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Sampling theory investigates signal recovery from its partial information, and

one of the simplest and most well-known sampling schemes is uniform linear sam-

pling, characterized by the celebrated classical sampling theorem. However, the

requirements of uniform linear sampling may not always be satisfied, sparking the

need for more general sampling theories.

In the thesis, we discuss the following three sampling scenarios: signal quan-

tization, compressive sensing, and deep neural networks.

In signal quantization theory, the inability of digital devices to perfectly store

analog samples leads to distortion when reconstructing the signal from its samples.

Different quantization schemes are proposed so as to minimize such distortion. We

adapt a quantization scheme used in analog-to-digital conversion called signal deci-

mation to finite dimensional signals. In doing so, we are able to achieve theoretically

optimal reconstruction error decay rate.

Compressive sensing investigates the possibility to recover high-dimensional

signals from incomplete samples. It has been proven feasible as long as the signal



is sufficiently sparse. To this point, all of the most successful examples follow from

random constructions rather than deterministic ones. Whereas the sparsity of the

signal can be almost as large as the ambient dimension for random constructions,

current deterministic constructions require the sparsity to be at most the square-

root of the ambient dimension. This apparent barrier is the well-known square-root

bottleneck. In this thesis, we propose a new explicit sampling scheme as a possible

candidate for deterministic compressive sensing. We present a partial result, while

the full generality is still work in progress.

For deep neural networks, one approximates signals with neural networks. To

do so, many samples need to be drawn in order to find an optimal approximating

neural network. A common approach is to employ stochastic gradient descent, but it

is unclear if the resulting neural network is indeed optimal due to the non-convexity

of the optimization scheme. We follow an alternative approach, utilizing the deriva-

tives of the signal for stable reconstruction. In this thesis, we focus on non-smooth

signals, and using weak differentiation, it is easy to obtain stable reconstruction for

one-layer neural networks. We are currently working on the two-layer case, and our

approach is outlined in this thesis.
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Chapter 1: Introduction

1.1 Overview

Harmonic analysis has always been one of the most applicable branches in

mathematics, having strong and active interactions with the engineering commu-

nities. With the advancements of information technology, and more recently the

uprise of machine learning and deep learning, this field is gaining even more atten-

tion, attracting the best mathematicians in the world, such as Daubechies, Mallat,

Tao, Yau, Bourgain, and many more.

Harmonic analysis can be found in many places, both applied and pure. For

direct applications, signal processing and data analysis is present in virtually all

scientific fields, as long as there exist signals or data of any kind in the field. For

instance, the introduction of compressive sensing has greatly reduced the cost and

time needed for MRI scanning, while the research in machine learning makes many

automated processes possible, from facial recognition to self-driving cars. On the

other hand, harmonic analysis also has a profound impact in the development of

mathematics itself. Fourier analysis, an integral part of harmonic analysis, has

always been influential in partial differential equations (PDEs) and number theory,

and in turn it also evolves along with every branch of mathematics to even greater
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generalities. In short, harmonic analysis is both applied and abstract, and the

feedback from both sides only accelerates its evolution.

Sampling theory in signal processing investigates the problem to retrieve full

information of the objects in interest from only a fraction of it. Classical examples

includes X-rays, MRIs, and Analog-to-digital (A/D) conversions. Originally, the

sampling theory focused on the linear uniform sampling on R, where the classical

sampling theorem states that given a bandlimited function f : R → R, i.e., an L2

function whose Fourier transform is compactly supported, it is possible to recon-

struct the function from its uniform discrete time samples {f(nT )}n∈Z, where T > 0

is sufficiently small. However, the limitation of available resources and physical con-

straints call for extension of the theory to non-uniform (balayage, short-time Fourier

transform, etc. ) and non-linear sampling (signal quantization, compressive sensing,

etc. ). This thesis contributes to nonlinear sampling theory in the form of signal

quantization and compressive sensing.

Another subject in applied harmonic analysis is machine learning, and in par-

ticular deep learning. Deep neural networks in deep learning have yielded excellent

results in numerous tasks, but the theories to back up its success are relatively lack-

ing. Current efforts from mathematicians on deep learning can be classified into

two aspects: the approximation power of deep neural networks and the optimiza-

tion problems on the parameters. As deep neural networks generally have millions

of parameters, identification of the true parameters can be troublesome. A popular

choice is to use stochastic gradient descent (SGD) to minimize certain loss functions.

However, the optimization is often non-convex, so there is no guarantee for recovery
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of the global minimum. Moreover, the optimization is often slow due to the high

dimensionality.

An alternative is proposed to replace SGD, which utilizes the derivative of

the neural network to recover the parameters via tensor decomposition. Posed as

a signal recovery problem from its samples, I studied the recovery of ReLU neural

networks with two layers.

In terms of connections, signal quantization and compressive sensing, and to

some extent, weight identification for deep learning, belong in nonlinear sampling

theory. Compressive sensing focuses on designing sampling schemes for data acqui-

sition, while signal quantization and weight identification are concerned more on the

post-processing and signal recovery. In Section 1.2, we shall give a brief outline on

the problems solved in the thesis.

1.2 Description of the Problems and Contribution

1.2.1 Signal Quantization

Signal quantization theory, which leverages between resources spent to record

signal samples and the reconstruction accuracy from the quantized samples, origi-

nally comes from analog-to-digital (A/D) conversion. As mentioned above, a ban-

dlimited function can be recovered from its discrete time samples, but due to the

discrete nature of digital storing devices, one is only able to store quantized samples,

whose values come from a finite alphabet. It is natural to take the direct round-

offs of the samples and store them as quantized samples. However, this approach
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has been shown [26] to be vulnerable to hardware imperfection. A more robust

scheme called Σ∆ quantization was introduced [41] in 1963 and became popular in

the engineering community, with the caveat of its slow linear reconstruction error

decay rate. Higher order Σ∆ quantization yields polynomial error decay rate, and

subsequent developments gave birth to schemes with exponential error decay rate.

In Chapter 2, we introduce two novel quantization schemes for signal quan-

tization on finite frames called alternative decimation and adapted decimation, re-

spectively. Signal decimation was introduced and studied [16] as post-processing on

Σ∆ quantization for A/D conversion. It was hypothesized in that paper that signal

decimation coupled with Σ∆ quantization yields exponential error decay rate with

respect to the bit usage, and it was proven [25] later that it is indeed the case. We

adapted signal decimation to finite frames, first in the form of alternative decima-

tion. It has a obvious connection to signal decimation, but it is only applicable up

to second order Σ∆ quantization. Further generalization requires factorization and

re-arrangement of the decimation operator which is adapted decimation.

One close competitor of decimation is distributed noise shaping, or more specif-

ically, the beta dual [17, 18]. However, we argue that the beta dual requires multi-

plication of some carefully tailored β > 1 on the quantized samples, while adaptive

decimation only involves summation, which makes adaptive decimation more viable

for simple hardware.
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1.2.2 Deterministic Compressive Sensing

Compressive sensing investigates the feasibility to recover sparse signals from

highly incomplete measurements. Tao et al. [12, 13, 14, 15] and Donoho [29] intro-

duced the concept of restricted isometry property (RIP) to guarantee the recovery

of sparse signals. At the time, random matrices were immediately proven to satisfy

RIP for rather dense signals where the support of the signals can almost be as large

as the ambient space. This fact has led to improvements to medical imaging such

as MRI.

On the other hand, deterministic construction of such matrices saw much less

success. It has been known that given a matrix, low coherence of its columns (the

largest absolute value among the inner products of columns) guarantees the RIP

for sparse signals. However, as the Welch bound gives a lower bound of coherence,

one can only produce matrices with RIP for signals with sparsity the square-root of

the ambient dimension. Such an obstacle is aptly named the square-root bottleneck.

Numerous efforts utilized number theory for the construction, but for a long time the

bottleneck seemed unbreakable. To this date, the bottleneck was only barely eclipsed

once by Bourgain et al.[9] in 2011. Using techniques in additive combinatorics, they

were able to construct RIP matrices with sparsity up to n1/2+ε, where n is the

ambient dimension, and ε ∼ 10−16.

Motivated by the conjectures in the properties of Legendre symbols, we inves-

tigated in matrices constructed by the Gabor system of such symbols. Following the

work by Bourgain et al., the key estimate was on the sum of inner products between
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columns. In particular, the problem of deterministic compressive sensing can be

reformulated as the uniform estimate over multidimensional character sums. Inter-

estingly, the traditional Weil estimate or Polya-Vinogradov inequality both yield a

bottleneck estimate, so an even finer estimate tailored to our construction is needed.

In Chapter 3, we shall prove that for subsets consisting of consecutive indices [48],

the estimate is better than the bottleneck bound. We are continuing our effort with

the aim to tackle the full problem.

1.2.3 Deep Neural Networks

Even though the concept was already known in the 20th century, deep learning

only became feasible in recent years thanks to significant leaps in computing power.

Deep learning has been shown to be extremely useful in many tasks, but theoretical

results on it are still relatively lacking. With its promise in many fields, mathe-

matical aspects of deep learning have become an extremely popular topic among

mathematicians.

Besides the studies on the approximation power of deep neural networks, it

is also important to be able to determine the optimal parameters efficiently. As

deep neural networks generally have millions of parameters, the identification of the

true parameters can be troublesome. A popular choice is to use stochastic gradient

descent (SGD) to minimize certain loss functions. However, the optimization is often

non-convex, so there is no guarantee for recovery of the global minimum. Moreover,

the optimization is often slow due to the high dimensionality.

6



Fornasier et al.[32, 33, 34] proposed an alternative to SGD, using derivatives

and tensor decomposition to recover the true parameters reliably for up to two

hidden layers. However, their results only work for smooth activation functions,

therefore excluding the rectified linear unit (ReLU) which is a popular activation

function. In Chapter 4, we relax their assumption to include ReLU activation func-

tions. As ReLU functions are not smooth, distributional derivative is necessary.

Our result for the two layer case creates a different outlook than Fornasier’s

result. In their case, there would be entangled weights that vary for different sam-

pling points. As for ours, the number of entangled weights grows exponentially with

the dimension of the first layer. Our current problem is also related to the work of

Yau et al.[45] where one constructs a convex polytope with prescribed face volumes

and normal directions. In particular, the distribution of face volumes of the convex

polytope will play an important role in our algorithm. Shen et al.[53, 54] exam-

ined the approximation power of ReLU neural networks, and their method provides

a hint on reducing the input dimension to simplify the problem further. In view

of the works above, I have proposed a technique called net-spreading, performing

weak differentiation locally for ReLU neural networks. Leveraging the properties of

ReLU, a multi-scale version of the original algorithm used by Fornasier et al. can be

employed. Favorable properties of ReLU also allows for reliable function recovery,

which remains open in the work of Fornasier et al..
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1.3 Results

1.3.1 Signal Quantization

We formulate and prove Theorem 2.3.5 and Theorem 2.3.8, which is an exten-

sion of Theorem 2.1.4 to finite frames. In particular, using our notion of alternative

decimation, which will be defined in Section 2.3, we shall prove exponential error

decay with respect to the total number of bits used.

In Section 2.3, we define alternative decimation and state our main results.

Theorem 2.3.4 is a special case of Theorem 2.3.5, where we restrict ourselves to

finite harmonic frames, a subclass of unitarily generated frames. The same result

for unitarily generated frames satisfying certain mild conditions is proven in The-

orem 2.3.5, and it is further extended to the second order in Theorem 2.3.8. The

multiplicative structure of decimation is proven in Theorem 2.3.7, and this enables

us to perform decimation iteratively.

We prove Theorems 2.3.4, 2.3.5, 2.3.7, and 2.3.8 in Sections 2.3.1, 2.3.2, 2.3.3,

and 2.3.4, respectively. Generalization to orders greater than two is done by means

of adaptive decimation, defined in Section 2.4 and Theorem 2.4.3. Its proof is given

in Section 2.4.6.

1.3.2 Compressive Sensing

Explained in [9], an equivalent property to RIP is the cancellation between

sums of inner products over arbitrary subsets of pre-determined size. As the first

8



step to breaking the square-root bottleneck, we prove the cancellation when the

summands consist of consecutive indices, which is given in Corollary 3.3.2, derived

easily from Theorem 3.3.1. The proof of Theorem 3.3.1 is given in Section 3.4.

We also include the motivation and possible guideline of estimates over ar-

bitrary summands in Section 3.8. In particular, we proposed power methods and

exact counting using properties of Legendre symbols. The problem is still open, and

the work for general cases is ongoing.

1.3.3 Deep Learning

In Section 4.2, we show the feasibility to use the same method as [33] for

shallow ReLU neural networks. We first compute the weak differentiation of such

networks in Section 4.2.2. As it yields similar forms as networks with smooth ac-

tivation functions, it is possible to follow the same methods almost verbatim, as is

described in the following sections.

In Section 4.3, we show that for two-layer networks, the weak derivative of

ReLU neural networks is different from the derivative of those with smooth activa-

tion functions. This leads to an incompatibility between the methods in [34] and

our setting. We describe our new algorithm in Section 4.3.2 and provide partial

9



theoretical guarantees.

Chapter 2: Signal Decimation

In this chapter, we propose two quantization schemes for finite frames that

satisfy theoretically optimal error decay rates. First, we give a brief exposition

on the recent development of signal quantization theorey in Section 2.1. Then, we

formulate and prove the properties of alternative decimation and adapted decimation

in Sections 2.3 and 2.4 respectively.

2.1 Preliminaries

2.1.1 Classical Sampling Theorem and Analog-to-Digital Conversion

Analog-to-digital (A/D) conversion is a process where bandlimited signals, e.g.,

audio signals, are digitized for storage and transmission, which is feasible thanks to

the classical sampling theorem. In particular, the theorem indicates that discrete

sampling is sufficient to capture all features of a given bandlimited signal, provided

that the sampling rate is higher than the Nyquist rate.

Given a function f ∈ L1(R), its Fourier transform f̂ is defined as

f̂(γ) =

∫ ∞
−∞

f(t)e−2πıtγ dt.
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The Fourier transform can also be uniquely extended to L2(R) as a unitary trans-

formation.

Definition 2.1.1. Given f ∈ L2(R), f ∈ PWΩ if its Fourier transform f̂ ∈ L2(R)

is supported in [−Ω,Ω].

An important component of A/D conversion is the following theorem:

Theorem 2.1.2 (Classical Sampling Theorem). Given f ∈ PW1/2, for any g ∈

L2(R) satisfying

• ĝ(ω) = 1 on [−1/2, 1/2]

• ĝ(ω) = 0 for |ω| ≥ 1/2 + ε,

with ε > 0 and T ∈ (0, 1− 2ε), t ∈ R, one has

f(t) = T
∑
n∈Z

f(nT )g(t− nT ),

where the convergence is both uniform on compact sets of R and in L2(R).

As an extreme case, for g(t) = sin(πt)/(πt) and T = 1, the following identity

holds in L2(R):

f(t) =
∑
n∈Z

f(n)
sin(π(t− n))

π(t− n)
.

2.1.2 Signal Quantization

However, the discrete nature of digital data storage makes it impossible to store

exactly the samples {f(nT )}n∈Z. Instead, the quantized samples {qn}n∈Z chosen
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from a pre-determined finite alphabet A are stored. This results in the following

reconstructed signal

f̃(t) = T
∑

qng(t− nT ).

As for the choice of the quantized samples {qn}n, we shall discuss the following two

schemes

• Pulse Code Modulation (PCM):

Quantized samples are taken as the direct-roundoff of the current sample, i.e.,

qn = Q0(f(nT )) := arg min
q∈A

|q − f(nT )|. (2.1)

• Σ∆ Quantization:

A sequence of auxiliary variables {un}n∈Z is introduced for this scheme. {qn}n∈Z

is defined recursively as

qn = Q0(un−1 + f(nT )),

un = un−1 + f(nT )− qn.

Σ∆ quantization was introduced [41] in 1963, and it is still widely used due to

some of its advantages over PCM. Specifically, Σ∆ quantization is robust against

hardware imperfection [26], a decisive weakness for PCM. For Σ∆ quantization, and

the more general noise shaping schemes to be explained below, the boundedness of

{un}n∈Z turns out to be essential. Quantization schemes with ‖u‖∞ < ∞ are said

to be stable.
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Despite its merits over PCM, Σ∆ quantization merely yields linear error decay

with respect to the bit-rate as opposed to exponential error decay by its counterpart

PCM. Thus, it is desirable to generalize Σ∆ quantization for better error decay rates.

As a direct generalization, given r ∈ N, one can consider an r-th order Σ∆

quantization scheme:

Theorem 2.1.3 (Higher Order Σ∆ Quantization, [24]). Given f ∈ PW1/2 and

T < 1, consider the following stable quantization scheme

f(nT )− qn = (∆ru) :=
r∑
l=0

(−1)l
(
r

l

)
un−l,

where {qn} and {un} are the quantized samples and auxiliary variables, respectively.

Then, for all t ∈ R,

|f(t)− T
∑
n∈Z

qng(t− nT )| ≤ T r‖u‖∞
∥∥∥∥drgdtr

∥∥∥∥
1

.

2.1.3 Signal Decimation

Higher order Σ∆ quantization has been known for a long time [20, 31], and the

r-th order Σ∆ quantization improves the error decay rate from linear to polynomial

degree r while preserving the advantages of a first order Σ∆ quantization scheme.

From here, a natural question arises: is it possible to generalize Σ∆ quantiza-

tion further so that the reconstruction error decay matches the exponential decay of

PCM? Two solutions have been proposed for this question. The first one is to adopt
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different quantization schemes. Many of the proposed schemes, including higher

order Σ∆ quantization, can be categorized as noise shaping quantization schemes,

and a brief summary of such schemes will be provided in Section 2.1.6.

The other possibility is to enhance data storage efficiency while maintaining

the same level of reconstruction accuracy, and signal decimation belongs in this

category. Signal decimation is implemented as follows: given an r-th order Σ∆

quantization scheme, there exists {qTn }, {un} such that

f (T )
n − qTn = f(nT )− qTn = (∆ru)n, (2.2)

where ‖u‖∞ <∞, and {f (T )
n }n = {f(nT )}n. Then, consider

q̃T0n := (Srρq
T )(2ρ+1)n,

a sub-sampled sequence of Srρq
T , where (Sρh)n := 1

2ρ+1

∑ρ
m=−ρ hn+m. Signal deci-

mation is the process with which one converts the quantized samples {qTn } to {q̃T0n }.

See Figure 2.1 for an illustration.

Decimation has been known in the engineering community [16], and it was

observed that decimation results in exponential error decay with respect to the

bit-rate, even though the observation remained a conjecture until 2015 [25], when

Daubechies and Saab proved the following theorem:

Theorem 2.1.4 (Signal Decimation for Bandlimited Functions, [25]). Given f ∈

PW1/2, T < 1, and T0 = (2ρ+ 1)T < 1, there exists a function g̃ such that
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f(t) = T0

∑
[Srρf

(T )](2ρ+1)ng̃(t− nT0),

|f(t)− T0

∑
q̃T0n g̃(t− nT0)| ≤ C‖u‖∞

(
T

T0

)r
=: D, (2.3)

where {f (T )
n }n∈Z is defined in (2.2), and C is a constant such that T r0 g̃

(r)
1 ≤ C.

Moreover, the number of bits needed for each unit interval is

1

T0

log2((2ρ+ 1)r + 1) ≤ 1

T0

log2

(
2

(
T0

T

)r)
=: R. (2.4)

Consequently,

D(R) = 2‖u‖∞C2−T0R.

From (2.3) and (2.4), we can see that the reconstruction error after decima-

tion still decays polynomially with respect to the sampling rate. As for the data

storage, the number of bits needed changes from O(T−1) to O(log(1/T )). Thus, the

reconstruction error decays exponentially with respect to the bits used.

2.1.4 Unitarily Generated Frames

A unitarily generated frame Tu is generated by a cyclic group: given a unit

base vector φ0 ∈ Ck and a Hermitian matrix Ω ∈ Ck×k, the frame elements of Tu

are defined as

φ
(m)
j = Uj/mφ0, Ut := e2πıΩt.
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Samples {yn}

Quantized sample {qn} (un � un�1)

Averaged samples {q̃n} (
un+⇢�un�1�⇢

⇢ )

Decimated Sub-samples q̃⇢n (
ũ⇢

n�ũ⇢
n�1

⇢ )

⌃� Quantization: y � q = �u

.

1

Figure 2.1: Illustration of the first order decimation scheme. After obtaining the
quantized samples {qn}n in the first step, decimation takes the average of quantized
samples within disjoint blocks in the second step. The outputs are used as the
decimated sub-samples {q̃ρn} in the third step. The effect on the reconstruction
(replacing qn with yn − qn) is illustrated in parentheses.

The analysis operator Φ of Tu has {φ∗j}j as its rows.

As symmetry occurs naturally in many applications, it is not surprising that

unitarily generated frames receive serious attention, and their applications in signal

processing abound, [17, 18, 30, 35].

One particular application comes from dynamical sampling, which records the

spatiotemporal samples of a signal in interest. Mathematically speaking, one tries

to recover a signal f on a domain D from the samples {f(X), ft1(X), . . . , ftN (X)}

where X ⊂ D, and ftj = Atjf denotes the evolved signal. Equivalently, one re-

covers f from {<Atjf, ei>}i,j = {<f, (Atj)∗ei>}i,j, which aligns with the frame

reconstruction problems, [1, 2]. In particular, Lu and Vetterli [49, 50] investigated

the reconstruction from spatiotemporal samples for a diffusion process. They noted

that one can compensate under-sampled spatial information with sufficiently over-

sampled temporal data. Unitarily generated frames represent the cases when the

evolution process is unitary and the spatial information is one-dimensional.
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It should be noted that unitarily generated frames are group frames with the

generator G = U1/m provided that U1 = Gm = Ik, while harmonic frames are tight

unitarily generated frames. Here, a frame T = {ej}j ⊂ H is tight if for all v ∈ H,

there exists a constant A > 0 such that
∑

j |<v, ej>|2 = A‖v‖2.

A special class of harmonic frames that we shall discuss is the exponential

frame with generator Ω as a diagonal matrix with integer entries and the base

vector φ0 = (1, . . . , 1)t/
√
k.

2.1.5 Σ∆ Quantization on Finite Frames

Signal quantization theory on finite frames is well motivated from the need

to deal with data corruption or erasure [37, 38]. The authors considered the PCM

quantization scheme described above and modeled the quantization error as random

noise. In [6], deterministic analysis on Σ∆ quantization for finite frames showed

that a linear error decay rate is obtained with respect to the oversampling ratio.

Moreover, if the frame satisfies certain smoothness conditions, the decay rate can

be super-linear for first order Σ∆ quantization. Noise shaping schemes for finite

frames have also been investigated, some of which yield exponential error decay rate

[17, 18, 19].

Fix a separable Hilbert space H along with a set of vectors T = {ej}j∈Z ⊂ H.

The collection of vectors T forms a frame for H if there exist A,B > 0 such that for

17



any v ∈ H, the following inequality holds:

A‖v‖2
H ≤

∑
j∈Z

|<v, ej>|2 ≤ B‖v‖2
H.

The concept of frames is a generalization of orthonormal bases in a vector

space. Different from bases, frames are usually over-complete: the vectors form a

linearly dependent spanning set. Over-completeness of frames is particularly useful

for noise reduction, and consequently frames are more robust against data corruption

than orthonormal bases.

Let us restrict ourselves to the case when H = Ck is a finite dimensional

Euclidean space, and the frame consists of a finite number of vectors. Given a finite

frame T = {ej}mj=1, the linear operator E : Ck → Cm satisfying Ev = {<v, ej>}mj=1

is called the analysis operator. Its adjoint operator E∗ : Cm → Ck satisfies E∗c =∑m
j=1 cjej and is called the synthesis operator. The frame operator S is defined by

S = E∗E : Ck → Ck.

Remark 2.1.5. Note that since S is Hermitian,

‖S‖2 = max
v:‖v‖2=1

|vTSv| = max
v:‖v‖2=1

m∑
j=1

|<v, ej>|2 ≤ B.

Similarly, ‖S−1‖2 ≤ A−1. In particular, the 2-norm of S is directly tied to the lower

frame bound of T .

Under this framework, one considers the quantized samples q of y = Ex and

reconstructs x̃ = S−1E∗q, where S = E∗E. The frame-theoretic greedy Σ∆ quanti-
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zation is defined as follows: given a finite alphabet A ⊂ C, consider the auxiliary

variable {un}mn=0, where we shall set u0 = 0. For n = 1, . . . ,m, we calculate {qn}n

and {un}n as follows:

qn = Q0(un−1 + yn)

un = un−1 + yn − qn,
(2.5)

where Q0 is defined in (2.1). In the matrix form, we have

y − q = ∆u, (2.6)

where ∆ ∈ Zm×m is the backward difference matrix, i.e., ∆i,i = 1 for all 1 ≤ i ≤ m,

and ∆i,i−1 = −1 for 2 ≤ i ≤ m. For an r-th order Σ∆ quantization, we have instead

y − q = ∆ru.

In practice, the quantization alphabet A is often chosen to be A0 which is

uniformly spaced and symmetric around the origin: given δ > 0, we define a mid-rise

uniform quantizer A0 of length 2L to be A0 = {(2j + 1)δ/2 : −L ≤ j ≤ L− 1}.

For complex Euclidean spaces, we define A = A0 + ıA0. In both cases, A

is called a mid-rise uniform quantizer. Throughout this paper we shall always be

using A as our quantization alphabet.

2.1.6 Noise Shaping Schemes and the Choice of Dual Frames

Σ∆ quantization is a subclass of the more general noise shaping quantization,

where the quantization scheme is designed such that the reconstruction error is
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easily separated from the true signal in the frequency domain. For instance, it is

pointed out in [18] that the reconstruction error of Σ∆ quantization for bandlimited

functions is concentrated in high frequency ranges. Since audio signals have finite

bandwidth, it is then possible to separate the signal from the error using low-pass

filters.

Noise shaping quantization has been well established for A/D conversion since

the mid 20th century [55], and in terms of finite frames, noise shaping schemes

generalize the Σ∆ scheme in the following way:

y − q = Hu,

where y, q, and u are the samples, quantized samples, and the auxiliary variable,

respectively, while the transfer matrix H is lower-triangular. Now, given an anal-

ysis operator E, a transfer matrix H, and a dual F to E, i.e. , FE = Ik, the

reconstruction error in this setting is

‖x− Fq‖2 = ‖F (Ex− q)‖2 = ‖FHu‖2 ≤ ‖FH‖∞,2‖u‖∞,

where ‖ · ‖∞,2 is the operator norm between `∞ and `2, i.e.,

‖T‖∞,2 := sup
‖x‖∞=1

‖Tx‖2.

The choice of the dual frame F plays a role in the reconstruction error. For

instance, [8] proved that arg minFE=Ik
‖FH‖2 = (H−1E)†H−1, where given any
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matrix A, A† is defined as the canonical dual (A∗A)−1A∗. More generally, one can

consider a V -dual, namely (V E)†V , provided that V E is still a frame. With this

terminology, decimation can be viewed as a special case of V -duals, and conversely

every V -dual can be associated with corresponding post-processing on the quantized

sample q.

2.1.7 Perspective and Prior Works

• Quantization for Bandlimited Functions:

Despite its simple form and robustness, Σ∆ quantization only results in linear

error decay with respect to the sampling period T as T → 0. It was shown

[20, 24, 31] that a generalization of Σ∆ quantization, namely the r-th order

Σ∆ quantization, has error decay rate of polynomial order r. Leveraging the

different constants for this family of quantization schemes, sub-exponential

decay can also be achieved. A different family of quantization schemes was

proven [39] to yield exponential error decay with a small exponent (c ≈ 0.07.)

In [27], the exponent was improved to c ≈ 0.102.

• Finite Frames:

Σ∆ quantization can also be applied to finite frames. It was proven [6] that for

any family of finite frames with bounded frame variation, the reconstruction

error decays linearly with respect to the oversampling ratio m/k, where the

corresponding analysis operator E is an m× k matrix. With different choices

of dual frames, [8] proved that the so-called Sobolev dual achieves minimum
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induced matrix 2-norm for reconstructions. By carefully matching between

the dual frame and the quantization scheme, [18] proved that using the β-dual

for random frames results in exponential error decay of near-optimal exponent

with high probability.

• Decimation:

In [16], using the assumption that the noise in Σ∆ quantization is random

along with numerical experiments, it was asserted that decimation greatly

reduces the number of bits needed while maintaining the reconstruction ac-

curacy. In [25], a rigorous proof was given to show that such an assertion

is indeed valid, and the reduction of bits used turns the linear decay into

exponential decay with respect to the bit-rate.

Adapting decimation to finite frames is by no means a new idea. Iwen and

Saab [42] used probabilistic arguments and the property of efficient storage

to construct random quantization schemes with exponential error decay rate

with respect to the bit usage. In [40], similar ideas are used on Σ∆. Moreover,

the connection between decimation and distributed noise shaping can be seen

in it.

[40, 42] both use probabilistic arguments that only ensure success with some

probability instead of deterministic guarantee. Different from their work, we

shall propose two deterministic quantization schemes in Chapter 2.

• Beta Dual of Distributed Noise Shaping:
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Chou and Günturk [17, 18] proposed a distributed noise shaping quantization

scheme with beta duals as an example. The definition of a beta dual is as

follows:

Definition 2.1.6 (Beta Dual). Let E ∈ Rm×k be an analysis operator and

k | m. Recall that FV ∈ Rk×m is a V-dual of E if

FV = (V E)†V,

where V ∈ Rp×m such that V E is still a frame.

Given β > 1, the β-dual FV = (V E)†V has V = Vβ,m, a k-by-m block matrix

such that each block is v = [β−1, β−2, . . . , β−m/k] ∈ R1×m/k.

In this case, the transfer matrix H is an m-by-m block matrix where each

block h is an m/k-by-m/k matrix with unit diagonal entries and −β as sub-

diagonal entries. Under this setting, it is proven that the reconstruction error

decays exponentially.

One may notice the similarity between the beta dual and decimation. Indeed,

if one chooses β = 1 and normalizes V by k
m

, the same result as decimation

can be obtained, achieving linear error decay with respect to the oversampling

ratio and exponential decay with respect to the bit usage. Nonetheless, its

generalization to higher order error decay with respect to the oversampling

ratio is lacking, whereas the alternative decimation we propose can be extended

to the second order. In particular, the raw performance of the second order
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decimation is superior to the 1-dual under the same oversampling ratio.

2.2 Notation

The following notation is used in this chapter:

• x ∈ Ck: the signal of interest.

• E ∈ Cm×k: a fixed frame.

• y = Ex ∈ Cm: the sample.

• ρ ∈ N: the block size of the decimation.

• η = bm/ρc ∈ N: the greatest integer smaller than the ratio m/ρ.

• A = A0 + ıA0 ⊂ C: the quantization alphabet. A is said to have length 2L

with gap δ if A0 = {(2j + 1)δ/2 : −L ≤ j ≤ L− 1} for some δ > 0.

• q ∈ Cm: the quantized sample obtained from the greedy Σ∆ quantization

defined in (2.5).

• u ∈ Cm: the auxiliary variable of Σ∆ quantization.

• F ∈ Ck×m: a dual to the analysis operator E, i.e. FE = Ik.

• E : the reconstruction error E = ‖x− Fq‖2.

• R: total number of bits used to record the quantized sample.

• Ω ∈ Ck×k: a Hermitian matrix with eigenvalues {λj}kj=1 ⊂ R and correspond-

ing orthonormal eigenvectors {vj}kj=1.
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• Φ ∈ Cm×k: the analysis operator of the unitarily generated frame (UGF) with

the generator Ω and the base vector φ0 ∈ Ck.

• Ut ∈ Ck×k: the unitary matrix defined as Ut = e2πıΩt for any t ∈ R.

• B = BΦ ∈ Ck×k: a unitary matrix that simultaneously diagonalizes Ut and Ω.

In particular, Ω = BΛB∗ and Ut = Be2πıΛtB∗, where Λ = diag(λ1, . . . , λk).

• ‖ · ‖p,q: the p-to-q norm. For any matrix M , ‖M‖p,q := supv:‖v‖p=1 ‖Mv‖q. For

simplicity, we denote ‖ · ‖2 := ‖ · ‖2→2 for matrices.

• δ : Z→ {0, 1}: the Kronecker delta. δ(k) = 1 if k = 0, and 0 otherwise. With

some abuse of notation, we may also view δ as a function on the cyclic group

Z/`Z for any ` ∈ N.

2.3 Alternative Decimation

For the rest of the chapter, we shall also assume that our Σ∆ quantization

scheme is stable, i.e. , ‖u‖∞ remains bounded as the dimension m→∞. Recall the

definition of a unitarily generated frame in 2.1.4.

It will be shown that, for unitarily generated frames Φ satisfying conditions

specified in Theorem 2.3.5, Σ∆ quantization coupled with alternative decimation

still has linear reconstruction error decay rate with respect to the oversampling

ratio ρ. As for the data storage, decimation allows for highly efficient storage, and

the error decays exponentially with respect to the number of bits used.
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Definition 2.3.1 (Alternative Decimation). Given fixed m, ρ ∈ N, the (m, ρ)-

alternative decimation operator is defined to be DρSρ, where

• Sρ = S+
ρ − S−ρ ∈ Rm×m is the integration operator satisfying

(S+
ρ )l,j =


1
ρ

if l ≥ ρ, l − (ρ− 1) ≤ j ≤ l

0 otherwise,

(S−ρ )l,j =


1
ρ

if l ≤ ρ− 1, l + 1 ≤ j ≤ m− ρ+ l

0 otherwise.

(2.7)

Here, the cyclic convention is adopted: for any s ∈ Z, s ≡ s+m.

• Dρ ∈ Nη×m is the sub-sampling operator satisfying

(Dρ)l,j =


1 if j = ρ · l

0 otherwise,

where η = bm/ρc.

Remark 2.3.2 (Canonical Decimation DρS̃ρ and Alternative Decimation DρSρ). It

is tempting to consider a closely related circulant matrix S̃ρ that satisfies Sρ = S̃ρ−L,

where L is constant on the first (ρ − 1) rows and zero otherwise. Visually, S̃ρ and
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Sρ has the following form

S̃ρ =
1

ρ



1 0 . . . . . . 0 1 . . . 1

...
. . . . . . . . . . . .

...

...
. . . 0 . . . . . . 0 1

1 . . . . . . 1

. . . . . .

. . . . . .

. . . . . .

1 . . . . . . 1



, Sρ =
1

ρ



0 −1 . . . . . . −1 0

. . . . . . . . .

−1 . . . . . . −1 0

1 . . . . . . 1

. . . . . .

. . . . . .

. . . . . .

1 . . . . . . 1



.

(2.8)

Indeed, DρS̃ρ = DρSρ, so there is no difference between the alternative deci-

mation and canonical decimation. However, we will show in Appendix 2.3.6.1 that

DρS̃
2
ρ 6= DρS

2
ρ , and it is necessary to consider DρS

2
ρ instead of DρS̃

2
ρ for the second

order decimation.

Definition 2.3.3 (Frame variation). Given A = (A1, . . . , Ap) ∈ Cs×p, the frame

variation σ(A) is defined to be

σ(A) =

p−1∑
t=1

‖At − At+1‖2.

Theorem 2.3.4 (Special Case: Decimation for Harmonic Frames). Fix the analysis

operator E = Em,k ∈ Cm×k with entries El,j = 1√
k
exp(−2πı(njl)/m). Suppose

{nl}kl=1 are distinct integers in [−k/2, k/2], then the following statements are true:
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(a) Signal reconstruction: The matrix DρSρE ∈ Cη×k has rank k.

(b) Error estimate: The dual F = (DρSρE)†DρSρ to E has reconstruction error

‖x− Fq‖2 ≤
π

2
(σ(F̄ ) + ‖F̄η‖2)‖u‖∞

1

ρ
,

where F̄ = (F̄1, . . . , F̄η) is the canonical dual of the matrix

( 1√
k
e−2πıρlnj/m)l,j ∈ Cη×k.

Moreover, if ρ | m, then the reconstruction error E satisfies

E := ‖x−Fq‖2 ≤


π2(k+1)√

3
‖u‖∞ k

m
if m, k are even and nj’s are nonzero,

π
2
(2π(k+1)√

3
+ 1)‖u‖∞ k

m
otherwise.

In particular, the error decays linearly with respect to the oversampling ratio

m/k.

(c) Efficient data storage: Suppose the length of the quantization alphabet

A is 2L, then the decimated samples DρSρq can be encoded by a total of

R = 2bm/ρc log(2Lρ) = 2η log(2Lρ) bits. Furthermore, suppose η is fixed as

m→∞, then as a function of the total number of bits used, the reconstruction

error E is

E (R) ≤ CF,L‖u‖∞2−
1
2η

R ,

where CF,L ≤ πL(σ(F̄ ) + ‖F̄η‖), and F̄ is defined above.
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For ρ | m, we have a better estimate

E (R) ≤ Ck,L‖u‖∞2−
1
2η

R ,

where Ck,L ≤ πkL
η

(2π(k+1)√
3

+ 1), independent of ρ. The optimal exponent 1
2k

will

be achieved in the case ρ = m/k ∈ N.

The more general result is as follows:

Theorem 2.3.5 (Decimation for Unitarily Generated Frames (UGF)). Given Ω, φ0,

{λj}j, {vj}j, and Φ = Φm,k as the generator, base vector, eigenvalues, eigenvectors,

and the analysis operator of the corresponding UGF, respectively, suppose

• {λj}kj=1 ⊂ [−η/2, η/2] ∩ Z,

• Cφ0 = mins |<φ0, vs>|2 > 0, and

• ρ | m,

where η = m/ρ, then the following statements are true:

(a) Signal reconstruction: DρSρΦm,k ∈ Cη×k has rank k.

(b) Error estimate: For the dual frame F = (DρSρΦm,k)
†DρSρ, the reconstruc-

tion error Em,ρ satisfies

Em,ρ ≤
π

2ηCφ0
(2π max

1≤j≤k
|λj|+ 1)‖u‖∞

1

ρ
.

(c) Efficient data storage: Suppose the length of the quantization alphabet is

2L, then the total number of bits used to record the quantized samples are
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R = 2η log(2Lρ) bits. Furthermore, suppose η = m/ρ is fixed as m → ∞,

then as a function of the total number of bits used, Em,ρ satisfies

E (R) ≤ Ck,φ0,L,η‖u‖∞2−
1
2η

R ,

where Ck,φ0,L,η = πL
ηCφ0

(2πmax1≤j≤k |λj|+ 1), independent of ρ.

Remark 2.3.6. For Theorem 2.3.4 and 2.3.5, if both the signal and the frame are

real, then the total number of bits used will be R = η log(2Lρ) bits, half the amount

needed for the complex case.

One additional property of decimation is its multiplicative structure.

Theorem 2.3.7 (The Multiplicative Structure of Decimation Schemes). Suppose

ρ | m and ρ = ρ1ρ2, then the (m, ρ)-decimation is equal to the successive iterations

of an (m, ρ1)-decimation coupled by an (m/ρ1, ρ2)-decimation.

Besides the first order alternative decimation in Theorem 2.3.5, it is also pos-

sible to generalize the result to the second order decimation. For such a decimation

process, the reconstruction error decays quadratically (as opposed to linearly in The-

orem 2.3.5) with respect to the oversampling ratio ρ and exponentially with respect

to the bit usage.

Theorem 2.3.8 (Second Order Decimation for UGF). With the same assumptions

as Theorem 2.3.5 and the additional requirement that the eigenvalues are nonzero,

the following statements are true:

(a) Signal reconstruction: DρS
2
ρΦm,k ∈ Cη×k has rank k.
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(b) Error estimate: For the dual frame F = (DρS
2
ρΦm,k)

†DρS
2
ρ , the reconstruc-

tion error Em,ρ,r has quadratic error decay rate with respect to the oversampling

ratio ρ:

Em,ρ,r ≤
π2

4ηCφ0

(
9 + η(2π max

1≤j≤k
|λj|

1

η
)2

)
‖u‖∞

1

ρ2
.

(c) Efficient data storage: Suppose the length of the quantization alphabet

is 2L, then the total number of bits used to record the quantized samples is

R = 4η log(2Lm) bits. Furthermore, suppose η = m/ρ is fixed as m → ∞,

then as a function of the total number of bits used Em,ρ satisfies

E (R) ≤ Ck,φ0,L,η‖u‖∞2−
1
2η

R ,

where Ck,φ0,L,η = π2

4ηCφ0

(
9 + η(2πmax1≤j≤k |λj| 1η )2

)
(2Lη)2, independent of ρ.

To better demonstrate the ideas in the proof, Theorem 2.3.4 will be proven

separately in Section 2.3.1 even though it is essentially a special case of Theorem

2.3.5. Theorem 2.3.5 will be proven in Section 2.3.2, and Theorem 2.3.7 in Section

2.3.3. The proof of Theorem 2.3.8 is given in Section 2.3.4.

2.3.1 Decimation for Finite Harmonic Frames

To prove Theorem 2.3.4, we break down the proof into the following steps:

first, we investigate properties of DρSρE, the decimated version of the frame E.

Then, we examine the effect of DρSρ∆, which is essential for our error estimate.
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2.3.1.1 The Scaling Effect of Decimation

Let E = Em,k = (el,j)l,j = ( 1√
k

exp(−2πınjl/m))l,j where {nj}j are distinct.

For any ρ ≤ m, we have the following lemma:

Lemma 2.3.9. Sρ and E satisfy


SρE = EC̄ if nj 6= 0 ∀j

SρE = EC̄ −K if nj0 = 0 for some j0,

where C̄ ∈ Ck×k is a diagonal matrix with entries

C̄j,j =


sin(ρnjπ/m)

ρ sin(njπ/m)
eπı(ρ−1)nj/m if nj 6= 0

1 if nj = 0,

(2.9)

and K is zero except for the j0-th column, where

Kl,j0 =


m
ρ
√
k

if 1 ≤ l ≤ ρ− 1

0 otherwise.

In either case DρSρE = DρEC̄ as DρK = 0.

Remark 2.3.10. In (2.8), one observes that Sρ differs from an actual circulant

matrix S̃ρ by a matrix L with 1/ρ on every entry of the first ρ − 1 rows and zero

otherwise. Since DρL = 0, we can conclude that DρSρ = DρS̃ρ. Thus, it is possi-

ble to consider DρS̃ρ, which is a more natural formulation of decimation than the

alternative decimation.
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Proof. We start with the computation on ρ ≤ l ≤ m. First, suppose nj 6= 0. Then,

by (2.7),

(S+
ρ E)ρ,j =

1

ρ
√
k

ρ∑
s=1

exp(−2πınjs/m)

=
1

ρ
√
k
e−πı(ρ+1)nj/m

eπı(ρ−1)nj/m(1− e−2πıρnj/m))

1− exp(−2πınj/m)

=
1√
k
e−πı(ρ+1)nj/m

sin(ρnjπ/m)

ρ sin(njπ/m)
.

For ρ ≤ l ≤ m,

(SρE)l,j = (S+
ρ E)l,j = (S+

ρ E)ρ,j exp(−2πı(l − ρ)nj/m)

=
1

ρ
√
k

exp(−2πılnj/m)
sin(ρnjπ/m)

sin(njπ/m)
eπı(ρ−1)nj/m

= El,j
sin(ρnjπ/m)

ρ sin(njπ/m)
eπı(ρ−1)nj/m.

If nj = 0, then (S+
ρ E)l,j = 1√

k
= El,j.

For l ≤ ρ, we make the following observation:

(Sρ)l,j +
1

ρ
= (Sρ)l+ρ,j+ρ,

with the cyclic convention on indices. Then for l ≤ ρ−1, noting that exp(−2πınj(s+
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m)/m) = exp(−2πınjs/m),

(SρE)l,j =
m∑
s=1

(Sρ)l,sEs,j

=
m∑
s=1

(Sρ)l+ρ,s+ρEs,j −
1

ρ

m∑
s=1

Es,j

=
m∑
s=1

(Sρ)l+ρ,s+ρEs+ρ,j exp(2πıρnj/m)− m

ρ
√
k
δ(nj)

= El+ρ,je
2πıρnj/m

sin(ρnjπ/m)

ρ sin(njπ/m)
eπı(ρ−1)nj/m − m

ρ
√
k
δ(nj)

= El,j
sin(ρnjπ/m)

ρ sin(njπ/m)
eπı(ρ−1)nj/m − m

ρ
√
k
δ(nj).

Now we can give the condition for which DρSρE has full rank.

Proposition 2.3.11. The following statements are equivalent:

• DρSρE has full rank.

• {ρnj}kj=1 are distinct residues modulo m, and ρnj = 0 modulo m implies nj =

0.

Proof. By Lemma 2.3.9, we see that

DρSρE = DρEC̄ = D



E1

E2

...

Em


C̄ =



Eρ

E2ρ

...

Eηρ


C̄.

DρE is a sub-matrix of a Vandermonde matrix with parameters {exp(−2πıρnj/m)}kj=1.
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Thus this matrix has full rank if and only if {ρnj}kj=1 are distinct modulo m. On

the other hand, C̄ is an invertible diagonal matrix if and only if C̄j,j 6= 0. It is true

when ρnj 6= 0 for all j except if nj = 0 to begin with.

Remark 2.3.12. |{−bη/2c, . . . , bη/2c}| ≥ η, and if {nj}kj=1 ⊂ {−bη/2c, . . . , bη/2c}

are distinct residues modulom, then {ρnj}j are distinct since elements of {−bη/2c, . . . , bη/2c}

are in different cosets of (Z/mZ)/ker(σ) where σ : Z/mZ→ Z/mZ satisfies σ(x) =

ρx.

From Lemma 2.3.9, we see that DρSρE = DρEC̄. Thus for any dual F̃ to

DρEC̄, F̃ = C̄−1F̄ where F̄ is a dual to DρE. The estimate of ‖C̄−1‖2 is described

in Proposition 2.3.14, and we need a lemma for this proposition:

Lemma 2.3.13. Given any number α > 1, the function

h(x) = hα(x) =
sin(αx)

α sin(x)

is even and strictly decreasing in (0, π/(2α)). Moreover, minx∈[−π/2α,π/2α] hα(x) ≥ 2
π

.

Proof. Given any α > 1, note that limx→0 h(x) = 1. Taking the derivative of h, we

have

h′(x) =
α cos(αx) sin(x)− sin(αx) cos(x)

α2 sin2(x)
=

cos(αx) cos(x)

α2 sin2(x)

(
α tan(x)− tan(αx)

)
.

The first factor on the right hand side is even and positive in (0, π/(2α)), while the

second one α tan(x) − tan(αx) is odd and decreasing in (0, π/(2α)) by taking yet
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another derivative. Thus, the derivative of h is odd and negative in (0, π/(2α)]. That

is, on Iα = [−π/(2α), π/(2α)], h achieves global maximum at x = 0 and minimum

at x = π/(2α). At the minimum point,

hα

(
π

2α

)
=

1

α sin(π/(2α))
≥ 2

π

by noting that sin(z) ≤ z for any z > 0.

Proposition 2.3.14. If {nj}kj=1 are concentrated in [−η/2, η/2] in Z/mZ, then

‖C̄−1‖2 ≤
π

2
.

Proof. By (2.9), we see that

|C̄l,l| =
∣∣∣∣1ρ sin(ρnlπ/m)

sin(nlπ/m)

∣∣∣∣
with the convention that sin(ρ · 0)/(ρ sin(0)) = 1. Thus,

‖C̄−1‖2 = max
1≤l≤k

(
|C̄(l)|−1

)
=

(
min

1≤l≤k
{
∣∣∣∣ sin(ρnlπ/m)

ρ sin(nlπ/m)

∣∣∣∣})−1

.

Using the result from Lemma 2.3.13 with α = ρ ≥ 1, we see that ‖C̄−1‖2 ≤ π
2
.

2.3.1.2 Effect of Sρ on the Difference Structure ∆

Here, we describe the effect of DρSρ∆ in Proposition 2.3.16, which is directly

connected to the proof of Theorem 2.3.4.
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Lemma 2.3.15. Sρ = 1
ρ
∆̄ρ∆

−1 where

(∆̄ρ)l,j =


δ([j − l])− δ([ρ+ j − l]) if j 6= m,

δ([j − l]) if j = m,

and δ : Z/mZ→ {0, 1} is the Kronecker delta.

Proof. Let δ̄ : Z→ {0, 1} be the Kronecker delta on Z. Then,

(∆̄ρ∆
−1)l,j =

∑
j≤t≤m−1

(δ([t− l])− δ([ρ+ t− l])) + δ([j −m])

=
∑
j≤t≤m

δ([t− l])−
∑

j≤t≤m−1

(δ̄(ρ+ t− l) + δ̄(ρ+ t− l −m)).

By definition,



∑
j≤t≤m δ([t− l]) = 1 if j ≤ l∑
j≤t≤m−1 δ̄(ρ+ t− l) = 1 if l ≥ ρ+ 1, j ≤ l − ρ∑
j≤t≤m−1 δ̄(ρ+ t− l −m) = 1 if l ≤ ρ− 1, j ≤ m− ρ+ l.

Thus, splitting into the cases l ≤ ρ− 1, l = ρ, and l ≥ ρ+ 1, we see that

1

ρ
∆̄ρ∆

−1 = Sρ,

as claimed.

Proposition 2.3.16. Given any n ∈ N, let ∆(n) ∈ Nn×n denote the n-dimensional
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backward difference matrix. For ρ|m, one has

DρSρ∆
(m) =

1

ρ
∆(m/ρ)Dρ.

Proof. If ρ | m,

DρSρ∆
(m) =

1

ρ
Dρ∆̄ρ.

Now, note that, for s 6= m,

(Dρ∆̄ρ)l,s = (∆̄ρ)lρ,s

= δ(s− lρ)− δ(s+ ρ− lρ) = δ(s− lρ)− δ(s− (l − 1)ρ)

= (∆Dρ)l,s.

For s = m, (Dρ∆̄ρ)l,m = δ(m− lρ) = (∆Dρ)l,m.

2.3.1.3 Proof of Theorem 2.3.4

Before proving Theorem 2.3.4, we shall need two more lemmas:

Lemma 2.3.17. For any E = En,k with n ≥ k, suppose {nj}j are concentrated

between [−k/2, k/2], then E∗ has frame variation σ(E∗) ≤ 2π(k+1)√
3

.
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Proof.

σ(E∗) =
1√
k

n−1∑
l=1

(
k∑
j=1

|e−2πılnj/n − e−2πı(l+1)nj/n|2)1/2

=
1√
k

n−1∑
l=1

(
k∑
j=1

|1− e2πınj/n|)1/2

≤ 1√
k

n−1∑
l=1

(
k∑
j=1

(2πnj/n)2)1/2

≤ 1√
k

2π
n− 1

n
(

k/2∑
j=−k/2

n2
j)

1/2

≤ 1√
k

2π

√
2 · k/2(k/2 + 1)(k + 1)

3

≤ 2π(k + 1)√
3

.

Lemma 2.3.18 ([6], Theorem III.7). Given a stable Σ∆ quantization scheme with

a mid-rise uniform quantizer of gap δ, if the frame T = {ej}mj=1 satisfies the zero

sum condition
m∑
j=1

ej = 0,

then the auxiliary variable um has

|um| =


0, if m even,

δ/2, if m odd.

Now we are ready to give the proof of Theorem 2.3.4.

Proof. of Theorem 2.3.4:
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Adopting the notations above, we see that the reconstruction error is

‖x− F̃ (DρSρq)‖2 = ‖F̃ (DρSρ)(y − q)‖2

= ‖F̃DρSρ∆
(m)u‖2

= ‖1

ρ
C̄−1F̄∆(η)Dρu‖2 ≤

1

ρ
‖C̄−1‖2‖F̄∆(η)Dρu‖2,

where the second equality comes from (2.6), and the third equality follows from

Proposition 2.3.16 along with the fact that F̃ = C̄−1F̄ with F̄ being the canonical

dual frame to DρE. Suppose F̄ = (F̄1, · · · , F̄η), then

F̄∆(η)Dρu =

η−1∑
s=1

usρ(F̄s − F̄s+1) + uηρF̄η. (2.10)

By Proposition 2.3.14 and (2.10),

1

ρ
‖C̄−1‖2‖F̄∆(η)u(η)‖2 ≤

π

2ρ
(σ(F̄ ) + ‖F̄η‖2)‖u‖∞.

For the case ρ | m, we note that Em/ρ,k is a tight frame with frame bound m
kρ

. In

particular, (Em/ρ,k)∗Em/ρ,k = m
kρ
Ik. Thus, by Lemma 2.3.17 ,

σ(F̄ ) ≤ k

m/ρ

2π(k + 1)√
3

.

Thus, we have obtained the following error bound

Eρ = ‖x− F̃ (DρSρq)‖2 ≤
k

m/ρ

π

2ρ
(
2π(k + 1)√

3
+ 1)‖u‖∞ =

π

2
(
2π(k + 1)√

3
+ 1)‖u‖∞

k

m
.

(2.11)
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Furthermore, by Lemma 2.3.18, if m, k are even, nj’s are all nonzero, and ρ | m,

then uηρ = um = 0. With that there is a better estimate

Eρ = ‖x− F̃ (DρSρq)‖2 ≤
k

m/ρ

π

2ρ

2π(k + 1)√
3
‖u‖∞ =

π2(k + 1)√
3

k

m
‖u‖∞. (2.12)

Letting F = F̃DρSρ, Theorem 2.3.4 (b) is now proven.

For Theorem 2.3.4 (c), note that for mid-rise uniform quantizers A = A0+ıA0

with length 2L, each entry qj of q ∈ Cm is of the form

qj =
(
(2sj + 1) + ı(2tj + 1)

)δ
2
, −L ≤ sj, tj ≤ L− 1.

Then, each entry in DρSρq is the average of ρ entries in q which has the form

(DρSρq)j =
(
(2s̃j + ρ) + ı(2t̃j + ρ)

) δ
2ρ
, −Lρ ≤ s̃j, t̃j ≤ (L− 1)ρ.

There are at most ((2L− 1)ρ+ 1)2 ≤ (2Lρ)2 choices per entry with η = m/ρ entries

in total. Thus, the vector DρSρq can be encoded by R = 2η log(2Lρ) bits. Noting

that 1
m
≤ 1

η
· 1
ρ

and

e−
1
2η

R =
1

2Lρ
,

for any estimate we have

E ≤ C
1

m
≤ C

1

η

1

ρ
= C

2L

η
e−

1
2η

R ,
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for some C > 0. Substituting the suitable constant for each case, we have

E (R) ≤ CF,L‖u‖∞2−
1
2η

R ,

where CF,L ≤ πL(σ(F̄ ) + ‖F̄η‖2). If ρ | m, then by (2.11), (2.12),

E (R) ≤ Ck,L‖u‖∞2−
1
2η

R ,

where Ck,L ≤ πkL
η

(2π(k+1)√
3

+ 1), independent of ρ.

2.3.2 Generalization: Decimation on Unitarily Generated Frames

Upon examining the proof of Theorem 2.3.4, one can see the following inter-

action between decimation and the existing sampling scheme:

• Commutativity: DρSρE
m,k = Em/ρ,kC̄m,ρ.

• Scalability: DρSρ∆
(m)u = 1

ρ
∆(η)Dρu.

Fixing the Σ∆ quantization scheme for now, any family of frames satisfying the

commutativity condition shall be compatible with decimation, yielding exponential

error decay with respect to the bit usage. One example is the unitarily generated

frames.

The collection of such elements Tu = {φ(m)
j }mj=1 is the frame of interest.

Lemma 2.3.19. For the same Dρ and Sρ along with the analysis operator Φ ∈ Cm×k
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of Tu generated by (Ω, {λj}kj=1, φ0),

DρSρΦm,k =



(φ
(m)
ρ )∗

(φ
(m)
2ρ )∗

...

(φ
(m)
ηρ )∗


C̄m,ρ,

where η = bm/ρc and C̄m,ρ = 1
ρ

∑ρ
s=1 U

∗
(s−ρ)/m has eigenvalues {eπı(ρ−1)λj/m sin(ρλjπ/m)

ρ sin(λπ/m)
}j.

In particular, if ρ | m, then

DρSρΦm,k = Φm/ρ,kC̄m,ρ.

Proof. First, note that Sρ = S̃ρ + L, where L has value 1/ρ on the first ρ− 1 rows

and 0 otherwise, and DρL = 0. Moreover, for any 1 ≤ t ≤ m,

(S̃ρΦm,k)t = (
1

ρ

t∑
t−ρ+1

Us/mφ0)∗

= (
1

ρ

t+ρ∑
t+1

U(s−ρ)/mφ0)∗

= φ∗t ·
1

ρ

ρ∑
s=1

U∗(s−ρ)/m = (Φm,k)t ·
1

ρ

ρ∑
s=1

U∗(s−ρ)/m.

(2.13)

Thus, DρSρΦm,k = DρΦm,kC̄m,ρ +DρLΦm,k = DρΦm,kC̄m,ρ.

Note that we can diagonalize Ut = BTtB
∗ where B is a unitary matrix and Tt is

a diagonal matrix with entries {e2πıλjt}kj=1. Then, B∗C̄m,ρB = 1
ρ

∑ρ
s=1(B∗U(s−ρ)/mB)∗
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is a diagonal matrix, with entries

(B ∗ C̄m,ρB)j,j =
1

ρ

ρ∑
s=1

exp(−2πı
s− ρ
m

λj)

=
1

ρ
e2πı

λj(ρ−1)

m
e−2πıρλj/m − 1

e−2πıλj/m − 1
= eπı(ρ−1)λj/m

sin ρλjπ/m

ρ sin(λjπ/m)
.

Now, we can find the conditions under which DρSρΦm,k has full rank:

Proposition 2.3.20. Let {vs}ks=1 be a set of orthonormal eigenvectors of Ω with

eigenvalues {λs}ks=1. Suppose

• ρ | m,

• {ρ(λs − λt)}s 6=t are nonzero integers modulo m, and

• the base vector φ0 =
∑

s csvs satisfies cs 6= 0 for all s,

then Φm/ρ,k is a frame with frame bounds

(
m

ρ
min
s
|cs|2

)
‖x‖2

2 ≤
m/ρ∑
s=1

|<x, φ(m)
sρ >|2 ≤

(
m

ρ
max
s
|cs|2

)
‖x‖2

2.

In particular, the frame operator Sm/ρ = Φ∗Φ satisfies ‖S−1
m/ρ‖2 ≤ 1

ηmin |ci|2 .
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Proof. Suppose the assumptions above are true, then given an arbitrary x ∈ Ck,

m/ρ∑
s=1

|<x, φ(m)
sρ >|2 =

m/ρ∑
s=1

|
k∑
t=1

<x, vt><vt, φ
(m)
sρ >|2

=

m/ρ∑
s=1

|
k∑
t=1

<x, vt><U−sρ/mvt, φ0>|2

=

m/ρ∑
s=1

|
k∑
t=1

e−2πısρλt/m<x, vt><vs, φ0>|2

=
k∑

j,l=1

<x, vj><x, vl><vj, ρ><vl, φ0>

m/ρ∑
s=1

e−2πısρ(λj−λl)/m

=
m

ρ

k∑
j=1

|<x, vj>|2|<vj, φ0>|2,

where the second equality follows from the fact that Ut is unitary, the fourth by

expanding the sums, and the last one from the following equality

m/ρ∑
s=1

exp(−2πısρ(λj − λl)/m) =


m
ρ

if j = l

0 if j 6= l.

Finally, we have

(
m

ρ
min
s
|cs|2

)
‖x‖2

2 ≤
m

ρ

k∑
j=1

|<x, vj>|2|<vj, φ0>|2 ≤
(
m

ρ
max
s
|cs|2

)
‖x‖2

2.

Moreover, with the same proof in Proposition 2.3.14, we have the estimate on

‖C̄−1
m,ρ‖2:

Proposition 2.3.21. If the eigenvalues {λj}kj=1 of the generator Ω are concentrated
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between [−m/(2ρ),m/(2ρ)], then

‖C̄−1
m,ρ‖2 = ‖B∗C̄−1

m,ρB‖2 = max
1≤j≤k

{∣∣∣∣ sin(ρλjπ/m)

ρ sin(λjπ/m)

∣∣∣∣−1
}
≤ π

2
.

Also, we need to consider the frame variation of Φ∗m/ρ,k.

Lemma 2.3.22. σ(Φ∗m/ρ) ≤ 2πmax1≤j≤k |λj|.

Proof. Following the same process of Lemma 2.3.17, we see that

σ(Φ∗m/ρ) =

m/ρ−1∑
s=1

‖(Usρ/m − U(s+1)ρ/m)φ0‖2

=

m/ρ−1∑
s=1

‖Usρ/m(1− Uρ/m)φ0‖2

=

m/ρ−1∑
s=1

‖(1− Uρ/m)φ0‖2

=

m/ρ−1∑
s=1

‖
k∑
j=1

cj[1− e2πıλjρ/m]vj‖2

=

m/ρ−1∑
s=1

(
k∑
j=1

|cj|2|e2πıλjρ/m − 1|2)1/2

≤
m/ρ−1∑
s=1

( k∑
j=1

|cj|2 ·
(
2π|λj|

ρ

m

)2
)1/2

≤
m/ρ−1∑
s=1

(
max
1≤j≤k

2π|λj|
ρ

m

)
· ‖φ0‖2 ≤ 2π max

1≤j≤k
|λj| · ‖φ0‖2.

Now we are ready to prove Theorem 2.3.5.

Proof. of Theorem 2.3.5.
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First of all, that DρSρΦm,k = Φm/ρ,kC̄m,ρ has full rank follows from Proposition

2.3.20 and 2.3.21. For notational clarity, we shall denote Φm/ρ,k = Φm/ρ.

Let Sm/ρ = Φ∗m/ρΦm/ρ be the corresponding frame operator, then ‖S−1
m/ρ‖2 ≤

ρ/(mCφ0) where Cφ0 := mins |cs|2. Also, note that, by Proposition 2.3.16,

S−1
m/ρΦ

∗
m/ρ(DρSρ)∆

(m)u =
1

ρ
S−1
m/ρ(Φ

∗
m/ρ∆

(m/ρ))Dρu.

Then, the reconstruction error ‖x− C̄−1
m,ρS−1

m/ρΦ
∗
m/ρ(DρSρ)q‖2 is

‖x− C̄−1
m,ρS−1

m/ρΦ
∗
m/ρ(DρSρ)q‖2 = ‖C̄−1

m,ρS−1
m/ρΦ

∗
m/ρ(DρSρ)∆

(m)u‖2

≤ 1

ρ
‖C̄−1

m,ρ‖2‖S−1
m/ρ‖2(σ(Φ∗m/ρ) + ‖φ(m)

m ‖2)‖Dρu‖∞

≤ π

2ρ

ρ

mCφ0
(σ(Φ∗m/ρ) + ‖φ(m)

m ‖2)‖u‖∞,

(2.14)

where ‖C̄−1
m,ρ‖2 ≤ π/2 by Proposition 2.3.21.

Combining (2.14), Lemma 2.3.22, and the fact that ‖φ(m)
m ‖2 = ‖U1φ0‖2 =

‖φ0‖2 = 1, the reconstruction error Em,ρ can be bounded by

Em,ρ ≤
π

2ρ

ρ

mCφ0
(σ(Φ∗m/ρ) + 1)‖u‖∞

≤ π

2mCφ0
(2π max

1≤j≤k
|λj|+ 1)‖u‖∞

=
π

2ηCφ0
(2π max

1≤j≤k
|λj|+ 1)‖u‖∞

1

ρ
.

Theorem 2.3.5 (c) follows verbatim from the proof in Theorem 2.3.4.
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2.3.3 The Multiplicative Structure of Decimation Schemes

In this section, we demonstrate the multiplicative structure of alternative dec-

imation. In particular, given m, ρ, ρ1, ρ2 ∈ N fixed with ρ = ρ1ρ2 and ρ | m, consider

the following operators:

Dρ ∈ N(m/ρ)×m, Sρ ∈ Rm×m,

Dρ1 ∈ N(m/ρ1)×m, Sρ1 ∈ Rm×m,

Dρ2 ∈ N(m/ρ)×(m/ρ1), Sρ2 ∈ R(m/ρ1)×(m/ρ1).

We shall show that DρSρ = Dρ2Sρ2Dρ1Sρ1 .

Proof. of Theorem 2.3.7:

The (m, ρ)-decimation operator is DρSρ while the successive iterations of

(m, ρ1) and (m/ρ1, ρ2)-decimation combine to be Dρ2Sρ2Dρ1Sρ1 .

Note that Dρ2Dρ1 = Dρ. Then, by Proposition 2.3.16,

Dρ2Sρ2Dρ1Sρ1 = (Dρ2∆̄ρ2)(∆
(m/ρ1))−1(Dρ1∆̄ρ1)(∆

(m))−1

= ∆(m/ρ1ρ2)Dρ2(∆
(m/ρ1))−1∆(m/ρ1)Dρ1(∆

(m))−1

= ∆(m/ρ)Dρ2Dρ1(∆
(m))−1

= Dρ∆̄ρ(∆
(m))−1 = DρSρ,

which concludes our proof.

The multiplicative property implies the possibility to conduct decimation with

multiple steps, gradually down-sizing the dimension m. It can be particularly useful
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for parallel computation and transmission of data through multiple devices with

scarce storage resources. In particular, for each stage, it suffices to choose ρj to be

a small number dividing m. It reduces the waiting time between each transmission,

and the amplification of quantized sample q will not be large after each stage.

Moreover, although the case where ρ - m does not produce this structure for

frames, it is now possible to first reduce m to a number closer to k. Only at the last

stage do we choose ρ that does not divide m. This yields the same result as direct

division m/k by the remark above while possibly gaining sharper estimate on the

error.

2.3.4 Extension to Second Order Decimation

So far, we have only defined decimation for the first order Σ∆ quantization,

while its counterpart for bandlimited functions, introduced in Section 2.1.3, applies

for arbitrary orders. Due to the boundary effect in finite dimensional spaces, it

is harder to extend decimation to arbitrary orders. However, there is no issue

generalizing this concept to the second order, as stated in Theorem 2.3.8. To prove

the theorem, we shall need the following lemmas:

Lemma 2.3.23 (Effect of DρS
2
ρ on the Finite Frame). If none of the eigenvalues of

U1/m are 1, then

SρΦm,k = Φm,kC̄m,ρ.

where C̄m,ρ = 1
ρ

∑ρ
s=1 U

∗
(s−ρ)/m has eigenvalues {eπı(ρ−1)λj/m sin(ρλjπ/m)

ρ sin(λπ/m)
}j. In particu-
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lar, for any r ∈ N,

DρS
r
ρΦm,k = Φm/ρ,kC̄

r
m,ρ.

Remark 2.3.24. The proof is very similar to the one of Lemma 2.3.19. However,

since we are now dealing with DρS
r
ρ, we are no longer able to use the fact that

DρL = 0. Instead, we impose the condition that U1/m has no eigenvalue equal to 1.

Proof. First, note that if 1 ∈ Cm is the constant vector with value 1, then

1
∗Φm,k = (

m−1∑
s=0

Us/mφ0)∗ = φ∗0B(
m−1∑
s=0

Ts/m)∗B∗ = 0.

Given 1 ≤ t ≤ m, note that Sρ = S̃ρ − L, where L has value 1/ρ on the first

ρ − 1 rows and 0 otherwise, and LΦm,k = 0. Then, by (2.13), SρΦm,k = S̃ρΦm,k =

Φm,kC̄m,ρ. Using induction on r, SrρΦm,k = Φm,kC̄
r
m,ρ, and DρS

r
ρΦm,k = Φm/ρ,kC̄

r
m,ρ.

The properties of C̄m,ρ follow from Lemma 2.3.19.

Lemma 2.3.25. For any r,m, ρ ∈ N,

Dρ∆̄
r
ρ = (∆(m/ρ))rDρ.

Proof. By Proposition 2.3.16,

Dρ∆̄ρ = Dρ(∆̄ρ(∆
(m))−1)∆(m) = ∆(m/ρ)Dρ.
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Thus, for r ∈ N, we have, by induction on r,

Dρ∆̄
r
ρ = ∆(m/ρ)Dρ∆̄

r−1
ρ = (∆(m/ρ))rDρ.

Lemma 2.3.26. ∆−1∆̄ρ∆ = ∆̄ρ + E, where El,s = δ(s− (m− ρ)).

Proof. For s 6= m,

(∆−1∆̄ρ∆)l,s =
∑
j,n

∆−1
l,j (∆̄ρ)j,n∆n,s

=
l∑

j=1

(∆̄ρ)j,s − (∆̄ρ)j,s+1

=
l∑

j=1

[
δ(s− j)− δ(s+ ρ− j)− δ(s+ 1− j) + δ(s+ 1 + ρ− j)

]

=
l∑

j=1

(δ(s− j)− δ(s+ 1− j))−
l∑

j=1

(δ(s+ ρ− j)− δ(s+ 1 + ρ− j))

= δ(s− l)− δ(s+ ρ− l) + δ(s+ ρ) = (∆̄ρ)l,s + δ(s+ ρ),

where the δ(s+ρ) = δ(s−(m−ρ)) comes from the second term in the second-to-last

line. When s + 1 + ρ = m + 1, the term δ(s + 1 + ρ− j) wraps around, producing

an additional −1.

When s = m,

(∆−1∆̄ρ∆)l,s =
∑
j

∆−1
l,j (∆̄ρ)j,m =

l∑
j=1

δ(m− j) = δ(m− l).

Combining the two equations above, we see that ∆−1∆̄ρ∆ = ∆̄ρ + E .
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Proposition 2.3.27. For Φ∗m/ρ,k = (φ
(η)
1 | · · · | φ(η)

η ),

Φ∗m/ρ,kDρS
2
ρ∆

2 =
1

ρ2
Φ∗m/ρ,k∆

2Dρ +
1

ρ2
V,

where V is zero except for the (m− ρ)-th column, which is φ
(η)
1 .

Proof. When r = 2, we consider the (2, ρ)-decimation operator DρS
2
ρ . Then,

DρS
2
ρ∆

2 =
1

ρ2
Dρ∆̄ρ∆

−1∆̄ρ∆

=
1

ρ2
Dρ∆̄ρ(∆̄ρ + E)

=
1

ρ2
∆2Dρ +

1

ρ2
Dρ∆̄ρE ,

where the first term in the last line follows from Lemma 2.3.25. Now, (∆̄ρE)l,s =

δ(l − ρ)δ(s+ ρ), and (Dρ∆̄ρE)l,s = δ(l − 1)δ(s+ ρ). Thus,

Φ∗m/ρ,kDρS
2
ρ∆

2 =
1

ρ2
Φ∗m/ρ,k∆

2Dρ +
1

ρ2
V.

Lemma 2.3.28. For any r ∈ N,
∑m/ρ

s=1 ‖Φ∗m/ρ∆rvs‖2 ≤ r2r + η(2πmax1≤j≤k |λj| 1η )r,

where (vs)j = δ(s− j), the s-th canonical coordinate.
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Proof. Note that for any A = (A1, . . . , An), A∆es = As − As+1. Thus,

∑
s<m/ρ−r

‖Φ∗m/ρ∆rvs‖2 =
∑

s<m/ρ−r

‖
s+r∑
t=s

(−1)t
(

r

t− s

)
Utρ/mφ0‖2

=
∑

s<m/ρ−r

‖Usρ/m
r∑
t=0

(−1)t
(
r

t

)
Utρ/mφ0‖2

=
∑

s<m/ρ−r

‖
r∑
t=0

(−1)t
(
r

t

)
Utρ/mφ0‖2

=
∑

s<m/ρ−r

‖
k∑
j=1

cj[
r∑
t=0

(−1)t
(
r

t

)
e2πıtλjρ/m]vj‖2

=
∑

s<m/ρ−r

(
k∑
j=1

|cj|2|e2πıλjρ/m − 1|2r)1/2

≤
∑

s<m/ρ−r

( k∑
j=1

|cj|2 ·
(
2π|λj|

ρ

m

)2r
)1/2

≤
∑

s<m/ρ−r

(
max
1≤j≤k

2π|λj|
1

η

)r
· ‖φ0‖2

≤ η(2π max
1≤j≤k

|λj|
1

η
)r · ‖φ0‖2,

where we note that m/ρ = η.

For s ≥ m/ρ− r, with trivial estimates one has

∑
s≥m/ρ−r

‖Φ∗m/ρ∆res‖2 ≤ r‖
k∑
j=1

|cj|
r∑
t=0

(
r

t

)
vj‖ ≤ r2r.

Proposition 2.3.29 (”Frame Variation” Estimate).

‖Φ∗m/ρ,kDρS
2
ρ∆

2u‖2 ≤
(

9 + η

(
2πmax |λj|

1

η

)2
)

1

ρ2
.
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Proof. Let {vs}s be the canonical basis of Cη. Then, by Proposition 2.3.27, we have

‖Φ∗m/ρ,kDρS
2
ρ∆

2u‖2 =
1

ρ2
‖Φ∗m/ρ,k∆2Dρu+ V u‖2

≤ 1

ρ2

m/ρ∑
s=1

‖Φ∗m/ρ∆2vs‖2 + ‖φ1‖2

 ‖u‖∞
≤ 1

ρ2

(
8 + η

(
2πmax |λj|

1

η

)2

+ 1

)

=

(
9 + η

(
2πmax |λj|

1

η

)2
)

1

ρ2
.

Lemma 2.3.30 (Total Number of Bits Used). Given a mid-rise quantizer A =

A0 + ıA0 with length 2L and r ∈ N, if q ∈ A m is a quantized sample from the

alphabet, then DρS
r
ρq ∈ Cη can be encoded by η · 2r log(2Lm) bits.

Proof. Given the assumption above, each entry qj of q is a number of the form

qj =
(
(2sj + 1) + ı(2tj + 1)

)δ
2
, −L ≤ sj, tj ≤ L− 1.

Then, each entry in Sρq is the average of ρ entries in q, which has the form

(Sρq)j =
(
(2s̃j + ρ) + ı(2t̃j + ρ)

) δ
2ρ
, −Lm ≤ s̃j, t̃j ≤ (L− 1)m.

There are at most ((2L − 1)m + 1)2 ≤ (2Lm)2 choices per entry. Note that there

are (2Lm)2 choices instead of (2Lρ)2 as we need to account for the first ρ− 1 rows,

which sums m−ρ terms. Iterating r times, there are (2Lm)2r choices for each entry

54



of Srρq. Thus, the vector DρS
r
ρq can be encoded by R = η · 2r log(2Lm) bits.

Proof. of Theorem 2.3.8:

To estimate the reconstruction error, we note that

DρS
2
ρΦm,k = Φm/ρ,kC̄

2
m,ρ,

which follows from Lemma 2.3.23. Moreover, (DρS
2
ρΦm,k)

† = C̄−2
m,ρS−1Φ∗m/ρ,k, where

S = Φ∗m/ρ,kΦm/ρ,k has lower frame bound m
ρ
Cφ0 . Since ‖C̄−1

m,ρ‖2 ≤ π
2
, the reconstruc-

tion error is

Em,ρ = ‖x− C̄m,ρS−1Φ∗m/ρ,kq‖2

= ‖C̄−2
m,ρS−1Φ∗m/ρ,kDρS

2
ρ(∆

(m))2u‖2

≤ 1

ρ2
‖C̄−1‖2

2‖S−1‖2‖Φ∗m/ρDρS
2
ρ∆

2u‖2

≤ π2

4ηCφ0

(
9 + η(2π max

1≤j≤k
|λj|

1

η
)2

)
‖u‖∞

1

ρ2
,

where {vj}j ⊂ Cm denotes the canonical basis in Cm, the first inequality comes from

Proposition 2.3.29, and the second follows from Lemma 2.3.28. Here, we see that

the error decays quadratically with respect to the oversampling rate ρ.

As for the bits used, note that 1
m

= 1
η
· 1
ρ

and

e−
1
2η

R =
1

(2Lm)2
=

1

(2Lη)2

1

ρ2
,
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where R = η · 4 log(2Lm) comes from Lemma 2.3.30. Thus, we have

E (R) ≤ π2

4ηCφ0

(
9 + η(2π max

1≤j≤k
|λj|

1

η
)2

)
‖u‖∞

1

ρ2
≤ Ck,φ0,L,η‖u‖∞2−

1
2η

R ,

where Ck,φ0,L,η ≤ π2

4ηCφ0

(
9 + η(2πmax1≤j≤k |λj| 1η )2

)
(2Lη)2, independent of ρ.

Lemma 2.3.26 shows that ∆−1 and ∆̄ρ do not commute, and such non-commutativity

limits the potential to generalize alternative decimation to higher orders. For the

sake of demonstration, we show explicit calculation in Section 2.3.5 which highlights

the difficulty in the generalization of our results. Thus, to achieve exponential error

decay with respect to the bit usage for higher order Σ∆ quantization schemes, we

need to employ different approaches. The new scheme we propose will be introduced

in Section 2.4.

2.3.5 Limitation of Alternative Decimation: Third Order Decimation

The non-commutativity between ∆̄ρ and ∆−1 results in incomplete difference

scaling when applying DρS
r
ρ on ∆r, creating substantial error terms. This phe-

nomenon already occurs for r = 3.

Proposition 2.3.31. Given m, ρ ∈ N with ρ | m, the third order decimation satisfies

DρS
3
ρ∆

3 = 1
ρ3

(∆(η))3Dρ + O(ρ−2). In particular, DρS
3
ρ only yields quadratic error

decay with respect to the oversampling ratio ρ.

First, by noting that ∆−1∆̄ρ∆ = E as in Lemma 2.3.26, one has
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DρS
3
ρ∆

3 =
1

ρ3
Dρ∆̄ρ∆

−1∆̄ρ∆
−1∆̄ρ∆

2

=
1

ρ3
Dρ∆̄ρ(∆

−1∆̄ρ∆)∆−2∆̄ρ∆
2

=
1

ρ3
Dρ∆̄ρ(∆̄ρ + E)∆−1(∆̄ρ + E)∆

=
1

ρ3
Dρ∆̄ρ(∆̄ρ + E)(∆̄ρ + E + ∆−1E∆)

=
1

ρ3
Dρ

(
∆̄3
ρ + ∆̄2

ρE + ∆̄2
ρ(∆

−1E∆) + ∆̄ρE∆̄ρ + ∆̄ρE2 + ∆̄ρE(∆−1E∆)

)
.

(2.15)

We shall calculate all terms one-by-one.

Lemma 2.3.32. We have the following equalities:

(1) :

(Dρ∆̄
2
ρE)l,s = δ(s− (m− ρ))

(
δ(l − 1)− δ(l − 2)

)
,

(2) :

(Dρ∆̄
2
ρ(∆

−1E∆))l,s =


−ρ if (l, s) = (1,m− ρ− 1)

ρ if (l, s) = (1,m− ρ)

0 otherwise

,

(3) :

(Dρ∆̄ρE∆̄ρ)l,s = δ(l − 1)

(
δ(s− (m− ρ))− δ(s− (m− 2ρ))

)
,

(4) :

(Dρ∆̄ρE2)l,s = δ(l − 1)δ(s− (m− ρ)),

57



(5) :

(Dρ∆̄ρE(∆−1E∆))l,s = (m− ρ)δ(l− 1)

(
δ(s− (m− ρ))− δ(s− (m− ρ− 1)

)
,

where given n ∈ N, [n] := {1, . . . , n}. In particular, Dρ

(
∆̄2
ρ(∆

−1E∆)+∆̄ρE(∆−1E∆)
)

=

O(m), and Dρ(∆̄
2
ρE + ∆̄ρE∆̄ρ + ∆̄ρE2) = O(1).

Proof. We will first compute each term without the effect of Dρ since Dρ is the

sub-sampling matrix retaining only the tρ-th rows for t ∈ [η].

(1), (3) First, note that (∆̄ρE)l,s = δ(l − ρ)δ(s+ ρ), so

(∆̄2
ρE)l,s = δ(s+ ρ)(∆̄ρ)l,ρ = δ(s− (m− ρ))(δ(l − ρ)− δ(l − 2ρ)).

Similarly,

(∆̄ρE∆̄ρ)l,s = δ(l − ρ)(∆̄ρ)m−ρ,s = δ(l − ρ)(δ(s− (m− ρ))− δ(s− (m− 2ρ))).

(5) Now, to compute ∆−1E∆, we see that, for s 6= m,

(∆−1E∆)l,s =
l∑

j=1

(Ej,s − Ej,s+1) = l(δ(m− ρ− s)− δ(m− ρ− (s+ 1))),
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and (∆−1E∆)l,m = 0. In particular,

∆−1E∆ =



0 . . . 0 −1 1 0 . . . 0

...
... −2 2

...
...

...
...

...
...

...
...

0 . . . 0 −m m 0 . . . 0


,

where the nonzero columns occur at the (m− ρ− 1) and (m− ρ)-th positions.

For ∆̄ρE(∆−1E∆),

(∆̄ρE(∆−1E∆))l,s = δ(l − ρ)(∆−1E∆)m−ρ,s

= δ(l − ρ)(m− ρ)(δ(s− (m− ρ))− δ(s− (m− ρ− 1))).

(4) Note that ∆̄ρE2 = ∆̄ρE . The result then follows from the calculation on the

first term.

(2) Finally, as ∆−1E∆ only has non-zero entries on the (m− ρ− 1) and (m− ρ)-

th columns, and the two columns differ by a sign, it suffices to calculate the

(m− ρ)-th column of ∆̄2
ρ(∆

−1E∆).

(∆̄ρ(∆
−1E∆))l,m−ρ =

m∑
j=1

j(∆̄ρ)l,j

=


l − (l − ρ) = ρ if l > ρ

l − (l − ρ+m) = −(m− ρ) if l < ρ

l = ρ if l = ρ.
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Then,

(∆̄2
ρ(∆

−1E∆))l,m−ρ =
m∑
j=1

(∆̄ρ)l,j(∆̄ρ(∆
−1E∆))j,m−ρ

=


−m if l ∈ [2ρ− 1]\{ρ}

ρ if l = ρ

0 otherwise.

Proof. of Proposition 2.3.31:

From (2.15) and Lemma 2.3.32, we see that

DρS
3
ρ∆

3 =
1

ρ3
Dρ∆̄

3
ρ +

η

ρ2
E1 +

1

ρ3
E2 =

1

ρ3
Dρ∆̄

3
ρ +O(ρ−2),

where

(E1)l,s =
1

m

(
Dρ(∆̄

2
ρ(∆

−1E∆)+∆̄ρE(∆−1E∆))

)
l,s

=


−1 if (l, s) = (1,m− ρ− 1)

1 if (l, s) = (1,m− ρ)

0 otherwise,

and

(E2)l,s =

(
Dρ(∆̄

2
ρE+∆̄ρE∆̄ρ+∆̄ρE2)

)
l,s

=


−1 if (l, s) = (2,m− ρ) or (1,m− 2ρ)

3 if (l, s) = (1,m− ρ)

0 otherwise.
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Even in higher order cases, alternative decimation still only yields quadratic

error decay with respect to the oversampling ratio, as can be seen in Figure 2.2d

and 2.2e.

Alternative decimation is limited by this incomplete cancellation, but canon-

ical decimation has even worse error decay. Contrary to the quadratic decay for

alternative decimation, canonical decimation only has linear decay for high order

Σ∆ quantization. The same thing applies to plain Σ∆ quantization, as can be seen

in Figure 2.2b.

2.3.6 Comparison Between Alternative and Canonical Decimation

Here, we present numerical evidence that the alternative decimation on frames

has linear and quadratic error decay rate for the first and the second order, respec-

tively. Moreover, it is shown that the canonical decimation, as described in Remark

2.3.2, is not suitable for our purpose when r ≥ 2.

Recall that given m, r, ρ, one can define the canonical decimation operator

DρS̃
r
ρ ∈ Rη×m, where S̃ρ ∈ Rm×m is a circulant matrix.

In our experiment, we look at three different quantization schemes: alternative

decimation, canonical decimation, and plain Σ∆. Given observed data y ∈ Cm from

a frame E ∈ Cm×k and r ∈ N, one can determine the quantized samples q ∈ Cm by

y − q = ∆ru
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for some bounded u. The three schemes differ in the choice of dual frames:

• Alternative decimation: x̃ = (DρS
r
ρE)†DρS

r
ρq = Faq.

• Canonical decimation: x̃ = (DρS̃
r
ρE)†DρS̃

r
ρq = Fcq.

• Plain Σ∆: x̃ = E†q = Fpq.

For each experiment, we use the mid-rise quantizer A and fix k = 55, δ =

0.5, L = 100, and η = 65. For each ρ, we set m = ρη and pick 10 randomly generated

vectors {xj}10
j=1 ⊂ Ck. Σ∆ quantization on each signal gives {qj}10

j=1 ⊂ Cm. The

maximum reconstruction error over the 10 experiments is recorded, namely

Ei = max
1≤j≤10

‖xj − Fiqj‖2, i ∈ {a, c, p}.

The frame in our experiment is

(Em,k)l,j = (E)l,j =
1√
k

(exp(−2πı(l + 1)(j + 1)/m))l,j.

First, we shall compare alternative decimation with plain Σ∆ quantization

from Figure 2.2. For r = 1, alternative decimation performs worse than plain

Σ∆ quantization, as plain Σ∆ quantization benefits from the smoothness of the

frame elements, having decay rate O((m
k

)−5/4) proven in [6]. However, for r ≥ 2,

alternative decimation supersedes plain Σ∆ quantization as the better scheme. This

can be explained by the boundary effect in finite-dimensional spaces that results in

incomplete cancellation for backward difference matrices. We are interested in the
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(a) r = 1. (b) r = 2.

(c) r = 3. (d) r = 4. (e) r = 5.

Figure 2.2: The log-log plot for reconstruction error against the decimation ratio
ρ for different quantization schemes. In the case r = 1, alternative decimation
coincides with canonical decimation. For r ≥ 2, alternative decimation has better
error decay rate than both canonical decimation and plain Σ∆ quantization.
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case r = 1 or 2. As we can see, the theoretical error bound does not have a tight

constant, although the decay rate is consistent with our experimental result.

2.3.6.1 Necessity of Alternative Decimation

The main difference between the alternative decimation operator DρS
r
ρ and

the canonical one DρS̃
r
ρ lies in the scaling effect on difference structures. We have

S̃rρ = (Sρ +L)r with ρL having unit entries on the first ρ− 1 rows and 0 everywhere

else.

In Figure 2.2, we can see the performance drop-off when switching from al-

ternative decimation to canonical decimation for r ≥ 2. we can see that canonical

decimation incurs much worse reconstruction error than the alternative one, while

generally having worse decay rate. For demonstration, we show explicitly the dif-

ference between alternative and canonical decimation schemes for r = 2:

S̃2
ρ∆

2 = (Sρ + L)2∆2

= S2
ρ∆

2 + (LSρ + SρL+ L2)∆2

= S2
ρ∆

2 + L(Sρ + L2)∆2 + SρL∆2.

Since DρL = 0, we are left with DρSρL∆2. Now,

(L∆2)l,j =



−1
ρ

if 1 ≤ l ≤ ρ− 1, j = m− 1,

1
ρ

if 1 ≤ l ≤ ρ− 1, j = m,

0 otherwise.
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Then, we see that

(DSρL∆2)l,j =



−(ρ−1)
ρ2

if l = 1, j = m− 1,

ρ−1
ρ2

if l = 1, j = m,

0 otherwise.

We see that DρS̃
2
ρ∆

2 = O(ρ−1), hence the linear decay for r = 2.

2.4 Adapted Decimation

In Theorem 2.1.4, we see that signal decimation coupled with the r-th Σ∆

quantization scheme in A/D conversion yields polynomial error decay rate of degree

r with respect to the oversampling ratio. Moreover, it yields exponential error

decay rate the bit-rate. The question we seek to address is whether it is possible

to translate decimation from A/D conversion to finite frame quantization. This

adaptation proves to be non-trivial, as the r-th order Σ∆ quantization does not

yield much more than linear error decay rate for finite frames in general as opposed

to polynomial degree r, [6, 47].

With the introduction of alternative decimation, we were able to adapt sig-

nal decimation to finite frames up to the second order Σ∆ quantization, yielding

quadratic error decay rate with respect to the oversampling ratio. Here, we further

generalize the concept of decimation and extends the decimation on finite frames to

arbitrary polynomial degrees.

We have seen in Theorem 2.3.8 that alternative decimation is only useful up
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Samples �x

Quantized sample q (un � un�1)

Integrated sample ��1q (un)

Decimated sub-samples 1
⇢D⇢�̄⇢�

�1q (
un�un�⇢

⇢ )

⌃� Quantization: �x� q = �u

.

1

Figure 2.3: Illustration of the first order adapted (alternative) decimation scheme
for finite frames. After obtaining the quantized samples {qn}n in the first step, one
starts by integrating quantized samples in the second step. Finite difference of step
size ρ followed by sub-sampling are then taken in the third step. The effect on the
reconstruction (replacing qn with yn − qn) is illustrated in parentheses. Note that
both the recursivity and the boundary effect (see bottom left) can be seen in this
diagram.

to the second order. Thus, we aim to extend our results to arbitrary orders, and

the solution we present here is called adapted decimation.

Definition 2.4.1 (Adapted Decimation). Given r,m, ρ ∈ N, the (r,m, ρ)-adapted

decimation operator is defined to be

Ar =
1

ρr
Dρ∆̄

r
ρ∆
−r,

where ∆ ∈ Nm×m is the usual backward difference matrix, ∆̄ρ ∈ Rm×m satisfies

(∆̄ρ)l,s = 1
ρ
(δ(l − s) − δ(l + ρ − s) + δ(s − m)δ(l − ρ)), and Dρ ∈ Nm/ρ×m has

(Dρ)l,s = δ(s− lρ).

Remark 2.4.2 (Comparison between Alternative and Adapted Decimation). While

coinciding for r = 1, Ar is different from DρS
r
ρ in the following way: Sρ = 1

ρ
∆̄ρ∆

−1,
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and thus

DρS
2
ρ =

1

ρ2
Dρ(∆̄ρ∆

−1)2 6= 1

ρ2
Dρ∆̄

2
ρ∆
−2 = A2.

The non-commutativity between ∆̄ρ and ∆−1 limits the success of the alternative

decimation, see Proposition A.1 in [47]. Adapted decimation essentially factorizes

the alternative decimation and re-arranges the terms. In doing so, the reconstruction

error rate can now be of polynomial degree r. However, it also complicates the effect

of decimation on finite frames, as will be seen in Section 2.4.2. For the illustration,

see Figure 2.3.

It will be shown that, for unitarily generated frames Φ ∈ Cm×k satisfying con-

ditions specified in Theorem 2.4.3 and any r ∈ N, an r-th order Σ∆ quantization

coupled with the corresponding adapted decimation has r-th order polynomial re-

construction error decay rate with respect to the ratio ρ. As for the data storage,

decimation allows for highly efficient storage, making the error decay exponentially

with respect to the bit usage.

Theorem 2.4.3. Given Ω, φ0, {λj}j, {vj}j, and Φ = Φm,k as the generator, base

vector, eigenvalues, eigenvectors, and the corresponding UGF, respectively, and r ∈

N fixed. Suppose

• ρ | m,

• η = m/ρ ≥ 3rk,

• {λj}kj=1 ⊂ [−η/2, η/2] ∩ Z\{0}, and

• Cφ0 = mins |<φ0, vs>|2 > 0,
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then the following statements are true:

(a) Recursivity: For all s ∈ {1, . . . , η}, there exists {csj}sρj=1 such that (Arq)s =∑sρ
j=1 c

s
jqj.

(b) Signal reconstruction: ArΦm,k is a frame.

(c) Error estimate: Given the dual frame F = (ArΦm,k)
†Ar, where for any

M , M † = (M∗M)−1M∗ is defined to be the pseudo-inverse of M . Then the

reconstruction error Em,ρ = ‖x− Fq‖2 satisfies

Em,ρ ≤
(

4

kηCφ0
(π2η)r

)
‖u‖∞

1

ρr
. (2.16)

(d) Efficient data storage: Suppose the length of the quantization alphabet is

2L, then the total bits used to record the quantized samples Arq are R =

2ηr log(2m) + 2η log(2L) bits. Furthermore, as a function of bits used at each

entry, Em,ρ satisfies

E (R) ≤ Ck,η,φ0,L‖u‖∞2−
1
2η

R , (2.17)

where Ck,η,φ0,L = 8L
kηCφ0

(2π2)r, independent of ρ.

We shall prove Theorem 2.3.5 in several steps. First, we split ArΦm,k into

one main term and many residual terms in Section 2.4.2.1 . Then, we compute the

cancellation among residual terms in Section 2.4.2.2. We compute the lower frame

bound of ArΦm,k in Section 2.4.3 before proving the theorem itself in Section 2.4.6.
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2.4.1 Roadmap of the Proof

In this subsection, we shall identify the key components regarding the proof

of Theorem 2.4.3. Then, we will provide estimates for those components in Sections

4.2-4.5 before finishing the proof in Section 2.4.6.

To estimate the reconstruction error Em,ρ = ‖x− (ArΦm,k)
†Arq‖2 in (2.16), we

re-write the form of Ar, making the estimate simpler. In particular, we claim that

∆̄ρ scales down to the usual backward-difference matrix under the under-sampling

matrix Dρ:

Lemma 2.4.4. Given m, ρ ∈ N with η = m/ρ ∈ N,

Dρ∆̄ρ = ∆(η)Dρ,

where ∆(η) is the η-dimensional backward difference matrix.

Proof. Note that, for s 6= m,

(Dρ∆̄ρ)l,s = (∆̄ρ)lρ,s

= δ(s− lρ)− δ(s+ ρ− lρ) = δ(s− lρ)− δ(s− (l − 1)ρ)

= (∆Dρ)l,s.

For s = m, (Dρ∆̄ρ)l,m = δ(m− lρ) = (∆Dρ)l,m.

Then, the reconstruction error Em,ρ satisfies
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Em,ρ = ‖x− (ArΦm,k)
†Arq‖2

= ‖(ArΦm,k)
†Ar(Φm,kx− q)‖2

= ‖(ArΦm,k)
† 1

ρr
Dρ∆̄

r∆−r(∆ru)‖2

=
1

ρr
‖
(
(ArΦm,k)

∗ArΦm,k

)−1
(ArΦm,k)

∗∆rDρu‖2

≤ ‖
(
(ArΦm,k)

∗ArΦm,k

)−1‖2 · ‖(ArΦm,k)
∗∆r‖∞,2 · ‖u‖∞

1

ρr
,

(2.18)

where the fourth equality follows from Lemma 2.4.4. We have seen from Remark

2.1.5 that ‖((ArΦm,k)
∗ArΦm,k)

−1‖2 is the reciprocal of the lower frame bound of

ArΦm,k. Thus, in order to estimate (2.18), we need only to answer two questions:

• Is ArΦm,k a frame? What is the lower frame bound of ArΦm,k?

• What is ‖(ArΦm,k)
∗∆r‖∞,2?

The lower frame bound of ArΦm,k will be calculated in Section 2.4.3, specifi-

cally in Proposition 2.4.15. As for the estimate in the second question, it is given in

Proposition 2.4.16 of Section 2.4.4.

Aside from the reconstruction error estimate, we also need to calculate the

number of bits needed to record the decimated sample Arq. We shall show that Arq

can be efficiently stored in O(log ρ) instead of O(ρ) bits. The explicit estimate will

be done in Proposition 2.4.17 of Section 2.4.5.
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2.4.2 Expansion of ArΦm,k

In [47], one has, for any r ∈ N, the alternative decimation satisifes

DρS
r
ρΦm,k =

1

ρr
Dρ(∆̄ρ∆

−1)rΦm,k = Φη,k(D̃C̃)r

where D̃, C̃ ∈ Ck will be defined in Section 2.4.2.1. The form is rather simple thanks

to the alternating applications of ∆̄ρ and ∆−1. For adapted decimation, we have

Ar = 1
ρr
Dρ∆̄

r
ρ∆
−r, and the displaced order of applications creates residual terms

other than Φη,k(D̃C̃)r. In this section, we observe this phenomenon and examine

the effect of the residual terms.

2.4.2.1 The Effect of Adapted Decimation on the Frame

We start by introducing the following notation:

Definition 2.4.5. Given l, s ∈ N, the l-by-s constant matrix 1l,s has constant 1 on

all entries.

The following two lemmas are needed for us to describe ArΦm,k in Proposition

2.4.8.

Lemma 2.4.6. Given Φ = Φm,k ∈ Cm×k with base vector φ0, we have

∆−1Φ = (Φ− 1m,kV )C̃,

where C̃ and Ut are simultaneously diagonalizable with B∗C̃B = C̃0 = diag( 1
1−e2πıλs/m )1≤s≤m
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and V = diag(φ0).

Proof. For any 1 ≤ t ≤ m, the t-th row of ∆−1Φm,k can be written as

(∆−1Φm,k)t = (
t∑

s=1

Us/mφ0)∗

= (
t∑

s=1

BTs/mB
∗φ0)∗

= (B
t∑

s=1

Ts/mB
∗φ0)∗,

where we note that Ut = BTtB
∗ can be diagonalized by the unitary matrix B = BΦ,

and Tt = e2πıΛt = diag(exp(2πıλst))s. Now,

t∑
s=1

(Ts/m)σ =
t∑

s=1

e2πıλσs/m

=
e2πıλσt/m − 1

e2πıλσ/m − 1

= (Tt/m)σ
1

e2πıλσ/m − 1
− 1

e2πıλσ/m − 1

= (C̃0Tt/m − C̃0)σ,

Then,

(∆−1Φm,k)t = (B
t∑

s=1

Ts/mB
∗φ0)∗

= (BC̃0B
∗Ut/mφ0)∗ − (BC̃0B

∗φ0)∗

= φ∗t (BC̃0B
∗)∗ − φ∗0(BC̃0B

∗)∗

= (Φm,k)tC̃ − φ∗0C̃.

Thus, ∆−1Φm,k = Φm,kC̃ − 1m,kV C̃.
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Lemma 2.4.7.

∆̄ρΦ = ΦD̃ + ∆̄ρ1m,kV,

where B∗D̃B = diag(1− e2πıρns/m)1≤s≤m.

Proof. For any 1 ≤ t ≤ m,

(∆̄ρΦm,k)t = (Ut/mφ0 − U(t−ρ)/mφ0)∗ + δ(t− ρ)φ∗0

= (B(Ik − T−ρ/m)B∗Ut/mφ0)∗ + δ(t− ρ)φ∗0

= φ∗tB(Ik − Tρ/m)B∗ + ∆̄ρ1m,kV

= (ΦD̃)t + (∆̄ρ1m,kV )t.

Combining Lemma 2.4.6 and 2.4.7, one has the following expansion:

Proposition 2.4.8. Given r,m, ρ ∈ N,

ρrArΦm,k = Dρ∆̄
r
ρ∆
−rΦm,k = Dρ

[
Φm,kD̃

rC̃r+
r−1∑
j=0

∆̄r−j
ρ 1m,kV D̃

jC̃r−∆̄r
ρ

r−1∑
j=0

∆−j1m,kV C̃
r−j
]
.

(2.19)

Remark 2.4.9. Note that D̃C̃ = C̃D̃ as they are simultaneously diagonalizable by

BΦ, and thus D̃rC̃r = (D̃C̃)r.

Proof. First, we claim that, for 1 ≤ q ≤ r, ∆−qΦ = ΦC̃q −∑q−1
j=0 ∆−j1m,kV C̃

q−j.
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For q = 1, ∆−1Φ = ΦC̃ − 1m,kV C̃ by Lemma 2.4.6. For q > 1,

∆−qΦ = ∆−1

(
ΦC̃q−1 −

q−2∑
j=0

∆−j1m,kV C̃
q−1−j

)

= ΦC̃q − 1m,kV C̃
q −

q−1∑
s=1

∆−s1m,kV C̃
q−s

= ΦC̃q −
q−1∑
j=0

∆−j1m,kV C̃
q−j.

As for the effect of ∆̄ρ, we claim that ∆̄q
ρΦ = ΦD̃q +

∑q−1
j=0 ∆̄q−j

ρ 1m,kV D̃
j for 1 ≤

q ≤ r.

For q = 1, ∆̄ρΦ = ΦD̃ + ∆̄ρ1m,kV by Lemma 2.4.7. For q > 1,

∆̄q
ρΦ = ∆̄ρ

(
ΦD̃q−1 +

q−2∑
j=0

∆̄q−1−j
ρ 1m,kV D̃

j

)

= ΦD̃q + ∆̄ρ1m,kV D̃
q−1 +

q−2∑
j=0

∆̄q−j
ρ 1m,kV D̃

j

= ΦD̃q +

q−1∑
j=0

∆̄q−j
ρ 1m,kV D̃

j.

From the two assertions above, we get

∆̄r
ρ∆
−rΦ = ∆̄r

ρ

(
ΦC̃r −

r−1∑
j=0

∆−j1m,kV C̃
r−j
)

= ΦD̃rC̃r +
r−1∑
j=0

∆̄r−j
ρ 1m,kV D̃

jC̃r − ∆̄r
ρ

r−1∑
j=0

∆−j1m,kV C̃
r−j.
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2.4.2.2 Cancellation Between Residual Terms of ArΦm,k

From (2.19), we can divide ArΦm,k into two parts: 1
ρr
DρΦm,kD̃

rC̃r being the

main term, and the rest being residual terms. In this section, we shall investigate

the behavior of the residual terms.

To facilitate the cancellation, we define an auxiliary double-sequence {al,s}l≥0,s∈Z

recursively by

al,s =


1 if l = 0, s ≥ 1

0 if l = 0, s ≤ 0∑
j≤s al−1,j if l > 0.

Let Dρ∆̄
r−j
ρ 1m,kV D̃

jC̃r = I
(2)
j and Dρ∆̄

r
ρ∆
−j1m,kV C̃

r−j = I
(3)
j . We first ex-

amine the form of each I
(3)
j before calculating the cancellation between I

(2)
j and

I
(3)
j .

Lemma 2.4.10. For any j ∈ N and 1 ≤ l ≤ m,

(∆−j1m,k)l,s = aj,l.

Proof. First, it can easily be seen that al,s = 0 for all s ≤ 0 by induction on l. Then,

by definition and induction on j,

(∆−j1m,k)l,s =
l∑

n=1

(∆−j+11m,k)n,s =
l∑

n=1

aj−1,n =
∑
n≤l

aj−1,n = aj,l.
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Lemma 2.4.11. For 1 ≤ κ ≤ q and 1 ≤ l ≤ η,

(∆̄κ
ρ∆
−q1m,1)lρ =

ρ∑
s1,...,sκ=1

aq−κ,(l−κ)ρ+s1+···+sκ .

Proof. We shall prove this by induction on κ. For κ = 1 and l > 1,

(∆̄ρ∆
−q1m,1)lρ = (∆−q1m,1)lρ− (∆−q1m,1)(l−1)ρ = aq,lρ− aq,(l−1)ρ =

ρ∑
s1=1

aq−1,(l−1)ρ+s1 .

For l = 1,

(∆̄ρ∆
−q1m,1)ρ = (∆−q1m,1)ρ = aq,ρ = aq,ρ − aq,0 =

ρ∑
s1=1

aq−1,0+s1 .

For 1 < κ ≤ q and l > 1,

(∆̄κ
ρ∆
−q1m,1)lρ = (∆̄κ−1

ρ ∆−q1m,1)lρ − (∆̄κ−1
ρ ∆−q1m,1)(l−1)ρ

=

ρ∑
s1,...,sκ−1=1

(aq−κ+1,(l−κ+1)ρ+s1+···+sκ−1 − aq−κ+1,(l−κ)ρ+s1+···+sκ−1)

=

ρ∑
s1,...,sκ

aq−κ,(l−κ)ρ+s1+···+sκ .
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As for l = 1,

(∆̄κ
ρ∆
−q1m,1)ρ = (∆̄κ−1

ρ ∆−q1m,1)ρ

=

ρ∑
s1,...,sκ−1=1

aq−κ+1,(1−κ+1)ρ+s1+···+sκ−1

=

ρ∑
s1,...,sκ−1=1

aq−κ+1,(1−κ+1)ρ+s1+···+sκ−1 − aq−κ+1,(0−κ+1)ρ+s1+···+sκ−1

=

ρ∑
s1,...,sκ

aq−κ,(1−κ)rho+s1+···+sκ ,

where the third equality follows from the fact that s1 + · · ·+ sκ−1 ≤ (κ− 1)ρ.

Proposition 2.4.12. For 1 ≤ l ≤ r,

Dρ∆̄
l
ρ1m,kV D̃

r−lC̃r −Dρ∆̄
r
ρ∆
−r+l1m,kV C̃

l = ∆l

(
1η,kV (D̃r−lC̃r−l − Id) + Er−l

)
C̃ l,

where Er−l = B̃1η,kV , and B̃ is a diagonal matrix with |B̃i,i| ≤ ρr−l for all i ≤ r

and B̃i,i = 0 otherwise.

Proof. From Lemma 2.4.11, we see that (∆̄q
ρ∆
−q1m,1)lρ =

∑ρ
s1,...,sq=1 a0,(l−q)ρ+s1+···+sq .

Thus, (∆̄q
ρ∆
−q1m,1)lρ = |Zl,q|, where

Zl,q = {(s1, . . . , sq) ∈ Nq : 1 ≤ s1, . . . , s1 ≤ ρ, s1 + · · ·+ sq > (q − l)ρ}.

Note that |Zl,q| ≤ ρq, and |Zl,q| = ρq if l ≥ q. Thus, Dρ∆̄
q
ρ∆
−q1m,1 = ρq1η,1 − b̃,

where ‖b̃‖∞ ≤ ρq and b̃j = 0 for all j ≥ q. Then, we have
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Dρ∆̄
l
ρ1m,kV D̃

r−lC̃r −Dρ∆̄
r
ρ∆
−r+l1m,kV C̃

l

= Dρ∆̄
l
ρ

(
1m,kV D̃

r−lC̃r−l − ∆̄r−l
ρ ∆−(r−l)1m,kV

)
C̃ l

= ∆lDρ

(
1m,kV D̃

r−lC̃r−l − ∆̄r−l
ρ ∆−(r−l)1m,kV

)
C̃ l

= ∆l

(
1η,kV D̃

r−lC̃r−l −Dρ∆̄
r−l
ρ ∆−(r−l)1m,kV

)
C̃ l

= ∆l

(
1η,kV D̃

r−lC̃r−l − ρr−l1η,kV + B̃1η,kV

)
C̃ l

= ∆l

(
1η,kV (D̃r−lC̃r−l − ρr−lId) + Er−l

)
C̃ l.

2.4.3 Lower Frame Bound Estimate

Now, we are able to answer the first question in Section 2.4.1.

Lemma 2.4.13. The 2-norm of (1
ρ
D̃C̃)−1 satisfies ‖(1

ρ
D̃C̃)−1‖2 ≤ π

2
.

Proof. To prove the lemma, it suffices to show that for any unit-norm vector v,

‖1
ρ
D̃C̃v‖2 ≥ 2

π
. Note that D̃ and C̃ are simultaneously diagonalizable by the her-

mitian matrix B, so for any such v,

‖1

ρ
D̃C̃v‖2 = ‖1

ρ
B(B∗D̃B)(B∗C̃B)B∗v‖2

=

∥∥∥∥diag( 1− e2πıρλs/m

ρ(1− e2πıλs/m)

)
(B∗v)

∥∥∥∥
2

≥ min
s∈{1,...,k}

∣∣∣∣ 1− e2πıρλs/m

ρ(1− e2πıλs/m)

∣∣∣∣
= min

s

∣∣∣∣ sin(πλs/η)

ρ sin(πλs/m)

∣∣∣∣ ≥ min
t∈[−η/2,η/2]

∣∣∣∣ sin(πt/η)

ρ sin(πt/m)

∣∣∣∣ ≥ 2

π
,

78



where in the second equality, we note that since B is unitary, ‖MB‖2 = ‖BM‖2 =

‖M‖2 for any matrix M , and ‖B∗v‖2 = ‖v‖2 = 1. The second-to-last inequality

comes from the assumption that {λs}ks=1 ⊂ [−η/2, η/2], and the final inequality can

be obtained with simple calculus, see Lemma 4.5 in [47].

Lemma 2.4.14 (Proposition 5.2, [47]). Given the assumption in Theorem 2.4.3

and n satisfying n | m and m/n ≥ k, Φ∗m/n,k has lower frame bound larger than

m
n

mins |<φ0, vs>|2 = m
n
Cφ0.

Using Lemma 2.4.13 and 2.4.14, we are able to prove the following proposition:

Proposition 2.4.15. Suppose η = m/ρ ≥ k · 3r, then ArΦm,k is a frame with lower

frame bound larger than kCφ0(
2
π
)2r, where φ0 =

∑
s csvs.

Proof. First, note that

Dρ∆̄
r
ρ∆
−rΦm,k

= Dρ

[
Φm,kD̃

rC̃r + (∆̄r
ρ1m,kV + · · ·+ ∆̄ρ1m,kV D̃

r−1)C̃r − ∆̄r
ρ(1m,kV C̃

r + · · ·+ (∆−r+11m,kV )C̃)

]
= Φη,kD̃

rC̃r +Dρ

r∑
l=1

(∆̄l
ρ1m,kV D̃

r−lC̃r − ∆̄r
ρδ
−r+l1m,kV C̃

l)

= Φη,kD̃
rC̃r +

r∑
l=1

∆lDρ

[
1m,kV D̃

r−lC̃r−l − ∆̄r−l
ρ ∆−(r−l)1m,kV

]
C̃ l

= Φη,kD̃
rC̃r +

r∑
l=1

∆l[1η,kV (D̃r−lC̃r−l − Ik)]C̃ l + ∆lEr−lC̃
l.

Now, note that ∆l1η,k has nonzero entries on only the first l rows. For ∆lEr−l,

only the first r + l entries can be nonzero. Thus, the l · bη/kc-th rows of ArΦm,k is
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equal to the one of 1
ρr

Φη,kD̃
rC̃r. Now, the lower frame bound of ArΦm,k is larger

than the one of any of its sub-frame. In particular, its lower frame bound is larger

than the one of 1
ρr

Φk,kD̃
rC̃r, which is kCφ0(

2
π
)2r, since for any unit-norm vector v,

‖ 1

ρr
Φk,kD̃

rC̃rv‖2
2 ≥ kCφ0‖(

1

ρ
D̃C̃)rv‖2

2 ≥ kCφ0

(
2

π

)2r

.

2.4.4 Frame Variation Bound

In (2.18), we also need to estimate ‖(ArΦm,k)
∗∆r‖∞,2.

Proposition 2.4.16.

‖(ArΦm,k)
∗∆r‖∞,2 ≤ 22r+2ηr−1.

Proof. From Proposition 2.4.8 and 2.4.12, we see that

Dρ∆̄
r∆−rΦm,k = Φη,kD̃

rC̃r +
r∑
l=1

∆l

(
1η,kV (D̃r−lC̃r−l − ρr−lId) + Er−l

)
C̃ l.

Thus,

‖(ArΦm,k)
∗∆r‖∞,2 = ‖ 1

ρr
(Dρ∆̄

r∆−rΦm,k)
∗∆r‖∞,2

≤ ‖ 1

ρr
D̃rC̃r‖2‖Φ∗η,k∆r‖∞,2 + 2

r∑
l=1

‖ 1

ρl
C̃ l‖2‖

1

ρr−l
D̃r−lC̃r−l − Id‖2‖V ∗1k,η∆l+r‖∞,2,

where we observe that ‖ 1
ρr−l

E∗r−l∆
r+l‖∞,2 ≤ ‖V ∗1k,η∆r+l‖∞,2.
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Now, ‖Φ∗η,k∆r‖∞,2 ≤ r2r+η(2πmax1≤j≤k |λj| 1η )r by Lemma 2.3.22, and ‖V ∗1k,η∆l+r‖∞,2 =

2l+r−1‖φ0‖2 = 2l+r−1. Moreover, ‖ 1
ρr
D̃rC̃r‖2 ≤ 1, ‖ 1

ρr−l
D̃r−lC̃r−l − Id‖2 ≤ 2, and

‖ 1
ρl
C̃ l‖2 ≤ ηl. Thus,

‖ 1

ρr
(Dρ∆̄

r∆−1Φm,k)
∗∆r‖∞,2 ≤ r2r + η(2π max

1≤j≤k
|λj|

1

η
)r + 2r+1 (2η)r − 1

2η − 1

≤ r2r + η(2π max
1≤j≤k

|λj|
1

η
)r + 22r+1ηr−1 ≤ 22r+2ηr−1,

independent of m.

2.4.5 Data Storage Efficiency

Given a mid-rise quantizer with length 2L and the quantized sample q ∈ Cm,

one needs log(2L) bits to record each entry of q. Thus, a total of m log(2L) = O(ρ)

bits is needed to fully record q as ρ → ∞. In this section, we shall show that with

the application of adapted decimation, we may now record the decimated signal in

O(log(ρ)) bits, drastically fewer than originally needed.

Proposition 2.4.17. Given a mid-rise quantizer with length 2L, it is possible to

encode Dρ∆̄
r
ρ∆
−rq with 2ηr log(2m) + 2η log(2L) bits in total.

Proof. Note that for mid-rise uniform quantizers A = A0 + ıA0 with length 2L,

each entry qj of q is a number of the form

qj =
(
(2sj + 1) + ı(2tj + 1)

)δ
2
, −L ≤ sj, tj ≤ L− 1.

Then, each entry in ∆−1q is the summation of at most m entries in q, which has the
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form

(∆−1q)j =
(
(2s̃j + ρ) + ı(2t̃j + ρ)

)δ
2
, −Lm ≤ s̃j, t̃j ≤ (L− 1)m.

Iterating r times, we see that

(∆−rq)j =
(
(2s̃j + ρ) + ı(2t̃j + ρ)

)δ
2
, −Lmr ≤ s̃j, t̃j ≤ (L− 1)mr.

As for ∆̄r
ρ∆
−rq, we see that, for any v ∈ Cm, each entry of ∆̄ρv contains at most 2

entries of v. Thus,

(∆̄r
ρ∆
−rq)j =

(
(2s̃j + ρ) + ı(2t̃j + ρ)

)δ
2
, −L(2m)r ≤ s̃j, t̃j ≤ (L− 1)(2m)r

Now, there are at most ((2L−1)(2m)r+1)2 ≤ (2L(2m)r)2 choices per entry with η =

m/ρ entries in total for Dρ∆̄
r
ρ∆
−rq. Thus, it can be encoded by R = 2ηr log(2m) +

2η log(2L) bits.

2.4.6 Proof of Theorem 2.4.3

Proof. of Theorem 2.4.3:

By Lemma 2.4.4,

ρrArq = Dρ∆̄
r
ρ∆
−rq = ∆rDρ(∆

−rq).
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Since ∆ and ∆−1 are lower-triangular, we see that, for any 1 ≤ s ≤ η, there exists

{asj}sj=1 and {blj}j,l such that

(Arq)s =
s∑
j=1

asj(Dρ∆
−rq)j =

s∑
j=1

asj(∆
−rq)jρ =

s∑
j=1

asj

jρ∑
l=1

bjl ql =

sρ∑
ξ=1

cξqξ,

proving the first claim. The second assertion follows from Proposition 2.4.15.

Given Φ = Φm,k, A = Ar = 1
ρr
Dρ∆̄

r
ρ∆
−r, and S = (AΦ)∗AΦ, the reconstruc-

tion error can be estimated as follows:

E = ‖S−1(AΦ)∗Aq − x‖2 = ‖S−1(AΦ)∗A∆ru‖2

=
1

ρr
‖S−1(AΦ)∗Dρ∆̄

r
ρu‖2

=
1

ρr
‖S−1(AΦ)∗∆rDρu‖2

≤ 1

ρr
‖S−1‖2‖(AΦ)∗∆r‖∞,2‖Dρu‖∞

≤ 1

ρr
(
kCφ0(

2

π
)2r
)−1

22r+2ηr−1‖u‖∞

=

(
4

kηCφ0
(π2η)r

)
‖u‖∞

1

ρr
,

where the second inequality comes from Proposition 2.4.15 and Proposition 2.4.16.

As for the data storage, we see from Proposition 2.4.17 that one can encode

the data Arq with R = 2ηr log(2m) + 2η log(2L) bits in total.

Note that

e
−R
2η = (2m)−r · 1

2L
=

1

2L

(η
2

)r
· 1

ρr
.
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Thus, as the function of bits used, the reconstruction error satisfies

E (R) ≤
(

4

kηCφ0
(π2η)r

)
‖u‖∞

1

ρr

= Ck,η,φ0,L‖u‖∞
1

2L

(η
2

)r 1

ρr

= Ck,η,φ0,L‖u‖∞e
−R
2η ,

where Ck,η,φ0,L = 8L
kηCφ0

(2π2)r.

Chapter 3: Compressive Sensing

3.1 Introduction and Motivation

In this chapter we estimate the following sum: given a prime p ∈ N and

n ∈ Z/pZ, suppose that M1,M2 ⊂ Z/pZ are two sets of consecutive numbers with

|M1| ≤ |M2| ≤ √p. We would like to estimate

|
∑
k

∑
m1∈M1

∑
m2∈M2

χ[k +m1 −m2]χ[k]e2πıkn/pe−2πım2n/p|, (3.1)

where χ : Z/pZ→ C is a non-principal character.

The sum in (3.1) is related to deterministic compressive sensing, character

sums, and Weil’s exponential sum estimates. From all prior works, one can easily
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derive an upper bound of p3/2 for (3.1). However, as such an estimate is not sufficient

for our purpose, we shall prove that it is possible to improve the estimate to p3/2−α

under certain mild assumptions, where α ∈ (0, 1/2) depends on |M1| and n.

Motivated by this, we aim to construct deterministic matrices with bottleneck-

breaking RIP from the Gabor system of Legendre symbols. Our formulation follows

from (3.5): given a prime p ∈ N, consider {ul,j}l,j∈Z/pZ ⊂ Cp where ul,j[k] = 1√
p
χ[k−

l]e−2πıkj/p with χ being the Legendre symbol. Fix disjoint Ω1,Ω2 ⊂ Z/pZ × Z/pZ

where |Ω1|, |Ω2| ≤ √p, define π2(Ωi) = {j ∈ Z/pZ : ∃l ∈ Z/pZ such that (l, j) ∈ Ωi}

and Ωi(j) = {l ∈ Z/pZ : (l, j) ∈Mi} for i = 1, 2. Then,

∣∣∣∣< ∑
(m1,n1)∈Ω1

um1,n1 ,
∑

(m2,n2)∈Ω2

um2,n2>

∣∣∣∣
=

∣∣∣∣1p ∑
n1∈π2(Ω1)

∑
n2∈π2(Ω2)

∑
k∈Z/pZ

∑
m1∈Ω1(n1)

∑
m2∈Ω2(n2)

χ[k +m1 −m2]χ[k]e2πık(n1−n2)/pe−2πım2(n1−n2)/p

∣∣∣∣
≤ 1

p

∑
n1∈π2(Ω1)

∑
n2∈π2(Ω2)

∣∣∣∣ ∑
k∈Z/pZ

∑
m1∈Ω1(n1)

∑
m2∈Ω2(n2)

χ[k +m1 −m2]χ[k]e2πık(n1−n2)/pe−2πım2(n1−n2)/p

∣∣∣∣.
(3.2)

Note that the expression in inside the final absolute value of (3.2) is exactly (3.1)

when Ω1(n1),Ω2(n2) are consecutive numbers. In order to use Lemma 3.2.6, we aim

to show that (3.1) is less than p3/2−α for some α > 0.
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3.2 Preliminaries

3.2.1 Restricted Isometry Property

Introduced in [13] and refined in [12], the Restricted Isometry Property (RIP)

is defined as follows:

Definition 3.2.1. An n×m matrix A satisfies (S, δS)-RIP if the following statement

is true: Let AT , T ⊂ {1, . . . ,m} be the n × |T | submatrix obtained by extracting

the columns of A which corresponds to the elements in T . Then for any subset T

with |T | ≤ S and any coefficient sequence {cj}j∈T , we have

(1− δS)‖c‖2
2 ≤ ‖AT c‖2

2 ≤ (1 + δS)‖c‖2
2. (3.3)

For sampling schemes satisfying RIP, one is able to retrieve sparse signals

efficiently from highly incomplete measurements because of the equivalence between

the following optimization problems:

min ‖x‖`0 subject to Ax = b, (P0)

where ‖x‖`0 denotes the number of nonzero entries of x, and

min ‖x‖`1 subject to Ax = b. (P1)

(P0) and (P1) do not yield the same solution in general, but for matrices satisfying
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RIP with small constant δ, the two problems will be equivalent provided that the

signal itself is sparse, [15]. (P0) is a non-convex optimization problem, whereas (P1)

is convex and is readily solvable. Thus, solving (P1) is much more preferable to

solving (P0).

Using probabilistic estimates, one can show that given ε > 0, there exists

a random matrix A ∈ CM×N satisfies (S, δS)-RIP with M1−ε � S � M with

exponentially high probability.

3.2.2 Square-root Bottleneck

Compressive sensing has found great success in probabilistic settings. However,

deterministically one is not able to obtain such strong results: very few methods are

available other than the coherence estimate, and it is extremely hard to extend the

order S to S �
√
M . We describe the method and its limitation below:

Definition 3.2.2 (Coherence parameter). Given a matrix Φ = (φ1 | φ2 | · · · | φr)

with unit column vectors, the coherence parameter µ of Φ is defined to be

µ := max
i 6=j
|<φi, φj>|.

Proposition 3.2.3 ([9], Proposition 1). Given a matrix Φ ∈ Cn×m with unit norm

columns {φi}i. If the coherence of Φ is µ, then Φ satisfies (k, (k − 1)µ)-RIP for all

k.

Proof. Given any k-sparse vector x ∈ Cm, let T ⊂ {1, . . . ,m} be the set of its
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non-zero entries. Then, one has

|‖Φx‖2 − ‖x‖2| = |2
∑
r<s∈T

xrxs<φr, φs>|

≤ µ((
∑
j

|xr|)2 − ‖x‖2) ≤ µ(|T | − 1)‖x‖2 ≤ µ(k − 1).

Following the proposition above, it is favorable to find a matrix with coherence

as low as possible. However, the coherence parameter is bounded below by the

following universal bound:

Proposition 3.2.4. Given any matrix Φ ∈ Cn×m with unit norm columns, the

coherence parameter µ is lower bounded by

µ ≥ C

√
logm

n log(n/ logm)
≥ C√

n
,

for logm ≤ n ≤ m/2 and a fixed C > 0.

Proposition 3.2.4 shows that one can construct an (S, δS)-RIP with S ∼ √n

by constructing matrices with low coherence. However, anything more than that is

significantly harder. In fact, few techniques are available other than the coherence

approach, making the explicit construction of matrices satisfying (S, δS)-RIP with

S � √n extremely hard. Such difficulty is denoted as the square-root bottleneck.

Bourgain et al. [9] proposed a new class of matrices satisfying RIP of high order,

breaking the bottleneck by constructing a family of matrices satisfying (S, δS)-RIP

with S ∼ M1/2+ε, where ε is of the order of 10−28. Mixon [51] improved the ε to
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the order of 10−24, more than 8, 000 times better than the original result. One key

ingredient of their proofs is the following notion of flat RIP.

Definition 3.2.5 (flat RIP). Let u1, . . . , uN be the columns of an n×N matrix Φ.

Suppose that for every j, ‖uj‖2 = 1. Φ satisfies the (k, δ)-flat RIP if for any disjoint

J1, J2 ⊂ {1, . . . , N} with |J1|, |J2| ≤ k we have

| <
∑
j∈J1

uj,
∑
i∈J2

ui > | ≤ δ(|J1||J2|)1/2. (3.4)

The following lemma takes a slightly weaker form of flat RIP.

Lemma 3.2.6. Let k ≥ 210 and s be any positive integer. Assume that the coherence

parameter of Φ is µ ≤ 1/k, and for some δ and any disjoint J1, J2 with |J1|, |J2| ≤ k,

one has ∣∣∣∣< ∑
j1∈J1

uj1 ,
∑
j2∈J2

uj2>

∣∣∣∣ ≤ δk, (3.5)

then Φ satisfies RIP of order (2sk, 44sδ log k)-RIP.

By Lemma 3.2.6, matrices satisfying flat RIP also satisfy RIP of high order,

which provides insights on how to approach this problem from a new direction.
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3.2.3 Björck Sequence

For each prime number p, the Legendre symbol modulo p is the function χ =(
·
p

)
: Z/pZ→ {−1, 0, 1} given by

χ[k] =

(
k

p

)
=


+1 if k ≡ m2 (mod p) for some m ∈ Z/pZ×

0 if k ≡ 0 (mod p)

−1 if k 6≡ m2 (mod p) for all m ∈ Z/pZ×

Let the set Q be there nonzero quadratic residues modulo p, and QC be the

quadratic nonresidues modulo p. Note that Q = χ−1(1), and QC = χ−1(−1).

Definition 3.2.7. The Björck sequence {up[k]}k∈Z/pZ of length p, where p is an odd

prime, is defined as follows:

For any k ∈ Z/pZ, if p ≡ 1 (mod 4), then

up[k] = exp(ıθχ(k)) = exp

(
ıθ

(
k

p

))
, where θ = arccos

(
1

1 +
√
p

)
.

If p ≡ 3 (mod 4), then

up[k] =


exp(ıφ) if k ∈ QC ⊂ (Z/pZ)×, where φ = arccos(1−p

1+p
).

1 otherwise,

The Björck sequence {up[k]}k is an example of a constant amplititude zero

auto-correlation (CAZAC) sequence. The definition of a CAZAC sequence is as
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follows:

Definition 3.2.8. A sequence v = {vk}k∈Z/pZ is CAZAC if

• There exists C ≥ 0 such that |vk| = C for all k.

• For any t ∈ (Z/pZ)\{0}, one has <v, τtv> = 0, where (τtv)k = vk−t with cyclic

convention.

Now, for any odd prime p, consider the following Gabor frame Ψp = (ψm,n)m,n∈Z/pZ ∈

Cp×p2 , where

ψm,n[k] =
1√
p
up[k +m]ep(kn),

where ep(x) := exp(−2πıx/p). Then for any (m1, n1), (m2, n2) ∈ (Z/pZ)2, one has

<ψm1,n1 , ψm2,n2> =
1

p

∑
k∈Z/pZ

(
up[k +m1]ep(kn1)

)(
up[k +m2]ep(−kn2)

)

=
1

p

∑
k∈Z/pZ

up[k +m1]up[k +m2]ep(k(n1 − n2))

=
1

p

∑
t∈Z/pZ

up[t+ (m1 −m2)]up[t]ep(t(n1 − n2))ep(−m2(n1 − n2))

= Ap(up)[m1 −m2, n1 − n2]ep(−m2(n1 − n2)),

where Ap(up) = 1
p

∑
t∈Z/pZ up[t + (m1 − m2)]up[t]ep(t(n1 − n2)) is the ambiguity

function of up.

For Björck sequences, one has the following estimate:

Theorem 3.2.9 (Theorem 3.8 in [7]). For any (m,n) ∈ (Z/pZ × Z/pZ)\{(0, 0)},
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one has

|Ap(up)[m,n]| ≤ 2√
p

+


4
p

if p ≡ 1 (mod 4)

4
p3/2

if p ≡ 3 (mod 4)

.

In particular, |Ap(up)[m,n]| ≤ 3/
√
p, which implies that the coherence of Ψp

is µΨ ≤ 3/
√
p.

3.2.4 Reduction to Legendre Symbols

For given N ⊂ Z/pZ and disjoint Ω1,Ω2 ⊂ Z/pZ × N , we introduce the

following notation:

Definition 3.2.10. For i = 1, 2, define Ωi(n) = {m ∈ Z/pZ : (m,n) ∈ Ωi}.

Then, one has

∑
(m1,n1)∈Ω1

∑
(m2,n2)∈Ω2

<um1,n1
, um2,n2

> =
∑

n1,n2∈N

∑
m2∈Ω2(n2)

∑
m1∈Ω1(n1)

Ap(up)[m1−m2, n1−n2]ep(−m2(n1−n2)).

(3.6)

Moreover, we may assume m1 6= m2, n1 6= n2 as Ap(up)[0, n] = Ap(up)[m, 0] =

0 for all m,n 6= 0.

Now, fixing m2, n1, n2, we see that the innermost sum of (3.6) becomes

∑
m1∈Ω1(n1)

Ap(up)[m1 −m2, n1 − n2]ep(−m2(n1 − n2)) =

1

p

∑
m1∈Ω1(n1)

∑
k∈Z/pZ

up[k +m1 −m2]up[k]ep(k(n1 − n2))ep(−m2(n1 − n2)).
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Note that for p ≡ 1(mod 4),

<(up[k]) =


1

1+
√
p

if k 6= 0

1 if k = 0

,

and =(up[k]) =

√
p+2
√
p

1+p
χ[k], a multiple of the Legendre symbol.

Proposition 3.2.11. Given N ,Ω1,Ω2, the estimate in (3.6) can be written as

|
∑

(m1,n1)∈Ω1

∑
(m2,n2)∈Ω2

<um1,n1
, um2,n2

>| ≤
∑

n1,n2∈N

∑
m2∈Ω2(n2)

|
∑

m1∈Ω1(n1)

Ap(χ)[m1−m2, n1−n2]|+
8

9
.

Before proving the proposition above, we first derive the following lemma:

Lemma 3.2.12. Given fixed m2, n1, n2, one has


|1
p

∑
m1∈Ω1(n1)

∑
k∈Z/pZ<(up[k +m1 −m2])<(up[k])ep(k(n1 − n2))| ≤ 2|Ω1(n1)|

p

|1
p

∑
m1∈Ω1(n1)

∑
k∈Z/pZ=(up[k +m1 −m2])<(up[k])ep(k(n1 − n2))| ≤ 3|Ω1(n1)|

p

|1
p

∑
m1∈Ω1(n1)

∑
k∈Z/pZ<(up[k +m1 −m2])=(up[k])ep(k(n1 − n2))| ≤ 3|Ω1(n1)|

p

.

Proof. For the first part, note that <(up[k]) = 1
1+
√
p

if k 6= 0 and is equal to 1 if

k = 0. Thus, one has

∑
m1∈Ω1(n1)

<(up[k +m1 −m2])<(up[k])ep(k(n1 − n2))

=
1

1 +
√
p

∑
m1∈Ω1(n1)

∑
k∈Z/pZ

ep(k(n1 − n2)) +

√
p

1 +
√
p

∑
m1∈Ω1(n1)

(
1 + ep((m2 −m1)(n1 − n2))

)

=

√
p

1 +
√
p

(
|Ω1(n1)|+

∑
m1∈Ω1(n1)

ep((m2 −m1)(n1 − n2))

)
.
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As for the second part, we have

∑
k∈Z/pZ

=(up[k +m1 −m2])<(up[k])ep(k(n1 − n2))

=
1

1 +
√
p

∑
k∈Z/pZ

=(up[k +m1 −m2])ep(k(n1 − n2)) +

√
p

1 +
√
p
=(up[m1 −m2])

=
1

ı

( √
p

1 +
√
p
ûp[n1 − n2]ep((m2 −m1)(n1 − n2))−

√
p

1 +
√
p
ep((m2 −m1)(n1 − n2))

)
+

√
p

1 +
√
p
=(up[m1 −m2])ep(k(n1 − n2)).

Now, |ûp| = =(up[m1 − m2]) = 1 since m1 6= m2. Thus, the magnitude of the

three term does not exceed 3. The third estimate follows verbatim from the second

one.

Proof. of Proposition 3.2.11:

By noting

up[k +m1 −m2]up[k] = <(up[k +m1 −m2])<(up[k]) + ı=(up[k +m1 −m2])<(up[k])

− ı<(up[k +m1 −m2])=(up[k]))

− ı
√
p+ 2

√
p

1 +
√
p

χ[k +m1 −m2]χ[k],

we have

|
∑

m1∈Ω1(n1)

Ap(up)[m1−m2, n1−n2]| ≤ |
∑

m1∈Ω1(n1)

Ap(χ)[m1−m2, n1−n2]|+ 8|Ω1(n1)|
p

.
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Then, by summing over m2, n1, n2, we see that

|
∑

(m1,n1)∈Ω1

∑
(m2,n2)∈Ω2

<um1,n1 , um2,n2>|

≤
∑

n1,n2∈N

∑
m2∈Ω2(n2)

∑
m1∈Ω1(n1)

|Ap(χ)[m1 −m2, n1 − n2]ep(−m2(n1 − n2))|

+
∑

n1,n2∈N

∑
m2∈Ω2(n2)

8|Ω1(n1)|
p

=
∑

n1,n2∈N

∑
m2∈Ω2(n2)

∑
m1∈Ω1(n1)

|Ap(χ)[m1 −m2, n1 − n2]|+ 8|Ω1||Ω2|
p

,

and that the last term is less than 8/9.

3.2.5 Character Sum Estimates

Besides the practical interests in compressive sensing, estimation of character

sums is also intriguing in its own. Let χ : Z/pZ → C be a non-principal character

on (Z/pZ)∗ with the extension χ[0] = 0. Polya-Vinogradov inequality states that

|
∑

M≤k≤M+N

χ[k]| ≤ √p log p

for any arbitrary M,N . Chung [21] investigated the cancellation within the

sum

∑
a∈S

∑
b∈T

χ[a+ b]

95



where S, T ⊂ Z/pZ. In particular, the following estimate is given:

|
∑
a∈S

∑
b∈T

χ[a+ b]| ≤
√
p|S||T |(1− |S|

p
)1/2(1− |T |

p
)1/2.

Note that the estimate is only nontrivial for |S|, |T | � √p. Chung also com-

mented on a conjecture for the case |S| � √p: for any fixed ε > 0 and |S| > pε,

there exists δ > 0 such that

|
∑
a,b∈S

χ[a− b]| < |S|2−δ.

Friedlander and Iwaniec [36] gave a partial answer to the conjecture above,

proving the inequality when S is contained in an interval I of length � √p and

satisfies |S| ≥ Ir/(r+1)p1/4r+ε for some r ≥ 2 using the Burgess estimate. Note that

the results here do not apply to (3.1) even if Ω1(n1) = Ω2(n2), since there is an

additional summation over Z/pZ.

3.2.6 Weil’s Exponential Sum Estimate

Using Weil’s estimate, one has the following inequalities [5, 7, 52, 58]:

Theorem 3.2.13. Given a prime p with 0 < d1 < · · · < dk < p, one has

|
p−1∑
n=0

χ[n+ d1] · · ·χ[n+ dk]| ≤ 9kp1/2.
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Theorem 3.2.14. Given a prime p and m,n ∈ Z/pZ\{0}, one has

∣∣∣∣ ∑
k∈Z/pZ

χ[k]χ[k +m]e−2πıkn/p

∣∣∣∣ ≤ 2
√
p.

In particular, the sum (3.1) has the trivial estimate
√
p|M1||M2|. When

|M1|, |M2| ∼ √p, we will have that (3.1)≤ p3/2.

In our case, the summation is three dimensional, complicating the issue. How-

ever, we shall show that if we add sufficiently large spins on the sum, there are

indeed additional cancellations occurring.

3.3 Main Results

Theorem 3.3.1. Let p be a prime, and n ∈ Z/pZ. Suppose n ∼ p1/2+δ, where δ ∈

(0, 1/2), and M1,M2 ⊂ Z/pZ consist of consecutive numbers such that |M1|, |M2| ≤
√
p. Furthermore, if |M2|/|M1|, |M1| are even, and |M1| ∼ p1/2−σ, σ ∈ [0, 1/2) such

that δ > σ, then

∑
s 6=0,−n

|sin(π|M1|s/p)
sin(πs/p)

||sin(π|M2|(s+ n)/p)

sin(π(s+ n)/p)
| = O(p3/2−α), (3.7)

where α = σ+ (δ−σ)/2, and the big-O notation A(p) = O(p3/2−α) means that there

exists a constant K, independent of p, such that lim supp:prime
A(p)

p3/2−α
≤ K.

From this theorem, we derive the following corollaries:
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Corollary 3.3.2. With the assumptions above, we have

|
∑
k

∑
m1∈Ω1(n1)

∑
m2∈Ω2(n2)

χ[k +m1 −m2]χ[k]e2πıkn/pe−2πım2n/p| = O(p3/2−α), (3.8)

where n = n1 − n2.

Corollary 3.3.3. With the same assumptions above, we have, for a fixed k ∈ Z/pZ,

|
∑

m1∈Ω1(n1)

∑
m2∈Ω2(n2)

χ[k +m1 −m2]e2πım2n/p| = O(p1−α).

Proof. of Corollary 3.3.2:

Given n ∈ Z/pZ, we compute

∑
k

∑
m1∈Ω1(n1),m2∈Ω2(n2)

χ[k +m1 −m2]χ[k]e2πıkn/pe−2πım2n/p

=
∑

k,m1,m2

(
1√
p

∑
s

χ[s]e2πı(k+m1−m2)s/p

)
e−2πım2n/pχ[k]e2πıkn/p

=
∑
s

χ[s]

(
1√
p

∑
k

χ[k]e2πık(n+s)/p

)(∑
m1

e2πım1s/p

)(∑
m2

e−2πım2(s+n)/p

)

=
∑
s

χ[s]χ[n+ s]

(∑
m1

e2πım1s/p

)(∑
m2

e−2πım2(s+n)/p

)

=
∑

s 6=0,−n

χ[s]χ[n+ s]

(∑
m1

e2πım1s/p

)(∑
m2

e−2πım2(s+n)/p

)
.

Assuming Ω1(n1),Ω2(n2) are both intervals in Z/pZ, we see that

|
∑

mj∈Ωj(nj)

e2πımjt/p| = |sin(π|Mj|t/p)
sin(πt/p)

|,
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where j = 1, 2. Thus, taking the absolute value on both sides, we get this estimate.

The proof of Corollary 3.3.3 follows verbatim.

Remark 3.3.4. Using Hölder’s inequality and the Fourier transform of the Fejér’s

kernel, we can show that the expression in (3.7) is less than p
√
|Ω1(n1)||Ω2(n2)|,

which equals p3/2 when |Ω1(n1)| = |Ω2(n2)| = √p.

To prove Theorem 3.3.1, we will approximate sin(π|Mj|(s+tj)/p) and sin(π(s+

tj)/p) with piece-wise linear functions. Then, by summing over all pieces, we shall

show that the contribution as a whole is less than p3/2−α.

Definition 3.3.5. We define the following piece-wise polynomials pu1 , p
l
1, p

u
2 , p

l
2 as


pu1(s) = 2‖|M1|s/p‖, pl1(s) = ‖s/p‖,

pu2(s) = 2‖|M2|(s+ n)/p‖, pl2(s) = ‖(s+ n)/p‖,

where ‖t‖ := minn∈Z |t− n|.

Note that

|sin(π|M1|s/p)
sin(πs/p)

||sin(π|M2|(s+ n)/p)

sin(π(s+ n)/p)
| ≤ pu1(s)pu2(s)

pl1(s)pl2(s)
.

As we assume that |M2| ≥ |M1|, the piece-wise linear function of | sin(π|M2|(s+

n)/p)| changes directions most frequently. Thus, we first start with the intervals in

which the function does not change direction before expanding into larger intervals.

In particular, we define the following intervals:
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Definition 3.3.6. An interval in Z/pZ with the form [ pj
|M2| − n, p(j+1)

|M2| − n], j ∈

{−|M2|/2, . . . , |M2|/2} is called an yj-interval, by which we denote Iyj .

An interval in Z/pZ with the form [ pi
|M1| ,

p(i+1)
|M1| ], i ∈ {−|M1|/2, . . . , |M1|/2} is

called an xj-interval, by which we denote Ixi .

Here, we abuse the notation by denoting the set of numbers {a ∈ Z/pZ : a ∈

I} ≡ I where I ⊂ R is an interval.

Given s ∈ Iyj ⊂ Ixi , we denote xi, yj ∈ Z by the integers such that pu1(s) =

| |M1|s
p
− xi|, pu2(s) = | |M2|(s+n)

p
− yj|.

3.4 Proof of Theorem 3.3.1

In this section, we track only the main terms occurring during the calculation.

First, we see that

∣∣∣∣sin(π|M1|s
p

)

sin(πs
p

)

∣∣∣∣ · ∣∣∣∣sin(π|M2|(s+n)
p

)

sin(π(s+n)
p

)

∣∣∣∣ ≤ 4p2

π2

| |M1|s
p
− xi|| |M2|(s+n)

p
− yj|

s(s+ n)
=
pu1(s)pu2(s)

pl1(s)pl2(s)
,

where xi = xi(s) ∈ {−d |M1|
2
e,−d |M1|

2
e+1, . . . , d |M1|

2
e}∩2Z, yj = yj(s, n) ∈ {b |M2|n

p
c, . . . , d |M2|

2
+

|M2|n
p
e} ∩ 2Z.

Note that Iyj ⊂ Ixi ⇐⇒ yj ∈ [xi|M2|/|M1| + |M2|n/p, xi+1|M2|/|M1| +

|M2|n/p− 1] =: Jxi . Then,

∑
s 6=0,−n

|sin(π|M1|s/p)
sin(πs/p)

||sin(π|M2|(s+ n)/p)

sin(π(s+ n)/p)
| ≤

|M1|/2∑
xi=−|M1|/2

∑
yj∈Jxi

∑
s∈Iyj

pu1(s)pu2(s)

pl1(s)pl2(s)
.
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In our proof, we would like to smooth out {xi}i, {yj}j by {zi = i}i, {wj = j}j

to simplify the approximation process. By doing so, we split the sum into the

following parts:

∑
s 6=0,n

pu1(s)pu2(s)

pl1(s)pl2(s)
=
∑
|i|<pε

∑
s∈Ixi

pu1(s)pu2(s)

pl1(s)pl2(s)
+
∑
|i|>pε

∑
j∈Jxi

∑
s∈Iyj

(−1)i+j4p2

π2

( |M1|s
p
− i)( |M2|s

p
− j)

pl1(s)pl2(s)

+
∑
|i|>pε

∑
j∈Jxi :j odd

∑
s∈Iyj

(−1)i4p2

π2

|M1|s
p
− i

pl1(s)pl2(s)
+

∑
|i|>pε:i even

∑
j∈Jxi :j odd

∑
s∈Iyj

4p2

π2s(s+ n)

=: E1 + S + E2 + E3.

(3.9)

We shall estimate on each of the four terms to show that (3.9) is of order

O(p3/2−α).

Proposition 3.4.1. We have the following estimates:

(a)

E1 = O(p3/2−δ+ε).

(b)

E2 + E3 = O(p3/2−δ log(p)).

(c)

S = O(p3/2−σ−ε) +O(p3/2−δ log(p)).

With the estimates in Proposition 3.4.1, we can prove Theorem 3.3.1:
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Proof. of Theorem 3.3.1:

From Proposition 3.4.1, we see that

∑
s 6=0,n

pu1(s)pu2(s)

pl1(s)pl2(s)
= O(p3/2−σ−ε) +O(p3/2−δ log p) +O(p3/2−δ+ε) = O(p3/2−αε)

where αε = min{ε + σ, δ − ε}. Since the choice of ε is arbitrary, we can optimize α

to be σ + (δ − σ)/2, which is what we claimed.

We first consider the case when s is positive. The case when s is negative is

similar, and the proof for positive indices can be modified verbatim. We consider

the term S in (3.9) to be the main term, while the rest are considered as correction

terms. We shall first compute all three correction terms before dealing with the

main term.

3.5 Estimates of Correction Terms

First, we shall prove Proposition 3.4.1 (a).

Proof. of Proposition 3.4.1 (a):

Assuming that |xi| ≤ pε and |M1| ∼ p1/2−σ, σ ∈ (0, 1/2), we have |s| ≤ pxi
|M1| ∼

p1/2+ε+σ. Note that n ∼ p1/2+δ where δ > ε+ σ, δ ∈ (0, 1/2). Thus,
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∑
|s|≤p1/2+ε+σ

|sin(π|M1|s/p)
sin(πs/p)

||sin(π|M2|(s+ n)/p)

sin(π(s+ n)/p)
| ≤ |M1|

∑
|s|≤p1/2+ε+σ

p

π(s+ n)

≤ p|M1| log(
n+ p1/2+ε+σ

n− p1/2+ε+σ
)

= p|M1| log(1 +
1

np−1/2−ε−σ − 1
)

∼ p|M1|p−δ+ε+σ ∼ p3/2−δ+ε.

(3.10)

Around the singular point s = −n, we make sure to take out an even number

of yj-intervals so the cancellations still occur in the remaining xi-interval. Thus, the

summation range is |s+ n| ≤ kp
|M2| for some k ∈ N. Then,

∑
|s+n|≤ p

|M2|

|sin(π|M1|s/p)
sin(πs/p)

||sin(π|M2|(s+ n)/p)

sin(π(s+ n)/p)
| ≤ |M2|

∑
|s+n|≤p1/2+ε+σ

p

π|s|

≤ p|M2| log(
n+ p/|M2|
n− p/|M2|

)

= p|M2| log(1 +
1

n|M2|/p− 1
)

∼ p2−1/2−δ+ε = p3/2−δ+ε.

(3.11)

To prove Proposition 3.4.1 (b), we need the following lemma:

Lemma 3.5.1. Let f, g : Z → R be f(s) = 1
s

and f(s) = 1
s(s+t)

for some t ∈ R. If
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1 < a < a+ 1 < b is such that b
a

= 1 + r for some r ∈ (0, 1), then


∑

a≤s≤b f(s) = r +O(r2) +O(b−1)∑
a≤s≤b g(s) = r(r+t/a)

t(1+r+t/a)
+O( r

2

t
).

Proof. Since both f and g are monotone in (a, b), we may approximate the summa-

tion of both f and g with their respective integrals. Moreover,

|
∑
a≤s≤b

1

s
−
∫ b

a

1

x
dx| ≤

∫ b+1

b−1

1

x
dx = log(1 +

2

b− 1
) =

2

b− 1
+O(b−2).

Thus, ∑
a≤s≤b

1

s
= log(1 + r) +O(b−1) = r +O(b−1).

Note that 1
b
< 1

a
< b−a

a
= r, so

∑
a≤s≤b f(s) = O(r). For g, we have

|
∑
a≤s≤b

1

s(s+ t)
−
∫ b

a

1

s(s+ t)
ds| ≤

∫ b+1

b−1

1

s(s+ t)
ds

=
1

t
log

(
(b+ 1)(b+ t− 1)

(b− 1)(b+ t+ 1)

)
=

1

t
log

(
(1 +

2

b− 1
)(1− 2

b+ t+ 1
)

)
=

1

t
(

2

b− 1
− 2

b+ t+ 1
) +O(

1

tb2
).

Thus,

∑
a≤s≤b

1

s(s+ t)
=

1

t
log

(
(1 + r)(1− (b− a)

b+ t
)

)

=
r

t
(1− 1

(1 + r) + t/a
) +O(

r2

t
) =

r(r + t/a)

t(1 + r + t/a)
+O(

r2

t
).
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Proof. of Proposition 3.4.1 (b):

Fixing i, consider

E2 = p2
∑

(2k+1)∈Jxi

∑
s∈Iyj

|M1|s
p
− i

s(s+ n)

≤
∑
s∈Ixi

|M1|s
p
− i

s(s+ n)

=
∑
s∈Ixi

p|M1|
1

s+ n
− p2i

s(s+ n)

=
∑
s∈Ixi

p|M1|
1

s+ n
− p2i

n
(
1

s
− 1

s+ n
)

= p|M1|
p
|M1|

pi
|M1| + n

+O(p|M1|r2) +O(|M1|2i−1)

− p2i

n

(
1

i
−

p
|M1|

pi
|M1| + n

)
+O(p2n−1x−1

i )

= p|M1|
1

i+ |M1|n
p

− p2i

n

|M1|n
p

i(i+ |M1|n
p

)
+O(p2n−1x−1

i )

= O(p2n−1i−1).

(3.12)

As for E3, by Lemma 3.5.1,

E3 = p2
∑

i∈2Z+1:i<|M1|/2

∑
(2k+1)∈Jxi

∑
s∈Iyj

1

s(s+ n)

≤
∑

i<|M1|/2

p2
∑
s∈Ixi

1

s(s+ n)

≤
∑

i<|M1|/2

p2

ni
+O(p2n−1i−2) = O(p2n−1 log(|M1|)).

(3.13)
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Combining (3.12) and (3.13), we see that the total contribution is p2−(1/2+δ) log(|M1|) =

O(p3/2−δ log(p)).

3.6 Estimates of the Main Term S

To estimate S in (3.9), we start by computing the expression of the sum in

one yj-interval.

3.6.1 Estimates within yj-Intervals

Lemma 3.6.1. Given j > 0, define the error term Ey(j) vt

Ey(j) :=
∑
s∈Iyj

4p2

π2

( |M1|s
p
− i)( |M2|(s+n)

p
− j)

s(s+ n)
−
( −2p3i

π2|M2|ỹ2
j

+
2np2i

ỹ2
j j

+
2p|M1|
π2j

)
,

where ỹj = pj
|M2| − n, and α is as defined in Theorem 3.3.1.

Then, the total contribution of Ey is

∑
|i|>pε

∑
j∈Jxi

Ey(j) = O(p3/2−α).

To estimate Ey(j), we will make the following re-arrangements first.

For s ∈ Iyj all pu1 , p
u
2 , p

l
1, p

l
2 are linear and none changes sign. Thus,

∑
s∈Iyj

pu1(s)pu2(s)

pl1(s)pl2(s)
= ±

∑
s∈Iyj

4p2

π2

( |M1|s
p
− i)( |M2|(s+n)

p
− j)

s(s+ n)
.
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Thus, we would like to compute

∑
s∈Iyj

4p2

π2

( |M1|s
p
− i)( |M2|(s+n)

p
− j)

s(s+ n)

=
∑

pj
|M2|
−n≤s≤ pj+1

|M2|
−n

{
4

π2
|M1||M2| −

4p|M1|j
π2

1

s+ n
− 4p|M2|i

π2

1

s
+

4p2

π2

ij

s(s+ n)

}

=
4|M1||M2|

π2
(ỹj+1 − ỹj + f1(j))− 4p|M1|j

π2
(log(

j + 1

j
) + f2(j))− 4p|M2|i

π2
(log(

ỹj+1

ỹj
) + f3(j))

+
4p2ij

nπ2

(
log(

ỹj+1

ỹj
)− log(

ỹj+1 + n

ỹj + n
) + f4(j)

)
,

where we recall that ỹj =
pyj
|M2| − n.

Note that ỹj+1− ỹj = p
|M2| , and also log( j+1

j
) = log(1 + 1

j
) = 1

j
− 1

2j2
+O(j−3).

Thus,

4|M1||M2|
π2

(ỹj+1 − ỹj)−
4p|M1|j
π2

log(
j + 1

j
) =

2p|M1|
π2j

+O(|M1|py−2
j ).

Now,

log(
ỹj+1

ỹj
) = log(1 +

p
|M2|

ỹj
) =

p

|M2|
1

pj
|M2| − n

− p2

2|M2|2
1

ỹ2
j

+O(p3|M2|−3ỹ−3
j )

=
p

|M2|
1

pj
|M2| − n

− p2

2|M2|2
1

ỹ2
j

+
p3

3|M2|3
1

ỹ3
j

+O(p4|M2|−4ỹ−4
j ),

and

log(
ỹj+1 + n

ỹj + n
) = log(

j + 1

j
) =

1

j
− 1

2j2
+O(j−3)

=
1

j
− 1

2j2
+

1

3j3
+O(j−4).

(3.14)
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Thus, we see that, using (3.14),

− 4p|M2|i
π2

p

|M2|
1

pj
|M2| − n

+
4p2ij

nπ2

p

|M2|
1

pj
|M2| − n

=
−4p2j

π2

1
pj
|M2| − n

+
4p2i

nπ2
+

4p2i

π

1
pj
|M2| − n

=
4p2i

nπ2
.

Combining all of the above, we get that

4|M1||M2|
π2

(ỹj+1 − ỹj + f1(j))− 4p|M1|j
π2

(log(
j + 1

j
) + f2(j))− 4p|M2|i

π2
(log(

ỹj+1

ỹj
) + f3(j))

+
4p2ij

nπ2

(
log(

ỹj+1

ỹj
)− log(

ỹj+1 + n

ỹj + n
) + f4(j)

)
=

4|M1||M2|
π2

f1(j) +
2p|M1|
π2j

+O(|M1|pj−2)− 4p|M1|j
π2

f2(j) +
2p3i

π2|M2|ỹ2
j

− 4p|M2|i
π2

f3(j)

+O(|M3|−2p4ỹ−3
j ) +

4p2i

nπ2
− 2p4ij

n|M2|2π2ỹ2
j

− 4p2i

nπ2
+

2p2i

nπ2j
+

4p2ij

nπ2
f4(j) +

4p2ij

3nπ2
f ′4(j)

+O(n−1p6|M2|−4ijỹ−4
j ) +O(n−1p2ij−3)

= − 2p4ij

n|M2|2π2ỹ2
j

+
2p2xi
nπ2yj

+
2p|M1|
π2yj

+
2p3xi

π2|M2|ỹ2
j

+
4|M1||M2|

π2
f1(j)− 4p|M1|j

π2
f2(j)− 4p|M2|i

π2
f3(j) +

4p2ij

nπ2
f4(j) +

4p2ij

3nπ2
f ′4(j)

+O(|M1|pj−2) +O(|M2|−2p4ỹ−3
j ) +O(n−1p6|M2|−4ijỹ−4

j ) +O(n−1p2ij−3),

(3.15)

where

108



4p2ij

3nπ2
f ′4(j) =

4p2ij

3nπ2

(
p3

|M2|3
1

ỹ3
j

− 1

j3

)

=
4p2ij

3nπ2

(
3 p2

|M2|2 j
2n− 3 p

|M2|jn
2 + n3

ỹ3
j j

3

)
= O(p4|M2|−2ij−1ỹ−3

j ) +O(p3|M2|−1nij−2ỹ−3
j ) +O(p2n2ij−3ỹ−3

j ).

In (3.15), we have four explicit terms remaining, namely

−2p4ij

nπ2|M2|2ỹ2
j

+
2p2i

nπ2j
+

2p|M1|
π2j

+
2p3i

π2|M2|ỹ2
j

. (3.16)

Further simplifying the expressions, we have

−2p4ij

nπ2|M2|2ỹ2
j

+
2p2i

nπ2j
+

2p3i

π2|M2|ỹ2
j

=
2p2

nπ2

[
ỹ2
j − p2

|M2|2 j
2

ỹ2
j j

]
+

2p3i

π2|M2|ỹ2
j

=
2p2

nπ2

− 2p
|M2|nj + n2

ỹ2
j j

+
2p3i

π2|M2|ỹ2
j

=
−4p3i

π2|M2|ỹ2
j

+
2np2i

ỹ2
j j

+
2p3i

π2|M2|ỹ2
j

=
−2p3i

π2|M2|ỹ2
j

+
2np2i

ỹ2
j j

.

To this point, we have computed all the main terms, and we have

E(j) =
4|M1||M2|

π2
f1(j)− 4p|M1|j

π2
f2(j)− 4p|M2|i

π2
f3(j) +

4p2ij

nπ2
f4(j) +

4p2ij

3nπ2
f ′4(j)

+O(|M1|pj−2) +O(|M2|−2p4ỹ−3
j ) +O(n−1p6|M2|−4ijỹ−4

j ) +O(n−1p2ij−3).

(3.17)
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To estimate the effect of f1, f2, f3, f4, f
′
4, we refer to the following proposition which

shall be proved in Section 3.7.

Proposition 3.6.2. The following estimates hold:

(a) ∑
|i|>pε

∑
yj∈Jxi

4p2ij

3nπ2
|f ′4(j)| =

∑
|i|>pε

O(p|M1|i−3) = O(p3/2−σ−2ε).

(b)
|M1|/2∑

i=−|M1|/2

∑
j∈Jxi

4p|M2|i
π2

|f3(j)|+ 4p2ij

nπ2
|f4(j)| = O(|M1||M2| log p).

(c)
|M2|∑
yj=1

4p|M1|j
π2

f2(j) = O(|M1||M2| log |M2|).

(d)
∑

x≥pε
∑

y∈Jxi
|M1||M2|f1(j) = O(|M2|2) = O(p) if |M1| is even.

Proposition 3.6.2 shows that the first five terms in (3.17) sums up to be of the

order O(p3/2−σ−2ε). Thus, it remains to show that the final four terms in (3.17) can

be well controlled.

Proof. of Lemma 3.6.1: Note that p|M2|−1ỹ−1
j = 1

j−n|M2|
p

=: 1
j−t . Thus,

• ∑
|i|>pε

∑
j∈Jxi

p|M1|j−2 = p|M1|
∑

|j|> |M2|
|M1|

pε

j−2 = O(p3/2−σ−ε).

• ∑
|i|>pε

∑
j∈Jxi

p4|M2|−2ỹ−3
j = p|M2|−1

∑
|j|> |M2|

|M1|
pε

1

(j − t)3
= O(p1/2).
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•

∑
|i|>pε

∑
j∈Jxi

n−1p6|M2|−4ijỹ−4
j =

p2

n

∑
|i|>pε

∑
j∈Jxi

i

(
1

(j − t)4
+

t

(j − t)3

)

=
p2

n

∑
|i|>pε

|M2|(i+1)
|M1|∑

k=
|M2|i
|M1|

i

(
1

k4
+

t

k3

)

≤ p2

n

∑
|i|>pε

3|M1|3
|M2|3

i((i+ 1)3 − i3)

i3(i+ 1)3
+

2|M1|2
|M2|2

it((i+ 1)2 − i2)

i2(i+ 1)2

≤ 20p2

n

|M1|3
|M2|3

p−2ε +
|M1|2
|M2|2

n|M2|
p

p−ε

= O(
20p2

n
(p−2ε + pδ−σ−ε)) = O(p3/2−σ−ε).

•

∑
|i|>pε

∑
j∈Jxi

n−1p2ij−3 ≤ p2

n

∑
|i|>pε

|M1|2i
|M2|2

(
1

i2
− 1

(i+ 1)2

)

=
p2

n

∑
|i|>pε

|M1|2
|M2|2

2i+ 1

i(i+ 1)2

= O(p3/2−δ−ε).

Combining all the terms above, we see that
∑
|i|>pε

∑
j∈Jxi

E(j) = O(p3/2−σ−ε).

Choosing ε = (δ − σ)/2, we see that it is indeed of the order p3/2−α.

3.6.2 Estimates within xi-Intervals

Within a given Ixi , pu1 , p
l
1, p

l
2 do not change signs, but pu2 does between Iyj and

Iyj+1. Thus, the main terms in Lemma 3.6.1 flip signs across different yj-intervals.

Note that between consecutive yj-intervals, either yj+1 = yj or yj+1 = yj + 2
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by construction. Moreover, y0 = x0 = 0. In this section, we replace {yj}j by {zj}j

where zj = j. Then, we have

yj − zj =


1 if j ∈ 2Z + 1

0 if j ∈ 2Z.

In particular, we may split the sum into

∑
j∈Jxi

∑
s∈Iyj

pu1(s)pu2(s)

pl1(s)pl2(s)
=
∑
j∈Jxi

(−1)jF (j) +
4p2

π2

∑
(2k+1)∈Jxi

∑
s∈Iyj

|M1|s
p
− xj

s(s+ n)
,

where

F (j) =
∑
s∈Iyj

( |M1|x
p
− xj)( |M2|(s+n)

p
− j)

s(s+ n)
.

We shall derive the following estimate from Lemma 3.5.1:

Lemma 3.6.3. The contribution of the correction term satisfies

4p2

π2

∑
i>pε

∑
(2k+1)∈Jxi

∑
s∈Iyj

(−1)i( |M1|s
p
− xj)

s(s+ n)
= O(p3/2−δ log(p)).
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Proof. Fixing i, consider the inner sum

p2
∑

(2k+1)∈Jxi

∑
s∈Iyj

|M1|s
p
− i

s(s+ n)
≤
∑
s∈Ixi

|M1|s
p
− i

s(s+ n)

=
∑
s∈Ixi

p|M1|
1

s+ n
− p2i

s(s+ n)

=
∑
s∈Ixi

p|M1|
1

s+ n
− p2i

n
(
1

s
− 1

s+ n
)

= p|M1|
p
|M1|

pi
|M1| + n

+O(p|M1|r2) +O(|M1|2i−1)

− p2i

n

(
1

i
−

p
|M1|

pi
|M1| + n

)
+O(p2n−1x−1

i )

= p|M1|
1

i+ |M1|n
p

− p2i

n

|M1|n
p

i(i+ |M1|n
p

)
+O(p2n−1x−1

i )

= O(p2n−1i−1).

(3.18)

Again, we approximated {xi}i by {wi = i}i. The contribution of the difference is,

by Lemma 3.5.1,

p2
∑

i∈2Z+1:i<|M1|/2

∑
(2k+1)∈Jxi

∑
s∈Iyj

1

s(s+ n)

≤
∑

i<|M1|/2

p2
∑
s∈Ixi

1

s(s+ n)

≤
∑

i<|M1|/2

p2

ni
+O(p2n−1i−2) = O(p2n−1 log(|M1|)).

(3.19)

Combining (3.18) and (3.19), we see that the total contribution is p2−(1/2+δ) log(|M1|) ∼

p3/2−δ log(p).

|M2|n/p will not be an integer unless n = 0. Suppose for now that |M1|||M2|.
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Then we see that there will be |M2|/|M1| − 1 complete y-intervals within. Also,

the left and right incomplete y-intervals will combine to have the same length of a

complete y-interval.

Define g1(yj) = −2p3xi
π2|M2|ỹ2j

, g2(yj) = 2np2xi
ỹ2j yj

, g3(yj) = 2p|M1|
π2yj

. All three terms are

decreasing with respect to yj. Thus,

∑
y∈Jxi

∑
s∈Iyj

pu1(s)pu2(s)

pl1(s)pl2(s)
≤

3∑
l=1

|
∑
yj∈Jxi

(−1)yjgl(yj)|+
∑
yj∈Jxi

|E(yj)|

consists of three alternating series.

Recal that Iyj ⊂ Ixi ⇐⇒ yj ∈ [xi|M2|
|M1| + |M2|n

p
, xi+1|M2|
|M1| + |M2|n

p
− 1], and∣∣J ix∣∣ = |M2|/|M1|. Thus, the case when |M2|/|M1| is an even number will be superior

to the one with odd numbers.

With the three terms carrying over, we need the following lemma:

Lemma 3.6.4. Within an xi-interval, the contribution is

∑
s∈Ixi

pu1(s)pu2(s)

pl1(s)pl2(s)
= O(p|M1|i−2) +O(p3/2−δi−1) +

∑
y∈Jxi

Ey(j).

Proof. First, note that
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∣∣∣∣∣
i+1|M2|
|M1|

+
|M2|n
p∑

j=
i|M2|
|M1|

+
|M2|n
p

+1

(−1)j
( −2p3i

π2|M2|ỹ2
j

+
2np2i

ỹ2
j j

+
2p|M1|
π2j

)∣∣∣∣∣
≤ |
∑
s∈Ixi

pu1(s)pu2(s)

pl1(s)pl2(s)
|

≤
∣∣∣∣∣
i+1|M2|
|M1|

+
|M2|n
p
−1∑

j=
i|M2|
|M1|

+
|M2|n
p

(−1)j
( −2p3i

π2|M2|ỹ2
j

+
2np2i

ỹ2
j j

+
2p|M1|
π2j

)∣∣∣∣∣.

Since |M2|/|M1| ∈ 2N, we can see that, for −2p3i
π2|M2|ỹ2j

,

i+1|M2|
|M1|

+
|M2|n
p
−1∑

j=
i|M2|
|M1|

+
|M2|n
p

(−1)j

ỹ2
j

=
|M2|2
p2

∑
j

(−1)j

(j − |M2|n
p

)2

=
|M2|2
p2

i+1|M2|
|M1|∑

zj=
i|M2|
|M1|

(−1)j

z2
j

≤ |M2|2
2p2

[( |M1|
i|M2|

− |M1|
(i+ 1)|M2|

)
−
(

1
i|M2|
|M1| + 1

− 1
(i+1)|M1|
|M2| + 1

)]

=
|M2|2
2p2

[
1

i|M2|
|M1| (

i|M2|
|M1| + 1)

− 1
(i+1)|M2|
|M1| ( (i+1)|M2|

|M1| + 1)

]

=
|M2|2
2p2

[ |M2|
|M1|(

i|M2|
|M1| + i|M2|

|M1| + 1) + |M2|2
|M1|2

i|M2|
|M1| (

i|M2|
|M1| + 1) (i+1)|M2|

|M1| ( (i+1)|M2|
|M1| + 1)

]

= O(p−2|M1|2i−3).

For 2np2i
ỹ2j j

,
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∑
j∈Jxi

(−1)j

jỹ2
j

=
∑
j∈Jxi

(−1)j
[
Aj +B

ỹ2
j

+
C

j

]

where A,B,C satisfy

Cỹ2
j + Aj2 +Bj = 1 =⇒ A =

−p2

|M2|2n2
, B =

2p

n|M2|
, C =

1

n2
.

Thus, we have

∑
j

(−1)j

jỹ2
j

=
∑
j

(−1)j
[ −p
|M2|n2 ỹj + p

n|M2|

ỹ2
j

+
1

n2j

]

=
∑
j

(−1)j
[ −p
|M2|n2

1

ỹj
+

1

n2j
+

p

n|M2|
1

ỹ2
j

]

∼ |M2|
p

−p
|M2|n2

[
log(

i+ 1

i
)− log(

(i+1)|M2|
|M1| + 1

i|M2|
|M1| + 1

)

]

+
1

n2

[
log(

(i+1)|M2|
|M1| + |M2|n

p

i|M2|
|M1| + |M2|n

p

)− log(

(i+1)|M2|
|M1| + |M2|n

p
+ 1

i|M2|
|M1| + |M2|n

p
+ 1

)

]
+O(p−1|M1|2|M2|−1n−1i−3)

∼ 1

n2

[
− 1

i
+

1

i+ |M1|
|M2|

+
1

i+ |M1|n
p

− 1

i+ |M1|n
p

+ |M1|
|M2|

]
+O(p−1|M1|2|M2|−1n−1i−3)

=
|M1|
n2|M2|

[
(2i+ |M1|

|M2|)
|M1|n
p

+ |M1|2n2

p2

i(i+ |M1|
|M2|)(i+ |M1|n

p
)(i+ |M1|n

p
+ |M1|
|M2|)

]

=
|M1|
|M2|n2

O( i|M1|n
p

) +O( |M1|2n2

p2
)

O(i4) +O(i2 |M1|2n2

p2
)
.

For 2p|M1|
π2j

, by letting 2a = i|M2|
|M1| + |M2|n

p
, 2b = (i+1)|M2|

|M1| + |M2|n
p

, and t = 1/2, we
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have

∑
j∈Jxi

(−1)j

j
=

∑
(2k)∈Jxi

(
1

2k
− 1

2k + 1
)

=
∑

(2k)∈Jxi

1

2k(2k + 1)

=

1

i+
|M1|n
p

(
1

i+
|M1|n
p

+ 1
i|M2|
|M1|

+
|M2|n
p

)
1 + 1

i+
|M1|n
p

+ 1
i|M2|
|M1|

+
|M2|n
p

+O(r2)

≤ 1

(i+ |M1|n
p

)2
+O(r2) = O(

1

i2
).

Combining the three terms, we see that

∑
j∈Jxi

(−1)j
( −2p3i

π2|M2|ỹ2
j

+
2np2i

ỹ2
j j

+
2p|M1|
π2j

)

= O(p|M1|2|M2|−1i−2) + min{O(i−2p3/2−σ), O(p3/2−2δ+σ)}

+ min{O(i−3p3/2−2σ+δ), O(p3/2−δi−1)}+O(p|M1|2|M2|−1i−2)

= O(p|M1|i−2) +O(p3/2−δi−1).

3.6.3 Proof of Proposition 3.4.1 (c)

Now, we are prepared to prove Proposition 3.4.1 (c).

Proof. of Proposition 3.4.1 (c):
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For |s| ≥ p1/2+ε+σ =⇒ xi ≥ pε, we have

∑
xi≥pε

O(p|M1|x−2
i ) +O(p3/2−δx−1

i ) + E(xi) = O(p3/2−σ−ε) +O(p3/2−δ log p).

Thus, adding the two parts, we get

O(p3/2−σ−ε) +O(p3/2−δ log p) +O(p1/2−δ+ε) = O(p3/2−αε),

where αε = min{ε + σ, δ − ε}. Now, since ε is arbitrary, we can optimize α to be

σ + (δ − σ)/2.

For different components of pl1(s), pl2(s), the same arguments work verbatim

by re-enumerate the xi and yj-intervals, so the same estimate holds. Note that

n ∼ p1/2+δ where δ ∈ (0, 1/2), so p− n ∼ p.

3.7 Proof of Proposition 3.6.2

In this section, we show that the contributions from f1, f2, f3, f4, f
′
4 are all

negligible. In increasing order of difficulty, we shall start with f ′4 and end with f1.

The remaining error terms can be summed trivially over Jxi and {i : i ≥ pε}, and

the proof will be omitted. .
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3.7.1 Estimates for f ′4

First, we note that

4p2ij

3nπ2
f ′4(j) =

4p2ij

3nπ2

(
p3

|M2|3
1

ỹ3
j

− 1

j3

)

=
4p2ij

3nπ2

(
3 p2

|M2|2 j
2n− 3 p

|M2|jn
2 + n3

ỹ3
j j

3

)
= O(p4|M2|−2ij−1ỹ−3

j ) +O(p3|M2|−1nij−2ỹ−3
j ) +O(p2n2ij−3ỹ−3

j ).

(3.20)

Lemma 3.7.1. For fixed integers l, k > 0, one has

∑
j∈Jxi

1

jlỹkj
= O( min

0≤s≤k
{(|M2|−s|M1|si−s)

( p

|M2|n
)l−s}p−ki−k|M2|1|M1|k−1),

where the constant depends on l, k.

With Lemma 3.7.1, we can prove Proposition 3.6.2 (a).

Proof. of Proposition 3.6.2 (a):

From (3.20), we can use Lemma 3.7.1, choosing the parameter s to be 0, 1, 2

respectively for the three terms. Noting that |M1| ≤ |M2|, we get the desired

estimate bound.

Proof. of Lemma 3.7.1:
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∑
j∈Jxi

1

ỹkj
∼ |M2|

p
(
|M1|
p

)k−1

[
1

ik−1
− 1

(i+ 1)k−1

]

=
|M2||M1|k−1

pk
(i+ 1)k−1 − ik−1

(i(i+ 1))k−1

∼ |M2||M1|k−1

xki p
k

,

where we note that xi+1 = xi + 1. For the second equation, denoting i|M2|
|M1| + |M2|n

p

by x̃i, we have

∑
j∈Jxi

1

jk
∼ (x̃i + 1)k−1 − x̃k−1

i

(x̃ix̃i+1)k−1

∼ O( min
0≤s≤k

{(|M2|−s|M1|si−s)
( p

|M2|n
)k−s}),

where we note that

1

x̃i
= O(min{ |M1|

|M2|i
, | p

|M2|n
|}).

Now, by Hölder’s inequality, we can derive the result.

3.7.2 Estimates for f3 and f4

We are going to use the comparison lemma: If f(x) is monotone, then

|
b∑

x=a

f(x)−
∫ b

a−1

f(t) dt| ≤ |
∫ b

a−1

f(t) dt−
∫ b+1

a

f(t) dt|.

Lemma 3.7.2. The following statements are true:
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• f3(j) = O(|M2|p−1j−2),

• f4(j) = O(|M2|2p−2j−3).

The constant of the big-O notation is independent of |M2| and p.

Proof. For f3, we have that

|f3(j)| ≤ | log(
ỹj+1

ỹj
)− log(

ỹj+1 + 1

ỹj + 1
)|

= | log(
ỹj+1(ỹj+1 + 1)

ỹj(ỹj+1 + 1)
)|

= | log(1 +
ỹj+1 − ỹj
ỹj(ỹj+1 + 1)

)|

= | log(1 +
p

|M2|
1

p2j2

|M2|2 − 2 pjn
|M2| + n2 + pj

|M2|(
p
|M2| + 1)

)|

= O(|M2|p−1j−2).
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For f4, note that 1
s(s+n)

= 1
n
(1
s
− 1

s+n
) is monotone.

|f4(yj)| ≤ | log(
ỹj+1(ỹj + n)

ỹj(ỹj+1 + n)
)− log(

(ỹj+1 + 1)(ỹj + n+ 1)

(ỹj + 1)(ỹj+1 + n+ 1)
)|

= | log(1− 1

ỹj+1 + 1
) + log(1− 1

ỹj + (n+ 1)
)− log(1− 1

ỹj + 1
)− log(1− 1

ỹj+1 + (n+ 1)
)|

= |(− 1

ỹj+1 + 1
− 1

ỹj + (n+ 1)
+

1

ỹj + 1
+

1

ỹj+1 + (n+ 1)
)

+
1

2
(− 1

(ỹj=1 + 1)2
− 1

(ỹj + (n+ 1))2
+

1

(ỹj + 1)2
+

1

(ỹj+1 + (n+ 1))2
)|+O(

1

ỹ3
j

)

= |
(

p/|M2|
(ỹj+1 + 1)(ỹj + 1)

− p/|M2|
(ỹj + (n+ 1))(ỹj+1 + (n+ 1))

)
+

1

2

(
2 p
|M2|(

pj
|M2| + 1− n) + p2

|M2|2

(ỹj + 1)2(ỹj+1 + 1)2
− 1

2

(
2 p
|M2|(

pj
|M2| + 1) + p2

|M2|2

(ỹj + 1 + n)2(ỹj+1 + 1 + n)2

)
|+O(ỹ3

j )

= | p

|M2|
n(ỹj + ỹj+1) + (n+ 1)2 − 1

(ỹj+1 + 1)(ỹj + 1)(ỹj + (n+ 1))(ỹj+1 + (n+ 1))
|

+O(|M2|2p−2j−3) +O(|M2|3p−3j−3)

= O(|M2|2p−2j−3).

Proof. of Proposition 3.6.2 (b):

Note that, by Lemma 3.7.2,

−4p|M2|i
π2

f3(j) +
4p2ij

nπ2
f4(j) = O(|M2|2ij−2) +O(|M2|2n−1ij−2) = O(|M2|2ij−2).
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Now,

∑
j∈Jxi

1

j2
∼ 1

i|M2|
|M1| + |M1|n

p

− 1
(i+1)|M2|
|M1| + |M1|n

p

=
|M2|/|M1|

( i|M2|
|M1| + |M1|n

p
)( (i+1)|M2|

|M1| + |M1|n
p

)

= O(
|M1|
|M2|i2

).

(3.21)

Then, summing over all possible xi, we see that

|M1|∑
x=1

|M1||M2|
x

x2
∼ |M1||M2| log p,

which concludes the proof.

3.7.3 Estimates for f2

Proof. of Proposition 3.6.2 (c):

Suppose { p
|M2|} = δ, where {x} = x − bxc. Let { pyj|M2|} = 1 − ε = 1 − εj, then

for a given t ∈ Z,

j

t
− j log(

t+ 1− ε
t− ε ) =

j

t
− yj log(1 +

1

t− ε)

=
j

t
− j( 1

t− ε −
1

2(t− ε)2
+O(t−3))

=
−εj

t(t− ε) +
j

2(t− ε)2
+O(t−3j).
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Summing over t from d pj
|M2|e to bpy(j+1)

|M2| c, we have

b p(j+1)
|M2|

c∑
t=d pj
|M2|
e

−jε
t(t− ε) =

b p(j+1)
|M2|

c∑
t=d pj
|M2|
e

yj(
1

t
− 1

t− ε)

∼ j

(
log
dp(j+1)
|M2| e
d pj
|M2|

− log

p(j+1)
|M2| + (1− 2ε− δ)

pj
|M2|

)

= j

(
log

(p(j+1)
|M2| + (1− ε− δ)) pj

|M2|

( pj
|M2| + ε)(p(j+1)

|M2| + (1− 2ε− δ))

)

= j

(
log

(
1 +

ε pj
|M2| − ε

p(j+1)
|M2| +O(1)

( pj
|M2| − ε)(

p(j+1)
|M2| + (1− 2ε− δ))

))

= j
ε pj
|M2| − ε

p(j+1)
|M2|

( pj
|M2| + ε)(p(j+1)

|M2| + (1− 2ε− δ))
+O(

|M2|2
p2

j−1)

=
−ε pj
|M2|

( pj
|M2| + ε)(p(j+1)

|M2| + (1− 2ε− δ))
+O(

|M2|2
p2

j−1)

= O(|M2|p−1j−1) +O(|M2|2p−2j−1).

The other term can be obtained similarly. Now,

|M2|∑
j=1

4p|M1|j
π2

f2(j) =

|M2|∑
j=1

O(|M1||M2|j−1) = O(|M1||M2| log |M2|).

3.7.4 Estimates for f1

Proof. of Proposition 3.6.2 (d):

Since (p, |M2|) = 1, we see that the fractional part of {pyj/|M2|}|M2|
j=1 runs

through {k/|M2|}|M2|−1
k=0 .
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We denote the fractional part of a number x by {x} = x−bxc. Let {p/|M2|} =

δ, and {pyj/|M2|} = εj, then

f1(yj) = −(1− εj)− {εj + δ} =


−1− δ if ε+ δ < 1

−δ if ε+ δ ≥ 1

Without loss of generality, we may assume that δ ≤ 1/2. Since f1 changes

signs from one yj-interval to another, it is important to identify where |f1| attains

δ.

In order to do that, we first introduce the notion of the critical zone.

Definition 3.7.3. Given δ ≤ 1/2, the critical zone Ā ⊂ S1, the unit circle, is defined

as Ā = [1 − δ, 1). The discrete counterpart A ⊂ Z/|M2|Z is A = {x ∈ Z/|M2|Z :

x
|M2| ∈ Ā}.

We should note that {pj/|M2|} ∈ A if and only if |f1(j)| = δ. Thus, the

problem now depends on when {pj/|M2|} lies in A so as to account for cancellation.

Now, we note that there are effectively |M2|/|M1| yj-intervals within one xi-

interval. Also, the corresponding yj-intervals in consecutive xi-intervals have dif-

ferent signs. In particular, yj+2|M2|/|M1|-interval and yj-interval have the same sign.

Since we assume that |M1| is even, 2|M2|
|M1| Z/|M2|Z is an additive subgroup of order

|M1|/2. Also, for any given j, {[{pyk/|M2|}]}j+2|M2|/|M1|−1
k=j are distinct representa-

tives of the coset.

As p is a unit in Z/|M2|Z, we can replace the representatives by {−k}|M1|/2
k=1 .

Also, we see that between each coset, the number of elements inside the critical zone
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A differs by at most 1. Thus, the excessive parts that are not cancelled contribute

at most |M2|/|M1|.

For the boundary contribution of one xi-interval, we see that the incomplete

sums on both sides combine to represent the coset |M2|/|M1|.

The argument above applies for summation over the whole group, but in our

case we need to avoid the singularity at −n, which splits the summation range into

2 parts. Nonetheless, we shall show that the intuition still holds true even with

segmented sums.

If γ = {p/|M2|} < p−1/2+σ, then |f1(j)| = δ for at most pσ times, so the

contribution is
√
p|M2| = O(p).

First, when we split the summation range into 2 parts, note that since the

complete summation gives at most the order of |M2|/|M1|, it suffices to estimate for

one part and get the estimate of the other part by subtraction.

As it suffices to estimate for the range −n ≤ s ≤ p/2, we are looking at the

following quantity

I =
∑
a≤t≤b

2|M2|
|M1|

−1∑
j=0

(−1)jg

[
pj +

tp|M2|
|M1|

]
,

where |b − a| = O(|M1|), and g = 1A : Z/|M2|Z → R is the characteristic

function of A. Moreover, |A| ∼ δ|M2|.
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Now,

I =
∑
a≤t≤b

2|M2|
|M1|

−1∑
j=0

(−1)jg[pj +
tp|M2|
|M1|

]

=
1√
|M2|

∑
j

(−1)j
∑
a≤t≤b

∑
k∈Z/|M2|Z

ĝ[k]e−2πıtpk/|M1|e2πıkpyj/|M2|

=
1√
|M2|

∑
k

ĝ[k]

( ∑
a≤t≤b

e−2πıtpk/|M1|
)(∑

yj

(−1)yje2πıkpyj/|M2|
)

=
1

|M2|
∑
k

C̄k
sin(πk|A|/|M2|)

sin(πk/|M2|)
sin(πk(b− a+ 1)p/|M1|)

sin(πpk/|M1|)
sin(2πkp/|M1|)
sin(2πkp/|M2|)

sin(πkp/|M2|),

where |C̄k| = 1 for all k. Thus, by Hölder’s inequality, the identity formula of the

Fejér kernel, and change of variables (kp 7→ l), we see that

|I| ≤ 1

|M2|

(∑
k

|sin(πk|A|/|M2|)
sin(πk/|M2|)

|2
)1/2

·
( ∑
l∈Z/|M2|Z

∣∣∣∣sin(πl(b− a+ 1)/|M1|)
sin(πl/|M1|)

∣∣∣∣2∣∣∣∣sin(2πl/|M1|)
sin(2πl/|M2|)

sin(πl/|M1|)
∣∣∣∣2)1/2

≤ 1

|M2|
√
|A|
√

(b− a+ 1)
|M2|
|M1|

|M2|
|M1|

= O(
|M2|
|M1|

).

As a result, the contribution from each ends is at most |M2|/|M1|, which concludes

our proof.
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3.8 Extension to general cases

The results we presented above only apply for very specific cases, and it is

significantly harder to extend the result to the general cases with the same technique.

The approaches we introduce below are still work in progress and need to be further

refined.

For the Legendre symbol χ, it has intimate connection to the Kloosterman

sums.

Definition 3.8.1. Let p be a prime. For any integers a, b, the quantity

K[a, b; p] =
∑

x∈(Z/pZ)×

exp(2πı(ax+ bx−1)/p),

where x−1 denotes the multiplicative inverse of x in Z/pZ, is called a Kloosterman

sum.

In connecting χ with the Kloosterman sum, Ernst Jacobsthal wrote down a

formula in the footnote on page 239 of [43], while referring the readers to his Ph.D

thesis. In [7], one of the authors derived the proof again.

Lemma 3.8.2 (Lemma 3.3 in [7]). Let a be an integer not divisible by p and F :

Z/pZ→ C be any function. Then

∑
x∈(Z/pZ)×

F [x+ ax−1] =
∑

x∈Z/pZ

F [x] +
∑

x∈Z/pZ

χ[x2 − 4a]F [x].

From Lemma 3.8.2, we can derive the following equality:
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Lemma 3.8.3. For any m1 6= m2, one has

∑
k∈Z/pZ

χ[k +m1 −m2]χ[k] = −1.

Proof. Since χ is a character on the multiplicative group (Z/pZ)×,

∑
k∈Z/pZ

χ[k +m1 −m2]χ[k] =
∑

k∈Z/pZ

χ[k(k +m1 −m2)]

=
∑

k∈Z/pZ

χ[(k + (m1 −m2)/2)2 − (m1 −m2)2/4]

=
∑

k∈Z/pZ

χ[k2 − (m1 −m2)2/4],

by shifting the indices in the last line. Choosing a = (m1 −m2)2/16 and let F be

the constant function taking value 1, one has

p− 1 = p+
∑

x∈Z/pZ

χ[x2 − 4a] = p+
∑

k∈Z/pZ

χ[k +m1 −m2]χ[k].

Let τmχ[k] := χ[k +m]. Then,

Corollary 3.8.4. Given a fixed m2, and Ω1(n1) ⊂ Z/pZ,

‖
∑

m1∈Ω1(n1)

τm1−m2χ‖2 = |Ω1(n1)|(p− 1)− |Ω1(n1)|(|Ω1(n1)| − 1).
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Proof.

<
∑

m1∈Ω1(n1)

τm1−m2χ,
∑

m1∈Ω1(n1)

τm1−m2χ>

=
∑

m1∈Ω1(m1)

<τm1−m2χ, τm1−m2χ>+
∑

m1 6=m′1

<τm1−m2χ, τm′1−m2
χ>

= |Ω1(n1)|
∑

k∈Z/pZ

|χ[k]|2 − |Ω1(n1)|(|Ω1(n1)| − 1)

= |Ω1(n1)|(p− 1)− |Ω1(n1)|(|Ω1(n1)| − 1).

To estimate |∑m1∈Ω1(n1) Ap(χ)[m1 −m2, n1 − n2]|, note that

∑
m1∈Ω1(n1)

Ap(χ)[m1 −m2, n1 − n2] =
1

p

∑
k∈Z/pZ

∑
mn∈Ω1(n1)

τm1−m2χ[k]χ[k]ep(k(n1 − n2))

=
1√
p

(Fv)[n1 − n2],

where F = 1√
p
(ep(kl))k,l∈Z/pZ is the Discrete Fourier Transform (DFT) matrix and

v =

( ∑
m1∈Ω1(n1)

(τm1−m2χ)[k]χ[k]

)t
k∈Z/pZ

,

with the slight abuse of notation v = v(Ω1(n1),m2). From Corollary 3.8.4, we see

that

‖v‖2
2 = |Ω1(n1)|(p− 1)− |Ω1(n1)|(|Ω1(n1)| − 1)− |

∑
m1∈Ω1(n1)

τm1−m2χ[0]|2.
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Thus,

|
∑

m1∈Ω1(n1)

Ap(χ)[m1 −m2, n1 − n2]| ≤ 1√
p
‖Fv‖∞.

Remark 3.8.5. For n1 = n2, we have

v̂[0] = (Fv)[0] =
∑

k∈Z/pZ

∑
m1∈Ω1(n1)

τm1−m2χ[k]χ[k] = −|Ω1(n1)|.

Since F is a unitary transform, we see that

∑
x∈Z/pZ

|Fv[x]|2 = |Ω1(n1)|(p−1)−|Ω1(n1)|(|Ω1(n1)|−1)−|
∑

m1∈Ω1(n1)

τm1−m2χ[0]|2 ≤ |Ω1(n1)|p.

Thus, the average entry-wise magnitude of Fv will be

1√
p
‖Fv‖2 ≤

√
|Ω|1(n1).

If we can replace 1√
p
(Fv)[n1−n2] by

√
|Ω1(n1)|
√
p

, then assuming |N | ≤ pc, we will have

∑
n1,n2∈N

∑
m2∈Ω2(n2)

|
∑

m1∈Ω1(n1)

Ap(χ)[m1 −m2, n1 − n2]| ≤
∑
n1∈N

√
|Ω1(n1)| ≤ pc/2p1/4.

It indicates that if Fv is of constant amplitude (CA), then we would have proven

Theorem 3.3.1 with even smaller exponents. The following lemma related Fv being

CA with v being of zero auto-correlation (ZAC):

Lemma 3.8.6. Given a sequence x ∈ CN , x̂ is CA if and only if x is ZAC.

It leads us to examine the auto-correlation of v. However, as we will see below,

131



v is not ZAC, and the estimation on its auto-correlation is not enough to provide a

meaningful bound. Instead, we will employ the power method to examine the high

moments of v̂.

3.8.1 Weil’s Exponential Sums and the Power Method

Mentioned in [5] and proven in [52], we have the following Weil’s exponential

sum estimate:

Lemma 3.8.7 (Theorem 3.1 in [5], Theorem 2C of Chapter 2 in [52]). Given k ∈ N,

there exists p0 such that for any 0 < t1 < · · · < tk < p, one has

|
∑

x∈Z/pZ

χ(x+ t1) · · ·χ(x+ tk)| ≤ kp1/2.

Remark 3.8.8. For any vector v,

‖v‖∞ ≤ inf
s≥1
‖v‖s.

Now, we are able to give the following estimate on ‖Fv‖∞:

Theorem 3.8.9 (This theorem is wrong!). Given fixed m2,Ω1(n1), one has

‖v‖16 ≤ |Ω1(n1)|3/4p1/16.
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In fact, for any integer s = 2n for some n ∈ N, one has

‖v‖s ≤ |Ω1(n1)|3/4p1/s.

Before proving Theorem 3.8.9, we shall see how we can use it to prove RIP:

Proof. of RIP:

Given a fixed N ⊂ Z/pZ and disjoint Ω1,Ω2 ⊂ Z/pZ×N , we have

∣∣∣∣ ∑
(m1,n1)∈Ω1

∑
(m2,n2)∈Ω2

<um1,n1 , um2,n2>

∣∣∣∣ ≤ ∑
n1,n2∈N

∑
m2∈Ω2(n2)

|
∑

m1∈Ω1(n1)

Ap(χ)[m1 −m2, n1 − n2]|+ 8

9

≤
∑

(m2,n2)∈Ω2

∑
n1∈N

1√
p
‖v̂‖∞ +

8

9

≤
√
p

3

1√
p

∑
n1∈N

|Ω1(n1)|3/4 lim inf
s>1

p1/s +
8

9

≤ 1

3
|N |
( |Ω1|
|N |

)3/4

+
8

9

≤ 1

3

1

33/4
p

0.09c
4

+ 3
8 +

8

9

≤ p
0.09c

4
− 1

8p1/2,

where the fourth inequality follows from the fact that f(t) = t3/4 is concave.

Before proving Theorem 3.8.9, we recall the following facts:

Remark 3.8.10. The following statements are true:

• For any two vectors f, g ∈ Cp, f̂ ∗ g[t] =
√
pf̂ [t]ĝ[t] for any t ∈ Z/pZ,

• ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1, and
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• ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2 by Minkowski’s inequality.

Proof. of Theorem 3.8.9: First, consider

|p3
∑
t

|v̂[t]|8ep(tl)| = |<τ−l(v ∗ v ∗ v ∗ v), v ∗ v ∗ v ∗ v>|

≤ ‖v ∗ v ∗ v ∗ v‖2
2

≤ ‖v ∗ v ∗ v‖2
1‖v‖2

2

≤ ‖v‖6
1‖v‖2

2

≤ p3‖v‖6
2‖v‖2

2

≤ p3 · |Ω1(n1)|4p4 = |Ω1(n1)|4p7.

(3.22)

On the other hand,

<τ−l(v ∗ v ∗ v ∗ v), v ∗ v ∗ v ∗ v>

=
∑

m1
1,...,m

8
1

∑
k

( ∑
s1,s2,s3

χ[l + k + (m1
1 −m2)− s1]χ[l + k − s1]χ[s1 + (m2

1 −m2)− s2]χ[s1 − s2] · · ·
)

·
( ∑
t1,t2,t3

χ[k + (m5
1 −m2)− t1]χ[k − t1]χ[t1 + (m6

1 −m2)− t2]χ[t1 − t2] · · ·
)
.
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Thus,

|<τ−l(v ∗ v ∗ v ∗ v), v ∗ v ∗ v ∗ v>|

≤
∑

m1
1,...,m

8
1

∑
k

∑
s2,s3

∣∣∣∣∑
s1

χ[l + k + (m1
1 −m2)− s1]χ[l + k − s1]χ[s1 + (m2

1 −m2)− s2]χ[s1 − s2]

∣∣∣∣
·
∑
t2,t3

∣∣∣∣∑
t1

χ[k + (m5
1 −m2)− t1]χ[k − t1]χ[t1 + (m6

1 −m2)− t2]χ[t1 − t2]

∣∣∣∣
=

∑
m1

1,...,m
8
1

∑
k

∑
s2,s3

S(l, k,m1
1,m

2
1, s2)T (k,m5

1,m
6
1, t2).

By multiplying the each of the first two terms by −1, we are ready to apply Lemma

3.8.7:

1. Suppose

l + k + (m1
1 −m2), l + k − s1, (m

2
1 −m2)− s2, s2

are distinct, then by Lemma 3.8.7, |S(l, k,m1
1,m

2
1, s2)| ≤ 4p1/2.

2. Suppose two of the four terms above are identical, then by Lemma 3.8.3,

|S(l, k,m1
1,m

2
1, s2)| = 1.

3. Suppose there are two identical pairs, then


l + k +m1

1 = s2 −m2
1

l + k = s2

,

which implies m1
1 = m2

1, and k = s2− l. For a fixed l, there are |Ω1(n1)|p such

solutions.

135



Taking all the situations into account, we have

|<τ−l(v ∗ v ∗ v ∗ v), v ∗ v ∗ v ∗ v>| ≤ 16|Ω1(n1)|8p6 + 2|Ω1(n1)|7 · 4p5.5 − |Ω1(n1)|6p5

≤ 17|Ω1(n1)|8p6.

(3.23)

Combining the estimates in (3.22) and (3.23), we see that

|p3
∑
t

|v̂[t]|8ep(tl)| ≤ min{|Ω1(n1)|4p7, 17|Ω1(n1)|8p6} ≤
√

17|Ω1(n1)|6p6.5.

Let y[t] := |v̂[t]|8, then

|ŷ[l]| ≤
√

17Ω1(n1)6p3.

By Parsevel’s identity,

∑
t∈Z/pZ

|y[t]|2 =
∑
l

|ŷ[l]|2 ≤ 17Ω1(n1)12p7.

Taking the 16-th root on both sides, we get

‖v̂‖16 ≤ 171/16Ω1(n1)3/4p7/16.
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3.8.2 Numerical Experiments

Since we want to show that

‖v̂‖∞ ≤ |Ω1(n1)|1−ε

for some ε > 0, where

v̂[s] = v̂Ω1(n1)[s] =
1√
p

∑
k∈Z/pZ

∑
m∈Ω1(n1)

τmχ[k]χ[k]ep(kn),

it is perhaps beneficial to examine whether the claim has some substance in it.

We have the following two algorithms that attempt to verify our conjecture.

Algorithm 1. This algorithm seeks to simulate supM⊂Z/pZ: |M |≤√p ‖v̂M‖∞:

1. A fixed prime p ∈ N and number of iterations iter ∈ N are given.

2. for i in range(b√pc):

3. for j in range(iter):

4. Mj ← random sample from Z/pZ\{0} with size j.

5. V alue[i]← supj ‖v̂Mj
‖∞.

6. Plot ({1, . . . , b√pc}, V alue).

Algorithm 2. This algorithm seeks to simulate supM⊂Z/pZ: |M |≤√p supt∈Z/pZ |<τtvM , vM>|.
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Figure 3.1: Illustration of the value supM :|M |=j ‖v̂‖∞ with respect to j in log-log
plot. Data are normalized by 2/

√
p

1. A fixed prime p ∈ N and number of iterations iter ∈ N are given.

2. for i in range(b√pc):

3. for j in range(iter):

4. Mj ← random sample from Z/pZ\{0} with size j.

5. V alue[i]← supj supt |<τtvMj
, vMj

>|.

6. Plot ({1, . . . , b√pc}, V alue).
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Figure 3.2: Given a fixed p, we examine the asymptotic behavior of the graph as
the number of iterations increases. Illustration of the value supM :|M |=j ‖v̂‖∞ with
respect to j in log-log plot. Data are normalized by 2/

√
p

3.8.3 Premature Ideas

To tackle the problems posed in Section 3.8, we made many unsuccessful at-

tempts. Below we recount some of them, and even though they do not seem to lead

to anywhere, they may be of use after some modification.
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Figure 3.3: Illustration of supM :|M |=j supt∈Z/pZ |<τtvM , vM>| with respect to j in
log-log plot. Data are normalized by the first entry.

3.8.3.1 Exact Counting

The idea is to derive the exact distribution of signs of {χ[k+m1]χ[k+m2]χ[k+

m3]χ[k]} + k. Incidentally, it is quite accurate up to counting {χ[k + m1]χ[k +

m2]χ[k]}k, but things break down in the case with four elements, and one needs

to resort to Weil’s exponential sum estimate, which defeats the purpose of exact

counting.

• n = 2:
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First, one should note that for any m 6= 0,
∑

k χ[k + m]χ[k] = −1. Thus,

{χ[k + m]χ[k]}k has 2 zeros, (p − 1)/2 negative ones, and (p − 3)/2 positive

ones. Thus, looking at w[k] := χ[k +m] + χ[k], we see that w must satisfy

w →


±2 : p−3

2

0 : p−1
2

±1 : 2

by viewing the positive sign in χ[k+m]χ[k] as amplification and negative sign

as cancellation.

• n = 3:

We know that
∑

k(χ[k + m1] + χ[k + m2])χ[k] = −2. Suppose that there are

j̃ of 2’s, and ĩ of 1’s, then we have the following situations:

1. χ[m1] + χ[m2] = ±2 =⇒ ĩ = 0, 2:

– ĩ = 0: −2 = 2j̃ − 2(p−3
2
− 1− j̃)− 2 =⇒ j̃ = p−5

4
.

– ĩ = 2: −2 = 2j̃ − 2(p−3
2
− 1− j̃) + 2 =⇒ j̃ = p−9

4
.

2. χ[m1] + χ[m2] = 0 =⇒ ĩ = 1:

– ĩ = 1: −2 = 2j̃ − 2(p−3
2
− j̃) =⇒ j̃ = p−5

4
.

Note that ĩ depends on the sign distribution of χ[m1] and χ[m2].

As the number of j̃ represents amplification, we can derive that for z[k] =

χ[k +m1] + χ[k +m2] + χ[k], one has
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z →



±3 : j̃

±2 : ĩ+ 1

0 : 2− ĩ

±1 : (p−3
2
− j̃) + p−1

2
− 1

.

Up to this point, we are able to fairly accurately capture the exact distribu-

tions. We shall see the difficulty arising when n = 4.

• n = 4:

Again, we have
∑

k(χ[k+m1]+χ[k+m2]+χ[k+m3])χ[k] = −3. We assume that

m1,m2,m3 are distinct nonzero residues. We look at s = χ[m1]+χ[m2]+χ[m3].

Since none of them are 0, it can only be ±1,±3.

Let’s talk about the case when (s, ĩ, j̃) = (±3, 0, p−5
2

). If there are ã of 3’s, b̃

of 2’s, and c̃ of 1’s, then

−3 = 3ã− 3(
p− 5

4
− 1− ã) + 2b̃− 2(1− b̃) + c̃− (

p− 5

4
+
p− 1

2
− c̃)

= 6ã+ 4b̃+ 2c̃− 3

2
(p− 5)− 1

=⇒ 3ã+ 2b̃+ c̃ =
3

4
(p− 5)− 1.

On the other hand, we see that what we really want is

∑
k

χ[k +m1]χ[k +m2]χ[k +m3]χ[k] = ã− c̃− (j̃ − ã) + ((
p− 3

2
− j̃) +

p− 1

2
− 1− c̃)

= 2ã− 2c̃+
p− 5

2
+ 2

= 8ã+ 4b̃− (p− 9),

142



where b̃ = 0 or 1.

Note that ã represents the number such that all four elements have the same

sign, i.e.,

ã = |{k ∈ Z/pZ : χ[k +m1] = χ[k +m2] = χ[k +m3] = χ[k]}|.

From the pseudo-randomness of Legendre symbols, we see that |ã − p
8
| =

O(p1/2). However, how the distribution of (m1,m2,m3) affects the distance,

we are not sure yet. Knowing this more thoroughly will help us pin down the

exact value, and in turn it may help us crack <τtv, v> problem.

Algorithm 3. This algorithm simulates the distribution of {∑k χ[k + m1]χ[k +

m2]χ[k +m3]χ[k]}(m1,m2,m3).

1. A fixed prime p ∈ N and number of iterations iter ∈ N are given.

2. for j in range(iter):

3. Mj ← random sample (mj
1,m

j
2,m

j
3) from Z/pZ\{0} with size 4.

4. V alue[i]←∑
k χ[k +mj

1]χ[k +mj
2]χ[k +mj

3]χ[k].

5. Plot histogram of V alue.
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Figure 3.4: Distribution of
∑

k χ[k + m1]χ[k + m2]χ[k + m3]χ[k] for 200 random
samples of (m1,m2,m3).

144



3.8.3.2 Splitting Convolutions into Shifted Products

We will illustrate with the case v ∗ v ∗ v ∗ v.

v ∗ v ∗ v ∗ v[k] =
∑
s1

v[s1]
∑
s2

v[k − s1 − s2]
∑
s3

v[s3]v[s2 − s3]

=
∑
s2

(∑
s1

v[s1]v[k − s1 − s2]

)(∑
s3

v[s3]v[s2 − s3]

)

=
∑
s2

(∑
s1

v[s1]v[s1 + s2 − k]

)(∑
s3

v[s3]v[s3 − s2]

)

=
∑
s2

(
<τk−s2v, v><τs2v, v>

)
.

On the other hand, ‖v ∗ v ∗ v ∗ v‖2
2 = p3/2‖|v̂|4‖2

2. For n layers of convolution, the

shifted products absorbs about (n− 1)/2 layers of whole sums. If we can show that

<τtv, v> = O(M2−ε), independent of p, then we can estimate the remaining sums

trivially and still arrive at the desired bound. The problem is, is it possible to bound

<τtv, v> solely with, say, M1.6? It seems unlikely, as the simulation shows that the

quantity also grows with
√
p, which means we might need better estimations.

3.8.3.3 Randomness of Legendre Symbol

The pseudo-randomness of Legendre symbols may also help us in estimating

‖v̂‖∞.

By viewing Z/pZ as a sample space with the normalized counting measure as
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the probability measure, we see that each τtχ is almost Bernoulli with

P(χ = 1) = P(χ = −1) =
p− 1

2p
.

Also, they are almost mutually independent, as Cov(τtχ, χ) = −1
p

. Thus, it might

be expected that
∑

m∈M τmχ may weakly converge to a normal random variable

X ∼ N (0,M p−1
p

).

Now, vM = Xχ is a perturbed version of a normal random variable, and

<τtvM , vM> = pE(τtvM · vM). If we naively believe that is indeed the case, and

suppose the index shift t is such that τtM ∩M = φ, then we may invoke

<τtvM , vM> = pE(τtvM ·vM) = pE(τtvM)E(vM) =
1

p

(∑
k

vM [k+t]

)(∑
k

vM [k]

)
=
|M |2
p

,

(Naive)

by noting that
∑

m∈M
∑

k χ[k +m]χ[k] = −|M |.

If that is the end, then everything will be solved. However, there is bound to

be some error term. Thus, it will become

<τtvM , vM> =
|M |2
p

+ Error. (Realistic)

The first term is inconsequential, while we would have hoped the error term to be

of the form C|M |1−ε, which is not entirely outrageous if we think of vM as some sort

of perturbed normal random variable. On the other hand, the left-hand side seems

to also grow with p1/2. If that is the case, then the end estimate of ‖v̂‖∞ will take
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on an additional p1/4, which does not bode well at all, given that we are not able to

accommodate this factor with the gained space from |M |1−ε.

Chapter 4: Weight Identification for ReLu Neural Networks

In this chapter, we discuss whether it is possible to recover the weights in neural

networks with rectified linear units (ReLU) as activation functions up to permutation

and re-scaling with positive factors. In particular, we extend the approach employed

in [33, 34] to neural networks with non-smooth activation functions, specifically

leaky ReLU neural networks. A more precise description of the problems is given

in Section 4.1.3. We first investigate 1-layer networks, which yield similar results

to the ones discussed in [33]. Then, we outline our work on 2-layer networks. This

part is not yet finished, and research is still ongoing.

First, we start with the definition of a (leaky) ReLU function:

Definition 4.0.1. A Rectified Linear Unit (ReLU) σ is defined to be σ(x) = x if

x > 0, and σ(x) = 0 if x ≤ 0.

A leaky ReLU ση with parameter η ∈ [0, 1) satisfies ση(x) = x if x > 0, and

ση(x) = ηx if x ≤ 0.

We shall cover the preliminaries in Section 4.1 before stating and proving our

results in Sections 4.2 and 4.3.
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4.1 Preliminaries

4.1.1 Tensor Decomposition and Its Motivation

A neural network f̃(x) : Rd → R is an alternating composition of affine trans-

formations and non-linear activation functions:

f̃(x) = AL ◦ σ ◦ AL−1 ◦ · · · ◦ σ ◦ A1(x),

where Aj : Rdj−1 → Rdj are affine transformations and σ is a non-linear activation

function applied entry-wise.

For exposition, we first restrict ourselves on the case where f̃ has only one

hidden layer:

f(x) =
m∑
i=1

αiσ(
d∑
j=1

wijxj + θi) =
m∑
i=1

gi(ai · x), x ∈ Rd.

Our task is to recover all {αi}, {wij}, {θi}, or equivalently, {gi, ai}. Note that f

is a sum of ridge functions with unknown ridge directions. Estimation of the sum of

ridge functions has been extensively studied in approximation theory [11, 22, 23, 28].

In particular, in [10] it was pointed out that higher order differentiation can be used

to obtain information on the ridge directions {aj} by

Dc1 · · ·Dckf(x) =
∑
i

g
(k)
i (ai · x)(ai · c1) · · · (ai · ck).
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This provides a connection between identification of {ai} and tensor decom-

position of the derivatives of f . In particular, for all 1 ≤ `, s ≤ d,

∂`f(x) =
m∑
i=1

g′i(ai · x)(ai)` =⇒ ∇f(x) =
m∑
i=1

g′i(ai · x)ai.

∂`∂sf(x) =
m∑
i=1

g′′i (ai · x)(ai)`(ai)s =⇒ ∇2f(x) =
m∑
i=1

g′′i (ai · x)ai ⊗ ai.

However, for some cases it is not feasible to obtain derivatives of f due to

limited access to the samples. It is then necessary to employ weak differentiation:

given random samples xk ∼ µ for some distribution µ with density p(x), one can

calculate

∆`
N(f) =

1

N

N∑
k=1

(−1)`f(xk)
∇`p(xk)

p(xk)
≈
∫
Rd

(−1)`f(x)
∇`p(x)

p(x)
p(x) dx

=

∫
Rd

(−1)`f(x)∇`p(x)dx

=

∫
Rd
∇kf(x)dµ(x)

=
m∑
i=1

(∫
Rd
g

(k)
i (ai · x)dµ(x)

)
ai ⊗ · · · ⊗ ai.

(4.1)

In the case when strong derivatives can be obtained, for any x,

∇f(x) ∈ A1 = span{a1, . . . , am} ⊂ Rd,

∇2f(x) ∈ A = span{a1 ⊗ a1, . . . , am ⊗ am} ⊂ Rd×d,

where aj ⊗ aj = aja
T
j . Suppose that {aj}j are orthonormal, then we can exactly
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recover {aj} from the eigen-decomposition of ∇2f(x) from just one sample. How-

ever, there are some difficulties in practice: (i) {aj}j are generally not orthonormal,

and (ii) the stability of eigen-decomposition relies on spectral gaps, which we do not

know a priori.

To deal with the difficulties above, [33, 34] sample many approximations of

{∇2f(xi)}i so as to approximate A with Ã . Using a technique called whitening,

the weights {aj}j can be assumed to be nearly orthogonal. Then, it was shown

that unit-norm approximations of {±aj}j can be recovered by searching for rank-1

matrices in Ã with the following optimization scheme

arg max ‖M‖∞, ‖M‖F ≤ 1,M ∈ Ã ,

where ‖ · ‖∞ is the `2-to-`2 operator norm.

For neural networks with two layers, they are no longer sums of ridge functions.

Instead, they take the following form

f(x) =

m1∑
`=1

α`σ(b` · g(x) + d`) = h ◦ g(x), (g(x))j = σ(aj · x+ cj), j = 1, . . . ,m0.
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Its second derivative has the following form

∇2f(x) =

m1∑
`=1

h′`(b
T
` g(ATx))

m0∑
j=1

bj`g
′′
j (aj · x)aj ⊗ aj

+

m1∑
`=1

m0∑
i,j=1

h′′` (b
T
` g(ATx))bi`bj`g

′
i(a

T
i )g′j(a

T
j x)(ai ⊗ aj + aj ⊗ ai)

=

m1∑
`=1

h′`(b
T
` g(ATx))

m0∑
j=1

bj`g
′′
j (aj · x)aj ⊗ aj

+

m1∑
`=1

h′′` (b
T
` g(ATx))

[
m0∑
i=1

bi`g
′
i(a

T
i x)ai

]
⊗
[
m0∑
j=1

bj`g
′
j(a

T
j x)aj

]
,

where A = (a1| · · · |am0).

While the first m0 terms of ∇2f are {aj⊗aj}j which do not depend on x ∈ Rd,∑
i = 1m0bi`g

′
i(a

T
i x)ai does change for different x. It is particularly problematic as

now {∇2f(xk)}k do not belong in the same (m0 +m1)-dimensional subspace of Rd×d.

However, assuming maxi ‖g′′i ‖∞ can be well-controlled, each ∇2f(x) is close to the

space span{aj ⊗ aj, v` ⊗ v`}j,`, where v` =
∑m0

i=1 bi`g
′
i(0)ai.

4.1.2 Perspective and Prior Works

In [4], it is shown that the third order tensor decomposition can be done by

alternative rank-1 updates even for overcomplete cases. [44] analyzed a two-layer

feedforward neural network with linear activation function on the second layer using

(4.1) and the same techniques of [4].

In [33], the authors recovered weights for neural networks with one hidden layer

using multiple instances of principal Hessian directions of the network, making it

more robust than [44, 46] where only one instance is utilized. [34] extended the
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same method to neural networks with two layers. For two layers, the principal

Hessian direction belongs in different linear subspaces at each sample point due to

the non-linearity of activation functions. A reference subspace was set up, and the

error estimate relies on the bound of derivatives of the activation function. In both

[33, 34], the activation function is assumed to be smooth, which excludes popular

activation functions such as (leaky) Rectified Linear Unit (ReLU). In [34], it is more

complicated to use weak differentiation due to the variability of principal Hessian

directions, and recovery of bias terms is less explicit.

4.1.3 Problem Description

Our main focus here is on neural networks of one and two layers with ReLU as

the activation function. The goal is to identify the weights of the neural networks

up to permutation and re-scaling.

We can show that the ReLU neural networks with one layer can be written

as f(x) =
∑m

`=1 σ(a` · x + c`), and the ones with two layers can be written as

f(x) =
∑m1

`=1 α`σ(b` · g(x) + d`), where (g(x))j = σ(aj · x + cj) for all j. Note that

there may be multiple neural networks corresponding to the same f by permutation

and re-scaling with positive factors. However, up to those trivial transformations,

we aim to reconstruct the parameters {aj, cj}, {b`, d`, α`}.

For simplicity, we shall assume that we have full access to the values of f ,

that is, we may sample however many points at wherever we desire. This is to

investigate whether the algorithms to recover weights of f by from its second order
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weak derivatives do exist. Nonetheless, our ultimate goal is to provide constructive

algorithms and give guidelines on the selection of points during the process.

4.1.4 Results

This chapter follows similar techniques as [33, 34], except for the principal

Hessian direction step: due to the difference between smooth activation functions

and leaky ReLU, there is a different outlook than result in [34]. In their case, there

would be entangled weights that vary for different sampling points. As for ours, the

number of entangled weights grows exponentially with the dimension of the first

layer. We propose a technique called net-spreading, performing weak differentiation

locally for ReLU neural networks. Leveraging the properties of ReLU, a multi-scale

version of the original algorithm used by Fornasier et al. can be employed. Favorable

properties of leaky ReLUs also allow for reliable function recovery.

4.2 One-Layer Case

Leaky ReLU neural networks with one hidden layer have the following form

f(x) =
m∑
`=1

σ(a` · x+ c`),

where σ(x) = ση(x) = ηx + (1− η)x1x>0 for η ∈ [0, 1) is the leaky ReLU function.

Note that when η = 0, σ0 is the usual ReLU function. In this section, we follow

almost verbatim on [33].

153



Definition 4.2.1. Given φ ∈ C∞c (Rd), a compactly supported smooth function,

and {xk}Nk=1 a set of N realizations of a random variable with probability density

function p(x), the `-th order weak derivative of f ∇`
w,φ(f) is defined to be

∇`
w,φ(f) :=

∫
Rd

(−1)`f(x)∇`φ(x) dx.

Its approximation ∆`
N,φ(f) is defined as

∆`
N,φ(f) :=

1

N

N∑
k=1

(−1)`f(xk)
∇`φ(xk)

p(xk)
.

Algorithm 4. Given x ∈ Rd, a shallow neural network f : Rd → R with layer width

m < d:

• Construct Y1 = (∆N,φ1(f)| · · · |∆N,φmχ (f)). Compute the SVD

Y T
1 =

(
Ū1 Ū2

)Σ̄1

Σ̄2


V̄ T

1

V̄ T
2

 .

Let A1 be the row space of V̄ T
1 , where V̄ T

1 ∈ Rm×d.

• Dimension reduction using A1. Let PA1 = BBT : Rd → Rd be the orthogonal

projection onto A1 and define f̄ : Rm → R by f̄(y) :=
∑

i gi(αi · y) where

αi = BTai. Then f(x) = f̄(BTx) for all x ∈ Rd. In particular, we may assume

d = m.
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• Construct Y2 = (vec(∆2
N,φ1

(f))| · · · |vec(∆2
N,φmχ

(f))). Compute the SVD

Y T
2 =

(
Ũ1 Ũ2

)Σ̃1

Σ̃2


Ṽ T

1

Ṽ T
2

 .

Let Ã be the row space of Ṽ T
1 ∈ Rm×m2

.

• Whitening: recursively making {ai}i more and more orthonormal by finding

positive definite matrices in Ã .

• Optimize max ‖M‖∞ such that ‖M‖F ≤ 1,M ∈ Ã . If the top eigenvalue of

M is not ‖M‖∞, replace M by −M . Take and record the top eigenvector, and

repeat the same process many times. Use k-mean to recover {ai}i.

• Recover f : Let {âj}j be the normalized approximation to {aj}j. Let {b̂j}j be

the dual basis to {âj}j. Set ĝj(t) = f(tb̂j) and f̂(x) =
∑

j ĝj(âj · x).

In order to identify {a`}` ⊂ Rd, we follow the same process in [33, 34] and

recover them through the tensor decomposition of ∇2f , the Hessian of f .

Due to the non-differentiability of σ at 0, we discuss the Hessian of f in the

weak sense, i.e. , we would like to evaluate the following expressions: for any i, j,

∫
Rd
f(x)∂iφ dx

and ∫
Rd
f(x)∂i∂jφ dx.
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4.2.1 Auxiliary Theorems

In this section, we list some important results that we will refer to in the

following sections.

Theorem 4.2.2 (Chernoff Bound, [56]). Let X1, . . . , Xn be independent random,

positive semi-definite matrices of dimension m×m. Moreover, suppose that

σ1(Xj) ≤ C

almost surely for all j = 1, . . . , n. Let

µmin = σm(
n∑
j=1

EXj)

be the smallest singular value of the sum of the expectations. Then

P

{
σm(

n∑
j=1

Xj)− µmin ≤ −sµmin
}
≤ m exp(

−µmins2

2C
)

for all s ∈ (0, 1).

Theorem 4.2.3 (Wedin’s Bound, [57]). Given two matrices B and B̃ with corre-

sponding singular value decomposition

B =

(
U1 U2

)Σ1 0

0 Σ2


V T

1

V T
2

 ,
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and

B̃ =

(
Ũ1 Ũ2

)Σ̃1 0

0 Σ̃2


Ṽ T

1

Ṽ T
2

 .

If there exists an ᾱ > 0 such that


min`,˜̀ |σ˜̀(Σ̃1)− σ`(Σ2)| ≥ ᾱ

min˜̀ |σ˜̀(Σ̃1)| ≥ ᾱ,

then

max{‖U1U
T
1 − Ũ1Ũ

T
1 ‖F , ‖V1V

T
1 − Ṽ1Ṽ

T
1 ‖F} ≤

√
2

ᾱ
‖B − B̃‖F .

Corollary 4.2.4. Let X1, . . . , XN be independent zero-mean d1× d2-random matri-

ces. Assume that

‖Xj‖ ≤ K

almost surely for all 1 ≤ j ≤ N , and denote

σ2 = max

(
‖

N∑
j=1

E(XjX
T
j )‖, ‖

N∑
j=1

(XT
j Xj)‖

)
,

then

P

(
‖

N∑
j=1

Xj‖ > η

)
≤ (d1 + d2)]exp(

−η2

2(σ2 +Kη/3)
).
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4.2.2 Weak Differentiation of Leaky ReLU Neural Networks

Proposition 4.2.5. For any 1 ≤ i ≤ m, φ ∈ C∞c (Rd), a ∈ Rd, and c ∈ R,

∫
Rd
σ(a · x+ c)∂iφ dx = −

∫
{a·x+c≥0}

aiφ dx− η
∫
{a·x+c≤0}

aiφ dx.

In particular, the weak derivative of σ(a · x + c) is ai(η + (1 − η)1{a·x+c≥0})

and ∇f(x) =
∑m

`=1 a`(η + (1 − η)1A`) where A` = {x ∈ Rd : a` · x + c` ≥ 0} in

distribution sense.

Proof. Note that ση(t) = ηt + (1 − η)σ0(t), and the strong derivative of a · x + c

is a. Thus, it suffices to evaluate the weak derivative of σ0(a · x + c). We start by

assuming that a = a e1, where e1 is the first canonical coordinate in Rd. Once we

deduced the formula, we may then generalize to arbitrary a via change of variable.

Now, ∫
Rd
σ0(ax1 + c)∂iφ dx = 0

for all i > 1, since σ0(ax1 + c) does not depend on xi and φ is compactly supported.

For i = 1,

∫
Rd
σ0(ax1 + c)∂1φ dx =

∫
Rd−1

∫
{ax1+c≥0}

(ax1 + b)∂1φ dx1 dx̂1

= −
∫
Rd−1

∫
{ax1+c≥0}

aφ dx1 dx̂1

= −
∫
{a·x+c≥0}

a1φ dx,

where x̂1 = (x2, . . . , xd)
t.
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Now, for general a, construct an orthogonal matrix Q = (q1|q2| . . . |qd), where

q1 = a
‖a 2| . Then,

∫
Rd
σ0(a · x+ c)∂iφ(x) dx =

∫
Rd
σ0(‖a‖2y1 + c)

∑
`

(q`)i∂`φ̃(y) dy

=

∫
Rd
σ0(‖a‖2y1 + c)

ai
‖a‖2

∂1φ̃(y) dy

= −
∫
{‖a‖2y1+c≥0}

aiφ̃(y) dy

= −
∫
{a·x+c≥0}

aiφ(x) dx,

where we set y = Qtx and φ̃(y) := φ(Qtx). Furthermore, we note that ∂iφ =∑
`(q`)i∂`φ̃.

As for the last statement, we see that

∫
Rd
f(x)∂iφ dx =

m∑
`=1

∫
Rd
σ(a`·x+c`)∂iφ(x) dx = −

m∑
`=1

[∫
a`·x+c`≥0

φ dx+ η

∫
{a`·x+c`<0}

φ dx

]
(a`)i.

Proposition 4.2.6. For any 1 ≤ i, j ≤ m, φ ∈ C∞c (Rd), a ∈ Rd, and c ∈ R,

∫
Rd
σ(a · x+ c)∂i∂jφ dx = (1− η)

aiaj
‖a‖2

∫
{a·x+c=0}

φ dx.

In particular, the second weak derivative of f satisfies ∇2f(x) = (1−η)
∑m

`=1
1
‖a`‖2

1∂A`a`⊗

a`.

Proof. Again, we note that σ(a` ·x+ c`) = η(a` ·x+ c`)+(1−η)σ0(a` ·x+ c`), where

the first term has zero second derivative. Thus, it suffices to consider the second
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weak derivative of σ0.

First, we start with the canonical case where a = a e1. Then, other than the

case i = j = 1, ∫
Rd
σ0(ax1 + c)∂i∂jφ dx = 0.

For i = j = 1,

∫
Rd
σ0(ax1 + c)∂2

1φ dx = −a
∫
Rd−1

∫
ax1+c≥0

∂1φ dx1dx̂1

= sgn(a)a

∫
Rd−1

φ(
−c
a
, x̂1) dx̂1

= |a|
∫
ax1+c=0

φ(x) dx.

Again, for general a, we consider the orthogonal matrix Q = (q1| . . . |qd) with

q1 = a
‖a‖2 . Noting that ∂i∂jφ =

∑
`

∑
s(q`)i(qs)j∂`∂sφ̃, we have

∫
Rd
σ0(a · x+ c)∂i∂jφ(x) dx =

∫
Rd
σ0(‖a‖2y1 + c)

∑
`

∑
s

(q`)i(qs)j∂`∂sφ̃(y) dx

= ‖a‖2
(a)i(a)j
‖a‖2

2

∫
{‖a‖2y1+c=0}

φ̃(y) dy

=
(a)i(a)j
‖a‖2

∫
a·x+c=0

φ(x) dx.

4.2.3 Dimension Reduction

To recover the weights, we follow the procedures in Algorithm 4. In view of

Proposition 4.2.5, we can create many instances of vectors in span{aj}j by changing
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the test function φ. Consider the following matrix

JV [f ] =

∫
V
(

∫
Rd
f(x)∇φν dx)(

∫
Rd
f(x)∇φν dx)Tdπ(ν),

where (V , π) is a probability space of test functions. To ensure non-degeneracy of

JV [f ], we may let {φν}ν∈V be a bounded resolution of identity, i.e. , a set of non-

negative smooth and compactly supported functions φν such that
∫
V φν(x)dπ(ν) = 1

for all x in some pre-determined bounded set. For a discrete set V , {φν} is a bounded

partition of unity.

Note that if one draws the test functions φj of Y1 = (∆N,φ1(f)| · · · |∆N,φmχ (f))

from (V , π), then Y1 ∼ X1 = (∇w,φ1(f)| · · · |∇w,φmχ (f)). We shall show that if the

m-th singular value σm(JV [f ]) ≥ α > 0, then σm(X1) will be bounded from below

with high probability.

Let dµ(x) = p(x)dx be a compactly supported probability measure on Rd.

Define, for j = 1, 2,

CV = sup
ν∈V

sup
x∈supp(µ)

φν(x)

p(x)
, Cν,j = sup

ν∈V
sup

x∈supp(µ)

‖∇
2φν(x)

p(x)
‖2.

Lemma 4.2.7. Assume that {aj}j are linearly independent with maxj ‖aj‖2 = C0

and σ(JV [f ]) ≥ α > 0. Then, for any s ∈ (0, 1) we have that

σm(X1) ≥
√
mχα(1− s)

with probability at least 1−m exp( −mχαs2
2(C0CVm)2

).
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Proof. Let PA : Rd → Rm be a compression onto A = span{aj}. In particular, we

set the rows of PA to be an orthonormal basis of A. Note that σj(X1) = σj(P
AX1) =√

σj(PAX1XT
1 (PA)T ), where

X1X
T
1 =

mχ∑
k=1

∇w,φk(f)∇w,φk(f)T .

Now, for each k,

σ1(PA∇w,φk(f)∇w,φk(f)T (PA)T ) = ‖∇w,φk(f)∇w,φk(f)T‖F

= ‖∇w,φk(f)‖2
2

= ‖
m∑
j=1

(

∫
{aj ·x+cj≥0}

φk dx+ η

∫
{aj ·+cj≤0}

φ dx)aj‖2
2

≤ (
m∑
j=1

CV‖aj‖2)2 ≤ mC2
νC

2
0 .

Note that E(PA∇w,φk(f)∇w,φk(f)T (PA)T ) = PAJV [f ](PA)T , and σm(PAJV [f ](PA)T ) =

σ(JV [f ]) = α. Then, by Theorem 4.2.2, we see that

P
{
σm(PAX1X

T
1 (PA)T ) ≥ (1− s)mχα

}
≤ m exp(

−mχαs
2

2mC2
VC

2
0

).

Taking square-root, we have proven the claim.

Now, we know that Y1 ∼ X1, and the row space of XT
1 is A = span{aj} as

long as σm(X1) > 0. Let the row space of Ṽ1
T

from Algorithm 4 be Ã. We shall

compare the distance between the two spaces A and Ã. Thus, we have the following

proposition:
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Proposition 4.2.8. Let Cf = supx∈supp(µ) |f(x)|. Suppose we sample N points {xk}

according to µ and obtain {f(xk)+nk}, where nk are independent zero-mean random

variables with |nk| ≤ CN almost surely. Define PA, PÃ be the orthogonal projection

to A, Ã, respectively. Then,

‖PA − PÃ‖F ≤
2η√

(1− s)α− η

with probability at least 1 − m exp( −mχαs2
2(C0CVm)2

) − (d + 1)mχ exp( −η2N
2(K2+Kη/3)

), where

K = CV,1(Cf + CN ) +mCV,1C0.

Proof. Let

Y T
1 =

(
Ū1 Ū2

)Σ̄1

Σ̄2


V̄ T

1

V̄ T
2

 , XT
1 =

(
U1 U2

)Σ1

Σ2


V T

1

V T
2



where Σ̃1,Σ1 ∈ Rm×m. By construction, Σ2 = 0, so we may choose ᾱ = σm(Y1), and

by Theorem 4.2.3, we have

‖PA − PÃ‖F = ‖Ṽ1Ṽ
T

1 − V1V
T

1 ‖F ≤
2‖Y1 −X1‖F
σm(Y1)

≤ 2‖Y1 −X1‖F
σm(X1)− ‖Y1 −X1‖F

, (4.2)

where we used Weyl’s estimate on σm(Y1).

From Lemma 4.2.7, we see that σm(X1) ≥
√
mχα(1− s) with probability at

least 1−m exp( −mχαs2
2(C0CVm)2

). Now, we shall estimate ‖X1 − Y1‖F .
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Now, ‖X1 − Y1‖2
F =

∑mχ
j=1 ‖(X1)j − (Y1)j‖2

2, where

‖Xj−Yj‖2 = ‖ 1

N

N∑
k=1

(f(xk)+nk)
∇φj(xk)
p(xk)

−
∫
Rd
f(x)

∇φj(x)

p(x)
p(x) dx‖2 = ‖ 1

N

N∑
k=1

χk,j‖,

where

χk,j = (f(xk) + nk)
∇φj(xk)
p(xk)

−
∫
Rd
f(x)

∇φj(x)

p(x)
p(x) dx.

Now,

‖χk,j‖2 = ‖(f(xk) + nk)
∇φj(xk)
p(xk)

−
∫
Rd
f(x)

∇φj(x)

p(x)
p(x) dx‖2

= ‖(f(xk) + nk)
∇φj(xk)
p(xk)

−
m∑
j=1

(

∫
{aj ·x+cj≥0}

φk dx+ η

∫
{aj ·+cj≤0}

φ dx)aj‖2

≤ (Cf + CN )CV,1 +mC0CV =: K,

and

max{‖
N∑
k=1

E(χk,jχ
T
k,j)‖, ‖

N∑
k=1

E(χTk,jχk,j)‖} ≤
N∑
k=1

E‖χk,j‖2 ≤ NK2 =: σ2.

Thus, using Corollary 4.2.4, one has

P(‖ 1

N

N∑
k=1

χk,j‖2 > η) ≤ (d+ 1) exp(
−η2N

2(K2 +Kη/3)
),

and ‖X1 − Y1‖2
F =

∑mχ
j=1 ‖(X1)j − (Y1)j‖2

2 ≤ mχη
2 with probability at least 1 −

mχ(d+ 1) exp( −η2N
2(K2+Kη/3)

). Plugging it back in (4.2), we can prove the claim.
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After obtaining an approximation Ã to A = span{a1, . . . , am}, we are now

able to reduce our ambient space Rd to Rm if d > m:

Proposition 4.2.9 ([33] Theorem 1.1). Consider

f(x) =
m∑
i=1

gi(ai · x), x ∈ Bd
1 = {x ∈ Rd : ‖x‖2 ≤ 1},

where m ≤ d. Let Ã = span{b1, . . . , bm} where {bj} form an orthonormal basis in

Ã. Let B = (b1| · · · |bm). Then, one can construct

f̃ =
m∑
i=1

g̃i(αi · y), y ∈ Bm
1 ⊂ Rm,

with αi = BTai. Then, for all f̂ : Rm → R, the following estimate holds

‖f − f̂(BT ·)‖∞ ≤ ‖f‖Lip‖PA − PÃ‖F + ‖f̃ − f̂‖∞.

Moreover, for any other set of vectors {α̂1, . . . , α̂m} ⊂ Rm,

‖αi −Bα̂i‖2 ≤ ‖PA − PÃ‖F + ‖αi − α̂i‖2.

In particular, from now on we may assume that d = m.

4.2.4 Second Order Derivative

Again, we draw randomly {φj} from (V , π) and {xk}Nk=1 from Bd
1(0). Then, we

define Y2 = (vec(∆2
N,φj

(f)))
mχ
j=1 to approximate X2 = (vec(∇2

w,φj
(f)))

mχ
j=1. Suppose
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that

H[f ] =

∫
V

∫
Rd
f(x)∇2φν dx dπ(ν)

satisfies σm(H[f ]) = α2 > 0. Then, we have the following results:

Lemma 4.2.10. Suppose σm(H[f ]) = α2 > 0, and dµ(x) = p(x)dx is the uniform

measure on Bm
1 (0), then for any s ∈ (0, 1), X2 satisfies

σm(X2) ≥
√
mχα2(1− s)

with probability at least 1−m exp(−mχαs
2

2C̄
), where C̄ = (1−η)2m2C0C

2
V

Γ(m/2+1)√
πΓ((m−1)/2+1)

.

Proof. The proof follows almost the same derivation of Lemma 4.2.7. The only

difference is to estimate

σ1(vec(∇2
w,φj

(f))vec(∇2
w,φj

(f))T ) = ‖
∫
Rd
f(x)∇2

j(x) dx‖2
2

= (1− η)2‖
m∑
i=1

∫
{ai·x+ci=0}

φj(x)

p(x)
p(x) dx

aia
T
i

‖ai‖2

‖2
2

≤ (1− η)2m2C2
0C

2
V
λ(B

(m−1)
1 (0))

λ(Bm
1 (0))

= (1− η)2m2C0C
2
V

Γ(m/2 + 1)√
πΓ((m− 1)/2 + 1)

,

where we note that {ai · x + ci = 0} ∩ Bm
1 (0) is a cross-section of Bm

1 (0) and has

volume at most λ(Bm−1
1 (0)).

Then, we can quantify the goodness of approximation Y2 to X2:

Proposition 4.2.11. Suppose we sample N points {xk} according to the uniform

distribution µ and obtain {f(xk)+nk}, where nk are independent zero-mean random
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variables with |nk| ≤ CN almost surely. Define PA , PÃ be the orthogonal projection

to A , Ã , respectively. Then,

‖PA − PÃ ‖F ≤
2η√

(1− s)α− η

with probability at least 1 − m exp(−mχαs
2

2C̄
) − 2mmχ exp( −η2N

2(K̄2+K̄η/3)
), where K̄ =

CV,2(Cf + CN ) +
√
C̄.

4.2.5 Whitening Process

Before we recover {aj}j from Ã , it is possible to use the following whitening

process such that {aj} be comes nearly orthonormal. This step is important in the

sense that the weight recovery is guaranteed when {aj} is nearly orthonormal.

We first introduce the following definition:

Definition 4.2.12. Let a1, . . . , am be unit vectors. Then, we define

S(a1, . . . , am) = inf{(
m∑
i=1

‖ai−wi‖2
2)1/2 : {w1, . . . , wm} forms an orthonormal basis in Rm}.

The following theorem gives a guideline on how to make {aj}j nearly orthonor-

mal.

Proposition 4.2.13 ([33], Theorem 3.7). Let γ, η > 0 be positive real numbers. Let

‖PA − PÃ ‖F ≤ η and let G̃ ∈ Ã be positive definite with G̃ ≥ γIm. Consider the
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spectral decomposition G̃ = UDUT and let W = D−1/2UT . Then,

S(
Wa1

‖Wa1‖
, . . . ,

Wam
‖Wam‖

) ≤
√

2η‖G̃‖F
γ

.

To use Proposition 4.2.13, one needs to search for positive definite matrices

in Ã with preferably large γ. It can be satisfied with the following optimization

scheme

max
Ã∈Ã ,‖Ã‖F=1

min
x∈Rm,‖x‖2=1

xT Ãx. (4.3)

For the sake of completeness, we detail the whitening algorithm and demon-

strate how we can manipulate {aj} without knowing them a priori.

Algorithm 5 ([33], Algorithm 3.2). ˙

• Fix η > 0 and let f (0)(x) =
∑m

i=1 g
(0)
i (a

(0)
i · x).

• Compute Ã (k+1) by using Proposition 4.2.11 with accuracy η > 0 from point

values of f (k).

• Define W (k+1) as the whitening matrix of the vectors {a(k)
i }mi=1 by using Ã (k+1)

and (4.3).

• Define a
(k+1)
i = W (k+1)a

(k)
i /‖W (k+1)a

(k)
i ‖2 for all i.

• Denote f (k+1)(x) =
∑m

i=1 g
(k+1)
i (a

(k+1)
i · x) = f (k)((W (k+1))Tx).

168



4.2.6 Weight Recovery

After whitening process, we may assume that {aj} are nearly orthonormal.

Here, we shall introduce the following optimization scheme:

arg max ‖M‖∞, ‖M‖F ≤ 1, M ∈ Ã , (4.4)

where ‖M‖∞ := maxx: ‖x‖2=1 ‖Mx‖2. We can assume that

• There exists an orthonormal basis {w1, . . . , wm} such that (
∑m

j=1 ‖aj−wj‖2
2)1/2 =

ε > 0.

• Â = span{wj ⊗ wj}j.

• ‖PA − PÃ ‖F ≤ η.

• ‖PÂ − PÃ ‖F ≤ 4ε+ η =: ν.

Then, we recover the weights {aj} by the following algorithm:

Algorithm 6 ([33], Algorithm 3.3). ˙

• Let M be a local maximizer of (4.4).

• If ‖M‖∞ is not an eigenvalue of M , replace M by −M .

• Denote by λ1 ≥ λ2 ≥ · · · ≥ λm the eigenvalues of M arranged in decreasing

order.
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• Take the eigenvalue decomposition of M , i.e. M =
∑m

j=1 λjuj ⊗ uj.

• Put â := u1.

The performance of Algorithm 6 is guaranteed by the following theorem.

Theorem 4.2.14 ([33], Theorem 3.12). If 0 < ν < 1/(cm) for a suitable constant

c > 6, then there exists j0 ∈ {1, . . . ,m} such that the vector â found by Algorithm 6

satisfies mins∈{−1,1} ‖sâ− aj0‖2 ≤ 5ν.

4.2.7 Function Recovery

Now, it is possible to recovery f :

Algorithm 7. ˙

• Let âj be the normalized approximations of aj, j = 1, . . . ,m.

• Let {b̂j}j be the dual basis to {âj}j.

• Put ĝj(t) := f(tb̂j), t ∈ (−1/‖b̂j‖2, 1/‖b̂j‖2).

• Put f̂(x) :=
∑m

j=1 ĝj(âj · x), ‖x‖2 ≤ 1.

Theorem 4.2.15 ([33], Theorem 4.1). Let S(a1, . . . , am) ≤ ε, S(â1, . . . , âm) ≤ ε′,

and (
∑m

j=1 ‖aj − âj‖2
2)1/2 ≤ η. Then f̂ constructed in Algorithm 7 satisfies

‖f − f̂‖∞ ≤ 5C2(1 + ξ(ε, ε′)) max(η, η2),

where ξ(ε, ε′)→ 0 as (ε, ε′)→ (0, 0).

170



4.3 Two-Layer Case

For neural networks with two hidden layers, functions take the following form

f(x) =

m1∑
`=1

α`σ(b` · g(x) + d`) = h(g(x)), (g(x))j = σ(aj · x+ cj), j = 1, . . . ,m0.

We shall show that we may assume that {aj}, {b`} are all unit vectors.

Proposition 4.3.1. Given any two-layer neural network f : Rd → R, we have

f(x) =

m1∑
`=1

αiσ(b` · g(x) + d`) =

m1∑
`=1

α̃iσ(b̃` · g̃(x) + d̃`),

where (g(x))j = σ(aj · +cj), (g̃(x))j = σ(
aj
‖aj‖2x +

cj
‖aj‖), (b̃`)j =

(b`)j‖aj‖2
C`

,

d̃` = d`
C`

, α̃` = C`α`, and C` =
√∑

j(b`)
2
j‖aj‖2.

Proof. It follows from the fact that when σ is a leaky ReLU function, σ(cx) = cσ(x)

for any c ≥ 0.

To evaluate its first order derivative, we refer to the following result on the

composition of distributions:

Theorem 4.3.2 ([3] Corollary 3.1). Given an open set Ω ⊂ Rd, let g ∈ BV (Ω) be

of bounded variation. If h is Lipschitz continuous, then f = h ◦ g satisfies

∇f = ∇h · ∇g.

Using Theorem 4.3.2 and Proposition 4.2.5, we have the following proposition:
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Proposition 4.3.3. The weak derivative ∂jf satisfies

∂jf(x) =

m0∑
`=1

m0∑
s=1

(b`)s(as)j(η + (1− η)1{b`·g(x)+d`≥0})(η + (1− η)1{as·x+cs≥0}).

Proof. It suffices to note that ∇h =
∑m0

`=1 b
t
`(η + (1− η)1{b`·g(x)+d`≥0}) and the s-th

row of ∇g is (∇g)s = ats(η + (1− η)1{as·x+cs≥0}).

The Hessian of f is arguably the most interesting part. In [34], the entangled

weights appear, which involve both {as}s and {b`}` and varies for different x. The

same thing happens more or less, but currently it is not yet enough for direct

application of their methods.

Proposition 4.3.4. For any 1 ≤ i, j ≤ d and φ ∈ C∞c (Rd),

∫
Rd
f(x)∂i∂jφ dx =

m0∑
s=1

[ m0∑
`=1

(b`)s

(
(1− η)

∫
{as·x+cs=0}∩{b`·g(x)+d`≥0}

φ dx

+ η

∫
{as·x+cs=0}

φ dx

)]
(as)i(as)j
‖as‖2

+
∑

α∈{0,1}m

m0∑
`=1

C`
α

(v`α)i(v
`
α)j

‖v`α‖2

,

where C`
α =

∫
D`α
φ dx, v`α =

∑
t(η + (1− η)αt)(b`)tat, and D`

α = {x ∈ Rd : b` · g(x) +

d` = 0, gt(x) = (as · x+ cs)(η + (1− η)αt)}.

In particular,

∫
Rd
f(x)∇2φ(x) dx =

m0∑
s=1

γs
‖as‖2

as ⊗ as +

m0∑
`=1

∑
α∈{0,1}m0

C`
α

‖v`α‖2

v`α ⊗ v`α.

Proof. The proof involves partition of Rd according to the sets As = {as ·+cs ≥ 0}
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and B` = {B` · g(x) + d` ≥ 0}. To simplify the proof, we shall implicitly partition φ

with partition of unity to avoid the artificial boundaries created during the process.

By Proposition 4.3.3, we know that

∫
Rd
f(x)∂i∂jφ(x) dx

= −
m0∑
`=1

m0∑
s=1

∫
Rd

(b`)s(as)j(η1{b`·g(x)+d`≤0} + 1{b`·g(x)+d`≥0})(η1{as·x+cs≤0} + 1{as·x+cs≥0})∂iφ(x) dx.

(4.5)

Since u1(x) = (η+(1−η)1{b`·g(x)+d`≥0}) and u2(x) = (η+(1−η)1{as·x+cs≥0}) are

of bounded variation locally, we may compose (u1, u2)t with multiplication function

M(x, y) = xy. Since M is again Lipschitz, we may use Theorem 4.3.2 to deduce the

product rule for u1(x)u2(x) by

−
m0∑
`=1

m0∑
s=1

(b`)s(as)j

∫
Rd
u1(x)u2(x)∂iφ dx

=

m0∑
`=1

m0∑
s=1

(b`)s(as)j

∫
Rd

(1− η)u1(x)∂i1{as·x+cs≥0}φ dx

+

m0∑
`=1

m0∑
s=1

(b`)s(as)j

∫
Rd

(1− η)∂i1{b`·g(x)+d`≥0}u2(x)φ dx

=: I1 + I2,

where we note that ∂iu1 = (1− η)∂i1{b`·g(x)+d`≥0}, and ∂iu2 = (1− η)∂i1{as·x+cs≥0}.

The first term I1 is rather straightforward, and we can see that I1 = (1 −

η)
∑

s
(as)i(as)j
‖as‖2

∑
`(b`)s((1− η)

∫
∂As∩B` φ dx+ η

∫
∂As∩(B`)c

φ dx.

For I2, it is a little more complicated as B` is not a half space. In fact, it may

not even be convex if b` is not positive. However, locally B` may still resemble a
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half space.

Define, for α ∈ {0, 1}m0 , Aα = {x ∈ Rd : gt(x) = (at ·x+ct)(η+(1−η)αt)∀t}.

In particular, on Aα, as · x+ cs ≥ 0 if and only if αs = 1. Then,

I2 =

∫
Rd
∂i1{b`·g(x)+d`≥0}

(
m0∑
s=1

(b`)s(as)j(η + (1− η)1{as·x+cs≥0})

)
φ(x)dx

=
∑

α∈{0,1}m0

∫
Aα

∂i1{b`·g(x)+d`≥0}

(
m0∑
s=1

(b`)s(as)j(η + (1− η)1as·x+cs≥0)

)
φ(x)dx

=
∑

α∈{0,1}m0

∫
Aα

∂i1{b`·g(x)+d`≥0}

(∑
t

(b`)t(at)j(η + (1− η)αt)

)
φ(x)dx.

On Aα, b` · g(x) + d` = v`α · x+ dα,`, where dα,` =
∑

t(b`)tct(η+ (1− η)αt) + d`.

Thus,

I2 =
∑

α∈{0,1}m0

∫
Aα

∂i1{b`·g(x)+d`≥0}(v
`
α)jφ(x)dx

=
∑

α∈{0,1}m0

(v`α)j
(v`α)i
‖v`α‖2

∫
Aα∩∂B`

φ(x)dx.

4.3.1 Some Auxiliary Results

As we mentioned above, B` = {b` ·g(x)+d` ≥ 0} is not a half plane in general.

Here, we prove some properties of B`.

Proposition 4.3.5. Given b ∈ Rm0 and d ∈ R, if there exists i0 such that bi0 >

0, then B = { b · g(x) + d ≥ 0} is path connected and unbounded in Rm0 where
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g(x)s = σ(as · x+ cs) with {as}s linearly independent.

Proof. Without loss of generality, we may assume that i0 = 1. Since {as}s are

linearly independent, the subspace V = span{as : s ≥ 2} is a proper subspace of Rd

and a1 /∈ V . Then, consider ã = a1 − PV (a1) where PV is the orthogonal projection

onto V . For large enough C > 0, Cã ∈ B since b1g1(Cã) = b1σ(Ca1 · ã + c1) =

b1σ(C‖ã‖2 + c1) will be very large while the remaining terms are unchanged as

C →∞, due to the fact that ã ∈ V ⊥. Thus, B is unbounded.

Given x1, x2 ∈ B, choose α > 0 large enough so that min{ b1g1(x1+αã), b1g1(x2+

αã)} ≥ max{∑s≥2 | bs|gs(x1),
∑

s≥2 | b2|gs(x2)} + d. It is possible since for any

x ∈ Rd, g1(x+αã)→∞ as α→∞. Then, the line segment connecting x̃i := xi+αã

for i = 1, 2 lies completely inside B. In particular, for t ∈ (0, 1),

b · g ((tx̃1 + (1− t)x̃2)) = b1g1(tx̃1 + (1− t)x̃2) +
∑
s≥2

bsgs(tx̃1 + (1− t)x̃2)

≥ b1g1(tx̃1 + (1− t)x̃2)−
∑
s≥2

| bs|gs(tx̃1 + (1− t)x̃2)

≥ t

(
b1g1(x̃1)−

∑
s≥2

| bs|gs(x̃1)

)

+ (1− t)
(

b1g1(x̃2)−
∑
s≥2

| bs|gs(x̃2)

)

> 0,

where we use the fact in the second inequality that gs are convex and g1 is affine

on the segment from x̃1 to x̃2. Thus, the line segment from x1 to x̃1 to x̃2 to x2 lies

entirely in B.
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To prove Proposition 4.3.4, we need to understand the weak derivative of the

product of two indicator functions of half planes.

Lemma 4.3.6. Given a1, a2 ∈ Rd, c1, c2 ∈ R, and φ ∈ C∞c (Rd),

∫
Rd
1{a1·x+c1≥0}1a2·x+c2≥0∂iφ dx = C1a1 + C2a2,

for some C1, C2 ∈ R independent of i.

Proof. As before, we first examine a simpler case before generalizing the result.

Given a1, c1, a21, a22, c2 ∈ R and i > 2,

∫
Rd
1{a1x1+c1>0}1{a21x1+a22x2+c2>0}∂iφ dx = 0.

For i = 1,

∫
Rd
1a1x1+c1>01a21x1+a22x2+c2>0∂1φ dx

=

∫
Rd−1

∫
R
1a1x1+c1>01a21x1+a22x2+c2>0∂1φ dx1dx̂1

=

∫
Rd−1

(
φ(
−c1

a1

, x̂1)− φ(
−(a22x2 + c2)

a21

, x̂1)

)
1{−(a22x2+c2)

a21
>
−c1
a1
}dx̂1

= sgn(a1)

∫
{a1x1+c1=0}∩{a21x1+a22x2+c2>0}

φ dx

+ sgn(a21)

∫
{a1x1+c1>0}∩{a21x1+a22x2+c2=0}

φ dx.

For i = 2,

∫
Rd
1a1x1+c1>01a21x1+a22x2+c2>0∂2φ dx = sgn(a22)

∫
{a1x1+c1>0}∩{a21x2+a22x2+c2=0}

φ dx.
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Thus, for general a1, a2 ∈ Rd, c1, c2 ∈ R, we have, by change of variable

y = Qtx with Q = (q1 | · · · | qd) and q1 = a1/‖a1‖2, q2 =
a2− a1·a2

‖a1‖22
a1

‖a2− a1·a2
‖a1‖22

a1‖2
,

∫
Rd
1{a1·x+c1>0}1{a2·x+c2>0}∂iφ dx

=

∫
Rd
1{‖a1‖1y1+c1>0}1{ a1·a2‖a1‖2

y1+a2·q2y2+c2>0}

∑
s

(qs)i∂sφ̃(y) dy

= (q1)i

(∫
{a1·x+c1=0}∩{a2·x+c2>0}

φ dx+ sgn(a1 · a2)

∫
{a1·x+c1>0}∩{a2·x+c2=0}

φ dx

)
+ (q2)i

∫
{a1·x+c1>0}∩{a2·x+c2=0}

φ dx

= C1(a1)i + C2(a2)i,

by splitting q1, q2 into linear combinations of a1, a2 and noting that a2 · q2 > 0 by

construction.

4.3.2 Net Spreading

As we can see in Proposition 4.3.4, the number of terms can be potentially up

to m0 + m12m0 � m2
0, whose span may be the whole space. We will need to find a

way to make the number of terms smaller, or we will not be able to reconstruct the

terms. Fornasier et al. would have run into the same problem if they used passive

sampling, but the nature of ReLU actually helps us circumvent the difficulty. We

shall name the following tactic net spreading :

1. We first obtain many samples, say uniformly.
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2. We compute weak differentiation with test functions of large support.

3. Partition the space sequentially into small cubes. Each time, we produce test

functions with support about the size of the cube.

4. Search for active cubes: that is, the cubes that return non-trivial weak differ-

entiation.

5. For active cubes, we choose many different test functions with roughly the

same support. After getting many ”weak samples”, we perform PCA on it to

find the dominating terms.

6. Partition the active cubes and perform yet again the searching.

7. Stop partitioning when an active cube returns only one dimension via PCA.

In order to perform the procedure, we need to answer the following questions

first:

1. Determine the number of terms we are getting from each cube.

2. Estimate the size of approximation error.

3. Estimate how often we get too many (≥ m2
0) terms.

Lemma 4.3.7. Given {φl}mχl=1 ⊂ C∞c (Rm0), {Xk}Nk=1 be i.i.d. uniform from Ω ⊂

Rm0. Let Ŵ ∈ Rm2
0×L be the matrix whose columns are the vectorization of

Ŵl =
1

N

∑
k

f(Xk)∇2φl(Xk),
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and W ∈ Rm2
0×L be the matrix whose columns are the vectorization of

Wl =

∫
Ω

f(x)∇2φl(x)dx.

Then,

‖W − Ŵ‖F ≤
√
mχη

with probability greater than 1 − 2m0mχ exp( −η2N
2(K2+Kη/3)

), where K = (2‖f‖∞ +

CN ) maxx

∥∥∥∇2φl(x)
p(x)

∥∥∥.

Proof. First, we note that ‖W − Ŵ‖F =
∑mχ

l=1 ‖vec(Wl)− vec(Ŵl)‖2
2 =

∑mχ
l=1 ‖Wl −

Ŵl‖2
F , where

Wl − Ŵl =
1

N

N∑
k=1

(f(Xk) + nk)
∇2φl(Xk)

p(Xk)
−
∫
Rm0

f(x)∇2φl(x)dx,

which is a m0×m0 matrix. Letting χk,l = (f(Xk)+nk)
∇2φl(Xk)
p(Xk)

−
∫
Rm0

f(x)∇2φl(x)dx,

‖Wl − Ŵl‖F = ‖ 1
N

∑N
k=1 χk,l‖F . The spectral norm can be bounded by ‖χk,l‖ ≤

(2‖f‖∞+CN ) maxx

∥∥∥∇2φl(x)
p(x)

∥∥∥ =: K. Moreover,
∑N

k=1 E‖χk,l‖2 ≤ NK2 =: σ2. Then,

P(

∥∥∥∥∥ 1

N

N∑
k=1

χk,l

∥∥∥∥∥ > η) < 2m0 exp(
−η2N

2(K2 +Kη/3)
).

Thus, ‖W −Ŵ‖F ≤ √mχη with probability larger than 1−2m0mχ exp( −η2N
2(K2+Kη/3)

).

Lemma 4.3.8. Compute the SVD of W = UΣV T , Ŵ = ÛΣ̂V̂ T and take the first q
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columns of U, Û to create PW = U |q(U |q)T , PŴ = Û |q(Û |q)T . Then,

‖PW − PŴ‖F ≤
2η√

α(1− s)− η

with probability greater than 1−2m0mχ exp( −η2N
2(K2+Kη/3)

)−q exp(− mχαs2

2(‖f‖∞Cν,2)2
), where

Cν,2 = maxl∈ν maxx ‖∇
2φl(x)
p(x)

‖.

Lemma 4.3.9 (Singular value gap between meaningful and meaningless terms).

Suppose the test function φl intersects with q edges. Then, with probability greater

than 1− (m0 + q) exp(− mχαs2

2(C0Cνm0)2
)− 2m0 exp(− η2N

4[2(m0Q)2+m0Qη/3]
), where Q = (C0 +

CN/m0)Cν, σm0+q(Wl) ≥
√
mχα(1− s), σm0+q(Ŵl) ≥ √mχ(

√
α(1− s) − η), and

σm0+q+1(Ŵl) ≤ √mχη.

Proof. Using Weyl’s estimate, we see that σm0+q(Ŵl) ≥ σm0+q(Wl) − ‖W − Ŵ‖F ,

and σm0+q+1(Ŵl) ≤ σm0+q+1(Wl) + ‖Wl − Ŵl‖F = ‖Wl − Ŵl‖F since Wl consists of

only m0 + q symmetric rank-1 matrices.

Lemma 4.3.10 (”Lebesgue number” of edges). Suppose that sup` ‖b`‖∞ ≤ Cb,

sup` d` ≤ Cd then in a cube [−R,R]m0, the measure of the set

Γδ,k = {x ∈ Rm0 : a cube with center x and length δ intersect more than k entangled boundaries}

satisfies µ(Γδ,k) ≤ (2RCb)
m0m1

(
m0δ
2R

)− log k
.

Proof. For a fixed `, we consider b` ·g(x)+d` =
∑

t(b`)t(at ·x+ct)+ +d`, where x+ =
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max{x, 0}. We shall make successively the following three change of coordinates to

simplify the expression:

1. y = Atx,

2. ȳt = yt + ct,

3. ỹt = |(b`)t|ȳt.

Note that we assumed that A is orthogonal by whitening. Then, the expression

becomes
∑

t sgn((b`)t)(ỹt)+ + d`.

Now, the boundaries {at · x+ ct = 0} is transformed into ỹt = 0 for all t, and

{b` ·g(x)+d` = 0 : (g(x))t = (at ·x+ ct)αt, α ∈ {0, 1}m0} becomes {∑t:αt=1(b`)tỹt+

d` = 0 : ỹt ≥ 0 ⇐⇒ αt = 1}. Each of the entangled boundaries is positioned in

one 2m0-drant. Thus, if a cube of length δ intersects with multiple boundaries, it

must be near the lower-dimensional faces where some entries are 0.

Around the face with s entries being 0 and others away from 0 by more than

δ, cubes with center at those points intersect with at most 2s entangled boundaries.

The set of points near these intersections has volume not greater than (2δ)s(2d`)
m0−s.

There are in total
(
m0

s

)
choices, so the total volume is

(
m0

s

)
(2δ)s(2d`)

m0−s ≤ (2d`)
m0(m0δ

d`
)s.Also,

a point intersects one or more fixed boundaries if and only if some entries are small.

Let the change of coordinate be denoted asA. Thus, given k, AΓδ,k has volume

µ(AΓδ,k,`) ≤
∑

s≥log2 k

(2d`)
m0(

m0δ

d`
)s ≤ 1

1− ε(2d`)
m0(

m0δ

d`
)log2 k,

where ε = m0δ/d`. µ(A(∪`Γδ,k/m1,`)) ≤ m1

1−ε(2Cd)
m0(m0δ

Cd
)log2 k−log2m1 . Reverting back

181



to the original space, the volume of Γδ,k ⊂ ∪`Γδ,k/m1,` is less than m1

1−ε(2CbCd)
m0(m0δ

Cd
)log2 k−log2m1 .

4.3.3 Function Recovery

As we recover {±aj}, {±Ab`}`, we are still far from recovering f . In particular,

we need to address the following problems:

• Assigning {±aj} to the first layer.

• Determine the correct orientation of {aj}.

• Determine the correct orientation of {b`}.

• Determine {α`, d`}, {cj}.

Once we are able to carry out all actions above, we will be able to recover f

fully.

4.3.3.1 Assigning {aj} and {b`} to their respective layers

Note that we have recovered {±aj} ∪ {v`α}. Now, for any α1, α2 ∈ {0, 1}m0 ,

<v`α1
, v`α2

> ≥ η2‖b`‖2
2. Thus, we may use this to distinguish {aj} from {b`}.

Proposition 4.3.11. If S(a1, . . . , am0) < δ, then for any ` ∈ {1, . . . ,m1}, α1, α2 ∈

{0, 1}m1, one has

|<v`α1
, v`α2

>| ≥ η2

(1 + δ)2
− 2δ + δ2

(1− δ)2
.

Proof. Since S(a1, . . . , am1) < δ, there exists an orthonormal basis {w1, . . . , wm0}

such that (
∑ ‖ai − wi‖2)1/2 < δ. Let A = (a1| . . . |am0),W = (w1| . . . |wm0), then
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‖A −W‖F < δ by construction. Then, for any b ∈ Rm0 , |‖Ab‖2 − ‖b‖| = |‖Ab‖2 −

‖Wb‖2| ≤ ‖(A−W )b‖2 < δ‖b‖2.

Now, for any `, α1, α2, v`αj = 1

‖Ab
αj
` ‖
Ab

αj
` , where (b

αj
` )t = (b`)t(η+ (1− η)(αj)t),

where j = 1, 2. Since v`αj is of unit-norm, we have that ‖ 1

‖Ab
αj
` ‖
b
αj
` ‖2 ∈ [ 1

1+δ
, 1

1−δ ].

Moreover, as ‖bαj` ‖2 ≤ ‖b`‖2 = 1, we have that ‖Abαj` ‖2 ≤ 1 + δ. Then,

|<v`α1
, v`α2

>| = |( 1

‖Abα2
` ‖

bα2
` )TATA(

1

‖Abα1
` ‖2

bα1
` )|

≥ | 1

‖Abα1
` ‖‖Abα2

` ‖
(bα2
` )TW TWbα1

` |

− |( 1

‖Abα2
` ‖

bα2
` )T

[
(A−W )TW +W T (A−W ) + (A−W )T (A−W )

]
(

1

‖Abα1
` ‖2

bα1
` )|

≥ 1

(1 + δ)2
|<bα1

` , b
α2
` >|

− 1

(1− δ)2

(
‖A−W )TW‖∞ − ‖W T (A−W )‖∞ − ‖(A−W )T (A−W )‖∞

)
≥ η2

(1 + δ)2
− 1

(1− δ)2
(2δ + δ2),

where we note that the operator norm is dominated by the Frobenius norm and that

<bα1
` , b

α2
` > ≤

∑
t(b`)

2
tη

2 = η2.

4.3.3.2 Orienting {aj} and obtaining bias {cj}

We orient {aj} by looking at the first weak derivative of f . Let {ĉj} be the

dual basis of an arbitrarily oriented version of {aj}, i.e. , ĉi · aj = (−1)niδi,j where

ni ∈ {0, 1}. Then, we plot out fj(t) = f(tĉj) for t ∈ R. Then, fj is a piece-wise linear

function with a finite amount of break-points. We examine the slope change around
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each break-points. Suppose that around break-point t0, we have f ′(t+0 ) = 1
c
f ′(t−0 ),

then we know that nj = 0, and cj = −t0. If f ′(t−0 ) = 1
c
f ′(t+0 ), then nj = 1 and

cj = t0.

4.3.3.3 Determining the orientation of {b`} and {α`}

Once we have determined the orientation of {aj}j, we are now able to assign

{b`} to the second layer with possibly wrong orientations. Then, as {b`} are linearly

independent, we may construct {β`} such that b` ·βs = (−1)n`δ`,s, where n` ∈ {0, 1}.

Now, since {aj}j form a basis in Rm0 , there exists {x`} such that aj · x` =

γ`j(β`)j for all j, where γ`j = 1 if (β`)j ≥ 0, and 1/c if (β`)j < 0. Then, if we

calculate the derivative of f`(t) = f(tx`), then either f ′`(t) = α` or f ′`(−t) = α` for

large t. the value with larger magnitude is α`, while we re-orientate our b` to −b` if

f ′`(−t) = α`.

4.3.3.4 Determining {d`}

Basically we follow the same process as the previous section while looking

closely at the break-points of f `. It has only one break-point, and judging from the

orientation of {b`}, we can recover {d`} perfectly.

4.3.4 Future Works

For the two-layer case, the biggest remaining difficulty is the theoretical guar-

antee for net-spreading, as it is not yet clear how to determine the threshold for
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cut-offs in the algorithm. The first step is to identify the cases when no components

are activated in a region. This will help us reduce the chance of false positives. The

second one is to estimate the gap between the smallest activated singular value and

the largest inactive one.
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