j

is located. Furthermore, I assume that dij = d
(1)
ij .
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After imposing these restrictions, the model in (49) reduces to

pit = at + λt

NX
j=1
j 6=i

dijpjt + δtyit + ηt

NX
j=1
j 6=i

dijyjt +
HX
h=1

βhtcit,h + uit, i = 1, . . . , N,

(50)

where βht =
1
2
γht and uit is the disturbance term that captures the unex-

plained factors that affect the prices. Next we stack the model and get

pN(t) = XN(t)βt + λtDNpN(t) + uN(t), (51)

where pN(t) = (p1t, . . . , pNt)
0, XN(t) = [k, yN(t), DNyN(t), CN(t)]N×(3+H) is

the N × (3+H) matrix of observations on (3+H) exogenous variables, k is

the vector of constants which is identical for each cross sectional unit, βt =

[at, δt, ηt, β1t, . . . , βHt]
0 is (3+H)×1 vector of regression parameters, yN(t) =

(y1t, . . . , yNt)
0, CN(t) = [cN,1(t), . . . , cN,H(t)]N×H , cN,h(t) = (c1t,h, . . . , cNt,h)

for h = 1, . . . , H, DN is an N ×N weighting matrix whose (i, j)− th element

is dij, ut is the N × 1 vector of disturbances. Note that the parameters of

the model are time dependent. Therefore, this allows for the possibility of

different parameters in different time periods. However, I assume that the

model specification remains the same for every time period. In other words

the agents play the same game in each time period.

The disturbance term captures the effect of unobserved demand and cost
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factors. I allow these to be spatially correlated. However, it is assumed that

the disturbance term has a zero mean, finite variance and finite fourth mo-

ments. Furthermore, I also assume that the disturbance term is independent

of the explanatory variables, XN(t). More specifically, E(uN(t)|XN(t)) = 0.

3.4 Estimation

The model is a first order autoregressive spatial model which is a variation

of the model considered by Whittle (1954) and Cliff and Ord (1973, 1981).

Recall the model in (51)

pN(t) = XN(t)βt + λtDNpN(t) + uN(t). (52)

I also consider spatial correlation in the disturbance term. More specifically,

uN(t) = ρtDNuN(t) + εN(t). (53)

where ρt is the spatially autoregressive parameter in the disturbance term and

εN(t) is an N × 1 vector of innovations. In order to estimate the parameters

of the model for each cross-section, I use a generalized spatial two-stage

least squares (GS2SLS) procedure suggested in Kelejian and Prucha (1998).

The advantages of using this procedure over the conventional estimation

procedure, maximum likelihood estimator, are (a) computationally feasible

for large samples, (b) the results are not based on the assumption that the
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disturbance term is normally distributed. Note that for each time period, t,

I estimate the parameters of the model separately. I am assuming that there

is a structural change in parameters in different time periods. It will become

evident later from our results that the vector of coefficients is different for

different time periods.34

In the following it will prove useful to rewrite the model in (52) and (53)

in a more compact form as

pN(t) = ZN(t)θt + uN(t), (54)

uN(t) = ρtDNuN(t) + εN(t),

where ZN(t) = [XN(t),DNpN(t)] and θt = [β0t, λt]
0. Furthermore, ρt is un-

known and is, therefore, estimated.

Kelejian and Prucha (1998) suggest a three step procedure for estima-

tion of unknown parameters in the model in (54).35 In the first step, the

regression model in (52) is estimated by two-stage least squares (2SLS) using

the instruments HN(t). For instruments they suggest a subset of linearly in-

dependent columns of (XN(t),DNXN(t), D
2
NXN(t), . . .) where the subset at

34If there was no structural change in the parameters for different time periods then we
could estimate the parameters of the model by using an estimation startegy suggested in
Kapoor, Kelejian and Prucha (2002).
35For rigorous proof of consistenecy, large sample properties refer to Kelejian and Prucha

(1998, 2001).
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least contains the linearly independent columns of (XN(t),DNXN(t)). The

resulting 2SLS estimator is as follows:

eθt,N = [ bZN(t)
0 bZN(t)]

−1 bZN(t)
0pN(t), (55)

where bZN(t) = PHN
(t)ZN(t) = (XN(t), \DNpN(t)), where

\DNpN(t) = PHN
(t)DNpN(t) and PHN

(t) = HN(t)[HN(t)
0HN(t)]

−1HN(t)
0.

Before proceeding with estimation of spatial autoregressive parameter,

ρt, I take the residuals from the first step of the estimation to test whether

the disturbance term is spatially correlated. I use the Moran I statistic

suggested in Kelejian and Prucha (2001). In order to test the null hypothesis

of zero spatial correlation in the disturbance, the following Moran I statistic

is constructed:

IN(t) =
Q∗N(t)eσQ∗N (t) D→ N(0, 1), (56)

where Q∗N(t) = buN(t)0DNbuN(t), with buN(t) = pN(t) − ZN(t)eθt and eσQ∗N (t)
is a normalizing factor. Kelejian and Prucha (2001) specify the normalizing

factor as

eσ2Q∗N (t) = bσ4N(t)tr(D0
NDN +DNDN) + bσ2N(t)bb0N(t)bbN(t),

where bσ2N(t) = N−1buN(t)0buN(t), bbN(t) = −HN(t)PN(t)
0 bdN(t) with bdN(t)0 =

N−1buN(t)0(D0
N +DN)ZN(t) and where
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PN(t) = [N
−1 bZN(t)

0 bZN(t)]
−1N−1ZN(t)

0HN(t)[N
−1HN(t)

0HN(t)]
−1.

If the null hypothesis is rejected then I proceed to the second step of the

estimation procedure. In the second step ρt and σ2ε,t are estimated, where

ρt is the spatial autoregressive parameter in the disturbances and σ2ε,t is

the variance of the innovation term εN(t). The second step estimators of ρt

and σ2ε,t, say eρt and eσ2ε,t, are nonlinear least squares estimator defined as
minimizers of

gN(t)−GN(t)

 ρt
ρ2t
σ2ε,t

0 gN(t)−GN(t)

 ρt
ρ2t
σ2ε,t

 , (57)

where

GN(t) =
1

N


2buN(t)0bvN(t) −bvN(t)0bvN(t) N

2bwN(t)
0bvN(t) −bwN(t)

0 bwN(t) tr(D0
NDN)

(buN(t)0 bwN(t)+bvN(t)0bvN(t)) −bvN(t)0 bwN(t) 0


3×3

,

gN(t) =
1

N


buN(t)0buN(t)
bvN(t)0bvN(t)
buN(t)0bvN(t)


3×1

,

where bvN(t) = DNbuN(t) and bwN(t) = DNbvN(t).
In the third step of the procedure a Cochrane-Orcutt type transformation

60



is applied to the model in (54). More specifically,

pN∗(t) = ZN∗(t)θt + εN(t), (58)

where pN∗(t) = pN(t)−ρtDNpN(t), ZN∗(t) = ZN(t)−ρtDNZN(t) and εN(t) =

uN(t) − ρtDNuN(t). Since ρt is unknown we replace it with its estimate eρt
defined in (57) and estimate the model in (58) using 2SLS. The resulting

estimator is termed as the feasible GS2SLS and is given by

eθtF,N = [ bZN∗(t)0 bZN∗(t)]−1 bZN∗(t)0bpN∗(t), (59)

where bZN∗(t) = PHN
(t)[ZN(t)− eρtDNZN(t)], bpN∗(t) = pN(t)− eρtDNpN(t).

3.5 Data

I use data on weekly average unbranded gasoline prices, cost factors (wages,

average net earnings, price of crude oil), demand factors (population, per

capita personal income) as well as data on market structure (spot markets

for gasoline and percentage change in stocks of gasoline). The data used is

for two time periods, a high demand period (third week of August 1999) and

a low demand period (third week of January 2000).

There are 289 wholesale rack locations or terminals in the US which sold

unbranded gasoline for third week of August 1999 and third week of January

2000. I have included only those terminals which are located in the mainland
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and have excluded those that did not sell unbranded gasoline in the two time

periods under consideration. There are 238 terminals located in metropolitan

statistical areas (MSAs). For the terminals which are not in MSAs, I identify

the zipcode and locate the county in which these terminals are situated using

Geographic Information System (GIS) software.

Data on terminal prices was obtained from Oil Price Information Ser-

vice (OPIS), a private data collection agency. Price data includes regular

unbranded gasoline prices charged to the distributors at the terminal. The

prices are denoted by PR99 for August 1999 and PR00 for January 2000.

The prices are in cents/gallon.

Population data for the regions where terminals are located was obtained

from two sources. For terminals located in MSAs the data was obtained from

Census and for the remaining terminals it was obtained from Regional Eco-

nomic Information System (REIS). In the analysis I use the log of population

and denote this by POP99 for August 1999 and POP00 for January 2000.

Data on per capita personal income and per capita net earnings for re-

gions where terminals are located was also obtained from two sources. For

terminals located in MSAs data from Bureau of Labor Statistics (BLS) is

used and for the remaining terminals I use data from REIS. Per capita per-
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sonal income is denoted by INC99 for August 1999 and INC00 for January

2000. Per capita net earnings is denoted by EA99 for August 1999 and EA00

for January 2000. Both income and earnings are in 103 dollars.

Price of crude oil is for the entire US and was obtained from Energy

Information Administration (EIA). This is the same for all terminals and

therefore is treated as a constant. It is denoted by CRPR99 for August 1999

and CRPR00 for January 2000. These are in cents/gallon.

In order to capture the effects of market structure I include the spot mar-

kets for gasoline. There are seven spot markets in the US. They are located

in New York, Gulf Coast, Midwest, Chicago, Los Angeles, San Francisco and

Northwest. The data on spot prices was obtained from OPIS and EIA. The

spot price for terminal i is the price that prevailed in the spot market closest

to terminal i. The spot prices are denoted by SPOT99 for August 1999 and

SPOT00 for January 2000. They are in cents/gallon.

Changes in stocks of gasoline are a measure of imbalances in demand

and supply. The data on stock is available from EIA for each of the PADDs.

Moreover, PADD1 (East coast) is further subdivided into three broad regions

and data on stocks is available for them as well. I compute the percentage

change in stocks as a difference in stock between the third and the second
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week divided by the stock in second week times 100. I do this for both August

1999 and January 2000. This variable is denoted by PERST99 for August

1999 and PERST00 for January 2000.

In order to capture intra-terminal competition I include the number of

suppliers at each terminal. Data on this was obtained from OPIS. This is

denoted by CO99 for August 1999 and CO00 for January 2000.

In order to capture broad regional differences, I introduce dummy variable

for each PADDs. There are 5 PADDs and I denote the dummy variables

as PADDi, where i = 1, . . . , 5. These dummy variables capture the broad

regional differences in demand and supply that have been discussed before.

Most importantly, I discuss the construction of the weighting matrix,

DN . The weighting matrix is the measure of closeness between terminals.

Theoretical models in this area have suggested measures of closeness like:

terminals that are nearest to each other, terminal that share a common

market boundary, that share a market boundary with a third competitor etc.

These measures could be endogenously or exogenously determined. In this

analysis I will focus only on the first measure of closeness, that is, terminals

that are nearest to each other, geographically.

I use the GIS software to construct a weighting matrix of nearest neighbor.
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I identify each terminal with a zipcode and then use the software to locate

the nearest neighbor for each terminal. There are two ways to identify the

nearest neighbor for each terminal. One way is to use a Euclidean distance

and the second way is to look at actual road distance between terminals. I

find that for some, the nearest terminal is different when I use a Euclidean

distance measure rather than actual road distance. For example, consider

a terminal in Artesia in New Mexico, the nearest terminal by a Euclidean

distance measure is in El Paso, Texas whereas using the actual road distance

the nearest terminal is in Midland, Texas. This has important implications

in the model specification and the consistency of estimates. Misspecified

neighbor for any terminal will make the estimation inconsistent. In this

paper I consider both measures to compute the nearest terminal.

More specifically, the (i, j)−th element of the weighting matrix is denoted

by dij and is a dummy variable which takes a positive value if terminal j is

nearest to terminal to i and otherwise it is 0. Weighting matrices are not

symmetric, that is, if terminal j is the nearest to terminal i then it need not

be the case that terminal i is the nearest to terminal j.
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3.6 Empirical Model

The econometric model to be estimated is specified separately for third week

of August 1999 and third week of January 2000. The model is the following:

PR(t) = λ(t)DNPR(t) + α1,(t)CRPR(t) +
5X

i=2

αi,(t)PADDi−1 + α6,(t)CO(t)

+α7,(t)SPOT (t) + α8,(t)PERST (t) + α9,(t)EA(t) + α10,(t)POP (t)

+α11,(t)DNPOP (t) + α12,(t)INC(t) + α13,(t)DNINC(t) (60)

+u(t),

where (t) = 99 for third week of August 1999 and (t) = 00 for third week

of January 2000, DN is the weighting matrix, hence DNPR(t), DNPOP (t),

DNINC(t) are the nearest neighbor’s price, population and income, respec-

tively, u(t) is the disturbance term and λ(t), αs,(t), for s = 1, . . . , 13, are the

parameters to be estimated. A number of issues must be addressed in order

to develop consistent estimates of the model in (60). Firstly, I need to in-

strument for the nearest neighbor’s price, DNPR(t) which is an endogenous

variable.36 As instruments for this variable, I use exogenous explanatory vari-

ables for nearest terminal. I also use the exogenous explanatory variables of

terminal nearest to the nearest terminal. I then estimate the model using

36I assume that all explanatory variables other than DNPR(t) are exogenous, that is,
they are independent of the disturbances, u(t).
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two-stage least squares (2SLS) procedure.37 Secondly, I correct for spatial

correlation in the disturbances. More specifically,

u(t) = ρ(t)DNu(t) + ε(t), (61)

where, ρ(t) is the spatial autoregressive parameter. Using the estimation

strategy described in previous section, I estimate the spatial autoregressive

parameter, ρ(t), in (61). Then I use the estimate of ρ(t), say eρ(t), and apply
37In choosing instruments for estimation I follow Kelejian and Prucha (1999). In pres-

ence of spatial lag in the dependent variable, the instruments they suggest are linearly
independent columns of the own explanatory variables, nearest neighbors explanatory
variables and nearest to nearest neighbor’s explanatory variables. In our model, for each
terminal we have constructed the nearest neighbor. However, this is not symmentric, for
example, consider terminal A whose nearest neighbor is terminal B, then for terminal B
the nearest neighbor could be terminal C and not terminal A. In our analysis terminal A
competes directly for customer with terminal B, while terminal B competes directly for
customers with terminal C. Clearly, the prices set in terminal A will depend on terminal
B, therefore, as instruments for prices of terminal B we could choose exogenous character-
istics of terminal C which have direct effect on the prices at terminal B but not on prices
of terminal A.
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the Cochrane-Orcutt type transformation on (60) and get

(IN − eρ(t)DN)PR(t) = λ(t)(IN − eρ(t)DN)DNPR(t)

+α1,(t)(IN − eρ(t)DN)CRPR(t)

+
5X

i=2

αi,(t)(IN − eρ(t)DN)PADDi−1

+α6,(t)(IN − eρ(t)DN)CO(t)

+α7,(t)(IN − eρ(t)DN)SPOT (t)

+α8,(t)(IN − eρ(t)DN)PERST (t) (62)

+α9,(t)(IN − eρ(t)DN)EA(t)

+α10,(t)(IN − eρ(t)DN)POP (t)

+α11,(t)DN(IN − eρ(t)DN)POP (t)

+α12,(t)(IN − eρ(t)DN)INC(t)

+α13,(t)(IN − eρ(t)DN)DNINC(t) + innovation term,

where, IN is an identity matrix. I again instrument for the nearest neigh-

bor’s price, DNPR(t) which is an endogenous variable. I then estimate the

transformed model in (62) using two-stage least squares (2SLS) procedure.

One of the main innovations of this paper is to look at the role of marginal

customer in price determination at a terminal. Spatial models of product

differentiation crucially rest on the characteristics of the marginal customer.
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In models with homogenous customers, where each customer has the same

demand, pricing decision of a terminal is independent of the level of demand.

This however would change when we look at heterogenous customers. In the

appendix, I formally develop a theoretical model to show how pricing decision

of a terminal depends on the level of demand of the marginal customer. In

particular I show that price of a terminal is negatively related to the level

of demand of the marginal customer. Empirically, the marginal customer

is extremely difficult to identify. In order to address this issue, I introduce

a variable that captures the characteristics of the marginal customer and is

easy to compute. More specifically, I incorporate the per capita income of the

neighboring region. This is a good proxy for the marginal customer under

the assumption that terminals are competing for customers.

Another innovation of this paper is to look at two time periods with dif-

ferent demand intensities. In periods of high demand, one expects regional

variations in demand to be higher. This would in turn imply that customers

in different regions can be treated as being heterogenous in terms of demand.

The spatial competition model that I have developed with heterogenous cus-

tomers is the relevant model for periods of high demand. Whereas in a low

demand period, the regional variation in demand is lower. In this situation,
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the appropriate model is the existing spatial competition model with ho-

mogenous customers. In our empirical analysis we nest both these models

by incorporating the characteristics of the marginal customer in both time

periods. The model predicts that in periods of high demand, price in a given

terminal is positively related to price of neighboring terminal and is nega-

tively related to the level of demand of the marginal customer. Whereas, in

periods of low demand, prices are positively related to prices of the neighbor-

ing terminal and are not related to level of demand of the marginal customer.

3.7 Results

I report the results in four tables, given that the analysis is for two time

periods and two weighting matrices38

Actual Road Distance Euclidean Distance

High Demand (August 1999) Table 1 Table 3

Low Demand (January 2000) Table 2 Table 4

Each table contains, first, the estimates from ordinary least squares (OLS)

and 2SLS in columns 1 and 2, respectively. Columns 3 and 4 report the OLS

and 2SLS estimates after correcting for spatial correlation in disturbances.39

38Tables are at the end of the appendix.
39Wald test rejects the hypothesis that the same coefficient vector applies in the two

time periods.
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Looking at these results, we notice several interesting features. One gen-

eral fact being that extent of spatial correlation in prices between terminals

is significant and positive for both high and low demand periods. This result

confirms the prediction of spatial price competition model. More specifically,

the coefficient on price of the nearest terminal is positive and significant for

both specifications of the weighting matrix as well as both time periods. As

noted earlier this coefficient is the measure of price competition. Comparing

the two periods we notice that the extent of competition is much higher in

period of low demand (0.84) as compared to high demand (0.58).40

One must observe some caution in interpreting the above result. Positive

correlation in prices is a strong indicator of price competition, however, it is

plausible to think of situations where prices move together even in the ab-

sence of competition.41 This fear can be put to rest as the presence of price

competition between terminals is confirmed by the finding that prices at a

terminal are inversely affected by income in the neighboring region during

periods of high demand. This result is predicted by my model of spatial prod-

40This observation is based on comparing column 2 of Table 1 with column 4 of Table 2.
The reason for this comparison being that in the high demand period, there is no spatial
correlation in disturbances and therefore the meaningful estimate is the uncorrected 2SLS,
as against the low demand period, when there is spatial correlation in the disturbances,
therefore we look at the corrected 2SLS.
41We could observe positive correlation in prices even when firms collude in their pricing

decision.
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uct differentiation with heterogenous customers (appendix). The intuition

for this result is easy to grasp. During periods of high demand, we observe

greater regional variation in demand. If a terminal competes for customers

in neighboring region then higher income in that region implies greater de-

mand, which then means that the terminal should lower its price to attract

some of the high demand customers from the neighboring region. During low

demand periods, however, it is reasonable to assume low regional variation

in demand therefore customers can be treated as homogenous. Spatial price

competition model with homogenous customers predicts that pricing decision

of a terminal is independent of demand in the neighboring region. These pre-

dictions are driven by the central role played by the marginal customer in

price determination.

In the estimation strategy, I account for the characteristics of the marginal

customer by incorporating per capita income in the neighboring region of each

terminal. The estimation results confirm the predictions stated above as we

observe that during the high demand period, the coefficient on neighbor’s

income (DNINC99) is negative and significant (−0.11) and during the low

demand period the coefficient on (DNINC00) is insignificant (−0.02).

Next we compare the two specifications of the weighting matrix. On
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comparing results, we notice that using a Euclidean measure of distance

underestimates the extent of correlation in prices between terminals in both

periods. This is as expected because actual road distance captures the true

neighbor for a terminal while a Euclidean measure leads to misspecifications.

My estimation strategy allows for spatial correlation in disturbances.

From the results, it is clear that not correcting for spatial correlation in

disturbances leads to inaccurate inferences. In particular, we compare col-

umn 2 (uncorrected 2SLS) and 4 (corrected 2SLS) of Table 2. which analyses

the data for the low demand period with actual road distance specification

of the weighting matrix. The Moran I statistic which tests for spatial corre-

lation in disturbances, rejects the hypothesis of zero spatial correlation. Not

correcting for this leads to biased estimation of standard errors which in turn

leads to faulty conclusions. The results of Table 2 confirm this.

3.8 Robustness Test

In our analysis the (i, j)−th element of weighting matrix DN , dij is a dummy

variable which is positive if the j − th terminal is the nearest to the i − th

terminal and zero otherwise. However, one limitation of this weighting matrix

is that it does not account for the actual road distance between nearest

terminals. For example, the nearest terminal to a terminal in Rapid City,
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South Dakota is in Sidney, Nebraska which is 240 miles, and for terminal in

Aberdeen, South Dakota the nearest terminal is 77 miles away in Wolsey,

South Dakota. Irrespective of the distance the weighting matrix in both

cases assigns an equal weight of 1 to the nearest terminal. I overcome this

limitation by constructing different weighting matrices which are dependent

on the distance between the nearest terminals. In particular, I construct five

weighting matrices, D(i)
N where i = 1, . . . , 5. Let d(i)ij be the (i, j)− th element

of matrix D(i)
N , where i = 1, . . . , 5. More specifically:

d
(1)
ij = 1/n, if j is the nearest terminal to i and 0 ≤ x < 30,

= 0 otherwise,

d
(2)
ij = 1/n, if j is the nearest terminal to i and 30 ≤ x < 70,

= 0 otherwise,

d
(3)
ij = 1/n, if j is the nearest terminal to i and 70 ≤ x < 110,

= 0 otherwise,

d
(4)
ij = 1/n, if j is the nearest terminal to i and 110 ≤ x < 150,

= 0 otherwise,
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d
(5)
ij = 1/n, if j is the nearest terminal to i and 150 ≤ x,

= 0 otherwise.

where n is the number of terminals which are nearest to terminal i and x is

the actual road distance between terminals.

In order to study the effect of distance on the nature and extent price

competition I construct the following empirical model

PR(t) =
5X

i=1

λ
(i)
(t)D

(i)
N PR(t) + α1,(t)CRPR(t) +

5X
i=2

αi,(t)PADDi−1

+α6,(t)CO(t) + α7,(t)SPOT (t) + α8,(t)PERST (t)

+α9,(t)EA(t) + α10,(t)POP (t) +
5X

i=1

α
(i)
11,(t)D

(i)
N POP (t) (63)

+α12,(t)INC(t) +
5X

i=1

α
(i)
13,(t)D

(i)
N INC(t) + u(t),

where (t) = 99 for third week of August 1999 and (t) = 00 for third week of

January 2000.

The results reported in Table 5 in the appendix are striking. The results

indicate that for third week of August 1999, λ(i)99 , for i = 1, . . . , 5 are almost

identical. I also find similar results for third week of January 2000. In other

words, it appears from the result that the nature and extent of competition

between terminals is not influenced by the actual road distance between

the terminals. This exercise proves the robustness of the result, that is,
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accounting or not accounting for the actual road distance between the nearest

terminal has little impact on the nature and extent of competition between

terminals.

We have also provided another test of robustness of our results. In addi-

tion to the variables considered above we have included taxes on wholesale

gasoline charged by each state as one of the explanatory variables. The re-

sults (reported in Tables 6 and 7) indicate that inclusion of this explanatory

variable does not change the main conclusion of the above analysis. In par-

ticular, we find that nature and extent of competition is less during high

demand period as compared to the low demand period, these results are sim-

ilar to the analysis without taxes. Furthermore, in both periods taxes have

a positive and a significant impact on the prices. Moreover, we still find that

characteristics of the marginal customer plays an important role during the

high demand period when there is a high regional variation in demand and

is insignificant during the low demand period. One possible explanation for

why the results are not sensitive to inclusion of this variable is that in the

analysis we are using transaction prices. These transaction prices are inclu-

sive of the tax rates, hence, tax rates are significant in affecting the prices

but do not affect the results on the nature and extent of price competition
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between terminals.

3.9 Conclusion and Further Extensions

In this paper, while analyzing price competition in the US wholesale gasoline

industry, I empirically distinguish between spatial model and monopolistic

competition model of product differentiation. While product differentiation,

within the industry arises from different sources such as brand names, qual-

ity (regular, premium etc.), the location of distribution facilities is also an

important dimension of differentiation. There are three main innovations in

this paper. Firstly, I look at the role of marginal customer in price determi-

nation in spatial models of product differentiation. These models crucially

rest on the characteristics of the marginal customer. In models with homoge-

nous customers, pricing decision of a terminal is independent of the level of

demand. This however changes when one considers heterogenous customers.

I formally develop a theoretical model in the appendix to show that in the

presence of heterogenous customers, pricing decision of a terminal depends

on the level of demand of the marginal customer. In particular I show that

price of a terminal is negatively related to the level of demand of the mar-

ginal customer. I introduce a variable that captures the characteristics of

the marginal customer and is easy to compute. Secondly, I consider two time
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periods with different demand intensities. In a period of high demand, one

observes regional variations in demand to be higher whereas in a low demand

period, the regional variation in demand is lower. The difference in demand

intensities in different time periods has important empirical implications.

In particular during the high demand period the relevant spatial model of

product differentiation is the one in which the customers are heterogenous in

their demand levels. In such a scenario the model in the appendix shows that

prices across terminals are correlated and are negatively related to the level

of demand of the marginal customer. Whereas, in periods of low demand, the

regional variation in demand is lower. Therefore, the relevant spatial model

of product differentiation is the one in which the customers are homogenous

in their demand levels. In such a scenario prices are correlated, but are not

affected by the level of demand of the marginal customer. Thirdly, I use an

estimation strategy that allows for spatial correlation in the explanatory vari-

ables and in the unobserved factors that affect prices, in addition to spatial

correlation in the dependent variable that has been considered in previous

work.

The main results from the estimation confirm all the above predictions of

spatial models of product differentiation. More specifically, I find the extent
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of price competition between terminals to be significant and positive for both

high and low demand periods. On comparing the two periods, I observe the

extent of competition to be much higher in period of low demand as compared

to high demand period. Secondly, the results also confirm the predictions of

spatial model of product differentiation with heterogenous customers and

also with homogenous customers. In particular, the results show that during

the period of high demand (August 1999) when the regional variation is high,

prices are significantly and negatively affected by neighbor’s income (which is

a measure of level of demand of the marginal customer). Whereas during the

period of low demand (January 2000) when the regional variation in demand

is lower, prices are independent of neighbor’s income. Thirdly, the results

reveal a high and significant spatial correlation in the unobserved factors

that affect prices during the low demand period. Not correcting for which

leads to inaccurate inferences. Lastly, I have estimated my model using two

measures of distance between neighboring terminals, actual road distance

and a Euclidean distance. I find that using a Euclidean distance measure as

compared to actual road distance underestimates the extent of competition

between terminals.

This research is relevant from policy perspective. Given the strategic rel-
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evance of gasoline for the US economy, it is important to understand what

factors determine and influence its price. This paper highlights the signifi-

cance of competition among distribution facilities as a major factor and also

that the wholesale gasoline markets are geographically segmented and small.

Furthermore, in studying the unbranded gasoline market we have addressed

an important issue which is being considered by policy makers, as was high-

lighted by Hastings in the hearing before the Committee on Government

Affairs, US Senate, May 2002. He emphasized that the unbranded gaso-

line market is necessary to ensure sufficient unbranded gasoline supply at

competitive prices, which in turn is crucial for the entry and survival of inde-

pendent retailers including new chains such as Kmart, Walmart, Costco and

RaceTrac. These independent retailers are important because they increase

competition at the retail level. For this reason it is important to understand

the nature and extent of competition within the unbranded gasoline industry.

There is an interesting extension to this work which is underway. Through-

out this paper I have assumed each terminal as a single firm. This assumption

puts a restriction on the market structure, as typically at a terminal, more

than one suppliers compete for consumers.42 Furthermore, in many cases a

42On an average there are six suppliers per terminal.
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supplier is present at both the neighboring terminals. In extending this pa-

per I plan to formally incorporate this market structure and develop a model

that can account for both inter as well as intra terminal competition. Avail-

ability of data on suppliers at each terminal has made it feasible to address

these more interesting issues. Using this data I also plan to study the effect

of mergers and acquisitions within the gasoline industry on prices which is

very relevant for policy issues related to antitrust.
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4 Appendix to Chapter 2

In this appendix we will make use of the following definitions.43

Definition 1. A sequence {aN}∞N=1 is at most of orderN δ, and is written

as aN = O(N δ), if there exists a real number M > 0, such that

N−δ |aN | ≤M.

Definition 2. A sequence {aN}∞N=1 is of smaller order than N δ, and is

written as aN = o(N δ), if

lim
N→∞

N−δ |aN | = 0.

Definition 3. A sequence of random variables {cN}∞N=1 is at most of

order N δ in probability, and is written as cN = Op(N δ), if for every � > 0

there exists a real number M > 0, such that

P{N−δ |cN | ≥M} ≤ �.

Definition 4. A sequence of random variables {cN}∞N=1 is smaller order

than N δ in probability, and is written as cN = op(N
δ), if

p limN−δcN = 0.

43These definitions are from Judge and et.al., Pages 145-148.
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These definitions extend to vectors and matrices if the conditions hold

for every element in the vector or matrix.
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In the following we derive the six moment conditions described in (34). In

light of (6) and the definition of Q0,N in (8) we note that Q0,NεN = Q0,NvN .

Specifically,

Q0,NεN = Q0,N(eT ⊗ IN)µN +Q0,NvN

= ((IT − JT
T
)eT ⊗ IN)µN +Q0,NvN

= ((eT − JTeT
T
)⊗ IN)µN +Q0,NvN (A.1)

= ((eT − eTe
0
TeT
T

)⊗ IN)µN +Q0,NvN

= ((eT − eT )⊗ IN)µN +Q0,NvN

= Q0,NvN .

Furthermore, by the definition of εN in (33) and from (11) we note that

Q0,NεN = Q0,N(IT ⊗WN)εN

= (IT ⊗WN)Q0,NεN (A.2)

= (IT ⊗WN)Q0,NvN .

Given Assumptions 1 and 2, (A.1), (A.2), and by using (9), (10)and (11) we

have
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E
1

N(T − 1)ε
0
NQ0,NεN = E

1

N(T − 1)v
0
NQ0,NvN

=
1

N(T − 1)σ
2
vtr(Q0,N) (A.3)

=
1

N(T − 1)σ
2
vN(T − 1)

= σ2v.

E
1

N(T − 1)ε
0
NQ0,NεN = E

1

N(T − 1)v
0
NQ0,N(IT ⊗W

0
NWN)Q0,NvN

= σ2v
1

N(T − 1)tr
h
Q0,N(IT ⊗W

0
NWN)

i
= σ2v

1

N(T − 1)tr
·
(IT − JT

T
)⊗W

0
NWN

¸
(A.4)

= σ2v
1

N(T − 1)tr(IT −
JT
T
)tr(W

0
NWN)

= σ2vN
−1tr(W

0
NWN).

E
1

N(T − 1)ε
0
NQ0,NεN = E

1

N(T − 1)v
0
NQ0,N(IT ⊗W

0
N)Q0,NvN

= σ2v
1

N(T − 1)tr
h
Q0,N(IT ⊗W

0
N)
i

= σ2v
1

N(T − 1)tr
·
(IT − JT

T
)⊗W

0
N

¸
(A.5)

= σ2v
1

N(T − 1)tr(IT −
JT
T
)tr(W

0
N)

= σ2vN
−1tr(W

0
N)

= 0.
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In light of (6) and the definition of Q1,N in (8) we note that Q1,NεN =

[eT ⊗ IN ]µN +Q1,NvN . Specifically,

Q1,NεN = Q1,N [eT ⊗ IN ]µN +Q1,NvN

= (
JTeT
T
⊗ IN)µN +Q1,NvN

= (
eTe

0
TeT
T

⊗ IN)µN +Q1,NvN (A.6)

= (eT ⊗ IN)µN +Q1,NvN .

Furthermore, by the definition of εN in (33) and from (11) we note that

Q1,NεN = Q1,N(IT ⊗WN)εN

= (IT ⊗WN)Q1,NεN

= (IT ⊗WN)[(eT ⊗ IN)µN +Q1,NvN ] (A.7)

= (eT ⊗WN)µN + (IT ⊗WN)Q1,NvN .

Given Assumptions 1 and 2, (A.6), (A.7), and by using (9), (10), (11) and
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Tσ2µ + σ2v = σ21, we have

E
1

N
ε
0
NQ1,NεN = E

1

N
µ
0
N(e

0
TeT ⊗ IN)µN +E

1

N
v
0
NQ1,NvN

=
T

N
σ2µtr(IN) +

1

N
σ2vtr(

JT
T
)tr(IN) (A.8)

= Tσ2µ + σ2v = σ21.

E
1

N
ε
0
NQ1,NεN = E

1

N
µ
0
N(e

0
TeT ⊗W

0
NWN)µN +

E
1

N
v
0
NQ1,N(IT ⊗W

0
NWN)Q1,NvN

=
T

N
σ2µtr(W

0
NWN) + σ2v

1

N
tr
h
Q1,N(IT ⊗W

0
NWN)

i
=

T

N
σ2µtr(W

0
NWN) + σ2v

1

N
tr

·
JT
T
⊗W

0
NWN

¸
(A.9)

=
T

N
σ2µtr(W

0
NWN) + σ2v

1

N
tr(

JT
T
)tr(W

0
NWN)

=
T

N
σ2µtr(W

0
NWN) + σ2v

1

N
tr(W

0
NWN)

= (Tσ2µ + σ2v)N
−1tr(W

0
NWN)

= σ21N
−1tr(W

0
NWN).

E
1

N
ε
0
NQ1,NεN = E

1

N
µ
0
N(e

0
TeT ⊗W 0

N)µN +

E

·
1

N
v
0
NQ1,N(IT ⊗W

0
N)Q1,NvN

¸
=

T

N
σ2µtr(W

0
N) + σ2v

1

N
tr
h
Q1,N(IT ⊗W

0
N)
i

=
T

N
σ2µtr(W

0
N) + σ2v

1

N
tr

·
JT
T
⊗W

0
N

¸
(A.10)

=
T

N
σ2µtr(W

0
N) + σ2v

1

N
tr(

JT
T
)tr(W

0
N)

=
T

N
σ2µtr(W

0
N) + σ2v

1

N
tr(W

0
N)

= 0.
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Recall from (15) and the definition of PN(ρ) = [IN − ρWN ]
−1, that

Ωu,N(ρ) = [(σ
2
v(IT −

JT
T
) + σ21

JT
T
)⊗ PN(ρ)PN(ρ)

0].

Given Assumption 4 we observe that

(NT )−1ΣNT
i=1Σ

NT
j=1 |ωij,N(ρ)| ≤ Tσ21[(NT )−1ΣN

i=1Σ
N
j=1Σ

N
k=1 |pik,N(ρ)| |pjk,N(ρ)|]

= σ21[N
−1ΣN

k=1Σ
N
i=1 |pik,N(ρ)|ΣN

j=1 |pjk,N(ρ)|]

≤ σ21k
2
p <∞, (A.11)

where ωij,N(ρ) is the (i, j)− th element of Ωu,N(ρ), and pik,N(ρ) and pjk,N(ρ)

are (i, k)−th and (j, k)−th elements of PN(ρ), respectively. This proves that

(NT )−1ΣNT
i=1Σ

NT
j=1 |ωij,N(ρ)| is uniformly bounded, thus limiting the degree of

correlation of the elements of uN .

It proves helpful to introduce the following expressions.

Recall from (12), (31), and the definition of PN(ρ) = [IN − ρWN ]
−1, that

uN = [IT ⊗ (IN − ρWN)
−1]εN = [IT ⊗ PN ]εN ,

uN = (IT ⊗WN)uN = (IT ⊗WNPN)εN , (A.12)

uN = (IT ⊗WN)uN = (IT ⊗W 2
NPN)εN .
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Furthermore, from (33), (A.1), (A.2), (A.6), (A.7) we have

εN = (IT ⊗WN)εN ,

Q0,NεN = Q0,NvN ,

Q0,NεN = (IT ⊗WN)Q0,NvN , (A.13)

Q1,NεN = (eT ⊗ IN)µN +Q1,NvN ,

Q1,NεN = (eT ⊗WN)µN + (IT ⊗WN)Q1,NvN .
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Using the expressions in (A.12), (A.13), (8) and (11) we have

Q0,NuN = Q0,N [IT ⊗ PN ]εN = [IT ⊗ PN ]Q0,NεN = [IT ⊗ PN ]Q0,NvN

=

·
(IT − JT

T
)⊗ PN

¸
vN ,

Q0,NuN = Q0,N(IT ⊗WNPN)εN = (IT ⊗WNPN)Q0,NεN

= (IT ⊗WNPN)Q0,NvN

=

·
(IT − JT

T
)⊗WNPN

¸
vN ,

Q0,NuN = Q0,N(IT ⊗W 2
NPN)εN = (IT ⊗W 2

NPN)Q0,NεN

= (IT ⊗W 2
NPN)Q0,NvN

=

·
(IT − JT

T
)⊗W 2

NPN

¸
vN , (A.14)

Q1,NuN = Q1,N [IT ⊗ PN ]εN = [IT ⊗ PN ]Q1,NεN

= [eT ⊗ PN ]µN + [IT ⊗ PN ]Q1,NvN

= [eT ⊗ PN ]µN +

·
JT
T
⊗ PN

¸
vN ,

Q1,NuN = Q1,N(IT ⊗WNPN)εN = (IT ⊗WNPN)Q1,NεN

= [eT ⊗WNPN ]µN + [IT ⊗WNPN ]Q1,NvN

= [eT ⊗WNPN ]µN +

·
JT
T
⊗WNPN

¸
vN ,

Q1,NuN = Q1,N(IT ⊗W 2
NPN)εN = (IT ⊗W 2

NPN)Q1,NεN

= [eT ⊗W 2
NPN ]µN + [IT ⊗W 2

NPN ]Q1,NvN

= [eT ⊗W 2
NPN ]µN +

·
JT
T
⊗W 2

NPN

¸
vN ,
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Using the expressions in (A.13), (A.14), (8) and (9) we can write the following

moments. These moments will be used later to prove Theorem 2.

Ψ1,N =
1

N(T − 1)u
0
NQ0,NuN =

1

N(T − 1)v
0
NC1,NvN ,

C1,N = (IT − JT
T
)⊗ P

0
NPN ,

Ψ2,N =
1

N(T − 1)u
0
NQ0,NuN =

1

N(T − 1)v
0
NC2,NvN ,

C2,N = (IT − JT
T
)⊗ P

0
NWNPN ,

Ψ3,N =
1

N(T − 1)u
0
NQ0,NuN =

1

N(T − 1)v
0
NC3,NvN ,

C3,N = (IT − JT
T
)⊗ P

0
NW

0
NWNPN , (A.15a)

Ψ4,N =
1

N(T − 1)u
0
NQ0,NuN =

1

N(T − 1)v
0
NC4,NvN ,

C4,N = (IT − JT
T
)⊗ P

0
N(W

0
N)

2WNPN ,

Ψ5,N =
1

N(T − 1)u
0
NQ0,NuN =

1

N(T − 1)v
0
NC5,NvN ,

C5,N = (IT − JT
T
)⊗ P

0
N(W

0
N)

2W 2
NPN ,

Ψ6,N =
1

N(T − 1)u
0
NQ0,NuN =

1

N(T − 1)v
0
NC6,NvN ,

C6,N = (IT − JT
T
)⊗ P

0
NW

2
NPN ,
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Ψ7,N =
1

N
u
0
NQ1,NuN =

T

N
µ
0
N
eC7,NµN + 1

N
v
0
NC7,NvN +

2

N
µ
0
N
bC7,NvN ,

eC7,N = P
0
NPN , C7,N =

JT
T
⊗ P

0
NPN , bC7,N = e0T ⊗ P

0
NPN ,

Ψ8,N =
1

N
u
0
NQ1,NuN =

T

N
µ
0
N
eC8,NµN + 1

N
v
0
NC8,NvN +

2

N
µ
0
N
bC8,NvN ,

eC8,N = P
0
NWNPN , C8,N =

JT
T
⊗ P

0
NWNPN , bC8,N = e0T ⊗ P

0
NWNPN ,

Ψ9, N =
1

N
u0NQ1,NuN =

T

N
µ
0
N
eC9,NµN + 1

N
v
0
NC9,NvN +

2

N
µ
0
N
bC9,NvN ,

eC9,N = P
0
NW

0
NWNPN , C9,N =

JT
T
⊗ P

0
NW

0
NWNPN , (A.15b)

bC9,N = e0T ⊗ P
0
NW

0
NWNPN ,

Ψ10,N =
1

N
u
0
NQ1,NuN =

T

N
µ
0
N
eC10,NµN + 1

N
v
0
NC10,NvN +

2

N
µ
0
N
bC10,NvN ,

eC10,N = P
0
N(W

0
N)

2WNPN , C10,N =
JT
T
⊗ P

0
N(W

0
N)

2WNPN ,

bC10,N = e0T ⊗ P
0
N(W

0
N)

2WNPN ,

Ψ11,N =
1

N
u
0
NQ1,NuN =

T

N
µ
0
N
eC11,NµN + 1

N
v
0
NC11,NvN +

2

N
µ
0
N
bC11,NvN ,

eC11,N = P
0
N(W

0
N)

2W 2
NPN , C11,N =

JT
T
⊗ P

0
N(W

0
N)

2W 2
NPN ,

bC11,N = e0T ⊗ P
0
N(W

0
N)

2W 2
NPN ,

Ψ12,N =
1

N
u
0
NQ1,NuN =

T

N
µ
0
N
eC12,NµN + 1

N
v
0
NC12,NvN +

2

N
µ
0
N
bC12,NvN ,

eC12,N = P
0
NW

2
NPN , C12,N =

JT
T
⊗ P

0
NW

2
NPN , bC12,N = e0T ⊗ P

0
NW

2
NPN ,
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The corresponding quadratic forms are based on predictors of uN , uN and

uN , say euN , euN and euN respectively, where uN , uN and uN are defined in

(5) and (31), respectively, and where euN and euN are defined in (32). The

(i) − th element of uN(t), uN(t), uN(t), euN(t), euN(t), euN(t) are uit,N , uit,N ,
uit,N , euit,N , euit,N , euit,N , respectively. We define

uit,N = ΣN
j=1wij,Nujt,N ,

uit,N = ΣN
j=1wij,Nujt,N = ΣN

j=1wij,NΣ
N
l=1wjl,Nult,N ,

euit,N = ΣN
j=1wij,Neujt,N ,

euit,N = ΣN
j=1wij,N

eujt,N = ΣN
j=1wij,NΣ

N
l=1wjl,Neult,N ,

where wij,N , wjl,N are (i, j)− th and (j, l)− th element of WN , respectively,

and where euit,N , eult,N , eujt,N are predictors for uit,N , ult,N , ujt,N , respectively,
which satisfy Assumption 5. The sample quadratic forms will be denoted by

eΨh,N , for h = 1, . . . , 12.

Lemma 1 Let AN and BN be two square matrices of dimension kN × kN

whose row and column sums are uniformly bounded in absolute value by a

finite constant, say kA and kB, respectively, and where k is some finite positive

integer and N ≥ 1. Define CN = ANBN , then the row and column sums of

93



CN are uniformly bounded in absolute value kAkB.

Furthermore, let EN be a matrix of dimension N ×N, where N ≥ 1, whose

row and column sums are uniformly bounded in absolute value by a finite

constant, say kE. In addition consider a finite matrix D of dimension k ×

l, whose row and column sums are bounded in absolute value by a finite

constant, say kD, where k and l are some finite positive integers. Define

FN = D ⊗ EN , then the row and column sums of FN are uniformly bounded

in absolute value kDkE.

Proof: Consider matrices AN = (aij,kN), BN = (bij,kN), and CN =

(cij,kN) = ANBN , where aij,kN , bij,kN and cij,kN are (i, j) − th element of

matrices AN , BN and CN , respectively. Then

ΣkN
i=1 |aij,kN | ≤ kA,

ΣkN
i=1 |bij,kN | ≤ kB,

ΣkN
i=1 |cij,kN | = ΣkN

i=1Σ
kN
l=1 |ail,kN | |blj,kN |

= ΣkN
l=1 |blj,kN |ΣkN

i=1 |ail,kN | ≤ kAkB.
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Similarly

ΣkN
j=1 |aij,kN | ≤ kA,

ΣkN
j=1 |bij,kN | ≤ kB,

ΣkN
j=1 |cij,kN | = ΣkN

j=1Σ
kN
l=1 |ail,kN | |blj,kN |

= ΣkN
l=1 |ail,kN |ΣkN

j=1 |blj,kN | ≤ kBkA.

For second part of the Lemma consider the matrices D = (dij), EN = (eij,N),

and FN = (fij,N) = D⊗EN , where dij, eij,N and fij,N are (i, j)− th element

of matrices D, EN and FN , respectively. Then

Σl
j=1 |dij| ≤ kD,

Σk
i=1 |dij| ≤ kD,

ΣN
i=1 |eij,N | ≤ kE,

ΣN
j=1 |eij,N | ≤ kE.

Furthermore, let i = (r− 1)N +h, and j = (p− 1)N +x, where r = 1, . . . , k,

h = 1, . . . , N, p = 1, . . . , l and x = 1, . . . , N. Then

ΣkN
i=1 |fij,N | = Σk

r=1 |drp|ΣN
h=1 |ehx,N | ≤ kDkE,

ΣlN
j=1 |fij,N | = Σl

p=1 |drp|ΣN
j=1 |ehx,N | ≤ kDkE.
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Lemma 2 Under Assumption 4 the elements of the matrix Ch,N , for h =

1, . . . , 12, defined above have the following properties:

ΣNT
i=1 |ch,ij| ≤ kc,

ΣNT
j=1 |ch,ij| ≤ kc,

for all N ≥ 1 and where T is a fixed positive integer, and 1 ≤ i, j ≤ NT for

some 0 < kc <∞, where ch,ij is the (i, j)− th element of matrix Ch,N .

Similarly the elements of the matrix eCh,N , for h = 7, . . . , 12, defined above

have the following properties:

ΣN
i=1 |ech,ij| ≤ kec,

ΣN
j=1 |ech,ij| ≤ kec,

for all N ≥ 1 and 1 ≤ i, j ≤ N for some 0 < kec < ∞, where ech,ij is the
(i, j)− th element of matrix eCh,N .

Similarly the elements of the matrix bCh,N , for h = 7, . . . , 12, defined above

have the following properties:

ΣN
i=1 |bch,ij| ≤ kbc,

ΣNT
j=1 |bch,ij| ≤ kbc,

for all N ≥ 1 and where T is a fixed positive integer, and 1 ≤ i, j ≤ NT for

some 0 < kbc <∞, where bch,ij is the (i, j)− th element of matrix bCh,N
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Furthermore,

(NT )−2ΣNT
i=1Σ

NT
j=1(ch,ij + ch,ji)

2 = o(1),

N−2ΣN
i=1Σ

N
j=1(ech,ij + ech,ji)2 = o(1),

N−2ΣN
i=1Σ

NT
j=1bc2h,ij = o(1),

as N →∞.

Proof: By Lemma 1 the row and column sums of the matrices Ch,N , eCh,N

and bCh,N are uniformly bounded. Next observe that the row and column

sums of the matrices Ch,N + C
0
h,N , [Ch,N + C

0
h,N ][Ch,N + C

0
h,N ], eCh,N + eC 0

h,N ,

[ eCh,N+ eC 0
h,N ][

eCh,N+ eC 0
h,N ],

bCh,N
bC 0
h,N are uniformly bounded by 2kc, 4k

2
c , 2kec,

4k2ec and k2bc , respectively. The second claim of the lemma now follows because
(NT )−2ΣNT

i=1Σ
NT
j=1(ch,ij + ch,ji)

2 = (NT )−2Tr{[Ch,N + C
0
h,N ][Ch,N + C

0
h,N ]}

≤ 4k2c
NT
→ 0 as N →∞.

Similarly,

N−2ΣN
i=1Σ

N
j=1(ech,ij + ech,ji)2 = N−2Tr{[ eCh,N + eC 0

h,N ][ eCh,N + eC 0
h,N ]}

≤ 4k2ec
N
→ 0 as N →∞.

Furthermore,

N−2ΣN
i=1Σ

NT
j=1bc2h,ij ≤ k2bc

N
→ 0 as N →∞.
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Lemma 3 44 Let πN = (π1,N , . . . , πNT,N)
0, where πi,N is a real valued random

variable such that for all 1 ≤ i ≤ NT, where T is a fixed positive integer and

N ≥ 1, the real valued random variables πi,N , are identically distributed with

mean zero, finite variance σ2π and κ4 = E(π4i,N) < ∞, where 0 < σ2π < bπ,

and where bπ is a known finite constant. In addition for each N ≥ 1 the real

valued random variables π1,N , . . . , πNT,N are identically and independently

distributed.

Define a quadratic form QN = π0NANπN , where AN is a square matrix of

dimension NT ×NT . Then

EQN = σ2πΣ
NT
i=1aii,N ,

var(QN) = (κ4 − σ4π)Σ
NT
i=1a

2
ii,N + σ4πΣ

NT
i=1Σ

i−1
j=1(aij,N + aji,N)

2,

where aij,N is the (i, j)− th element of AN .

Proof: Observe that

QN = π0NANπN

= ΣNT
i=1Σ

NT
j=1aij,Nπi,Nπj,N ,

= ΣNT
i=1aii,Nπ

2
i,N + ΣNT

i=1Σ
i−1
j=1(aij,N + aji,N)πi,Nπj,N .

44This Lemma has been proved in Kelejian and Prucha (2001).
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In light of the i.i.d. assumption relating to πi,N and also, given thatE(πi,N) =

0, we have

EQN = ΣNT
i=1aii,NE(π

2
i,N) + ΣNT

i=1Σ
i−1
j=1(aij,N + aji,N)E(πi,Nπj,N)

= σ2πΣ
NT
i=1a

2
ii,N .

Next observe that the random variables ΣNT
i=1aii,Nπ

2
i,N and ΣNT

i=1Σ
i−1
j=1(aij,N +

aji,N)πi,Nπj,N have a zero covariance since E(π2i,Nπr,Nπj,N) = 0 unless i =

r = j, which is ruled out. Furthermore, cov(π2i,N , π
2
j,N) = 0, unless i = j,

and cov(πi,Nπj,N , πr,Nπk,N) = 0, unless i = r and j = k, or i = k and j = r,

which is ruled out by the indices of the summation. Therefore,

var(QN) = ΣNT
i=1a

2
ii,Nvar(π

2
i,N) + ΣNT

i=1Σ
i−1
j=1(aij,N + aji,N)

2var(πi,Nπj,N).

Note that

var(π2i,N) = E(π4i,N)− (E(π2i,N))2 = κ4 − σ4π,

var(πi,Nπj,N) = var(πi,N)var(πj,N) = σ4π, when i 6= j.

Therefore,

var(QN) = (κ4 − σ4π)Σ
NT
i=1a

2
ii,N + σ4πΣ

NT
i=1Σ

i−1
j=1(aij,N + aji,N)

2.
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Lemma 4 45 Let ηN = (η1,N , . . . , ηNT,N)
0, where ηi,N is a real valued random

variable such that for all 1 ≤ i ≤ NT, where T is a fixed positive integer and

N ≥ 1, the real valued random variables ηi,N , are identically distributed with

mean zero, finite variance σ2η and Eη
4
i,N <∞, where 0 < σ2η < bη, and where

bη is a known finite constant. In addition for each N ≥ 1 the real valued ran-

dom variables η1,N , . . . , ηNT,N are identically and independently distributed.

Furthermore, let ξN = (ξ1,N , . . . , ξN,N)
0, where ξi,N is a real valued random

variable such that for all 1 ≤ i ≤ N and N ≥ 1, the real valued random

variables ξi,N , are identically distributed with mean zero, finite variance σ
2
ξ

and Eξ4i,N <∞, where 0 < σ2ξ < bξ, and where bξ is a known finite constant.

In addition for each N ≥ 1 the real valued random variables ξ1,N , . . . , ξN,N

are identically and independently distributed. In addition ηN and ξN are in-

dependent of each other.

Define HN = ξ0NBNηN , where BN is a matrix of dimension N × NT, also

where T is a fixed positive integer and N ≥ 1. Then

EHN = 0,

var(HN) = σ2ησ
2
ξΣ

N
i=1Σ

NT
j=1b

2
ij,N .

where bij,N is the (i, j)− th element of BN .

45This Lemma has been proved in Kelejian and Prucha (2001).
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Proof: Note that

HN = ξ0NBNηN = ΣNT
j=1Σ

N
i=1ηj,Nξi,Nbij,N ,

= ΣNT
j=1ηj,NΣ

N
i=1ξi,Nbij,N

Given our assumptions relating to the independence of ηN and ξN and in

light of the i.i.d. assumption relating to ηj,N and ξi,N , we observe that

cov(ηj,NΣ
N
i=1ξi,Nbij,N , ηk,NΣ

N
i=1ξi,Nbik,N , ) = 0 unless j = k. Furthermore, by

noting that Eηj,N = Eξi,N = 0, we have

EHN = ΣNT
j=1E(ηj,N)Σ

N
i=1E(ξi,N)bij,N = 0,

var(HN) = ΣNT
j=1var(ηj,NΣ

N
i=1ξi,Nbij,N)

= ΣNT
j=1var(ηj,N)var(Σ

N
i=1ξi,Nbij,N)

= ΣNT
j=1σ

2
ηΣ

N
i=1σ

2
ξb
2
ij,N

= σ2ησ
2
ξΣ

NT
j=1Σ

N
i=1b

2
ij,N .

Lemma 5 Under Assumptions 1 to 4, the quadratic forms Ψh,N , for h =

1, . . . , 12, have the following properties:

EΨh,N = O(1),

var(Ψh,N) = o(1).
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Therefore,

Ψh,N − EΨh,N
p→ 0, Ψh,N = Op(1).

Proof: In light of Lemma 3, observe that for h = 1, . . . , 6,

EΨh,N =
1

N(T − 1)Ev
0
NCh,NvN

=
1

N(T − 1)σ
2
vΣ

NT
i=1ch,ii,

and

var(Ψh,N) =
1

(N(T − 1))2var(v
0
NCh,NvN)

=
1

(N(T − 1))2 [(ϑv,4 − σ4v)Σ
NT
i=1c

2
h,ii + σ4vΣ

NT
i=1Σ

i−1
j=1(ch,ij + ch,ji)

2],

where ch,ij is the (i, j) − th element of Ch,N , ϑv,4 = Ev4it, since cov(vikvjl,

vrmvsn) = 0 unless i = r, k = m and j = s, l = n, or i = s, k = n and j = r,

l = m; compare, e.g., Kelejian and Prucha (2001). By Lemma 2, the row

and column sums of Ch,N are uniformly bounded in absolute value by some

finite constant, say kc. Hence

|EΨh,N | ≤ 1

N(T − 1)σ
2
vΣ

NT
i=1 |ch,ii|

≤ NT

N(T − 1)σ
2
vkc

≤ T

(T − 1)σ
2
vkc ≤ 2σ2vkc <∞,

since T > 1 but finite, this proves that EΨh,N = O(1).
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Next we observe that

var(Ψh,N) ≤ 1

(N(T − 1))2 [(ϑv,4 − σ4v)Σ
NT
i=1c

2
h,ii + σ4vΣ

NT
i=1Σ

NT
j=1(ch,ij + ch,ji)

2]

≤ (ϑv,4 − σ4v)
NT

(N(T − 1))2k
2
c +

σ4v
(N(T − 1))2Σ

NT
i=1Σ

NT
j=1(ch,ij + ch,ji)

2

≤ (ϑv,4 − σ4v)
T

(T − 1)2
k2c
N
+

T 2

(T − 1)2
σ4v

N2T 2
ΣNT
i=1Σ

NT
j=1(ch,ij + ch,ji)

2.

Given that T > 1 and finite, a sufficient condition for var(Ψh,N) = o(1) is

that the terms k2c
N
and 1

N2T 2
ΣNT
i=1Σ

NT
j=1(ch,ij + ch,ji)

2 on the r.h.s. be o(1) as

N →∞, which holds in light of Lemma 2. The last two claims follow from

Chebychev’s inequality and, for example, corollary 5.1.1.2 in Fuller(1976,

p.186), respectively.

In light of Lemma 3 and 4 given our assumption that µN and vN are

independent, we observe that for h = 7, . . . , 12,

EΨh,N =
T

N
Eµ

0
N
eCh,NµN +

1

N
Ev

0
NCh,NvN +

2

N
Eµ

0
N
bCh,NvN

= Tσ2µN
−1ΣN

i=1ech,ii + σ2vN
−1ΣNT

i=1ch,ii,

and

var(Ψh,N) =
T 2

N2
var(µ

0
N
eCh,NµN) +

1

N2
var(v

0
NCh,NvN) +

4

N2
var(µ

0
N
bCh,NvN)

= T 2N−2[(ϑµ,4 − σ4µ)Σ
N
i=1ec2h,ii + σ4µΣ

N
i=1Σ

i−1
j=1(ech,ij + ech,ji)2]

+N−2[(ϑv,4 − σ4v)Σ
NT
i=1c

2
h,ii + σ4vΣ

NT
i=1Σ

i−1
j=1(ch,ij + ch,ji)

2]

+N−2[4σ2µσ
2
vΣ

N
i=1Σ

NT
j=1bc2h,ij],
103



where ch,ij, ech,ij, bch,ij are the (i, j)− th element of Ch,N , eCh,N , bCh,N , respec-

tively, ϑµ,4 = Eµ4i and ϑν,4 = Ev4it, since cov(µiµj , µrµs) = 0 unless i = r,

and j = s, or i = s, and j = r and cov(vikvjl, vrmvsn) = 0 unless i = r, k = m

and j = s, l = n, or i = s, k = n and j = r, l = m; compare, e.g., Kelejian

and Prucha (2001). By Lemma 2, the row and column sums of eCh,N , Ch,N ,

bCh,N are uniformly bounded in absolute value by some finite constant, kec,
kc and kbc, respectively. Hence, in light of our assumption that µ and v are

independent we observe,

|EΨh,N | ≤ Tσ2µN
−1ΣN

i=1 |ech,ii|+ σ2vN
−1ΣNT

i=1 |ch,ii|

≤ Tσ2µkec + Tσ2vkc <∞,

given that T > 1 and finite, this proves that EΨh,N = O(1).

Next we observe that

var(Ψh,N) ≤ T 2N−2[(ϑµ,4 − σ4µ)Nk2ec + σ4µΣ
N
i=1Σ

N
j=1(ech,ij + ech,ji)2]

+N−2[(ϑv,4 − σ4v)NTk2c + σ4vΣ
NT
i=1Σ

NT
j=1(ch,ij + ch,ji)

2]

+N−2[4σ2µσ
2
vNk2bc ]

= [T 2(ϑµ,4 − σ4µ)
k2ec
N
+ T 2σ4µN

−2ΣN
i=1Σ

N
j=1(ech,ij + ech,ji)2]

+[T (ϑv,4 − σ4v)
k2c
N
+ T 2σ4v(NT )−2ΣNT

i=1Σ
NT
j=1(ch,ij + ch,ji)

2]

+[4σ2µσ
2
v

k2bc
N
]
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Given that T > 1 and finite, a sufficient condition for var(Ψh,N) = o(1) is that

the terms k2ec
N
, k2c
N
,
k2bc
N
, N−2ΣN

i=1Σ
N
j=1(ech,ij +ech,ji)2 and (NT )−2ΣNT

i=1Σ
NT
j=1(ch,ij +

ch,ji)
2 be o(1) as N → ∞, which holds in light of Lemma 2. The last two

claims follow from Chebychev’s inequality and, for example, corollary 5.1.1.2

in Fuller(1976, p.186), respectively.

Lemma 6 Consider random variables υit,N , ωit,N , eυit,N , and eωit,N and as-

sume that

|eυit,N − υit,N | ≤ Dυ
it,Nτ

υ
N , |eωit,N − ωit,N | ≤ Dω

it,Nτ
ω
N ,

where Dυ
it,N , D

ω
it,N , τυN and τωN are,respectively, nonnegative random vari-

ables with

(NT )−1ΣT
t=1Σ

N
i=1(D

υ
it,N)

2 = Op(1),

(NT )−1ΣT
t=1Σ

N
i=1(D

ω
it,N)

2 = Op(1),

and

τυN = op(1),

τωN = op(1).
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Suppose furthermore that

(NT )−1ΣT
t=1Σ

N
i=1υ

2
it,N = Op(1),

(NT )−1ΣT
t=1Σ

N
i=1ω

2
it,N = Op(1).

Then

(NT )−1ΣT
t=1Σ

N
i=1eυit,Neωit,N − (NT )−1ΣT

t=1Σ
N
i=1υit,Nωit,N

p→ 0, as N →∞.

Proof: Observe that

¯̄
(NT )−1ΣT

t=1Σ
N
i=1eυit,Neωit,N − (NT )−1ΣT

t=1Σ
N
i=1υit,Nωit,N

¯̄
≤ (NT )−1ΣT

t=1Σ
N
i=1 |eυit, N − υit, N | |ωit,N |

+(NT )−1ΣT
t=1Σ

N
i=1 |eωit,N − ωit,N | |υit,N |

+(NT )−1ΣT
t=1Σ

N
i=1 |eυit,N − υit,N | |eωit,N − ωit,N |

≤ [(NT )−1ΣT
t=1Σ

N
i=1D

υ
it,N |ωit,N |]τυN

+[(NT )−1ΣT
t=1Σ

N
i=1D

ω
it,N |υit,N |]τωN

+[(NT )−1ΣT
t=1Σ

N
i=1D

υ
it,ND

ω
it,N ]τ

υ
Nτ

ω
N

≤ [(NT )−1ΣT
t=1Σ

N
i=1(D

υ
it,N)

2]1/2[(NT )−1ΣT
t=1Σ

N
i=1ω

2
it,N ]

1/2τυN

+[(NT )−1ΣT
t=1Σ

N
i=1(D

ω
it,N)

2]1/2[(NT )−1ΣT
t=1Σ

N
i=1υ

2
it,N ]

1/2τωN

+[(NT )−1ΣT
t=1Σ

N
i=1(D

υ
it,N)

2]1/2[(NT )−1ΣT
t=1Σ

N
i=1(D

ω
it,N)

2]1/2τυNτ
ω
N .
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The last inequality follows from the above equation and Hölder’s inequality.

Since τυN = op(1) and τωN = op(1), the claim in the lemma follows by observing

that all other terms are bounded in probability.

Lemma 7 Under Assumptions 1 to 5 we have for h = 1, . . . , 12:

eΨh,N −Ψh,N
p→ 0, as N →∞,

where Ψh,N is expressed in (A.15a) and (A.15b). eΨh,N is a sample quadratic

form of Ψh,N which is based on predictors of uN , uN and uN , say euN , euN
and euN respectively, where uN , uN and uN are defined in (5) and (31), re-

spectively, and where euN and euN are defined in (32). The i− th element of

uN(t), uN(t), uN(t), euN(t), euN(t), euN(t) are uit,N , uit,N , uit,N , euit,N , euit,N ,euit,N , respectively. We define
uit,N = ΣN

j=1wij,Nujt,N ,

uit,N = ΣN
j=1wij,Nujt,N = ΣN

j=1wij,NΣ
N
l=1wjl,Nult,N ,

euit,N = ΣN
j=1wij,Neujt,N ,

euit,N = ΣN
j=1wij,N

eujt,N = ΣN
j=1wij,NΣ

N
l=1wjl,Neult,N ,

where wij,N , wjl,N are (i, j)− th and (j, l)− th element of WN , respectively,

and where euit,N , eult,N , eujt,N are predictors for uit,N , ult,N , ujt,N , respectively,
which satisfy Assumption 5.
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Proof: It will prove useful to introduce the following expressions:

ϕN = Q0,NuN ,

ϕN = (IT ⊗WN)ϕN = (IT ⊗WN)Q0,NuN ,

ϕN = (IT ⊗WN)ϕN = (IT ⊗W 2
N)ϕN = (IT ⊗W 2

N)Q0,NuN ,

ψN = Q1,NuN , (A.16)

ψN = (IT ⊗WN)ψN = (IT ⊗WN)Q1,NuN ,

ψN = (IT ⊗WN)ψN = (IT ⊗W 2
N)ψN = (IT ⊗W 2

N)Q1,NuN .

In light of (A.16), (11) and (31) we have

ϕN = (IT ⊗WN)Q0,NuN = Q0,N(IT ⊗WN)uN = Q0,NuN ,

ϕN = (IT ⊗W 2
N)Q0,NuN = Q0,N(IT ⊗W 2

N)uN = Q0,NuN ,

ψN = (IT ⊗WN)Q1,NuN = Q1,N(IT ⊗WN)uN = Q1,NuN , (A.17)

ψN = (IT ⊗W 2
N)Q1,NuN = Q1,N(IT ⊗W 2

N)uN = Q1,NuN .

The i− th element of ϕN(t), ϕN(t), ϕN(t), ψN(t), ψN(t), ψN(t), respectively,
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in expressions (A.16) and (A.17) are,

ϕit,N = uit,N − 1

T
ΣT
s=1uis,N ,

ϕit,N = uit,N − 1

T
ΣT
s=1uis,N ,

ϕit,N = uit,N − 1

T
ΣT
s=1uis,N ,

ψit,N =
1

T
ΣT
s=1uis,N , (A.18)

ψit,N =
1

T
ΣT
s=1uis,N ,

ψit,N =
1

T
ΣT
s=1uis,N .

Furthermore,

uit,N = ΣN
j=1wij,Nujt,N , (A.19)

uit,N = ΣN
j=1wij,Nujt,N = ΣN

j=1wij,NΣ
N
l=1wjl,Nult,N ,

where ujt,N is the j− th element of uN(t) and wij,N is the (i, j)− th element

of WN .

Premultiplying the quadratic forms in (A.15a) and (A.15b) by T
T
and
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rewriting the expressions using (A.16) and (A.17) into scalar notation yields

Ψ1,N =
T

T − 1(NT )−1ϕ0NϕN =
T

T − 1(NT )−1ΣT
t=1Σ

N
i=1ϕ

2
it,N ,

Ψ2,N =
T

T − 1(NT )−1ϕ0NϕN =
T

T − 1(NT )−1ΣT
t=1Σ

N
i=1ϕit,Nϕit,N ,

Ψ3,N =
T

T − 1(NT )−1ϕ0NϕN =
T

T − 1(NT )−1ΣT
t=1Σ

N
i=1ϕ

2
it,N ,

Ψ4,N =
T

T − 1(NT )−1ϕ0NϕN =
T

T − 1(NT )−1ΣT
t=1Σ

N
i=1ϕit,Nϕit,N ,

Ψ5,N =
T

T − 1(NT )−1ϕ0NϕN =
T

T − 1(NT )−1ΣT
t=1Σ

N
i=1ϕ

2
it,N ,

Ψ6,N =
T

T − 1(NT )−1ϕ0NϕN =
T

T − 1(NT )−1ΣT
t=1Σ

N
i=1ϕit,Nϕit,N ,

Ψ7, N = T (NT )−1ψ0NψN = T (NT )−1ΣT
t=1Σ

N
i=1ψ

2
it,N , (A.20)

Ψ8, N = T (NT )−1ψ0NψN = T (NT )−1ΣT
t=1Σ

N
i=1ψit,Nψit,N ,

Ψ9, N = T (NT )−1ψ
0
NψN = T (NT )−1ΣT

t=1Σ
N
i=1ψ

2

it,N ,

Ψ10, N = T (NT )−1ψ
0
NψN = T (NT )−1ΣT

t=1Σ
N
i=1ψit,Nψit,N ,

Ψ11, N = T (NT )−1ψ
0
NψN = T (NT )−1ΣT

t=1Σ
N
i=1ψ

2

it,N ,

Ψ12, N = T (NT )−1ψ0NψN = T (NT )−1ΣT
t=1Σ

N
i=1ψit,Nψit,N ,

where ϕit,N , ϕit,N , ϕit,N , ψit,N , ψit,N , ψN are the i − th element of ϕN(t),

ϕN(t), ϕN(t), ψN(t), ψN(t), ψN(t), respectively

In the following let eϕN , eϕN ,
eϕN , eψN ,

eψN ,
e
ψN be predictors of ϕN , ϕN ,

ϕN , ψN , ψN , ψN , which are based on euN , euN , euN , where euN , euN , euN are

predictors of uN , uN , uN , respectively, which are defined above. Following
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our convention, the i − th element of eϕN(t), eϕN(t),
eϕN(t), eψN(t),

eψN(t),e
ψN(t) will be denoted by eϕit,N , eϕit,N ,

eϕit,N , eψit,N ,
eψit,N ,

e
ψit,N , respectively.

To prove the lemma we verify that for each of the quadratic forms in

(A.15a) and (A.15b) and reexpressed in scalar notation in (A.20), the as-

sumptions maintained in Lemma 6 w.r.t. the respective variables are satis-

fied. Since T > 1 and finite, the terms T/(T − 1) and T are finite constants

and can be ignored in our arguments.

We first verify that ϕit,N , ϕit,N , ϕit,N , ψit,N , ψit,N , and ψit,N satisfy con-

ditions maintained for υit,N and ωit,N in Lemma 6. Since Ψh,N = Op(1) by

Lemma 5, for h = 1, . . . , 12, therefore, it follows from (A.20) that

(NT )−1ΣN
i=1Σ

T
t=1ϕ

2
it,N = Op(1),

(NT )−1ΣN
i=1Σ

T
t=1ϕ

2
it,N = Op(1),

(NT )−1ΣN
i=1Σ

T
t=1ϕ

2
it,N , = Op(1), (A.21)

(NT )−1ΣN
i=1Σ

T
t=1ψ

2
it,N = Op(1),

(NT )−1ΣN
i=1Σ

T
t=1ψ

2

it,N = Op(1),

(NT )−1ΣN
i=1Σ

T
t=1ψ

2

it,N , = Op(1).

We next show that ϕit,N , ϕit,N , ϕit,N , ϕit,N , ϕit,N , ϕit,N and their predic-

tors eϕit,N , eϕit,N ,
e
ψit,N , eψit,N , eϕit,N ,

e
ψit,N satisfy the remaining conditions in
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Lemma 6 for υit,N and ωit,N and their predictors, eυit,N and eωit,N . Analogous

to (A.18) we have

eϕit,N = euit,N − 1

T
ΣT
s=1euis,N ,

eϕit,N = euit,N − 1

T
ΣT
s=1
euis,N ,

eϕit,N = euit,N − 1

T
ΣT
s=1
euis,N , (A.22)

eψit,N =
1

T
ΣT
s=1euis,N ,

eψit,N =
1

T
ΣT
s=1
euis,N ,e

ψit,N =
1

T
ΣT
s=1
euis,N .

Furthermore, analogous to (A.19), we have

euit,N = ΣN
j=1wij,Neujt,N , (A.23)

euit,N = ΣN
j=1wij,N

eujt,N = ΣN
j=1wij,NΣ

N
l=1wjl,Neult,N .

Recall that by Assumption 5,

|euit,N − uit,N | ≤ ||dit,N || k∆Nk , (A.24)

where (NT )−1ΣT
t=1Σ

N
i=1 kdit,Nk2+δ = Op(1) for some δ > 0 and N1/2 k∆Nk =

Op(1). Then, by Holder’s inequality with q = 2+ δ, δ > 0, and 1
q
+ 1

p
= 1 we
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have

¯̄
ϕit,N − eϕit,N

¯̄
=

¯̄̄̄
uit,N − euit,N − 1

T
ΣT
s=1(uis,N − euis,N)¯̄̄̄

≤ |uit,N − euit,N |+ 1

T
ΣT
s=1 |uis,N − euis,N |

≤ 2ΣT
s=1 |uis,N − euis,N |

≤ 2 ||∆N ||ΣT
s=1 kdis,Nk

≤ 2 ||∆N || [ΣT
s=1 |1|p]1/p[ΣT

s=1 ||dis,N ||q]1/q (A.25)

≤ 2 ||∆N ||T 1/p[ΣT
s=1Σ

N
i=1 ||dis,N ||q]1/q

= 2 ||∆N ||T 1/p[(NT )−1ΣT
s=1Σ

N
i=1 ||dis,N ||q]1/q(NT )1/q

= 2TN1/q ||∆N || [(NT )−1ΣT
s=1Σ

N
i=1 ||dis,N ||q]1/q

= DNτN ,

where DN = [(NT )−1ΣT
s=1Σ

N
i=1 ||dis,N ||q]1/q, and τN = 2TN

1/q ||∆N ||

= 2TN−δ/[2(2+δ)]N1/2 ||∆N || . Given that T > 1 and finite, and by Assump-

tion 5, DN = Op(1), and τN = op(1). Therefore, ϕit,N and eϕit,N satisfy the

properties maintained for υit and eυit in Lemma 6.
Next observe that by Assumption 4 we have

ΣN
j=1 |wij,N |p = kp−1w ΣN

j=1 |wij,N | [
¯̄̄̄
wij,N

kw

¯̄̄̄p−1
] ≤ kp−1w ΣN

j=1 |wij,N |] ≤ kpw.

(A.26)

Recall the expressions for ϕit,N , uit,N , eϕit, N and euit,N given in (A.18), (A.19),
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(A.22) and (A.23), and the inequality (A.24). Then by the triangle and

Holder inequalities with q = 2 + δ, δ > 0, and 1
q
+ 1

p
= 1, as well as (A.26)

yields

¯̄̄eϕit,N − ϕit,N

¯̄̄
=

¯̄̄̄euit,N − uit,N − 1

T
ΣT
s=1(euis,N − uis,N)

¯̄̄̄
≤

¯̄̄euit,N − uit,N

¯̄̄
+
1

T
ΣT
s=1

¯̄̄euis,N − uis,N

¯̄̄
≤ 2ΣT

s=1

¯̄̄euis,N − uis,N

¯̄̄
= 2ΣT

s=1Σ
N
j=1 |wij,N | |eujs,N − ujs,N |

≤ 2 k∆NkΣT
s=1Σ

N
j=1 |wij,N | ||djs,N ||

≤ 2 ||∆N || [ΣT
s=1Σ

N
j=1 |wij,N |p]1/p ∗ (A.27)

[ΣT
s=1Σ

N
j=1 ||djs,N ||q]1/q

= 2 ||∆N || [TΣN
j=1 |wij,N |p]1/p ∗

[(NT )−1ΣT
s=1Σ

N
j=1 ||djs,N ||q]1/q(NT )1/q

≤ 2TN1/q ||∆N || kw ∗

[(NT )−1ΣT
s=1Σ

N
j=1 ||djs,N ||q]1/q

= DNτN ,

where DN = [(NT )−1ΣT
s=1Σ

N
j=1 ||djs, N ||q]1/q,and τN = 2TkwN

1/q ||∆N ||

= 2TkwN
−δ/[2(2+δ)]N1/2 ||∆N || . It now follows immediately from Assumption
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5 and given that T > 1 and finite, that DN = Op(1) and τN = op(1).

Therefore, ϕit,N and eϕit,N also satisfy the properties maintained for υit and

eυit in Lemma 6.
Now recall the expressions for ϕit,N , uit,N ,

eϕit, N and
euit,N given in (A.18),

(A.19), (A.22) and (A.23), and the inequality (A.24). Then by the triangle

and Holder inequalities with q = 2 + δ, δ > 0, and 1
q
+ 1

p
= 1, as well as
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(A.26) yields

¯̄̄eϕit,N − ϕit,N

¯̄̄
=

¯̄̄̄euit,N − uit,N − 1

T
ΣT
s=1(

euis,N − uis,N)

¯̄̄̄
≤

¯̄̄euit,N − uit,N

¯̄̄
+
1

T
ΣT
s=1

¯̄̄euis,N − uis,N

¯̄̄
≤ 2ΣT

s=1

¯̄̄euis,N − uis,N

¯̄̄
= 2ΣT

s=1Σ
N
j=1 |wij,N |ΣN

l=1 |wjl,N | |euls,N − uls,N |

≤ 2 ||∆N ||ΣT
s=1Σ

N
j=1 |wij,N |ΣN

l=1 |wjl,N | ||dls,N ||

= 2 ||∆N ||ΣN
j=1 |wij,N |ΣT

s=1Σ
N
l=1 |wjl,N | ||dls,N || (A.28)

≤ 2 ||∆N ||ΣN
j=1 |wij,N |

£
ΣT
s=1Σ

N
l=1 |wjl,N |p

¤1/p ∗£
ΣT
s=1Σ

N
l=1 ||dls,N ||q

¤1/q
≤ 2 ||∆N ||ΣN

j=1 |wij,N |
£
TΣN

l=1 |wjl,N |p
¤1/p ∗£

(NT )−1ΣT
s=1Σ

N
l=1 ||dls,N ||q

¤1/q
(NT )1/q

≤ 2TN1/q ||∆N ||ΣN
j=1 |wij,N | kw ∗£

(NT )−1ΣT
s=1Σ

N
l=1 ||dls,N ||q

¤1/q
≤ 2TN1/q ||∆N || k2w

£
(NT )−1ΣT

s=1Σ
N
l=1 ||dls,N ||q

¤1/q
= DNτN ,

where DN = [(NT )−1ΣT
s=1Σ

N
l=1 ||dls,N ||q]1/q and τN = 2Tk

2
wN

1/q ||∆N ||

= 2Tk2wN
−δ/[2(2+δ)]N1/2 ||∆N ||. Again, it follows immediately from Assump-
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tion 5 and given that T > 1 and finite, that DN = Op(1) and τN = op(1).

Therefore, ϕit,N and
eϕit,N also satisfy the properties maintained for υit and

eυit in Lemma 6.
Recall the expressions for ψit,N , eψit,N , given in (A.18), (A.22), and the

inequality (A.24). Then using the triangle and Holder inequalities with q =

2 + δ, δ > 0, and 1
q
+ 1

p
= 1, yields

¯̄̄
ψit,N − eψit,N

¯̄̄
=

¯̄̄̄
1

T
ΣT
s=1(uis,N − euis,N)¯̄̄̄

≤ 1

T
ΣT
s=1 |uis N − euis,N |

≤ 1

T
||∆N ||ΣT

s=1 kdis,Nk

≤ 1

T
||∆N || [ΣT

s=1 |1|p]1/p[ΣT
s=1 ||dis,N ||q]1/q (A.29)

≤ 1

T
||∆N ||T 1/p[ΣT

s=1Σ
N
i=1 ||dis,N ||q]1/q

=
1

T
||∆N ||T 1/p[(NT )−1ΣT

s=1Σ
N
i=1 ||dis,N ||q]1/q(NT )1/q

≤ N1/q ||∆N || [(NT )−1ΣT
s=1Σ

N
i=1 ||dis,N ||q]1/q

= DNτ
∗
N ,

with DN = [(NT )−1ΣT
s=1Σ

N
i=1 ||dis,N ||q]1/q, and τ ∗N = N1/q ||∆N ||

= N−δ/[2(2+δ)]N1/2 ||∆N || . By Assumption 5, DN = Op(1), and τ ∗N = op(1).

Therefore, ψit,N and eψit,N satisfy the properties maintained for υit and eυit in
Lemma 6.
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Recall the expressions for ψit,N , uit,N ,
eψit,N and eψit,N given in (A.18),

(A.19), (A.22) and (A.23), and the inequality (A.24). Then by the triangle

and Holder inequalities with q = 2 + δ, δ > 0, and 1
q
+ 1

p
= 1, as well as

(A.26) yields

¯̄̄eψit,N − ψit,N

¯̄̄
=

¯̄̄̄
1

T
ΣT
s=1(euis,N − uis,N)

¯̄̄̄
≤ 1

T
ΣT
s=1

¯̄̄euis,N − uis,N

¯̄̄
=

1

T
ΣT
s=1Σ

N
j=1 |wij,N | |eujs,N − ujs,N |

≤ 1

T
k∆NkΣT

s=1Σ
N
j=1 |wij,N | ||djs,N || (A.30)

≤ 1

T
||∆N || [ΣT

s=1Σ
N
j=1 |wij,N |p]1/p[ΣT

s=1Σ
N
j=1 ||djs,N ||q]1/q

=
1

T
||∆N || [TΣN

j=1 |wij,N |p]1/p ∗

[(NT )−1ΣT
s=1Σ

N
j=1 ||djs,N ||q]1/q(NT )1/q

≤ N1/q ||∆N || kw ∗

[(NT )−1ΣT
s=1Σ

N
j=1 ||djs,N ||q]1/q

= DNτ
∗
N ,

where DN = [(NT )−1ΣT
s=1Σ

N
j=1 ||djs,N ||q]1/q,and τ ∗N = kwN

1/q ||∆N ||

= kwN
−δ/[2(2+δ)]N1/2 ||∆N || . It now follows immediately from Assumption 5

that DN = Op(1) and τ ∗N = op(1). Therefore, ψit,N and
eψit,N also satisfy the
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properties maintained for υit and eυit in Lemma 6.
Now recall the expressions for ψit,N , uit,N ,

e
ψit,N and

euit,N given in (A.18),
(A.19), (A.22) and (A.23), and the inequality (A.24). Then by the triangle

and Holder inequalities with q = 2 + δ, δ > 0, and 1
q
+ 1

p
= 1, as well as
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(A.26) yields

¯̄̄̄e
ψit,N − ψit,N

¯̄̄̄
=

¯̄̄̄
1

T
ΣT
s=1(

euis,N − uis,N)

¯̄̄̄
≤ 1

T
ΣT
s=1

¯̄̄euis,N − uis,N

¯̄̄
=

1

T
ΣT
s=1Σ

N
j=1 |wij,N |ΣN

l=1 |wjl,N | |euls,N − uls,N |

≤ 1

T
||∆N ||ΣT

s=1Σ
N
j=1 |wij,N |ΣN

l=1 |wjl,N | ||dls,N ||

=
1

T
||∆N ||ΣN

j=1 |wij,N |ΣT
s=1Σ

N
l=1 |wjl,N | ||dls,N ||

≤ 1

T
||∆N ||ΣN

j=1 |wij,N |
£
ΣT
s=1Σ

N
l=1 |wjl,N |p

¤1/p ∗£
ΣT
s=1Σ

N
l=1 ||dls,N ||q

¤1/q
(A.31)

≤ 1

T
||∆N ||ΣN

j=1 |wij,N |
£
TΣN

l=1 |wjl,N |p
¤1/p ∗£

(NT )−1ΣT
s=1Σ

N
l=1 ||dls,N ||q

¤1/q
(NT )1/q

≤ 1

T
(NT )1/q ||∆N ||ΣN

j=1 |wij,N |T 1/pkw ∗£
(NT )−1ΣT

s=1Σ
N
l=1 ||dls,N ||q

¤1/q
≤ N1/q ||∆N || k2w ∗£

(NT )−1ΣT
s=1Σ

N
l=1 ||dls,N ||q

¤1/q
= DNτ

∗
N ,

where DN = [(NT )−1ΣT
s=1Σ

N
l=1 ||dls,N ||q]1/q and τ

∗
N = k2wN

1/q ||∆N ||

= k2wN
−δ/[2(2+δ)]N1/2 ||∆N ||. Again, it follows immediately from Assumption
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5 that DN = Op(1) and τ
∗
N = op(1). Therefore, ψit,N and

e
ψit,N also satisfy

the properties maintained for υit and eυit in Lemma 6.
Having verified that all variables involved in the quadratic forms in (A.15)

considered in Lemma 7 satisfy the conditions of Lemma 6, then Lemma 7

follows from Lemma 6.

The proof of Theorem 2 requires a central limit theorem (CLT) for tri-

angular arrays. The CLT follows directly from a corollary to the Lindeberg-

Feller CLT for triangular arrays using the Cramer-Wold device. That corol-

lary is, for example, given in Billingsley (1995, problem 27.6, pg. 368).

Theorem A46. Let {νi,N , 1 ≤ i ≤ NT,N ≥ 1} be a triangular array of

random variables, where T is a fixed positive finite integer, that are identically

distributed, and for each N ≥ 1 (jointly) independent, with Eνi,N = 0

and Eν2i,N = σ2, 0 < σ2 < ∞. Let {zij,N , 1 ≤ i ≤ NT,N ≥ 1}, j =

1, . . . , K, be a triangular array of real numbers, where T is a fixed positive

finite integer, that are uniformly bounded in absolute value, that is, kz =

supNT supi ≤ NT, j ≤ K |zij, N | <∞. Furthermore, consider {VN : N ≥ 1} and

{ZN : N ≥ 1}, where VN = (νi,N)i=1,...,NT and ZN = (zij,N)i=1,...,NT ; j=1,...,K

denote the corresponding sequences of NT × 1 random vectors and NT ×K

46A similar theorem has been used in Kelejian and Prucha (1999).
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real matrices, respectively. Let

lim
N→∞

(NT )−1Z 0NZN = Q,

be finite and positive definite. Then

(NT )−1/2Z 0NVN
D→ N(0, σ2Q).

Proof of Theorem 1. To prove part (a) of the theorem observe that

(NT )1/2[bβGLS,N − β] = [(NT )−1Z 0NΩ
−1
ε,NZN ]

−1(NT )−1/2Z 0NΩ
−1
ε,NεN ,

where bβGLS,N is defined in (23) and ZN = [IT ⊗ (IN − ρWN)]XN . Note that

in general the elements of ZN will depend on the sample size. Furthermore,

under our maintained assumptions the elements of ZN are uniformly bounded

in absolute value by (1 + kw)kx.

Recall from (17) that

Ω−1ε,N = σ−21 Q1,N + σ−2v Q0,N . (A.32)

Therefore,

lim
N→∞

(NT )−1Z 0NΩ
−1
ε,NZN = lim

N→∞
(NT )−1[σ−2v Z 0NQ0,NZN +

σ−21 Z 0NQ1,NZN ]

= σ−2v Q
xQ0x

(ρ) + σ−21 Q
xQ1x

(ρ),
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where Q
xQ0x

(ρ) and Q
xQ1x

(ρ) are defined in Assumption 3, and are finite and

nonsingular.

Recall from (6) that

εN = (eT ⊗ IN)µN + vN .

Furthermore, by Assumption 1 the error terms, v11,N , . . . , vN1,N , . . . , v1T,N ,

. . . , vNT,N are identically and independently distributed and for each N ≥ 1

jointly independent with mean zero and finite variance σ2v. Similarly the error

terms, µ1,N , . . . , µN,N are identically and independently distributed and for

each N ≥ 1 jointly independent with mean zero and finite variance σ2µ. In

addition, the two processes {vit,N} and {µi,N} are independent of each other.

Now we express

(NT )−1/2Z 0NΩ
−1
ε,NεN = (NT )−1/2Z 0NΩ

−1
ε,N(eT ⊗ IN)µN + (NT )−1/2Z 0Ω−1ε,NvN .
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Using the definitions of Q1,N and Q0,N in (8) we have

Q0,N(eT ⊗ IN) = ((IT − JT
T
)⊗ IN)(eT ⊗ IN)

= (IT − JT
T
)eT ⊗ IN

= (eT − eT )⊗ IN = 0, (A.33)

Q1,N(eT ⊗ IN) = (
JT
T
⊗ IN)(eT ⊗ IN)

= (
JT
T
eT ⊗ IN)

= (eT ⊗ IN).

Using the results in (A.32) and (A.33) we express

(NT )−1/2Z 0NΩ
−1
ε,N(eT ⊗ IN)µN = (NT )−1/2Z 0Nσ

−2
1 (eT ⊗ IN)µN .

Next by Assumption 3 and (8) observe that

lim
N→∞

(NT )−1σ−41 Z 0N(eTe
0
T ⊗ IN)ZN = lim

N→∞
(NT )−1Tσ−41 Z 0N(

eTe
0
T

T
⊗ IN)ZN

= lim
N→∞

(NT )−1Tσ−41 Z 0NQ1,NZN

= Tσ−41 Q
xQ1x

(ρ),

lim
N→∞

(NT )−1Z 0NΩ
−2
ε,NZN = lim

N→∞
(NT )−1σ−41 Z 0NQ1,NZN +

lim
N→∞

(NT )−1σ−4v Z 0NQ0,NZN

= σ−41 Q
xQ1x

(ρ) + σ−4v Q
xQ0x

(ρ).
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Then by Theorem A

(NT )−1/2Z 0NΩ
−1
ε,N(eT ⊗ IN)µN

D→ N{0, σ2µ[Tσ−41 Q
xQ1x

(ρ)]},

(NT )−1/2Z 0NΩ
−1
ε,NvN

D→ N{0, σ2v[σ−41 Q
xQ1x

(ρ) + σ−4v Q
xQ0x

(ρ)]}.

where Q
xQ1x

(ρ) and Q
xQ0x

(ρ) are defined in Assumption 3. Given σ21 =

σ2v+Tσ2µ and by Assumption 1 that the two processes {µi,N} and {vit,N} are

independent of each other, it then follows that

(NT )−1/2Z 0NΩ
−1
ε,NεN = (NT )−1/2Z 0NΩ

−1
ε,N(eT ⊗ IN)µN + (NT )−1/2Z 0Ω−1ε,NvN

D→ [N {0, [σ2µ(Tσ−41 Q
xQ1x

(ρ))]}+ (A.34)

N{0, [σ2v(σ−41 Q
xQ1x

(ρ) + σ−4v Q
xQ0x

(ρ))]}]

= N {0, [(Tσ2µ + σ2v)σ
−4
1 Q

xQ1x
(ρ) + σ−2v Q

xQ0x
(ρ)]}

= N {0, [σ−21 Q
xQ1x

(ρ) + σ−2v Q
xQ0x

(ρ)]}.

By Assumption 3 and (A.32)

lim
N→∞

(NT )−1Z 0NΩ
−1
ε,NZN = lim

N→∞
(NT )−1[σ−2v Z 0NQ0,NZN +

σ−21 Z 0NQ1,NZN ] (A.35)

= σ−2v Q
xQ0x

(ρ) + σ−21 Q
xQ1x

(ρ),
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then it follows from (A.34) and (A.35) that47

[ lim
N→∞

(NT )−1Z 0NΩ
−1
ε,NZN ]

−1(NT )−1/2Z 0NΩ
−1
ε,NεN

= [σ−2v Q
xQ0x

(ρ) + σ−21 Q
xQ1x

(ρ)]−1 ∗

(NT )−1/2Z 0NΩ
−1
ε,NεN (A.36)

D→ N {0, [σ−21 Q
xQ1x

(ρ) +

σ−2v Q
xQ0x

(ρ)]−1}.

Therefore,

(NT )1/2[bβGLS,N − β]
D→ N {0, [σ−21 Q

xQ1x
(ρ) + σ−2v Q

xQ0x
(ρ)]−1},

which also implies that bβGLS,N is a consistent estimator of β.
We prove part (b) of the theorem by showing that

(NT )1/2[bβGLS,N − bβFGLS,N ] p→ 0 as N →∞.

To prove this it suffices to show that48

(NT )−1X
0{[IT ⊗ (IN − bρNW 0

N)]bΩ−1ε,N [IT ⊗ (IN − bρNWN)]−

[IT ⊗ (IN − ρW 0
N)]Ω

−1
ε,N [IT ⊗ (IN − ρWN)]}X p→ 0, (A.37)

47See Greene Ch. 12 Pg. 501-502, 2000.
48See Schmidt, pg. 71, 1976.
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and

(NT )−1/2X
0
N{[IT ⊗ (IN − bρNW 0

N)]bΩ−1ε, N [IT ⊗ (IN − bρNWN)]−

[IT ⊗ (IN − ρW 0
N)]Ω

−1
ε, N [IT ⊗ (IN − ρWN)]}uN p→ 0, (A.38)

where bΩ−1ε,N = bσ−21,NQ1,N + bσ−2v,NQ0,N and bσ−21,N and bσ−2v,N are consistent estima-
tors of σ−21 and σ−2v , respectively.

Using the above expressions for Ω−1ε,N and bΩ−1ε,N and by (11) we get
[IT ⊗ (IN − bρNW 0

N)]bΩ−1ε,N [IT ⊗ (IN − bρNWN)]−

[IT ⊗ (IN − ρW 0
N)]Ω

−1
ε,N [IT ⊗ (IN − ρWN)]

= [IT ⊗ (IN − bρNW 0
N)(IN − bρNWN)]bΩ−1ε,N −

[IT ⊗ (IN − ρW 0
N)(IN − ρWN)]Ω

−1
ε,N (A.39)

= [IT ⊗ (IN − bρNW 0
N)(IN − bρNWN)]bΩ−1ε,N −

[IT ⊗ (IN − ρW 0
N)(IN − ρWN)]bΩ−1ε,N +

[IT ⊗ (IN − ρW 0
N)(IN − ρWN)]bΩ−1ε,N −

[IT ⊗ (IN − ρW 0
N)(IN − ρWN)]Ω

−1
ε,N

= [IT ⊗ [−(bρN − ρ)(W 0
N +WN) + (bρ2N − ρ2)W 0

NWN ]](bσ−21,NQ1,N + bσ−2v,NQ0,N) +

[IT ⊗ (IN − ρW 0
N)(IN − ρWN)][(bσ−21,N − σ−21 )Q1,N + (bσ−2v,N − σ−2v )Q0,N ].
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Using (A.39) in (A.37) and (A.38) we have

(NT )−1X
0{[IT ⊗ (IN − bρNW 0

N)]bΩ−1ε,N [IT ⊗ (IN − bρNWN)]

−[IT ⊗ (IN − ρW 0
N)]Ω

−1
ε,N [IT ⊗ (IN − ρWN)]}X (A.40)

= −(bρN − ρ)(NT )−1X
0{[IT ⊗ (W 0

N +WN)][bσ−21, NQ1,N + bσ−2v, NQ0,N ]}X +

(bρ2N − ρ2)(NT )−1X
0{[IT ⊗ (W 0

NWN)][bσ−21, NQ1,N + bσ−2v, NQ0,N ]}X +

(bσ−21, N − σ−21 )(NT )−1X
0{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q1,N}X +

(bσ−2v, N − σ−2v )(NT )−1X
0{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q0,N}X,

and

(NT )−1/2X
0
N{[IT ⊗ (IN − bρNW 0

N)]bΩ−1ε,N [IT ⊗ (IN − bρNWN)]−

[IT ⊗ (IN − ρW 0
N)]Ω

−1
ε,N [IT ⊗ (IN − ρWN)]}uN (A.41)

= −(bρN − ρ)(NT )−1/2X
0
N{[IT ⊗ (W 0

N +WN)][bσ−21,NQ1,N + bσ−2v,NQ0,N ]}uN +

(bρ2N − ρ2)(NT )−1/2X
0
N{[IT ⊗ (W 0

NWN)][bσ−21,NQ1,N + bσ−2v,NQ0,N ]}uN +

(bσ−21,N − σ−21 )(NT )−1/2X
0
N{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q1,N}uN +

(bσ−2v,N − σ−2v )(NT )−1/2X
0
N{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q0,N}uN .

Next we note that under our maintained assumptions the elements of XN ,

WN , Q0,N and Q1,N are uniformly bounded in absolute value by kx, kw, 1, 1,
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respectively. It then follows from Lemma 1 that the elements of

(NT )−1X
0
N{[IT ⊗ (W 0

N +WN)]Q1,N}XN ,

(NT )−1X
0
N{[IT ⊗ (W 0

N +WN)]Q0,N}XN ,

(NT )−1X
0
N{[IT ⊗ (W 0

NWN)]Q1,N}XN ,

(NT )−1X
0
N{[IT ⊗ (W 0

NWN)]Q0,N}XN ,

(NT )−1X
0
N{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q1,N}XN ,

(NT )−1X
0
N{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q0,N}XN ,

are uniformly bounded in absolute value by 2k2xkw, 2k
2
xkw, k

2
xk
2
w, k

2
xk
2
w, k

2
x(1+

kw)
2, k2x(1 + kw)

2, respectively. Condition (A.37) then follows from (A.40),

since bρN , bσ2v,N and bσ21,N are consistent estimators of ρ, σ2v and σ21, respectively.
Next consider the following expressions in (A.41):

δ1,N = (NT )−1/2X
0
N{[IT ⊗ (W 0

N +WN)]Q1,N}uN ,

δ2,N = (NT )−1/2X
0
N{[IT ⊗ (W 0

N +WN)]Q0,N}uN ,

δ3,N = (NT )−1/2X
0
N{[IT ⊗ (W 0

N +WN)]Q1,N}uN , (A.42)

δ4,N = (NT )−1/2X
0
N{[IT ⊗ (W 0

N +WN)]Q0,N}uN ,

δ5,N = (NT )−1/2X
0
N{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q1,N}uN ,

δ6,N = (NT )−1/2X
0
N{[IT ⊗ (IN − ρW 0

N)(IN − ρWN)]Q0,N}uN .
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It is evident that Eδi,N = 0, for i = 1, . . . , 6. Using (7), (13) and PN(ρ) =

[IN − ρWN ]
−1 the variance-covariance matrix of δi,N for i = 1, . . . , 6 is

Eδi,Nδ
0
i,N = (NT )−1X

0
NΦiXN i = 1, . . . , 6

where

Φ1 = σ21{IT ⊗ [(W 0
N +WN)PN(ρ)PN(ρ)

0(WN +W 0
N)]}Q1,N ,

Φ2 = σ2v{IT ⊗ [(W 0
N +WN)PN(ρ)PN(ρ)

0(WN +W 0
N)]}Q0,N ,

Φ3 = σ21{IT ⊗ [(W 0
NWN)PN(ρ)PN(ρ)

0(WNW
0
N)]}Q1,N ,

Φ4 = σ2v{IT ⊗ [(W 0
NWN)PN(ρ)PN(ρ)

0(WNW
0
N)]}Q0,N ,

Φ5 = σ21(
JT
T
⊗ IN) = σ21Q1,N , (A.43)

Φ6 = σ2v((IT −
JT
T
)⊗ IN) = σ21Q0,N .

Under our maintained assumptions the row and column sums of WN , PN(ρ),

Q1,N and Q0,N are uniformly bounded in absolute value. It then follows

from Lemma 1 that row and column sums of matrices Φi are also uniformly

bounded by some finite constant, say ki (i = 1, . . . , 6). Since the elements

of XN are uniformly bounded in absolute value by kx, the elements of the

variance-covariance matrices (NT )−1X
0
NΦiXN are bounded in absolute value

by k2xki < ∞. It then follows from, for example, Corollary 5.1.1.2 in Fuller

(1976) pg. 186, that the elements of δi,N for i = 1, . . . , 6 in (A.42) are Op(1).
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Condition (A.38) is seen to hold from (A.41) because bρN , bσ2v, N and bσ21, N are
consistent estimators of ρ, σ2v and σ21, respectively.

Part (c) of the theorem follows immediately from (A.32) and Assumption

3 and also the fact that bρN , bσ2v,N and bσ21,N are consistent estimators of ρ, σ2v
and σ21, respectively.

Next we prove that under Assumptions 1 to 5, the OLS estimator for the

model in (4)

yN = XNβ + uN ,

bβOLS,N = [X 0
NXN ]

−1X 0
NyN is (NT )1/2 consistent, where N ≥ 1 and T is a

fixed positive integer. Observe that

(NT )1/2(bβOLS,N − β) = [(NT )−1X 0
NXN ]

−1(NT )−1/2X 0
NuN

= [(NT )−1X 0
NXN ]

−1(NT )−1/2Z 0NεN ,

where uN is defined in (21) and ZN is defined here as ZN = (IT ⊗ (IN −

ρW 0
N)
−1)XN . Note that in general the elements of ZN will depend on the

sample size.

Recall from (6) that

εN = (eT ⊗ IN)µN + vN ,

Furthermore, by Assumption 1 the error terms, v11,N , . . . , vN1,N , . . . , v1T,N ,

131



. . . , vNT,N are identically and independently distributed and for each N ≥ 1

jointly independent with mean zero and finite variance σ2v. Similarly the error

terms, µ1,N , . . . , µN,N are identically and independently distributed and for

each N ≥ 1 jointly independent with mean zero and finite variance σ2µ. In

addition, the two processes {vit,N} and {µi,N} are independent of each other.

Now we express

(NT )−1/2Z 0NεN = (NT )−1/2Z 0N(eT ⊗ IN)µN + (NT )−1/2Z 0NvN .

Assumption 3 and (8) implies that

lim
N→∞

(NT )−1Z 0N(eTe
0
T ⊗ IN)ZN = lim

N→∞
(NT )−1TZ 0N(

eTe
0
T

T
⊗ IN)ZN

= lim
N→∞

(NT )−1TZ 0NQ1,NZN

= TQxQ1x(ρ),

lim
N→∞

(NT )−1Z 0NZN = lim
N→∞

(NT )−1X 0
N(IT ⊗ (IN − ρWN)

−1(IN − ρW 0
N)
−1)XN

= Qxx(ρ).

Then by Theorem A

(NT )−1/2Z 0N(eT ⊗ IN)µN
D→ N{0, σ2µTQxQ1x(ρ)},

(NT )−1/2Z 0NvN
D→ N{0, σ2vQxx(ρ)}, (A.44)
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where QxQ1x(ρ) and Qxx(ρ), defined in Assumption 3, are finite and nonsin-

gular. Next note that

Qxx(ρ) = QxQ0x(ρ) +QxQ1x(ρ),

σ21 = Tσ2µ + σ2v.

Thus

(NT )−1/2Z 0NvN
D→ N{0, σ2v(QxQ0x(ρ) +QxQ1x(ρ))}.

By Assumption 1 the two processes {µi,N} and {vit,N} are independent of

each other and therefore,

(NT )−1/2Z 0NεN = (NT )−1/2Z 0N(eT ⊗ IN)µN + (NT )−1/2Z 0NvN

D→ [N{0, σ2µTQxQ1x(ρ)}+N{0, σ2v(QxQ0x(ρ) +QxQ1x(ρ))}]

= N{0, [(σ2µT + σ2v)QxQ1x(ρ) + σ2vQxQ0x(ρ)]} (A.45)

= N{0, [σ21QxQ1x(ρ) + σ2vQxQ0x(ρ)]}.

From Assumption 3 we have

lim
N→∞

(NT )−1X 0
NXN = Qxx(ρ), (A.46)

where isQxx(ρ) finite and nonsingular. It then follows from (A.45) and (A.46)
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that

[ lim
N→∞

(NT )−1X 0
NXN ]

−1(NT )−1/2Z 0NεN

= [Qxx(ρ)]
−1(NT )−1/2Z 0NεN

D→ N{0, [Qxx(ρ)]
−1(σ21QxQ1x(ρ) + σ2vQxQ0x(ρ))[Qxx(ρ)]

−1}.

Therefore,

(NT )1/2(bβOLS,N−β) D→ N{0, [Qxx(ρ)]
−1(σ21QxQ1x(ρ)+σ

2
vQxQ0x(ρ))[Qxx(ρ)]

−1},

which implies that bβOLS,N is (NT )1/2 consistent.

Proof of Theorem 2. In order to prove this theorem we first need to

show that eσ2v NLS,N and eσ21 NLS,N , which are used in the weighting matrix bΘN

in the definition of the GM estimator in (41), are consistent estimates of σ2v

and σ21.

The existence and measurability of eρNLS,N , eσ2v NLS,N and eσ21 NLS,N which

are defined in (40), are ensured by, for example, Lemma 2 in Jennrich (1969).

The objective function of the nonlinear least squares estimator and its cor-

responding nonstochastic counterpart are given by, respectively,

RN(θ) = [GN [ρ, ρ
2, σ2v, σ

2
1]
0 − gN ]

0
[GN [ρ, ρ

2, σ2v, σ
2
1]
0 − gN ],

RN(θ) = [ΓN [ρ, ρ
2, σ2v, σ

2
1]
0 − γN ]

0
[ΓN [ρ, ρ

2, σ2v, σ
2
1]
0 − γN ].
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where θ = (ρ, σ2v, σ
2
1)

0
. To prove the consistency of (eρNLS,N , eσ2v NLS,N , eσ21 NLS,N),

we show that conditions of, for example, Lemma 3.1 in Pötscher and Prucha

(1991a) are satisfied for the problem at hand. We first show that θ =

(ρ, σ2v, σ
2
1)

0
is identifiably unique. By (36) we have

γN = ΓN [ρ, ρ
2, σ2v, σ

2
1].

Hence RN(θ) = 0 and

RN(θ)−RN(θ)

= [ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ
2
1 − σ21]Γ

0
NΓN

[ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ
2
1 − σ21]

0

≥ λmin(Γ
0
NΓN)[ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ

2
1 − σ21]

[ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ
2
1 − σ21]

0

≥ λ∗[ρ− ρ, σ2v − σ2v, σ
2
1 − σ21][ρ− ρ, σ2v − σ2v, σ

2
1 − σ21]

0
= λ∗ ||θ − θ||2

utilizing Assumption 6. Hence for every � > 0 and any N, we have

inf

{θ : ||θ − θ|| ≥ �
[RN(θ)−RN(θ)] ≥ inf

{θ : ||θ − θ|| ≥ �
λ∗ ||θ − θ||2 = λ∗�2 > 0,

which proves that θ is identifiably unique. Next, let FN = [GN ,−gN ] and
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ΦN = [ΓN ,−γN ]; then for ρ ∈ [−a, a], σ2v ∈ [0, bν] and σ21 ∈ [0, b1]

¯̄
RN(θ)−RN(θ)

¯̄
=

¯̄̄
[ρ, ρ2, σ2v, σ

2
1, 1][F

0
NFN − Φ

0
NΦN ][ρ, ρ

2, σ2v, σ
2
1, 1]

¯̄̄
≤

¯̄̄¯̄̄
F

0
NFN − Φ

0
NΦN

¯̄̄¯̄̄ ¯̄¯̄
ρ, ρ2, σ2v, σ

2
1, 1
¯̄¯̄2

≤
¯̄̄¯̄̄
F

0
NFN − Φ

0
NΦN

¯̄̄¯̄̄
[1 + a2 + a4 + b2ν + b21].

Lemmata 5 and 7 imply that FN −ΦN
p→ 0 and that the elements of FN and

ΦN are Op(1) and O(1), respectively. It then follows that RN(θ) − RN(θ)

converge to zero uniformly over the (extended) parameter space, that is,

sup
ρ∈[−a,a],σ2v∈[0,bv],σ21∈[0,b1]

¯̄
RN(θ)−RN(θ)

¯̄
≤

¯̄̄¯̄̄
F

0
NFN − Φ

0
NΦN

¯̄̄¯̄̄
[1 + a2 + a4 + b2ν + b21]

p→ 0

as N → ∞. The consistency of (eρNLS,N , eσ2v NLS,N , eσ21 NLS,N) now follows di-

rectly from Lemma 3.1 in Pötscher and Prucha (1991a).

Given that eσ2v NLS,N and eσ21 NLS,N are consistent estimates of σ
2
v and σ21,

we now show the consistency of bρNLS,N , bσ2v NLS,N and bσ21 NLS,N which are

defined in (41).

The existence and measurability of bρNLS,N , bσ2v NLS,N and bσ21 NLS,N are

ensured by, for example, Lemma 2 in Jennrich (1969). The objective function

of the nonlinear least squares estimator and its corresponding nonstochastic
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counterpart are given by, respectively,

RN(θ) = [GN [ρ, ρ
2, σ2v, σ

2
1]
0 − gN ]

0 bΘ−1N [GN [ρ, ρ
2, σ2v, σ

2
1]
0 − gN ],

RN(θ) = [ΓN [ρ, ρ
2, σ2v, σ

2
1]
0 − gN ]

0
Θ−1N [ΓN [ρ, ρ

2, σ2v, σ
2
1]
0 − γN ].

where θ = (ρ, σ2v, σ
2
1)

0
.

We now establish two preliminary results implied by the assumptions.

First we show that λmin(Γ0NΘ
−1
N ΓN) ≥ λ◦ for some λ◦ > 0. To see this let

A = (aij) = Γ00,NΓ0,N and B = (bij) = Γ01,NΓ1,N . Then in light of (36)

Γ0NΓN =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 0

+


b11 b12 0 b13
b21 b22 0 b23
0 0 0 0
b31 b32 0 b33

 .
Hence in light of using Assumption 6,

x0Γ0NΓNx = [x1, x2, x3]A[x1, x2, x3]
0 + [x1, x2, x4]B[x1, x2, x4]0

≥ λmin(A)[x1, x2, x3][x1, x2, x3]
0 + λmin(B)[x1, x2, x4][x1, x2, x4]

0

≥ λ∗x0x,

and thus in light of, e.g., Rao (1973, p. 62)

λmin(Γ
0
NΓN) = inf

x

x0Γ0NΓNx
x0x

≥ λ∗ > 0.

Next observe that

λmin(Γ
0
NΘ

−1
N ΓN) = inf

x

x0Γ0NΘ
−1
N ΓNx

x0x
≥ λmin(Θ

−1
N )infx

x0Γ0NΓNx
x0x

= λmin(Θ
−1
N )λmin(Γ

0
NΓN) ≥ λ◦ > 0,
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with λ◦ = λ∗λ∗, since λmin(Θ−1N ) ≥ λ∗ > 0 by assumption.

Second we show that Θ−1N = O(1). For notational convenience let SN =

Θ−1N . To verify the claim we need to show that |sij,N | ≤ k < ∞ for some

constant k that does not depend on N . Again in light of Rao (1973, p. 62)

λmin(SN) = inf
x

xSNx

x0x
, λmax(SN) = max

x

xSNx

x0x
.

Hence it follows from the maintained assumptions concerning the smallest

and largest eigenvalues of SN = Θ−1N that

0 < λ∗ ≤ xSNx

x0x
≤ λ∗∗ <∞.

Taking x to be a vector that has a one in the i− th and j− th positions and

zeros elsewhere we have

0 < λ∗ ≤ sii,N ≤ λ∗∗ <∞, i = j,

0 < λ∗ ≤ (sii,N + sjj,N + 2sij,N)/2 ≤ λ∗∗ <∞ i 6= j.

From this it is readily seen that |sij,N | ≤ λ∗∗ for all i, j which proves the

claim.

To prove the consistency of (bρNLS,N ,bσ2v NLS,N , bσ21 NLS,N), we show that

conditions of, for example, Lemma 3.1 in Pötscher and Prucha (1991a) are

satisfied for the problem at hand. We first show that θ = (ρ, σ2v, σ
2
1)

0
is
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identifiably unique. By (36) we have

γN = ΓN [ρ, ρ
2, σ2v, σ

2
1].

Hence RN(θ) = 0 and

RN(θ)−RN(θ)

= [ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ
2
1 − σ21]Γ

0
NΘ

−1
N ΓN

[ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ
2
1 − σ21]

0

≥ λmin(Γ
0
NΘ

−1
N ΓN)[ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ

2
1 − σ21]

[ρ− ρ, ρ2 − ρ2, σ2v − σ2v, σ
2
1 − σ21]

0

≥ λ◦[ρ− ρ, σ2v − σ2v, σ
2
1 − σ21][ρ− ρ, σ2v − σ2v, σ

2
1 − σ21]

0
= λ◦ ||θ − θ||2

utilizing Assumption 6. Hence for every � > 0 and any N, we have

inf

{θ : ||θ − θ|| ≥ �
[RN(θ)−RN(θ)] ≥ inf

{θ : ||θ − θ|| ≥ �
λ◦ ||θ − θ||2 = λ◦�2 > 0

which proves that θ is identifiably unique. Next, let FN = [GN ,−gN ] and

ΦN = [ΓN ,−γN ]; then for ρ ∈ [−a, a], σ2v ∈ [0, bν] and σ21 ∈ [0, b1]

¯̄
RN(θ)−RN(θ)

¯̄
=

¯̄̄
[ρ, ρ2, σ2v, σ

2
1, 1][F

0
N
bΘ−1N FN − Φ

0
NΘ

−1
N ΦN ][ρ, ρ

2, σ2v, σ
2
1, 1]

¯̄̄
≤

¯̄̄¯̄̄
F

0
N
bΘ−1N FN − Φ

0
NΘ

−1ΦN

¯̄̄¯̄̄ ¯̄¯̄
ρ, ρ2, σ2v, σ

2
1, 1
¯̄¯̄2

≤
¯̄̄¯̄̄
F

0
N
bΘ−1N FN − Φ

0
NΘ

−1ΦN

¯̄̄¯̄̄
[1 + a2 + a4 + b2ν + b21]
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Lemmata 5 and 7 imply that FN −ΦN
p→ 0 and that the elements of FN and

ΦN are Op(1) and O(1), respectively. We also note that by the consistency

of eσ2v NLS,N and eσ21 NLS,N and the definition of bΘN in (41), bΘN − ΘN
p→ 0,

furthermore, the elements of bΘN and ΘN are Op(1) and O(1), respectively.

It then follows that RN(θ) − RN(θ) converge to zero uniformly over the

(extended) parameter space, that is,

sup
ρ∈[−a,a],σ2v∈[0,bv],σ21∈[0,b1]

¯̄
RN(θ)−RN(θ)

¯̄
≤

¯̄̄¯̄̄
F

0
N
bΘ−1N FN − Φ

0
NΘN

−1ΦN

¯̄̄¯̄̄
[1 + a2 + a4 + b2ν + b21]

p→ 0

as N → ∞. The consistency of (bρNLS,N , bσ2v NLS,N , bσ21 NLS,N) now follows di-

rectly from Lemma 3.1 in Pötscher and Prucha (1991a).
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5 Appendix to Chapter 3

5.1 A Linear City Model of Product Differentiation
with Heterogenous Consumers

Consider a city that can be represented as lying on a line segment of length

1, as shown in the figure

There is a continuum of consumers whose total number isN who are assumed

to be uniformly located along this straight line segment. A consumers loca-

tion is indexed by z ∈ [0, 1], the distance from the left end of the city. At

each end of city is located one supplier of a commodity: Firm 1 is located at

the left end of the city and Firm 2 is located at the right. This commodity

is produced at constant cost of c > 0. The consumers are heterogeneous in

terms of the quantity demanded. Without loss of generality, let us assume

that consumers located between [0, z∗] demand d1 units of commodity, con-

sumers located between [z∗, z∗∗] demand d2 and consumers located between

[z∗∗, 1] demand d3 units of commodity and derive gross benefits v1, v2 and

v3, respectively from its consumption. The total cost of buying from firm j
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for a consumer located at distance x from firm j is pj + tx, where pj is the

price charged by firm j and t/2 is the cost or disutility per unit of distance

traveled by the consumer in going to and from the firm j0s location. The

presence of travel cost induces product differentiation between firms. As a

simplifying assumption let z∗ < 1/2 < z∗∗.

Ignoring the possibility of nonpurchase by consumers, will purchase from

the location with the minimum delivered price, that is, price charged at the

firm and also the cost of travelling to and from the firm. Given pair of prices,

p1 and p2 charged by firm 1 and firm 2, respectively, consumers at locations

[0, bz) buy from firm 1. At these locations p1+ tz < p2+ t(1− z) (purchasing

from firm 1 is better that purchasing from firm 2). Consumers at locations

(bz, 1] will buy form firm 2. The location of the consumer who is indifferent

between the two firms is the point bz such that
p1 + tbz = p2 + t(1− bz),

or

bz = t+ p2 − p1
2t

. (B.1)

Given p1 and p2, let bz be defined as in (B.1). Then firm 1’s demand given a

pair of prices (p1, p2), equal d1z∗ + d2[bz − z∗], when z∗ < bz < z∗∗, d1bz when
0 < bz < z∗, d1z∗ + d2[z

∗∗ − z∗] + d3bz when z∗∗ < bz < 1. Substituting for bz
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from (A1) we have

x1(p1, p2) =



0

d1(
t+p2−p1

2t
)N

[d2(
t+p2−p1

2t
)

+(d1 − d2)z
∗]N

[d3(
t+p2−p1

2t
)

+(d2 − d3)z
∗∗

+(d1 − d2)z
∗]N

[d3 + (d2 − d3)z
∗∗

+(d1 − d2)z
∗]N

if

p1 > p2 + t

p1 ∈ [p2 + t− 2tz∗, p2 + t]

p1 ∈ [p2 + t− 2tz∗∗, p2 + t− 2tz∗]

p1 ∈ [p2 − t, p2 + t− 2tz∗∗]

p1 < p2 − t
(B.2)

and by symmetry of the two firms the demand function of firm 2, x2(p1, p2)

x2(p1, p2) =



0

d3(
t+p1−p2

2t
)N

[d2(
t+p1−p2

2t
)

+(d3 − d2)(1− z∗∗)]N

[d1(
t+p1−p2

2t
)

+(d2 − d1)(1− z∗)
+(d3 − d2)(1− z∗∗)]N

[d3 + (d2 − d3)z
∗∗

+(d1 − d2)z
∗]N

if

p2 > p1 + t

p2 ∈ [p1 − t+ 2tz∗∗, p1 + t]

p2 ∈ [p1 − t+ 2tz∗, p1 − t+ 2tz∗∗]

p2 ∈ [p1 − t, p1 − t+ 2tz∗]

p2 < p1 − t

.

(B.3)

I assume that (d1, d2, d3, z∗, z∗∗) are such that firm 1 in searching for its

best response to any price choice of firm 2 will restrict itself prices in the

interval [p2 + t − 2tz∗∗, p2 + t − 2tz∗] and firm 2 in searching for its best
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response to any price choice of firm 1 will restrict itself prices in the interval

p2 ∈ [p1− t+2tz∗, p1− t+2tz∗∗]. Thus, firm 1 best response to firm 2 prices,

p2 solves

max
p1
(p1 − c)(d2(

t+ p2 − p1
2t

) + (d1 − d2)z
∗)N

s.t.p1 ∈ [p2 + t− 2tz∗∗, p2 + t− 2tz∗]

The necessary and sufficient (Kuhn-Tucker) first order conditions (foc)

for this problem (assuming interior solution) is

t+ p2 + c− 2p1 + (d1 − d2)

d2
2tz∗ = 0. (B.4)

Solving the (foc) in (B.4) yields

p1 =
t+ p2 + c

2
+
(d1 − d2)

d2
tz∗. (B.5)

Similarly we can solve the (foc) for firm 2 given the prices of firm 1, p1

which would yield

p2 =
t+ p1 + c

2
+
(d3 − d2)

d2
tz∗∗. (B.6)

It is evident from (B.5) and (B.6) that pi for i = 1, 2, is inversely related

to d2. This implies that price is determined by the level of demand of the

marginal customer. However, if the agents were identical, that is, d1 = d2 =

d3, then prices are independent of the level of demand.
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6 List of Tables

6.1 Table 1: Estimation results, the weighting matrix
is based on measures of closeness by actual road
distance, for third week of August 1999

 EQUATION (60) EQUATION (62) 
VARIABLES OLS 2SLS OLS GS2SLS 

DNPR99 .811 ** 
(.032) 

.578 ** 
(.090) 

.900 ** 
(.022) 

.574 ** 
(.091) 

CRPR99 .227 ** 
(.066) 

.501 ** 
(.121) 

.126 ** 
(.047) 

.513 ** 
(.125) 

PADD1 -.004 
(.885) 

-2.232 * 
(1.25) 

-.372 
(.602) 

-2.20 * 
(1.30) 

PADD2 -.389 
(.701) 

-2.546 ** 
(1.084) 

.040 
(.474) 

-2.54 ** 
(1.12) 

PADD3 -.707 
(1.20) 

-.967 
(1.44) 

-.856 
(.822) 

-.934 
(1.51) 

PADD4 -.155 
(.71) 

.563 
(.816) 

-.459 
(.490) 

.561 
(.85) 

SPOT99 .064  
(.032) 

.134 ** 
(.043) 

.030 
(.024) 

.132 ** 
(.043) 

PERST99 .315** 
(.14) 

.477 ** 
(.164) 

.222 ** 
(.099) 

.487 ** 
(.170) 

CO99 -.007 
(.021) 

-.016 
(.023) 

.004 
(.017) 

-.017 
(.023) 

POP99 -.281** 
(.091) 

-.283 ** 
(.099) 

-.283 ** 
(.089) 

-.285 ** 
(.099) 

DNPOP99 .190 
(.091) 

.160 
(.100) 

.233 
(.089) 

.152 
(.100) 

EA99 .247** 
(.113) 

.292 ** 
(.126) 

.175 * 
(.090) 

.302 ** 
(.126) 

INC99 -.128 
(.100) 

-.178  
(.110) 

-.077 
(.081) 

-.185 * 
(.111) 

DNINC99 -.108** 
(.033) 

-.107 ** 
(.036) 

-.095** 
(.033) 

-.108 ** 
(.036) 

ρ99 -.31 .06   
Moran I  -4.67 .40   

Observations 289 289 289 289 
R2 .92  .97  

 
Dependent variable PR99. The weighting matrix is based on measures of closeness by 
actual road distance. Standard errors are in brackets. 
Note: Column 4 and 5 are estimates after correcting for spatial correlation in the 
disturbances. 
(*) indicates significance at 10%. (**) indicates significance at 5%. 
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6.2 Table 2: Estimation results, the weighting matrix
is based on measures of closeness by actual road
distance, for third week of January 2000

 EQUATION (60) EQUATION (62) 
VARIABLES OLS 2SLS OLS GS2SLS 

DNPR00 .691** 
(.046) 

.689** 
(.127) 

.875** 
(.032) 

.835** 
(.093) 

CRPR00 .385** 
(.090) 

.388** 
(.150) 

.180** 
(.063) 

.220** 
(.104) 

PADD1 -1.47** 
(.738) 

-1.473** 
(.695) 

-.833 
(.527) 

-.875 
(.536) 

PADD2 -.505 
(.454) 

-.505 
(.626) 

-.246 
(.304) 

-.255 
(.307) 

PADD3 -1.928 
(.627) 

-.930 
(.782) 

-.538 
(.455) 

-.555 
(.460) 

PADD4 -2.43 
(.896) 

-2.44** 
(.713) 

-1.32** 
(.591) 

-1.463** 
(.670) 

SPOT00 .024 
(.060) 

.024 
(.06) 

.005 
(.042) 

-.003 
(.046) 

PERST00 .190** 
(.092) 

.191** 
(.097) 

.108* 
(.061) 

.117* 
(.064) 

CO00 .015 
(.019) 

.015 
(.020) 

.011 
(.015) 

.012 
(.016) 

OXY00 -.454 
(.538) 

-.45 
(.552) 

-.205 
(.468) 

-.162 
(.482) 

POP00 -.153* 
(.081) 

-.152* 
(.087) 

-.137* 
(.077) 

-.124 
(.083) 

DNPOP00 .172** 
(.082) 

.172** 
(.082) 

.115 
(.076) 

.116 
(.077) 

EA00 -.009 
(.092) 

.008 
(.100) 

-.007 
(.070) 

-.009 
(.079) 

INC00 .008 
(.082) 

-.010 
(.087) 

.002 
(.064) 

-.009 
(.069) 

DNINC00 -.056** 
(.028) 

-.055** 
(.028) 

-.020 
(.026) 

-.021 
(.027) 

ρ00 -.32 -.31   
Moran I  -4.36 -2.15   

Observations 289 289 289 289 
R2 .60  .81  

 
Dependent variable PR00. The weighting matrix is based on measures of closeness by 
actual road distance. Standard errors are in brackets. 
Note: Column 4 and 5 are estimates after correcting for spatial correlation in the 
disturbances. 
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6.3 Table 3: Estimation results, the weighting matrix
is based on measures of closeness by a Euclidean
distance, for third week of August 1999

 E Q U A T IO N  (60) E Q U A T IO N  (62) 
V A R IA B L E S  O L S  2S L S  O L S  G S 2S L S  

D NP R 99 .802  **  
(.031) 

.526 **  
(.092) 

.893  ** 
(.022) 

.517  **  
(.092) 

C R P R 99 .218  **  
(.066) 

.552 **  
(.127) 

.114  ** 
(.047) 

.580  **  
(.133) 

P A D D 1  -.311  
(.876) 

-2 .86 ** 
(1 .26) 

-.112 
(.594) 

-2 .86 ** 
(1 .36) 

P A D D 2 -.556  
(.695) 

-3 .068  **  
(1 .10) 

.096  
(.469) 

-3 .08 ** 
(1 .18) 

P A D D 3 .343  **  
(1 .19) 

-1 .54  
(1 .46) 

-.587 
(.814) 

-1 .53  
(1 .61) 

P A D D 4 .37  
(.702) 

.815 
(.828) 

-.298 
(.482) 

.825 
(.90) 

SP O T 99 .078  **  
(.032) 

.156 **  
(.043) 

.043*  
(.024) 

.150  **  
(.043) 

P E R ST 99 .269 *  
(.140) 

.481 **  
(.171) 

.181  *  
(.098) 

.498  **  
(.183) 

C O 99 -.010  
(.021) 

-.019  
(.024) 

.001  
(.017) 

-.021  
(.024) 

P O P 99 -.197  **  
(.091) 

-.226 ** 
(.103) 

-.180*  
(.091) 

-.226 ** 
(.100) 

D NP O P 99 .156 *  
(.089) 

.131  
(.101) 

.158  *  
(.089) 

.121 
(.099) 

E A 99 .209 *  
(.112) 

.275 **  
(.128) 

.146  *  
(.088) 

.287  **  
(.129) 

IN C 99 -.119  
(.099) 

-.178  
(.113) 

-.080 
(.080) 

-.190  *  
(.113) 

D NIN C 99 -.100  **  
(.032) 

-.109 ** 
(.036) 

-.070  ** 
(.032) 

-.113 ** 
(.035) 

ρ 9 9 -.32  .12    
M oran  I  -4 .67  .83    

O bserva tions 289  289  289 289 
R 2 .92   .96   

 
D ependen t variable P R 99. T he w eigh ting m atrix  is based  on  m easures o f closeness by a  
E uclidean  d istance. S tandard  erro rs  are in  b rackets. 
N ote: C olum n 4  and  5  are estim ates after correcting  fo r spatial correla tion  in  the 
d isturbances. 
(* ) ind icates significance a t 10% . (**) ind icates sign ificance at 5% . 
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6.4 Table 4: Estimation results, the weighting matrix
is based on measures of closeness by a Euclidean
distance, for third week of January 2000

 E Q U A T IO N  (60) E Q U A T IO N  (62) 
V A R IA B L E S O L S 2SL S  O L S G S2SL S 

D NP R00 .669** 
(.046) 

.602** 
(.125) 

.860** 
(.033) 

.736** 
(.103) 

C R PR 00 .400** 
(.092) 

.466** 
(149) 

.180** 
(.064) 

.308** 
(.118) 

PA D D 1 -1 .522** 
(.750) 

-1 .587** 
(.761) 

-.766  
(.540) 

-1 .04*  
(.607) 

PA D D 2 -.530  
(.462) 

.534 
(.464) 

-.223  
(.311) 

.308 
(.353) 

PA D D 3 -.930  
(.637) 

-.973  
(.644) 

-.414  
(.464) 

-.583 
(.516) 

PA D D 4 -.257** 
(.914) 

-2 .785** 
(.994) 

-1 .44** 
(.610) 

-2 .003** 
(.769) 

SPO T00 .037 
(.061) 

.048 
(.064) 

.013  
(.043) 

.033 
(.051) 

P ERST00 .197** 
(.094) 

.210** 
(.097) 

.114* 
(.063) 

.154** 
(.075) 

C O 00 .019 
(.019) 

.019 
(.198) 

.014  
(.016) 

.018 
(.017) 

O XY 00 -.413  
(.546) 

-.346  
(.56) 

.005  
(.476) 

-.028 
(.517) 

PO P00 -.167** 
(.083) 

-.147  
(.09) 

-.133* 
(.079) 

-.127 
(.086) 

D NP O P 00 .208** 
(.082) 

.207** 
(.082) 

.130* 
(.078) 

.161** 
(.080) 

EA 00 .024 
(.094) 

.0002 
(.103) 

.023  
(.071) 

-.009 
(.088) 

IN C 00 -.002  
(.083) 

.015 
(.089) 

-.017  
(.066) 

.015 
(.077) 

D NIN C 00 -.068** 
(.028) 

-.067** 
(.028) 

-.028  
(.026) 

-.043 
(.027) 

ρ 00 -.30  -.28    
M oran I  -4 .17  -1 .48    

O bservations 289 289 289 289 
R 2 .58   .80   

 
D ependent variable PR 00. The w eighting m atrix  is based  on  m easures of closeness by 
euclidean  distance. S tandard errors are in  brackets. 
N ote: C olum n 4  and  5 are estim ates after correcting for spatial correlation in  the 
d isturbances. 
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6.5 Table 5: Estimation results of the robustness test
 
 
 
 
 
 
 
 
 

 
 

Dependent variable PR(t). The weighting matrix is based on measures of 
closeness by actual road distance. Standard errors are in brackets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 EQUATION (63) 
VARIABLES HIGH DEMAND 

(t=99)  
LOW DEMAND 

(t=00) 
D1

NPR(t) .811 
(.058) 

.741        
(.086) 

D2
NPR(t) .808 

(.053) 
.723 

(.085) 
D3

NPR(t) .819 
(.045) 

.750 
(.084) 

D4
NPR(t) .791 

(.075) 
.720 

(.096) 
D5

NPR(t) .811 
(.049) 

.654 
(.088)             
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6.6 Table 6: Estimation results, after including tax as
one of the explanatory variables, for third week of
August 1999

 E Q U A T IO N  (60) E Q U A T IO N  (62) 
V A R IA B L E S 2S L S  G S 2S L S  

D NP R 99 0.516**  
(0 .097) 

0 .486** 
(0 .097) 

C R P R 99 0 .57**  
(0 .13) 

0 .622** 
(0 .137) 

P A D D 1 -4 .26** 
(1 .644) 

-4 .577**  
(1 .757) 

P A D D 2 -4 .06** 
(1 .355) 

-4 .336**  
(1 .44) 

P A D D 3 -3 .93* 
(2 .08) 

-4 .313**  
(2 .244) 

P A D D 4 1 .186 
(0 .903) 

1 .296  
(0 .993) 

SP O T 99  0 .15**  
(0 .045) 

0 .148** 
(0 .045) 

P E R ST 99  0 .192 
(0 .212) 

0 .188  
(0 .232) 

C O 99 -0 .02  
(0 .024) 

-0 .026 
(0 .024) 

P O P 99 -0 .27** 
(0 .104) 

-0 .278**  
(0 .101) 

D N P O P 99 0 .159 
(0 .104) 

0 .138  
(0 .102) 

E A 99 0.299**  
(0 .13) 

0 .322** 
(0 .132) 

IN C 99 -0 .2*  
(0 .115) 

-0 .217**  
(0 .116) 

D NIN C 99 -0 .1** 
(0 .037) 

-0 .106**  
(0 .037) 

T A X  0.091**  
(0 .043) 

0 .106** 
(0 .046) 

ρ 99  .14   
M oran  I  .93   

O bserva tions 289 289  
R 2 .90  .87  

 
D ependent variable P R 99. T he w eighting m atrix  is  based  on  m easures o f 
closeness by actual road  d istance. S tandard  erro rs are in  b rackets. 
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6.7 Table 7: Estimation results, after including tax as
one of the explanatory variables, for third week of
January 2000

 E Q U A T IO N  (6 0 ) E Q U A T IO N  (6 2 ) 
V A R IA B L E S  2 S L S  G S 2S L S  

D N P R 0 0  0 .6 4 2 **  
(0 .1 2 9) 

0 .79 6 * *  
(0 .1 0 1 ) 

C R P R 0 0  0 .4 3 9 **  
(0 .1 5 ) 

0 .26 7 * *  
0 .1 1 3 ) 

P A D D 1  -1 .0 0  
(0 .7 5 6) 

-0 .5 9 3  
(0 .5 7 1 ) 

P A D D 2 -0 .3 1  
(0 .4 5 6) 

-0 .1 3 2  
(0 .3 2 8 ) 

P A D D 3 -1 .1 *  
(0 .6 3 1) 

-0 .7 1 1  
(0 .4 8 2 ) 

P A D D 4 -2 .0 3 * *  
(0 .9 5 4) 

-1 .2 7 9 *  
(0 .6 8 8 ) 

S P O T 0 0  0 .0 1 7  
(0 .0 6 2) 

-0 .0 0 2  
(0 .0 4 8 ) 

P E R S T 0 0  0 .1 0 6  
(0 .0 9 7) 

0 .0 6 6  
(0 .0 7 ) 

C O 0 0  0 .0 1 3  
(0 .0 1 9) 

0 .0 1  
(0 .0 1 6 ) 

O X Y 0 0  -0 .4 5  
(0 .5 4 6) 

-0 .1 6 6  
(0 .4 9 2 ) 

P O P 00  -0 .1 5 *  
(0 .0 8 6) 

-0 .1 3 3  
(0 .0 8 3 ) 

D N P O P 0 0  0 .1 6 8 **  
(0 .0 8 1) 

0 .1 1 8  
(0 .0 7 7 ) 

E A 0 0  0 .0 2 5  
(0 .0 9 8) 

0 .0 1 6  
(0 .0 8 ) 

IN C 0 0  -0 .0 1  
(0 .0 8 5) 

-0 .0 1 4  
(0 .0 7 ) 

D N IN C 0 0  -0 .0 5 *  
(0 .0 2 8) 

-0 .0 2 3  
(0 .0 2 7 ) 

T A X  0 .0 6 4 **  
(0 .0 2 6) 

0 .04 4 * *  
(0 .0 1 9 ) 

ρ 0 0  -0 .2 6   
M o ra n  I  -1 .7 7   

O b serva tio n s  2 89  2 8 9  
R 2  .6 0  .8 0  

 
D ep en d en t v ariab le  P R 00 . T h e  w eigh tin g  m atrix  is  b ased  o n  m easu res o f 
c lo sen ess  by actu a l ro ad  d istan ce . S tan d ard  erro rs  a re  in  b rack e ts . 
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7 List of Figures

7.1 Figure 1: Petroleum Allocation for Defense Dis-
tricts (PADDs)49

49This map has been taken from “How Pipelines make the Oil Market Work- Their
Networks, Operation and Regulation,” Allegro Energy Group.
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7.2 Figure 2: Network of Oil pipelines in the US50

50This map has been taken from “How Pipelines make the Oil Market Work- Their
Networks, Operation and Regulation,” Allegro Energy Group.
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7.3 Figure 3: The FRS companies in 200051

51This chart has been taken from “How Pipelines make the Oil Market Work- Their
Networks, Operation and Regulation,” Allegro Energy Group.
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