
ABSTRACT

Title of thesis: PERFORMANCE STUDY OF VARIOUS
MODERN DRAM ARCHITECTURES

Dhiraj Reddy Nallapa Yoge
Master of Science, 2018

Thesis directed by: Professor Bruce Jacob
Department of Electrical and Computer Engineering

Several DRAM architectures exist with each differing in their performance,

power and cost metrics. This thesis compares the performance and power character-

istics of some of such DRAM architectures which are compliant to JEDEC standard

DDR protocols such as DDR3, DDR4, LPDDR3, LPDDR4, GDDR5 and HBM. To

accurately model the differences in performance and power characteristics of these

architectures, a new cycle level DRAM memory simulator has been designed and

implemented from scratch. Several distinguishing features of these protocols such

as - bankgroups in DDR4 and beyond, 32 activation window constraint in GDDR5,

granularity of refresh at per rank level vs at per bank level and dual command issue

mode in HBM - are modeled and studied for their impact on workload performance

and power consumption. The internal structure of DRAM exhibits different kinds of

parallelisms such as channel level parallelism, rank level parallelism and bank level

parallelism. The type and the degree of parallelism together with the associated

DRAM command timing constraints determine the latency and bandwidth charac-

teristics of any DRAM architecture. Abstract studies are performed to determine

the potential of each of these parallelisms in attaining the maximum supported pin

bandwidth for a set of SPEC 2006 CPU workloads. Finally, several real DRAM

architecture designs belonging to each of the above mentioned protocols are studied

to quantify their relative performance and power trade-off.

PERFORMANCE STUDY OF VARIOUS
MODERN DRAM ARCHITECTURES

by

Dhiraj Reddy Nallapa Yoge

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2018

Advisory Committee:
Professor Bruce Jacob, Chair/Advisor
Professor Donald Yeung
Professor Rajeev Barua

c© Copyright by
Dhiraj Reddy Nallapa Yoge

2018

Acknowledgments

I would like to thank my advisor professor Bruce Jacob for providing the

opportunity to work under his guidance. I would like to particularly thank him for

always granting the freedom to work on topics and projects that interested me. I

would also like to thank professors Donald Yeung and Rajeev Barua for agreeing

to be part of my thesis committee. Also, a special thanks to Melanie Prange for

helping me in getting all the paperwork correct during my final semester. Above

all I would like to thank my family and friends for always being there for me and

making all this worthwhile.

ii

Table of Contents

Acknowledgements ii

List of Tables v

List of Figures vi

List of Abbreviations vii

1 Introduction 1
1.1 Organization of the thesis . 4

2 DRAM Overview 5
2.1 Internal Organization and Basic Operation 5
2.2 Timing Constraints . 10

3 DRAM Simulator Design and Simulation Methodology 13
3.1 Design of a new DRAM simulator . 15

3.1.1 Maintaining internal state . 16
3.1.2 Maintaining timing constraints 18
3.1.3 Memory controller model and memory access scheduling . . . 20
3.1.4 Support for all DDR protocols 22
3.1.5 Integration with CPU simulators 24

3.2 Simulation Methodology . 26
3.2.1 CPU Simulator . 26
3.2.2 Workloads studied and their characterization 27

4 Salient features of different protocols 29
4.1 Bankgroups in DDR4 and beyond . 29

4.1.1 Bankgroups Vs Without bankgroups 31
4.1.2 Varying the number of bankgroups 33

4.2 32 activation window timing constraint in GDDR5 34
4.3 Refresh granularity - Rank level Vs. Bank level 36
4.4 Dual command issue in HBM . 38

iii

5 Comparison of DRAM Architectures 40
5.1 Parallelism in DRAM Architectures - Abstract Study 40

5.1.1 Channel level parallelism . 41
5.1.2 Rank level parallelism . 43
5.1.3 Bank level parallelism . 46

5.2 Comparing DDR protocols - A focused study 48
5.2.1 Performance comparison of DRAM architectures 49
5.2.2 Energy and Power comparison of DRAM architectures 52

6 Conclusion and Future Work 56
6.1 Future Work . 56

Bibliography 58

iv

List of Tables

3.1 CPU simulator gem5 configuration 27
3.2 Memory controller configuration . 28

5.1 Configuration of DRAM architectures studied 51

v

List of Figures

2.1 Stylized representation of a DRAM array 6
2.2 Stylized representation of a bank consisting for 4 X16 DRAM devices 7
2.3 Stylized representation of Activation process 8
2.4 Stylized representation of read/write process 8
2.5 Stylized representation of a 2 channel memory system 9

3.1 MPKI characterization of workloads 28

4.1 tCCD Timing . 30
4.2 Impact of bankgroups . 32
4.3 Varying number of bankgroups . 34
4.4 Impact of activation window constraints 35
4.5 Impact of Refresh strategy . 38
4.6 Impact of HBM dual command issue feature 39

5.1 Normalized IPC Vs. Number of Channels 42
5.2 Average Memory Bandwidth Vs. Number of Channels 43
5.3 Row buffer hit rate Vs. Number of Channels 44
5.4 Normalized IPC Vs. Number of Ranks 45
5.5 Average Memory Bandwidth Vs. Number of Ranks 46
5.6 Row buffer hit rate Vs. Number of Ranks 47
5.7 Normalized IPC Vs. Number of Banks 48
5.8 Row buffer hit rate Vs. Number of Banks 49
5.9 Average Memory Bandwidth Vs. Number of Banks 50
5.10 Normalized IPC for different DRAM architectures 52
5.11 Average Bandwidth for different DRAM architectures 53
5.12 Dynamic energy for different DRAM architectures 54
5.13 Pareto plots showing power and CPI for different DRAM architectures 55

vi

List of Abbreviations

DRAM Dynamic Random Access Memory
JEDEC Joint Electron Device Engineering Council
DDR Double Data Rate
HBM High Bandwidth Memory
SPEC Standard Performance Evaluation Corporation
LLC Last Level Cache
DIMM Dual Inline Memory Module
tRAS Row Access Strobe Latency
tRCD Row to Column Delay
tRTRS Rank to Rank turn around delay
tCCD Column to Column delay between banks
tCCDS Column to Column delay between banks of different bankgroups
tCCDL Column to Column delay between banks of the same bankgroup
tRRD Row to Row Activation delay
tFAW Four Activation Window
t32AW Thirty two Activation Window
tRTP Read to Precharge delay
tRFC Refresh Cycle
tWTR Write to Read turnaround time
SST Structural Simulation Toolkit
MPKI Misses Per Kilo Instructions
IPC Instructions Per Cycle

vii

Chapter 1: Introduction

With the ever increasing core counts in modern day processors the demands on

the memory subsystem are only increasing. For all but the very simplest of applica-

tions, the characteristics of the memory subsystem play a critical role in determining

the overall application performance. With the end of Denard’s scaling, the clock

frequencies of processor cores have not increased markedly over the past decade.

However, the number of cores on a single processor have been increasing continu-

ously [1]. Along with the increase in the number of cores, the ever exploding working

set sizes of modern day applications have increased the bandwidth requirement to

service all last level cache (LLC) misses.

While there is a very active research on several alternative device technologies

as the building block for the main memory, still most of the commercial computers

of the day use Dynamic Random Access Memory (DRAM) as the underlying tech-

nology of choice for building the main memory subsystem. While DRAM memory

capacity has mostly kept pace with the increase in core counts in processors, neither

the access latency nor the memory bandwidth have increased at the same rate.

The various DRAM protocol timing parameters which determine the average

access latency have at best stayed constant if not worsened slightly with each suc-

1

cessive DRAM generations. This is because most of the slack gained with moving

to newer process nodes has been largely utilized to increase the number of bits that

could be packed on a DRAM device of a given silicon area. As a result, the access

latencies even for an unstressed memory subsystem haven’t improved notably.

For off package memories, the raw memory bandwidth that is available to a

processor depends on the number of memory channels the processor can support and

the memory bandwidth that a Dual Inline Memory Module (DIMM) in each channel

can provide. The number of physical pins on the periphery of a CPU die is a critical

resource and the number that can be dedicated for the interconnection with the

memory subsystem limits the number of true memory channels that a processor can

have. While the pin bandwidth that a DIMM can provide has increased from DDR3

[2] to DDR4 [3], it has nowhere kept pace with the rate of increase in core counts

in processors. As a result of limited number of channels and limited bandwidth per

channel, the burden of providing sufficient bandwidth consummate with the number

of cores has become a first class constraint in processor design. On package memories

such as High Bandwidth Memory (HBM) [4] have been proposed as a solution to

increase the raw bandwidth. Since the HBM memory die lies on the same silicon

substrate as the processor die, the number of wires connecting the processor die

and the memory die is no longer limited by the number of peripheral physical pins

of the CPU. As a result, HBM can have much larger number of channels thereby

supporting a higher bandwidth. However, while moving the memory die on package

somewhat solves the bandwidth problem by increasing the number of channels, it

does cost heavily in terms of memory capacity and hence overall memory cost. As

2

a result, most of the commercial processors only use HBM as either a hardware

managed DRAM cache or as a faster DRAM as part of a heterogeneous memory

system [5], [6].

While memory subsystem design is critically important for high performance

computing, it is no less important for low-power mobile computing. The memory

subsystem consumes a non-trivial amount of total system power, and there is de-

mand for DRAM architectures that provide similar or slightly degraded performance

at much lower power. The LPDDR [7], [8] class of memories is designed specifically

with these objectives in mind.

The DRAM manufacturing vendors are typically separate from the CPU ven-

dors. Hence, to facilitate interoperability between the the CPU’s memory controller

and DRAM modules, the DRAM interface has been standardized by organizations

such as JEDEC. JEDEC standardizes the interface by describing a DRAM protocol

in terms of the various commands the DRAM module understands and the timing

constraints that need to be obeyed between the issuance of these commands for

reliable operation. The various JEDEC standardized protocols studied in this the-

sis are DDR3 [2], DDR4 [3], LPDDR3 [7], LPDDR4 [8], GDDR5 [9] and HBM [4].

While the DRAM protocol only mentions the commands and timing constraints,

the actual DRAM architectures that obey a given protocol could be widely different

in terms of their capacity and internal organization.

In this thesis, some of such DRAM architectures obeying the various DRAM

protocols are studied for their relative power and performance trade-offs. To fa-

cilitate such a study, a comprehensive cycle-level DRAM simulator has been built

3

from scratch. The simulator models the behaviour of a close to optimal memory

controller for each of these protocols. This simulator is used to study the various

salient features of the DDR protocols. Finally, studies are conducted to quantity the

performance differences among several DRAM architectures belonging to different

DDR protocols.

1.1 Organization of the thesis

This thesis is organized as follows. Chapter 2 briefly describes the internal

organization of DRAM and throws light on the various timing constraints. Chapter

3 shows the design of a cycle level DRAM simulator illustrating the various software

design aspects involved in building a modular architectural simulator. Chapter 4

studies the various distinguishing features of some of the newer DDR protocols

and showcases the impact of these features on performance and power. Chapter

5 performs a comparative study of the various DRAM architectures and reports

their relative power performance trade-offs. Chapter 6 concludes this thesis by

summarizing the various key aspects of the work.

4

Chapter 2: DRAM Overview

This chapter gives a brief overview of the internal organization of DRAM and

the typical steps involved in performing a memory access. It also explains how the

various protocol-specific timing parameters impact the application performance.

2.1 Internal Organization and Basic Operation

Each data cell in a DRAM consists of a capacitor and an access transistor. A

set of such data cells arranged in rows and columns forms a memory array. Figure

2.1 shows a stylized representation of a memory array and a data cell. A column of

a DRAM row can be 4-bit (X4), 8-bit (X8) or 16-bit (X16) wide depending upon

the number of memory arrays that act as a single unit. Further, the data-width of a

column determines the number of DRAM devices that make up a Bank of a Rank.

For example, for DRAM devices with 4-bit (X4), 8-bit (X8) or 16-bit (X16) column

data-width, the number of devices that make up the 64-bit wide data bus is 16, 8

or 4 respectively. Fig 2.2 shows a stylized representation of a bank made up of four

X16 DRAM devices. On a memory access, a column data-width number of bits is

transferred from each DRAM device in a clock tick. A 64 byte data access occurs

over 8 ticks (4-cycles in a double-data-rate DRAM), with 64-bits being transferred

5

X4 = 4 bits
X8 = 8 bits

X16 = 16 bits

Access
Transistor

Capacitor
Cell

DRAM Array

Row
Buffer

Figure 2.1: Stylized representation of a DRAM array

on each tick. The 64-bits that are transferred in a tick are spread across the DRAM

devices constituting a rank, with each device delivering a column-width number of

bits.

A typical memory access cycle on a bank of a DRAM involves the steps of

ACTIVATE, READ/WRITE and PRECHARGE [10]. Initially, assuming that the

column bit-lines and the sense amplifiers of the row buffer are in the Precharged

state, the row from which the memory access is to be performed is Activated. During

Activation, the contents of an entire row spread across all the devices that form a

bank of a rank are so read into the sense amplifiers of the row-buffer. This process is

destructive in nature in the sense that immediately after Activation the charge stored

in the capacitor cells of the activated row is no longer valid. The activation process is

6

2KB - 4KB

Device 1 Device 2 Device 3 Device 4

Figure 2.2: Stylized representation of a bank consisting for 4 X16 DRAM devices

illustrated in the Figure 2.3. It will take a time of tRAS (Row Access Strobe Latency)

for the charge in the capacitor cells of the activated row to be restored to their

original values. However, after only a time of tRCD (row to column delay) from the

activation, typically much smaller than tRAS, the data stored in the sense-amplifiers

of the row buffer is available to be read or written. The stylized representation of the

read/write operation is shown in Figure 2.4. Once the read/write operations finish

and the charge in the sense amplifiers is restored to the capacitor cells of the memory

array’s row, the column bit-lines are precharged to make them ready to activate a

different row if required. Multiple read/write operations can be performed on the

data stored in the sense amplifiers before precharge. Since the size of the row buffer

(2KB - 4KB) is typically quite large compared to a single memory access (64B), the

process of activating an entire row becomes prohibitively expensive if it is required

to be done for every memory access. Hence, the entire DRAM internal architecture

and memory controller design is centered around performing as many read/write

requests as possible on an activated row before the bit-lines are Precharged. An

7

2KB - 4KB

Device 1 Device 2 Device 3 Device 4

Figure 2.3: Stylized representation of Activation process in a bank of DRAM

Access - 64B

2KB - 4KB

Device 1 Device 2 Device 3 Device 4

Figure 2.4: Stylized representation of read/write process in a bank of DRAM

activated row is also called an open row and a memory access performed on an open

row is called a row buffer hit.

In addition to the typical Activate - Read/write - Precharge cycle, the leaky

nature of the charge on the capacitor cells requires another operation to be performed

periodically. The charge in the capacitor cells of a set of DRAM rows is restored

periodically by an operation called as Refresh. During refresh, the banks on which

the refresh is being performed are unavailable for any memory accesses. As a result,

8

CPU

MC

MC

Channel1

Channel2

Figure 2.5: Stylized representation of a 2 channel memory system with 2 ranks per

channel and 4 banks per rank

refresh operations can significantly increase the latency of those memory accesses

that arrive during the refresh process to the banks being refreshed. The performance

penalty of refresh can be reduced by utilizing the slack in when the Refresh operation

needs to be strictly performed as per the DDR protocol specification.

Several DRAM banks are grouped together to form a rank, and multiple ranks

can be present in a single Channel of a DRAM. Fig 2.5 shows a stylized represen-

tation of a CPU connected to a two channel memory system with two ranks per

channel and 4 banks per rank. Each memory channel has its own memory controller

responsible for performing memory accesses for the addresses mapped to that chan-

nel. A channel has its own command and data buses and hence increasing the

number of channels increases both the amount of memory parallelism available as

9

well as the maximum available memory bandwidth. On the other hand, the ranks

of a channel and the banks within a rank all share the same command and data

bus. Hence, while having a greater number of banks per channel doesn’t increase

the maximum available memory bandwidth, it does increase the number of mem-

ory accesses that can pipelined for data transfer across the data bus. As we will

investigate in this thesis, the amount of internal parallelism available in DRAM is

a critical parameter in determining the fraction of maximum available bandwidth

that a memory sub-system can actually deliver.

2.2 Timing Constraints

The DDR protocols specify the various commands that need to be issued to

perform the basic operations of activation, read, write, precharge, refresh etc. In

addition to specifying the necessary command sequences, the DDR protocols also

specify various timing constraints that need to be obeyed between the issuance of

the DRAM commands. These timing constraints are an indirect way of expressing

the various electrical constraints that manifest during the manufacturing process as

well those that arise due to sharing of internal structures. Some of these timing

constraints exist to express the time delay for the various operations to happen

while others exist to limit the peak current. The four activation window constraint

is one such example which exists to limit the peak current profile as activation

operation draws a relatively high amount of current. Also, a command issued to a

certain part of the DIMM could create a timing dependencies for the issuance of

10

commands to other parts of the DIMM. This section briefly discusses some of these

timing constraints and how they directly impact memory access latency and thereby

workload performance.

All the ranks of a channel share the same command and data buses. The

sharing of the data bus imposes the obvious timing constraint that a memory access

from a rank has to wait till the ongoing memory access from a different bank fin-

ishes. In addition, an extra wait time of tRTRS (Rank-to-Rank turn around delay)

is required when switching the usage of the data bus to a different rank. Additional

timing constrains apply when the two ranks perform different types of accesses i.e.

when the one rank does a read access and the other rank has to do a write access

or vice versa. Hence, frequent switching between accesses to different ranks as well

frequently switching between read and write accesses could cause a access latency

penalty.

The tCCD (Column-to-Column delay) timing constraint imposes the minimum

time delay required between the issuance of two column access commands to different

banks of a rank. When tCCD is greater than the time required to transfer the

data across the data bus (tBurst), it becomes the limiting factor in determining the

effective utilization of bank-level parallelism. In DDR4 and beyond architectures the

set of banks in a rank are grouped into two or more groups called as bankgroups. For

these architectures, the tCCD timing constraint splits into two parameters namely -

tCCDS (tCCD small) and tCCDL (tCCD large), wherein the column access commands

to banks of the same group require a larger delay between them than those to banks

belonging to different bankgroups. As a result, greater latency penalty would be

11

paid if the successive accesses are not interleaved well across banks belonging to

different bankgroups.

The tRRD (Row-to-Row activation delay) timing constraint imposes the min-

imum delay required between the issuance of two activate command to different

banks of a rank. In addition, the tFAW (Four-activation-window) timing constraint

specifies a restriction on the number of activate commands that can issued to banks

of a rank in any contiguous time interval of length tFAW . The tFAW is typically

larger than four times tRRD. These two constraints together determine how quickly

the memory accesses belonging to different banks of a rank can be performed thereby

determining how well the bank level parallelism can be utilized.

In addition to the above mentioned constraints, numerous other timing con-

strains exist which together determine the performance characteristics of the mem-

ory subsystem. The complete details of these timing constraints can be found in

the JEDEC protocol specification data sheets. It is paramount for the memory con-

troller to take into consideration the relative values of the various timing constraints

to decide on the optimal memory request scheduling algorithms.

12

Chapter 3: DRAM Simulator Design and Simulation Methodology

Simulation is an important aspect of computer architecture research. It is

seldom practical to build actual hardware to evaluate an architectural idea. On the

other hand, analytical models are often too simplistic and end up not giving a real

insight. Simulation provides a fine balance between the accuracy at which an idea

can be evaluated versus the cost of evaluating an idea in terms of both time and

money. Hence, building and using simulators is the preferred approach for doing

performance evaluation and exploration studies. This chapter describes the design

of a new DRAM memory simulator as well as the overall simulation methodology

used to perform the various studies in the rest of thesis

Architectural simulators come in numerous forms with varying degrees of accu-

racy, modularity and simulation speed. Often, sacrificing some amount of accuracy

is unavoidable to make the simulation time tractable. There are several popular

architectural simulators such as gem5 [11], Zsim [12], sniper [13], Structural Simu-

lation toolkit (SST) [14] etc. Each of these simulators has its own internal model

of the DRAM memory controller. However, the modeling of the memory controller

is often not fully accurate. While such inaccuracy might not significantly affect the

kind of studies for which these simulator were designed, it could produce misleading

13

results for certain kinds of memory performance studies. For example, the very de-

sign of simulators such as Sniper and Zsim makes it impossible to model the effect of

back-pressure due to memory controller queues being full. While it is conventional

wisdom that some of these inaccuracies can be safely ignored, depending upon the

type of study, doing so might not always be the right thing to do. For example, a

study to quantify the effect of limited memory bandwidth on overall performance

would be measured incorrectly if simulators such as Zsim or Sniper are used. This

is because one of the first order effects of having a limited bandwidth is to cause the

processor to stall due to the queues in the memory controller being full, a behavior

which doesn’t get modelled while using Zsim or Sniper.

While there are a few existing publicly available DRAM memory simulators

such as DRAMSim2 [15], USIMM or Ramulator [16] which model some of the fea-

tures of some of the protocols, there are none which either model or could be easily

modified to model all the features of interest in our study. The DRAMSim2 and

USIMM simulators were primarily designed to model the features of DDR2 and

DDR3 protocols. While Ramulator is close to our simulator in its capability to

model various newer DRAM protocols the software design of Ramulator requires

the various protocol specific timing parameters to be compile time constants which

restricts the ease of doing certain kinds of performance studies.

Stand alone cycle level DRAM simulators such as DRAMSim2 [15], Ramu-

lator [16] etc model the memory controller behavior much more accurately albeit

being a lot slower than some of the internal DRAM controller models available in

popular architectural simulators. In this thesis, a new cycle level DRAM simula-

14

tor is designed and implemented to accurately model the behavior of various DDR

protocols.

3.1 Design of a new DRAM simulator

A DRAM simulator essentially models the behavior of a memory controller

performing read and write accesses to the memory subsystem. The memory con-

troller issues the requisite commands to the DRAM devices while obeying the various

timing constraints of the corresponding DDR protocol. In addition, the key duty of

a high performance memory controller is to orchestrate the scheduling of memory

accesses so as to maximize performance or minimize power. Design of efficient mem-

ory access scheduling algorithms is a very active area of research. All commercial

processors employ proprietary memory scheduling algorithms, the details of which

are not public. In this DRAM simulator, a memory scheduling algorithm which is

generally accepted to be close to optimal has been implemented.

The key aspects in the software design of a DRAM simulator are as below -

1. To maintain the correct state information across all the parts of the DIMMs

at all times.

2. To maintain timing constraints depicting the earliest time at which a particular

DRAM command can be issued to different parts of a DIMM.

3. To design a high performance memory scheduling algorithm that serves mem-

ory requests out-of-order to maximize row buffer hits. At the same time, the

15

scheduling algorithm has to maintain some degree of fairness to avoid starva-

tion. In addition, the memory controller has to periodically refresh the cells in

the DRAM devices to maintain data fidelity. Issuing refreshes while causing

minimal performance loss is another important design constraint.

Each of these design aspects are described in further detail in the following

sub-sections

3.1.1 Maintaining internal state

Some of the state information that is maintained in the simulator is as below

1. Is Bank Open - Whether a row buffer is open in a bank or not and if it is open

which row is open. This state information is maintained for each bank.

2. In Self Refresh - Whether a DIMM is in self refresh mode or not. This state

information is maintained for each channel(DIMM).

3. Last Four Activations - The clock cycles at which the last 4 activation com-

mands were issued. This state information is maintained for each rank and is

used to the obey the tFAW timing constraint.

4. Last 32 Activations - The clock cycles at which the last 32 activation com-

mands were issued. This state information is maintained for each rank and is

used to obey the tFAW timing constraint in GDDR5.

A crucial aspect of the simulator design is to always maintain the correct state

information. So, whenever any DRAM command is issued, it is checked to see if

16

it modifies any of the above state and if so, the corresponding state is updated

appropriately. The following examples illustrates how some of these state updates

occur:

1. Suppose an activate command is issued to a bank with no open row. In this

case, the states Is Bank Open, Last Four Activations and Last 32 Activations

are updated. Is Bank Open state is updated as the activate command causes

a row in a bank to open. Last Four Activations and Last 32 Activations states

are updated as the new activate command counts as one among the last few

activate commands.

2. Suppose a precharge command is issued to a bank with an open row. In this

case, only the state Is Bank Open is updated as the precharge will cause the

open row in the bank to close.

3. A column read or write command does not change any state information.

The current state of the different parts of the DIMM determines if any com-

mand needs to be issued as a prerequisite before issuing the command to perform

the actual read/write operations. The following examples illustrates how the current

state is queried to determine if any prerequisite command is required to be issued,

and if so the corresponding prerequisite command is returned.

1. If a Read command is to be issued to bank in which a different row is open,

the state information of the bank is queried to determine that the required

prerequisite command is the precharge command.

17

2. If a Read command is to be issued to a DIMM which is in currently in self-

refresh mode, the state information is queried to determine that the required

prerequisite command is the self-refresh exit command.

3. If a Read command is to be issued to bank in which the command is addressed

to the same row as the currently open row (i.e.a row buffer hit occurs) then

the state information is queried to determine that no prerequisite command

needs to be issued and the issuance of the Read command can go ahead.

Thus, the correct current state information is maintained by updating the

state after the issuance of any state changing command. Also, the state information

is queried to determine the corresponding prerequisite command, if any, that needs

to issued before the desired command for performing read/write accesses.

3.1.2 Maintaining timing constraints

The various DRAM protocol timing constraints are captured by storing, for

every DRAM command, the earliest time at which it can be issued to any part of

the DIMM. Accurately maintaining this earliest time information is the key design

aspect that makes the DRAM simulator functionally correct.

Whenever a command is issued to a part of the DIMM, it creates a timing

dependency for the subsequent issuance of a set of commands to different parts of

the DIMM. The details of such dependencies are what makes the DRAM protocols

so complex. This timing dependency between the issuance of a command and the

subsequent issuance of a set of commands is stored as a static data structure whose

18

values are populated once during the initialization phase of the DRAM protocol in

the simulator. This data structure captures all the subtle details of the protocol

timing constraints in a clean manner.

On the issuance of a DRAM command, the earliest time information for all

the dependent subsequent commands to different parts of the DIMM are updated.

The following examples illustrates how some of this timing information is updated

in the simulator:

1. Suppose a Read command is issued to one of the banks of a rank. This creates

several timing dependencies such as - subsequent Read commands cannot be

issued to the banks of the same rank before a time delay of tCCD (column-to-

column delay), a Precharge command cannot be issued to this bank before a

time delay of tRTP (read-to-precharge delay) etc. So, on the issuance of the

original Read command, the earliest time information is updated for the Read

commands to the same rank and the Precharge command to the same bank.

2. Suppose a Refresh command is issued to a bank of a DIMM. This creates a

timing dependency that an Activate command cannot be issued to the same

bank before the time delay of tRFC (refresh cycle delay). So, the earliest time

information for the Activate command to this bank is updated to be not before

tRFC .

3. Suppose a Write command is issued to a rank of a DIMM. This creates a timing

dependency that Read commands even to different ranks cannot be issued

before a delay of tWTR (write-to-read turnaround delay) after the data transfer

19

finishes (tBURST). So, the earliest time information for write commands to

different ranks is updated to be not before (tBURST + tWTR).

The memory controller queries the earliest time information before the issuance

of any command so as the ensure protocol timing compliance. A command is issued

only if the current clock tick of the simulator is past the earliest time at which

that command could be issued. Checking the earliest time information before the

issuance of any DRAM command and updating it appropriately for all dependent

commands after the issuance is how the timing protocol constraints are accurately

met in the simulator.

3.1.3 Memory controller model and memory access scheduling

The key duties of the memory controller are to read the data stored in the

DIMM, to write data to the DIMM, and to maintain the integrity of the data in the

DIMM. To perform these functions the memory controller sends various commands

to the DIMMs through the command bus. It is expected that memory controller

sends these commands while observing the specific DRAM protocol requirements.

The behavior of the DRAM devices when the memory controller fails to observe the

protocol specifications is undefined and could lead to corruption of the data stored

on the DRAM devices.

A high performance memory controller also needs to schedule the memory ac-

cesses to minimize average latency and increase overall memory throughput. There’s

a wide array of research on several kinds of memory scheduling algorithms with some

20

prioritizing the overall throughput, whereas others try to give greater importance

to ensuring fairness among memory accesses. The optimal memory scheduling in a

given scenario is highly dependent upon the characteristics of the workloads being

run.

Each channel of the memory system has an independent memory controller

that is responsible for performing the memory accesses to that channel. The memory

scheduling algorithm of such a memory controller that has been implemented in the

built simulator is briefly described below. The memory controller has queues to

store the incoming memory access requests from the CPU. These queues could be

one per channel or one per rank or even one per each bank. A memory request queue

is searched to determine if a DRAM command useful to service a memory request in

the queue could be issued in this cycle. If no such command is found, the remaining

queues are searched in a round robin manner. The algorithm tries to service the

memory requests mostly in a first-come-first-serve order, and only looks to service

the memory requests out-of-order when potential row buffer hits would be missed

due to strictly adhering to the first-come-first-serve policy. In addition, to avoid

possible starvation if out-of-order memory requests resulting in row buffer hits are

forever prioritized, a hard limit on the number of row buffer hits for prioritization

is set. After reaching the set limit, the out-of-order row buffer hits are no longer

prioritized, and the required command for servicing the oldest request in the queue

is prioritized.

In addition to performing the read/write memory requests from the CPU,

the memory controller has to periodically issue refresh commands to restore the

21

stored charge in the leaky DRAM capacitor cells. In the simulator, this is done

by placing Refresh requests in a separate refresh-request queue. The requests in

the refresh queue could either all be rank-level refresh requests or all bank-level

refresh requests or a combination of both. The memory-scheduling algorithm in the

simulator prioritizes issuing refreshes over new read/write memory requests when

there are pending refresh requests in the refresh queues. So, when the refresh queue

is non-empty, i.e. a refresh request is pending, the memory controller does not

issue any new read/write requests to the part of the DIMM that is awaiting refresh

and waits for existing accesses to complete before issuing the required command to

perform refresh.

The state information, the earliest time information and the memory access

scheduling algorithm together form the building blocks of the DRAM simulator. On

each cycle, the memory controller queries the state and timing information to decide

on the memory access to be scheduled and issues the corresponding DRAM com-

mand for it. After a DRAM command is issued, the state information and earliest

time information are updated. Finally, when a memory access request finishes, it is

returned to the CPU simulator, which gets to correctly model the memory access

latency for that memory request.

3.1.4 Support for all DDR protocols

The simulator has been designed with generality and flexibility in mind. In-

stead of designing a separate memory controller and separate state and timing in-

22

formation storage for each of the DDR protocols, a single module which supports

all the features of the various protocols has been implemented with the ability to

enable or disable the various features as required.

Each of new features of the DRAM protocols require modifications to the

memory controller’s memory-access scheduling algorithm to take their full advan-

tage. The details of some of such features and how the memory-access scheduling

algorithm has been modified to accommodate them is described below.

Self-refresh modes exist in some low power DDR architectures. During the self-

refresh mode the memory controller doesn’t have to issue any Refresh commands,

and refresh operation is managed internally by the DRAM DIMM itself [17]. When

to enter and when to exit the self-refresh mode is a decision made by the memory

controller. In the simulator, a self-refresh command is issued when the memory

controller queues are found to be empty for a certain number of cycles. That is,

if no memory requests were sent from the CPU for over a period of time, in the

expectation that memory requests might not be sent even for some more time in the

future, the memory controller asks the DRAM DIMM to enter self-refresh mode.

Some additional state information required for this is whether or not all queues are

empty, and the clock cycle from which the queues have been empty. The self-refresh

exit is done when a read/write request gets queued in the memory controller. While

it is occasionally possible to speculatively exit the self-refresh mode preemptively,

for the sake of simplicity, it is not done in the simulator’s memory-controller imple-

mentation.

In HBM architectures, two DRAM commands can be issued in each cycle. The

23

two commands that can be issued in the same cycle cannot be arbitrary, but they

need to belong to different “groups”. One group is of row commands consisting

of Activate and Precharge commands. The other group is of column commands

consisting of Read and Write commands. To utilize the potential of dual command

issue in improving performance, the memory controller is modified to look for issuing

two such complimentary commands each cycle.

Some of the newer architectures have the feature to issue refreshes at both

rank and bank granularities. To study the usefulness of having the ability to issue

bank level refresh, several different refresh strategies have been implemented in the

simulator.

With a memory controller that utilizes the newer features of the different pro-

tocols and follows timing specifications of different DDR protocols, DRAM archi-

tectures belonging to different protocols can be compared using the built simulator.

3.1.5 Integration with CPU simulators

There two primary approaches to performing memory architectural studies us-

ing a DRAM simulator. One approach is to collect the memory traces for workloads

by either running them directly on a real machine or by running them only once on

a detailed CPU simulator and collecting the memory address traces. These memory

address traces are then used as representative workloads for performance evaluation

using the memory simulator. This approach is still widely popular because of its

simplicity and often times being the only way to do a tractable study especially for

24

systems with large numbers of processor cores. However, such studies could end up

being inaccurate and often give false insights because the key aspect of the feedback

from the memory sub-system causing the processor to stall and not be able to issue

any more memory requests won’t get modelled.

The other approach is to integrate the DRAM simulator with a CPU simulator

by substituting its memory controller model with the controller model in the DRAM

simulator. The designed memory simulator has been integrated with several front-

end CPU simulators such as structural simulation toolkit(SST), Zsim and Gem5.

Some of the issues which were encountered while integrating with the front-end

simulators are describe below.

Zsim [12] is a fast CPU simulator, but its software design doesn’t allow the

modeling of back-pressure to the CPU due to queues in the memory controller being

full. We found this to be a source of inaccuracy for doing performance comparison of

dram architectures with widely differing bandwidth characteristics. Both Structural

simulation toolkit(SST) [14] and gem5 [11] are capable of modeling the back-pressure

to the CPU due to the memory request queues being full. However, the only CPU

model available in SST, called Ariel, is a fairly simplistic model of an in-order CPU

with IPC = 1 for non-memory instructions. We found that this simple in-order

CPU model was incapable of creating the necessary memory bandwidth demand

required to evaluate the benefits of different DRAM architectures. Eventually, an

out-of-order CPU model in gem5 was chosen as the right CPU model to go along

with our detailed cycle level DRAM simulator.

25

3.2 Simulation Methodology

This section describes the simulation methodology used to perform the various

studies in this thesis. The configuration of the CPU simulator, memory controller

as well as the characteristics of the various studied workloads are described in the

following subsections.

3.2.1 CPU Simulator

To keep the simulation time tractable, a methodology of obtaining workload

checkpoints using a fast functional simulation and then doing the actual detailed

simulation by restoring from these checkpoints has been employed. First, each

workload is run using the gem5 AtomicSimpleCPU model and check-pointed after

running for 10 Billion instructions per core. The obtained single-core checkpoints

are combined to form a multi-core multi-process checkpoint. The detailed simula-

tions are done by restoring from the multi-core process checkpoint and employing

a detailed Out-of-order CPU model for the benchmark execution after restoration

from the checkpoint. Multi-core simulations are performed by executing the SPEC

workloads in rate mode. The configuration of the CPU simulator used to perform the

various studies is show in Table 3.1. The common memory controller configuration

that is used for performing the various studies is shown in 3.2

26

Table 3.1: Configuration of the CPU simulator gem5

CPU
Gem5 OOO CPU model,
x86 architecture, 8-cores
Syscall emulation mode (SE mode)

Core
4GHz, Out-of-order, 8-fetch, 8-issue,
192 reorder buffer entries

L1 I-Cache
per-core, 32KB, 2-way associative,
64 Byte cache line, LRU

L1 D-Cache
per-core, 64KB, 2-way associative,
64 Byte cache line, LRU

L2 Cache
private, 2MB, 8-way associative,
64 Byte cache line, LRU

Workloads
bzip2, mcf, milc, leslie3d, soplex,
GemsFDTD, lbm, astar, sphinx3

Checkpointing
Multicore process checkpoints
at 10 Billion instructions

Number of Instructions
100 million instructions per core
A total of 800 million instructions

3.2.2 Workloads studied and their characterization

A selection of SPEC CPU2006 workloads with high memory bandwidth re-

quirements is used to conduct the various studies. All the SPEC CPU2006 workloads

were characterized for their last-level-cache (LLC) misses behaviors. A selection of

these workloads with high misses-per-kilo-instructions (MPKI) is used for perform-

ing various studies. The MPKI characterization of these workloads is show in Figure

3.1

27

Table 3.2: Common configuration of the memory controller that is used for various
studies

Address robabgrachco
Mapping row-bank-bankgroup-rank-channel-column

Queue Per Bank
Structure Queues

Queue 16
Depth

Refresh Rank-level
Strategy Staggered

Request First-come-first-serve
Scheduling while prioritizing row buffer hits

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0

10

20

30

40

50

M
iss

es
 p

er
 k

ilo
 in

st
rs

 (M
PK

I)

MPKI Vs. Workloads
DDR3_1600

Figure 3.1: Misses-per-kilo-instructions (MPKI) characterization of workloads

28

Chapter 4: Salient features of different protocols

In this chapter the various distinguishing features of different DDR protocols

are studied for their impact on performance and power.

4.1 Bankgroups in DDR4 and beyond

DRAMs exhibit bank-level parallelism i.e. read/write accesses to the open

rows in different banks of a rank can be serviced in an interleaved manner. In

contrast, a bank conflict is said to occur if memory accesses mapped to different

rows of the same bank need to be serviced in an interleaved manner. Increase in

the number of bank conflicts decreases the number of possible row buffer hits due

to spatial locality and thereby severely degrades application performance and power

characteristics because of increased activation and precharge overhead. Therefore,

having a large number of banks per rank is a highly desired DRAM architecture

feature.

The minimum time that is needed between the issuance of two successive read

command or two successive write commands to the banks of a rank is the maximum

of the following two parameters tBURST and tCCD. Figure 4.1 shows the DRAM

timing diagram with tCCDS and tCCDL parameters.

29

JEDEC Standard No. 79-4A
Page 77

4.19 DDR4 Key Core Timing

DDR4, Core Timing

NOTE 1 tCCD_S : CAS_n-to-CAS_n delay (short) : Applies to consecutive CAS_n to different Bank Group (i.e., T0 to T4)
NOTE 2 tCCD_L : CAS_n-to-CAS_n delay (long) : Applies to consecutive CAS_n to the same Bank Group (i.e., T4 to T10)

Figure 55 — tCCD Timing (WRITE to WRITE Example)

NOTE 1 tCCD_S : CAS_n-to-CAS_n delay (short) : Applies to consecutive CAS_n to different Bank Group (i.e., T0 to T4)
NOTE 2 tCCD_L : CAS_n-to-CAS_n delay (long) : Applies to consecutive CAS_n to the same Bank Group (i.e., T4 to T10)

Figure 56 — tCCD Timing (READ to READ Example)

CK_t

CK_c

T0 T1 T2 T3 T4 T5 T9 T10

WRITE DES DES DES WRITE DES DES WRITECommand

BG a BG b BG bBank Group(GB)

Time Break Don’t Care

T11

DES

Bank c Bank c Bank c

Col n Col n Col n

Bank

ADDRESS

tCCD_S tCCD_L

DES

CK_t

CK_c

T0 T1 T2 T3 T4 T5 T9 T10

READ DES DES DES READ DES DES READCommand

BG a BG b BG bBank Group(GB)

Time Break Don’t Care

T11

DES

Bank c Bank c Bank c

Col n Col n Col n

Bank

ADDRESS

tCCD_S tCCD_L

DES

Figure 4.1: tCCD Timing

1. tBURST - The time required to transfer the data across the peripheral pins

which is determined by the burst length of the DRAM.

2. tCCD - The column-to-column command timing constraint which determines

the minimum required time interval between the issuance of two column access

commands to the banks of a rank.

DDR4 and beyond architectures such as GDDR5, HBM, LPDDR4 introduce

the concept of bankgroups. Instead of treating all the banks of a rank alike, the banks

of a rank are divided into two or more bankgroups. The protocol timing constraint

parameter tCCD is now split into two timing parameters - tCCDL (tCCD large) and

tCCDS (tCCD small). tCCDL is the minimum required time interval between the is-

suance of two column commands to banks belonging to the same bankgroup, whereas

tCCDS is the minimum required time interval between the issuance of two column

commands to the banks belonging to different bankgroups. tCCDL is greater than

30

tCCDS and therefore successive accesses to banks belonging to different bankgroups

are less costly than successive accesses to banks belonging to the same bankgroup.

The concept of bankgroups can be seen as a practical compromise to increase the

number of possible banks per rank without paying the penalty for the associated

worst case increase in tCCD. To increase the total number of banks while obeying

the physical design constraints, banks are grouped together into bankgroups where

in the accesses to banks in the same bankgroup have different timing constraints to

obey than to those in different bankgroups.

The concept of bankgroups helps increase the bank level parallelism by increas-

ing the total number of available banks per rank in a DRAM architecture. However,

if the successive accesses are not interleaved well across banks belonging to different

bankgroups, there is a greater latency penalty to pay than before. If the accesses

are interleaved well across bankgroups, the overall performance would be closer to

a DRAM architecture without bankgroups and tCCD equal to tCCDS. On the other

hand, if the accesses are not interleaved well across bankgroups the overall perfor-

mance would be closer to an architecture without bankgroups and tCCDS equal to

tCCDL. Simulation studies are performed to quantify the impact of bankgroups on

workload performance.

4.1.1 Bankgroups Vs Without bankgroups

A DRAM architecture consisting of 1 channel, 2 ranks and 8 banks is studied

for how the division of banks into bankgroups affects performance. The 8 banks per

31

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IP

C

Impact of Bankgroups
tCCDS_no_bankgroups two_bankgroups tCCDL_no_bankgroups

Figure 4.2: Impact of bankgroups

rank are divided into 2 bankgroups (i.e. 4 banks per bankgroup) with timing pa-

rameters tCCDL and tCCDS. These are compared with DRAM architectures without

bankgroups and having 8 banks per rank with timing parameter tCCD = tCCDS and

tCCD = tCCDL respectively. While it is expected that performance of the DRAM

architecture with 2 bankgroups would be bounded on either side by those without

bankgroups and with tCCD = tCCDS and tCCD = tCCDL respectively, the degree

to which its performance is worse than the architecture without bankgroups and

tCCD = tCCDS showcases the performance penalty of having bankgroups.

Figure 4.2 plots the normalized IPC versus different bankgroup timing param-

eters for the various workloads. On average, having bankgroups and having different

timing parameters tCCDS and tCCDL for accesses to within the same bankgroup and

to different bankgroups causes a normalized IPC performance drop of 4% when

32

compared to a DDR3 like structure with all banks with tCCDS timing. However,

increasing the worst case tCCD delay to the tCCDL value for all banks without the

bankgroups feature would result in a much higher normalized IPC performance drop

of as much as 6%. So, it appears that the bankgroups feature serves as a good com-

promise between the need to increase the total number of banks per rank without

severely degrading the worst case column-to-column delay.

4.1.2 Varying the number of bankgroups

For a DRAM architecture with 1 channel, 1 rank and 32 banks per rank, the

number of bankgroups into which these banks are sub-divided is varied from 1 to

32 at multiples of powers of 2 (i.e. 1, 2, 4, 8, 16, 32). It is expected that an increase

in the number of bankgroups improves performance since the number of banks per

bankgroup decreases and so does the probability of successive accesses belonging to

the banks of the same bankgroup. The cases with bankgroups equal to 1 and 32

are essentially same as having no bankgroups and tCCD equal to tCCDL and tCCDS

respectively.

Figure 4.3 plots the normalized IPC versus different number of bankgroups for

the various workloads. The plot demonstrates the an average normalized IPC gain

of 12% is obtained for the case of 2 bankgroups with tCCDS and tCCDL parameters

when compared to a single bankgroup with tCCDL. However, the gains for higher

numbers of bankgroups is only marginally more than the two bankgroups case.

33

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
IP

C

Impact of number of bankgroups
1 2 4 8 16 32

Figure 4.3: Varying number of bankgroups

4.2 32 activation window timing constraint in GDDR5

It is well known that the four activation window timing constraint (tFAW) in

DDR architectures is an important timing parameter. It limits the number of row

activations that can be performed on banks of a rank in a time interval of tFAW . Up

to a maximum of 4 row activation commands can be issued in a running time interval

of tFAW . This timing constraint primarily exists to limit the maximum current

profile of DRAM devices, as row activations are quite intensive in the current drawn.

In addition to tFAW timing constraint, GDDR5 DRAM architectures also have a

32-bank-activation window timing constraint (tFAW), which analogously limits the

number of row activations that can be done in a running time interval of tFAW to a

maximum of 32.

34

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IP

C

Impact of Activation Windows
no_faw faw faw_and_32aw

Figure 4.4: Impact of activation window constraints

Simulation studies are performed to quantify to what extent the 32-bank-

activation-window timing constraint affects the performance of GDDR5 DRAM ar-

chitectures compared to not having such a timing constraint. Since, the precise

values of tFAW are not specified in the GDDDR5 specifications, a tFAW period equal

to 10 times the tFAW period is used to perform this study. Figure 4.4 plots the

normalized IPC for the three cases - first, with no activation window constraints

whatsoever not even tFAW , second, with the baseline four window activation con-

straint and third with both 4-window and 32-window activation constraints. The

IPC’s are normalized w.r.t to baseline case of having only the tFAW timing con-

straint. We observe that the 32-activation window constraint causes a normalized

IPC drop of about 2% while not having the four window activation constraint itself

would cause a normalized IPC performance increase of about 3%

35

4.3 Refresh granularity - Rank level Vs. Bank level

Newer DRAM architectures have the ability to issue refresh commands at the

granularity of a single bank instead of issuing a refresh command for the entire rank

at once. When a bank or a rank is getting refreshed, it is unavailable for servicing

any memory requests. As a result, if refresh is done at a large granularity i.e. for

the entire rank at once, a greater chunk of physical memory address space would

be unavailable at the same time for servicing any memory requests [18] [19]. This

could result in some performance degradation for latency-sensitive applications. On

the other hand, performing a refresh at a smaller granularity, i.e. separately for

each bank, would require a larger number of refresh commands be issued, thereby

possibly causing some bottleneck at the command bus. In addition, providing the

facility to issue per-bank refresh requires a greater amount of internal storage for

bookkeeping to keep track of the next row to be refreshed for each bank separately,

thereby marginally increasing the cost.

Four refresh-command-issuing strategies are compared for their impact on

workload performance. The details of the refresh strategies are described below:

1. RANK LEVEL SIMULTANEOUS - Refresh commands are issued at a per

rank granularity, and refresh commands to all the ranks of a channel are

queued at the same time and issued one after the other. Essentially, in this

strategy the entire channel is unavailable during the period of refresh.

2. RANK LEVEL STAGGERED - Refresh commands are issued at a per rank

36

granularity but refresh commands to different ranks of a channel are issued

in a staggered manner periodically once every tREFI/number of ranks. This

ensures that only a single rank is blocked due to refresh at a time.

3. BANK LEVEL SIMULTANEOUS - Refresh commands are issued at a per

bank granularity, and refresh commands to all banks of a rank are queued at

the same time and issued one after the other. Essentially, in this strategy,

the entire rank is unavailable during the period of refresh in spite of issuing

refreshes at per bank granularity.

4. BANK LEVEL STAGGERED - Refresh commands are issued at a per bank

granularity, but refresh commands to different banks of a rank are issued in a

staggered manner periodically every tREFIb/number of banks. This ensures

that only a single bank of rank is unavailable due to refresh at any given time.

While RANK LEVEL SIMULTANEOUS and BANK LEVEL SIMULTANEOUS

refresh strategies look sub-optimal for refresh at rank granularity and bank granu-

larity respectively, depending upon the phases of memory access behaviour in work-

loads, they could be just as good if not better than the staggered refresh strategies.

Simulation studies are performed to quantify the relative merit of each of these

refresh strategies on workload performance. Figure 4.5 shows the normalized IPC for

different refresh strategies. In our simulations, some of the workloads benefit with

issuing of refreshes at bank level whereas some others don’t. On average, issuing

refreshes at bank level causes a normalized IPC performance improvement of about

3%.

37

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
IP

C

Impact of refresh granularity
rank_level_simultaneous
rank_level_staggered

bank_level_simultaneous
bank_level_staggered

Figure 4.5: Impact of Refresh strategy

4.4 Dual command issue in HBM

The latest of all DRAM architectures studied, HBM, has a new feature where

two commands can be issued over the command bus in the same clock cycle. The

two commands cannot be arbitrary but need to be complimentary; i.e., if one is a

row access command, the other should be a column access command. For workloads

and DRAM architectures that are bottle-necked by the command throughput of the

command bus, the ability to issue multiple commands per cycle could help increase

performance.

Simulation studies are performed to quantify the performance improvement

obtained by the dual-command feature of HBM when as compared to one without

the dual command feature. Figure 4.6 shows that the dual command issue feature

38

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IP

C

Impact of HBM dual command issue
without_hbm_dual_command with_hbm_dual_command

Figure 4.6: Impact of HBM dual command issue feature

in HBM give a marginal performance improvement of 0.4%, thereby implying that

our workloads were not bound by the command bandwidth.

39

Chapter 5: Comparison of DRAM Architectures

This chapter analyzes the impact of the internal organization of DRAM archi-

tecture and the peripheral pin bandwidth on workload performance. DRAM DIMMs

are primarily marketed in terms of their pin bandwidth. However, as we show in

this chapter, the internal parallelism in these architectures plays a crucial role in

achieving a sustained bandwidth close to the rated pin bandwidth. First, abstract

studies are performed to determine the potential of different kinds of parallelism -

such as channel level parallelism, rank level parallelism and bank level parallelism

- in improving workload performance as well as the sustained memory bandwidth

delivered by the memory subsystem. Next, some DRAM architectures belonging

to different DDR protocols are compared for their relative performance and power

trade-off. The abstract studies are performed for a DDR4-like base memory archi-

tecture by varying the number of channels, ranks and banks respectively.

5.1 Parallelism in DRAM Architectures - Abstract Study

Multiple degrees of parallelism exist in DRAM architectures. This section

showcases how the degree of parallelism affects the ability to attain the peak sup-

ported pin bandwidth. The amount of parallelism that is actually possible in real

40

designs is often constrained by the reality of physical design and the need to meet

various timing constraints. Several circuit design constrains manifest in the form of

the various DRAM protocol timing requirements. These timing constraints limit the

performance improvement that the various parallelism can bring about. The proto-

col timing constraints together with the type and the amount of internal parallelism

determine the latency and bandwidth characteristics of any DRAM architecture.

5.1.1 Channel level parallelism

While channel level parallelism is the most true form of parallelism available,

the number of channels for off-package DRAM architectures is constrained by the

number of output pins. However, on-package DRAM architectures such as HBM can

have a much larger number of channels. In this subsection, the effect of the number

of channels on workload performance is quantified for a set of memory intensive

workloads.

The study is performed on a DDR4-like DRAM architecture with 2 ranks

per channel and 8 banks per rank grouped into two bankgroups. Increasing the

number of channels increases both the degree of memory parallelism available as

well as the maximum available pin bandwidth. Figure 5.1 shows the normalized

IPC performance improvement of having a higher number of channels. We observe

the having number of channels equal to 2, 4, 8 increases the normalized IPC on

average by about 19%, 29% and 33% respectively over a single channel system. For

a four channel system, the improvement in normalized IPC ranges from 12%-58% for

41

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d
IP

C

Impact of number of Channels
1 2 4 8

Figure 5.1: Normalized IPC Vs. Number of Channels

the set of workloads studied. An increase in the number of channels also increases

the average bandwidth that the application can draw from the memory subsystem.

Figure 5.2 shows the average bandwidth that is delivered by the memory system for

different numbers of channels. The average memory bandwidth increases from 10

GB/s for a single channel system to 12 GB/s, 13 GB/s and 14 GB/s respectively

for a memory system with number of channels equal to 2, 4, and 8. Also, Figure 5.3

shows the overall row buffer hit rates attained for different channel configurations.

An increase in the number of channels increases the total number of available banks

and thereby the number of rows that can all be open at the same. The row buffer

hit rate percentage increases on average from only 34% for a single channel system

to 48%, 62% and 73% when the number of channels are increased to 2, 4, and 8

respectively.

42

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

M
em

or
y

Ba
nd

wi
dt

h
(G

B/
s)

Memory Bandwidth Vs. Number of Channels
1 2 4 8

Figure 5.2: Average Memory Bandwidth Vs. Number of Channels

5.1.2 Rank level parallelism

A DRAM DIMM can consist of multiple ranks. Since all the ranks of a DIMM

share the same peripheral pin interface, unlike channel-level parallelism, the data

transfer from only one rank can happen at a time. However, seldom do any DRAM

architectures achieve the rated pin bandwidth; i.e., the data transfer bandwidth

across the peripheral interface is almost never the bottleneck. On the other hand,

an increase in the number of ranks increases the total number of available banks

and thereby increases the number of row buffers that could be open at the same

time. Indirectly, this helps reduce the number of row conflicts and allows a greater

number of memory accesses to be serviced with the latency closer to the minimum

data transfer latency (tBURST). Overall, the number of memory accesses that could

be readily pipelined to be drained across the data bus increases with increase in

43

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0

20

40

60

80

100

Ro
w

bu
ffe

r h
it

ra
te

 (%
)

Row buffer hit rate Vs. Channels
1 2 4 8

Figure 5.3: Row buffer hit rate Vs. Number of Channels

number of ranks.

One of the timing parameters that determines how effectively the Rank level

parallelism can be utilized is the Rank-to-Rank turn around delay (tRTR). The

tRTR is the additional time interval required between servicing read/write accesses

belonging to different ranks. An increase in tRTR adversely affects workload perfor-

mance as the access latency to service memory requests interleaved across different

ranks increases.

Simulation studies are performed to quantify how an increase in rank-level

parallelism impacts the workload performance. For a DDR4-like base system with

2 channels and 8 banks per rank grouped into two bankgroups, the number of ranks

are increased from 1 to 2, 4 and 8. Figure 5.4 shows the normalized performance

improvement of having a higher number of ranks. We observe that having 2, 4,

44

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d
IP

C

Impact of number of ranks
1 2 4 8

Figure 5.4: Normalized IPC Vs. Number of Ranks

8 ranks causes a normalized IPC improvement of 18%, 29% and 33% respectively

w.r.t to the baseline single-rank system. The normalized IPC improvement of a two

rank system ranges from 12% - 25% for the set of workloads studied. Figure 5.5

shows that the total average bandwidth delivered by the memory subsystem for the

different rank configurations. Memory systems with number of ranks equal to 2, 4, 8

draw a average memory bandwidth of 13 GB/s, 14 GB/s and 15 GB/s respectively

which is 20%, 31% and 35% greater than that of a single rank system. Figure 5.6

shows how much the overall row buffer hit rate increase with increase in number

of ranks. A two rank system on average realizes 38% more row buffer hits than a

single rank system.

45

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

M
em

or
y

Ba
nd

wd
ith

 (G
B/

s)

Memory Bandwidth Vs. Ranks
1 2 4 8

Figure 5.5: Average Memory Bandwidth Vs. Number of Ranks

5.1.3 Bank level parallelism

Each rank contains several banks. Similar to an increase in the number of

ranks, an increase in the number of banks increases the number of row buffers that

could all be open at the same time; and this reduces the possibility of row conflicts.

A critical timing parameter that determines how effectively bank level parallelism

can be utilized is the column-to-column access delay tCCD. An increase in the value

of tCCD increases the time interval required between the servicing of two accesses

belonging to the banks of a rank. Several other DRAM protocol timing constraints

such as tRRD (Row-to-Row activation delay) and tFAW (Four window activation

window constraint) limit the effective utilization of a bank level parallelism.

Simulation studies are performed to quantify how bank level parallelism affects

workload performance. Figure 5.7 shows the normalized performance improvement

46

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0

20

40

60

80

100

Ro
w

bu
ffe

r h
it

ra
te

 (%
)

Row buffer hit rate Vs. Ranks
1 2 4 8

Figure 5.6: Row buffer hit rate Vs. Number of Ranks

of having a higher number of banks. Here, we normalize w.r.t the the baseline case

of number of banks equal to 4. The figure shows that reducing the number of banks

to 2, 1, causes a normalized IPC performance drop of 24% and 54% respectively. On

the other hand increase the number of banks to 8, 16 and 32 increases the normalized

IPC by 14%, 22% and 25% respectively.

Some of this behaviour could be explained by primarily looking at the row-

buffer hit rate. Having a higher degree of parallelism allows for greater number of

rows in different banks to be open at the same time, thereby helping to increase the

row buffer hit rate. Fig 5.8 shows how the row buffer rate changes with the number

of banks. Having a single bank causes the row buffer hit rate to drop to as low as

19%, whereas 4, 8 and 16 banks attain row buffer hit rates of 34%, 47% and 63%

respectively. An increase in the row buffer hit rate and an increase in the degree

47

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
IP

C
(w

.r.
t b

an
ks

 =
 4

)

Impact of Number of banks
1 2 4 8 16 32

Figure 5.7: Normalized IPC Vs. Number of Banks

of parallelism helps increase the average bandwidth delivered. Figure 5.9 showcases

the average bandwidth delivered by memory system configurations with different

numbers of banks. Memory systems with 8 and 16 banks on average provide 14%

and 16% more bandwidth than a 4-bank system.

5.2 Comparing DDR protocols - A focused study

In this section several DRAM architectures belonging to different DDR pro-

tocols are compared for their performance and power trade-off.

48

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0

20

40

60

80

Ro
w

bu
ffe

r h
it

ra
te

 (%
)

Row buffer hit rate Vs. Banks
1 2 4 8 16 32

Figure 5.8: Row buffer hit rate Vs. Number of Banks

5.2.1 Performance comparison of DRAM architectures

The amount and type of parallelism available in DRAM architectures along

with the protocol-specific timing constraints and rated pin bandwidth, together de-

termine the impact of the memory subsystem on application performance. While

directly comparing DRAM architectures belonging to different DDR protocols is

not an apples-to-apples kind of comparison, it does however showcase how the dif-

ferent DRAM architectures affect the overall application performance. Table 5.1

lists the various DRAM architectures studied. It lists the DDR protocol the DRAM

architectures belongs to, the degree and type of parallelism available, as well as

the frequency of the data bus. The internal parallelism is specified in terms of the

number of channels, number of ranks per channel, number of bankgroups into which

49

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

M
em

or
y

Ba
nd

wi
dt

h
(G

B/
s)

Memory Bandwidth Vs. Banks
1 2 4 8 16 32

Figure 5.9: Average Memory Bandwidth Vs. Number of Banks

the banks of the rank are divided and the total number of banks per rank. Figure

5.11 shows the average bandwidth delivered by each of these DRAM architectures.

We observe that, for the studied workloads, the internal parallelism is the primary

contributing factor in determining the average bandwidth. The contribution of the

frequency of the data transfer bus in increasing the sustained bandwidth delivered

is minimal for the set of workloads studied. For example, DDR4 3200 architecture

only has a marginal 1% more average bandwidth than DDR4 1600 architecture,

while HBM 2000 delivers a meagre 4% more average bandwidth than HBM 1000.

Figure 5.10 shows the normalized IPC for the workloads across different DRAM

architectures. The two HBM DRAM architectures produces a normalized IPC im-

provement of 21% and 26% respectively over the DDR 1600 baseline. Overall, we

observe that for two DRAM architectures belonging to the same protocol and with

50

Table 5.1: Configuration of DRAM architectures studied showing the type of DDR

protocol, data bus frequency and the degree of internal parallelism

Name DDR Protocol Frequency Channels Ranks Bankgroups Banks

(in MHz) per Rank

LPDDR3 1333 LPDDR3 1333 2 1 1 8

LPDDR3 1866 LPDD3 1866 2 1 1 8

DDR3 1600 DDR3 1600 2 1 1 8

DDR3 1866 DDR3 1866 2 1 1 8

DDR4 1866 DDR4 1866 2 1 4 16

DDR4 3200 DDR4 3200 2 1 4 16

HBM 1000 HBM 10000 16 1 4 16

HBM 2000 HBM 2000 16 1 4 16

the same degree of internal parallelism, the performance improvement with an in-

crease in frequency of the data bus is only marginal. DDR4 3000 architecture shows

only a marginal normalized IPC improvement of 2% over DDR4 1866.

51

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3
Multicore Spec 2006 workloads in rate mode (cores = 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
IP

C
(w

.r.
t D

DR
3_

16
00

)

Normalized IPC Vs. Different DRAM Architectures
LPDDR3_1333
LPDDR3_1866

DDR3_1600
DDR3_1866

DDR4_1866
DDR4_3200

HBM_1000
HBM_2000

Figure 5.10: Normalized IPC for DRAM architectures belonging to different DDR

protocols

5.2.2 Energy and Power comparison of DRAM architectures

Figure 5.12 shows the dynamic energy consumption for the workloads across

the different DRAM architectures. We observe that that the dynamic energy con-

sumption increases significantly with an increase in the frequency of the data bus.

DDR4 3200 architecture has much higher energy consumption than DDR4 1866.

Pareto plots showing the variation of power and CPI for the different DRAM ar-

chitectures are drawn for all the benchmarks in Figure 5.13. We observe that the

HBM and LPDDR architectures are Pareto optimal in terms of power and perfor-

mance. For architectures belonging to the same DDR protocol with the same degree

of internal parallelism, a higher data-bus bandwidth gives only a marginal improve-

52

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0

2

4

6

8

10

12

14

16

Ba
nd

wi
dt

h
(G

B/
s)

Average Memory Bandwidth for different DRAM Architectures
LPDDR3_1333
LPDDR3_1866

DDR3_1600
DDR3_1866

DDR4_1866
DDR4_3200

HBM_1000
HBM_2000

Figure 5.11: Average Bandwidth for DRAM architectures belonging to different

DDR protocols

ment in CPI while consuming significantly more power. For example, HBM 2000

architecture on average has 4% lesser CPI than HBM 1000 but consumes 70% more

dynamic power. We conclude that for the set of memory intensive workloads stud-

ied, the internal parallelism of the DRAM architectures plays a far more important

role in improving workload performance than the bandwidth of the data-bus. In

addition, the power consumption associated with higher data-bus bandwidths is not

commensurate with the improvement in workload performance.

53

bzip2 mcf milc leslie3d soplex GemsFDTD lbm astar sphinx3 a_mean
Multicore Spec 2006 workloads in rate mode (cores = 8)

0

100

200

300

400

500

600

700

Dy
na

m
ic

En
er

gy
 (m

J)

Dynamic Energy for DRAM Architectures
LPDDR3_1333
LPDDR3_1866

DDR3_1600
DDR3_1866

DDR4_1866
DDR4_3200

HBM_1000
HBM_2000

Figure 5.12: Dynamic energy for DRAM architectures belonging to different DDR

protocols

54

0 2 4 6 8 10 12
0

5

10

15

20
Po

we
r (

W
)

bzip2

0 2 4 6 8 10 12
0

5

10

15

20
mcf

0 2 4 6 8 10 12
0

5

10

15

20

Po
we

r (
W

)

milc

0 2 4 6 8 10 12
0

5

10

15

20
leslie3d

0 2 4 6 8 10 12
0

5

10

15

20

Po
we

r (
W

)

soplex

0 2 4 6 8 10 12
0

5

10

15

20
GemsFDTD

0 2 4 6 8 10 12
0

5

10

15

20

Po
we

r (
W

)

lbm

0 2 4 6 8 10 12
0

5

10

15

20
astar

0 2 4 6 8 10 12
CPI

0

5

10

15

20

Po
we

r (
W

)

sphinx3

0 2 4 6 8 10 12
CPI

0

5

10

15

20
a_mean

LPDDR3_1333
LPDDR3_1866
DDR3_1600
DDR3_1866
DDR4_1866
DDR4_3200
HBM_1000
HBM_2000

Figure 5.13: Pareto plots showing power and CPI for different DRAM architectures

55

Chapter 6: Conclusion and Future Work

This thesis describes the design and building of a DRAM memory simulator.

It also studies different DRAM architectures comparing their parallelism and band-

width trade-offs. It showcases the merits of some of the newer DRAM technologies

both in terms of power and performance. It also demonstrates the importance of

internal DRAM parallelism and showcases how it is essential to attain an aver-

age bandwidth that is closer to the maximum supported pin bandwidth. It also

presents the experiences in designing a DRAM simulator and integrating it with

different front-end CPU simulators.

6.1 Future Work

Since the DRAM pin bandwidth is not a very good indicator of the perfor-

mance that a memory system will deliver, we believe that it would be worthwhile to

investigate a new metric which would take into consideration the various types and

degree of internal parallelism along with the pin bandwidth to give a performance

number that better correlates with the IPC seen for the workloads. In addition,

since the pin bandwidth is under utilized in most DRAM architectures it would be

worth investigating the potential of larger cache block sizes for the last-level-cache or

56

deeper prefetching to draw greater useful bandwidth from the memory sub-system.

Instead of each memory access fetching only 64B of data to fill a cache block in the

last level cache, if it were to fetch a larger amount of data per memory access, the

bandwidth of the memory data bus could be better utilized. A study that looks at

the various DRAM architecture parameters, memory controller parameters and de-

sign of cache hierarchy together could be useful in determining the optimal prefetch

depth.

57

Bibliography

[1] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu. Knights landing: Second-generation
intel xeon phi product. IEEE Micro, 36(2):34–46, Mar 2016.

[2] JEDEC. DDR3 SDRAM Standard, JESD79-3. JEDEC Solid State Technology
Association, June 2007.

[3] JEDEC. DDR4 SDRAM Standard, JESD79-4. JEDEC Solid State Technology
Association, September 2012.

[4] JEDEC. High Bandwidth Memory (HBM) DRAM, JESD235A. JEDEC Solid
State Technology Association, November 2015.

[5] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H.
Loh. Heterogeneous memory architectures: A hw/sw approach for mixing die-
stacked and off-package memories. In 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 126–136,
Feb 2015.

[6] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim. Transparent
hardware management of stacked dram as part of memory. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 13–24, Dec
2014.

[7] JEDEC. Low Power Double Data Rate 3 (LPDDR3), JESD209-3. JEDEC
Solid State Technology Association, May 20012.

[8] JEDEC. Low Power Double Data Rate (LPDDR4), JESD209-4A. JEDEC
Solid State Technology Association, November 2015.

[9] JEDEC. Graphics Double Data Rate (GDDR5) SGRAM Standard, JESD212C.
JEDEC Solid State Technology Association, February 2016.

58

[10] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM,
and Disk. Morgan Kaufmann, 2007.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput.
Archit. News, 39(2):1–7, August 2011.

[12] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate microarchi-
tectural simulation of thousand-core systems. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13, pages 475–486,
New York, NY, USA, 2013. ACM.

[13] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’11, pages 52:1–52:12, New York,
NY, USA, 2011. ACM.

[14] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. We-
ston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob. The
structural simulation toolkit. SIGMETRICS Perform. Eval. Rev., 38(4):37–42,
March 2011.

[15] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate
memory system simulator. IEEE Computer Architecture Letters, 10(1):16–19,
Jan 2011.

[16] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram
simulator. IEEE Computer Architecture Letters, 15(1):45–49, Jan 2016.

[17] I. Bhati, Z. Chishti, S. L. Lu, and B. Jacob. Flexible auto-refresh: Enabling scal-
able and energy-efficient dram refresh reductions. In 2015 ACM/IEEE 42nd An-
nual International Symposium on Computer Architecture (ISCA), pages 235–
246, June 2015.

[18] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison
of contemporary dram architectures. In Proceedings of the 26th International
Symposium on Computer Architecture (Cat. No.99CB36367), pages 222–233,
1999.

[19] K. K. W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim,
and O. Mutlu. Improving dram performance by parallelizing refreshes with
accesses. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 356–367, Feb 2014.

59

	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Organization of the thesis

	DRAM Overview
	Internal Organization and Basic Operation
	Timing Constraints

	DRAM Simulator Design and Simulation Methodology
	Design of a new DRAM simulator
	Maintaining internal state
	Maintaining timing constraints
	Memory controller model and memory access scheduling
	Support for all DDR protocols
	Integration with CPU simulators

	Simulation Methodology
	CPU Simulator
	Workloads studied and their characterization

	Salient features of different protocols
	Bankgroups in DDR4 and beyond
	Bankgroups Vs Without bankgroups
	Varying the number of bankgroups

	32 activation window timing constraint in GDDR5
	Refresh granularity - Rank level Vs. Bank level
	Dual command issue in HBM

	Comparison of DRAM Architectures
	Parallelism in DRAM Architectures - Abstract Study
	Channel level parallelism
	Rank level parallelism
	Bank level parallelism

	Comparing DDR protocols - A focused study
	Performance comparison of DRAM architectures
	Energy and Power comparison of DRAM architectures

	Conclusion and Future Work
	Future Work

	Bibliography

