In the Poceedings of the 8enth M SIGOPS Ewpean Wrkshop, Connemarlreland, September 1996.

Thetrading functionn action

Bruce Jacob and Tevor Mudge

Advanced Computer Architecture Lab
EECS Department, Uversity of Michigan
{blj,tnm}@eecs.umich.edu

This paper describes a commial softwae and hadware platform for telecommunications and multimediacpssing The soft-

ware architectue loosely follows the CORBand ODP standais of distrituted computing and supports a number of application
types on dferent hadware configuations. This paper is thesult of lessons learned in thepess of designinguilding, and mod-

ifying an industrial telecommunications platform. In particutae use of theading function in the design of the system led th suc
benefits as support for the dynamioletion of the system, the ability to dynamically add services and data types to a running sys-
tem, support for hetegeneous systems, and a simple design performing well enough to haffidlintexcess of 40,000usy-hour

calls.

Intr oduction

This paper describeswaal benefits of the trading function in the cahtdf a commercial closed system—theléicom
Services Architecture, a commercial architecture that handles the transport and procesgargldfisedred concur-
rent 10 streams. The sofaire architecture of the system loosely fekahe CORB. and ODP standards of distiifed
computing [OMG93, ITU92] and supports a number of applications oy hexvare oganizations. The system is
organized around the principle of the ODP trading function. Byeakhantage to the trading function is thexitslity

it affords a system; while fkbility is desirable in an academic system, it is vital in a commercial system.

The following are a fev of the realities of commercial systems.

* The requirements of the system are constantly being modified, due to decisions in gtmgndelpartment, reac-
tions to markt trends, or specific customer demands. Thigigcenerally results in changes to the product speci-
fication. The changes typically occur more rapidly than threldement team can finish implementing thevjmes
changes to the specification.

* Customers frequentlyant special features that no other custonserts: This places demands on thgilfiiity,
modularity and generality of the product designwéger, too much generality is bad when it results in a system
that does not perform well.

e The product is occasionally “blind-sided” with requirements for features that were not foreseen or planned for in the
original design. Br example, scalability is an @us future requirement for a product; is il that customers
will want lager or fister systems in the future. By contrast, support for an Internet connection is/iousot®-
eral years ago e could hae predicted the rapid commercial rush to the Internet and dhlel ¥¥ide Weh

Thetrading functionof the CCITT ODP Recommendation [ITU92, ITU94] is a simple concept that indirectly
addresses these concerns. In the trading functimadear acts as a yeli® pages directory for services. Serobjects

that wish to der services adbdrtise, orexport, their capabilities to the tradékn adertisement consists of a description
of the service and the location of an indéed preiding the service. Client objects that wish to obtain services send
requests to the trader and thieport information about seers that match their needs. A client request is a simple
description of a service desired; the trader matches client requasgistape descriptions praed by the serr
objects.

Though this may seem to be designed with a heterogeneous on-liregpizadin mind, it mapsevy well to a closed
system in which the @ironment is lilely to change. In such a system, the less state spread aroundeharsemlient
objects (eitherglicitly or implicitly) the betterIn live systems, for instance those handling telephone calls or monitor-
ing medical equipment, when sofive is upgraded it is unacceptable to restart the systenasaftet alone restart the
operating system or reboot the machinewBer, if new data types or services are added to the system it is frequently
the case that much of the sodive needs to be replaced or restarted. This is necessary todet kamy about the ng

data types and clients kiwabout the ne services. Object-oriented designs can ratéghis problem by king self-
describing data typesubthey seem to represent a smaller portion of industrial swéhan one ould expect.

A system that is based around the trading function naturally tewdsdt@ design where the objectgdlved knav
very little about each othesind we hee found that the amount of state in the system can be reduced to thanpllo

e Seners need only knvo how to reach the trader and the names and attesf of the services theffer.
* Clients need only ki how to reach the trader and the names and ates of the services theeed,

This is \ery important: clients do not need to knehat serers praide what services or where thare located, serv-
ers need only ki the location of the trader (as well as the agreed-upon servicadetgrinial in a closed system),
and the trader can be more or less stateless.

The following sections describe our system saftevand hardare, and illustrate avieof the benefits of a systengar
nized around the trading principle.

Software design

Fig 1 illustrates the softare architecture at a higtvéd of abstraction. It is arkample of theactive object modeusing

AN OBJECT:

OBJECT
METHODS
bound to
SERVICE

NAMES:

THE
META-CLASS
TRANSPORT LAYER

Figure 1. High level softwar ormganization: Object interactions

a popular taxonomy [Chin88]. The system is made up of numerous interacting objects, each of which is a collection of
methods bound to service names. The service names are globally visible,extideatithrough a central point. Serv
objects adertise their services through the central point, and client objects obtain the services through this point.

Itis a loose implementation of the trading function the ODP Recommendation, not a strict implementation, as the archi-
tecture vas deihed in 1991 before the ODRading Function draft @s published (in 1994 [ITU94]). In the trading
function, exporting serers adertise their services to the tradeho retains the state and acte li&kservice database to
inquiring clients. Importing clients makequests of the trader of the formyv&gime a service which beles like the

following ..” The Telecom Services Architecture is a biffeliEnt in that since it is a closed system, a client may assume
that aty service it requests isfefed somehere in the system. Therefore the trader can be stateless, as it does not need
to be able to return a message of the form, “no such semigtg’eClients post requests to the tradehere thg are

placed on a prioritized queue from which sssvpick up requests $hean handle.

This is diferent from the ODP trading function, where sesvadertise first and thenait for client requests to ave.
In the Telecom Services Architecture, the client objects place requests with the $iedens poll the trader for ark

to do; when a seer raisters itself with the trader it is implicitly ready foovk at that moment. Thisay the trader

never has to tell a seev to wake up (and potentially block), and clients areergor, at leastarely) in the position of

having to deal with defunct segvs who lege stale service adwtisements with the trader

The system is comprised ofdvprimary elements:

» Distributed pesistent objectsApplications in the system are implemented as objects, alederiom a single
meta-class which puides method wocation and communication to other objects in the system, transparently to
the object itself. An object methodexutes when another object, or another method within the same object,
requests the service bound to that method. A methadeswp” with a service request in its lap, and performs the
service. When finished processing, the method returns a service repkitand e

* The tading function—descriptive lookup of object meth@igects do not reference each other or each sther’
methods directlyThe methods are bound to global desaripsiervice names, such as “print” aaxf or “video’

All methods which implement the same service are bound to the same service name. An object requiring a service

therefore requests the “print” service or thexfservice. Requests go to the centratler, where thg are inserted
into a timeout queue similar to the callout table in Unix [Bach86]. Thus, an object needing a particular service only
needs to knw the name of the service, the intexé of the service, and the address of the trader

Fig 2 illustrates the primary components of the safwarchitecture at aw@r level of abstraction. The meta-class

TRADER
OBJECT

Sewver interaction

Seners periodically gister

their services with the trader
object. If there is a service

request on the queue that the

sener ofers, the request is

Client interaction

A client requests a service from the

trader which places the request on a,

queue. The client theraits for a
connection.

handed df
CLIENT
OBJECTS
Clients n?ay also conﬁact cer-
tain serers directlyinstead SERVER
of going through the trader OBJECTS

‘WELL-KNO WN’
SERVER OBJECTS

Figure 2. Lower level software organization: Trading function interactions

layer «ists as a library in each object, and not as an underlyingaseftayer in the operating system. The layer han-
dles interobject messaging and thevatation of local methods to support remote object methamtation. Clients
objects send service requests to a central tratierrequests ait on a timeout queue until a senobject rgisters a
matching service. At this point, the trader hands the request togikterang serer object, and the meta-class layer
invokes the appropriate object method.

The trader is a potential bottleneckt Inot a repository for global state. It holds only the timeout queue: a list of out-
standing service requests. The single trader can easily be replacedry/teedistrilnite load and state. Except for the
gueue, the trader is stateless, so aigardtion of multiple traders @uld not require ancommunication between
them. This vas to be the design of the system ifvitregrev beyond a hundred nodes.

Hardware configuration

The softvare can run on virtually grdistribtuted confjuration. The comduration of the original system is pictured in
Fig 3. It consists of distriied nodes communicating via Ethernet. Each node is a processor with mesreyg}

Master Control Node

Contains TRADER, BTA-
BASE, and PBX CONTAL

Control

Telephone/\ice

% Processing Node

Telephone/\dice
Processing Node

PBX
Telephone/\bice
Processing Node
T1 Lines T1 Lines Contains 24 DICE objects or
(incoming) 1 ISDN object per T1 line Ethernet

Figure 3. General hardware organization

disks, and dfthe-shelf telephonhardvare. In the original design, each node is an X86 box running Unix. The nodes
are also connected via a switching netivsuch as a digital PBX to the PSTN (public switched telephonerigtw

The LAN carries all meta-data and the switchiabric carries the heg data. The PBX may be dispensed with if the
amount of data to be med around the system igpected to be small or the LAN may be dispensed with if the main
switching netwark has enough bandwidth (for instance, if it is dMAswitch).

One processing node acts as a dedicated host for the treddatabase, and other singular objects such as the switch
controller The rest of the processing nodes connect to the switch by Thas({digital telephone lines that carry 24
time-multiplexed indvidual channels). These processing nodes act as dedicated hosts for the application objects; each
individual wice channel attaches to an application object.

An example of control flow. When a call comes in, the PBX sends a maiifon of the gent oser a serial control

line. For most incoming lines, the appropriate request isvilleomeservice. The switch control object on the Master
Control Node (MCN) notes therent and places the appropriate service request on thedrgdetde. As soon as @re

istering object ders thewelcomeservice, the trader handg tife service request and placeasaasfer callrequest onto

the queue. The switch control objeajisters with the trader and picks up the transfer request. The requettipdick

cates which incoming line the call is on, as well as the application object that is handlvejabmeservice. The

switch control object determines the appropriate port numbers and instructs the switch to bridge the call. When the
application object detects ringing, indicating a bridged call, it gddmef(picks up the phone) anddies the service.

Suppose the application object determines the caller wishes¢odasicemail message. The application object sends
the request for @oicemailservice to the tradefhe service request stays on the tradgueue until a ggstering appli-
cation object rgisters thevoicemailservice. When this happens, the application objectvengihe request and the
trader places ansfer callrequest onto the queue for the switch control object.

Decoupled application achitecture

The services déred on the &lecom Services Architecture are decoupled in that a logical service is usual handled
piecemeal by seral diferent serers on diferent machines, as described in thevioes section. A simplddw dia-
gram for a typical application is sha in Fig 4. Though it seems éka single application to the calléris actually

success BridgeCall

TransferCall

caller

: Voicemail
Welcome failure

(get call info)

subscriber Mailbox

Figure 4. Simple decoupled application

composed ofive servicesy\elcome TransferCall BridgeCall, Voicemail andMailbox. In thewelcomeservice, the
nature of the call is determined: it is either a caller trying to contact a subscribera(fgale, someone calling in to the
compary to reach their spouse), or a subscriber calling in to listen to his/her messages. If it ista@aldctomeser-
vice obtains thex@ension number of the person called and attempts to transfer the call to thasgersomhe caller
is put on hold at this point. A successful transfer occurs when the party called pickswp pi®ae, or picks up gn
other phone in the system and ideesithimself to the system. At this point, thridgecall service is imoked, which
takes the caller éhold and transfers him to the subscriliethe subscriber had not pie#t up the call, (thtailure case)
the caller vould have been sent to th@icemailservice. If the original caller had been a subscrthewelcomeservice
would have obtained his/her user ID, andwid have transferred him to theailboxservice.

It is important to understand that each of these actions (representefittgntifoxs in the figure) represents detif

ent portion of the logically monolithic applicationyttcan be handled by a fiifent serer entirely Each box is a
potential decoupling point; at yiof these points the caller can be put on hold and transferred to a complé&edntlif
application object residing on a completelyfeiiént processing node. The caller iswaee of the change. Thus, a
phone call can get bounced all around the system in the course of handling the calbuldhisoaur for load-balanc-
ing reasons; if a particular node issly performing manl/O intensve actions, the call could be transferred to another
node to handle aoicemail request. It muld also occur when a system is upgraded; hevesofiware is being put on

a live system without a disruption in service. As application objects finish theky they can be told to stop handling
more calls and to stopgistering themseks with the tradelOnce an application object is idle, it can be killed and a
newer \ersion restarted in its place. Thewnebject will immediately bgin registering with and accepting calls from
the trader; from anxéernal perspeate there is no perceptiblewdo-time.

Benefits of the trading function

The use of the trading functionfefs adantages that are important in a commercial product, including modularity of
design, support for dynamie@ution of a running system, and support for a heterogeneousdrardonfjuration.
The following features are deréd directly from the use of distrited objects and the trading function:

* Dynamic addition of ng services and data typedne can add a weapplication object to the system, replete with
new services and data types, and it will immediatelyi@orking in a running system. The services do not depend

on arything except a sersr object to der them and a client to request them.yraee opaque to the trader and
(unlike most RPC mechanisms) do not requisefarm of global configuration. This enormously simplifies system
upgrades.

* Indirect invocation of object method&n object ivokes the methods of another object through the trathés
allows application objects (both clients and sesy to knav as little as possible about theganization of the sys-
tem, an adantage when upgrading systems. Furtiienales the request pagkthe focal point for communication
between heterogeneous machine types, and thus simplifies suppdrefengeneous configation. It also gves
rise to the ne two featuresdecoupled application ahitectule, andasyntironous tensfer of contl.

* Modularity though a decoupled applicationdhitecture. An application can easily be bekinto smaller pieces,
where a dfierent application object handles each piece. In this aviogically monolithic application can be besk
into several pieces, eachxecuted by a diérent application object on a féifent machine. Besides simplifying
application-tilding, this allavs performance tradefsfsuch as mang the call to the data instead of vimgy the
data to the call; a logical thread of control (the interaction with a telephone call) can actually pass thrgugh man
objects on mannodes.

* Performance though asynmnous tansfer of contil. Since services arevioked by handing a request to the trader
one object passes control to another in an asynchroashisf. It is analogous to oneyRPC; the object handing
state of to another need not block until thexhebject picks up the request patkThe object only blocks until the
trader responds, and the request will only remain unserviced in the case of catastilaphi@fresult of it being a
closed system). This non-blocking protocol frees application objects from guaranteeing that control is successfully
passed and alles them to spend all of their time doing reairkv

* Soft eal-time @ent esponseThe system can respond in soft real-timexteraal @ents, and routinely handles
40,000 calls per houfhe trader places requests on a timeout queue, tagged with a tiedeewdnd a timeout ser-
vice; if the request remains on the queue for the length of time specified by the tiateeuthe request becomes a
different type, specified by the timeout service. This can ythiag from a beep to a notification that the system is
hearily loaded, to starting a daemon that ascertains whether the system is functioning.properly

Related Wbork

Two standards of distribed computingxst which outline similar functionalityut do not suggest designs. CORB
[OMG93] from the Object Management Group describes the use of objects, including staridamndehguages
and methods for storing and retiigg the interhices. CORR allows objects to moke methods indirectly through the
Object Request Bra, which can translate between client and eeprotocols. ODP [ITU92, ITU94] from CCITT
(now ITU, the International 8lecommunication Union) describes the trading function in whiclesesyport service
offers to a trader and clients import thosteist

Implemented systems include RPC systems such as the @istriGomputing Brironment from OSF [OSF91], the
Information Bus [Oki93], and BirreB’ Network Objects [Birrell93]. DCE assigns unique ids to service iatex$ and
requires a client to program for the inter and include the intefe description at compile time. A client mustwno

either a semr’s authentication id or a shared location in the CDS namespace before attempting to bind. The Informa-
tion Bus allevs more anoymous communications: sems “publish” data of arious types, and clients “subscribe” to
whatever data types tlyeare interested in. A client reges all information on the netwk of the types to which the cli-

ent subscribes. Birrefi’ netvork objects are similar to other distiled object systems such as Opal [Chase92] and
Emerald [Jul88], bt simplify the designs by restricting mobility and gamn-stationary objectsver the netwrk by
“pickling”. Objects &port their methods under whagz name the desire, so it is possible for a client objectinol &

sener object by a descript name.

References

[Bach86]

MauriceJ. Bach.The Design of the UNIX Operating Systé&hrentice-Hall, Inc.,
Englewood Cliffs, NJ, 1986.

[Birrell93] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. “Network objects.”

In Proc. Fourteenth ACM Symposium on Operating Systems Pringiplgss 217-230,
December 1993.

[Chase92] JeffreyS. Chase, Henmyl. Levy, EdwardD. Lazowska, and Miche Baker-Harvey.

[Chings]
[ITU92]
[ITU94]

[Julgg]

[Oki93]

[OMG93]

[OSF91]

“Lightweight shared objects in a 64-bit operating system.” Technical Report 92-03-09,
University of Washington, March 1992.

RogerS. Chin and Samudl. Chanson. “Distributed object-based programming
systems.”ACM Computing Survey81(3), March 1988.

ITU. Draft Recommendation X.903: Basic Reference Model of Open Distributed
ProcessingInternational Telecommunication Union, 1992.

ITU. Draft Recommendation X.9tr: ODP Trading Functitmiernational
Telecommunication Union, 1994.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. “Fine-grained mobility
in the Emerald systemACM Transactions on Computer Systef{4):109-133,
February 1988.

Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. “The Information Bus—an
architecture for extensible distributed systems Ptac. Fourteenth ACM Symposium
on Operating Systems Princip/d3ecember 1993.

OMG. The Common Object Request Broker: Architecture and Specification, Rev 1.2
Object Management Group, December 1993. OMG Document Number 93-12-43.

OSF.DCE Application Development Guid®pen Software Foundation, 1991.

