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Iodotyrosine deiodinase (IYD) has remained poorly characterized for nearly 50 years 

in spite of its function as an iodine salvage pathway and its role in regulation of mammalian 

basal metabolism.  IYD catalyzes the reductive deiodination of both mono- and 

diiodotyrosine, the iodinated side-products of thyroid hormone production.  The Rokita lab 

previously purified IYD from porcine thyroids and identified a putative dehalogenase gene. 

The work in this dissertation confirms the identity of the gene that encodes IYD 

through expression in HEK293 cells (KM = 4.4 ± 1.7 µM and Vmax = 12 ± 1 nmol hr-1 µg-1) 

and, furthermore, identifies IYD as the first mammalian member of the NADH oxidase/flavin 

reductase superfamily, a protein fold previously found only in bacteria.  In addition, a three-

dimensional model of the NADH oxidase/flavin reductase domain of IYD was constructed 



 

based on the x-ray crystal structure coordinates (Protein Data Bank code 1ICR) of the minor 

nitroreductase from Escherichia coli. The model also predicts structural features of IYD, 

including interactions between the flavin bound to IYD and one of three conserved cysteines. 

To investigate the role of the NADH oxidase/flavin reductase domain plays in 

electron transfer, two truncation mutants were generated: IYD-NR (residues 81-285) and 

IYD-∆TM (residues 34-285) encoding transmembrane-domain deleted IYD.  The two 

mutants were expressed in HEK293 cells and their catalytic properties were measured.  IYD-

NR did not promote deiodination (Vmax = 0.0 ± 0.4 nmol hr-1 µg-1) of diiodotyrosine in a 

literature-derived iodide release assay.  However, IYD-∆TM was catalytically active toward 

DIT (KM = 4.6 ± 1.3 µM and Vmax = 7.0 ± 0.5 nmol hr-1 µg-1) when the chemical reductant 

dithionite was used but did not promote NADPH-responsive deiodination.  The 

subcellular location for both mutants was determined by ultracentrifugation.  IYD-NR was 

observed in the insoluble fraction after centrifugation at 100,000 x g.  However, IYD-∆TM 

remained in the supernatant after centrifugation at 100,000 x g for 1 hour. 
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Chapter 1 

Background and Significance 
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1.1 Introduction to iodine metabolism in mammals 

Even prior to the identification of the thyroid as the gland involved in goiter, 

(enlargement of the thyroid gland), goiter was observed more frequently in landlocked 

areas, which are typically iodine deficient.2  Coindet formalized the connection between 

iodine and thyroid enlargement as early as 1820, when he identified potassium iodide for 

treatment of goitrous patients.3  Few other advances were made in treatment of thyroid 

disorders until Kendall, inspired by Baumann’s successful treatment of hypothyroid 

patients with thyroid extracts, isolated thyroxine from the thyroid gland in 1915.4, 5  

Although the thyroid has been extensively studied since Baumann’s work, many of its 

processes remain poorly characterized at the molecular level. 

This dissertation focuses on iodotyrosine deiodinase (IYD), a thyroidal reductive 

dehalogenase, which has received little attention despite its significant role as the only 

salvage pathway in iodine homeostasis (Figure 1-1).   IYD catalyzes the reductive 

dehalogenation of mono- and diiodotyrosine (MIT and DIT, respectively), which are the 

byproducts of thyroid hormone production.  IYD activity was first described over 50 

years ago, but the enzyme failed to garner much attention until recently.6-8 

Iodine is essential to metabolic regulation in mammals.  For example, the heavily 

iodinated thyroid hormones (Figure 1-2), thyroxine or T4 (3-[4-(4-hydroxy-3,5-

OH

H3N

CO2

I
OH

H3N

CO2

HIodotyrosine
Deiodinase

+ I-

NADPH NADP+

Figure 1-1.  Iodotyrosine deiodinase catalyzes the dehalogenation of mono- and 
diiodotyrosine. 
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diiodophenoxy)-3,5-diiodophenylalanine) and T3 (3-[4-(4-hydroxy-3-iodophenoxy)-3,5-

diiodophenylalanine), elicit a broad range of metabolic and developmental effects at both 

the organismal and molecular levels.9, 10  The production of thyroid hormones is regulated 

by the hypothalamus and pituitary.11  T4 is often considered a prohormone to T3, because 

T3 is several-fold more active biologically, and approximately 80% of T3 is derived from 

extrathyroidal deiodination of T4.11  In contrast, T4 is produced exclusively by the 

thyroid, where it is stored in the follicular lumen until its release is stimulated by thyroid 

stimulating hormone.11 

1.2 The chemistry and biology of iodothyronine deiodinase 

Iodotyrosine deiodinase is not the only reductive dehalogenase associated with 

iodine homeostasis and metabolic regulation.  T4 is converted into T3 and other 

deiodinated metabolites by three isoenzymes known as iodothyronine deiodinase (ID), 

(Figure 1-3).12, 13  5′-Deiodination (outer-ring deiodination) is performed by 5`-

deiodinase type I (ID1) and 5′-deiodinase type II (ID2).14  5-Deiodination (inner-ring 

deiodination) is catalyzed by ID1 and a third type deiodinase (ID3).14  The three enzymes 

are differentiated on the basis of substrate and cofactor preferences, kinetics, 

susceptibility to inhibitors, and tissue distribution.  

OH

O

NH3
+

CO2
-

II

I

I

OH

O

NH3
+

CO2
-

HI

I

I

T4 T3

Figure 1-1.  The thyroid hormones, T4 and T3. 
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Type I iodothyronine deiodinase.  Type I iodothyronine deiodinase (ID1) is the 

best characterized of the three selenocysteine-containing isoenzymes that catalyze thyroid 

hormone deiodination.  Unlike ID2 and ID3, ID1 catalyzes both inner- and outer-ring 

deiodination.14  ID1 accepts substrates in the order of rT3 >> T4 > T2 and does not accept 

OH

O

NH3
+

CO2
-

II

I

I

OH

O

NH3
+

CO2
-

HI

I

I

T4

T3

OH

O

NH3
+

CO2
-

II

H

I

rT3

OH

O

NH3
+

CO2
-

HI

H

I

T2

ID1, ID3

ID1, ID3

ID1, ID2

ID1, ID2

Figure 1-2.  Three isoenzymes of iodothyronine deiodinase, a reductive dehalogenase, 
catalyze the interconversion of thyroid hormones.  Only ID1 catalyzes both 5- and 5′-
deiodination. 
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MIT or DIT.14  While the identity of the physiological reductant is not known, ID1 

utilizes dithiothreitol (DTT) (1-10 mM) as a reductant in vitro and exhibits ping-pong, bi 

bi kinetics with T4 and reduced thiol as substrates indicative of a two-step mechanism.15, 

16  The enzyme is susceptible to inhibition by 6-n-propyl-2-thiouracil (PTU), iodoacetate 

salts, aurothioglucose, and iopanoate salts.12  Hepatic ID1 has been suggested to be 

responsible for the deiodination of circulating T4 for systemic use, but the enzyme is also 

expressed to some extent in thyroid, kidney, liver, and the central nervous system 

(CNS).12 

Type II iodothyronine deiodinase.  Type II iodothyronine deiodinase (ID2) also 

catalyzes outer-ring deiodination, but it is putatively responsible for production of T3 for 

localized use in peripheral tissues, in contrast to  ID1, which generates T3 for systemic 

use.14, 17  ID2 preferentially accepts T4 over rT3 as substrate.12, 18  In vitro, ID2 also 

requires reduced thiols for catalysis, but at significantly higher levels (>10 mM DTT) 

than ID1.14  Kinetic studies have shown that a sequential mechanism is operative in 

which both substrate and thiol-cofactor are present before product conversion.19, 20  High 

concentrations of T4 and of rT3 inhibit ID2.21  Resistance to inhibition by PTU is used to 

distinguish ID2 from ID1, although some studies have suggested that PTU concentrations 

greater than 100 µM inhibit ID2 under some circumstances.22, 23  ID2 is highly expressed 

in pituitary, brain, brown adipose, and placental tissues.24-27  

Type III iodothyronine deiodinase.  Type III deiodinase (ID3) catalyzes inner-

ring, or 5-deiodination, of T4 and T3 to yield, respectively, rT3 or T2, both of which 

exhibit greatly decreased biological activity relative to T4 and T3.28  Neither rT3 nor T2 

binds to nuclear T3 hormone receptors under physiological conditions.29, 30  Instead, the 
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two compounds have been suggested to play a regulatory role in T3 production.12, 31-33  T4 

and T3 are substrates for the enzyme and their 4′-O-sulfation strongly stimulates the rate 

of their deiodination.34  In contrast, 4′-O-sulfation of T4 completely obviates deiodination 

by ID1.34  As with ID1 and ID2, reduced thiols are cofactors in vitro, but the cofactor 

must be present much higher concentrations (>70 mM DTT), compared to ID1 and ID2 

(1-10 mM and >10 mM, respectively).12, 33  Kinetic studies have indicated a sequential 

mechanism similar to that of ID2.35  The enzyme is inhibited by iopanoate and thiouracil 

derivatives.14, 18  High concentrations of ID3 are found in all tissues except those 

expressing high concentrations of ID1 (i.e., liver, kidney, and thyroid).33 

Iodothyronine deiodinase mechanism.  A molecular mechanism for the IDs has 

been proposed19, 32 (Figure 1-4)  and may provide a model for IYD due to their similar 

dehalogenation reactions.  A conserved, redox-active selenocysteine residue is 

responsible for catalysis in ID, although an active-site sulfhydryl residue was previously 

suspected based on N-ethyl maleimide susceptibility.36, 37 The presence of selenocysteine 

in the ID active site has now been observed in species as diverse as frogs, chickens, fish, 

and humans.14  The mechanism is thought to proceed by aromatic-ring protonation or by 

tautomerization of the phenolic hydroxyl, followed by nucleophilic attack on iodine by 

the selenide.32  The transient selenyl iodide intermediate is reduced in vivo by an 

unknown cofactor or by thiols in vitro.32  Halophilic attack by thiolates38, 39 and 

selenides40 has been reported in non-enzymatic reactions, so it follows that iodothyronine 

deiodinases could behave in this manner. 
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1.3 Intrathyroidal iodine metabolism 

In response to iodide’s relative scarcity in many parts of the world, the thyroid has 

evolved a remarkably efficient system of iodide uptake and sequestration to ensure that 

sufficient I- is available for thyroid hormone synthesis (Figure 1-5).  Iodide is transported 

into the thyroid from the blood stream by the Na+/I- symporter (NIS), a transmembrane 

protein expressed in the basal cell membrane of the thyroid’s follicular cells.41  The NIS 

is capable of concentrating I- by a factor of 20- to 50-fold over the plasma concentration 

in the normal thyroid.  Iodide influx into the cell is an ATP-dependent process that is 

regulated by thyroid stimulating hormone.41, 42  As the Na+-K+ ATPase lowers the 

O

O

NH3
+

CO2
-

II

I

I

O

O

NH3
+

CO2
-

I
I

I

I

O

O

NH3
+

CO2
-

HI

I

I

H

B

H+

-Se
ID

-Se
IDB

I-

DTTred

DTTox

H
HB

H

Figure 1-3.  Mechanism of iodothyronine deiodinase.  Tautomerization of the the 
phenol is followed by nucleophilic attack on iodine by the conserved selenocysteine 
residue. 
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cytoplasmic concentration of Na+, a driving force for concurrent transport of I- is 

created.41, 43  This driving force allows the efficient uptake of I- despite its low plasma 

concentration (<1 µg/mL).41, 43 

Iodide is incorporated into thyroglobulin (TG), the main protein component of the 

thyroidal colloid, near the apical cell membrane by thyroid peroxidase (TPO).  

Significant dispute exists over the mechanism of this enzyme.13, 44-51  Three possible 

iodination mechanisms that have received the most attention include a free radical 

mechanism, iodonium ion (I+) as the iodinating species, and hypoiodite (OI-) as the active 

Figure 1-4.  Intrathyroidal iodine metabolism.  Iodide is transported into thyrocytes at 
the basal membrane and incorporated into tyrosine residues in thyroglobulin (TG).  
Iodide is salvaged from iodotyrosines via a single-enzyme pathway for reincorporation 
into thyroid hormones.  Free iodide is circled in purple and the IYD salvage step is 
highlighted in yellow.  Figure adapted.1 
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species, although none of these has been demonstrated conclusively.44, 48-51  Following 

iodination of the tyrosyl residues, two iodotyrosines, most commonly diiodotyrosines, are 

coupled by TPO, via an iodophenyl radical, to yield T4 or T3 and dehydroalanine.44, 45, 52, 

53  Mature TG is then secreted into the follicular lumen, where it is stored until needed.46 

Before the coupled iodotyrosine residues can be released as thyroid hormones, 

mature TG must be internalized into the cell from the follicular lumen.  The colloid is 

taken up by micropinocytosis into small vesicles that fuse with endosomes, where the TG 

is proteolyzed to release free thyroid hormones, T4 and T3, and any uncoupled MIT and 

DIT residues.13, 46  The free thyroid hormones are very hydrophobic and must be 

transported to peripheral cells bound to serum transport proteins.33 

Mono- and diiodotyrosines released during TG proteolysis cannot be directly 

reutilized for TG biosynthesis and are deiodinated by iodotyrosine deiododinase, the 

subject of the present study. The salvaged iodide and tyrosines are then available for TG 

synthesis and are thus recycled as a means of conserving the environmentally-scarce 

iodide. 

1.4 Iodotyrosine deiodinase 

Early clinical observations of iodotyrosine deiodination.  Dehalogenation of 

iodotyrosines was first observed by analysis of dog liver slices.8  Soon after, some cases 

of hypothyroidism in patients suffering from congenital goiter and/or cretinism were 

attributed to deficient IYD activity.6, 7, 54  All of these patients excreted higher than 

normal levels of radioactive iodotyrosines following administration of 131I-.6, 7, 54   

Biochemical characterization of iodotyrosine deiodinase.  The earliest 

enzymology studies of IYD were performed on thyroid sections and homogenates, but in 
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the 1970’s, the enzyme from bovine thyroid was purified and partially characterized.55  

The approximately 42 kDa homodimeric enzyme reportedly bound a single flavin 

mononucleotide (FMN) per homodimer (Ka = 1.47 × 108 M-1), which suggests that the 

prosthetic group is bound to only one peptide chain or is somehow cooperatively shared 

between the two subunits.55 

NADPH had been previously identified as the native electron donor for the 

microsomal enzyme;56 however, NADPH-responsive activity was lost upon steapsin or 

cholate solubilization of the microsomal enzyme during isolation.55, 57  The very low 

oxidation-reduction (redox) potential (-412 mV) of the fully reduced enzyme, in 

combination with the loss of NADPH responsiveness upon solubilization, is suggestive of 

an as-yet-unidentified cofactor or reductase that mediates electron transfer between the 

NADPH (E°′ = -317 mV)58 and the IYD flavin.55  As a result of the lost activity, addition 

of strong chemical reducing agents, such as dithionite (-660 mV) or methyl viologen (-

446 mV), is necessary when performing assays in vitro.55, 57, 59 

Coupled assays in which NADPH-responsive activity is restored after 

solubilization have been achieved using systems such as NADPH/methyl-

viologen//NADP/cytochrome C reductase and NADPH/ferrodoxin//ferrodoxin/NADP 

reductase.60  In the search for an electron mediator, IYD was treated with a variety of 

metal chelating agents.  Dithizone, a potent chelator of Co+2, Cu+2, and Hg+2, had no 

effect on the enzymatic activity.60  The iron-chelating reagents o-phenanthroline and 2,2´-

dipyridyl were found to reduce activity in the microsomal enzyme by 50% and 48%, 

respectively, while ethylenediaminetetraacetic acid (EDTA) had no effect.60  However, 

EDTA is known to have difficulty probing highly hydrophobic pockets in some enzymes.  
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Despite the inconsistent results with the iron chelators, iron remains the most likely 

mediator in the electron transfer from NADPH to IYD.60  The metal chelators inhibited 

only NADPH-responsive activity suggesting that the reductase is affected, not IYD.60, 61 

1.5 The catalytic mechanism of iodotyrosine deiodinase 

Dehalogenases have been mechanistically categorized as hydrolytic, oxygen-

dependent, or reductive dehalogenases (Figure 1-6).62, 63   Hydrolytic enzymes utilize 

water as a source of hydroxyl groups to replace the halogen, elemental oxygen atoms are 

used in replacement by oxygen dependent enzymes, and reductive dehalogenation 

involves replacement of the halogen by hydrogen following some electron transfer 

events.  

Though there is no precedent for flavin-mediated reduction of aryl halides, other 

dehalogenases can provide a framework within which to understand IYD catalysis.  
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groups: a) hydrolytic, b) oxygen dependent, and c) reductive. 
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Within the realm of reductive dehalogenation, two pathways are commonly found:  1) 

replacement of the halogen by hydrogen, or hydrogenolysis, and 2) elimination of two 

halogens from neighboring carbons, or vicinal reduction, to yield an alkene.62, 64  An 

electron donor is required in all cases of reductive dehalogenation, and, in all known 

examples, the halogen is released as the halide anion.62, 63, 65  Substrates include aliphatic, 

olefinic, and aromatic halohydrocarbons.62, 63, 65 

Possible anion radical (SRN1) mechanism for IYD catalysis.  Flavins mediate 

both one- and two-electron processes, so both single-electron transfer (2 x 1e-) and two-

electron transfer (1 x 2e-) pathways should be considered.  Delivery of an electron to 

substrate would yield a radical anion intermediate, which then could lose its halogen 

substituent in a unimolecular fashion.  An SRN1 mechanism (Figure 1-7) was proposed 

for the initial steps catalyzed by tetrachlorohydroquinone dehalogenase (TD) from 

Sphingobium chlorophenolicum.  Recently however, 2,3,5-trichloro-6-S-

glutathionylhydroquinone (GS-TriCHQ) (the final product depicted in figure 1-7) was 
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tetrachlorohydroquinone dehalogenase. 
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found to be kinetically incompetent in the dehalogenation reaction, which eliminated 

nucleophilic aromatic substitution as a mechanistic pathway.  An alternative mechanism 

will be described later in this section. 

Despite the exclusion of the SRN1 mechanism in TD, a radical anion pathway 

should still be considered for IYD (Figure 1-8), as o-iodophenols have been found to 

readily undergo the SRN1 reaction and have even been suggested to experience steric 

acceleration.66, 67   However, deprotonation of the phenol increases the electron density on 

the aromatic ring and has been found to inhibit the SRN1 reaction pathway.68  The 

relatively low pKa for MIT (8.53)69 and DIT (6.5)70 suggests that it is possible that the 

phenolate is the species present in the active site of IYD, decreasing the likelihood of the 

SRN1 pathway.  Furthermore, decreased dehalogenation rates have been noted for 

iodotyrosine substrates with electron withdrawing groups.61  The SRN1 reaction is 

accelerated by electron withdrawing groups, although addition of a nitro substituent to 

the aromatic ring completely eliminates the SRN1 pathway.71, 72 
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Possible SNAr mechanism for IYD catalysis.  Evidence for two-electron 

reductions mediated by flavin-containing enzymes is readily available in the literature 

and basic enzymology textbooks.  For example, glutathione S-transferases (GSTs) 

catalyze the SNAr addition of the tripeptide glutathione (GSH) to a wide variety of 

electrophiles, which can result in adventitious dehalogenation of halogenated substrates 

(Figure 1-9).73-78   The widely used spectrophotometric assay for GST activity monitors 

the addition of GSH to 1-chloro-2,4-dinitrobenzene, a well characterized SNAr reaction.79 

An SNAr-like reaction by IYD (Figure 1-10) could involve formation of a 
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Figure 1-8.  SNAr reaction catalyzed by glutathione S-transferase. 
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Meisenheimer complex through nucleophilic attack by a cysteine-thiolate residue to form 

an enzyme-substrate thioether, similar to GSTs.  The enzyme-substrate adduct could then 

be reduced by another nearby cysteine thiolate in a process similar to that of the 

flavoprotein disulfide oxidoreductases (e.g., lipoamide dehydrogenase, glutathione 

reductase, and trypanothione reductase).80-82  Yeast glutathione reductase82 provides a 

representative example of electron flow for possible reduction of the disulfide bond 

formed during an IYD SNAr reaction. 

Proposed mechanism for IYD catalysis.  The molecular basis of IYD catalysis 

most likely consists of strategies similar to those used by ID and TD.  The mechanism of 

ID was discussed in section 1.2.  An SRN1-like mechanism was proposed for TD earlier in 

this chapter; however a proposed glutathionyl intermediate was found to be kinetically 

incompetent.  An alternative mechanism (Figure 1-11) has been suggested to proceed via 

a non-aromatic tautomer, similar to tyrosine phenol lyase83 and ID (Figure 1-4).  The 
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“ketonized” substrate undergoes chloride elimination to generate trichlorobenzoquinone, 

which is attacked in Michael-type fashion by glutathione. 

If IYD promoted such a tautomerization (Figure 1-12), the electrophilic character 

of the substrate would significantly increase.  Rearomatization could then provide the 

driving force for nucleophilic attack by a cysteine-thiolate residue.  A similar 

tautomerization has been proposed for the mechanism of chemical deiodination of o-

iodo-hydroxylated arenes, including phenols, quinolols, and naphthols, by tertiary 

amines.84  Furthermore, the chemical reduction of aryl iodides by thiols has been found to 

proceed via nucleophilic attack at iodide, not carbon.38, 39 

Figure 1-11.  Proposed mechanism of catalysis for IYD.  Tautomerization of the 
phenol yields a highly electrophilic intermediate for nucleophilic attack on iodide.  
The cysteine-sulfenyl iodide is reduced by electron transfer from the bound flavin. 
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The Rokita lab has previously reported that pyridonyl alanines are competitive 

inhibitors of IYD.61, 85  The high affinity of D,L-3-(N-methyl-2-pyridon-5-yl)alanine (KI = 

24 nM) results from the keto-group of the pyridone mimicking the proposed tautomeric 

intermediate.61, 85  The unsubstituted D,L-3-(N, 3-dimethyl-2-pyridon-5-yl)alanine 

exhibits a greatly decreased binding affinity (KI = 11,000 nM) because it undergoes 

tautomerization in aqueous environments.61, 85 

Nucleophilic attack at iodide by an active site cysteine from IYD would result in 

formation of a cysteine-sulfenyl iodide (Cys-SI).  The sulfur in the Cys-SI would be in 

the same oxidation state as found in enzymes bearing cysteine-sulfenic acids, such as 

NADH peroxidase (Npx) and the peroxiredoxins.86-89  Unlike other flavoprotein 

reductases, Npx contains only a single redox-active cysteine residue that is converted to a 

cysteine-sulfenic acid intermediate by nucleophilic attack on the terminal oxygen of the 

C4a peroxide derivative of the bound flavin.89  IYD may catalyze a simlar electron 

transfer from the bound flavin to the cysteine-sulfenyl iodide to regenerate active 

enzyme.  

1.6 Specific Aims. 

The long term goal of this project has been, and remains, to understand the basis 

for iodotyrosine deiodinase catalysis at the molecular level.  Toward that end, my 

research addressed the following: 

1)  IYD has been recalcitrant to characterization at the molecular level because it 

is associated with microsomal membranes.55  After persistent effort, however, the 

putative IYD was purified and submitted for protein sequence determination.61, 90  This 
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dissertation confirms the identity of the cDNA that encodes IYD and examines aspects of 

its evolutionary origins through bioinformatics analysis. 

2)  Development of a structural model for iodothyronine deiodinase has provided 

the opportunity to examine previously its structure and mechanism.91  Determination of 

IYD’s protein sequence permitted development of a three-dimensional model that 

provides insight into the mechanism.  Furthermore, the structural model was useful in 

development of a heterologous expression system for a soluble mutant of IYD, which 

eliminates the need for tedious extraction from thyroid microsomes. 

3)  Increased availability of IYD offers the opportunity to probe its catalytic 

mechanism using techniques that have been developed since the 1970’s when the enzyme 

was first characterized.  The redox potential of IYD is at the extreme low end of the 

spectrum of values observed for flavoproteins.92  As such, the role that structure plays in 

the electron transfer mechanism will be probed to gain a more thorough understanding of 

IYD catalysis. 
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Chapter 2 

Iodotyrosine Deiodinase Is the First Mammalian Member of 

the NADH Oxidase / Flavin Reductase Superfamily 
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2.1 Introduction 

Iodotyrosine deiodinase (IYD) was purified from a steapsin-treated thyroid 

particulate fraction to near homogeneity in 1979, using ammonium sulfate precipitation 

followed by chromatography on DEAE-cellulose, hydroxylapatite, and gel filtration.55  

Attempts by the Rokita lab to repeat this purification failed.61  However, an alternative 

purification strategy was developed using limited trypsinolysis, followed by anion 

exchange (Q fast flow), dye (Cibacron blue 3GA), and hydrophobic (phenyl-Sepharose) 

chromatography, successively (Figure 2-1).61, 90  The final protein isolate exhibited a 500-

fold increase in specific activity, relative to the starting Triton X-100 solubilized 

microsomal preparation.61, 90 

The major protein isolated by the procedure was excised from a denaturing 

polyacrylamide gel equivalent to that illustrated in Figure 2-1 and submitted for limited 

Figure 2-1.  Purification of IYD, monitored by denaturing polyacrylamide gel 
electrophoresis.  The arrow indicates the band submitted for sequencing of the putative 
IYD. 
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proteolysis and sequencing.61, 90  The resulting peptides did not coincide with any known 

proteins, as determined by their molecular ions (MALDI-TOF MS).61, 90, 93  Peptide 

fragments were also separated by reverse-phase chromatography, and four were selected 

for Edman degradation, yielding sequences of ARPWVDEDLKDSTDV, 

RSQEFYELLNK, LLMLLPVGYPSK, and VPMEVIDNVIK.61, 90  All of these 

sequences were present in a single protein annotated as a flavoprotein from genomic 

sequencing of various mammals.61, 90, 93 

Furthermore, the protein fraction with deiodinase activity from the Cibacron blue 

3GA column was analyzed using a two-dimensional electrophoretic strategy (Figure 2-

2).61, 90  IYD activity was observable in a single band of the first dimension native gel.61, 

Figure 2-2.  Two-dimensional electrophoretic analysis of soluble IYD fragment.  IYD 
activity was detected in  a single region of the native gel.  Three bands (a, b, and c) 
from the second dimension denaturing gel were submitted for amino acid sequencing. 
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90  The second-dimension denaturing gel provided three bands corresponding to the 

putative IYD.61, 90  Mass spectrometric sequencing of band a identified four sequences 

(MVVESAYEVIK, FIIPQIVK, IVVVTAGVR, NSADTLWGIQK) that were present in 

porcine lactate dehydrogenase (LDH).61, 90  Differential inhibition of LDH and IYD 

activities using oxamate, a competitive inhibitor of LDH, confirmed the inability of LDH 

to promote deiodination.61, 90  Mass spectrometry and Edman degradation of bands b and 

c yielded additional sequences from the putative IYD:  EATVPD(I/L)PR and 

KPLDQIMVT.61, 90 

Our laboratory has proposed a mechanism for IYD,85, 90 but the poor quality and 

availability of the enzyme from porcine microsomes has prevented further study.  

Chromatographic purification and sequencing of porcine IYD has identified the gene that 

putatively encodes IYD.61  To confirm the identity of the gene encoding IYD, active 

enzyme has been expressed in human embryonic kidney (HEK293) cells.  In addition, the 

amino acid sequence data has been used to analyze the relationship between IYD and ID.  

Furthermore, the similarity of bacterial proteins belonging to the NADH oxidase/flavin 

reductase (NOX/FRase) superfamily identifies IYD as the first mammalian member of 

this structural class.  

2.2 Experimental Procedures 

Materials.  Porcine thyroids were obtained from Hatfield Quality Meats 

(Hatfield, PA).  Oligodeoxynucleotide primers were synthesized by Integrated DNA 

Technologies, Inc. (Coralville, IA).  All restriction enzymes, Vent polymerase, and DNA 

T4 ligase were obtained from New England Biolabs (Ipswich, MA), unless specified 

otherwise.  All other reagents were molecular biology grade or highest grade available 
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and used without further purification.  [125I]-Diiodotyrosine (D125IT) was prepared from 

DIT, as described in the literature,59 using carrier-free Na125I purchased from Perkin 

Elmer (Wellesley, MA). 

General methods.  Microsomal IYD was isolated from porcine thyroids, as 

described in the literature, and solubilized using 1.5% Triton X-100 in lieu of steapsin.59, 

61  IYD activity was assessed by monitoring 125I- release in a discontinuous assay59 using 

the following modified equation to calculate the rate.  

Activity Assay.  Typically, protein preparations (100 µL) were added to 300 µL 

of Solution 2 (1.66 mM methimazole, 0.1 mM flavin adenine dinucleotide (FAD), 666 

mM potassium chloride, 333 mM potassium phosphate (pH 7.4), and 166 mM 2-

mercaptoethanol), 100 µL 100 mM DIT, 300 µL ddH2O, and 100 µL D125IT (~50 

mCi/mmol).  The reaction was initiated by addition of 100 µL 10 % sodium dithionite 

(w/v) in 5 % sodium bicarbonate (w/v).  The samples were incubated for 30 minutes at 25 

°C and quenched by addition of 100 µL 0.1 % DIT (w/v) in 0.1 N NaOH. 

Total radioactivity for each reaction was determined from a 250 µL aliquot (S) to 

which 4.75 mL 10% acetic acid was added.  The remaining assay mixture (850 µL) was 

applied to a cation exchange column (3.5  mL Bio-Rad AG 50W-X8 resin) and the 

effluent collected (A).  The column was washed with 4.15 mL 10% acetic acid with the 

eluent collected in vial A.  A second wash (5 mL) was collected in another vial (B).  Each 

sample was diluted with 15 mL Scintisafe Plus 50% scintillation fluid and the 

radioactivity of the samples was measured on a Perkin-Elmer 1600TR scintillation 

counter. 
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The fraction F1 is the percent of iodide released during the assay and is calculated 

according to equation 1, where dpm S, dpm A, and dpm B are the 125I contents of the 

three samples.  F1 is corrected by subtracting the background value, F0, (calculated 

according to equation 1), the percent of iodide in an assay mixture lacking enzyme.  The 

rate (equation 2) is calculated by multiplying the corrected F1 value by a factor to convert 

the incubation time (30 minutes) into hours and by the initial amount of substrate present 

in the assay (e.g. 10 nmol).  The result is multiplied by 2, because there are two possible 

deiodination sites, but statistically only one is labeled with 125I.  An additional factor of 

1.3 (1100µL / 850 µL) used in the literature59 was omitted when calculating the rate, as it 

is redundant because equation 1 calculates the fraction of iodide released during the 

assay. 

Protein concentration was measured using the BCA assay, according to the 

manufacturer’s (Pierce) instructions.  Discontinuous Laemmli gels94 were used to 

monitor protein using a Bio-Rad Mini Protean 3 gel electrophoresis system (8 cm (L) x 

0.75 mm (W) x 8.5 cm (H)).  The resulting distribution of proteins was detected by 

staining with Coomassie Brilliant Blue.  The concentrations of unpurified IYD species 

were estimated by multiplying the total protein concentration by the fraction of IYD, 

determined using densitometry of bands on the denaturing PAGE gels (Appendix A). 
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Catalytic constants for IYD were determined by plotting the initial rate of iodide 

release versus DIT concentration, and the resulting data were fit to the Michaelis-Menten 

equation with Origin 7.0 (Microcal) (Appendix B). 

Bioinformatic analysis of the gene encoding IYD.  Sequence homology 

searches (BLAST) of the Genbank database95 were performed using the porcine sequence 

data obtained by Jessica Friedman.61  Multiple sequence alignments of the retrieved 

mammalian IYD sequences, iodothyronine deiodinases, and NADH oxidase/flavin 

reductase (NOX/FRase) superfamily members were obtained by analysis with ClustalW 

1.83.96  A phylogenetic tree was constructed using the mammalian IYD sequences and 

bacterial sequences for NOX/FRase proteins with previously determined x-ray crystal 

structutres that were retrieved in the BLAST search. The mouse cDNA sequence was 

analyzed for the presence of selenocysteine insertion elements by SECISearch 2.19,97 

available at http://genome.unl.edu/SECISearch.html.  The secondary structure predictions 

of mouse IYD were carried out using 3D-PSSM Web Server98 version 2.6.0 

(http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html). Alignments were rendered using 

ESPript 2.2, available at http://espript.ibcp.fr/ESPript/ESPript/index.php. 

Subcloning of Mus musculus IYD.  The IYD cDNA (I.M.A.G.E. clone 5064638 

from ATCC) was amplified by PCR using oligodeoxynucleotide primers 5′-

AAGCTTAAGCTTCGATCCGCCACCATGTTTCTCCTCACCCCA-3′ and 5′-

GCCGCGGCGGCCGCCTATACTGTCACCATGAT-3′ to generate blunt-ended DNA 

with BamH I and Not I restriction sites at its termini.  The PCR product and (+)-

pcDNA3.1/Zeo (Invitrogen) were digested with BamH I and Not I, and the vector was 

dephosphorylated with antarctic alkaline phosphatase (Invitrogen).  The insert and vector 
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were then ligated using T4 DNA ligase and transformed into One Shot TOP10 cells 

(Invitrogen), following the manufacturer’s instructions.  Plasmid DNA was isolated from 

ampicillin-resistant colonies, using QIAprep spin miniprep kit (Qiagen), and 

characterized by digestion with EcoRI, PstI or StyI.  Plasmids exhibiting the expected 

digestion pattern after gel electrophoresis (1% agarose, 125 V, 30 minutes) were sent for 

DNA sequencing (Gene Gateway). 

Expression of Mus musculus IYD in HEK293.  Human embryonic kidney 

(HEK) 293 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen) supplemented with 10% fetal calf serum (Atlanta Biologicals) and 1% 

penicillin-streptomycin-glutamine (Invitrogen).  The plasmid containing the IYD cDNA 

(12 µg) was mixed with 30 µL of Lipofectamine 2000 in Opti-MEM (Invitrogen) and 

then added to cells (~90% confluent) in 10 cm dishes.  After 6 hours, the media was 

exchanged to DMEM.  After 48 hours of incubation, the cells were washed with 

Dulbecco’s phosphate buffered saline (Invitrogen) and harvested into the same solution.  

After centrifugation (300 x g) for 5 minutes at 4 °C, the cell pellet was resuspended in 1 

mL 50 mM sodium phosphate (pH 7.2) supplemented with 0.25 M sucrose and 0.1 mM 

DTT.  The cells were lysed by three cycles of freezing (liquid N2) and thawing (37 oC), 

followed by three passages through a 20 gauge needle.  The lysate was used in IYD 

assays without further purification. 

2.3 Results and Discussion 

Bioinformatic analysis of IYD.  The amino acid sequence of the putative IYD is 

highly conserved throughout mammals, ranging from mouse to pig to human (Fig. 2-3).  

Amino acid identity within this group is greater than 80% and similarity is greater than 
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90%.  All of the mammalian genes retrieved encode three cysteines, and at least one of 

these residues is expected to play a central role in catalysis.  The amino acid sequences 

from the peptide fragments submitted for MS and Edman sequencing correspond to 

residues from Ala36 to Val285 of the mouse protein.  Cys13 is not present in the soluble 

IYD obtained by trypsinolysis, suggesting that it is not involved in catalysis. 

Alignment of IYD and the three ID isozymes from Mus musculus reveals that the 

two enzymes share little sequence homology, despite the similarity of the reactions 

catalyzed by each (Figure 2-4).  Within the IDs, the conserved selenocysteine residue is 

Figure 2-3.  Amino acid sequence comparison of IYD.  Sequence homology (BLAST) 
searches of the Genbank database were performed using the porcine sequence data 
obtained from isolated peptides.  A multiple sequence alignment of mammalian IYD 
sequences was obtained using Clustal W 1.83.  Sequence gaps are indicated by (.), the 
consensus sequence is shown below the alignment, and the porcine sequence data is 
below the alignment.  Conserved Cys13, Cys217, and Cys 239 are highlighted in 
yellow.  Genbank accession numbers:  Mus musculus (NP081667), Rattus norvegicus 
(NP001020171), Homo sapiens (NP981932), Pan troglodytes (XP527537), Pongo 
pygmaeus (CAH89696), and Sus scrofa (NP999581). 
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apparent, but the conserved cysteine residues from IYD are far removed.  Moreover, 

analysis of the cDNA for IYD using SECISearch does not predict the presence of a 

selenocysteine residue, as would be expected if IYD were more closely related to IDs. 

IYD is a member of the NADH oxidase/flavin reductase superfamily.  The 

IYD protein sequence can be divided into three domains (Figure 2-5).  The largest 

domain (3) extends from residue 82 to the C-terminus (residue 285) and exhibits 

Figure 2-4.  Alignment of IYD and ID sequences from Mus musculus.  The conserved 
selenocysteine (*) residues in ID are highlighted in green.  Red and blue indicate 
consensus between the sequences at 90% and 70%, respectively.  The consensus 
sequence is shown below the alignment.  Genbank accession numbers:  ID1(Q61153), 
ID2 (Q9Z1Y9), ID3 (Q91ZI8), and IYD (BC023358).

Figure 2-5.  Predicted domain structure of IYD.  The hydrophobic domain 1 is 
predicted to anchor the protein to the membrane.  Domain 2 has some α-helical 
character between residues 49 and 67.  Domain 3 exhibits homology to the NADH 
oxidase/flavin reductase superfamily of proteins commonly found in bacteria.  Domain 
boundaries are numbered by the amino acid residue. 
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homology to the NOX/FRase superfamily of proteins that is commonly found in bacteria.  

The intermediate domain (2) is not related to known folding patterns or sequences, but is 

predicted to contain an α-helical region between residues 49 and 67 when analyzed using 

3-D PSSM (Web Server version 2.6.0, 

http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html). 

The N-terminal domain (1) is very lipophilic and is predicted to act as the 

transmembrane anchor by the transmembrane helix prediction program TMHMM,99 

further supporting the idea that Cys13 does not participate in catalysis.  Although 

SignalP100 identified Ala23-Asp24 as a possible site for signal peptide cleavage, the 

probability predicted for hydrolysis at this site is low (22%).  In contrast to our 

prediction, residues 213-229 of human IYD (residues 209-225 in mouse IYD) had 

previously been proposed as a membrane anchor based on an expectation that the N-

terminal signal sequence would be hydrolyzed.101  However, this putative transmembrane 

anchor is central to the predicted NOX/FRase domain, and no known examples of the 

superfamily are associated with membranes.  Because the NOX/FRase proteins are 

soluble, globular proteins, removal of the N-terminal lipophilic anchor will likely cause 

little disruption of IYD’s structure or function.  Furthermore, loss of this domain would 

generate the appropriate molecular weight observed for the soluble IYD fragment 

obtained by proteolysis and chromatography.61 

IYD exhibited a surprising level of similarity to bacterial proteins within the 

NOX/FRase superfamily (Figure 2-6).  Representatives of this superfamily are widely 

distributed in bacteria, but IYD is the only example identified in mammals.  Comparison 

of IYD to NOX/FRase superfamily members with known crystal structures, using 
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ClustalW, suggested greatest sequence identity (24%) is shared between IYD and NADH 

oxidase (NOX)102 from Thermus thermophilus.  More surprisingly, IYD shares 50% 

identity with a putative oxidoreductase from Flavobacteriales bacterium HTCC2170 

(accession number ZP_01107680) between residues 69-283, including conservation of 

Cys217. 

A phylogenetic analysis was performed using the retrieved mammalian sequences 

corresponding to domain 3 and the sequences from NOX/FRase proteins for which an x-

ray crystallographic structure was available (Figure 2-7).  The analysis provided the 

expected relationship between the various mammals.  Furthermore, the results show that 

Figure 2-6.  Alignment of E. coli minor nitroreductase (NfnB-NfsB) , T. thermophilus 
NADH oxidase (NOX), and M. musculus IYD.  Strucutural elements for NfnB-NfsB 
are derived from its crystal structure (PDB code: 1ICR).  IYD secondary structure was 
predicted using 3D-PSSM Web Server, version 2.6.0.  Cysteine residues (217 and 
239) conserved in IYD are highlighted in yellow. 
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greatest similarity is shared between IYD and the subset of proteins in the superfamily 

exemplified by flavin reductase P from Vibrio harveyi. 

The bacterial proteins are not expected to have dehalogenase activity, because the 

proteins generally lack the conserved cysteine residues at positions 217 and 239 of the 

mammalian proteins.  Instead, bacterial homologues within this superfamily are 

associated with a variety of different activities, including conversion of FMN to 5,6-

dimethylbenzimidazole during B12 (cobalamin) biosynthesis (BluB),103 reduction of 

Figure 2-7.  Phylogenetic relationship of mammalian IYD and bacterial NADH 
oxidase/flavin reductase superfamily members.  Analysis was performed using 
mammalian IYD sequences corresponding to domain 3.  Brackets indicate the 
common protein abbreviation/PDB identifier.  Horizontal branch lengths are drawn to 
scale with the scale bar indicating the number of amino acid substitutions per site.  
NOX, NADH oxidase; FRase I, NAD(P)H-utilizing flavin reductase; NR, 
nitroreductase; FRP, flavin reductase P. 
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nitroaromatics (NR, NfsA, and NfnB-NfsB),104-106 and generation of reduced flavin for 

use by luciferase and other enzymes (FRaseI, FRP).107-109  The physiological role of other 

homologues such as NOX has not been determined.102   

Expression of IYD in HEK293 cells.  When peptide sequences of IYD from pig 

were first determined, the cDNA sequence of the mouse gene was the most complete.  

Consequently, the mouse cDNA was subcloned into pcDNA3.1(+) (Table 2-1) and 

Table 2-1.  DNA sequence and amino acid translation of pcDNA3.1(+)/IYD. 
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expressed in human embryonic kidney (HEK293) cells to verify that the cDNA for IYD 

had been properly assigned.  Cells transfected with pcDNA3.1(+)/IYD (280 mg) 

expressed a protein with the appropriate molecular weight (33 kDa). 

The lysate of these cells exhibited deiodinase activity in contrast to a control 

lysate derived from HEK293 cells that were not transfected with the IYD gene.  A KM 

value of 4.4 ± 1.7 µM was measured for DIT (Appendix B), using dithionite as the 

reductant.  This value is consistent with those ranging from 2.0 - 9.3 µM previously 

reported for IYD isolated from calf, sheep, pig, rat, and human.  Vmax (12 ± 1 nmol/hr per 

ug of IYD) and kcat (6.4 ± 0.7 min-1) were also estimated based on the molecular weight 

of IYD, the total amount of protein (100 µg) and the fractional concentration of IYD 

(1%), as determined by gel electrophoresis and densitometry (Appendix A). 

Additionally, the expressed protein promoted deiodination of DIT in the presence 

of the native electron donor, NADPH (50 µM), although the KM for DIT (2.02  ± 1.9 µM) 

was slightly lower than the KM determined in the presence of dithionite.  The Vmax value 

(1.1 ± 0.4 nmol/hr per µg of IYD) was substantially lower than the Vmax measured in the 

presence of dithionite and likely reflected a limited concentration in HEK293 cells of the 

reductase that is thought to be necessary for shuttling reducing equivalents between 

NADPH and IYD. 

The complete absence of this reductase has recently been used to explain the lack 

of NADPH-dependent deiodination by human IYD expressed in CHO cells.101  The 

human gene exhibits 84% identity to the mouse gene and was identified by serial analysis 

of genes preferentially expressed in the thyroid.101  Subsequent expression of the human 
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gene in HEK293 cells confirmed the assignment, supporting our identification by 

isolation and characterization of the soluble domain of the porcine protein. 

Evolutionary strategies for reductive dehalogenation.  Nature has developed at 

least three different, but chemically related, mechanisms for reductive cleavage of aryl 

halide bonds.  Iodotyrosine deiodinase, ID, and TD utilize a common strategy for 

dehalogenation that requires nucleophilic, redox-active amino acid residues for catalysis.  

Exogenous thiols are sufficient to drive catalysis in TD and ID.  However, IYD is not 

sensitive to thiol cofactors, but instead requires the increased reducing power of NADPH 

and flavin mononucleotide. 

Despite the strong similarity between their proposed mechanisms, TD, ID, and 

IYD have very different structural origins.  Iodotyrosine deiodinase belongs to the 

NADH oxidase/flavin reductase superfamily, while iodothyronine deiodinase and 

tetrachlorohydroquinone dehalogenase derive from the thioredoxin and glutathione S-

transferase superfamilies, respectively.91, 110  It is even more remarkable that the 

mammalian thyroid has used two different structural motifs to catalyze such similar 

reactions as deiodination of thyroid hormones and iodotyrosines. 
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Chapter 3 

Three-Dimensional Model and Prokaryotic Expression of the 

Iodotyrosine Deiodinase Nitroreductase Domain 
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3.1 Introduction 

All flavin-binding proteins have been classified into three families, based on their 

folding pattern: 1) the reductases (e.g., ferredoxin reductase), 2) the FAD/NAD-linked 

reductases (e.g., glutathione reductase) and 3) the NAD(P)H/flavin reductases (e.g., 

NADH oxidase and flavin reductase).111  In spite of the low sequence homology (10-39% 

similarity) between NADH oxidase (NOX) from Thermus thermophilus,102 flavin 

reductase (FRP) from Vibrio harveyi,107, 108 flavin reductase (FRase I) from Vibrio 

(sometimes Photobacterium) fischeri,112 nitroreductase (NR) from Enterobacter 

cloacae,113 and the major (NfsA)114 and minor (NfnB-NfsB)115 nitroreductases from 

Escherichia coli, x-ray crystallographic studies have revealed that these proteins share a 

similar core fold, commonly referred to as a nitroreductase (NR) domain.  Iodotyrosine 

deiodinase is the only flavoprotein known to catalyze reductive dehalogenation of aryl 

halide substrates and has recently been identified as the only mammalian member of the 

NADH oxidase/flavin reductase superfamily. 

Within this family, NOX (22.8 kDa per monomer), FRase I (24.8 kDa), NfnB-

NfsB (23.9 kDa), and NR (24.0 kDa) are more similar to each other than to FRP (26.3 

kDa), which may constitute a separate family that includes NfsA (26.8 kDa).107, 113  All 

NOX/FRase proteins with known crystal structures are homodimers of interlocking 

subunits with active sites located at their dimer interfaces.102, 107, 108, 112-115  The flavin 

cofactors are also buried at the dimer interface and make contacts with both 

monomers.102, 107, 108, 112-115  Although a definitive nicotinamide binding site has not been 

identified, all NOX/FRase proteins oxidize reduced nicotinamides with concomitant 
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reduction of the bound flavin.  NOX and its related enzymes show no preference for 

NADPH over NADH, while FRP and NfsA utilize NADPH preferentially. 

The NOX-like enzymes can also be distinguished from the FRP-like enzymes on 

a structural basis (Figure 3-1).107  First, a short loop in the FRP and NfsA structures is 

replaced by a longer loop-helix-loop motif in the other enzymes.107  Second, the FRP 

enzymes contain an unusual 310 helix in contact with the flavin, while the NOX proteins 

do not.107  Third, three helices (I, J, and K) and a disordered loop (residues 201-209) 

found in the FRP enzymes are absent in the NOX enzymes.107 

Given the sequence and secondary structure similarities between IYD and the 

NOX/FRase superfamily, it is possible to develop a three-dimensional model of the 

nitroreductase domain based on the crystal structure coordinates of the bacterial enzymes.  

In addition, the similarities found between the proteins suggest that the NR domain from 

IYD may be responsible for enzymatic activity and that expression of IYD might be 

possible in a prokaryotic host. 
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Figure 3-1.  Structural features are used to distinguish members of the NADH 
oxidase/flavin reductase superfamily.  A) Flavin reductase P (FRP, PDB code 1BKJ) 
from Vibrio harveyi.  B) NADH oxidase (NOX, PDB code 1NOX) from Thermus 
thermophilus.  The unlabeled arrows indicate the differences in the C-terminus of the 
FRP-like and NOX-like proteins. 
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3.2 Experimental Procedures 

Three-dimensional homology model of iodotyrosine deiodinase.  The three-

dimensional model of mouse IYD was calculated using the crystal structure coordinate 

set of the minor oxygen-insensitive nitroreductase of Escherichia coli (PDB id: 1ICR).  

All steps of homology model building were performed by the program MODWEB,116, 117 

available at http://alto.compbio.ucsf.edu/modweb-cgi/submit/form.cgi.  The IYD 

sequence was submitted to the fully-automated server using default values. The output 

contained the three-dimensional model, including all nonhydrogen main-chain and side-

chain atoms.  The model was used without further refinement.  The predicted homology 

model of IYD was evaluated by the Structure Analysis and Verification Server at 

http://nihserver.mbi.ucla.edu/SAVS/.118-122 

Construction of plasmids for IYD expression.  DNA fragments containing the 

IYD gene (I.M.A.G.E. clone 5064638 from ATCC) were amplified by PCR, using the 

appropriate primers from Table 3-1.  The PCR products were digested with the 

appropriate restriction endonuclease (Table 3-1) and subsequently purified by gel 

electrophoresis (1% agarose, 125V, 35 minutes).  The parent plasmid for each construct 

was digested using the appropriate restriction enzymes and heat inactivated (60 °C, 20 

Table 3-1.  Oligonucleotide primers used generate IYD expression plasmids. 
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minutes).  The reaction mixture was supplemented with antarctic phosphatase buffer 

according to the manufacturer’s directions, and treated with Antarctic phosphatase (5U, 

20 minutes).  The reaction was again heat inactivated (60 °C, 20 minutes) and used 

without further purification. 

The IYD-containing insert (30 nmol) and the parent plasmid (10 nmol) were 

ligated using T4 DNA ligase (20 U, 16 °C, 10 hours) and subsequently transformed into 

XL-I blue or Top10 F` E. coli (electroporation 1700 V, 1 mm gap cuvette).  The 

transformed bacteria were rescued in 1 mL SOC medium at 37 °C, with gentle shaking 

for 1 hour prior to selection on LB agar plates supplemented with 100 µg/mL ampicillin.  

Plasmid DNA from antibiotic resistant colonies was digested with EcoR I, Pst I, or Sty I.  

Plasmids from colonies exhibiting the expected fragmentation were submitted for DNA 

sequencing (Gene Gateway, Hayward, CA). 

Transformation of BL21(DE3) and Rosetta2(DE3) E. coli for protein 

expression.  E. coli were transformed using an Eppendorf electroporator 2510, according 

to the manufacturer’s directions.  Briefly, an aliquot of electrochemically competent E. 

coli (100 µL) was thawed on ice and transformed with 50 ng plasmid DNA (1700 V, 1 

mm gap cuvette).  The transformed bacteria were rescued with 1 mL SOC medium and 

incubated at 37 °C for 1 hour before plating on LB-amp plates (plates used for 

Rosetta2(DE3) were additionally supplemented with 20 µg/mL chloramphenicol). 

Isopropyl-β-D-thiogalactoside-induced expression of fusion proteins.  A single 

colony of E. coli containing the expression plasmid was used to inoculate 5 mL Luria-

Bertani broth supplemented with ampicillin (LB-Amp) or supplemented with ampicillin 

and chloramphenicol (LB-Amp/Cm) for growth overnight at 37 °C with gentle shaking 
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(200 RPM).  The overnight growth was diluted 1:100 into the same media in a baffled 

flask (5 times volume of culture) and allowed to grow with shaking (200 RPM) to the 

desired OD600 (OD600 = 0.4-1.0), before addition of IPTG (0.01 – 5 mM) to the desired 

final concentration.  The culture was incubated at the desired temperature (16, 23, 30, or 

37 °C) with vigorous shaking (250 RPM).  Aliquots (1 mL) were removed from the 

culture at regular intervals to assess protein expression.  The aliquots were centrifuged 

(16,000 x g) in a tabletop microcentrifuge for two minutes, the supernatant was decanted, 

and the bacterial pellet was frozen in liquid nitrogen for storage at -80 °C.  At the end of 

the time course, the bacterial pellets were thawed on ice and lysed by either three freeze-

thaw cycles or by BugBuster (Novagen). 

Autoinduction of protein expression.  A single colony of E. coli containing the 

expression plasmid was used to inoculate ZYP-0.8G medium.123  The culture was grown 

overnight (37 °C, 250 RPM) and used (0.2 mL) to inoculate 200 mL ZYP-5052 medium 

in a 1 L baffled flask.  The culture was grown 24 hours at 30 °C while monitoring the 

OD600 to ensure that stationary phase was achieved.  The culture was harvested by 

centrifugation at 6,000 x g for 15 minutes and frozen in liquid nitrogen before storage at -

80 °C.  The bacterial pellet was thawed and lysed, as described above. 

Protein extraction from porcine microsomes using BugBuster.  Porcine 

microsomes (1 g) were suspended in 5 mL BugBuster protein extraction solution 

(Novagen).  The suspension was gently shaken (100 RPM) in a 15 mL Falcon tube 

overnight at 4 °C.  The solution was centrifuged (100,000 x g) for 1 hour and the 

supernatant decanted for use in enzymatic assays. 
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3.3 Results and Discussion 

Three-dimensional model of predicted IYD nitroreductase domain (IYD-

NR).  A three-dimensional model of the nitroreductase domain of IYD (Figure 3-2) was 

Figure 3-2.  Three dimensional model of the NADH oxidase/flavin reductase domain 
from iodotyrosine deiodinase constructed using the crystal structure coordinates (PDB 
1ICR)  of the minor nitroreductase from E. coli.  Residues 88-285 were modeled by 
threading the IYD sequence through the crystal structure coordinates of NfnB-NfsB 
and its bound flavin.  The flavin and two conserved cysteine residues are shown in 
ball and stick representation.  This image was produced using the UCSF Chimera 
package from the Resource for Biocoomputing, Visualization, and Informatics at the 
University of California, San Francisco (supported by National Institutes of Health 
Grant P41 RR-01081). 
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developed using the fully automated MODWEB server and the crystal structure 

coordinates of NfnB-NfsB (PDB 1ICR).  The model template is chosen automatically by 

MODWEB based on a series of alignments of primary and predicted secondary structure 

of the target on local and global scale.124  The suitability of the model was evaluated 

using the Structure Analysis and Verification Server.118-122  The RMSD (root mean 

square deviation) of Cα for the all residues in the model relative to the crystal structure 

coordinates is 4.128 Å.  The RMSD is indicative of how well the target and template 

structures agree.  A large RMSD (>3.5 Å) might cast doubt on the accuracy of the model.  

However, inspection of the model superimposed on the template using Chimera125 

(Figure 3-3) reveals much of this deviation occurs in a helix-loop-helix region between 

residues 173 and 207 and the C-terminal region 273-285.  The RMSD of Cα calculated 

for the remaining residues is 0.459 Å, indicating a high probability that the target 

sequence and template share the same protein fold.  Furthermore, the conserved cysteine 

residues, the dimer interface, and, presumably, the active site are found within the region 

of higher accuracy. 

The IYD-NR model includes neither a Rossman fold nor an NADPH binding 

domain.  The Rossman fold is also absent in the NOX/FRase superfamily, yet the 

bacterial proteins still utilize NADH and/or NADPH as a source of hydride for reduction 

of FMN or FAD. 102, 107, 108, 112-115  In the lone crystal structure in which an electron donor 

is present, the nucleotide adopts an unusual folded conformation in which the 

nicotinamide and adenine rings are stacked in the active site.107  Nicotinic acid has also 

been found to reside in a similar orientation.115 
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Although nicotinamide binding of the NOX/FRase superfamily is not well 

characterized structurally, the mechanism of flavin reduction by FRP and FRase I, as well 

as the subsequent transfer of the reduced flavin to luciferase, has been thoroughly 

studied.108, 109, 126, 127  In contrast to the bacterial enzymes, IYD does not appear to accept 

electrons directly from reduced nicotinamides,60, 101 and its flavin exhibits an unusually 

Figure 3-3.  Three-dimensional model of IYD-NR (blue) superimposed on the crystal 
structure of NfnB-NfsB (red).  The region experiencing the greatest deviation from the 
crystal structure of NfnB-NfsB is the helix-loop-helix shown in the upper right corner 
of the figure. 
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low potential (- 412 mV),57 relative to the flavin bound to NR (-190 mV)106 and FRP (-

255 mV)126. 

The three-dimensional model predicts that Cys217, Cys239, and the isoalloxazine 

ring of the FMN bound to IYD are all in close proximity (Figure 3-4).  In particular, the 

sulfur atom of Cys239 is less than 5 Å from the C4a of the FMN isoalloxazine ring, one 

of the key sites for interaction with a thiol in other flavoproteins containing redox-active 

Figure 3-4.  Cysteine residues 217 and 239 are in close proximity to the flavin in the 
homology model.  In particular, Cys217 is less than 5 A from C4a of the FMN, a 
common site of flavin reactivity. 
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cysteine residues.92, 128, 129  The sulfur atom of Cys217 also is predicted to be within 10 Å 

of Cys239 and within 8.5 Å of the 7-methyl group of the flavin. 

The absence of IYD’s conserved cysteines in the bacterial proteins suggests a gain 

of function in the NADH oxidase/flavin reductase superfamily to support reductive 

deiodination of MIT and DIT.  The flavin-cysteine interactions identified in the model 

were implicit in the mechanism previously suggested for IYD and had been suggested 

experimentally,57, 60 but these interactions will need confirmation by crystallographic and 

other experimental studies. 

If the cysteine-flavin interactions are confirmed, then IYD will be the first 

representative of a new class of proteins containing flavin and a redox-active cysteine 

residue.  Most of the previously described dithiol-containing flavoproteins contain two 

redox-active cysteine residues in their active site and belong to the pyridine nucleotide-

disulfide oxidoreductase superfamily.92  Flavoproteins such as NADH peroxidase also 

belong to this class, despite the presence of a single active site cysteine.130  The second 

class of enzymes includes sulfhydryl oxidase131 from chicken egg white, Erv2p132 from 

yeast, and quiescin Q6133 from human fibroblasts. 

Prokaryotic expression of the nitroreductase domain from IYD.  Preliminary 

expression experiments were performed using the JF1-pGEX plasmid, which encodes 

glutathione S-transferase (GST) fused to the N-terminus of IYD-NR.61  Expression under 

the conditions surveyed resulted in a protein of ~28 kDa, with a small amount of the 

expected size protein (52 kDa) in inclusion bodies.61  The ~28 kDa protein was suggested 

to be the GST fusion tag alone, a result of proteolysis of a poorly folded target protein.61 
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An alternative fusion partner, thioredoxin, has been reported to promote the 

proper folding of proteins when used as a fusion partner for heterologous expression in E. 

coli.134  The pET102/IYD-NR plasmid encoding thioredoxin (14 kDa) fused to the N-

terminus of IYD-NR was expressed in BL21(DE3) E. coli, using the manufacturer’s 

suggested conditions of 37 °C and 1 mM IPTG for induction, and the cell lysate was 

analyzed by polyacrylamide gel electrophoresis (PAGE).  Despite repeated attempts to 

express the thioredoxin fusion, no bands of induced protein were visible by PAGE 

analysis (Figure 3-5). 

Interestingly, the growth rate of E. coli cultures expressing pET102/IYD-NR was 

noticeably decreased relative to cultures transformed with the pET102/LacZ positive 

control vector.  The slow growth in combination with the absence of protein production 

suggested that even the minimal levels of expression found in the uninduced E. coli 

might be toxic enough to prevent expression in the BL21(DE3) host.  Several alternative 

E. coli strains have specifically been developed to express toxic proteins.  These strains 

often take advantage of some of the unique aspects of the pET expression system. 

E. coli strain BL21(DE3)pLysS constitutively expresses T7 lysozyme, a natural 

inhibitor of the T7 RNA polymerase that results in more tightly regulated expression of 

potentially toxic genes.  pET102/IYD-NR was transformed into BL21(DE3)pLysS and 

expression was attempted using low concentrations (50 µM) of IPTG.  However, no 

induced protein was observed on PAGE analysis, suggesting that some problem other 

than IYD-NR toxicity existed. 

In addition to protein toxicity, premature termination during translation could 

result in both the truncation of the GST construct and the absence of detectable 
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thioredoxin fusion protein.  Premature termination of proteins has been ascribed to the 

differing codon usage frequencies between the host and gene source organisms.  Analysis 

Figure 3-5.  Expression of thioredoxin/IYD-NR (~38 kDa) in E. coli 
(BL21(DE3)), monitored by denaturing polyacrylamide gel electrophoresis.  A)  
Supernatant after centrifugation of cell lysate at 16,000 x g for 10 minutes.  B)  
Insoluble pellet after centrifugation revealed IYD-NR was contained in inclusion 
bodies.  Proteins were resolved on a 5% stacking / 12% resolving gel and 
visualized by staining with Coomassie Brilliant Blue.  No inducible protein is 
seen.  “+” and “-“ indicate induced with IPTG or uninduced, respectively.  
Numbers indicate time in hours after induction. 
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of the nucleotide sequence135 indicated the presence of ten arginine (AGG, AGA, CGA), 

two leucine (CTA), one isoleucine (ATA), and four proline (CCC) residues in the mouse 

gene encoded by codons that are infrequently used in E. coli (Table 3-2).  More 

importantly, two of the arginine codons occurred in the first three residues of the IYD-

NR sequence and may be responsible for early termination of translation with the 

GST/IYD-NR and Trx/IYD-NR fusion proteins.  

Table 3-2.  Nucleotide sequence and amino acid translation of IYD-NR indicating codons used 
infrequently by E. coli.  Codons are color coded by residue:  red, arginine; orange, proline; blue, 
isoleucine; and green, leucine 
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To circumvent premature termination, several tRNA-supplemented E. coli strains 

have been commercially developed and have been successfully used to express 

mammalian proteins that contain codons used infrequently by E. coli.  The E. coli strain 

Rosetta2(DE3) (Novagen) expresses tRNAs to supplement all of the rare codons found in 

the mouse IYD-NR sequence.  Rosetta2(DE3) cells were transformed with pET102/IYD-

NR and expression was induced using IPTG.  As expected, PAGE analysis of the cell 

lysate showed an induced protein of the expected size (Figure 3-6).  However, the protein 

was found exclusively in inclusion bodies. 

Inclusion body formation is a poorly understood phenomenon that frequently 

prevents successful overexpression of soluble proteins in bacteria.  The most commonly 

cited reason for inclusion body formation is improper folding of the protein that results in 

aggregation and precipitation.  While the reasons for inclusion body formation are not 

fully understood, a number of variables have been found to promote expression of soluble 

protein. 

Two solutions that are commonly suggested to improve expression of soluble 

protein are 1) to vary the cell density at which protein expression is induced and 2) to 

vary the concentration of IPTG used to induce expression.  These variables were 

systematically surveyed (OD600 = 0.2-1 and [IPTG] = 0.01-5 mM) with the expectation 

that alteration of some variable would result in soluble expression of the IYD-NR fusion.  

However, none of the conditions surveyed resulted in expression of soluble IYD-NR or 

of detectable activity when assayed with 125I labeled DIT. 
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Alternatively, lower temperatures have been found to promote expression of 

soluble protein including human interferon α-2 and bacterial luciferase.136-138  The 

decrease in temperature has been suggested to slow the rate of protein production, 

Figure 3-6.  IYD-NR (~38 kDa) expressed in Rosetta2(DE3) E. coli.  A) 
Supernatant after centrifugation of cell lysate at 16,000 x g for 10 minutes.  B) 
Insoluble pellet after centrifugation revealed presence of IYD-NR in inclusion 
bodies.  M = molecular weight standard.  “-“ / “+” indicate absence or addition of 
50 µM IPTG.  Arrow indicates induced protein. Numbers indicate time in hours. 
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thereby allowing time for proper folding of the nascent protein.138  Rosetta2(DE3) cells 

transformed with pET102/IYD-NR were grown at room temperature to an OD600 

appropriate for expression, shifted to 16 °C for 1 hour to allow temperature equilibration 

and induced with IPTG.  As in the earlier experiments, PAGE analysis (Figure 3-7) 

Figure 3-7.  Expression of IYD-NR at 16 °C in Rosetta2(DE3) E. coli.  A) Supernatant after 
centrifugation at 16.000 x g for 10 minutes. B) Insoluble pellet after centrifugation.  Culture was 
grown to OD600 = 0.6, induced with 50 µM IPTG, and aliquots were removed at 4 hour intervals for 
PAGE analysis.  “+” and “-“ indicate induced with IPTG or uninduced, respectively.  Numbers 
indicate time after induction in hours. 



53 

showed that the IYD-NR fusion was expressed exclusively in inclusion bodies.  In 

addition, no IYD activity was detectable using the iodide release assay. 

Another strategy that has proven successful when attempting to express proteins 

that are recalcitrant to fold is based on the ability of lactose to stimulate protein 

production in the pET system.139  The bacterial culture is grown in an “autoinduction” 

medium that is supplemented with glucose and lactose.  As the bacteria consume the 

glucose supply in the medium, they are forced to utilize the lactose, which results in 

expression of genes under control of the lac promoter.  T7 RNA polymerase is an integral 

component of the pET system that is under control of a modified promoter, lacUV5, 

resulting in expression only after consumption of the glucose in the medium.  Expression 

of the Trx/IYD-NR fusion under autoinduction conditions did not increase production of 

soluble protein, nor was activity detectable using the iodide release assay. 

In addition to Trx and GST, many fusion protein systems have been developed for 

promoting expression of soluble protein.  Maltose binding protein (MBP) is a convenient 

fusion partner, as it can be used as a purification tag.  In addition, two variants of the 

plasmid result in either cytosolic (pMal-c2) or periplasmic (pMal-p2) expression of the 

target protein, due to absence or presence of the MalE signal sequence.  The NusA 

protein was identified by an analysis of the E. coli genome and is putatively the most 

soluble protein expressed by that organism.  Like MBP, GST serves as a convenient 

purification tag, but, more importantly, has enzymatic activity that can be used to assess 

the protein for proper folding. 

IYD-NR was subcloned into commercially available vectors for fusion to MBP 

(pMal-c2/IYD-NR and pMal-p2/IYD-NR), NusA (pET43.1/IYD-NR), and GST 
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(pGEX/IYD-NR by Ling Chen) were constructed.  As with the thioredoxin fusion 

protein, many conditions were surveyed for the ability to produce soluble protein.  

Unfortunately, soluble IYD-NR fusion protein was undetectable by either PAGE analysis 

or radioactive iodide release assay.  See Figure 3-8 for a representative expression of 

Figure 3-8.  Expression of NusA/IYD-NR (84.1 kDa) in Rosetta2(DE3) E. coli at 23 °C with 50 
µM IPTG.  A) Supernatant after centrifugation at 16.000 x g for 10 minutes. B) Insoluble pellet 
after centrifugation.  Culture was induced at OD600 = 0.6 and aliquots removed at 1 hour intervals 
for PAGE analyusis.  Arrow indicates NusA/IYD-NR. 
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NusA/IYD-NR fusion protein.  More information must be obtained regarding the 

minimal amount of the IYD-NR structure necessary for enzyme activity.
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Chapter 4 

Electron Transfer in Iodotyrosine Deiodinase 
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4.1 Introduction 

The mammalian thyroid has evolved two distinct but chemically similar 

mechanisms for reductive deiodination.  For both iodothyronine deiodinase (ID)19, 140 and 

iodotyrosine deiodinase (IYD),61, 85 catalysis is thought to proceed via tautomerization of 

the phenol to generate a highly electrophilic intermediate (Figure 4-1).  During catalysis, 

the first of two proposed electron transfers (from enzyme to substrate) reduces the 

substrate molecule with concomitant oxidation of an active-site residue.  A second 

electron transfer (from electron donor to enzyme) regenerates reduced, active enzyme.  

To date, little progress has been made toward understanding electron transfer from 

NADPH to the C-I bond in IYD.  The gene encoding ID was first identified over a decade 

ago37 and the mechanism proposed for ID may provide a useful comparison for IYD. 

The electron transfer step from enzyme to substrate in ID is thought to be driven 

by the nucleophilicity and redox capacity of the conserved selenocysteine residue found 

in all three isozymes.36, 37, 141  Site-directed mutagenesis was used to illustrate the 

catalytic advantage of selenium over sulfur in the deiodination reaction.141  Specifically, 

the SeCys126Cys mutant of ID1 resulted in a 300-fold decrease in apparent kcat compared 

to T4 deiodination by the wild-type enzyme while KM increased only three-fold.141  A 

number of other enzymes use the unique properties of selenocysteine to catalyze redox 

reactions including formate dehydrogenase, thioredoxin reductase, glutathione peroxidase 

and methionine R-sulfoxide reductase.97, 142 

Furthermore, a conserved cysteine residue in ID1 (Cys124) and ID3 (Cys142) is 

one residue away from the selenocysteine and putatively forms a mixed seleno-sulfide 

adduct that influences the efficiency with which DTT regenerates the active enzyme.143  
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Figure 4-1.  Comparison of catalytic mechanisms proposed for A) iodotyrosine 
deiodinase and B) iodothyronine deiodinase. 
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However, the cysteine-selenocysteine interaction is not required for catalysis as 

demonstrated by the Cys124Ala mutant of ID1 having unchanged activity in vivo relative 

to wild type, as well as by ID2, which has a conserved alanine residue instead of the 

cysteine.144  An even more remarkable example of the deiodinating power of 

selenocysteine comes from a catalytic antibody that was capable of T4 deiodination after 

chemical introduction of selenocysteine residues.145 

IYD, however, does not contain a selenocysteine residue,90, 97, 101 but likely relies 

on the nucleophilicity and redox activity of a cysteine residue for catalysis.57, 85  Cysteine-

promoted, non-enzymatic deiodination of iodotyrosines has even been observed under 

reasonably biological conditions (pH 7.23, 37 °C).146, 147  In addition, incubation with a 

cysteine-specific inhibitor, N-ethyl maleimide (NEM), completely inhibited IYD in the 

presence of NADPH and prevented reconstitution of active enzyme by addition of FMN 

to the apoenzyme.60 

The recently identified IYD gene encodes three cysteine residues (Figure 2-3); 

however, Cys13 is within a predicted transmembrane anchor and is not expected to 

participate in IYD catalysis.  Cys217 is part of an SxxC motif and possibly participates in 

catalysis.  The SxxC motif is a variant of the classical CxxC motif found in many redox-

active dithiol containing proteins including a mammalian protein disulfide isomerase 

homolog148 as well as yeast peroxiredoxin and glutathione S-transferase.149  Furthermore, 

the homology model developed in chapter 3 predicts a Cys239-flavin C4a interaction that 

is commonly found in cysteine-containing flavoproteins. 

Electron transfer from electron donor to enzyme is the least well characterized 

half-reaction in ID.  The identity of the biological electron donor is still not known.  
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However, activity can be stimulated in vitro using thiols (e. g., dithiothreitol, 

gluthathione, and dihydrolipoamide),15, 150-152 and by NADPH in a thioredoxin-

thioredoxin reductase coupled assay.153 

Likewise, little is known about electron transfer from NADPH to IYD.  As 

mentioned in chapter 1, a reductase has long been suspected of mediating IYD’s 

reduction in vivo.55, 60, 154  The reductase was first suggested after finding that the 

NADPH-responsive activity was solubilized by sodium cholate, but not by steapsin (a 

crude pancreatic extract of lipases).55, 154  Furthermore, column chromatography of the 

sodium cholate preparation resulted in loss of the NADPH-responsive activity implying  

that IYD was purified away from the reductase.55, 154   

The reductase was subsequently suggested to be a non-heme iron protein based on 

the inhibition of NADPH-supported deiodination upon treatment with the iron chelators, 

o-phenanthroline and 2,2′-bipyridyl. 60, 154  Interestingly, EDTA did not inactivate 

NADPH-driven catalysis.60  The authors asserted that EDTA does not inhibit IYD 

because it is unable to “penetrate hydrophobic regions,” as was seen with soybean 

lipoxygenase.155  More recently, the inability of IYD expressed in Chinese hamster ovary 

(CHO) cells to support NADPH-driven deiodination was attributed to the absence of the 

reductase in that cell line.101 

No members of the NADH oxidase / flavin reductase (NOX/FRase) superfamily 

catalyze dehalogenation, however they may provide insight into the electron transfer 

mechanism, particularly with respect to electron transfer from donor to enzyme.  Flavin 

reductase P (FRP)107, 108, 126, 127, 156, 157 from Vibrio harveyi and the NADH/NADPH-

utilizing general flavin reductase (FRaseI)109, 158, 159 from Vibrio fischeri transfer reduced 
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flavin to luciferase as a component of the bacterial luciferase-flavin reductase system that 

results in bioluminescence of the producing organisms.160  Furthermore, both enzymes 

have had thorough mechanistic examinations. 107-109, 126, 127, 156-159  Electron transfer from 

the putative reductase to IYD can be thought of as the reverse reaction of the transfer of 

flavin from FRP/FRaseI to luciferase. 

Both FRP and FRaseI undergo a monomer-dimer equilibrium that allows 

heterodimer formation with luciferase.  In the presence of luciferase, the flavin bound to 

FRP or FRaseI is utilized as a substrate for reduction by electron transfer from the 

nicotinamide donor and is delivered directly to luciferase.  In the absence of luciferase, 

the bound flavin functions as a cofactor and shuttles between its oxidized and reduced 

states, but remains bound to the enzyme.  The mechanism of electron transfer proceeds 

by NAD(P)H binding, reduction of the bound flavin, NAD(P)+ release.  This half reaction 

is followed by binding of the substrate flavin, electron transfer from the cofactor-flavin to 

the substrate-flavin, and release of the reduced substrate-flavin product. 

Some of the features of electron transfer in the NOX/FRase superfamily may be 

useful in describing IYD’s mechanism with minor modifications.  In addition to the 

cofactor-flavin bound to IYD, the proposal requires a substrate-flavin that is shuttled to 

IYD from the reductase after reduction by NADPH.  Furthermore, the IYD-bound 

cofactor-flavin would have to be reduced by the substrate-flavin, without direct transfer 

of electrons from substrate-flavin to cysteine-sulfenyl iodide. 

This chapter aims to provide insight into the electron transfer mechanism used by 

IYD.  A series of truncation mutants will be constructed to examine the role of the 

domains predicted in IYD.  More specifically, the nitroreductase domain will be 
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examined as an independent domain for catalytic activity.  Furthermore, the truncation 

mutants may provide insight into the structural requirements for production of a soluble 

IYD. 

4.2 Experimental Procedures 

General procedures.  Total protein concentrations were measured using the BCA 

assay, according to the manufacturer’s directions.  Vmax and kcat were estimated based on 

the molecular mass of IYD, the total protein concentration, and the fractional 

concentration of the IYD construct, determined by densitometry of Coomassie stained 

PAGE gels. 

Subcloning of Mus musculus IYD truncation mutants.  In order to construct 

plasmids for expression of the IYD nitroreductase domain (IYD-NR) and the 

transmembrane-domain deletion mutant (IYD-∆TM), appropriate fragments of the IYD 

gene (I.M.A.G.E. clone 5064638 from ATCC) were amplified by PCR.  IYD-NR was 

amplified using oligonucleotide primers (0.5 µM) 5′-

AAGCTTAAGCTTGGATCCGCCACCATGAGGATGAGGTCCCAGGAA-3′ and 5′-

ATTCTCGAGCTAATGGTGATGGTGATGGTGTACTGTCACCATGAT-3′ (BamH I 

and Xho I restriction sites in italics and start/stop codons underlined).  IYD-∆TM was 

amplified using oligonucleotide primers (0.5 µM) 5′- 

AAGCTTAAGCTTGGATCCGCCACCATGGCTCAAGTTCAGCCC-3′ and 5′-

ATTCTCGAGCTAATGGTGATGGTGATGGTGTACTGTCACCATGAT-3′ (italics 

and underlines as before).  The PCR products were digested with BamH I (20 U) and 

Xho I (20 U).  The vector, (+)-pcDNA3.1/Zeo (Invitrogen), was also digested with BamH 

I (20 U) and Xho I (20 U) and dephosphorylated using Antarctic alkaline phosphatase (2 
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U, Invitrogen). The insert (6 ng) and vector (14 ng) were then ligated using T4 DNA 

ligase (400 U) and transformed into One Shot TOP10 cells (Invitrogen) following the 

manufacturer’s instructions.  Plasmid DNA was isolated from ampicillin-resistant 

colonies using QIAprep spin miniprep kit (Qiagen) and characterized by digestion with 

EcoR I, Pst I or Sty I. Plasmids were analyzed by gel electrophoresis (1% agarose, 125 V, 

30 minutes) and those exhibiting appropriately-sized DNA fragments were sent for DNA 

sequencing (Gene Gateway). 

Subcloning of Mus musculus IYD hexahistadine tagged  mutants.  The C-

terminal hexahistadine tag was introduced to IYD-NR and IYD-∆TM by PCR as 

described above using the oligonucleotide primer 5′-

ATTCTCGAGCTAATGGTGATGGTGATGGTGTACTGTCACCATGAT-3′ to 

anneal at the 3′ end of the sequence (Xho I restriction site in italics, stop codon 

underlined, and His6 tag in bold). 

Expression of Mus musculus IYD truncation mutants in HEK293 cells.  

Human embryonic kidney (HEK) 293 cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM, Invitrogen) supplemented with 10% fetal calf serum (Atlanta 

Biologicals) and 1% penicillin-streptomycin-glutamine (Invitrogen).  Plasmids containing 

the individual constructs of IYD (12 µg) were incubated for 20 minutes with 30 µL of 

Lipofectamine 2000 in Opti-MEM (Invitrogen) and then added to cells (~90% confluent) 

in 10 cm dishes.  After 6 hours, the liquid medium was exchanged to DMEM.  Forty-

eight hours after transfection, the cells were washed twice with 10 mL Dulbecco’s 

phosphate buffered saline (DPBS, Invitrogen) and suspended in the same solution.  The 

cells were centrifuged (300 x g) for 5 minutes at 4 °C and the cell pellet was resuspended 
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in 1 mL 50 mM sodium phosphate (pH 7.2) supplemented with 0.25 M sucrose and 0.1 

mM DTT.  The cells were lysed by three cycles of freezing (liquid N2) and thawing (37 

°C) followed by three passages through a 20 gauge needle.  Catalytic constants for IYD 

were determined by plotting the initial rate of iodide release versus DIT concentration, 

and the resulting data were fit to the Michaelis-Menten equation with Origin 7.0 

(Microcal).  All reported values are from a minimum of three independent 

determinations. 

Subcellular fractionation of IYD truncation mutants by preparative 

ultracentrifugation.  The lysates (4 mL) from HEK293 cells (50 mg) transfected with 

plasmids encoding IYD-NR and IYD-∆TM were centrifuged (500 x g, 15 min) to remove 

unlysed cells.  The supernatant was transferred to polycarbonate tubes and further 

centrifuged for 30 minutes at 30K x g (4 °C) to pellet small cellular debris.  The 

supernatant was further centrifuged for 1.5 hour at 100K x g (4 °C).  The supernatant was 

decanted and the pellet resuspended in an equal amount of cell lysis buffer.  Aliquots 

containing 20 µg protein in SDS-PAGE loading buffer were denatured at 90 °C for 15 

minutes and loaded into a polyacrylamide gel (12% separating/5% stacking).  The 

proteins were electrophoresed for 35 minutes at 200 V using a Mini Protean 3 

electrophoresis system and either stained using Coomassie Brilliant Blue or used for 

Western blot analysis. 

Western blot analysis.  Proteins were transferred from an SDS-PAGE gel 

prepared as above to Invitrolon  membrane (Invitrogen) at 30 V, 90 mA overnight (12 

hour minimum) in a transblot apparatus (Bio-Rad) according to the manufacturer’s 

directions (25 mM Tris (pH 8.3), 192 mM glycine and 0.1% SDS at 4 °C).  Nonspecific 
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binding was blocked by incubation in 5% non-fat dry milk in TBST solution (10 mM 

Tris/HCl (pH 8.0), 150 mM NaCl, and 0.05% Tween-20) for 10 hours at 4 °C.  The blot 

was incubated with Anti-His6 monoclonal antibody (Novagen) overnight at 4 °C in 5% 

milk/TBST.  The blot was washed (15 min x 3) in TBST prior to incubation with alkaline 

phosphatase-conjugated goat anti-mouse IgG (Pierce) for 1 hour in TBST at room 

temperature.  The blot was washed (15 min x 3) in TBST.  The blot was visualized using 

CDP-Star chemiluminescence substrate (Sigma Aldrich) and Storm phosphorimager (GE 

Healthsciences). 

4.3 Results and Discussion 

Wild type iodotyrosine deiodinase.  The Rokita lab recently reported the 

identification of the gene encoding IYD by purification and sequencing of a soluble 

domain from IYD obtained by proteolytic release from porcine thyroidal microsomes.90  

Furthermore, Gnidehou et al identified the human gene by a serial analysis of gene 

expression in the thyroid.101  As described in chapter 2, the gene encoding IYD from Mus 

musculus was expressed in HEK293 cells and found to be catalytically active toward DIT 

when stimulated by dithionite (KM(DIT) = 4.4 ± 1.7 µM, Vmax = 12 ± 1).90 

The enzyme was also responsive to NADPH, although a time dependent decrease 

in NADPH-responsive activity was noted.  Thus, Vmax measured immediately after cell 

lysis is 3.3 ± 0.6 nmol hr-1 µg-1 with NADPH and KM for DIT is 5.3 ± 3.2 µM.  The 

determination reported in chapter 2 (Vmax = 1.1 ± 0.4 nmol/hr-1 per µg of IYD ) was 

performed on enzyme that had been stored overnight, on ice, in a 4 °C refrigerator.    The 

NADPH-derived KM for DIT values agreed within error.  Furthermore, dithionite-

stimulated catalysis was unchanged for greater than 72 hrs so the three-fold decrease in 



66 

NADPH-dependent Vmax after storage likely reflects the instability of the putative 

reductase. 

Expression and deiodinase activity of the nitroreductase domain from IYD.  

Although prokaryotic expression of the nitroreductase domain had failed, the question 

about the ability of NR to support catalysis remained.  To try to answer that question, the 

gene fragment corresponding to residues 82-285 of IYD (IYD-NR) was subcloned into 

(+)-pcDNA3.1/Zeo using PCR methods.  An inducible band of protein was not visible by 

PAGE analysis (Coomassie stained) of the cell lysate from HEK293 cells expressing the 

plasmid encoding IYD-NR (Figure 4-2 A). 

Moreover, deiodinase activity was undetectable in the iodide release assay despite 

addition of up to 200 µg total protein.  Subcellular fractionation could be used to 

determine if IYD-NR was present in the cytosol or was insoluble, but would require a 

more sensitive technique for visualization.  To increase the sensitivity with which IYD-

NR could be detected, a hexahistadine sequence was appended to the C-terminus of the 

protein for use in Western blot analysis. 

The lysate of HEK293 cells expressing IYD-NR/His6 was analyzed by 

polyacrylamide electrophoresis after ultracentrifugation.  Western blot analysis of the 

PAGE separated proteins (Figure 4-2 B) showed that (IYD-NR)/His6 was present in the 

insoluble fraction of the lysate, explaining the absence of deiodinating activity.  Although 

(IYD-NR)/His6, and presumably IYD-NR also, was insoluble, perhaps a soluble domain 

of IYD could be expressed if a larger fragment of the protein was expressed.  

Expression and deiodinase activity of transmembrane domain deleted IYD.  

The gene fragment encoding residues 34-285 of IYD were subcloned into (+)-
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pcDNA3.1/Zeo with and without a hexahistadine tag at the C-terminus, (IYD-∆TM)/His6 

and IYD-∆TM, respectively.  The plasmids were expressed in HEK293 cells and 

analyzed by PAGE analysis (Figure 4-3).  Wild type IYD and (IYD-∆TM)/His6 were 

visible upon Coomassie staining as bands estimated to be 1% of total cellular protein 

(measured by densitometry) while IYD-∆TM was estimated to be 5% of the total protein. 

To examine whether IYD-∆TM was soluble, the lysate of HEK293 cells 

expressing the protein was subjected to ultracentrifugation.  The increased expression 

level of IYD-∆TM, relative to IYD-NR, permitted analysis of the ultracentrifugation 

results by Coomassie-stained PAGE gel instead of by Western blot (Figure 4-4).  A 

Figure 4-2.  Expression of the nitroreductase domain from IYD in human embryonic 
kidney (HEK293) cells as monitored by polyacrylamide gel electrophoresis .  A)  
Induced protein is not visible by Coomassie staining using lysate from untransfected 
cells (Control) and from cells expressing the nitroreductase domain from IYD (IYD-
NR).  B) Subcellular fractionation of IYD by ultracentrifugation as monitored by 
Western blot analysis with anti-His6 antibody.  IYD-NR/His6 (arrow) is observed in 
the insoluble fraction (P) after ultracentrifugation.  S is the supernatant after 
ultracentrifugation and + is hexahistadine labeled urate oxidase (35 kDa), a positive 
control. Cell lines are as described in A. 
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protein band corresponding to IYD-∆TM was found in the supernatant after each 

centrifugation step. 

The presence of IYD-∆TM in the supernatant confirms our prediction that the N-

terminus anchors IYD to the microsomal membrane.  Furthermore, this finding 

definitively refutes the assertion that residues 209-225 are involved in membrane 

attachment, as has been suggested for the equivalent residues in the human protein.101 

More importantly, the truncation mutants were active in the iodide release assay 

with dithionite.  Table 4-1 summarizes the apparent kinetic parameters with DIT as 

Figure 4-3.  Expression of IYD and truncation mutants with deleted transmembrane 
domain.  Red arrow indicates IYD expressed in HEK293 cells.  The black arrow 
indicates the transmembrane domain deleted (IYD-∆TM) and hexahistadine-labeled 
(IYD-∆TM/His6) truncation mutants of IYD expressed in HEK293 cells.  IYD  IYD 
and IYD-∆TM/His6 are expressed to approximately 1% of the total cellular protein, 
while IYD/∆TM is expressed at approximately 5% of total protein. 
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substrate.  Deletion of the transmembrane domain and the subsequent solubilization of 

IYD-∆TM has little effect on the Michaelis constants (KM = 4.6 ± 0.8 µM) compared to 

wild type IYD (KM = 4.4 ± 1.7 µM).  Moreover, the Vmax values of IYD-∆TM (7.3 ± 1.3 

nmol hr-1 µg-1) and wild type IYD (12 ± 1 nmol hr-1 µg-1) are in reasonable agreement.  

The kcat values measured for wild type (6.4 ± 0.7 min-1) and IYD-∆TM (5.9 ± 0.9 min-1) 

agree within error.  Addition of the His6 sequence causes a slight decrease in the KM (2.9 

± 0.9 µM), however no change in kcat is noted (5.9 ± 0.4 min-1). 

Although transmembrane domain deletion results in little change when dithionite 

is used for catalysis, a striking difference is noted between wild type IYD and IYD-∆TM 

for NADPH responsive activity.  NADPH supports catalysis in wild type IYD, albeit with 

Figure 4-4.  Polyacrylamide analysis of lysate from HEK293 cells expressing IYD-
∆TM (red arrow).  Control lane is untransfected cells.  Lysate lane is whole cell lysate 
from HEK293 expressing IYD-∆TM.  Remaining lanes are the supernatant (S) and 
insoluble (P) fractions after centrifugation at the indicated speed (30,000 or 100,000 x 
g). 
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an approximate three-fold decrease in kcat relative to dithionite.  However, deiodinase 

activity is at least 24-fold less responsive to NADPH (Appendix C) in lysate containing 

IYD-∆TM after ultracentrifugation at 100K x g.  This likely reflects the physical 

separation of IYD-∆TM from the reductase described earlier. 

The observations in this chapter confirm that a soluble variant of IYD can be 

expressed and that residues 1-33 are the transmembrane domain that anchors IYD to 

microsomal membranes.  Furthermore, the loss of NADPH-responsive activity supports 

the existence of the putative reductase and implies that membrane attachment is 

necessary for electron transfer from NADPH to IYD because it brings IYD and the 

unidentified reductase into proximity. 

 
 

Table 4-1.  Apparent kinetic parameters measured for IYD and truncation mutants. 
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Chapter 5 

Summary and Final Discussion 
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The work presented in this dissertation sought to increase understanding of the 

molecular basis for iodotyrosine deiodinase catalysis.  Toward that end, my research has 

provided the following insights: 

Using the sequence data from the porcine enzyme, the gene responsible for 

production of iodotyrosine deiodinase (IYD) was tentatively identified and has been 

analyzed using a variety of bioinformatics tools.  The results of the analysis are in 

agreement with the sparse literature data regarding the enzyme:  a) the identified gene is 

highly conserved across all mammals and encodes three cysteine residues, at least one of 

which is expected to play a role in IYD catalysis; b) comparison of the IYD gene to the 

genes encoding the only other mammalian reductive dehalogenase, iodothyronine 

deiodinase, suggests that IYD and ID are distinct enzymes that have evolved from 

different protein superfamilies, NADH oxidase/flavin reductase and thioredoxin, 

respectively, to catalyze similar reductive deiodination reactions; and c) further studies 

have supported the identification of IYD as the first, and only, mammalian member of the 

NADH oxidase/flavin reductase superfamily.  Furthermore, the identity of the gene has 

been confirmed by expression in a heterologous host, human embryonic kidney 

(HEK293) cells. 

A three dimensional model of IYD nitroreductase domain has been developed 

based on its homology to the NADH oxidase/flavin reductase superfamily.  The model 

agrees with the crystal structure of NfnB-NfsB (RMSD < 0.5 Å over key regions 

including dimer interface and putative active site) and supports the assignment of IYD as 

the first mammalian member of the superfamily.  Furthermore, the model predicts key 

cysteine-flavin interactions that are implicit in the mechanism proposed for catalysis.  If 
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confirmed, these interactions identify IYD as the first member of a new class of 

flavoproteins containing redox-active cysteine residues.  Additionally, the model suggests 

that expression of the nitroreductase domain, without the remaining IYD residues, may 

result in a soluble, catalytically active protein.  Moreover, prokaryotic expression may be 

possible based on the frequency with which the bacterial proteins are found. 

The mechanism of electron transfer in IYD has been investigated by expression of 

a pair of truncation mutants in human embryonic kidney (HEK293) cells.  The deletion 

mutant encoding solely the nitroreductase domain (IYD-NR) does not catalyze 

deiodination of DIT when expressed in HEK293 cells.  More specifically, IYD-NR is 

insoluble, likely because it does not fold properly in vivo.  Heterologous expression of the 

transmembrane domain deletion mutant (IYD-∆TM) yields a soluble, cytosolic protein.  

Furthermore, the soluble protein deiodinates DIT and has catalytic parameters consistent 

with the wild-type, membrane-bound enzyme when stimulated with dithionite.  

Expression of the soluble IYD-∆TM mutant completely eliminates NADPH-responsive 

catalysis and supports literature reports of a membrane-bound reductase that mediates 

electron transfer from NADPH to IYD. 
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Appendix 

A.  Representative determination of IYD concentration by densitometry 

After staining with Coomassie Blue, the denaturing PAGE gel was digitized using 

a Kodak DC120 camera and Kodak Digital Science 1D 2.0.2 software.  The image was 

saved in tag image file format (tiff) and analyzed using SepraScan Gel Viewer 1.1.  For 

example, the IYD-∆TM lane from Figure 4-3 was analyzed to yield the trace below: 

 

SepraScan Gel Viewer was used to integrate the peak (green) corresponding to 

IYD as a fraction of the total protein present (red). 
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B.  Representative Determination of Kinetic Parameters 

The data collected during a series of assays were plotted and fit to the Michaelis-

Menten equation using Origin 7.0 (Microcal) as shown below for IYD assayed using 

dithionite: 

The error bars indicate the standard deviation of three independent determinations 

as calculated by Origin 7.0.  The black line was plotted by fitting the data to the 

Michaelis-Menten equation using Origin 7.0. 
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C.  Dithionite vs. NADPH-responsive activity for IYD-∆TM  

 

 

Vmax determined for the NADPH-responsive activity using Origin 7.0 had 

standard deviation of 0.4 nmol hr-1 µg-1 (Figure C-1) indicating an approximate ten-fold 

loss of NADPH-responsive activity relative to dithionite. 
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Figure C-1.  Rate of 125I- release determined for IYD-∆TM using standard assay 
conditions for dithionite and NADPH as described in the experimental section.  Vmax 
for dithionite is 5.5 ± 0.4 nmol hr-1 µg-1 and for NADPH is 0.0 ± 0.4 nmol hr-1 µg-1.  
The error bars indicate the standard deviation of three independent determinations.  
The black and red lines were plotted by fitting the data to the Michaelis-Menten 
equation using Origin 7.0. 
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To further examine the protein-dependence of NADPH-responsive activity, the 

rate of deiodination was measured at varying IYD-∆TM concentrations (Figure C-2) 

using 30 µM DIT (~3 x KM) in the standard 1 mL assay.  At 2.0 µg IYD-∆TM, the 

dithionite-responsive activity was 24-fold greater (2.4/0.1) than the comparable NADPH-

responsive activity. 
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Figure C-2.  Standard dithionite and NADPH assays (1 mL) were used to monitor 
protein-dependent deiodination in the presence of 30 µM DIT. The error bars indicate 
the standard deviation of three independent determinations.  The black and red lines 
were plotted as linear fits of the data using Origin 7.0. 
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