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 This study was undertaken in order to better understand preservice elementary 

teachers’ knowledge of and motivations toward fractions before and after taking a course 

designed to promote relational understanding, as well as what teaching practices might be 

related to student outcomes. Students in five sections of the course were given a fraction 

assessment and a motivation questionnaire at the beginning and end of the semester, and 

observations were made of the nine days when fractions were taught. Students' 

knowledge of basic concepts improved, as did their computational skill and ability to 

solve word problems. However, their tendency to use inefficient algorithms did not 

change. Error patterns at the beginning of the semester revealed misconceptions about 

fractions, but errors at the end of the semester were largely reflective of low skill. Value 

and self-concept of ability increased while anxiety decreased, but these changes differed 

somewhat by instructor. In particular, having students explain their thinking instead of 

listen to lecture tended to have increased benefits for anxiety.  
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CHAPTER I 

INTRODUCTION 

Researchers have consistently commented on the large percentage of individuals 

lacking basic fraction skills (Ball, 1990a; Hecht, 1998; Mix, Levine, & Huttenlocher, 

1999; Rittle-Johnson, Siegler, & Alibali, 2000; Saenz-Ludlow, 1994; Smith, 1995). This 

skill deficiency is evident by sixth grade, when instructional emphasis becomes 

increasingly procedural and mechanical in nature (Niemi, 1996). According to 

researchers, some algorithms pertaining to fractions are among the least understood in all 

of elementary school (Bulgar, 2003; Smith, 1995; Tirosh, 2000). In the middle grades, 

fractions constitute a significant part of mathematics instruction, and a weak background 

in fractions can lead to problems in future mathematics classes (Case, 1988). Ball (1990a) 

demonstrated that preservice teachers’ knowledge of fractions is limited, and Ma (1999) 

extended these findings to inservice teachers. For these reasons, it is important to 

continue efforts to understand why individuals struggle with fractions and what can be 

done to change this phenomenon. 

 Research has shown that the quality of instruction is an important factor in student 

learning (Rice, 2003; Stigler & Hiebert, 1999). As such, it could be that characteristics of 

traditional fraction instruction are contributing to the persistent trend of poor performance 

in fractions for children, adolescents, and adults. Silver (1986) suggested that for 

common mathematical errors, we should “examine the possibility that our instructional 

procedures may be reinforcing the error rather than eradicating it” (p.190). In the United 

States, these instructional procedures have typically involved statements of definitions 

and processes followed by a great deal of practice (Stigler & Hiebert, 1999). However, 
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researchers have established that when instruction focuses on linking concepts and 

procedures, students retain more and are better equipped to learn new ideas (NRC, 2001). 

More recently, Hill, Rowan, and Ball (2005) have shown that when teachers have this 

linked knowledge, it positively predicts student achievement gains as early as first grade.  

 Other researchers have suggested that when teachers emphasize learning and 

understanding fractions (rather than performance), students not only tend to perform 

better, but they also express more enjoyment of and interest in fractions (Schunk, 1996; 

Stipek et al., 1998). Stipek and her colleagues described these teachers as promoting a 

learning orientation, and they found that such an orientation was positively related to 

gains on non-routine fraction tasks but not routine ones. These results differ somewhat 

from Schunk’s (1998) findings, in which teachers’ manifestation of learning orientations 

also enhanced performance on routine tasks (e.g., adding and subtracting fractions). 

Research is needed to clarify these discrepancies, but it seems that instructional emphasis 

plays an important role in fraction knowledge.  

 In brief, fractions constitute a significant but difficult part of mathematics 

education, and there is clear evidence that students continue to perform poorly on 

fractions into the college years. Further, there is reason to believe that common 

instructional practices related to fractions (such as those emphasizing procedures and 

mechanics) contribute to poor fraction knowledge. There is also evidence that instruction 

emphasizing understanding (rather than performance) is related to both improved fraction 

knowledge and attitudes toward fractions. Still, far too little is known about the link 

between instructional practices and fraction performance, particularly for preservice 

teachers. Therefore, efforts to improve performance in fractions would be supported by a 
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better understanding of how instructional practices within an elementary education course 

are related to the knowledge and attitudes of students taking such a course. 

Statement of the Problem 

 Hill et al. (2005) suggested that teachers need more than mathematical skill; they 

need the kind of mathematical knowledge that enables them to provide students with 

explanations, to analyze student responses, and to use appropriate pictures to represent 

concepts. A question that remains is: How do teachers gain this knowledge? One place to 

begin addressing this question is with preservice teachers. As students who want to 

become teachers, this group represents a critical case in the education cycle. They are 

both learners of mathematics and learners of how to teach mathematics, which places 

them in a prime position to gain this knowledge. Some questions that follow are: What do 

preservice teachers know about fractions? What are their attitudes toward fractions? 

What instructional practices would help them improve their understandings and attitudes?  

 Given that children feel increasingly less competent in mathematics and value it 

less as they progress through elementary, middle, and high school (Jacobs, Lanza, 

Osgood, Eccles, & Wigfield, 2002), one might expect preservice teachers to also have 

poor attitudes. However, little is known preservice teachers’ attitudes toward 

mathematics. One general finding is that elementary preservice teachers feel much less 

confident about and more anxious toward mathematics than do secondary preservice 

teachers (Ball, 1990a). In fact, females in general tend to feel more anxious about 

mathematics (Wigfield & Meece, 1988) and have lower mathematics self-concepts 

(Marsh, 1989). Since the majority of preservice elementary teachers are female, elevated 

levels of anxiety and decreased self-concepts might be expected for this group. However, 
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not much is known about how elementary preservice teachers feel about fractions in 

particular. Marsh (1989) suggested that mathematics self-concepts begin to increase for 

university students in general, but given the findings of Ball (1990a), it is unclear whether 

this increase would exist for preservice elementary teachers. 

 Regarding elementary preservice teacher knowledge of fractions, the recent 

literature is primarily limited to division (Ball, 1990b; Tirosh, 2000). The mistakes these 

college students make with division of fractions are similar to the ones that younger 

students make. Two decades ago, Silver (1986) reported preservice teachers making 

addition mistakes similar to young students. Specifically, they tended to add numerators 

and denominators. Given the emphasis on reform over the last two decades, it is unclear 

whether such trends still hold. 

While it well established that mathematical knowledge benefits from a conceptual 

understanding of procedures (e.g., Bruner, 1960/1977; Hiebert & Lefevre, 1986; NRC, 

2001; Rittle-Johnson et al., 2001; Skemp, 1978), it is currently unclear how to best arrive 

at this understanding. Some researchers have demonstrated such an understanding of 

fractions is possible when students create their own solutions (e.g., Bulgar, 2003; Mack, 

1990, 2000; Tzur, 2004), but these studies were primarily descriptive and lacked 

comparison groups. When comparison groups were used, researchers typically compared 

instruction with multiple beneficial elements (i.e., rich context, large amounts of 

discussion, encouragement of student-invented procedures) to instruction with none of 

these things (e.g., Morris, 1995). It is difficult to know the contributions of these 

elements when they are combined with an emphasis on conceptual understanding, which 

could conceivably occur through effective lecturing. If we want teachers to know how 
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fraction concepts and procedures are related, we need to know more about how to 

accomplish this goal. 

Purpose of the Study 

The purpose of the current study was to extend the literature on elementary 

preservice teacher knowledge and motivation toward fractions. In particular, I examined 

these factors before and after the future teachers participated in a mathematics course 

designed to help them link elementary school concepts to their procedures. 

Research Questions and Hypotheses 

 This study addressed the following research questions: 

1. What is the level of elementary preservice teachers’ knowledge of and 

motivations toward fractions at the beginning of a course designed to promote 

relational understanding in mathematics? 

 As reported in the literature, it was expected that the preservice teachers would 

perform at a level comparable to middle school students (Silver, 1986; Tirosh, 2000). 

Based on pilot test results, it was expected that the participants would have the least 

knowledge about division of fractions versus their knowledge of addition, subtraction, 

and multiplication. Further, Asku’s (1997) research suggested that the participants would 

perform poorly on word problems included in the fraction knowledge measure. Finally, 

low motivation for fractions was expected for many of the teachers, based on the work of 

Ball (1990a) regarding motivation toward mathematics in general for elementary 

preservice teachers. 
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2. How will elementary preservice teachers’ knowledge of and motivations 

toward fractions differ as a result of participating in a course designed to 

promote relational understanding in mathematics? 

 Based on the scant literature (e.g., Stipek et al., 1998), pilot tests results, and the 

goals of the course, it was expected that the course would contribute to significant 

improvement in participants’ fraction knowledge. In addition, there should be evidence of 

enhanced concept/procedure linkages in the classification of error patterns at posttest. It 

was expected that the greatest improvements from pretest to posttest on this measure 

would be found for the word problems, which have been historically more demanding for 

students to solve (Asku, 1997). Consistent with the course activities, it was expected that 

the solutions for these word problems would involve the use of pictures rather than 

algorithms.  

 Along with improved knowledge, it was expected that there would be a 

significant rise in students’ motivations toward fractions, in part due to their increased 

competence in this area (Alexander, 1997). Specifically, an emphasis on understanding 

should be related to lower anxiety and higher interest (Stipek et al., 1998; Schunk, 1996), 

as indicated in participants’ self-reports from pretest to posttest. 

3. What do preservice teachers’ error patterns and ways of solving fraction 

problems reveal about their procedural and conceptual knowledge of fractions 

at the beginning and end of a course designed to promote relational 

understanding in mathematics? 

 Mack (1995) and others have reported that children make mistakes with fractions 

that are related to their knowledge of whole numbers. It was expected that some of these 
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errors persisted into the college years (Silver, 1986). Considering the importance of 

linking concepts to procedures (NRC, 2001) and the prevalence of instruction that lacks 

such links (Stigler & Hiebert, 1999), it was expected that mistakes on the fraction 

knowledge measure would not be random. Rather, these errors would be classifiable and 

would reflect a particular lack of association between concepts and procedures. 

4. Are there discernible profiles for instructors teaching different sections of a 

course designed to promote relational understanding in mathematics, and how 

do these profiles contribute to preservice teachers’ fraction knowledge and 

motivation at the conclusion of the course? 

 Based on pilot study results, it was expected that the three course instructors 

would vary in their delivery of course content. For instance, some instructors were 

expected to ask questions to promote discussion, while others were expected to lecture. 

Based on Stipek (2002), it was expected that opportunities for students to discuss the 

material will be related to their improved motivation. Despite the goals of the targeted 

course, differences in the extent to which concepts are linked with procedures were 

expected. This difference may be related to the beliefs of the instructors, and it was 

expected that significant differences in the amount of linking would also be related to 

differences in knowledge (NRC, 2001) and motivation (Stipek, 2002) at posttest. 

Definitions of Terms 

In order to address these research questions, the following terms are used: 

Anxiety has both a cognitive and an affective component (Wigfield & Meece, 

1988), but since the affective component is the one shown to have debilitating effects on 
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achievement, it is the component referred to in this study. As so defined, anxiety includes 

feeling scared and nervous, especially in testing situations. 

 Conceptual knowledge is “most clearly characterized as knowledge that is rich in 

relationships” (Hiebert & Lefevre, 1986, p. 3). For the purposes of this study, this term 

includes knowledge of definitions and principles, as well as ways of representing them. 

 Procedural knowledge in mathematics refers to a familiarity with symbols, 

conventions, and rules for solving problems (Hiebert & Lefevre, 1986). 

 Relational understanding indicates that a student’s knowledge includes both how 

to do something and why it is done that way (Skemp, 1978). 

 Procedural flexibility is an ability to use procedures in a way that is elegant and 

efficient. Students with procedural flexibility often depart from general algorithms when 

an alternate algorithm is more appropriate (Star, 2005). 

 For the purposes of this study, self-concept of ability represents both a person’s 

beliefs about his or her mathematical abilities, as well as his or her expectancies for 

success in the future. Although ability beliefs and expectancies are theoretically different, 

they are assessed together because they are linked empirically (Wigfield & Eccles, 2000). 

 Transfer items are novel problems that tap into targeted ideas but can not be 

solved with the acquired procedures (Hiebert & Wearne, 1988). 

 The value a person places on mathematics represents his or her beliefs about its 

importance and usefulness, as well as his or her interest in the domain (Wigfield & 

Eccles, 2000). 
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Significance of the Study 

 This study is expected to contribute to the literature in at least four ways: 

1. Primarily, research on elementary preservice teachers’ knowledge of fractions 

is limited to division (e.g., Ball, 1990a; Tirosh, 2000). The current study 

examined what these future teachers knew about adding, subtracting, 

multiplying, and dividing both fractions and mixed numbers. 

2. Research on motivation for mathematics has largely focused on general 

mathematics (Middleton & Midgley, 2002; Pintrich, 2000; Wigfield & Meece, 

1988). The current study extends the literature on mathematics motivation by 

examining elementary preservice teachers’ motivations toward fractions. 

3. The current study further validated an observation instrument previously used 

to investigate 4th and 5th grade classroom practices by employing that 

instrument in the observation of college classrooms. 

4. The current study built on what is known about the benefits of linking 

conceptual and procedural knowledge by investigating what other elements of 

instruction may be important in realizing those benefits. 

Limitations  

 While the present study is expected to contribute to the literature in a number of 

ways, there are a few apparent limitations. One limitation is that the small number of 

course instructors made it difficult to detect differences due to issues of statistical power. 

In addition, both the instructor and students samples were drawn from a single university 

setting. In particular, it is a setting where mathematics education is of great concern and 

efforts to improve it are relatively consistent with current with trends.  
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 Another limitation is that the study occurred in natural settings. As such, the 

experiences of the participants, such as the types of instruction they received, was not 

controlled by the researcher. These limitations should be kept in mind while making any 

generalizations based on the study’s findings. 
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CHAPTER II 

REVIEW OF RELEVANT LITERATURE 

One purpose of the present study was to explore older students’ knowledge of and 

motivations toward fractions. The particular students selected for this exploration were 

elementary education majors enrolled in a course whose purpose was to promote a 

relational understanding of the mathematics they would someday teach. A primary goal 

of the study was to investigate the potential influence of this course on these students’ 

fraction knowledge and motivations. In light of these interests, the current review is 

organized around three key bodies of research. 

First, the literature on fraction knowledge will be considered. The goal is to 

understand what elementary preservice teachers know about fractions. As future teachers, 

their mathematical knowledge will likely have an impact on student achievement (Hill, 

Rowan, & Ball, 2005). But as students of education, I was interested in their knowledge 

and how it changed as a result of the instruction they received. Because the literature on 

preservice teacher knowledge of fractions is limited, much of the literature reported here 

involves research conducted with elementary and secondary students. 

Because this study explored the contributions of instruction to students’ 

knowledge and motivations, the literature on motivations toward mathematics in general 

and fractions in particular will be surveyed. This section of the review includes the 

research concerning elementary and secondary students’ motivation toward fractions as 

well as what is known about elementary preservice teachers’ motivation toward fractions. 

Given that the research on both age groups is limited, this facet of the literature review 

will be exhaustive with regard to fractions. 
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Finally, because a significant aspect of the present study concerned the influence 

of teachers’ instructional actions on their students’ knowledge and motivations, the 

literature on effective teaching of mathematics will also be reviewed. From the research 

on fraction knowledge, ideas about how to effectively teach fractions emerged. In order 

to place these ideas within a larger framework, some background on effective teaching 

literature will be provided. First, theoretical ideas related to effective teaching will be 

discussed. Next, the literature on teaching behaviors related to mathematics achievement 

will be mentioned. Finally, connections will be made between characteristics of quality 

instruction and motivation. 

This overview of the relevant literature will conclude with a discussion of the 

unresolved issues pertaining to fractions knowledge and motivations and to the influence 

of instruction on such knowledge and motivations. 

Fraction Knowledge 

The vast amounts of research on rational number understanding may suggest that 

everything is known about how students learn and understand rational numbers. On the 

other hand, such extensive research literature may be evidence of the importance and 

difficult nature of learning about rational numbers. I have taken the latter stance and 

attempted to measure the progress made on understanding fraction knowledge. This 

knowledge includes procedural knowledge such as how to add, subtract, multiply, and 

divide common fractions, as well as how to compare and rename fractions. It also 

includes knowledge of basic fractions concepts and knowledge of when to apply the 

procedures. 
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 To determine the progress researchers have made in understanding fraction 

knowledge, empirical articles from peer-reviewed journals during the period 1990-2004 

were analyzed. The analysis focused on finding and describing themes that emerged from 

the literature. Five themes were identified, including the role of prior knowledge, the link 

between conceptual and procedural knowledge, the role of invented procedures, 

difficulties related to symbolism, and the limitations of the part-whole conceptualization 

of a fraction. 

Fraction Knowledge of Students 

 Almost ten years ago, Pitkethly and Hunting (1996) reviewed the available 

research on initial fraction concepts, focusing on projects whose goals were to help 

children develop meaningful understandings about fractions. Although the present review 

will overlap somewhat with theirs, its primary purpose is to examine what is known 

about the acquisition of procedural knowledge, including knowledge of the four 

operations and prerequisites such as equivalent and improper fractions. As such, the 

participants in these studies are primarily upper elementary- and middle-school children. 

In some cases, however, researchers have introduced these skills to younger students, and 

their work has consequently been reviewed. Hence, this review extends the work of 

Pitkethly and Hunting not only by including research conducted since that time, but also 

by focusing on skills that develop after initial concepts are acquired. 

 Nearly twenty years ago, Robbie Case (1988) suggested a research agenda 

concerning middle-grade mathematics, of which he considered fractions to be a central 

part. Within this agenda, he suggested several lines of research that both continued and 

built upon the most current work at that time. Much empirical work has been added to the 
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literature on fractions since then, and the five themes mentioned above have emerged 

from the current analysis of that work. The themes are consistent with those in Case’s 

(1988) suggested research agenda for mathematics in the middle grades, and they will be 

presented and analyzed with respect this agenda. Careful attention will be given to the 

progress made on this agenda, and suggestions for an updated agenda will be made.  

Prior Knowledge 

  According to Case (1988), “there is a pressing need for more detailed and clearly 

testable models of students’ understandings” (p.266), and researchers have made some 

progress toward fulfilling this need by investigating how students make sense of 

fractions. According to Piaget (2001/1950), children actively seek to make meaning of 

the world around them. They find this meaning by relating new knowledge to prior 

knowledge, or knowledge gained from instructional experiences or experiences with 

one’s environment. This basic idea from constructivism has been useful in understanding 

the fraction knowledge of students. 

 One major finding of the research on fraction knowledge is that children relate 

fractions to their knowledge of whole numbers. For example, Mack (1995) described 

students explaining 3/5 as three whole objects cut into five pieces. Byrnes and Wasik 

(1991) suggested students often over-generalize their knowledge of whole numbers when 

adding fractions. In other words, students tend to treat the fraction parts as if they were 

whole numbers, adding numerators together as well as denominators. This error was 

shown to be persistent even after students were warned not to do it. 

 Although some researchers have asserted that prior knowledge of whole numbers 

interferes with fraction learning, others have argued that whole number knowledge is 
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actually the foundation upon which fraction knowledge is built (Olive, 1999; Saenz-

Ludlow, 1994). For example, Olive described a student who found both 1/3 and 1/5 of a 

unit by counting by threes and by fives until he had a common multiple. He then split the 

unit into 15 parts and removed five pieces for 1/3 and three pieces for 1/5. According to 

Olive, he was able to arrive at this solution because he had and could coordinate his 

knowledge of whole numbers. Saenz-Ludlow (1994) also described a student using whole 

number knowledge to solve problems with fractions. While working with a money 

context, her student compared fractions by finding the content value and comparing those 

whole number amounts. For example, since 1/10 of 100 is 10 and 1/20 of 100 is 5, then 

1/10 > 1/20. 

 Hunting, Davis, and Pearn (1996) found that not only did children use their 

knowledge of whole numbers to learn fractions, but their whole number knowledge was 

actually strengthened by learning about fractions. Vygotsky (1934/1986) described a 

similar interrelationship between arithmetic and algebra, claiming that learning algebra 

strengthens the skills of arithmetic. If so, then it also makes sense that learning fractions 

in a way that utilizes and builds on whole number knowledge has the result of improving 

that knowledge. 

 In her 1995 study, Mack also found interrelated knowledge between whole 

numbers and fractions. However, she demonstrated that these connections are not always 

smooth or accurate. Working with third and fourth graders to determine how children 

make sense of fraction procedures, she instructed them individually in 30-minute lessons, 

twice a week, for three weeks. The instruction varied with each student, depending on the 

students’ skill level. In general, she focused on the relative size of fractions, the symbolic 
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representation of fractions, adding, subtracting, and fraction equivalence. Not only did 

she find that students sometimes misapplied their ideas of whole numbers incorrectly to 

fractions, but she found that the reverse was also true. In other words, after some initial 

learning of fraction concepts, the students began to misapply their knowledge of fractions 

to whole numbers. For example, when learning to subtract a fraction from a whole 

number, they might refer to the whole number as if it were only a numerator. 

Specifically, one student suggested the “2” in 2 – 3/8 represented two eighths. In seeing 

this circular pattern of interference, Mack suggested that studies be conducted to 

determine if it would be helpful to develop students’ understanding of whole number and 

fraction symbols simultaneously.  

 Mack’s (1995) suggestion to develop fraction and whole number knowledge 

simultaneously is important in at least two ways. First, in Case’s (1988) research agenda, 

he claimed that the organization of topics should be based on what conceptual 

distinctions are natural for middle grade students, and more needed to be known to make 

such decisions. Evidence presented here suggests that the distinction between fractions 

and whole numbers is not a natural one. Second, Silver’s (1986) suggestion to re-evaluate 

practices where recurring errors are involved would aptly apply to this situation. If it is 

true that fractions and whole numbers are not naturally distinguishable to young learners 

and prior knowledge of one interferes with learning the other, then Mack’s suggestion 

should be a serious part of a future research agenda concerning instruction in fractions.  

 As a mathematician, Wu (2002) asserted that a major fault in usual presentations 

of fractions is the lack of “a clear definition of a fraction that includes whole numbers as 

a special kind of fraction” (p.16). Perhaps a simultaneous introduction of whole numbers 
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and fractions would aid with such a definition. This does not imply, however, that all 

fraction skills should be learned at an early age.  

 Mix, Levine, and Huttenlocher (1999) provided some evidence for Mack’s 

perspective. They found that early fraction ability emerges only slightly later than an 

ability to deal with whole numbers, but both are present at some level by age four. They 

also provided evidence that the two types of knowledge follow similar developmental 

paths. For example, the ability to calculate with fractions emerges before the skill of 

using symbols to represent fractions, just as the ability to calculate with whole numbers 

appears before the skill with whole number symbols. 

 In trying to reconcile whether prior knowledge interferes with or helps children 

learn new ideas about fractions, Tzur (2004) concluded that it does both. In fact, he 

claimed that whole number knowledge and prior fraction knowledge interfere, at least 

temporarily, with new fraction concepts. When students first try to make sense of a new 

concept, they may draw on prior knowledge in erroneous ways. Once they realize the 

discrepancy between the new situation and prior situations they have encountered, 

students begin to expand their original notions to include the new concept. Hence, the 

interference of prior knowledge may reflect both the unstable nature of new knowledge 

and the limited nature of prior knowledge. 

 In his study, Tzur (2004) asked a student to recreate a whole pizza given 5/8 of an 

unmarked pizza. Initially, the student relied on his prior knowledge of eighths to 

mistakenly divide the partial pizza into eight pieces. Before returning to the task a few 

days later, Tzur posed a similar task using a fraction that could be iterated to create the 

whole. For example, given 2/10, the student suggested iterating the piece five times to 
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create the whole. Using this as a prompt, she was eventually able to solve the original 

task involving 5/8 of a pizza. 

 Besides whole number and prior fraction knowledge, informal knowledge may 

also affect fraction learning. According to Mack (2000), “informal knowledge can be 

characterized as applied, circumstantial knowledge constructed by the individual in 

response to his/her real-life experiences” (p. 308). In 2000, Mack investigated the long-

term effects of students building on informal knowledge of fractions. In short, she found 

that informal knowledge may be able to assist with learning fractions procedures, even 

after algorithmic instruction.  

 During her investigation, Mack (2000) discovered several patterns regarding the 

use of informal knowledge. Prior to instruction in fraction multiplication, the students 

were encouraged to solve problems using their informal knowledge of sharing with peers. 

After learning a procedure in school, however, they relied only on the algorithm. When 

she asked about this reliance, the students claimed to value the algorithm’s efficiency and 

the fact that they did not need to understand the problem. However, the students made 

some critical conceptual mistakes when relying solely on the algorithm. Furthermore, 

they no longer wanted to solve word problems, preferring a purely symbolic form of the 

problem. When pressed to justify solutions to word problems, however, the students 

reverted back to using their informal knowledge (Mack, 2000). Apparently, informal 

knowledge is a helpful for understanding problems with fractions, but instruction that 

focuses heavily on procedural skill discourages its use. 

 The idea of informal knowledge assisting formal knowledge might seem contrary 

to Vygotsky (1934/1986), who claimed that in general, scientific concepts reorganize 
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spontaneous (or informal) ones, not the other way around. However, instruction focused 

heavily on procedural skill is probably not what Vygotsky had in mind when he made his 

claim. In fact, contemporary Vygotskians suggest that concepts learned in school can be 

subdivided into theoretical and empirical concepts (Kozulin, 1988). Empirical concepts 

are learned inductively by seeing many examples and arriving at some conclusion. On the 

other hand, theoretical concepts are learned in a deductive fashion, beginning with the 

general idea and applying the idea to various examples. It is doubtful that the algorithmic 

instruction that students received in Mack’s (200) study was theoretically based, and it 

would be interesting to find out whether or not such instruction would result in different 

patterns. 

 In brief, research does seem to support the Piagetian (2001/1950) notion of 

linking new knowledge to old, but this link is complicated. It is not just prior knowledge 

of whole numbers that can interfere with new fraction knowledge (Byrnes & Wasik, 

1991; Mack, 1995), but prior fraction knowledge can interfere as well (Tzur, 2004). And 

interference is not the only link between the old and new knowledge; researchers like 

Mack (2000), Olive (1999), and Saenz-Ludlow (1994) have shown that prior knowledge 

can sometimes assist in the acquisition of new fraction knowledge. Furthermore, the link 

is not unidirectional. As new knowledge is gained, prior knowledge can be reshaped 

(Tzur, 2004) or reinforced (Hunting, Davis, and Pearn, 1996). Given this strong but 

complex role of prior knowledge, its consideration in instructional practices needs to be 

more carefully examined. 
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Conceptual and Procedural Knowledge 

  Within discussions of prior knowledge, sometimes it becomes important to 

characterize the nature of that knowledge. Over the years, numerous such 

characterizations have surfaced, usually in the form of dichotomous distinctions such as 

empirical and theoretical concepts (Kozulin, 1988). However, a more cited distinction is 

that of conceptual and procedural knowledge (Hiebert & Lefevre, 1986). Simply put, 

conceptual knowledge might be thought of as “knowing that” whereas procedural 

knowledge might be thought of as “knowing how” (Byrnes & Wasik, 1999, p. 777). 

Other characterizations have attempted to describe links between two types of 

knowledge, such as Skemp’s (1978) relational and instrumental understanding. 

Instrumental understanding might be thought of as knowing “what to do” whereas 

relational understanding might be thought of as “knowing both what to do and why” 

(Skemp, 1978, p.9). Rather than being dichotomous, the former is actually a subset of the 

latter.  

 Rittle-Johnson, Siegler, and Alibali (2001) suggested that understanding why 

procedures work might strengthen the relationship between conceptual and procedural 

knowledge. Hiebert and Lefevre (1986) also made this suggestion and added that 

meaningful procedures are also more easily recalled. That understanding procedures 

would lead to better retention of them is consistent with Bruner’s (1960/1977) statements 

about the connection between memory and fundamental principles. He suggests that 

details can be more easily reconstructed when they are part of a greater structure and are 

more quickly forgotten when they are not.  



 21

 Researchers have suggested that too many students lack such deep understandings 

of mathematical procedures, and as a result, Case’s (1988) agenda included the need for 

further clarification of the link between procedural and conceptual knowledge. Within the 

last two decades, several researchers have explored this link. Although there has not 

always been agreement about the nature of the relationship, researchers have tended to 

conclude that conceptual and procedural knowledge are both important in understanding 

fractions. 

 For example, Byrnes and Wasik (1991) examined whether or not conceptual 

knowledge, as measured using items such as comparing fractions and recognizing the 

appropriate drawing for a given fraction, is a sufficient condition for acquiring procedural 

knowledge, such as addition and multiplication of fractions. They found that it was not; 

some children with strong conceptual knowledge still use some procedures incorrectly. 

This result is consistent with Carpenter (1986), who claimed there are two situations in 

which procedures remain isolated from their related concepts. The first is when the 

concepts are not fully developed for the student, and the second is when the procedures 

are not linked to the concepts. Although Byrnes and Wasik did not test for Carpenter’s 

second situation in particular, they did provide evidence that a second situation must 

exist. 

 Hecht (1998) replicated findings of Byrnes and Wasik (1991) by showing that 

procedural and conceptual knowledge both contribute to fraction computation skills, but 

he extended their findings by showing that conceptual knowledge continues to predict 

fraction skills even after controlling for variables such as knowledge of math facts, 

procedural knowledge, and general verbal ability. In this study, conceptual knowledge 
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was defined in a manner similar to Byrnes and Wasik. Though this type of knowledge is 

clearly important for success with fractions, more studies are needed that explore the 

relationship between a deep understanding of the procedures and the actual procedural 

skill. In other words, how does conceptual understanding of procedures aid in student 

learning of those procedures?  

 Aksu (1997) explored this relationship by comparing student performance on 

word problems with their performance on context-free problems involving all four 

operations with fractions. She used Skemp’s characterization of relational versus 

instrumental understanding to analyze the results. After finding that students performed 

better on context-free problems than on word problems, she concluded the students had 

an instrumental understanding. In other words, the students had likely had memorized 

procedures without understanding them. These conclusions, however, are somewhat 

speculative. It might be helpful to repeat the experiment while controlling for important 

variables such as reading comprehension. Interviews of students and information about 

teaching practices would also be helpful in determining why the performance was lower 

for word problems. 

 Rather than simply using word problems that could be solved with an 

appropriately selected algorithm, Saxe and Gearhart (1999) chose problem-solving items 

that required a deep understanding of fractional concepts. These included finding 

fractions for unequal parts, estimating fractional parts of areas, and solving fair-share 

problems. They also included information about the teaching practices used with the 

students. They wanted to determine if there was a relationship between the degree to 

which instruction was aligned with reform practices and performance on these problem-
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solving items as well as computational items. By reform practices, the authors are 

referring to instruction that follows recommendations from groups such as the National 

Council of Teachers of Mathematics, such as encouraging sense-making and building on 

students’ understandings.  

 Saxe and Gearhart (1999) reported findings separately for two different groups. 

For students who began with a very basic understanding of fractions, increases in 

alignment with reform practices were associated with increases in student performance 

on problem-solving items. For those who did not begin with a basic understanding of 

fractions, a relationship was apparent only at high levels of alignment. One explanation 

for this result is that, at low levels of alignment, students without a basic understanding of 

fractions do not have the support they need to become engaged in the task of 

understanding fractions. Indeed, these students may not even be aware that there is 

something more to fractions than memorization. 

 For computational items, no relationship was apparent for either group of 

students. Saxe and Gearhart (1999) explained this result by stating that in the short term, 

procedures can be simply memorized. They asserted that traditional practices support this 

type of memorization perhaps even better than reform practices. However, no long term 

measures were included in the study. Case’s (1988) agenda called for a better 

understanding of how short term and long term change are related, and much still needs 

to be done to achieve such understanding. If we accept Bruner’s (1960/1977) claim that 

knowledge learned without understanding is not likely to endure, then a long term study 

may produce different results for computational skills than was found by Saxe and 

Gearhart. Another important consideration is that the procedural knowledge required for 
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these problems were limited to finding equivalent fractions and adding and subtracting 

fractions. The algorithms for multiplying and dividing fractions are quite different from 

those of adding and subtracting, and these students did not need to distinguish between 

them. 

 Niemi (1996) also tested limited amounts of procedural knowledge, but he studied 

conceptual knowledge of upper elementary school students from a variety of 

perspectives, including both representational fluency and conceptual understanding of 

procedures. Representational fluency was measured by asking students to recognize 

multiple representations of a given fraction. Then students were scored on their ability to 

explain and justify solutions to problem-solving tasks. The tasks included comparing 

fractions of objects, finding a fraction between two fractions, and evaluating the truth of 

statements involving equivalence and addition. 

 Niemi (1996) found that students who scored high on representational fluency 

also tended to explain fractions in terms of concepts and principles while avoiding 

misconceptions. However, they were no more likely to simply know the procedures than 

groups who scored low on representational fluency. But like Saxe and Gearhart (1999), 

Niemi had no follow-up measures, meaning that it is unclear whether representational 

fluency was related to retention of procedures. While many researchers agree that 

representational fluency is an indicator of conceptual understanding, some also contend 

that this understanding supports retention (NRC, 2001). 

 Although Rittle-Johnson et al. (2001) investigated knowledge of decimal fractions 

rather than common ones, they built upon Niemi’s (1999) work by examining change 

over time. Rather than simply examining the relations between conceptual knowledge 
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and procedural knowledge at a given time, Rittle-Johnson et al. wanted to know if 

conceptual knowledge was related to improvements in procedural knowledge. They found 

that it was, and being able to correctly represent problems was one link between them. 

 Altogether, this line of research demonstrates that conceptual and procedural 

knowledge are distinct and uniquely contribute to fraction skills (Byrnes & Wasik, 1999; 

Hecht, 1998). However, findings about the link between conceptual and procedural 

knowledge, which may best be characterized by the Skemp’s (1978) relational 

understanding, are varied. While there seems to be agreement that relational 

understanding is helpful for solving novel problems (Niemi, 1996; Saxe and Gearhart, 

1999), there is less agreement about its effects on computational items. In the short term, 

it appears that relational understanding makes no difference in computational skill (Saxe 

& Gearhart; Niemi, 1996). When examining change over time, however, relational 

understanding does seem to be important (Rittle-Johnson et al., 2001). This later finding 

needs to be further explored with common fractions rather than decimal fractions, but it is 

at least consistent with Bruner’s (1960/1977) theory of learning.  

Student-Invented Procedures 

  In an attempt to promote student understanding of procedures, many researchers 

have espoused the idea that students must actively create procedures in order to be 

successful at them. Case (1988) called for a “more careful examination of student’s 

invented mathematics” (p. 267), and much has been accomplished with regard to this part 

of his agenda. In particular, multiplication of fractions has received extensive attention 

among researchers such as Mack (2000) and Olive (1999).  
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 Like Mack (2000), Olive (1999) found that, although invented solutions to 

multiplication problems were better understood than taught algorithms, students claimed 

that the taught algorithm was easier. Another similar finding was that no connection was 

naturally made between the algorithm and the invented solutions; both researchers had to 

prompt students to make connections between the meaningful models and the rule of 

multiplying numerators and denominators. If this connection is not made naturally by 

students, then it seems that teachers would have to help them make it, and research is 

needed to determine how teachers can best help students make this connection. 

 In some cases, student–invented algorithms do not even resemble traditional 

algorithms. Sharp and Adams (2002) found this to be true in the case of the invert-and-

multiply algorithm for division of fractions. Instead of inverting the second fraction and 

multiplying, students invented a common denominator method, which involved finding a 

common denominator and then dividing the numerators. Since dividing the denominators 

would give a quotient of one, the denominators can essentially be ignored. The 

researchers explained that the common denominator method builds more naturally on 

students’ knowledge of division with whole numbers. 

 Bulgar (2003) also investigated what strategies students invent to solve fraction 

problems involving division, although her tasks only included a fraction for the divisor, 

not for the dividend. In a study with fourth graders who had not been introduced to an 

algorithm, three types of strategies emerged: reasoning with natural numbers, reasoning 

with measurement, and reasoning with fractions. Most of the tasks involved fractions 

with a numerator of one, but some of the tasks involved non-unit fractions. In the same 

article, Bulgar reported a study conducted years later, in which the teaching experiment 
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was repeated with a group of fifth graders who were accustomed to inventing and 

justifying solutions. The results were similar, although most students used the reasoning 

with fractions strategy. For example, when asked to find how many bows of 1/3 meter 

could be made from six meters of ribbon, some students suggested that there were three 

one-thirds in one meter and multiplied three by six to find the total number of bows. 

 Although it was clear that these students could make sense of problems that 

involved division by both unit and non-unit fractions, it would have been interesting to 

investigate other distinctions. For example, do students perform similarly when both the 

dividend and the divisor are fractions? If so, can they do it once the context is removed? 

Can they outperform students who are carefully shown the meaning of division with 

fractions? 

 Carpenter (1986) suggested that when students invent correct procedures on their 

own, conceptual understanding has been demonstrated, but the same is not true for 

procedures that have been taught. Although it may be true that inventing correct 

procedures is evidence of conceptual understanding, it is debatable whether students must 

create the procedures in order to understand them. Little research has been conducted to 

understand what teachers can say to contribute to the understanding of procedures. Mack 

(1995, 2000), Warrington (1998), and Tzur (1999) each emphasized discovery on the part 

of the learner, with intervening prompts from the teacher. However, none of these 

researchers made any comparisons to other types of instruction, making it difficult to 

determine the effects of having students invent procedures. Morris (1995) compared 

different types of instruction, but she simply compared traditional teaching, in which no 
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understanding was encouraged, to reform teaching, in which students were asked to 

invent procedures in order to gain understanding of them.  

 Although Case (1988) called for research on invented procedures, he also pointed 

to the lack of agreement on “the precise role of direct instruction in bringing about 

change” (p. 268). While it is clear that providing a rule without explanation does not 

generally lead to student sense-making, it is unclear whether or not sense-making can 

happen without invention. Research should be conducted that clarifies the role of the 

teacher in this regard. Can direct instruction that includes sense-making lead to deep 

student understanding, or do the students have to make sense of procedures by inventing 

them? Also, can students learn about fractions from listening to other students explain 

their strategies? 

 Tzur (2004) provided some evidence that it is insufficient to simply listen to 

another person’s strategy, even if it is a student-invented one. When one student recreated 

a whole pizza from 5/8 of an unmarked pizza, she was being watched by another student 

who seemed to follow the work and understand it. However, when pressed to do the same 

kind of task, the second student struggled. It was not until he completed the task himself 

that he seemed to internalize the new idea. As a result, Tzur suggests that “it is the 

teacher’s responsibility to make sure that each learner abstracts the intended mathematics 

beyond the level of emulating other students’ solutions” (p.110-111).  

 In an in-depth study of students who were competent with fractions, Smith (1995) 

found that multiple strategies were used to solve problems. Competent students seemed 

to understand the general algorithms learned from instruction, but they typically used 

them only when more efficient strategies could not be found. Instead, they students often 
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invented strategies that were restricted to a certain set of fractions. Competent students 

seemed to prefer efficiency over general applicability, but they used general algorithms 

when in doubt of other strategies. This study points to both the importance of 

encouraging students to invent strategies, but also to the importance of acquiring reliable 

algorithms that can be taught. Unfortunately, no information was given as to how these 

algorithms were taught. Did the students make sense of the taught algorithms on their 

own, or did their teachers assist in the sense-making? Future research should also 

investigate what actions teachers can take to help students make sense of alternate 

strategies, since even the competent students in Smith’s study sometimes tried to overuse 

them.   

 Although many researchers (e.g., Olive, 1999; Saenz-Ludlow 1994; Warrington, 

1997, 1998) have demonstrated that students can accomplish some amazing things when 

asked to invent solutions to tasks with fractions, Morris (1995) is one of the few 

researchers who reported mistakes that students can make when inventing procedures. 

One such mistake was an overuse of the discovery that larger denominators indicate 

smaller pieces. Whereas many students (and adults) misuse their whole-number 

knowledge to suggest that 1/2 < 1/4 because two is less than four (Biddlecomb, 2002), 

students encouraged to invent procedures often understand that the opposite is true. 

However, Morris reported students overextending this understanding. For example, they 

might suggest something like 3/4 < 2/3 because four is greater than three. She also 

reported mistakes resulting from imperfectly drawn pictures, especially when the 

fractions were close in magnitude. Much more needs to be reported about incorrect 

strategies that students invent. If teachers are to incorporate student invention of 
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algorithms into their classrooms, they also need to know what prompts would be most 

helpful when those inventions are not mathematically sound. 

 Making mistakes from imperfect pictures has been remedied by some researchers 

with the use of computer microworlds (Olive, 1999; Biddlecomb, 2002; Hunting et al. 

1996; Tzur, 1995). A series of articles have resulted from the work of Steffe and Olive, 

who have encouraged students to invent procedures. The intent of these researchers was 

not so much to understand the effects of invention, but to explore the development of 

fractional knowledge (Olive, 1999). Through student exploration and invented ways of 

solving problems, support for the theoretical ideas of Steffe have been found with regard 

to the development of children’s fractional knowledge (Olive, 1999). Using Steffe’s 

model, mistakes that students make with fractions can be explained in terms of failure to 

reach increasingly abstract conceptualizations of units (i.e., iterable units, composite 

units, and iterable composite units.)  

 This work has been quite helpful in fulfilling the need for models of 

understandings described by Case (1988), as well as his request for research that would 

help clarify the role of computer technology in children’s learning. Among other things, 

the technology has allowed these researchers to pose problems that cannot be easily 

drawn or easily solved with informal knowledge. For example, students used the 

microworld to reason through problems involving elevenths and fractional parts of 

elevenths (Olive, 1999). It remains to be seen, however, what long-term effects 

technology use has on fraction skills.  

 Using a computer program named Copycat, Hunting et al. (1996) also encouraged 

children to find their own solutions to problems. However, these children often chose not 
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to use the program to solve problems, even though it was readily available to them. 

Instead, they relied on their knowledge of whole numbers. The precise role of computer 

technology is unclear based on these examples, but what does seem clear is that its role is 

not easy to define and may depend on the situation. Perhaps some uses of a computer 

would inherently result on the reliance of technology, while others would simply 

encourage its use as an aid, to be used or not used as needed. More research is needed to 

clarify not only what situations produce which outcome, but also which outcome is most 

desirable with respect to a student’s understandings of and skill with fractions. Also, what 

difference does the purpose of the technology make in learning about fractions? For 

example, long term use of a calculator that provides answers to fraction problems will 

likely have completely different outcomes than the use of computers that provide context 

and ways of modeling fractions.  

 Like Olive (1999), Hunting et al. (1996), and Tzur (1999, 2004) with their 

computer worlds, many researchers provide contexts for tasks they ask of students. Sharp 

and Adams (2002) suggested that context plays an essential role in the invention of an 

algorithm. Saenz-Ludlow (1994), Mack, (1995, 2000), and Bulgar (2003) seem to concur. 

These researchers have each documented examples of students inventing algorithms by 

reasoning within a realistic context. The exact role of the context, however, is unclear, 

since no comparisons to context-free instruction were made. At the moment, the role of 

student-invention seems to be confounded with the role of context. In order to better 

understand the role of each, researchers should attempt teaching experiments that 

encourage invention without context.  
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 Although Sharp and Adams (2002) claimed it was essential to begin with context-

based problems, they also found that removing the context stimulated advances in 

thinking about fraction division and the development of a formal procedure. Research 

that encourages invention without context may find that context is simply one way to 

help students understand fractions, or they may determine that context is as essential as 

Sharp and Adams (2002) suggested. Or perhaps context provides a particular type of 

understanding (e.g., how to apply fractions), whereas an alternate approach may provide 

a different benefit (e.g., deductive reasoning). The more researchers understand about 

each component of effective teaching, the better they can inform teachers, curriculum 

writers, and other participants in the education process. 

 It is also unclear what role student explanations play in the understanding of 

fractions. In a study by Kazemi and Stipek (2001), four teachers were observed teaching 

lessons designed to expand students’ understanding of part-whole relations and addition 

of fractions. Teachers were described as high press or low press, depending on the extent 

to which they pressed the students to justify their answers. They used the study to make a 

distinction between simply encouraging students to describe their steps for solving a 

problem and having students mathematically justify the processes they used. Evidence 

suggested that superficial norms such as working in groups and solving open-ended 

problems did not result in the same degree of conceptual engagement for high press and 

low press teachers. However, no data were collected to investigate the effects of high 

press on procedural knowledge.  

 Certainly, having students justify their answers can reveal student insights to the 

teacher, but what does it do for the student? Do students perform better if they regularly 
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explain their thinking? Will they remember ideas for longer if they had verbalized them? 

Are there motivational benefits to having students explain their thinking? And if some 

benefits exist, are they similar regardless of whether a student invented a procedure or 

just explained one they learned in class? Case (1988) asked for research that examined 

the role of conscious reflection in change. It seems that the role of explanations would be 

to encourage this reflection, but asking for explanations is often coupled with inventing 

procedures (Kazemi & Stipek, 2001; Mack, 1995, 2000; Olive, 1999, Tzur, 1995; 

Warrington, 1997, 1998). Research should attempt to understand the effects of each 

component.  

 Despite confounding components, these articles provide evidence that students are 

capable of inventing ways of solving fraction problems, and as stated before, Carpenter 

(1986) believes that this is evidence of conceptual understanding. There is also evidence 

that inventing strategies may be a natural thing for students to do, at least for those who 

are competent with fractions (Smith, 1995). However, it is apparently not natural for 

students to connect their intuitive strategies to the generalized algorithms presented in 

school (Olive, 199; Mack, 2000). It is also not the case that students always produce 

algorithms that can be generalized or that they always generalize them correctly (Morris, 

1995; Smith, 1995). 

Meaning for Fraction Symbols 

 Another possible obstacle to understanding fractions might be their symbolic 

nature. Mack (1995) insisted that communication is one important reason to understand 

fraction symbols, claiming that students need to learn how the symbols are used in order 

to convey their meaning to others. In her study, the children did not seem to place 
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importance on the correct use of symbols, as long as they could convey what they 

wanted. This arbitrary application of meaning complicates what is already a difficult task. 

 To illustrate that fraction symbols can be obstacles, some researchers have 

demonstrated what students can understand without symbols. For example, Mix, Levine, 

and Huttenlocher (1999) claimed that students can understand calculations with fractions 

much earlier if the symbols are removed. Saenz-Ludlow (1994) demonstrated that this 

knowledge can be quite extensive. She used the appropriate words for fractions in her 

case study, but she did not use the symbols. By using the words only, one third grader 

was able to understand the denominator as a denomination, or a relative size of a piece, 

rather than just a symbol. As a result, he was able to reason through problems such as 

one-third divided by one-twelfth and one-twelfth divided by one-third.  

 Kamii and Clark (1995) also emphasized reasoning in their study about student 

difficulties with equivalent fractions. They insist that relying too much on perceptual aids 

can inhibit reasoning about the symbols. Using one rectangle cut horizontally into fourths 

and another rectangle cut vertically into eighths, students in their study were asked how 

many of the eighths would be the same as three of the fourths. Although the sixth graders 

performed better than the fifth graders, neither group did well on the task. Despite having 

been taught how to find equivalent fractions, some of the students did not even accept 

“six” as the correct answer after it was suggested to them. Some might argue that 

providing a perceptual aid that cannot be easily used is misleading, but it at least 

demonstrated the reliance students seem to have on such aids. It would be helpful to 

compare these results to ones where students were given no perceptual aide at all and to 

ones where the perceptual aide was conducive to answering the question. 
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 To help with symbolic reasoning, Sharp and Adams (2002) insisted it is important 

to include realistic or personal experiences before ever involving symbols. They asserted 

that this progression is essential to success with fractions, even with older students. As 

stated earlier, however, they also found that eventually removing the context promoted 

the formation of a formal procedure. 

 Rather than emphasizing context, Hiebert and Wearne (1988) emphasized the 

importance of connecting symbols to manipulatives before proceeding to any procedural 

instruction. They suggest a five stage process leading to symbol competence: connecting, 

developing, elaborating, routinizing, and building. During the connecting process, 

symbols are linked to a referent. During the developing process, students act on referents, 

rather than symbols, to carry out procedures. The elaboration process extends the actions 

in a way that can be generalized, thus requiring students to symbolically learn 

procedures. The routinizing process involves practicing the procedures until they become 

automatic. And finally, the building process involves learning to think and make 

arguments with the symbols. This last step seems especially important for later 

mathematics courses, where deductive reasoning and facility with symbols become 

important for success.  

 In their study of decimal fractions, Hiebert and Wearne (1988) attempted to 

provide meaning for procedures by making strong connections between decimal 

representations and base 10 blocks. By using novel problems that tapped into targeted 

ideas but could not be solved with the acquired procedures (i.e., transfer items), they 

attempted to measure what they called “cognitive change.” Although they failed to 

clearly define this term, the results were intriguing; they reported that students who 
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attempted to use meanings on the transfer items were correct 80% of the time, whereas 

those who attempted to use rules were correct only 17% of the time. Both groups had 

performed well on the direct items, and the conclusion was that students who used 

meanings on transfer items had learned what was intended. 

 In 1995, Morris showed that these processes work with low-achieving students 

who were learning about common fractions. Like Hiebert and Wearne (1988), she used 

both direct and transfer items to assess student understanding. Low-achieving students in 

the experimental group were compared with both low- and middle-achieving students in a 

comparison group. Interviews were conducted in order to determine whether students 

were reasoning through problems or simply applying a rule. She found that not only did 

students in the experimental group outperform both comparison groups with regard to 

number of correct answers, but they also used quantitative reasoning much more often. 

Although the students did not progress through all five stages during the study, they were 

able to use the connections meaningfully when uncertainty arose. She also reported that 

these students were able to use this knowledge to recognize when students who were 

tutoring them made procedural mistakes. Because their knowledge of procedures was 

semantically grounded, they were able to notice when a syntactic approach just did not 

make sense.  

 In 1988, Case asked, “What, then, are the limits of conceptually-based 

transfer…?”(p.267). By extending the results of Hiebert and Wearne (1988) to low-

achieving students, Morris (1995) partially addressed this question. However, no delayed 

assessments or interviews were included in the study to determine whether the effects 
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endured. Future research should also investigate whether certain types of concepts are 

more likely to transfer and which instructional conditions make transfer more likely. 

 Taken together, the research concerned with fraction symbols suggests that 

successful fraction learning might include applying fractions to the real world (Sharp & 

Adams, 2002), connecting symbols to objects (Morris, 1995), and making sure these 

symbols are used consistently (Mack, 1995). Of the five processes describe by Hiebert 

and Wearne (1988), however, much more emphasis has been placed on the first two 

processes of connecting and developing. Significantly less is known about the third 

process (elaboration). And little is known about the fourth process (routinizing) when it 

follows the first three processes (as opposed to routinizing without first connecting, 

developing, and elaborating.) It is important to study this distinction since fraction skills 

that become routine without understanding limit the fifth process (building) described by 

Hiebert and Wearne.  

 In their review of multiplicative reasoning, Thompson and Saldanha (2003) 

insisted that it takes time to make deep connections between symbols and their meanings; 

however, few studies have examined how sense-making affects fraction skills over time. 

As Saxe and Gearhart (1999) demonstrated, sense-making may not be important for 

strong skills in the short term. More longitudinal studies are needed if researchers are to 

know how a deeper understanding of fraction symbols affects the fraction skills of 

students in the long term.  

Limitations of a Part-Whole Conceptualization 

 Aside from difficulties related to fraction symbols, there may also be problems 

with how students conceptualize fractions. In their review of rational number concepts, 
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Behr, Harel, Post, and Lesh (1992) insisted that conceptualizing fractions as part of a 

whole amount is not adequate for developing a complete understanding of fractions. Tzur 

(1999) supported this claim with his study of fourth grader’s understandings (and 

limitations) of partitive fraction schemes, where he showed that conceptualizing fractions 

as part of a whole limits children’s ability to understand improper fractions.  

 According to Tzur (1999), a partitive scheme is a kind of intermediate step 

between understanding a fraction as a part of a whole and understanding it as an iterable 

unit. After introducing unit fractions as the number of pieces that must be iterated to 

create a referent whole, students became quite adept at seeing fractions such as 3/5 as a 

unit comprised of three 1/5’s. However, when Tzur asked the students to show fractions 

larger than the referent, they either said they could not do it, or they renamed the fractions 

in terms of the newly created “whole.” For example, after iterating 1/8 nine times, the 

students wanted to refer to each piece as 1/9. It seemed that their understanding of the 

part-whole relationship prevented them from seeing fractions as greater than one whole. 

 In seeing this as an obstacle for the students, Tzur (1999) designed a lesson that 

involved iterating non-unit fractions. Because the children had no difficulty finding a 

fraction twice as long as 3/11, he built on this scheme to help the students conceptualize 

an improper fraction. Specifically, he asked the students what they would call a fraction 

twice as long as 6/11. Although they hesitated, they were able to overcome their part-

whole understanding and see the unit 1/11 as having an invariant relation with the 

“whole” from which it was derived.  

 The approach used by Tzur (1999) was consistent with the theoretical suggestions 

described in Behr et al.’s (1992) review. Namely, he helped the students conceive of 
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fractions like 5/7 as five iterable units of 1/7. However, it was inconsistent with the 

suggestions of Thompson and Saldanha (2003), who indicated that conceptualizing 

multiplication as repeated addition is necessarily problematic for students and should be 

avoided. When Tzur asked the students to iterate 1/5 three times, he was essentially 

asking them to conceptualize 1/5 times 3 as a repeated addition problem. But rather than 

being problematic, this conceptualization actually helped students overcome problems 

presented by the partitive scheme. Of course, repeated addition will not apply to 

situations where neither factor is a whole number, such as 1/5 times 1/3, but it can be a 

powerful tool in helping students understand some multiplicative situations. 

 The part-whole concept of a fraction might not have been the only limitation with 

the fourth graders in Tzur’s (1999) study. Instead, his findings could be a reflection of 

Dienes’s (1964) Mathematical Variability Principle. This principle essentially holds that, 

for students to understand concepts, irrelevant parts must vary so that relevant parts can 

be more easily seen. In the case of improper fractions, students who are only exposed to 

fractions equal to or less than one may perceive being less than one as an invariant aspect 

of fractions. Hence, they are forced to accommodate for parts greater than the whole by 

placing them within the whole and renaming the parts. A student might have a similar 

conception of a fraction as the ones in Tzur’s study, namely that a fraction like 3/4 can be 

understood as three 1/4 units, but he might also have experience with multiple wholes, 

such as iterating 1/2 six times to make 3.  In this case, conceiving of an improper fraction 

may not be so difficult. 

 Along these lines, Kamii and Clark (1995) suggested that proper and improper 

fractions should be introduced simultaneously “so that children will be able to think 
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about the parts and whole at the same time” (p.375). Like Mack’s (1995) idea about 

introducing fractions along with whole numbers, these researchers seem to think that 

contrasting the ideas may serve to reinforce them. Research should be conducted to 

investigate the effectiveness of such approaches. 

 Another pedagogical issue with the part-whole conceptualization may be that 

important aspects of this conceptualization remain implicit in some classrooms. In 

particular, Yoshida and Sawano (2002) claim that teachers often assume that children 

understand the all the parts must be equivalent and consequently do not place much 

emphasis on that fact. Similarly, they believe that not enough emphasis is placed on the 

fact that two fractions cannot be compared unless their unit is the same.  

 Yoshida and Sawano (2002) found that when the ideas of equal parts and equal 

wholes are made explicit throughout fraction instruction, students often performed better 

than those without the explicit inclusion of these ideas. For drawing tasks and tasks 

comparing fractions with different denominators, the differences were significant. 

Ordering tasks using the same denominator resulted in similar performances from both 

groups, at least in the short term. For equal-partitioning tasks and computational tasks 

involving addition and subtraction of fractions, both groups performed equally on routine 

tasks. However, the experimental group outperformed the control group on the transfer 

tasks for both of these categories. No delayed assessments were given to determine if 

both groups equally retained their skills for the routine items. 

 If nothing else, the literature on the part-whole conceptualization continually 

supports the notion that fractions are complex. While some researchers have probed deep 

into student understanding (e.g., Tzur, 1999), others have focused more on how 
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instruction effects fraction skill within the classroom (Yoshida & Sawano, 2002). In both 

cases, however, it seems true that a relational understanding is vital for student success 

with fractions, and the more teachers know about how to generate it, the better. 

Limitations of the Fraction Knowledge Literature 

  In the past fifteen years, there has been much research attempting to understand 

fraction knowledge and how to further it, and the importance of generating a relational 

understanding might be a general conclusion from that research. In the many of studies 

reviewed, researchers suggested it is important for students to make sense of procedures. 

However, each study also emphasized other aspects as being important to student 

learning of fractions. For example, Kazemi and Stipek (2001) insisted that students need 

to justify their answers, and Tzur (1999) suggested that multiple meanings for fractions 

are necessary to be successful at certain procedures. Tzur (2004) also suggested that 

students must abstract concepts for themselves, and Sharp and Adams (2002) emphasized 

the need to introduce procedures through context. Most of these researchers also advocate 

students inventing their own algorithms as a way to better make sense of them (Mack, 

1995, 2000; Olive, 1999; Saenz-Ludlow, 1994; Tzur, 1999, 2004). It seems these various 

elements could be confounded, and further research is needed to appreciate the 

contribution of each. We need to know, ultimately, how much each of these elements is 

contributing to student learning and sense-making. This is important because teacher 

training is time-consuming, difficult, and expensive, and knowing where to focus the 

most resources is crucial in the decision-making process. 

 An extensive gap in the literature exists concerning how fraction knowledge 

changes over time. Collectively, researchers have demonstrated that a deep conceptual 
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understanding of fractions leads to better explanations and better performance on novel 

(or transfer) items, but it does not lead to better computational skills in the short term 

(Byrnes & Wasik, 1991; Hiebert & Wearne, 1988; Niemi, 1996; Saxe & Gearhart, 1999). 

However, few researchers have examined long-term effects of sense-making on fraction 

knowledge. Few studies of fraction knowledge even include students beyond upper 

elementary school. As students progress through school, they are introduced to more and 

more algorithms, making pure memorization an increasingly difficult task. However, 

teachers are under a great deal of pressure to cover large amounts of mathematics in short 

amounts of time, and it can be argued that it takes more time to teach why procedures 

work the way they do. If teachers are to take the necessary time to ensure understanding 

rather than memorization, they need to know it is worthwhile in the long term. At present, 

the evidence is lacking. 

 Another deficiency in the literature on fraction skills concerns the interaction of 

these skills. Although Tzur (2004) recently spoke of the role that certain fraction 

conceptions have on learning new concepts, little is known about how students keep (or 

fail to keep) the procedures separate in their minds. Does the knowledge of fraction 

addition interfere with the knowledge of fraction multiplication? Does fraction 

multiplication then interfere with fraction division? Does knowledge of reciprocals 

interfere with knowledge of equivalent fractions? Or does it help? How does the use of 

context, student invention, or the encouragement of explanations change these outcomes? 

Even if effective techniques are used to teach specific procedures, what happens when 

students are no longer focused on one in particular? For example, if they know how to 

add fractions appropriately when adding is the focus of instruction, will they still add 



 43

correctly when they are asked to multiply just prior to an addition problem? Can they 

keep the various procedures separate when they are not separated? Does learning 

procedures meaningfully help them do so? It seems these are important questions to ask, 

given that these topics will not remain isolated as students progress through their 

mathematical careers.  

 To summarize, research on fractions suggests at least five things about the 

fraction knowledge of students. These are: prior knowledge can both hinder and help 

students learn fraction procedures; conceptual knowledge and procedural knowledge are 

related and both contribute to fraction skills; students are capable of finding meaning for 

fraction procedures by inventing them; understanding fraction symbols can aid in the 

understanding of procedures; and fractions should have multiple meanings to students. In 

general, this research seems to be supported by theories that address how structure and 

understanding affect learning. Much progress has been made since Case (1988) set his 

agenda over fifteen years ago, yet there is much still to learn before fraction difficulties 

are fully understood.  

Fraction Knowledge of Preservice Teachers 

 The literature on what preservice elementary school teachers know about fractions 

is considerably less extensive than that of student knowledge. However, there is evidence 

that they tend to make some of the same mistakes as students, at least with respect to 

division of fractions (Tirosh, 2000). 

 Tirosh (2000) reported that 5 out of 30 prospective elementary teachers made 

mistakes when solving division of fraction problems. She also found that even the 

prospective teachers who knew the standard invert-and-multiply algorithm could not 
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usually explain why it worked. These teachers were also surprised to find there were 

alternatives to the standard algorithm, even when the alternatives were intuitive. In 

particular, the teachers were hesitant to believe that dividing the numerators and 

denominators gave a correct answer, even though multiplying numerators and 

denominators gives a correct answer to a fraction multiplication problem. 

 Ball (1990b) also claimed that preservice teachers did not understand the division 

of fractions algorithm. Her study involved ten elementary and nine secondary preservice 

teachers who were asked to solve a problem involving division with fractions and then 

create a story that matched it. While most (but not all) could solve it, only five were able 

to give an appropriate representation of the division problem, none of which were 

elementary preservice teachers. Over half of the elementary teachers were unable to 

generate any representation, while a few gave inappropriate ones. Furthermore, the 

teachers seemed to make no connections to their knowledge of division, focusing instead 

on the fact that the problem involved fractions. 

 Tirosh and Graeber (1990) suggested that when connections are made to whole 

number division, they are often inappropriate. For example, they found that 15 out of 21 

preservice elementary school teachers insisted that a quotient will always be less than a 

dividend. Those who were able to overcome this misconception also showed 

improvement in writing correct expressions for word problems. Although these word 

problems involved division with decimals rather than fractions, it would not be 

unreasonable to expect similar results with fractions.  

 Ma (1999) suggested that Chinese teachers do not hold the same misconceptions 

as those in the United States. Using the same division with fractions problem as Ball 
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(1990b), she found that practicing teachers in the United States performed worse than the 

preservice teachers described in Ball’s study; about one-third of them could not solve the 

problem correctly and another one-fifth seemed quite unsure of their approach. Also, the 

invert-and-multiply method was the only method described by these teachers. By 

contrast, all of the Chinese teachers correctly solved the problem, and collectively, they 

alluded to at least three alternate approaches to solving the problem. Ma suggested that 

teacher preparation may serve to break the cycle between ineffective mathematics 

instruction and low levels of teacher knowledge.  

Motivation for Fractions 

“There is no such thing as an unmotivated child. Children are motivated” 

(Middleton & Spanias, 1999, p. 67). This claim may be true for young children, but there 

is evidence of a decline in motivation as children go through the schooling process, 

particularly during the first year of middle school (Eccles et al., 1993). Mathematics is no 

exception; students who dislike mathematics tend to start disliking it around this same 

time (Middleton & Spanias, 1999). According to Wigfield and Eccles (2000), students’ 

beliefs about their ability to be successful in mathematics also decline significantly 

during this time, and they found these ability beliefs to be strong predictors of subsequent 

performance and anxiety. Marsh and Yeung (1997) added to these findings, suggesting a 

causal effect of mathematics self-concept on achievement. 

Students’ Motivation for Fractions 

Fraction instruction coincides with the transition to middle school, but little is 

known about motivation for fractions in particular. This section of literature will focus 
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primarily on motivation for fractions, but this literature is limited and is mostly restricted 

to instructional influences.  

 Anand and Ross (1987) examined the role of context in learning how to divide 

fractions. Fifth and sixth graders who had been instructed in adding, subtracting, and 

multiplying fractions were randomly assigned to one of four groups regarding division: 

no instruction, instruction using personalized contexts, instruction using concrete 

(hypothetical) contexts, and instruction using no contexts.  Students who received 

instruction were simply told how the algorithm worked. The posttest included 

personalized, concrete, and context-free problems as well as transfer items. The students 

also were given an attitude questionnaire that assessed their reactions to the instruction. 

In general, the researchers found that personalizing the context of word problems resulted 

in better performance and attitudes, particularly with middle- to low-achievers. A 

limitation of this study is that context was the only opportunity for sense-making given to 

the students. It is unclear whether these results would hold if other instructional attempts 

were also made. 

 Stipek et al.’s (1998) study is one of the few that attempted to merge ideas on 

what is considered good mathematics teaching and what is motivating to students. The 

purpose of the study was to examine relations between motivating teaching practices, 

student motivation to learn fractions, and student gains on non-routine and routine items. 

Non-routine items were meant to assess conceptual knowledge, while the routine items 

were meant to assess procedural knowledge. 

 A total of 624 fourth- through sixth- graders participated in the study, as well as 

24 teachers. The teachers were selected based on how much they claimed to adhere to 
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reform-based mathematics. This adherence was subsequently assessed through 

videotapes and questionnaires. A nine-dimension coding system was used with the 

videotapes to determine instructional practices. Three factors emerged from these 

dimensions: learning orientation, positive affect, and differential student treatment. The 

learning orientation scale reflected an emphasis on effort, learning, and autonomy. A 

teacher scoring high on this scale also de-emphasized performance. The positive affect 

scale reflected a teacher’s positive affect, enthusiasm, and creation of a risk-free 

environment. The differential treatment scale reflected the level of social comparisons 

and emphasis on speed. 

 Questionnaires were administered to the students to assess motivation at the 

beginning of the year and after the fractions unit. The questionnaire assessed perceived 

ability, mastery orientation, performance orientation, help-seeking, positive emotions, 

negative emotions, and enjoyment. At the beginning of the year, the questionnaire 

measured student motivation for math in general, but after the unit on fractions, the 

questionnaire measured student motivation for fractions specifically. This inconsistency 

limited conclusions about change in motivation for fractions, since students may like 

math in general but dislike fractions. However, it allowed the researchers to predict 

motivation for fractions above and beyond general motivation for mathematics. A 

separate regression was run for each of the three teacher practice dimensions. It was 

found that a teacher’s positive affect predicted students’ positive emotions and help-

seeking, and a teacher’s learning orientation predicted students’ positive emotions and 

enjoyment of fractions. 



 48

 The researchers also calculated gains in fraction skill using pretest and posttest 

scores. The researchers found that a learning orientation was correlated with gains on 

non-routine items but not routine ones. These results are consistent the results of Saxe 

and Gearhart (1999) reported earlier, but like Saxe and Gearhart, Stipek et al. (1998) did 

not assess retention of skills. Future studies should examine the long-term effects of 

teaching practices that emphasize learning on students’ ability to retain procedural 

information over time. 

 When examining the relation between student motivation and skill gains, Stipek et 

al. (1998) found an unexpected result. Gains related to non-routine items were not 

correlated with any of the student motivation components, while all but performance 

orientation were correlated with routine items at the end of the fraction unit. The 

researchers speculated that perhaps students who are more positive about mathematics 

are more attentive and practice more, resulting in gains on routine items. 

 To summarize the findings of Stipek et al. (1998), they found that a teacher’s 

learning orientation predicted students’ positive emotions and enjoyment of fractions and 

was related to gains in non-routine items. In contrast, they found that nearly all student 

motivation constructs related to gains on routine items. It should be noted, however, that 

the routine items were limited to finding equivalent fractions and adding and subtracting 

fractions. It is unclear whether the addition and subtraction problems included unlike 

denominators, a topic that is notoriously difficult for students (Byrnes & Wasik, 1991).  

 Schunk (1996) conducted two studies exploring relations between instruction 

emphasizing learning and student factors. Fourth graders were tested on their ability to 

add and subtract fractions with both like and unlike denominators. Student factors 
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included self-efficacy, goal orientation, and self-satisfaction. Consistent with Stipek et al. 

(1998), he found that instruction emphasizing learning goals enhanced motivation. 

However, he found that it also enhanced procedural knowledge. He speculated that an 

emphasis on learning (rather than performance) influences self-efficacy, which in turn 

influences skill. The difficulty of skill assessed might explain why Schunk and Stipek et 

al. had different results with regard to skill. Not only did Schunk include both like and 

unlike denominators, he did so with fourth graders only, when it is more likely to be a 

new skill. By the time students reach the sixth grade, these skills have likely become 

routine. Future research should explore the level of difficulty when determining the 

effects of instructional emphasis on skills. 

 Schunk (1996) also examined the effects of self-evaluation on fraction skill and 

motivation. When students used self-evaluation on a daily basis, there was no longer an 

effect of instructional emphasis with regard to skill or self-efficacy. However, when 

students infrequently self-evaluated, students benefited from a learning goal emphasis. 

Schunk speculates that frequent self-evaluation makes progress clear to students, which 

results in increased self-efficacy and productivity. Shih and Alexander (2000) extend 

these results by showing that self-evaluation is more effective than socially-referenced 

evaluation for enhancing skills and self-efficacy for fractions. Their study also involved 

fourth graders and employed a skill assessment similar to the one used by Schunk (1996). 

 That these studies involved learning-oriented instruction is consistent with current 

mathematics education beliefs and efforts (NRC, 2001). However, they are simply a 

beginning. A next step is to explore how other elements of instruction are related to this 

orientation. As mentioned previously, elements such as context, discussion, and invented-
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procedures have been confounded in the fraction knowledge literature with an emphasis 

on understanding procedures. 

Preservice Teachers’ Motivation for Fractions 

 Even more so than the research on preservice teachers’ fraction skills, the 

research on preservice teachers’ motivation for fraction is extremely limited. While it has 

not been a primary focus of preservice teacher studies, it has been mentioned in a few. 

One conclusion to be made is that much variation exists between elementary and 

secondary preservice teachers (Ball, 1990a). Whereas all of the secondary candidates in 

Ball’s (1990a) study reported they were good at mathematics and enjoyed it, only half of 

the elementary candidates did so. The elementary candidates were also more likely to feel 

anxious about mathematics, view mathematics a set of arbitrary facts rather than 

interconnected ideas, and blame their weak knowledge on this arbitrariness. 

 If teachers’ attitudes toward fractions are negative, it could negatively impact the 

attitudes of students. Therefore, it is important to understand whether these attitudes can 

be influenced before teachers reach the classroom. It may be that improvements in 

preservice teachers’ understandings of fractions are related to improvements in their 

attitudes toward fractions, and the proposed study will attempt to explore such 

relationships. 

Effective Mathematics Teaching 

 Presumably, improvements in mathematical understanding (i.e., learning) can 

happen through effective mathematics teaching. However, it can be difficult to determine 

the link between teaching and learning. What factors are involved? Which factors 

contribute to learning and which ones interfere?  Some theory and research addressing 
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such questions will be briefly explored in an attempt to draw some conclusions about the 

relationship between teaching and learning. Then, some findings about effective 

mathematics teaching will be reported. 

Theories of Teaching and Learning 

 When attempting understand how teaching and learning are related, some more 

basic (but difficult) ones immediately arise. In particular, what is meant by teaching? 

What is meant by learning? In the context of mathematics classrooms, one might equate 

teaching with instruction and learning with achievement as measured by grades or test 

scores. Although the first equation might be easy to agree upon, the second seems more 

controversial. For example, a student might duplicate information on a test that was not 

truly learned, while others may learn something well but not successfully demonstrate 

this learning on an assessment. Implied here is that test-measured achievement alone 

cannot measure learning. 

 Trying to distinguish between achievement and learning sounds strikingly 

familiar; for years, theorists have been trying to differentiate instruction (or teaching) and 

development. Whereas learning might take place in a short period of time, development 

requires a longer period of change (Case, 1988). James, Kaffka, Herbart, Thorndike, and 

Vygotsky have all stated various views on the subject, each in an attempt to understand 

ideas such as learning and transfer (Vygotsky, 1986). According to Vygotsky, some 

people would suggest that instruction and development are independent. Piaget would fall 

into this category, insisting that instruction must wait for development. As the child 

actively explores the world around him, development naturally occurs. Others such as 

Thorndike propose that instruction and development are identical because they are both 
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based on “association and habit formation” (p.176). In trying to reconcile these opposing 

views, Kaffka suggested that learning is a part of development. The other part would be 

maturation, and the two parts influence each other. Vygotsky claims that this relationship 

allows for transfer to exist. He states, “We have given [the student] a pennyworth of 

instruction, and he has gained a small fortune in development” (p.177). 

 Did these theorists come to a consensus? Apparently not—decades later, Bruner 

(1960/1977) was still debating these ideas and Resnick (1987) continued the discussion 

more than a decade after that. Like Vygotsky, Bruner (1960/1977) believed that concepts 

can be transferred to new problems. In order for learning of this kind to happen, the 

structure of the subject must be taught rather than just isolated facts and techniques. If it 

is, then instruction can aid in the child’s intellectual development.  

 This view is entirely consistent with Vygotsky (1986), who believed that 

instruction in scientific concepts could help a child develop his higher mental functions. 

Three important things should be noted about this statement. First is the inclusion of the 

word instruction. For Vygotsky, the teacher plays a major role in learning and 

development. The second word of note is scientific. Vygotsky insists that it is the 

systematic structure of such concepts that creates the relationship between learning and 

development. Like Piaget, he believes the child can learn without instruction, but he 

would not expect the learning to be similar in nature, nor would he expect it to have the 

same effect on development. As such, Vygotsky distinguished higher mental functions 

from lower ones. Vygotsky would not suggest that memorized techniques and skills 

would be readily transferred by students from one context to another. He would, 

however, suggest that processes such as “awareness, abstraction, and control” (p. 79) 
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could develop through scientific instruction. If transfer is to occur, a concept needs to be 

abstracted. It is on this point that he criticizes Thorndike’s analysis of formal discipline. 

He suggests that Thorndike tried to discredit a theory concerning higher mental functions 

by examining lower functions such as habit formation and fact memorization.  

 Whether transfer exists is still debated. In 1987, Resnick suggested that while not 

all skills transfer to all other areas, the idea of transfer does exist. One problem might be 

about definitions—about whether transfer involves knowledge or “the skills for acquiring 

knowledge” (p.19).  Carraher (2002) more recently argued that the transfer metaphor is 

fundamentally flawed as an explanation for learning and should therefore be abandoned. 

Instead, the relationship between prior knowledge and learning should focus on issues 

such as assimilation and accommodation, as described by Piaget. In any case, it seems 

clear that what is meant by learning is not so clear. For the purposes of discussing 

research on teaching and learning in this review, both aspects of learning – achievement 

and transfer –will be used. Instruction will be used interchangeably with teaching.  

Descriptions of Effective Mathematics Instruction 

 Concerning effective mathematics teaching, Reynolds and Muijs (1999) described 

six elements consistently found in the scholarly literature. They involve opportunity, 

teacher emphasis, classroom management, teacher expectations, ratio of whole-class to 

individual work, and interactive dialogue. Each will be described in detail. 

 The authors describe opportunity to learn as the amount of exposure to 

mathematics instruction. This includes curriculum coverage, number of school days, 

hours spent teaching rather than managing activities or behavior, and use of homework. 
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In essence, this is a quantitative measure of opportunity, and more exposure is related to 

higher achievement (Reynolds & Muijs, 1999). 

 The second element states that quality of instruction is related to the academic 

orientation of the teacher. An effective teacher spends less time on management and 

personal matters and more time on academic engagement (Reynolds & Muijs, 1999). 

This seems consistent with Byrnes and Miller (2003), who found a business-like 

atmosphere to significantly predict achievement, but personal interest shown by the 

teacher did not. This is not to say that personal involvement would not add positively to 

the atmosphere of the class, but it did not seem to contribute to actual achievement. 

 Effective classroom management contributes to the academic time described in 

the first component, but it may also be a product of the second component. In other 

words, someone with a serious orientation seems not as likely to have management 

problems. Other important factors are being well-organized and being able to maintain 

attention. When behavior problems do arise, they are more often handled with positive 

language rather than harsh words (Reynolds & Muijs, 1999). 

 Having high expectations means believing that all students can be successful and 

treating them accordingly. Different than personal interest, this involves an emphasis on 

effort and control. The teacher encourages students and is not biased towards a particular 

group (Reynolds & Muijs, 1999). 

 The emphasis on whole-class instruction is meant to be contrasted with large 

amounts of time spent on individual work or free time. The material is also presented in a 

structured fashion, with overviews and summaries provided. Reynolds and Muijs (1999) 
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do not emphasize more recent trends such as small-group work in their account of 

effective teaching, and they draw no firm conclusions about their effectiveness. 

 The last element stresses the importance of discussion. The teacher does not just 

lecture, and many of the questions require explanations rather than one-word responses 

(Reynolds & Muijs, 1999). Among other things, this allows the teacher to monitor the 

students and adjust to their needs. 

 Taken together, this list provides a comprehensive view of the research on 

effective teaching of mathematics in American schools. However, the list is primarily 

based on studies that correlate certain behaviors with achievement rather than detailed 

analyses of quality of instruction. Most of these elements are concerned with the 

atmosphere of the class. Mentioned briefly is the structure of the lesson and the level of 

questioning. Rather than just providing a structured lesson, which implies being 

organized and coherent, Bruner (1960/1977) would also suggest that the lesson 

emphasize the structure of the subject. In other words, the curriculum should be designed 

to reinforce major ideas, not just specific topics. These ideas should be interconnected 

where possible and revisited regularly. In this way, they are not as likely forgotten and 

are more likely to transfer to new situations. 

 Stipek (2002) addressed some of these issues in her article linking instruction and 

motivation. Rather than seeing motivation as a static student characteristic, she claimed 

that instruction can play a role in motivating students to do and enjoy mathematics. In her 

review, she noticed four recurring themes regarding instruction. They include emphases 

on conceptual thinking, learning and understanding, active participation, and authentic 

and meaningful tasks. Each of these will be described in detail. 
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 Like Bruner, Stipek (2002) claimed that good instruction involves “big ideas” 

rather isolated topics. Research suggests that this type of instruction is more challenging 

and enjoyable for students. When students are involved in trying to understand something 

interesting rather than memorize meaningless rules, they are more motivated to learn. 

 The second theme (an emphasis on understanding) refers to where the focus lies 

in the classroom. If the focus is on the right answer rather than the solution strategies, 

students are not as motivated to learn. Instead, they are simply motivated to be correct 

(Stipek, 2002).  This could mean more cheating, more looking up answers, and not 

showing work. More importantly, however, it can mean lower self-esteem or 

embarrassment when the answer is incorrect. 

 The third theme (an emphasis on active participation) is similar to the high 

involvement described earlier. Stipek (2002) claims that students do not enjoy listening 

as much as they do participating. In addition, autonomy can be created by allowing 

students to use their own strategies in solving problems rather than simply demonstrating 

one that was provided for them. 

 Providing authentic and meaningful tasks has also been related to motivation. If 

students are given choice and tasks are connected to their personal lives, they are more 

likely to attend and apply themselves (Stipek, 2002). Although it unclear how these four 

themes are related to achievement, they seem to at least provide a link between 

motivation and instruction. Unfortunately, not much research has examined the 

connection between these two areas of research, and more should be done to understand 

their relationship. 
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 The relationship between achievement (rather than instruction) and motivation is 

clearer. Certain aspects of motivation have consistently been found to significantly 

predict achievement. For example, Byrnes and Miller (2003) found math self-concept to 

be a significant predictor. Interest in mathematics was a predictor in a study by Schiefele 

and Csikszentmihalyi (1995). It seems that interest in doing well and believing that one 

can do well are both predictive of achievement, but Stipek (2002) believes that these 

constructs can be influenced by instruction. 

Unresolved Issues: Areas for Future Research 

 Based on current gaps in the literature on fraction knowledge, motivation toward 

fractions, and instructional influences on fraction knowledge and motivation, several 

unresolved issues can be identified and areas of future research outlined.  

 First, more studies should be conducted with older students (i.e., those beyond 

middle school). How does experience with higher levels of mathematics influence 

students’ knowledge of fractions? How does experience with the technology often used at 

those levels influence fraction knowledge? We currently know little about how well the 

knowledge students gain in the middle grades is retained during (and after) those years. 

 Second, studies should examine the interactions among various types of fraction 

knowledge. For example, how does learning to cross-multiply with fractions influence 

students’ knowledge of fraction division? Are students more likely than normal to make 

the mistake of adding numerators and denominators just after completing several fraction 

multiplication problems? Would teaching fraction topics in a different order result in 

different interactions? Studies involving only one or two operations can be misleading if 

indeed the various types of fraction knowledge interact strongly with each other.  
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 Third, there has been the documented slump in students’ general motivations 

toward mathematics during the middle grades (Eccles et al., 1993), but little is known 

about topic-specific motivation in mathematics during this time. Also, too little is 

understood about the motivational trajectory. While Jacobs et a. (2002) reported that 

motivation toward mathematics continues to decline throughout high school, little is 

known about motivations beyond high school. Although Marsh (1989) suggested that 

mathematics self-concepts begin to increase for university students, this may not be true 

for particular groups. Do those who plan on teaching mathematics to elementary students 

have and retain negative views of their abilities in this arena or espouse a limited value 

for fractions? 

 Finally, more studies should examine how instruction influences fraction 

knowledge. Is there one best way to achieve the relational understanding encouraged by 

NRC (2001) and others? Must the instruction be connected to realistic situations, as 

suggested by Sharp and Adams (2002)? Do teachers need to encourage discoveries as 

suggested by Tzur (2004), or can lecture be just as effective? Or is it just that certain 

fraction concepts need to be made more explicit, as suggested by Yoshida and Sawano 

(2002)? Or is a combination of these things necessary for fraction instruction to be 

effective? 

 While the proposed study cannot answer all of the aforementioned questions, it 

did attempt to address a number of them. Specifically, the knowledge and motivation of 

college students majoring in education was assessed before and after they took a course 

that promoted a relational understanding of fractions. Differences in the instructional 

style were recorded and examined as a factor in any knowledge or motivational gains. As 
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a result, tentative conclusions are made about the role of instruction in learning about 

fractions. 
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CHAPTER 3 

METHODOLOGY 

 In the following sections, four pilot studies and the method for the present study 

are described. The pilot studies focused on: a) the fraction knowledge pretest, b) the item 

distinguishing pretest and posttest, c) the motivation questionnaire, and d) observations of 

the proposed target course. The method for the present study will be described in four 

sections. Those sections include: a) participants, b) course overview, c) measures, and d) 

procedures. 

Pilot Studies 

 Several pilot studies were conducted in preparation for the present study. First, the 

fraction knowledge assessment was piloted to determine: a) how much time it required, 

b) whether variability existed among preservice teachers with regard to their fraction 

knowledge and solution strategies, and c) whether the instructions on the measure were 

clear. The item distinguishing the pretest and posttest was piloted to determine: a) 

whether the instructions were clear, b) what methods might be used to solve it, and c) 

how well it discriminated conceptual understanding. The motivation questionnaire was 

piloted to determine: a) how much time it required, b) whether it was appropriate for 

people beyond high school, and c) whether the adapted version was clear. Finally, 

classroom observations were made to determine whether variability existed among 

instructors of the targeted course with regard to delivery style. Findings from each of 

these pilot studies are subsequently described. 
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Fraction Knowledge Assessments 

Pretest 

 Four professors of mathematics education and four doctoral students in 

mathematics education met to discuss a draft of the fraction knowledge pretest. The 

primary purpose of the meeting was to determine the validity of the chosen items. One 

person commented that there were fewer addition and subtraction problems than 

multiplication and division. It was decided that since the addition and subtraction 

algorithms were similar, it was not necessary to have as many of each. Hence, no changes 

were made with respect to the number of problems for each operation. Another person 

suggested that using 5 1/2 and 1/2 in the division word problem would likely lead to 

solving the problem mentally, without using an algorithm. To motivate the use of an 

algorithm, the numbers were changed to 5 2/3 and1/6.  

 The secondary purpose of the meeting was to determine whether or not the 

problems could be used to reveal both misconceptions and knowledge of non-traditional 

solution methods. Only one change was suggested here. Specifically, the problem 9/10 ÷ 

3/5 had been included to test whether students knew they could divide the numerators and 

denominators. The suggestion was made that the 5 be changed to a 10. In this way, the 

problem would be conducive to the “common denominator” method of dividing fractions. 

This alternate method suggests that when two fractions have the same denominator, the 

solution can be found by dividing the numerators. Another reason for the suggestion was 

that it could possibly reveal misconceptions. For example, a solution of 3/10 would 

suggest that a student believes you must keep the denominator the same. Based on these 

reasons, the suggested change was made. 
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 The modified assessment was subsequently piloted with a group of eight 

undergraduates majoring in elementary education. Seven of these students finished the 

items in 18 to 20 minutes. The eighth person turned in her test within this time frame, but 

she had skipped four items. These problems were not consecutive, and three of them were 

division problems. Rather than not having enough time, it was likely that she did not 

know how to solve division problems with fractions, especially since she missed the one 

division problem that she did attempt.  

 Two changes were made as a result of this piloting. One question was changed 

because two students misunderstood what it was asking. This question had asked students 

to name the shaded part of a figure, but two students named the shape created by the 

shaded part rather than the fractional amount shown. This question was reworded to 

clarify that the fractional amount was needed from the students. Another change involved 

an attempt to reduce the number of calculation errors not related to fractions. For 

example, some students multiplied incorrectly when the problem involved numbers 

beyond basic facts (greater than 12). Smaller numbers were used to address this issue. 

The final version of the fraction knowledge pretest appears in Appendix A. 

Posttest 

 The posttest was the same as the pretest except for the inclusion of an open-ended 

item. This item was adapted from Linn (1969) for a professional development workshop 

with middle-school mathematics teachers. One adaptation involved removing the word 

“piously” so as not to confuse or distract. Another adaptation involved changing the 

names Jenny and Jeff to Jenny and Kevin. In this way, the names could be represented by 

their first initial without confusion. The adapted version was piloted in both high school 
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and undergraduate classrooms. Four experts in mathematics also completed the task, 

including a mathematics professor, a mathematics education professor, a high school 

mathematics teacher, and an engineer.  

 Results revealed at least six possible solution strategies. The high-school students 

were least successful at the task, while the experts were all successful. In general, the rate 

of success increased as the level of education increased. People who were unsuccessful at 

the task generally fell into one of two categories. One category included students who did 

not realize the need for fractions to be of the same whole amount when adding. The other 

group consisted of students who showed evidence of realizing they needed to rewrite the 

fractions in terms of the same whole amount, but they were unable complete this process. 

The only change made based on these pilots was to italicize the relevant information, 

since a few students had asked for clarification. The modified item appears in Appendix 

B. 

Motivation Questionnaire 

 The draft motivation questionnaire was adapted from Eccles, Wigfield, and 

colleagues (Eccles et al., 1993; Wigfield & Eccles, 2000). According to these researchers, 

students’ values and expectancies for success influence performance and persistence in a 

subject. For mathematics in particular, they are also related to anxiety (Wigfield & 

Meece, 1988). In the current study, the relations between anxiety, value, and expectancies 

are examined for fractions. 

 The domain-specific questionnaire was adapted to be topic-specific. For all but 

one item, the word math was replaced with fractions. For example, “How good at math 

are you?” was changed to “How good at fractions are you?” Only one item was changed 
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in a more significant way. That item asked “How much do you like doing math?” and 

was changed to “How much do you like being given a set of fraction problems to solve?” 

A few of the anxiety scale items used by Wigfield and Meece (1988) were omitted 

because they did not seem applicable to college-level students or to fractions. Had these 

questions been adapted, they would have asked about intentions to take more fractions 

and being scared of advanced fractions.  

 To make sure the adapted questionnaire was feasible for use with those beyond 

high school, it was piloted with three young adults. It took each of them 4 to 5 minutes to 

complete. Only one item seemed to produce results that did not fit with its hypothesized 

scale. This item was also the only item that had been altered in a more significant way 

than changing the word math to fractions. The change had seemed necessary when first 

adapting the questionnaire, but a discussion with the three participants revealed that the 

original wording held a different connotation to them than the new one. Using the 

original wording (but making it specific to fractions) seemed to evoke the intended 

meaning and was therefore used in the present study. The final version appears in 

Appendix C. 

Classroom Observations 

 Because the present study attempted to measure differences in instructional style 

for a particular course, I wanted to understand what sort of variations to expect. For 

example, I wanted to find out if some of the instructors lectured, despite being 

encouraged to promote discussions. For this reason, two different instructors of the 

course were observed during the semester prior to data collection. Observations revealed 

that not only were there were noticeable differences with regard to lecture, but also with 
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rapport and enthusiasm. My discussions with a third instructor suggested that additional 

differences may exist. In particular, this instructor claimed to consistently spend the 

entire class time with the students. By contrast, the other two instructors finished the 

observed classes 20 minutes early. This instructor also claimed to encourage student 

discoveries regarding key mathematical ideas.  

Method 

 The method for the present study will be reported in five sections. First, 

participants will be described. Second, the course will be overviewed. Third, details 

regarding the three measures will be provided. Fourth, the procedures will be explained. 

Finally, strategies for analyzing the data will be detailed. 

Participants 

 Participants for the present study consisted of education majors and their course 

instructors. These students were enrolled in a mathematics course designed to help 

deepen their understanding of elementary school mathematics. There were 104 students 

signed up for the course at the beginning of the semester. Of these, 99 gave consent for 

their data to be used in the study. One student was late and therefore did not take the 

motivation pretest. A total of nine students dropped the course at various points during 

the semester and one person did not take the posttest. Attendance was recorded and 

considered as a covariate or as criteria for exclusion from the study. Three students were 

dropped from the analysis because they were absent for half or more of the targeted 

lessons on fractions. Only the 85 students with good attendance and complete data were 

included in the analysis. Additional demographic information about the students, such as 

gender, age, and ethnicity, was gathered on the same day as the pretest. The demographic 
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sheet is included in Appendix D. The students were predominantly female and white, 

indicating they were a representative sample of elementary education majors. Of the 85 

students included in the study, 20 were freshmen, 49 were sophomores, and 16 were 

upperclassmen. 

 There were five sections of the course and three instructors. Instructor A was a 

doctoral student in mathematics and had taught this course in the prior semester. He also 

taught a similar course one year earlier. He currently taught two sections of the course. 

Instructor B recently received her doctorate in mathematics education and had taught this 

course for 11 years. She taught one section of the course. Instructor C was also a doctoral 

student in mathematics and this was his first time teaching an education course. He taught 

two sections of the course. Consent forms were secured by all three course instructors 

who were willing to be observed during the teaching of fractions. Likewise, consent 

forms were secured for all students willing to have their knowledge and motivation data 

entered into analysis (see Appendix E). 

Course Overview 

 An overview of the observed course will be presented in three sections. First, the 

purpose of the course will be provided. The student materials and instructor materials will 

be described in the second section. Finally, links between important features of this 

course and my research questions will be made. 

 The purpose of this course was to help students better understand the mathematics 

they will be teaching. The course description provided in the course syllabus (see 

Appendix F) was as follows:  
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The course will review and extend topics of arithmetic and number theory 

that may be encountered in elementary school curricula. Students will 

actively investigate topics, working in groups on projects and writing 

explanations of their thinking as well as answers to problems.  

 The course was divided into four sections, and fractions were covered in each of 

these sections. The sections included: numbers and basic number theory, addition and 

subtraction, multiplication, and division. Students were expected to make connections 

between the meanings of the four operations and the corresponding fraction procedure. 

For example, the meaning of division in general was used to help explain why the 

algorithm for dividing fractions involves multiplying by the reciprocal of the divisor. 

Pictures were used extensively to illustrate these meanings. The philosophy statement, 

which appeared in the course syllabus, also referenced this emphasis on meaning: 

Many people think of math as a collection of meaningless procedures and 

rules that “magically” give the right answer when numbers from a 

problem are inserted correctly. Your experiences in this course will be 

very different from this! Throughout the course, in class, on projects, and 

on exams, you will be asked to “explain why or why not” or to “justify 

your answer.” In other words, you will be expected to understand why the 

procedures you are using works or why the answer given is correct. You 

will be most successful this semester if you continually ask “why?” as you 

read, listen, and solve problems. Seeking connections and meaning can be 

a very rewarding way to learn–and someday teach–these math ideas. 
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 The student materials included a text (Beckmann, 2005b), the class 

activities manual accompanying the text (Beckmann, 2005a), and a student packet 

created specifically for the course. A sample from the student packet is included 

in Appendix G. The instructors met regularly to receive teaching notes for the 

next segment of the course. These teaching notes included specific lesson plans 

and were provided by the course chair, who also instructed one of the sections. A 

sample of these teaching notes is included in Appendix H. 

 The primary feature of the course was that it attempted to help students 

make connections between the procedures they will be teaching and the concepts 

related to those procedures. This feature is directly related to the second research 

question of the study, which asked whether this kind of instruction has an impact 

on participants’ knowledge of and motivation for fractions.  

 Another feature of the course was that the instructors used the same 

materials and followed the same lesson plans. This feature was instituted to 

ensure consistency in the content delivered across sections of the target course. 

Nonetheless, it was expected that the three course instructors would manifest 

marked differences in their delivery of course content. Question four asked about 

those expected differences in instructional delivery and whether they might 

impact the knowledge or motivation of the students.  
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Measures 

Fraction Skills Assessments 

 Pretest. The fraction knowledge pretest contained 20 items. Of these, 15 were 

routine problems without context (e.g., 1/2 + 3/4), three were routine word problems, and 

two were non-routine problems. Each of these types will be described in detail. 

 The 15 routine problems without context involved three addition, three 

subtraction, four division, and five multiplication problems. The addition problems 

include adding fractions with the same denominator, adding fractions with different 

denominators, and adding mixed numbers with the same denominator. The subtraction 

problems were similar, except that a whole number minus a fraction was included rather 

than subtraction with the same denominator. The division problems included a mixed 

number divided by whole number, a whole number divided by fraction, a fraction divided 

by a fraction (same denominator), and a fraction divided by a fraction (different 

denominators). Finally, the multiplication problems included a fraction times a fraction 

(different denominators), a fraction times a fraction (same denominator), a fraction times 

whole number, a mixed number times a whole number, and a mixed number times a 

mixed number.  

 The three word problems could be solved using division, subtraction, and 

multiplication, respectively. Two non-routine items were adapted from Stipek et al. 

(1998) and were intended to assess knowledge of basic fraction concepts. In particular, 

one assessed knowledge of equal parts, and the other assessed knowledge of how 

fractions relate to units greater than one. 
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 For all 20 problems, students were asked to show their work or explain their 

thinking. The purpose for students showing their work was to uncover any conceptual 

problems that were presumed to underlie incorrect answers or inefficient solutions. Thus, 

the work and explanations were carefully examined to identify such patterns. For 

example, the pilot test showed that for the problem 4 ÷ 1/4 three out of eight students 

multiplied by 1/4 rather than its reciprocal; a procedure that resulted in a quotient of 1 

rather than 16. Two of them also failed to use the reciprocal for the problem 2 1/3 ÷ 9. 

However, none of these three students made the same error for the problem 4/9 ÷ 3/8 or 

the problem 9/10 ÷ 3/10. This pattern may suggest a conceptual problem with reciprocals 

rather than with division of fractions per se. If a student’s understanding of reciprocals is 

simply that the numerator and denominator switch places, then he or she may not know 

what to do when the problem involves a whole number. 

 Viable solutions were also examined for patterns. For example, the pilot test 

showed that four out of eight students changed all mixed numbers to improper fractions 

no matter what problem was posed. While this procedure is efficient for multiplying 

mixed numbers, it is quite inefficient when adding mixed numbers with the same 

denominator. It can also be inefficient to change whole numbers to improper fractions. Of 

the seven students that successfully solved the problem 12 – 3/8 during the pilot test, only 

two did not use improper fractions. The pattern of changing mixed and whole numbers to 

improper fractions even when it is inefficient may suggest a lack of ability to reason with 

fractions. Smith (1995) found that students who were competent in reasoning with 

fractions used the general methods only when they did not know of a more efficient one. 
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Star (2005) has suggested that these competent students are demonstrating procedural 

flexibility. 

 Opportunities for students to demonstrate such flexibility were built into the 

pretest. For example, the students were asked to divide 9/10 and 3/10. Having common 

denominators in a division problem allows for a very efficient alternative to the 

traditional “flip and multiply” algorithm. Problems were also included that could reveal 

deficiencies in understanding. For example, students were asked to multiply with 

common denominators, namely 2/15 and 7/15. If students kept the denominator the same 

as they would with addition, it may suggest a reliance on perceptual cues rather than 

concepts, particularly if those students were to multiply correctly on other problems. 

 To validate the rubric for flexibility points, the fraction test was given to nine 

experts, including two engineers, two mathematicians, two mathematics educators, two 

secondary mathematics education majors, and one secondary mathematics teacher. These 

experts consistently used more elegant and efficient approaches on 11 different problems. 

As a result, there were 11 possible flexibility points awarded on the test. 

 The 15 routine problems without context were scored using a three level scoring 

system (0 to 2 points). Two points were awarded for methods that led to correct solutions. 

One point was awarded for responses containing minor mistakes. Such mistakes were not 

either careless or unrelated to fraction knowledge. Included here would be mistakes with 

whole numbers. For example, a student may know to use common denominators to add 

fractions but writes 22 + 34 = 58. No points were given for errors resulting from 

inappropriate solutions. An example of each score is presented in Table 1.  
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Table 1 

Scoring Examples for the Routine Items without Context 

Point Values  
0 1 2 

 
Solution 
 
 
 
Computation 
 
 

 

2
5
3 + 3

5
1 = 5

10
4  

 
I added the 
numerators and 
denominators 

 

         2
5
3 + 3

5
1 = 7

5
4  

 

5
13  + 

5
16 = 

5
39 = 7

5
4  

 

         2
5
3 + 3

5
1 = 5

5
4  

 

5
13  + 

5
16 = 

5
29 = 5

5
4  

 

 For the non-routine problems, students were awarded no points for incorrect 

solutions and two points for correct ones. Word problems were scored using a four level 

system (0 to 3 points). No points were awarded for inappropriate solutions. One point 

was given if the student set up the problem appropriately but made more than minor 

errors when finding the solution. Two points were awarded for only minor errors, and 

three points were awarded for correct solutions. 

 A second rater trained by the researcher scored ten percent of the tests to establish 

interrater agreement. For the knowledge pretest, interrater agreement was 98%. Thus, I 

scored all the remaining pretests independently. 

Posttest. The posttest was the same as the pretest except for one additional item, 

adapted from Linn (1969). This item was an open-ended transfer item, or an item 

intended to test relevant concepts that cannot be directly solved with known algorithms. 

In this case, the problem involved mixtures of liquids, in which fraction algorithms could 

be used but not as directly as with the word problems. The primary purpose of this 
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particular transfer item was to test the understanding that fractions cannot be added using 

the traditional algorithm unless they are fractions of the same whole amount.  

 If a student arrived at a correct solution, two points were awarded. If a student 

demonstrated that he or she knew the fractions must be rewritten in terms of the same 

whole amount but did not know what to do next, one point was awarded. No points were 

awarded for an inappropriate solution. An example of each of these scores appears in 

Table 2. The remainder of the posttest was scored in the same manner as the pretest. The 

same rater who scored 10 pretests also scored 10 posttests. Interrater agreement was 99%. 

Thus, I scored the remaining posttests independently. 

Table 2 

Sample Scoring for the Transfer Item 

Point Values  
0 1 2 

Solution 
 
 
 
Computation 
 

12
7  

 
 

3
1 + 

4
1 = 

12
4 +

12
3  = 

12
7  

 

6
5  

 
 
 
 
 
 
 
 
If you pour Kevin’s syrup into 

Jenny’s glass, it will fill 
2
1  of 

it. Add that to Jenny’s 
3
1  and 

you have 
6
5  of her glass filled 

with syrup.  

18
5  

 

Jenny’s syrup is 
9
1  

of the combined 
mixture.  

Kevin’s syrup is 
6
1  

of the combined 
mixture. 

9
1 + 

6
1  = 

18
2  + 

18
3  

= 
18
5  
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Motivation Questionnaire 

 The motivation questionnaire included 15 items adapted from the work of Eccles, 

Wigfield, and colleagues (Eccles et al., 1993; Wigfield & Eccles, 2000). Prior research 

has suggested three separate scales for these items. Two of the scales are based on the 

expectancy-value theory of achievement motivation: value and self-concept of ability. 

Interest, importance, and usefulness comprised the value scale, and ability and 

expectancy beliefs comprised the self-concept of ability scale. Although theoretically 

distinct, these subscales are empirically similar and have been placed together in prior 

studies (Anderman et al., 2001). The third scale assessed the affective component of 

anxiety. Wigfield and Meece (1988) have shown that anxiety can have both an affective 

and a cognitive component (fear and worry, respectively), but the affective component is 

the one that has debilitating effects on achievement. Therefore, only the affective 

component was used in the study.  

 Because the questionnaire has not been used with undergraduates or as a topic-

specific measure, an exploratory factor analysis was conducted with the 15 items. 

Principal Axis Factoring (PAF) with oblique rotation was used with the pretest data to 

assess whether these items still suggested three scales. The results did suggest three 

scales, but one item was not loading strongly on any of them. This was item nine on the 

questionnaire and it asked, “How good would you be at learning something new about 

fractions?” Because undergraduates have most likely seen all combinations of fraction 

arithmetic, they may not have been certain how to answer this question. Thus, it made 

sense to drop the item from the questionnaire.  
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 The test was run again with the remaining 14 items. Results suggested that three 

factors explained 62% of the variance among the items. These factors were similar to 

prior studies with one exception. The two items thought to test interest in fractions were 

loading strongly on the same factor as the items thought to test self-concept of ability. 

However, it made sense that undergraduates would have low interest in things they do not 

feel they are good at. Hence, these two items were included with self-concept of ability 

rather than value. The loadings for self-concept of ability ranged from .47 to .85. For 

value, they ranged from .68 to .80. For anxiety, they ranged from .62 to .90. Appendix I 

shows the factor loadings for the three factors. 

 For the motivation posttest, PAF with oblique rotation suggested only two factors. 

This time, the anxiety items were loading with the self-concept and interest items. The 

value scale continued to load on a separate factor. Appendix J shows the factor loadings 

for the two factors. Because the results at pretest were more similar to those from prior 

studies, in which extensive analyses were conducted, the three pretest factors were used. 

Implications for the change in factor structure over time are discussed in Chapter V. 

 Students were asked to answer the 14 items using a 7-point scale. Value now 

included four items, for a maximum of 28 points. Self-concept of ability included six 

items, for a maximum of 42 points. Anxiety included four items, for a maximum of 28 

points. Alphas were computed to determine the reliability of the motivation factors. The 

alphas for value, anxiety, and self-concept of ability at pretest were .82, .86, and .90, 

respectively. The reliability posttest scores for value, anxiety, and self-concept were .84, 

.91, and .86 respectively.  
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Classroom Observation Instrument 

 The classroom observation instrument was designed specifically for a large, on-

going longitudinal study on high quality teaching in upper elementary schools (Valli & 

Croninger, 2002). The instrument was used for more than three years of data collection, 

and data from this study demonstrated reliability. This investigator had been extensively 

trained to use the instrument and has served as an expert observer for reliability purposes. 

However, the instrument had never been used in college classrooms prior to the present 

study.  

 The dimensions of the instrument were created to be consistent with the literature 

on effective mathematics teaching, particularly to align with both traditional and reform 

ideas (Chambliss & Graeber, 2003). For example, codes for linking concepts and 

procedures, posing high-level tasks, making connections to real-world, and working in 

small groups were included based on reform ideas, whereas codes for reading from a text, 

lecturing, and focusing on procedures were included based on traditional ideas. A 

glossary was written to describe each code in detail. The instrument was chosen for the 

proposed study because it is designed to capture the features of instruction that are of 

interest in research question four, including organization of the class, kinds of questions, 

use of lecture, and links between concepts and procedures. 

 The first part of the observation instrument uses a time-sampled approach. Every 

three minutes, a screen opens and eight categories are coded, including teacher activity, 

student activity, organization of the class, attention of the teacher, content, context, 

classroom behavior, and use of technology. Nearly all categories are broken into sub-

categories, but the coding is mutually exclusive within the eight broad categories. For 
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example, a coder must decide if the organization of the class is whole group, small group, 

independent work, or a mixture of group and independent work. If one of the latter three 

sub-categories is appropriate, then the coder must also decide whether the students are 

focused on the same or different content. Hence, one choice is made from seven possible 

choices. An annotation can be made if additional comments or clarifications are needed. 

 The observation instrument also includes an attribution form, to be completed at 

the end of the lesson. The observed lesson is scored for evidence of five dimensions of 

effective pedagogical practice (Alexander & Murphy, 1998). Those five dimensions deal 

with: knowledge, strategic processing, development and individual differences, 

motivation, and context or situation. Each of these dimensions is examined using four 

specific instructional behaviors and rated on their centrality to the teachers’ performance 

during the observed lesson. For example, the knowledge dimension assesses whether the 

teacher: promoted principled understanding, activated prior knowledge, manifested a 

deep understanding of the content, and illustrated the value or utility of the lesson. After 

all five dimensions are coded on a 4-point continuum ranging from not evident to 

pervasive, the lesson is rated for overall quality with 1 representing low quality and 4 

indicating high quality. A complete list of codes for the time-sampling and attribution 

forms appears in Appendix J.  

 A second rater trained with this instrument observed two classes to establish 

interrater agreement. One class was led by Instructor A and one was led by Instructor C. 

 Overall interrater agreement for the time-sampled data was 93%. The overall interrater 

agreement for the attribution scale, a more high-inference measure, was 79%.  
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Instructor Interviews 

 In order to gain insight into why instructional differences may exist, the 

instructors were interviewed about their beliefs and goals for the course at the beginning 

and end of the semester. The pretest and posttest contained similar questions, so that 

changes in attitudes and beliefs may be detected. Appendix K contains the interview 

questions. 

Procedures 

 The previously described fraction knowledge and motivation measures were 

administered during the regular classroom times as part of the course. Including these 

assessments in the course enhanced the ecological validity of the present study and likely 

contributed to students’ motivation to perform well. On the first day of class, pretests for 

fraction knowledge and motivation for fractions were administered to all the sections of 

the course. The posttests for fraction knowledge and motivation were administered near 

the end of the semester, after the last lesson involving fractions. Because of snow, the 

school opened late on the day planned for all posttests to be administered. As a result, 

three of the sections were administered their posttests on the next class day. 

 The pre-interviews for instructors were conducted at the beginning of the 

semester, and all instructors were interviewed on the same day. The post-interviews were 

conducted near the end of the semester, but because of the aforementioned weather 

conditions, two instructors were interviewed on the class day following the first 

instructor. All interviews were audiotaped and transcribed. 

 The classes were observed whenever the lesson involved fractions, which 

included nine instructional days. Rather than including all the fraction topics 
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consecutively, the course was organized by the four operations. This organization 

resulted in the fraction instruction being spread throughout the semester. Fractions were 

covered during the unit on number theory, the unit on addition and subtraction, the unit 

on multiplication, and again during the unit on division. The instructors all used the same 

syllabus, exams, and other materials, so the same lesson was observed for each instructor 

during each day of fraction instruction.  

 Student absences were recorded on the days the classes were observed. If students 

were absent, they were assigned a value of 1 for the day. If they were late or left the class 

early, they were assigned a value of .25 for every 15 minutes of class they missed. In this 

way, a student who was consistently late to class would not have the same scores as 

someone who was always present for the entire class. Each class was 50 minutes long. 

Analysis Strategy 

Student Data 

 In the past few decades, it has been common practice to dichotomize knowledge 

of fractions into procedural and conceptual knowledge (Byrnes & Wasik, 1991; 

Carpenter, 1986; Case, 1988; Hiebert & Lefevre, 1986; Rittle-Johnson, Siegler, & 

Alibali, 2001). But in recent years, it has become apparent that these two classifications 

are not always straightforward (Asku, 1997; NRC, 2001; Star, 2005). Consequently, I 

decided to use five distinct measures of fraction knowledge and look for relations based 

on the data, rather than trying to dichotomize the data into measures of procedural and 

conceptual knowledge.  

 A computation score was created by totaling the scores for addition, subtraction, 

multiplication, and division. These scores were combined because they each required the 
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students to carry out an algorithm in order to arrive at a correct answer. A basic concepts 

score was created using the non-routine items. These items were used because they 

require the students to understand the need for equal parts as well as how fractions relate 

to units greater than one. A word problem score was created by adding the points for 

correctly setting up the problem and the points for arriving at a correct solution. Although 

computation ability is necessary to correctly arrive at a solution, setting up the problem 

involves knowing which fraction procedure is appropriate. Although the National 

Research Council (2001) has suggested that computational skill and knowledge of when 

to use procedures are both parts of procedural fluency, research has suggested these skills 

are distinct from each other (e.g., Asku, 1997). 

 A flexibility score was used to assess whether students used efficient and elegant 

methods to find solutions to routine problems. Star (2005) argued that a “flexible 

solver…can navigate his or her way through this procedural domain, using techniques 

other than the ones that are overpracticed, to produce solutions that best match problem 

conditions or solving goals” (p.409). For fractions in particular, Smith (1995) showed 

that students who reasoned competently with fractions used alternate algorithms when 

they were more efficient. On the posttest, students were also tested on their ability to 

transfer learned concepts and procedures to novel situations. 

 Using correlations, relations between the five knowledge scores and the three 

motivation scores were examined. Using repeated measures analysis of variance 

(MANOVA), student scores were also examined for possible differences related to the 

instructor.  
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 Teacher Data 

 In recent years, the work of those who research fraction knowledge has 

consistently supported the idea of relational understanding espoused by Skemp (1978). 

That is, researchers have generally agreed that students need to forge links between 

concepts and their related procedures, and that forging these links leads to better retention 

and better transfer of ideas to new situation (Carpenter & Lehrer, 1999; NRC, 2001). 

However, many teaching practices have been suggested as a means to this end. Some of 

the common practices deemed essential for learning fractions are the use of context 

(Sharp & Adams, 2002), the encouragement of student-invented procedures (Mack, 1995, 

2000; Saenz-Ludlow, 1994; Tzur, 1999, 2004), and the practice of asking students to 

justify their solutions (Kazemi & Stipek, 2001). However, lecture has generally been 

associated with a lack of sense-making (Morris, 1995). Few studies if any have examined 

sense-making of fractions through lecture.  

 While the observation instrument used in this study was not particularly designed 

to capture whether students were inventing their own procedures, it was designed to 

capture whether or not the instructors were linking concepts to procedures, using context, 

asking students to justify their solutions, or lecturing. It also captured whether the 

activities were being led by the teacher and whether the students were engaged in high-

level tasks as opposed to routine problems. In order to contribute to our understanding of 

the roles of these practices, the data were examined for evidence of them. In particular, 

the data were examined through three lenses: promotion of relational understanding, 

emphasis on high-level discourse, and the extent to which the class was teacher-directed. 

These lenses were chosen based on the goals of the course and on prior literature. 
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 Because students in all classes were overwhelmingly on task and not using 

technology during the fraction lessons, the classroom behavior and technology categories 

were dropped from the analysis. Because the teacher’s attention was overwhelmingly on 

the whole class for all classes, even when the students were working in groups or 

individually, this coding category was also dropped from the analysis. The remaining 

codes were from the following categories: teacher activity, student activity, class 

organization, content focus, and context. These categories were examined through the 

aforementioned lenses, and as a result, the data were recoded into nine variables. Of 

these, four were related to understanding, two related to discourse, and three showed 

evidence that the class was teacher-directed. These variables and their related codes will 

each be described. 

 Evidence of promoting a relational understanding was found in four of the coding 

categories: teacher activity, student activity, content, and context. Teacher activity related 

to understanding included posing a high level question or task, elaborating on a high level 

question or task, responding with a question back to the student, or responding with 

evaluation or feedback. Student activity related to understanding included working on a 

high level question or task. Linking concepts and procedures was considered a content 

focus relating to understanding. Context related to understanding included connections to 

prior mathematics, connections to another content area, and connections to the real world. 

 Evidence of high-level discourse was found in two of the coding categories: 

teacher activity and student activity. Teacher activity related to discourse included 

requests for an alternative method or requests for an elaboration of a student’s response 

(i.e., having a student explain his or her thinking). Student activity related to discourse 
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included responding with a conjecture, responding with an explanation or justification, or 

responding with an alternative method. 

 Evidence that the class was teacher-directed was found in three coding categories. 

Teacher activity related to a teacher direction included modeling with technology, 

modeling without technology, or lecturing mathematics content. Student activity related 

being teacher-led included students passively listening. Finally, organizing the class as a 

whole group (as opposed to small groups or individuals) was considered to be a more 

teacher-directed practice. 

 Analysis of variance (ANOVA) was used to determine whether teachers differed 

with regard to these teaching practices. Another ANOVA was used to determine 

differences on the attribution scales. Differences detected among teachers were used to 

make sense of differences found among the students when grouped by instructor. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 This study was undertaken in order to better understand preservice elementary 

teachers’ knowledge of and motivations toward fractions before and after taking a course 

designed to promote relational understanding, as well as what teaching practices might be 

related to student outcomes. Results will be reported in five sections. First, descriptive 

statistics will be presented. Then, each of the four research questions will be addressed. 

 To prepare the data for analyses, several steps were taken. First, student 

attendance was examined as criteria for exclusion from the study. Because I was 

interested in outcomes before and after a taking a course, it seemed appropriate that 

students with low attendance should not be considered. Three students were absent for 

half or more of the fraction lessons. Thus, these students were excluded from subsequent 

analyses. 

 Data for the remaining 85 students were examined for normality. At pretest, both 

the knowledge and motivation variables were statistically normal. Tests for homogeneity 

of variance were also satisfied, and an ANOVA was conducted to determine if the five 

sections of the course differed with regard to any of these scores at the beginning of the 

semester. None of the scores were significantly different. For subsequent analyses, 

classes were grouped by instructor.  

  Motivation variables were normal at posttest, but two of the knowledge variables 

(computation and basic concepts) were somewhat negatively skewed at posttest. 

Transformations did not help the distribution of these variables, as most students’ scores 
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were quite high at the end of the semester. Therefore, I decided to proceed with the 

analyses, interpreting outcomes concerning knowledge with some caution.  

 During 2 out of the 9 observations, Instructor A was absent. Instructor C taught 

his classes on both occasions. Because the intent of the observations was to capture 

teacher practices, those observations were dropped from the analysis.  As a result, 

Instructor A had an average of 110 episodes for his two sections, Instructor B had 141 

episodes for her one section, and Instructor C had an average of 142 episodes for his two 

sections. 

 Of the observational codes considered for analysis, only 59 were actually used 

during the semester. These codes belonged to five coding categories, which were 

examined through the three lenses described in Chapter III: relational understanding, 

high-level discourse, and teacher direction. As a result, nine variables were created. 

However, the discourse variable for teacher activity occurred less than 6% of the time for 

each teacher, causing it to be positively skewed. Because it is unlikely that a rarely 

occurring teaching practice would have a discernable effect on student outcomes, it was 

dropped from the analysis. The remaining variables were approximately normal. All six 

attribution variables were normally distributed. 

Descriptive Statistics 

Student Data 

 To answer the first research question, means and standard deviations were 

calculated for knowledge and motivation at the beginning of the semester. To answer the 

second question, means and standard deviations were determined for knowledge and 

motivation at the end of the semester. These descriptive statistics appear in Table 3. 
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 Pearson correlations for knowledge and motivation were also computed, both for 

pretests and posttests. These can be seen in Tables 4. 

Table 3 

Descriptive Statistics for Knowledge and Motivation Variables 

 Max Possible Value            M                         SD  

Variable      Pre  Post Pre Post 

Computation  30 23.25 27.60 7.26 3.92 

Basic Concepts    4   2.87   3.72 1.17   .77 

Word Problems    9   6.29   7.45 2.76 2.23 

Flexibility  11   2.27   2.13 1.91 2.19 

Transfer    2      .52    .63 

Value  28  17.15  19.18  4.05 3.94 

Anxiety  28 16.14 15.33 4.90 5.33 

Self-Concept  42 22.02 24.73 6.29  5.59 

Note. N=85. Transfer was only assessed at posttest. 
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Table 4 
 
Correlations between Knowledge and Motivation Variables 
 
Variable  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pretest                 

1. Computation                 

               

              

             

                  

             

          

                 

          

         

       

     

   

    

         

  

__

2. Basic Concepts .33** __

3. Word Problems .58** .40** __

4. Flexibility .07  .15 . 33** __

5. Value .16 -.03 .17 .02 __

6. Anxiety -.33** -.24* -.24* -.15 -15 __

7. Self-Concept .36**  .00 .24*  .25*  .42** -.61** __

Posttest

8. Computation .43** .11 .34**  .05 -.02 -.31** .25* __

9. Basic Concepts .42** .23* .38**  .04  .16 -.22* .17  .30** __

10. Word Problems .40** .17 .60**  .14  .10 -.21 .15   .27**  .35** __

11. Flexibility .20 .12 .25*  .51**  .06  .02 .09   .00  .07  .24* __

12. Transfer  .26* .17 .32** -.04  .03  .34** .16   .01  .21  .25*  .07 __  

 

 

13. Value .09 .12 .16   .09  .32** -.13 .16   .16  .12  .32** -.04  .27* __

14. Anxiety -.29* -.15 -.18 -.16 -.01  .73** -.39** -.33** -.28** -.25* -.14 -.36** -.20 __

15. Self-Concept .39** .18 .32**  .18  .14 -.54** .59**  .39**  .25*  .29**  .08  .32** -.43** -.71** __ 

Note. N=85.  *p<.05, **p<.01. 
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Teacher Data 

 To answer the fourth research question, means and standard deviations for teacher 

practices were calculated for each instructor. The results are presented in Table 5. To 

create scores for each of the five learning principles, the four subscores under each 

principle were averaged. The overall quality score was coded as a separate variable. 

Means and standard deviations were calculated for each instructor and are displayed in 

Table 6. 

Table 5 

Proportion of Time Spent on Class Activities 

  Understanding   Discourse          Teacher Direction 

Instructor  Teacher Student Content Context  Student     Teacher Student Organization 

A 

(n=220) 

M 

SD 

.15 

.36 

.20 

.40 

.61 

.49 

.25 

.43 

 .10 

 .29 

.15 

.36 

.25 

.43 

.64 

.48 

B 

(n=141) 

M 

SD 

.21 

.41 

.19 

.39 

.57 

.50 

.19 

.39 

 .23 

 .42 

.11 

.32 

.16 

.37 

.67 

.47 

C 

(n=287) 

M 

SD 

.14 

.35 

.21 

.41 

.55 

.50 

.20 

.40 

 .10 

 .33 

.22 

.41 

.30 

.46 

.76 

.43 

 

Table 6 

Attribution Means by Instructor  

Instructor  Knowledge Strategic Processing Development Context  Motivation Quality 

A 

(n=14) 

M 

SD 

     2.96 

       .80 

    2.84 

      .45 

       2.09 

         .48 

2.59 

  .40 

2.21 

  .37 

 3.2 

 .39 

B 

(n=9) 

M 

SD 

     2.89 

       .44 

    2.64 

      .36 

       2.17 

          .47 

2.86 

  .36 

2.44 

  .33 

3.00 

 .50 

C 

(n=18) 

M    

SD 

     2.54 

       .56 

     2.42 

       .34 

        1.94 

          .34 

2.31 

  .30 

2.11 

  .37 

2.61 

  .78 
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Knowledge and Motivation at the Beginning of the Semester 

 The first research question addressed in this study was: What is the level of 

elementary preservice teachers’ knowledge of and motivations toward fractions at the 

beginning of a course designed to promote relational understanding in mathematics? Four 

knowledge variables and three motivation variables were used to answer this question. 

Pretest Knowledge 

 As seen in Table 3, knowledge of fractions at the beginning of the semester was 

measured in four ways. The mean computation score was 23.25 (SD=7.26). For basic 

concepts, the mean score was 2.87 (SD=1.17). The mean word problem score was 6.29 

(SD=2.76). These results mean that the average success rate was 78% for computation, 

72% for basic concepts, and 70% for word problems. These scores can be regarded as the 

students’ achievement for fractions at the beginning of the semester. In contrast, the 

flexibility score reflects a deeper knowledge of fractions. NRC (2001) used the term 

procedural fluency as a way of including both computation and flexibility. Out of 11 

possible points, the mean flexibility score was 2.27 (SD=1.91). In brief, students at 

pretest correctly responded to about three-fourths of the problems, but they tended to use 

general algorithms to do so. 

 Many of the knowledge variables were related to each other at pretest. As shown 

in Table 4, computational skill was positively related to knowledge of basic concepts 

(.33, p<.01) and to the ability to solve word problems (.58, p<.01). Word problem success 

was also positively related to basic concepts (.40, p<.01) and flexibility (.33, p<.01). It is 

interesting to note that while word problems were related to both computation and 

concepts, flexibility was not related to either one. Star (2005) argued that computation 
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and flexibility are both types of procedural knowledge, with the former being superficial 

and the latter being deep. This study supports the notion that the two types of knowledge 

are distinct. 

Pretest Motivation 

 With regard to mathematics in general, Ball (1990a) reported that elementary 

preservice teachers tend to feel more anxious and less confident than secondary 

preservice teachers. As such, it was not surprising that the present study did not find high 

levels of motivation toward fractions in particular. As was seen in Table 3, the mean 

value score was 17.15 (SD=4.05) out of a possible 28 points. For anxiety, it was 16.14 

(SD=4.90) out of a possible 28 points, and the mean score for self-concept of ability was 

22.02 (SD=6.29) out of a possible 42 points. In other words, the students’ motivation 

levels fell just to the right of the center of the scale. For value and self-concept of ability, 

this position is at least in the desired direction, but for anxiety, levels to the left of center 

would be desirable. In this sense, there were somewhat elevated levels of anxiety at 

pretest. 

 Correlations in Table 4 reveal that some of the motivation variables were related 

to one another. Students’ self-concept of ability to do fractions was positively related to 

the value they placed on fractions (.42, p<.01) and negatively related to their anxiety 

toward fractions (-.61, p<.01). Anxiety was not related to value. Given these students’ 

years of exposure to fractions, it seems feasible that they could understand the importance 

and usefulness of fractions whether or not they worry about how good they are at them. 

 Some of the motivation scores were also related to knowledge. In particular, 

anxiety was negatively related to computation (-.33, p<.01), basic concepts (-.24, p<.05), 

 



 91

and word problems (-.24, p<.05). However, it was unrelated to flexibility. In other words, 

it seems that students worried about knowing answers, not about whether they could find 

the most efficient or elegant method for arriving at the answers. Self-concept of ability 

was positively related to computation (.36, p<.01), word problems (.24, p<.05), and 

flexibility (.25, p<.05), but not to basic concepts. It seems that students’ perceived ability 

with fractions was related to both when and how to calculate answers, but not to their 

understanding of meaning. 

Knowledge and Motivation at the End of the Semester 

 The second research question addressed in this study was: How will elementary 

preservice teachers’ knowledge of and motivations toward fractions differ as a result of 

participating in a course designed to promote relational understanding in mathematics? 

This question was answered by examining posttest knowledge and motivation scores, as 

well as by examining how these outcomes compare to those at pretest.  

Posttest Knowledge 

 In addition to the four pretest knowledge variables, an item assessing students’ 

ability to transfer their knowledge to a novel situation was included in the posttest. As 

displayed in Table 3, the mean score for computation at the end of the semester was 

27.60 (SD=3.01). For basic concepts, the mean score was 3.72 (SD=.77). The mean score 

for word problems was 7.45 (SD=2.23). These results indicate that the average success 

rate was 92% for computation, 93% for basic concepts, and 83% for word problems. In 

brief, students at posttest correctly responded to about nine-tenths of the problems. 

  In contrast, there was essentially no change in flexibility. The mean flexibility 

score was 2.13 (SD=2.19) out of 11 possible points. Implications of this finding will be 
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discussed when the third research question is addressed. Transfer was also low. The mean 

for the transfer item was .52 (SD=.63), suggesting a 26% success rate on average. Details 

of this item will also be discussed with regard to the third research question. 

 It is not surprising that most of the knowledge posttest scores were moderately or 

strongly related to their corresponding pretest scores. One notable exception existed: 

basic concepts at posttest were only modestly correlated with basic concepts at pretest 

(.23, p<.05). One possible explanation is the same as was given for the performance 

increase in basic concepts: they were constantly reinforced as part of the course. It is 

likely that the course itself was more strongly related to basic concepts at posttest than 

was the students’ knowledge of basic concepts at pretest. 

 Relations between knowledge variables at posttest were similar to pretest 

relations. One notable difference existed: at pretest, solving word problems was strongly 

related to computation (.58, p<.01), but at posttest, they were modestly related (.27, 

p<.05). Interestingly, word problems at posttest were more strongly related to 

computation at pretest (.40, p<.01) than to computation at posttest. One explanation is 

that, during the semester, students learned to solve word problems using pictures rather 

than algorithms. Perhaps those who struggled most with computation at the beginning of 

the semester were more likely to use pictures to solve word problems at the end of the 

semester. On the pretest, four students attempted to use pictures to help them solve word 

problems, but 30 students used them on the posttest. Apparently, students had more 

available tools for solving word problems at the end of the semester than at the 

beginning. 
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 The ability to solve word problems was also related to knowledge of basic 

concepts (.35, p<.01), flexibility (.24, p<.05), and transfer (.25, p<.05). Computation and 

basic concepts were related to each other (.30, p<.01), but neither score was related to 

flexibility. Both pretest and posttest results suggest computation and flexibility were 

unrelated to each other. One explanation for the lack of significant correlation is the low 

tendency for these students to solve problems flexibly. Out of 11 possible points for 

flexibility, these students averaged less than three points. Another explanation is that 

general procedures can be memorized, but knowledge of when and how to deviate from 

those procedures takes, as Star (2005) suggested, a deeper understanding of the 

procedures. 

Computation Changes from Pretest to Posttest 

 Performance on the routine computation items were examined separately for 

addition, subtraction, multiplication, and division. Because the number of problems was 

not equal for each operation, the scores were converted to percentages. Results revealed 

improvement on all four operations, with marked improvements in multiplication and 

division. Although students performed quite differently on the operations at pretest, the 

operations looked more similar at posttest. On average, students answered 92% of the 

addition problems correctly at pretest. This percent rose to 95% at posttest. For 

subtraction, the percent correct rose from 85% to 95%. For multiplication, the percent 

rose from 75% to 88%. For division, the percent correct rose from 64% to 92%. The 

results are graphically presented in Figure 1. The fact that students performed better on 

division than multiplication at posttest could, in part, be due to the fact that division was 
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covered just prior to the posttest, whereas multiplication was covered one month prior. 

Other plausible reasons are discussed in the error patterns section.  

Figure 1 

Computation at Pretest and Posttest 

 
Performance by Operation 

100 

90 

 

 I was also interested in how many students were making these errors. At pretest, 

19 students made no errors on the routine computation problems. At posttest, 32 students 

made no errors on those same problems. In other words, despite high posttest 

performances on each of the operations (ranging from 88% to 95%), more than 3/5 of the 

students missed at least 1 of the 15 routine computation problems. 

 Some of the mistakes were considered minor, which meant they seemed to be 

careless or not related to knowledge of fractions (e.g., mistakes multiplying whole 

numbers). For scoring, these were the errors that were assigned a value of 1 instead of 0. 

There were 37 students who made no more than minor errors at pretest and 48 such 
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people at posttest. Still, more than 2/5 of the students made at least one major fraction 

error on the 15 routine computation problems. 

 There were 48 students at pretest and 70 students at posttest who made no more 

than one major fraction error (e.g., 2/3 + 3/8 = 5/11). Clearly, more students performed 

better at posttest than pretest on the routine computation items. However, nearly 1/5 of 

the students still made more than one major fraction error when completing the 15 routine 

computation problems at posttest. As a result, I wanted to know where most of the 

students were having difficulties, so I examined the number of students making errors on 

each of the four operations. 

 With regard to specific operations at pretest, 22 students made addition errors, 26 

students made subtraction errors, 49 students made multiplication errors, and 45 students 

made division errors. At posttest, 11 students made addition errors, 10 students made 

subtraction errors, 44 students made multiplication errors, and 17 students made division 

errors. Although the overall performance in multiplication improved, it is striking that 

more than half of the students made multiplication errors at posttest, particularly since 

only one-fifth of them made division errors. This finding is surprising because 

multiplying is the last step in the common algorithm for dividing fractions. Some possible 

explanations are provided in the section about error patterns. 

Posttest Motivation  

 In general, motivation toward fractions changed in the desired direction from 

pretest to posttest. Statistical significance will be discussed in the next section. As was 

seen in Table 3, the mean value score was 19.11 (SD=5.47) out of a possible 28 points. 

The mean anxiety score was 15.33 (SD=5.33) out of a possible 28 points, and the mean 
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score for self-concept of ability was 24.73 (SD=5.59) out of a possible 42 points. Similar 

to pretest, students’ self-concept of ability was related to the value they placed on 

fractions (.43, p<.01) and to their anxiety toward fractions (-.71, p<.01). Value was again 

unrelated to anxiety. These results were seen in Table 4. 

 For anxiety, motivation was related to knowledge in similar ways to pretest. 

Anxiety was related to computation (-.33, p<.01), basic concepts (-.28, p<.01), word 

problems (-.25, p<.05), and transfer (-.36, p<.01). On the other hand, value was now 

related to word problems (.32, p<.01) and transfer (.27, p<.05). It seems that students at 

the end of the semester, students who knew when to apply procedures and concepts in 

context were also the ones who deemed fractions to be useful or important. Perhaps the 

extensive use of word problems during the course contributed to this shift.  

 Self-concept of ability was also related to knowledge somewhat differently at 

posttest than pretest. First, it was not related to flexibility, as it had been at pretest. In 

fact, none of the motivation variables were related to flexibility at posttest. Second, self-

concept of ability was related to computation (.39, p<.01), basic concepts (.26, p<.05), 

word problems (.29, p<.01), and transfer (.32, p<.01). At pretest, self-concept of ability 

had not been related to basic concepts. Instead, students’ perceptions of their ability to do 

fractions were related to their ability to add, subtract, multiply, and divide fractions, as 

well as to their knowledge of when to do these things. In contrast, ability perceptions at 

posttest were also related to their knowledge of both equal parts and the relationship 

between a fraction and its corresponding unit. Given the goals of the course, this change 

may not be surprising. 
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Pretest to Posttest Comparisons 

Knowledge 

 Given that many of the pretest and posttest knowledge scores were significantly 

and moderately correlated, a repeated measures MANOVA was run to determine if 

student differences existed across instructors for the five knowledge variables. In other 

words, did students’ knowledge change differently depending on who taught their class? 

To answer this question, time was used as a within-subjects factor and instructor was 

used as a between-subjects factor. The number of times a student was absent was 

unrelated to any of the knowledge variables at pretest or posttest and was therefore not 

used as a covariate in the analysis. The assumption of equality of covariance was met. 

Because transfer was only assessed at the end of the semester, it was not included in 

analyses for this section. 

 Results from the multivariate test showed a main effect for time, Λ= .55, F(4, 79) 

= 16.13, p<.001. As can be seen from the totals in Table 7, computation, basic concepts, 

and word problems tended to increase from pretest to posttest, whereas flexibility 

decreased. No main effect was found for instructor, F(8, 158) = .882, p>.05. There was 

also no instructor by time interaction, F(8, 158) = .781, p>.05. Although the slight 

skewness of computation and basic concepts at posttest may have concealed student 

differences across instructors, it seems more likely that there were no meaningful 

differences, given that the means improved greatly for all students. In sum, students 

gained significantly in knowledge from pretest to posttest, and these gains were similar 

across instructors.  
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 Univariate tests revealed that the increases were significant for computation [F(1, 

82) = 34.80, p<.01, MSe = 21.46], basic concepts [F(1, 82) = 35.55, p<.01, MSe = .80], 

and word problems [F(1, 82) = 17.89, p<.01, MSe = 2.67], but the decrease in flexibility 

was not significant, F(1, 82) = .896, p>.05. None of the five knowledge variables differed 

across instructors, F’s< 1.16, p>.05, and there were no time by instructor interactions for 

any of the five variables, F’s< 2.19, p>.05. In other words, the content of the course, 

rather than the delivery style of the instructor, seemed to contribute to knowledge gains. 

Table 7 

Student Fraction Knowledge across Instructors 

    Computation   Basic Concepts   Word Problems      Flexibility 

Instructor   Pre Post    Pre   Post    Pre   Post    Pre   Post 

A 

(n=26) 

M 

SD 

21.00 

  7.59 

27.54 

  4.57 

  2.85 

  1.16 

  3.77 

    .65 

  6.31 

  2.84 

  7.50 

  2.25 

  2.65 

  2.00 

  2.19 

  2.30 

B 

(n=20) 

M 

SD 

25.60 

  6.20 

28.45 

  1.91 

  3.10 

  1.02 

  3.90 

    .45 

  6.80 

  2.38 

  7.60 

  1.85 

  2.55 

  1.70 

  2.15 

  2.50 

C 

(n=39) 

M 

SD 

23.54 

  7.28 

27.21 

  4.23 

  2.77 

  1.27 

  3.59 

    .94 

  6.03 

  6.29 

  7.33 

  2.44 

  1.87 

  1.92 

  2.08 

  2.13 

Totals 

N=85 

M 

SD 

23.54 

  7.26 

27.60 

  3.92 

2.87 

1.17 

3.72 

  .77 

6.29 

2.76 

7.45 

2.23 

2.27 

1.91 

  2.13 

  2.19 

 

Motivation 

 Given that all pretest and posttest motivation variables were significantly 

correlated (moderate to strong), a repeated measures MANOVA was run to determine if 

student differences existed for motivation across the three instructors. In other words, did 

students’ motivations change differently depending on who taught their class? To answer 
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this question, time was used as a within-subjects factor and instructor was used as a 

between-subjects factor. The number of times a student was absent was unrelated to any 

of the motivation variables at pretest or posttest and was therefore not used as a covariate 

in the analysis. The assumption of equality of covariance was met. 

 Results from the multivariate test showed a main effect for time, Λ=.76, F(3, 80) 

= 8.55, p<.001. As seen by the totals in Table 8, value and self-concept of ability tended 

to increase from pretest to posttest, while anxiety tended to decrease. A main effect was 

also found for instructor, Λ=.84, F(6, 160) = 2.41, p<.05. Table 8 reveals that students in 

Instructor C’s class changed the least during the semester. In fact, Instructor C’s students 

showed an increase in anxiety rather than a decrease. Nonetheless, there was no overall 

interaction between instructor and time, F(6, 160) = 1.47, p>.05. In other words, the 

course content seemed to have a more powerful effect on student motivation than did the 

delivery style. 

Table 8 

Student Fraction Motivation across Instructors 

          Value Anxiety     Self-Concept of Ability 

Instructor  Pre Post   Pre Post  Pre Post 

A 

(n=26) 

M 

SD 

18.08 

  3.49 

20.00 

3.57 

17.12 

  5.07 

15.23 

  5.39 

21.92 

  6.01 

25.20 

  5.11 

B 

(n=20) 

M 

SD 

16.85 

  5.04 

19.70 

  3.94 

14.95 

  4.52 

13.10 

  5.26 

24.50 

  6.39 

27.95 

  4.97 

C 

(n=39) 

M 

SD 

16.69 

  3.83 

18.23 

  4.09 

 16.10 

  4.95 

16.54 

  5.09 

20.82 

  6.21 

22.56 

  5.36 

Totals 

N=85 

M 

SD 

17.15 

  4.05 

19.12 

  3.94 

16.14 

  4.90 

15.33 

  5.34 

22.02 

  6.29 

24.73 

  5.59 
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 The univariate tests revealed that the increase for value over time was significant 

[F(1, 82) = 15.85, p<.01, MSe = 11.01]. There was no significant difference across 

instructors, F(2, 82) = 1.91, p>.05. There was no interaction between time and instructor, 

F(2,82) = .52, p>.05. As can be seen in Figure 2, all students’ value tended to increase 

over time, and the increase was similar across instructors. 

Figure 2 

Students’ Valuing of Fractions across Time 
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 For anxiety, a significant interaction was found, [F(2,82) = 4.23, p<.05, MSe = 

6.64]. There was no main effect for instructor, F(2, 82) = 1.73, p>.05, but there was a 

main effect for time, [F(1,82) = 7.18, p<.01, MSe = 6.64]. The main effect results for 

anxiety must be considered in light of the significant interaction. While student scores for 

anxiety were similar across instructors (i.e., no main effect for instructor), the slopes from 

pretest to posttest were different. Although anxiety decreased in general (i.e., main effect 
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for time), this decrease was not apparent for Instructor C’s students. These results are 

shown in Figure 3, and they will be further discussed in the last section of this chapter. 

Figure 3  

Students’ Anxiety toward Fractions across Time 
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 The increase from pretest to posttest for self-concept of ability was significant, 

[F(1, 82) = 23.14, p<.01, MSe = 14.57]. There was also a main effect for instructor,  

[F(2, 82) = 5.43, p<.01, MSe = 50.77]. Multiple comparisons using Bonferroni revealed 

that students in Instructor B’s class had significantly higher self-concepts of ability than 

the students in Instructor C’s class, p<.05. There was no time by instructor interaction, 

F(2, 82) = 1.15, p>.05. As seen in Figure 4, students’ self-concepts of ability increased 

across instructors, but Instructor B’s students began and ended with higher self-concepts 

of ability than did Instructor C’s students. 
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Figure 4  

Students’ Self-Concept of Ability across Time 
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Errors and Flexibility 

 The third research question addressed in this study asked: What do preservice 

teachers’ error patterns and ways of solving fraction problems reveal about their 

knowledge of fractions at the beginning and end of a course designed to promote 

relational understanding in mathematics? This question was answered primarily by 

examining errors on routine computation problems (i.e., errors patterns) and by 

examining problems that provide opportunity to show flexibility (i.e., ways of solving)  

Error Patterns 

Addition 

 Research has consistently suggested that young students make fraction mistakes 

based on their knowledge of whole numbers (Byrnes & Wasik, 1991; Mack, 1995), and 
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Silver (1986) has suggested similar patterns for preservice teachers. One common 

example is adding numerators and denominators (e.g., 2/3 + 5/6 = 7/9). In the present 

study, eight students added across numerators and denominators at pretest, while two 

made this mistake at posttest. Two things are noteworthy in this case. First, the error was 

not prevalent for these college students, as it tends to be with younger students. Less than 

ten percent of the students made the error at the beginning of the semester. Second, the 

error was likely related to prior fraction knowledge rather than knowledge of whole 

numbers. One reason for this claim is that none of the students added across for all 

addition problems. Many of the students only made the “adding across” mistake when the 

denominators were different. When denominators were alike, they tended to keep the 

denominator and only add the numerator.  

 Moreover, these students tended to follow this pattern with other operations, even 

when it was inappropriate (e.g., 2/15 × 7/15 = 14/15). In fact, 6 of the 8 students tended 

to keep like denominators the same no matter what operation was involved, just as they 

tended to operate on different denominators no matter what operation was involved. 

Rather than understanding that addition requires a common denominator while 

multiplication does not, these students seemed to believe that having like denominators 

requires keeping the denominator the same, while having different denominators requires 

using the given operation on the denominators.  

 Seven students made errors with whole numbers (e.g., mistakes with basic facts) 

at pretest, while three made these mistakes at posttest. Six students made errors changing 

the form of the fraction at pretest (e.g., changing a mixed number to an improper 

fraction), while three people made this mistake at posttest. For example, one student 

 



 104

changed 3 1/5 to 7/5 instead of 16/5. Two students left at least one addition problem 

blank on the pretest, while no one did so on the posttest. Five students made 

miscellaneous errors (i.e., mistakes exclusive to one person) at pretest, while four 

students made such errors at posttest. These results can be seen in Table 9. 

Table 9 

Number of Students Making Addition Errors 

 Pretest Posttest 

Added Across 8 2 

Whole Number Errors 7 3 

Changing Forms 4 3 

Left Blank 2 0 

Miscellaneous 5 4 

  

Subtraction 

 For subtraction, nine students left at least one problem blank on the pretest, while 

only two left blanks on the posttest. For the problem 6 2/5 − 2 4/5, four students 

subtracted the first numerator from the second rather than regrouping on the pretest, 

giving 6 2/5 as their answer. One student made this mistake on the posttest. Students 

could make this error if they believed subtraction was commutative. They could also 

make the error if they believed that the smaller number is always subtracted from the 

larger number. 

 Other subtraction mistakes were similar to the ones made for addition. This 

finding is not surprising, considering that the two operations are closely related. 

Moreover, the procedures for addition and subtraction of fractions are quite similar. 

 



 105

Three students subtracted across numerators and denominators on the pretest, while only 

one student made this mistake on the posttest. Although it is less prevalent for 

subtraction, the reasons for this error are likely the same as the ones for addition. Four 

students made errors changing the form of the fraction at pretest, and six students made 

this mistake on the posttest. Two students made errors with whole numbers at pretest, and 

one student did so at posttest. There were nine miscellaneous errors at pretest, and there 

were only two such errors at posttest. See Table 10 for a summary of these errors. 

Table 10 

Number of Students Making Subtraction Errors 

 Pretest Posttest 

Subtracted Across 3 1 

Whole Number Errors 2 1 

Changing Forms 4 6 

Left Blank 9 2 

Small from Large 4 1 

Miscellaneous 9 2 

 

Multiplication 

 Several of the errors for multiplication seemed related to prior fraction 

knowledge. For example, cross-multiplying is a technique that can be used to compare 

fractions. There were 14 students who mistakenly used the technique at pretest to 

multiply fractions (e.g., 2/3 × 1/5 = 3/10), whereas one student made this mistake at 

posttest. The improvement is not surprising, given that the reason why cross 
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multiplication works when comparing fractions was explicitly discussed during the 

semester.  

 Also during the semester, students discussed why a common denominator is used 

to add or subtract fractions, as well as why the denominator remains in the answer. At 

pretest, 19 students mistakenly used this approach to multiply fractions. For example, 

several students solved 2/3 × 1/5 by finding a common denominator and then keeping 

that denominator in the product. Namely, they wrote 10/15 × 3/15 = 30/15. Most of them 

simplified this answer to “2”, apparently not noticing that “2” was an unreasonable 

answer to the original problem.  

 At posttest, 11 students made the “common denominator” error. Although there 

was some improvement with regard to this error, it was only moderate. One reason the 

problem was persistent could be that one of the multiplication problems had a common 

denominator (i.e., 2/15 × 7/15), whereas the multiplication problems in class had different 

denominators. Out of the 11 people who kept the denominator at posttest, four of them 

did so only when the original fractions had common denominators. The students could 

have thought that a different algorithm was necessary when the denominators were the 

same, especially since they were shown such a method for dividing fractions. 

 When adding mixed numbers, it is valid to add the whole numbers separately 

from the fractional parts. However, eight students mistakenly multiplied “like parts” for 

problems involving mixed numbers on the pretest (e.g., 1 4/5 × 2 1/3 = 2 4/15). No 

students made this mistake on the posttest. During the semester, students were shown 

why changing the mixed numbers to improper fractions gave a correct solution, but they 

were also shown how the Distributive Property could be used to multiply mixed numbers. 
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This alternative approach may have helped students understand that multiplying mixed 

numbers without using improper fractions was more complicated than simply multiplying 

“like parts.”  

 Five students left at least one multiplication problem blank on the pretest, while 

three left blanks on the posttest. There were 18 students who made mistakes with whole 

numbers on the pretest. Of these, 10 incorrectly multiplied 15 × 15. On the posttest, 16 

students made errors with whole numbers. Of these, 12 multiplied 15 × 15 incorrectly. 

Oddly, multiplication with whole numbers did not seem to improve during the semester, 

despite the fact that it was included as part of the course. This problem had also been 

apparent during the pilot test, after which all 2-digit multiplication problems except 15 × 

15 had been removed in order to reduce the number of errors not related to fraction 

knowledge.  

 Seven students either added numerators or denominators on the pretest (e.g., 2/3 × 

1/5 = 3/15), while 14 students made such mistakes on the posttest. Six students made 

errors changing the form of the fraction, while 14 students made such mistakes on the 

posttest. There were five students who made miscellaneous mistakes on the pretest, while 

two made miscellaneous mistakes on the posttest. See Table 11 for a summary of the 

results. 
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Table 11 

Number of Students Making Multiplication Errors 

 Pretest Posttest 

Cross-Multiplied 14  1 

Whole Number Errors 18 16 

Changing Forms  6 14 

Left Blank  5  3 

Common Denominator 19 11 

Added Numerators or Denominators  7 14 

Like Parts Error  8  0 

Miscellaneous  5  2 

 

 As stated earlier, more people made mistakes multiplying at posttest than 

dividing. One explanation for this difference could be that there were more opportunities 

for errors with whole numbers on the multiplication problems. For example, students had 

to multiply 15 × 15 as part of a multiplication problem, but they did not have to divide a 

2-digit number by a 2-digit number. Out of 44 students who made errors on the 

multiplication problems, this 2-digit by 2-digit error was the only multiplication mistake 

for nine of them. Although limitations with whole number multiplication do limit fraction 

multiplication, they are not directly related to the fraction algorithm.  

 Another explanation for more students making errors with multiplication is 

related to the fraction algorithm. It could be that some students do not necessarily see the 

division algorithm as containing the multiplication algorithm. Instead, they could view 

the division algorithm as unconnected to the multiplication algorithm. For example, a 
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student may know that one algorithm for dividing two fractions is to flip the divisor and 

then multiply numerators and denominators. On the other hand, that same student could 

believe the algorithm for multiplying two fractions is to find a common denominator and 

then multiply only the numerators, keeping the denominator the same. It is possible that 

the two processes are unrelated in some students’ minds. There were five students who 

used common denominators at least once while multiplying, yet made no errors on the 

division problems. 

Division 

 For division, 14 students left at least one problem blank on the pretest, and three 

students left blanks on the posttest. There were 15 students who made the “common 

denominator” mistake on the pretest, but about half of these students only did so when 

the denominators were already the same (i.e., for 9/10 ÷ 3/10). Two students kept the 

denominator the same for this problem on the posttest, but no one did so for problems 

with different denominators. As with addition and multiplication, students seem to 

believe there are different processes when the denominators are the same as compared to 

when they are different. 

Seven students flipped the dividend instead of the divisor on the pretest (e.g., 2/9 

÷ 3/8 = 9/2 × 3/8). However, five of them only did so when the dividend was a whole 

number (i.e., for 4 ÷ 1/4). Only three students flipped the dividend on the posttest. On the 

pretest, 12 students wrote 4 ÷ 1/4 = 1, but it was not always clear whether they simply did 

not flip any number, or whether they had some other method for obtaining the “1.”  On 

the posttest, four students wrote that 4 ÷ 1/4 = 1.  
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The frequency of mistakes with 4 ÷ 1/4 is interesting. It could be that some 

students simply think of “1” whenever they see reciprocals. Or perhaps students are 

unsure what to do when whole numbers and fractions are being divided. Many of the 

students who made mistakes when the division problem involved a whole number had no 

problem dividing a fraction by a fraction. It could be that some students have a poor 

understanding of reciprocals. Rather than understanding two numbers are reciprocals 

when their product is 1, some students may just think the denominator and numerator 

simply switch places, leaving them uncertain of what to do when there is no denominator. 

Most of the students rewrote 4 as 4/1, but they may have felt that, in doing so, they were 

ready to multiply to the fractions. 

 There were 9 students who made whole number errors on the pretest, but no one 

made such mistakes on the posttest. Three students flipped correctly but then cross-

multiplied on the pretest, but no one made this mistake on the posttest. There were seven 

students who either cancelled or cross-divided on the pretest (e.g., 2/9 ÷ 3/8 = 3/4) while 

only one student did so on the posttest. Three students either added or subtracted 

numerators or denominators on the pretest, and four people made such mistakes on the 

posttest. Three students made errors changing fraction forms on the pretest, while no one 

made this mistake on the posttest. There were thirteen mistakes categorized as 

miscellaneous on the pretest, but only five labeled this way on the posttest. A summary of 

these results is found in Table 12. 
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Table 12 

Number of Students Making Division Errors 

 Pretest Posttest 

Cross-Divided or Cancelled  7 1 

Whole Number Errors  9 0 

Changing Forms  3 0 

Left Blank 14 3 

Kept Denominator 15 2 

Add/Sub. Numerators or Denominators   3 4 

Flip Dividend   7 3 

Cross-Multiplied   3 0 

Reciprocals 12 4 

Miscellaneous 13 5 

 

Transfer 

 Yoshida and Sawano (2002) argued that the importance of equal parts and equals 

wholes needs to be made explicit in fraction instruction. They found that students who 

received such explicit instruction performed better on conceptual items and transfer items 

than did students where these ideas were only implicit. The transfer item for this study 

was created to assess students’ knowledge of equal parts and equal wholes at the end of a 

course where these ideas were made explicit. To solve the problem, students had to 

understand that fractions cannot be combined (i.e., added together) unless they 

represented parts of a same-sized unit, and they had to know how to create same units. 
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Specifically, the problem asked what fractional part of a chocolate milk mixture would be 

syrup if a glass that was 1/3 syrup was combined with a glass that was 1/4 syrup, given 

that the second glass was twice as big.  

 There were 13 students who either left the problem blank or quit after a brief 

attempt. There were 40 students who seemed to understand that the fractions could not 

simply be added, but only seven who correctly solved the problem. There were 32 

students who did not seem to understand this idea. Of these, 23 gave 7/12 as the solution, 

indicating they added 1/3 and 1/4. It could be argued that the students did not notice that 

the second glass was twice as big, but many of the students who gave 7/12 also drew two 

glasses, with one glass drawn twice as big as the other one. In other words, their drawings 

seem to indicate that they knew one glass was larger, but they did not know how to 

incorporate that information.  

 Of the 33 students who understood the fractions could not be added but did not 

answer the problem correctly, 20 gave either 10/12 or 5/6 as a solution. This answer 

indicated that the students “poured” all the syrup into the smallest glass, but they did not 

take the milk into account. Another seven students gave 5/12 as a solution, indicating 

they “poured” the syrup into the larger glass, but still did not account for the milk. In both 

cases, the students seemed to know that the fractions had to be part of the same whole, 

but they were uncertain of what whole was appropriate. 

Conclusions about Error Patterns 

 The error analysis suggests several conclusions about preservice teachers’ 

knowledge of fractions. It seems that the following statements can be made about 

preservice teachers’ knowledge of fraction algorithms at the beginning of the semester: 
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 Students were most uncertain about dividing fractions, followed by subtracting, 

multiplying, and adding fractions. This claim is based on the number of people 

who did not attempt these problems. 

 Students mostly made errors related to prior knowledge of fractions. They 

commonly misapplied algorithms. For example, they cross-multiplied when they 

should have multiplied across, added across when they should have found a 

common denominator, or kept the denominator the same when they should have 

multiplied by the reciprocal. 

 Some students attended to superficial conditions, such as whether or not two 

fractions have the same denominator, to decide what algorithm was appropriate. 

Keeping the denominator the same when it was not appropriate was the most 

common error. Nearly 1/5 of the students made this error when dividing, and 

nearly 1/4 made the error when multiplying. For addition, students who added 

denominators generally did so only when the denominators were different. 

 At the end of the semester, mistakes that persisted were not directly related to the 

algorithms for adding, subtracting, multiplying, and dividing fractions. Many of these 

errors involved operations with whole numbers. The most persistent of these was the 2-

digit by 2-digit multiplication problem. Another persistent error related to whole numbers 

was adding numerators or denominators that were the same, even though the problem 

involved multiplication. These students were likely doubling rather than squaring the 

number. More than half of the students who added numerators or denominators only did 

so when they were the same.  
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 The last persistent error involved renaming fractions. Although algorithms for 

finding equivalent fractions and renaming mixed numbers as improper fractions were 

considered with some depth during the semester, these errors generally did not improve. 

It is not clear why the problem persisted. 

Flexibility 

 Recall that procedural flexibility refers to the ability to notice and choose 

procedures that are elegant and efficient (Star, 2005). These procedures are often 

departures from general algorithms that tend to work in all cases. Generally speaking, 

flexibility was low and did not improve from pretest to posttest. For example, 70 students 

of the student who correctly solved 2/4 – 3/6 on the pretest used a general, but not 

necessarily efficient, approach. Namely, they found a common denominator and then 

subtracted the numerators. On the other hand, seven students solved the problem by 

noticing that both fractions were equivalent to 1/2. On the posttest, results were similar. 

There were 72 students who solved the problem using a common denominator, whereas 

11 used the 1/2 – 1/2 method. All nine experts had used the 1/2 – 1/2 method.  

 On the pretest, 53 students solved 2 3/5 + 3 1/5 by changing the mixed numbers to 

improper fractions, while 28 added “like parts.” Since the denominators were the same 

and the sum of the fractions was less than one, then adding the whole numbers and 

adding the numerators was an efficient alternative to the generalized approach. The 

posttest results were virtually the same. Whereas 51 used improper fractions, 30 used like 

parts. All nine experts had used the “like parts” method. 

 That there was little change in flexibility from pretest to posttest is likely a 

reflection of the course goals. The primary purpose of the course was to help students 
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understand why the general algorithms worked, not how to find ways of solving that are 

more efficient that the general algorithms. A notable exception to the lack of 

improvement in flexibility involved the problem 9/10 ÷ 3/10. During the semester, 

students were explicitly taught the common denominator method of dividing fractions, in 

which a common denominator is found and the numerators are then divided. Using this 

method, the given problem can be solved using 9 ÷ 3 = 3.  Eight students used this 

approach at posttest to solve the given problem, whereas one student used the approach at 

pretest. Because these fractions already had a common denominator, the common 

denominator method was certainly more efficient to use than the traditional algorithm. 

That eight students used this method is somewhat surprising, given that only one of the 

experts used it. It seems that for students to use their knowledge flexibly, it might be 

necessary to give explicit attention to flexibility. In other words, flexibility might 

improve if students are taught multiple ways to solve problems, as well as how to 

recognize what circumstances are appropriate for the various methods.   

Differences between Instructors 

 The fourth research question addressed in this study was: Are there discernible 

profiles for instructors teaching the different sections of a course designed to promote 

relational understanding in mathematics, and how do these profiles contribute to 

preservice teachers’ fraction knowledge and motivation at the conclusion of the course? 

This question was answered using observation data, attribution data, and teacher 

interviews, and by examining student outcomes grouped by instructor. 
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Time-Sampled Data 

 A one-way ANOVA was run to determine differences between instructors with 

regard to understanding, discourse, and teacher direction. The results showed no 

differences on any of the variables related to understanding. In other words, they spent 

similar proportions of time on activities such as linking concepts to procedures, using 

context, and having students work on high-level tasks. These results are not surprising 

given the goals of the course as outlined in the syllabus and the fact that all instructors 

followed the same curriculum. In fact, the primary goal of the course was to link concepts 

and procedures, and the proportion of time instructors spent doing so was quite high, 

ranging from .55 to .61. However, significant differences were found between instructors 

with regard to discourse and teacher direction. Details are reported separately for each. 

 For discourse, significant differences existed between the instructors with regard 

to student activity, [F(2, 645) = 8.09, p<.001, η2=.02]. These activities included making 

conjectures, justifying answers, or suggesting alternate methods of solving problems. 

Post hoc tests using Bonferroni revealed that Instructor B encouraged such discourse 

more than both of the other instructors (p<.01). Specifically, the proportions in Table 5 

show that Instructor B encouraged high-level discourse 23% of the time, or more than 

twice as often as each of the other instructors. 

 For teacher direction, significant differences were found for teacher activity,  

[F(2, 645) = 3.90, p<.05, η2=.01], student activity, [F(2, 645) = 5.01, p<.01, η2=.02], and 

class organization, [F(2, 645) = 5.26, p<.01, η2=.02]. Post hoc tests using Bonferroni 

revealed that Instructor C was more teacher-directed than Instructor B with regard to both 

teacher activity (p<.05) and student activity (p<.01). In other words, he was more likely 
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to model or lecture while the students passively watched or listened. Specifically, Table 5 

showed that Instructor C performed these practices about twice as often as Instructor B. 

His class organization was also more teacher-directed than Instructor A (p<.01). 

Specifically, he organized the class in a whole group about 3/4 of the time, whereas 

Instructor A did so less than 2/3 of the time. 

 These results suggest the most apparent differences were between Instructor B 

and C. Although there were no differences between these instructors with regard to the 

amount of time they organized the class as a whole group, they did seem to use this time 

differently. Instructor C tended to lecture or model while the students passively listened, 

while Instructor B tended to use this time for students to discuss their thinking or 

discussing alternative methods of solving problems. Both used their respective 

instructional approaches to emphasize why procedures worked. 

Attribution Data 

 A one-way ANOVA was run to determine differences between instructors with 

regard to the attribution data. Specifically, the teachers were tested for differences on 

each of the five learning dimensions as well as on their overall quality rating. The 

learning dimensions included knowledge, strategic processing, development and 

individual differences, context and situation, and motivation.  

 Based on the course goals, it was not surprising to find no significant differences 

on the knowledge principle. In other words, these teachers were similar in the degree to 

which their lessons promoted principled understanding, built on prior knowledge, were 

deep and accurate, and illustrated utility. In fact, Table 6 shows that all three teachers 

scored highest on the knowledge dimension. The table also shows that all three 
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instructors scored lowest on the development and individual differences dimension and 

the motivation dimension. There were no significant differences between the instructors 

on these two dimensions. There were also no differences on the overall quality rating. 

 There were significant differences for strategic processing [F(2, 38) = 4.51, 

p<.05, η2=.19], and context and situation [F(2, 38) = 8.37, p<.01, η2=.31]. For Instructor 

A, the strategic processing dimension was the second highest score. Included in this 

dimension are: teaching or modeling domain-specific strategies, encouraging students to 

be reflective, and providing opportunities to engage in reasoning. Multiple comparisons 

using Bonferroni revealed that Instructor A scored significantly higher than Instructor C 

on this dimension, p<.05.  

 For Instructor B, the context and situation dimension was the second highest 

score. In other words, she tended to be caring and affirming, to welcome reactions, to use 

a variety of social interactions, and to effectively use (human or other) resources. Post 

hoc tests showed that Instructor B scored significantly than Instructor C on this 

dimension, p<.01. That Instructor B was welcoming and affirming of students’ ideas is 

consistent with the finding that she encouraged discourse in her classroom. 

Instructor Interviews 

 The interviews were examined in light of the time-sampling and attribution data 

because the primary purpose of the interviews was to further validate the results of the 

classroom observations. As such, many consistencies were found. For example, the 

finding that the instructors did not differ with regard to emphasizing why procedures 

work was consistent with the interviews. At the beginning of the semester, Instructor A 

stated that the purpose of the course was “to train our teachers so that they’re not just 
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passing on memorized information but really getting to the heart of why that we do the 

things we do in mathematics.” At the end of the semester, he said his goals had been “to 

make sure that the people who are going to be teachers really understand the simple and 

basic things they are going to be teaching – that they really actually understand them and 

that they are not just following a cookbook or following the rules or whatever.” 

 Similarly, Instructor B stated at the beginning of the semester that the goal of the 

course was for “the students to revisit the topics that they know how to do…but look at 

why we do the steps we do and hopefully, understand the topics at a much deeper level 

than they did when they first came into the class.” At the end of the semester, she stated 

that her goal had been “to re-examine topics from arithmetic and number theory and think 

more deeply about why the procedures are what they are.” 

 Finally, Instructor C responded to the same question at the beginning of the 

semester by saying, “the main purpose is to try to get them to think about the underlying 

‘why.’” At the end of the semester, he stated his particular goals for the course had been 

“to make sure they all learned something and that they had a better understanding of why 

this math works and how to explain it.”  

 Differences in teacher practices were also supported by the interviews. For 

example, when asked at the beginning of the semester what instructional approaches he 

would use to meet his goals, Instructor C replied, “At this time, I honestly don’t know.” 

He added, “I am going to try and follow the teaching notes, work through the activities 

that are assigned and then from there, add in whatever extra flavor I can from my own 

experience.” At the end of the semester, he claimed that used “lecture” and only “some 

group work.” The group work was certainly part of the teaching notes, and given the 
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common practice of lecture, it was likely a reflection of his experience. These responses 

are consistent with the findings that Instructor C lectured and modeled more that 

Instructor B, and he organized the class as a whole group more often than Instructor A. 

 Instructor B was no different than Instructor C with regard to whole class 

organization. This result was consistent with her post-interview, in which she referred to 

small group work by stating, “I probably did less of that this semester than I have in 

previous semesters. I was just presenting them with problems to reflect on and then 

having the whole class respond and summarize observations.”  

 On the other hand, Instructor B incorporated more high-level discourse than both 

of the other instructors. At the beginning of the semester, she said she often liked to pose 

a problem in which there were “a variety of ways to think about it, so that we can have a 

discussion about different ways people think and practice explaining our thinking to each 

other.” At the end of the semester, she stated that one course goals had been for the 

students “practice explaining.” This sort of welcoming of all student thoughts and 

reactions is also consistent with the context and situation principle, on which Instructor B 

scored significantly higher than Instructor C. 

Connections to Student Differences 

 Although the limited number of teachers in this study makes the fourth question 

an exploratory one, the separate data streams seem to consistently suggest a relation 

between certain teaching profiles and student motivation. Instructor C had a more 

traditional style of instruction, which was more teacher-directed than the other two 

instructors. Specifically, he tended to model or lecture to the whole group while his 

students passively listened. On the other hand, Instructor A and Instructor B tended to 
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have more reform-oriented practices. Specifically, Instructor A encouraged students to 

work together in small groups, and he encouraged the use of strategies, reasoning, and 

self-reflection. Instructor B tended to promote high-level discourse and was welcoming 

of students’ thoughts and reactions.  

 Unlike the students in the other classes, the anxiety levels in Instructor C’s class 

did not decrease over the course of the semester. This finding was true despite the fact 

that his traditional practices were to encourage relational understanding. Although no 

causal statements can be made with these data, it seems that reform-oriented practices 

may be related to lower levels of anxiety in students. Implications of this finding will be 

discussed in Chapter V. 
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CHAPTER V 

SUMMARY, IMPLICATIONS, AND SUGGESTIONS FOR FUTURE RESEARCH 

 This study was undertaken to better understand preservice teachers’ knowledge of 

and motivations toward fractions before and after taking a course to promote relational 

understanding in mathematics. I also attempted to find patterns in these students’ errors 

and ways of solving fractions, and I examined what those patterns might reveal about 

their knowledge. Finally, I wanted to know how the delivery of instruction might be 

related to knowledge and motivation at the end of the semester. I begin this chapter by 

summarizing the findings of the study. Then, I discuss the educational implications of 

these findings. Finally, suggestions for future studies are made. 

Summary of Findings 

 Four research questions were involved in this study. In this section, each of these 

questions will be answered and discussed. Specifically, I wanted to know: 

1. What is the level of elementary preservice teachers’ knowledge of and 

motivations toward fractions at the beginning of a course designed to 

promote relational understanding in mathematics? 

2. How will elementary preservice teachers’ knowledge of and motivations 

toward fractions differ as a result of participating in a course designed to 

promote relational understanding in mathematics? 

3. What do preservice teachers’ error patterns and ways of solving fraction 

problems reveal about their procedural and conceptual knowledge of 

fractions at the beginning and end of a course designed to promote relational 

understanding in mathematics? 
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4. Are there discernible profiles for instructors teaching different sections of a 

course designed to promote relational understanding in mathematics, and 

how do these profiles contribute to preservice teachers’ fraction knowledge 

and motivation at the conclusion of the course? 

Pretest Levels of Fraction Knowledge and Motivation 

 At the beginning of the semester, it was expected that elementary preservice 

teachers would have knowledge levels comparable to middle school students (Silver, 

1986; Tirosh, 2000). For pretest computation, basic concepts, and word problems, the 

average performance rates ranged from 70% (word problems) to 78% (computation). The 

fact that students performed worse on word problems than on computation was not 

surprising, given that younger students produce similar results (Asku, 1997). Also as 

predicted, computation performance was not the same for all operations. The average 

performance on the four operations ranged from 64% for division to 92% for addition.  

 Compared to secondary preservice teachers, elementary preservice teachers tend 

to have lower confidence about and higher anxiety toward mathematics in general (Ball, 

1990a). As such, similar results were expected for fractions in particular. At pretest, the 

preservice teachers scored near the center of the scale for value, self-concept of ability, 

and anxiety. These results are consistent with the trajectory suggested by prior studies of 

elementary, middle, and high school students, which have demonstrated motivational 

declines across these years of schooling (Jacobs et al., 2002). However, they are 

inconsistent with the findings of Marsh (1989), who suggested an increase in 

mathematics self-concept during the college years. It seems that those who want to teach 

elementary school have lower levels of motivation than the typical undergraduate student. 
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Posttest Levels of Fraction Knowledge and Motivation 

 As predicted, student knowledge at the end of the semester was higher than it had 

been at the beginning. In particular, the average success rate was 92% for computation, 

93% for basic concepts, and 83% for word problems. Given the number of word 

problems involved in the course, it was expected that the greatest improvement would be 

with word problems. However, knowledge of basic concepts increased the most. At 

pretest, student knowledge of basic concepts was much lower than anticipated; hence, 

there was more room for growth than expected. However, basic concepts were re-visited 

with each new operation during the semester, making the increase unsurprising. 

 Although significant changes over time existed for value, anxiety, and self-

concept of ability, these factors were only somewhat improved at posttest. The greatest 

increase was apparent for value of fractions, followed by self-concept of ability. The 

smallest change was apparent for anxiety. One reason for the smaller overall change in 

anxiety is that only students of Instructor A and Instructor B had decreased levels of 

anxiety at posttest.  

Error Patterns and Ways of Solving Fractions 

 Researchers have suggested that preservice teachers make mistakes that are 

similar to those of younger students (Silver, 1986; Tirosh, 2000). Specifically, prior 

studies have indicated that they make mistakes such as adding across numerators and 

denominators (e.g., 2/3 + 5/7 = 7/10) and inverting the dividend rather than the divisor 

(e.g., 2/3 ÷ 5/7 = 3/2 × 5/7). Although I found some evidence of these errors, they were 

not prevalent. Some viable explanations follow. 
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 Many researchers have considered the “adding across” error to be related to prior 

knowledge of whole numbers (e.g., Byrnes & Wasik, 1991), and it is not a surprising 

error for students who are early in their study of fractions. However, the error was not 

common for the undergraduate students in this study, even at the beginning of the 

semester. Less than 10% of the students made this error at pretest. In fact, it was more 

common for students to correctly add fractions (i.e., use a common denominator) but then 

to over-generalize the method, incorrectly applying it to multiplying (22%) and dividing 

fractions (18%). Further, many of the students who “added across” only did so for 

fractions with different denominators. Hence, it could be that they are misapplying their 

knowledge of the multiplication algorithm, for which multiplying numerators and 

denominators is appropriate. Given the number of years students have been exposed to 

whole numbers by the time they are in college, it makes sense that they are more likely to 

make mistakes based on their prior fraction knowledge than their prior knowledge of 

whole numbers. 

 Even fewer students inverted the dividend rather than the divisor at the beginning 

of the semester. Again, this mistake is not surprising for students just learning how to 

divide fractions (i.e., middle school students) because they are taught to “invert and 

multiply.” Inverting the wrong fraction reflects an effort to imitate a procedure just 

learned but perhaps not fully understood. The participants in this study, however, were 

more likely to either have completely forgotten what method to use (as indicated by the 

16% of students leaving the problem blank) or to have used an entirely inappropriate 

algorithm. The most common mistake, as with multiplication, was to keep the 

denominator the same. 
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 It was also common for students to have trouble with division problems involving 

whole numbers or unit fractions. The fact that students were less likely to make division 

errors with two non-unit fractions (e.g., 2/9 ÷ 3/8) than with whole numbers or unit 

fractions suggests a poor understanding of reciprocals. If students are taught to “flip” the 

numerator and denominator to find a reciprocal, it does not follow that they understand 

the concept of a reciprocal. Furthermore, students who simply learn to “flip” numerators 

and denominators may not know what to do when there is no denominator (i.e., when 

dividing by a whole number). To complicate things further, students who are told to give 

the whole number a denominator of “1” may do so and think they are finished 

manipulating the fraction. For example, a few students rewrote 2 1/3 ÷ 9 as 7/3 × 9/1 

rather than 7/3 × 1/9. Others seemed to know that the whole number can be given a 

denominator of “1” before it is inverted, but they seemed to believe this process was valid 

regardless of whether the whole number was the dividend or the divisor. For example, 

some students rewrote 4 ÷ 1/4 as 1/4 × 1/4 rather than 4 × 4, despite correctly inverting 

the divisor when the problem involved only non-unit fractions. 

 In general, many of the mistakes at pretest seemed to be related to students’ prior 

knowledge of fractions. However, these errors were also the ones that diminished by the 

end of the semester. The most persistent errors seemed to be those involving whole 

numbers (e.g., errors with basic facts). Also, renaming fractions seemed to remain a 

source of many errors at posttest. It seems the errors at pretest revealed several key 

misconceptions about fractions (e.g., the appropriate procedure is dependent on whether 

the denominators are the same or different), whereas their errors at posttest were more 

reflective of inconsistent skill.  
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 This shift in knowledge during the semester can be explained with the model of 

domain learning suggested by Alexander (1997). This model suggests that people go 

through three stages when learning a particular domain: acclimation, competence, and 

proficiency. According to Alexander, “a defining characteristic of acclimation is that this 

limited knowledge is also fragmented or unprincipled in its organization” (p. 224). Not 

only were these students limited in their knowledge of fractions at pretest, but they were 

also making errors that suggested poor understanding of basic fraction principles (e.g., 

the role of equal parts). I would suggest that while the undergraduates in this study were 

not mathematically uninformed at the beginning of the semester, they were still in the 

acclimation stage of learning about fractions. By the end of the semester, their increased 

knowledge and decreased misconceptions suggested a shift into competence, as signaled 

by their more principled pattern of responses.  

 Although fraction performance generally improved from pretest to posttest, the 

students’ ways of solving problems were procedurally consistent over time. In general, 

the students did not show evidence of procedural flexibility, as described by Star (2005). 

Instead, this study suggests that preservice teachers tend to rely on algorithms that work 

in all cases, using them even when they are inefficient. This finding was true both before 

and after taking a course designed to promote relational understanding of mathematics. 

Given these students’ low flexibility, as well as their continued errors and their low 

ability to transfer concepts to novel situations, I would suggest these students have not 

reached high levels of competence with fractions, but were, instead, in low to moderate 

levels of domain competence with regard to fractions. 
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Differences in Delivery and Relations to Student Outcomes 

 Three instructors taught the observed course, and each of them followed the same 

teaching notes and curriculum. However, discernible differences were detected in the 

delivery of the course content, particularly between Instructor B and Instructor C. 

Whereas Instructor B tended to use whole group time to encourage student discourse, 

Instructor C tended to use that time to lecture. Both instructors promoted relational 

understanding of the material, but Instructor B accomplished it by having her students 

explain their thinking and suggest alternate ways of solving problems. On the other hand, 

Instructor C tended to model or lecture to the students while they passively listened. 

Although he did have students provide solutions to problems, the ratio of student 

discourse to student listening was 1 to 3. In contrast, the ratio of student discourse to 

student listening in Instructor B’s class was 3 to 2. The general finding that Instructor B 

was more welcoming and encouraging of student engagement was also supported by both 

the attribution data and the instructor interviews. 

 Some differences also existed between Instructor A and Instructor C. In 

particular, Instructor A tended to use more small groups, in which students worked 

together to solve problems. He also had a greater tendency to teach or model strategies 

and encourage reasoning and reflective thinking, as indicated by the higher ratings for 

strategic processing.  

 In general, Instructor C seemed to be more traditional in his delivery style while 

Instructor A and Instructor B seemed to align more, in various ways, with reform 

practices. Given these differences in teaching practices, it was not surprising to find 

differences between their students. Specifically, an interaction was found for anxiety. It is 
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apparent in Figure 3 that the slopes for Instructor A and B were similar and negative, 

indicating a decrease in their students’ levels of anxiety. This change was not apparent 

for Instructor C’s students.  

 These findings must be considered in light of the study’s limitations. The primary 

limitation was the low statistical power for detecting differences among the three 

teachers. As such, the fourth research question was exploratory. However, the various 

data streams in the present study suggest that reform practices may serve to lower anxiety 

for fractions.  

Implications for Educational Practice 

 “It is a mistake to suppose that meaningful arithmetic is something new, 

something cut out of the whole cloth, as it were, during the past twenty or twenty-five 

years” (Brownell, 1947, p. 258). Brownell wrote these words nearly 60 years ago. When 

he spoke of “meaningful arithmetic,” he was advocating instruction that made deliberate 

attempts to use mathematical relationships to help children make sense of mathematics. 

What was new, he asserted, was that the interest in sense-making had been extended to 

children beyond the primary grades. In the present study, I was interested in instruction 

that made deliberate attempts to use mathematical relationships to help preservice 

teachers make sense of mathematics. Is this progress? Let’s hope so. 

 To situate the implications of this study, it is important to note the years of work 

that psychologists, mathematicians, and educators have done to bring to the forefront the 

importance of structures in teaching mathematics. These structures are the underlying 

principles that create coherence within the subject. “To learn structure, in short, is to 

learn how things are related” (Bruner, 1960/1977, p. 7). Resnick and Ford (1981) 
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highlighted the contributions that both Bruner and Dienes made to the education 

community about how to best help students understand these structures, which are “seen 

as fundamental to meaningful learning” (p.125). Clearly, it has long been considered 

important for students to understand how concepts are related to each other and to 

procedures. As such, this study did not attempt to show whether or not a relational 

understanding was beneficial. Rather, it attempted to go beyond this premise and seek to 

better understand its benefits for preservice teachers as well as what instructional styles 

might contribute to those benefits.  

Implications of Knowledge Findings 

 During the last two decades, the literature on fraction knowledge has been 

overwhelmingly concerned with helping students make sense of fractions. Consequently, 

there has been growing evidence that learning procedures with understanding contributes 

to greater knowledge of concepts and a greater ability to transfer those concepts to new 

situations (Hiebert & Wearne, 1988; Niemi, 1996; Saxe & Gearhart; 1999). On the other 

hand, there seems to be no difference in computation skill for students who learn 

procedures with understanding and those who do not (Niemi, 1996; Saxe & Gearhart, 

1999). It is important to note, however, that these studies failed to distinguish between 

quantity and quality of errors. In the present study, both the number and nature of the 

errors decreased. At the end of the semester, students in this study seemed to have more 

principled knowledge of fractions. This finding suggests that when mathematics 

instruction explicitly links fraction concepts and procedures, that instruction results in 

decreased misconceptions and increased relational understanding. 
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 Misconceptions revealed at the beginning of the semester also have implications 

for educators. Neither Brownell (1947) nor Bruner (1960/1977) suggested that it was 

impossible to learn procedures without meaning. Rather, a primary concern was that 

procedures learned without meaning would not be remembered. The current findings 

suggest a slightly different argument in the case of fractions: procedures learned without 

meaning will later be inappropriately applied. At the beginning of the semester, students 

in this study were remembering a number of procedures, such as cross-multiplying and 

finding a common denominator, but they were using them in inappropriate ways. This 

finding supports the notion that procedural knowledge unconnected to meaning 

deteriorates, but it does not suggest that students simply forget procedures. Rather, they 

forget the circumstances under which to use them. Wearne and Hiebert (1988) found 

similar results with middle-grade students’ performance with decimals, and they cite 

others who did as well. They concluded, “Many students lack some essential conceptual 

knowledge and have memorized procedural rules they apply inappropriately” (p. 223). 

This study extends those findings to fractions and preservice teachers. That 

similar results were found with fractions might have been anticipated, given that fractions 

and decimals are closely related. However, the finding that undergraduate students are 

also misapplying rules is less obvious. One might expect that years of using fraction 

knowledge in other mathematics classes would solidify the procedural knowledge. 

Instead, it seems that the procedures continue to be misunderstood and misapplied well 

beyond the time students first learn them. These findings have important implications for 

teacher educators, since these future teachers will likely continue the cycle of what 

Brownell (1947) called “meaningless arithmetic” if they do not gain a deeper 

 



 132

understanding of the mathematics they will be teaching (Ma, 1999). The Conference 

Board of Mathematical Sciences (CBMS, 2001) recommended mathematics courses like 

the one in this study in order to help prospective teachers gain this understanding, and the 

class seems to be a promising attempt to break the cycle of teaching without 

understanding.  

 The fact that flexibility did not change from pretest to posttest also has 

implications for mathematics educators. NRC (2001) suggested that it is not enough to 

learn one procedure that works in all cases. “Students also need to be able to apply 

procedures flexibly” (p.121). The finding that these students were relatively inflexible in 

their solution methods at the beginning of the semester was evidence of their poor 

understanding. The fact that they were just as inflexible at the end of the semester 

suggests that this course was not enough to alter the long-standing patterns of these 

students. Wearne and Hiebert (1988) also noted that it was difficult to alter the patterns of 

students who had long used rules they did not understand. The current findings support 

their observation and extend it to preservice teachers.  

 One implication of this finding is that instilling flexibility should be an explicit 

part of mathematics instruction. In the current study, the students spent most of the time 

trying to understand the traditional algorithms, and to some extent, less traditional 

algorithms. Little time was spent discussing when the general algorithms were not 

efficient or necessary. At times, students shared alternate ways of illustrating a solution 

with pictures, but rarely did they discuss various ways to calculate an answer. Ma (1999) 

suggested that Chinese teachers valued being able to calculate an answer in multiple 

ways, and this practice contributes to their deep understanding of arithmetic. 
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 A point could be made that it is not necessary to find the most efficient algorithm 

when solving fraction problems, and I understand this point. However, when students fail 

to notice situations in which applying basic concepts can make a problem easier, it may 

be evidence of poor understanding. Smith (1995) showed that students who are 

competent with fractions only use the most general algorithms when no easier or quicker 

approach is available. In the current study, experts used to validate the scoring rubric for 

flexibility often made comments to this effect. For example, in solving 2 1/2 × 4, one 

expert wrote “With a simple mixed number times a whole number, I tend to multiply the 

pieces and then add.”  

 This approach can be contrasted with the more general approach of changing the 

mixed number to an improper fraction and then multiplying the numerators and 

denominators. One explanation for undergraduate students not following the same pattern 

of flexibility is that they are not fully competent with fractions. As has been suggested 

before, being able to correctly compute and answer is not sufficient evidence of 

competence (Alexander, 1997; Brownell, 1947). If these undergraduates are to some day 

teach fractions with meaning to elementary school students, it seems they need to be 

competent in them. Researchers are now finding empirical support for the common sense 

notion that when teachers posses a deep understanding of mathematics, their students do 

learn more (Hill et al., 2005). 

Implications of Motivation Findings 

 Given that teaching procedures without meaning has continued to be the norm in 

this country (Stigler & Hiebert, 1999), it is likely students in the present study began the 

class without a relational understanding of fractions. The errors these students made at 
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the beginning of the semester support this assumption. Instructor interviews suggested 

that these students were not only unaware of why procedures worked, but they were also 

unaware that this information was relevant. At the end of the semester, Instructor A 

commented that “the number one challenge is trying to get them to understand why they 

need to know why.” This disposition is evidence of a long-standing tradition in this 

country of viewing mathematics as a fragmented collection of procedures. As such, it was 

not surprising that self-concept of ability was related to computation skill at pretest but 

not to knowledge of basic concepts. The fact that self-concept of ability was related to 

basic concepts the end of the semester suggests that learning fraction procedures with 

meaning may contribute to a shift in the way these students perceive mathematics. In 

turn, this shift may positively influence the students they will later be teaching. 

 Given the current and past findings (e.g., Ball, 1990a), it is important that teacher 

educators understand and address both cognitive and affective effects of instruction. At 

the end of a course whose purpose was to encourage deep understanding of elementary 

school mathematics, students began to exhibit increased confidence as well as 

competence. Although much research exists on motivation and achievement, much less 

exists about motivation and instruction. Stipek (2002) suggested that instruction can 

motivate younger students when it emphasizes big ideas, learning rather than 

performance, active participation, and authentic and meaningful tasks. This study 

suggests that the same is true for preservice teachers. This finding is important because 

improvements in preservice teachers’ attitudes should benefit the attitudes of their 

students once they are in the classroom. 
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 Results of this study also suggest reform-oriented practices, such as engaging 

students in discussions, may have added benefits for anxiety. However, these conclusions 

are tentative, given the small number of teachers involved in the study. If delivery of 

content does have differentiated effects on student outcomes, then educators designing 

methods courses should consider delivery as well as the content of their courses. Many 

researchers have suggested that students explain their thinking (e.g., Kazemi & Stipek, 

2001), and the present study suggests the benefits may be more than cognitive.  

Suggestions for Future Research  

 The findings and limitations of this study suggest several avenues for future 

research. One such avenue is the use of comparison groups. Although there is little reason 

to believe the observed changes in knowledge and motivation were the result of events 

outside of the course (given that the changes were aligned with course goals), it could be 

that other types of course would have similar results. As such, studies should be 

conducted that compare other types of mathematics courses for education majors to ones 

like the course in this study. Researchers and educators attempting to understand how to 

best prepare mathematics teachers will benefit from such comparisons. 

 More studies in the future should examine the interactions between knowledge for 

addition, subtraction, multiplication, and division of fractions. Currently, very few studies 

of fraction knowledge have included more than one operation. Given that several errors 

were not limited to a particular operation, more studies should include all four operations 

with fractions. Such error patterns are difficult to detect without comparing solution 

methods across operations, and it can be misleading to limit studies to a single operation. 

In the present study, there were some students who seemed to have “mastered” addition 
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of fractions but used the same procedures for multiplication. Rather than understanding 

addition of fractions, it could be that these students have a misconception about the use of 

common denominators. 

 More studies are needed to understand the motivations of preservice teachers. In 

the present study, interest seemed to be more strongly related to self-concept of ability 

than to importance and usefulness of fractions. In the future, confirmatory factor analysis 

should be conducted with the questionnaire to determine if this finding holds. Also, prior 

studies have investigated how motivation changes over time, but more needs to be known 

about how motivation is related to changes in knowledge. At posttest, the motivation 

items loaded on two factors rather than three. One factor included low anxiety, high 

interest, and high self-concept of ability, perhaps reflecting a confidence that may come 

with increased knowledge. Alexander (1997) suggested that as people move into 

competence and toward proficiency in a domain, their interest shifts from being strongly 

situational or contextually-bound to increasingly more reliant on personal or deep-seated 

interest. Further, that personal interest becomes a driving force for the continued pursuit 

of expertise in a domain. Future studies should investigate this claim for the domain of 

fractions. 

 Future studies should explore ways to improve both flexibility with fractions and 

the ability to transfer to novel situations. Despite significant gains in conceptual 

knowledge, the preservice teachers in this study had low levels of flexibility and transfer. 

Alexander’s (1997) model of domain learning would suggest that these preservice 

teachers lack proficiency with fractions, yet preservice teachers represent a critical case 

for the improvement of teacher knowledge of mathematics (CBMS, 2001; Ma, 1999).  
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 More longitudinal studies are needed to understand what works with preservice 

teachers. The studies should include ongoing, extensive efforts to alter the current status 

of mathematics education. Following preservice teachers through content courses, 

methods courses, student teaching, and into their first year of teaching will help 

researchers better understand how their efforts are impacting what goes on in the 

classroom. 

Research on relational understanding should certainly include topics other than 

fractions. Fractions were chosen for this study because they represent a critical turning 

point for many students (Case, 1988). However, the need for instruction that promotes 

relational understanding extends far beyond arithmetic. Algebra students are undoubtedly 

plagued with errors resulting from procedures learned without meaning and should 

therefore be investigated in a similar way. We also need to understand the cumulative 

effects of teaching with meaning. How would algebra students with a relational 

understanding of fractions compare to those without? Would these groups equally benefit 

from algebra instruction that emphasized meaning? 

Finally, we need to continue to find ways to research instruction that attempts to 

link concepts and procedures. One reason this kind of research is difficult is that 

computation skill can be acquired without such links (Niemi, 1996; Saxe & Gearhart; 

1999), making it difficult to detect any benefits of the instruction. Another reason is that a 

proposed benefit of this instruction is that procedures learned with meaning are better 

retained, yet it is difficult to follow students over time. Yet another reason is that teaching 

is complex. In order to control for the effects of other teacher practices and 

characteristics, it is helpful to have the same teachers teach both the “meaningful” and the 
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“meaningless” instruction. Yet, this approach is unpractical and perhaps unethical. Why 

would a teacher with the knowledge, ability, and desire to teach with meaning not teach 

everyone in that manner? I am not certain it is even possible. If instead, one teacher 

teaches one way and a different teacher teaches another, then many other uncontrolled 

variables are introduced into the study. For these reasons and many others, we have 

perhaps more conviction about meaningful instruction than we do strong evidence. In the 

words of Brownell (1947), “Research on meaningful learning is extraordinarily difficult” 

(p.264). Yet, the pursuit must continue. 
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Appendix A 
 

Fraction Knowledge Pretest 
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Name: _______________________ 
   
We are interested in what processes you use to solve these problems, so please show what 
you did or tell what you thought to get your answer. 
 

A) 
3
2 ×

5
1 = 

 
 
 
 
 
 

B) 
8
1 × 24 =  C) 2

2
1 × 4 = 

D) 2
3
1 ÷ 9 = 

 
 
 
 
 
 
 

E) 
8
3 +

8
2 = F) 

15
2 ×

15
7 = 

G) 4 ÷
4
1  = 

 
 
 
 
 
 
 

H) 
3
2 +

8
3 = I) 5 −

8
3 = 

J) 
10
9 ÷

10
3 =  

 
 
 
 
 
 
 

K)     6
5
2  

       − 2
5
4  

       ____________ 

L) 
4
2 −

6
3 = 

 
 

M) 1
5
4 × 2

3
1 = 

 

N) 2
5
3 + 3

5
1 = O) 

9
2 ÷

8
3 = 
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P) What fractional part of this figure is shaded? Q) Color 2/3 of these rectangles. 
 
 
        
         
 
    
 

R) Sandi has 5
3
2  yards of ribbon. How many 

6
1  yard pieces can she cut it into? Show 

how you arrived at your answer. 
 
 
 
 
 
 
 
 
 
 
 

S) Derek can jump 5
3
1  feet. How many more feet does he need for a 9 foot jump? Show 

how you arrived at your answer. 
 
 
 
 
 
 
 
 
 
 
 
 

T) A recipe requires 1
3
2  cups of sugar. How much sugar is needed for 1

2
1  batches? 

Show how you arrived at your answer. 
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Appendix B 
 

Additional Item on Posttest 
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U) Use pictures, numbers, or words to show your solution strategy. 
 

The Mathematical Preparation of Chocolate Milk 
 
Jenny was mixing herself a glass of chocolate milk. “You sure have enough chocolate 
syrup in the glass,” remarked Kevin, who then found a glass of his own to drink. 
 
“Only a third of a glass of syrup,” pointed out Jenny. “And you’re sure taking your 
share.” 

 
“I only have one-fourth of a glass,” estimated Kevin. 
 
“But Kevin, your glass holds twice as much!” 
 
“Tell you what,” said Kevin after they both had mixed milk and syrup in their glasses. 
“Let’s combine our drinks in a larger pitcher, and then split the whole amount.” 
 
While Jenny is trying to decide whether or not this arrangement is to her advantage, can 
you say what part of the combined mixture would be syrup? 
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Appendix C 
 

Motivation Questionnaire 
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NAME: ___________________________ 
 
The following questions ask you to rate on a scale of 1 to 7 some of your feelings toward 
fractions. Answer each question by circling the number that best describes your particular 
feeling. There are no “right” or “wrong” answers, only answers that are most true for you. 
 
1. In general, I find working on fractions: 
 

Very boring  1 2 3 4 5 6 7        Very interesting 
 
 
2. How good at fractions are you? 
 

Not at all 1 2 3 4 5 6 7 Very Good 
 Good          
 
 
3.  When someone asks you some questions to find out how much you know about 

fractions, how much do you worry that you will do poorly? 
 

Not at all 1 2 3 4 5 6 7 Very much 
 

 
4.  Compared to other math topics, how good at fractions are you? 
 

  A lot worse        A lot better than  
than other  1 2 3 4 5 6 7  other math topics   

 math  topics 
 
 
5.  How well would you expect to do if you were given a set of fraction problems? 
 

Not at all        Very Good 
 Good  1 2 3 4 5 6 7  

 
6.  When I am taking fraction test, I usually feel: 
 

Not at all nervous       Very nervous 
and uneasy  1 2 3 4 5 6 7 and uneasy 
 

 
7.  Compared to other math topics, how important is it to you to be good at fractions? 

 
Not at all        Very important 
important 1 2 3 4 5 6 7 
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8.  How much do you like fractions? 
 

Not at all 1 2 3 4 5 6 7 Very much 
 
 
9. How good would you be at learning something new about fractions? 
 

Not at all         Very Good 
Good  1 2 3 4 5 6 7  

 
 
10. Taking fraction tests scares me. 
 

I never feel        I very often 
this way 1 2 3 4 5 6 7 feel this way 
 

  
11. I dread having to do fractions. 
 

I never feel        I very often 
this way 1 2 3 4 5 6 7 feel this way 

 
 

12. In general, how useful is what you have learned about fractions? 
 
 Not at all        Very useful 
 Useful  1 2 3 4 5 6 7 
  
 
13. Compared to other students, how good at fractions are you? 
 

  Much worse        Much better than  
than other  1 2 3 4 5 6 7  other students   

 students 
 
 
14. For me being good at fractions is: 
 
 Not at all        Very important 
 important 1 2 3 4 5 6 7 
  
 
15. Compared to other math topics, how useful is what you have learned about fractions? 
 
 Not at all        Very useful 
 useful  1 2 3 4 5 6 7 
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Appendix D 
 

Individual Demographic Sheet 
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Name: _________________________  Individual Demographics 
 
Instructions: Please circle or fill in the appropriate response. 
 
Gender:  Male  Female     Age: ______ 
 
College Level: 
  
 ____ Freshman 
 
 ____ Sophomore 
 
 ____ Junior 
 
 ____ Senior 
 
 ____ Other (please specify): _______________________________ 
 
 
Number of mathematics classes: 
 
 Taken in high school: ________ 
 
 Taken/currently taking in college: ________ 
 
 
Ethnicity (check all that apply): 
  
 ____ African American 
 
 ____ American Indian 
 
 ____ Asian/Pacific Islander American  
 
 ____ European American 
 
 ____ Hispanic American 
 

 ____ Other (please specify): ________________________________ 
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Appendix E 
 

Consent Forms
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STUDENT CONSENT FORM 
Project Title Beyond a Relational Understanding of Fractions: Elements of Instruction that Contribute to 

Preservice Teachers’ Knowledge and Motivation 

Purpose This is a research project being conducted by Dr. Patricia Alexander at the University of 
Maryland, College Park. We are inviting you to participate in this research project because 
you are enrolled in MATH212. The purpose of this research project is to find out how 
instruction may affect individuals’ understanding of and motivations toward fraction.  

  
Procedures As part of the course curriculum you will be administered a 20-minute fraction knowledge test 

and a 5-minute motivation questionnaire at the beginning and end of the semester. The fraction 
test will include addition, subtraction, multiplication, and division of fractions. The 
questionnaire will include questions like, “How good at fractions are you?” and “How much do 
you like fractions?” If you choose to participate in this study, the data you provide from the 
fraction knowledge and motivation measures will be analyzed in relation to instructional 
behaviors observed during the teaching of fractions. The researchers will have access to your 
class attendance records. You will also be given a demographics sheet to complete including 
information about gender, age, and race. You may refuse to answer any question. 

  
Confidentiality 
 
 

Participation is voluntary and all responses are confidential. The data you provide will be 
grouped with the data of others for reporting and presentation. Your name will be removed from 
the questionnaire and knowledge test and will not be used in the storage or reporting of 
information. Data will be stored in a locked cabinet in the office of the student investigator, on 
the University of Maryland campus. Access to this data will be limited to the project investigator 
and student assistant. After five years, the data will be shredded or boxed and moved to a secure 
storage facility. Your information may be shared with representatives of the University of 
Maryland, College Park or governmental authorities if we are required to do so by law. 

  
Risks and 
Benefits 

There are no known risks associated with participating in this research project. This research is 
not designed to help you personally, but the results may help the investigators learn more about 
how participation in this course is related to your fraction knowledge and motivation toward 
fractions. 

  
Freedom to 
Withdraw   

Your participation in this research is completely voluntary. Participation is not a course 
requirement and will not affect your grade. You may choose not to take part at all.  If you decide 
to participate in this research, you may stop participating at any time. If you decide not to 
participate in this study or if you stop participating, you will not be penalized or lose any 
benefits to which you otherwise qualify. 

 
Contact 
information 
 
 
 

You have been informed that this research has been reviewed according to the University of 
Maryland, College Park IRB procedures for research involving human subjects. If you have any 
questions about the research study itself, you can contact Dr. Alexander (palexand@umd.edu; 
301-405-2821) or Kristie Jones (kkjones@umd.edu; 301-405-1304)  at: EDU 3304F, 
Department of Human Development, University of Maryland, College Park; 
If you have questions about your rights as a research subject or wish to report a research-related 
injury, you can contact: Institutional Review Board Office, University of Maryland, College 
Park, Maryland, 20742; irb@deans.umd.edu; (301-405-0678)  
 

Statement of 
Age of Subject 
and Consent 

The signature below indicates that: You are at least 18 years of age; the research has been 
explained to you; your questions have been fully answered; and you freely and voluntarily 
choose to participate in this research project. 

           NAME OF SUBJECT: 
 

__________________________________________ 

SIGNATURE OF SUBJECT: __________________________________________ 

Signature and 
Date 

                                  DATE: ____________________ 

 

mailto:palexand@umd.edu
mailto:kkjones@umd.edu
mailto:irb@deans.umd.edu


 151

INSTRUCTOR CONSENT FORM 
Project Title Beyond a Relational Understanding of Fractions: Elements of Instruction that Contribute to 

Preservice Teachers’ Knowledge and Motivation 

Purpose This is a research project being conducted by Dr. Patricia Alexander at the University of 
Maryland, College Park. We are inviting you to participate in this research project 
because you are an instructor for MATH212. The purpose of this research project is to 
find out how instruction may affect individuals’ understanding of and motivations 
toward fraction.  

  
Procedures You will be interviewed for 5 minutes at the beginning and end of the semester. The 

interview includes questions like, “What are your particular goals for the course?” and 
“What do you think the challenges will be for teaching this course?” You will be observed 
on days that fractions are taught and the researcher will be recording information about my 
instruction every three minutes. The coded categories include teacher activity, student 
activity, class organization, attention of the teacher, content and context of the lesson, use 
of technology, and classroom behavior. If you choose to participate in this study, data from 
those observations will be analyzed in relation to information collected on the fraction 
knowledge and motivation measures the students will take. You may refuse to answer any 
question. 

  
Confidentiality 
 
 

Participation is voluntary and all responses are confidential. The data you provide will be 
grouped with the data of others for reporting and presentation. Your name will not be used 
in the storage or reporting of information. Data will be stored in a locked cabinet in the 
office of the student investigator, on the University of Maryland campus. Access to this 
data will be limited to the project investigator and student assistant. After five years, the 
data will be shredded or boxed and moved to a secure storage facility.  Your information 
may be shared with representatives of the University of Maryland, College Park or 
governmental authorities if we are required to do so by law. 

  
Risks and 
Benefits 

There are no known risks associated with participating in this research project. This 
research is not designed to help you personally, but the results may help the investigators 
learn more about how participation in this course is related to your fraction knowledge and 
motivation toward fractions. 

  
Freedom to 
Withdraw   

Your participation in this research is completely voluntary. If you decide to participate in 
this research, you may stop participating at any time. If you decide not to participate in this 
study or if you stop participating at any time, you will not be penalized or lose any benefits 
to which you otherwise qualify. 

 
Contact 
information 
 
 
 

You have been informed that this research has been reviewed according to the University 
of Maryland, College Park IRB procedures for research involving human subjects. If you 
have any questions about the research study itself, you can contact Dr. Alexander 
(palexand@umd.edu; 301-405-2821) or Kristie Jones (kkjones@umd.edu; 301-405-1304)  
at: EDU 3304F, Department of Human Development, University of Maryland, College 
Park;If you have questions about your rights as a research subject or wish to report a 
research-related injury, you can contact: Institutional Review Board Office, University of 
Maryland, College Park, Maryland, 20742; irb@deans.umd.edu; (301-405-0678)  

Statement of Age 
of Subject and 
Consent 

The signature below indicates that: You are at least 18 years of age; the research has been 
explained to you; your questions have been fully answered; and you freely and voluntarily 
choose to participate in this research project. 

           NAME OF SUBJECT: 
 

__________________________________________ 

SIGNATURE OF SUBJECT: 
 

__________________________________________ 

Signature and 
Date 

                                  DATE: ____________________ 

 

mailto:palexand@umd.edu
mailto:kkjones@umd.edu
mailto:irb@deans.umd.edu
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MATH 212:  MATH FOR ELEMENTARY EDUCATION MAJORS 
University of Maryland, College Park 

Fall 2005 
Textbooks:  Mathematics for Elementary Teachers, by Sybilla Beckmann (bundled with Class Activities  ) 
  ISBN:  0-201-72587-8 – should include both text and Class Activities manual 
  Note:  This text will also be used in Math 213 and 214 
       Student Packet (purchase at Armory 0127) 
  
Course Description:  This course will review and extend topics of arithmetic and number theory that may 
be encountered in elementary school curricula.  Students will actively investigate topics, working in groups 
on projects and writing explanations of their thinking as well as answers to problems. 
 
Schedule (subject to change): 
Week of  Topics 
Aug 31  Number Theory (Beckmann chap 12 + Packet as assigned) 
Sep 7  (Mon Sep 5 = Labor Day Holiday); Number Theory, con't 
Sep 14  Numbers  (Beckmann chap 2 + Packet as assigned) 
Sep 21  Numbers, con't 
Sep 28  Numbers, con't; Exam 1:  Fri Sep 30  
Oct 3  Fractions (Beckmann chap 3 + Packet)  
Oct 10  Fractions, con't; Addition & Subtraction  (Beckmann chap 4 + Packet) 
Oct 17  Addition & Subtraction, con't 
Oct 24  Exam 2:  Wed Oct 26; Multiplication (Beckman chaps 5, 6 + Packet) 
Oct 31  Multiplication, con't 
Nov 7  Multiplication, con't 
Nov 14  Multiplication, con't 
Nov 21  Exam 3:  Mon Nov 21; Division; (Friday Nov 25 = Thanksgiving Holiday) 
Nov 28  Division (Beckmann chap 7 + Packet), con't 
Dec 5  Division, con't; Ratio and proportion  
Dec 12  Review for Final Exam (Last day of classes = Dec. 13) 
 

FINAL EXAM:  Thursday, Dec 15, 1:30-3:30 pm; Location TBA   
 
 
Grading: 
Quizzes and/or homework**  100 pts 
Projects*  (2 @ 20 pts):     40 pts 
Written Reflections (2 @ 10 pts):    20 pts 
Exams (100 each):   300 pts 
Final Exam:    150 pts 
TOTAL:    610 pts 
 
*Note:  While collaboration is encouraged on projects, each student is to write up his or her own individual 
project without reference to any other person's writing.  The words and examples chosen should be different 
from the others in your group.  Direct copying of another's work is not acceptable under any circumstances.   

Letter grades will be given using the scale 
90% - 100% = A; 80% - 89% = B, 70% - 79% 
= C, etc. 
 
**Quizzes and/or homework are assigned by 
the individual instructor and may differ from 
section to section.  Answers are usually in the 
text. 

 
Written reflections will be assigned two times during the semester.  These are short (generally 1 – 2 pages) 
essays that address the assigned question or questions.  They should be TYPED and organized in well-
written English paragraphs.  Examples should be included to illustrate the comments you make.  The 
maximum grade for these essays is 10 points, which indicates an exceptionally well-thought-out response.  
An adequate response will receive an 8 or 9; responses which fall short in some way will be graded lower. 
 
Projects:  Projects do not need to be typed, but should be written up neatly—your write-up should not be 
your first draft!  Answers should be thorough, fully supported by charts, examples, and explanations as 
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needed.  Write your report so that someone not in the class could follow your reasoning.  The maximum 
grade for each project is 20 points.  
 
Class Participation:   Many class sessions will include time working with other students in groups, whole 
class discussions, and opportunities for students to explain their thinking.  These experiences have been 
designed both to maximize opportunities to reflect on the content more deeply and to provide experience 
giving explanations—an important skill for future teachers to develop.  Thus participating in class is very 
important to gain the most from the course. 
 
Honor Code:  The University has a nationally recognized Honor Code, administered by the Student Honor 
Council.  The Student Honor Council proposed and the University Senate approved an Honor Pledge.  The 
Pledge reads:  "I pledge on my honor that I have not given or received any unauthorized assistance on this 
assignment/examination."  In this course, the Pledge statement should be handwritten and signed on each 
exam.  Students who fail to write and sign the Pledge will be asked to confer with the instructor. 
 
Late Work and Make-up Exams: 
 Notification:  If possible, the instructor should be notified before a due date or exam is missed.  If 
this is impossible due to the nature of the emergency, the instructor must be contacted as soon as possible.   
 Excused Absences:  The following are recognized as excused absences if appropriate 
documentation is provided: 
 *illness of a student or dependent 
 *death in the immediate family 
 *participation in a UM athletic team trip, documented by official letter from the Athletics Dept. 
 *religious observance which prevents class attendance, documented by a note from the leader of  

your congregation 
*"compelling circumstance beyond the student's control," (considered on a case-by-case basis at 
the instructor's discretion). 

Late work may be subject to a deduction of 20% per class period at the instructor's discretion.  
 
Resources:  Many students find the following resources helpful as they work to understand the material in 
this course: 
 Fellow students:  Share phone numbers among group members and call or get together outside of 
class to discuss projects, homework, an upcoming quiz or exam. 
 Instructor's office hours:  Be sure you know when and where to contact your instructor if you still 
have questions after individual study and discussion with classmates. 
 Department-sponsored tutoring:  The math department schedules a Math 211 instructor to be 
available at specified times for walk-in tutoring.  (Times to be announced.) 
 Learning Assistance Services:  Located in Shoemaker, this center provides general resources for 
those experiencing difficulties in math due to math anxiety or lack of background in basic math.  You may 
call the center at 301-312-7693 to find out what resources are available for your specific needs. 
 
Philosophy of this Course: 
 Many people think of math as a collection of meaningless procedures and rules that "magically" 
give the right answer when numbers from a problem are inserted correctly.  Your experiences in this course 
will be very different from this!  Throughout this course, in class, on projects, and on exams, you will be 
asked to "explain why or why not" or to "justify your answer."  In other words, you will be expected to 
understand why the procedure you are using works or why the answer you give is correct.  You will be 
most successful this semester if you continually ask "why?" as you read, listen, and solve problems.  
Seeking connections and meaning can be a very rewarding way to learn—and someday teach—these math 
ideas. 
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Student Packet Sample 
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FRACTION WORD PROBLEMS 
 

For each problem below, decide which approach or model of multiplication is best suited 
to interpreting it.  Sketch an appropriate diagram or use fraction pieces (fraction strips or 
fraction circles) to illustrate the problem.  Give the answer. 
 
1.  Jenny gives Megan 1/4 of a pizza.  Megan gives 1/2 of her share to her roommate.  
What portion of the pizza does her roommate get? 
 
 
 
 
2.  Four families share a garden.  The Abbotts plant tomatoes in 1/3 of their portion, and 
nobody else plants tomatoes.  What part of the whole garden is planted in tomatoes? 
 
 
 
 
3.  Five roommates share a pan of brownies.  Stuart eats 2/3 of his share immediately.  
What fraction of the whole pan does he eat? 
 
 
 
 
4.  Margot made a pan of brownies.  She is willing to share with her three roommates, but 
she decides as the baker she is entitled to twice as much as they are. 
 a.  What fraction of the brownies does Margot get? 
 b.  If she plans to give 2/3 of her share to her sister, what fraction would her sister  

get? 
c.  If she changes her mind and decides to give 3/4 of her share to her sister what  
fraction would her sister get? 

 
 
 
 
5.  A plot of ground is 2 1/2 yards by 3/4 yard.  How many square yards is this?  Be sure 
to connect your diagram and your algorithm. 
 
 
 
 
6.  A room is 8 3/4 feet by 7 1/2 feet.  How many square feet is this?  Calculate more than 
one way, using a diagram to support your answer. 
 
Important Note for #5 and #6:  What are the units on the factors?  What are the units on 
the product?  How do you see the different units in your diagram?
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Sample of Teaching Notes 
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Teaching Notes – Chapter 3 
 
In this chapter we will re-visit many facts students will recall about fractions.  Remind 
them that, once again, we will be focusing on understanding and explaining why various 
procedures work, not just reviewing what those procedures are.   
 
Day 1 (3.1) 
 
Blank half-sheets of copy paper, about 8 per person 
 
Intro the "Meaning of a Fraction" as the text does (top of p. 58).  Do "Using Fraction 
Manipulatives" handout (attached).  Whenever appropriate connect to procedures or 
operations students recall from elementary school. 
 
Varying what equals one whole: 
Note that for all of these we have been assuming one whole equals our piece of paper.  
What if we change that??  Look at Class Activity 3A #2 (p. 25).  Have students 
think/pair/share for a minute or two until most everyone seems to have figured it out.  
Then ask students to explain how they thought about it.  Some will think "This piece of 
paper should have four equal parts, so I'll fold it into fourths, each of which is 1/5 of the 
whole.  Then I'll shade three of them."  Others might fold the paper into fourths and then 
reason that each section is 1/4 of 4/5, which multiplies to 4/20 or 1/5.  Note:  Both 
multiplication and division have this feature of thinking in two ways about the "whole."   

Continue in this problem/think/pair/share mode through 3A #3 (p. 25), #6, #7, (p. 
27), 3B #1, 2 (p. 28).  Note how we need to be careful to identify in each case what the 
"whole" is.  In 3B #2, the whole is a collection of twelve circles!  This is an important 
alternate model for fractions, called the "set model."  It is more difficult for children to 
understand, but is important for them to begin to grapple with in the middle elementary 
grades.  In a similar vein, return to 3A #6 and ask students why it is not appropriate to 
represent the diagram by writing 3/4 + 3/4 + . . . + 3/4 = 15/20.  (When we add or subtract 
we need to keep the same "whole" throughout the number sentence; each 3/4 means 3/4 
of one cup but 15/20 means 15/20 of 5 cups.) 
 
What makes equal parts "equal"?: 
Another tricky concept is that of "equal parts."  It is essential that the "pieces" the whole 
is divided into be equal, but equal in what way?  Is it necessary that they be identical in 
size and shape to be considered equal?  Have students think/pair/share Class Activity 3C 
(p. 31).   

What if the parts are to be equal in area, but do NOT need to be identical in shape.  
Look at the four rectangles at the top of p. 67.  Which of these are legitimate divisions 
into fourths?  Clearly the first and third are ok and the fourth is not.  The second is tricky.  
It turns out to be ok, but takes some reasoning and appeal to the formula A = 1/2 bh for 
the area of a triangle to confirm.  Challenge students to try to justify their answer. 
 
More problems (do in class as time permits; assign remaining for homework):  Packet pp. 
70 – 75 #4, 6 (uses pattern blocks), 10, 12, 13. 
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HW:  Read Beckmann 3.1 
 Do 3.1 (pp. 61-62) #3, 4, 6, 8 
 (If doing Packet #6 for homework, for the patterns blocks students can go online 
at http://www.arcytech.org/java/patterns/patterns/_j.shtml) 
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Using Fraction Manipulatives 
 
Using the circles or squares or strips you are given as the "whole," make manipulatives to 
show halves, thirds, fourths, fifths, sixths, and eighths.   
Discuss questions below.  Be prepared to share your thinking with the class. 
 
1)  Susie thinks 1/3 is bigger than 1/2 because 3 is bigger than 2.  How could you use 
these manipulatives to understand why 1/3 < 1/2? 
 
 
 
 
 
 
 
 
2)  Show how to find 1/2 of 1/3 using these tools; show how to find 2/3 of 3/4. 
 
 
 
 
 
 
 
 
3)  Show how to find how many eighths are in 3/4. 
 
 
 
 
 
 
 
 
4)  Alicia said that making 1/5 was hard.  Brandon said it was easy because 1/5 is 
halfway between 1/4 and 1/6.  Is he right?  Explain.  (from Bassarear, Explorations 
manual, p. 137) 
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Appendix I 
Factor Loadings for Motivation Questionnaire 
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Factor loadings for PAF of the Motivation Questionnaire 

 Pretest Factors             Posttest Factors 

Item Self-Concept/ Interest Anxiety Value     Confidence Value 

1 .82    .43  

2 .85    .78  

4 .47    .55  

5 .85    .76  

8 .81    .59  

13 .48    .63  

3  .62   -.82  

6  .78   -.86  

10  .90   -.86  

11  .60   -.88  

7   .68   .78 

12   .69   .67 

14   .73   .79 

15   .80   .71 

Note. Items correspond to those in Appendix C. N = 85. 
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Classroom Observation Codes 
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Teacher Activity 
 

Requests 
        Student reflection on learning 
        Alternative method or strategy 
        Student self assessment 
        Elaboration of student response 
        Attention to a student’s response or idea 
Poses 
        Problem/task to solve/high order question 
        Routine exercise/low order question 
Elaborates on 
        Problem, task, or high order question posed previously 
        Routine exercise or low order task posed previously        
Responds with or states 
        A question back to student(s) 
        Evaluation with feedback 
        Evaluation with no feedback 
        A statement or answer 
        Extrinsic reward 
        Doesn’t; redirects conversation 
Models 
        With technology or tools 
        Without technology or tools 
Defines a Mathematical term 
        Elaborates; uses concept attainment 
        No or few examples 
Posts 
        Key idea 
        Student answer 
Lectures 
        Math content 
        Self-directed learning 
        Learning strategies 
Reads aloud from math text 
Listens to or watches student or reads student work 
Manages 
        An activity 
        Materials 
        Student behavior 
No obvious instruction or management in math 
 

 



 165

Student Activity 
 

Asks a question of 
        Another student or class 
        The teacher 
Responds with or states 
        Conjecture 
        Explanation or justification 
        Alternative method 
        Simple answer or statement 
Works on 
        Formal assessment 
        Problem or task 
        Extended writing 
        Routine exercises 
Write(s) on chalkboard 
Reads from math text 
Listen or watch 
Mixed 
Management 
No apparent academic behavior in math 
 
 

Organization of Class 
 
Whole class instruction or discussion 
Small group 
        Same focus 
        Different focus 
Independent work 
        Same focus 
        Different focus 
Mixed group and independent 
        Same focus 
        Different focus 
 
 

Attention of Teacher 
 

Whole class 
A small group  
An individual student 
Not attending to any student 
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Episode Content 
 

Linking procedural and conceptual  
Conceptual 
Procedural 
Learning strategies 
        Conceptual 
        Procedural  
Mixed 
Management 
        Resources or activity 
        Student behavior 
Non-instructional activity 
        Teacher initiated 
        Other 
 
 

Episode Context 
 

Connects to  
        Other mathematics 
        Other content areas 
        Real world for scaffolding 
        Student’s first language 
Hooks or motivated students into topic 
        Cognitive or personal 
        Situational 
        Will be on test/future need 
States agenda or objective 
No specific context 
 
 

Classroom behavior 
 

On task:                                                      almost all, many, half, some, almost none 
In transition or waiting:                              almost all, many, half, some, almost none 
“Play” with work, socialize, unengaged:    almost all, many, half, some, almost none 
 
 

Technology 
 

Video, internet:              all, many, half, some, none 
Other technology 
        Models concept:    all, many, half, some, none 
        Tool use:                all, many, half, some, none 
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Attribution Scales 
 

Knowledge 
        Promotes principled understanding in students 
        Activates and builds on students’ knowledge and experiences 
        Manifests a deep and accurate understanding of the lesson 
        Illustrates the value or utility of the lesson content 
 
Strategic Processing 
        Explicitly teaches general or domain-specific strategies 
        Models general or domain-specific strategies 
        Encourages students to be reflective and self-regulatory 
        Provides opportunities for engagement in reasoning or non-routine problem-solving 
 
Development and Individual Differences  
        Demonstrates understanding of developmental levels in lesson content and delivery 
        Maintains high, but reasonable, expectations for all students 
        Is cognizant of students’ individual strengths and needs 
        Plans for and adjusts to variations in students’ thinking, behavior, or background 
 
Motivation 
        Incorporates student interest or choice in the lesson 
        Manifests an interest or excitement in the content 
        Involves all students actively in the lesson 
        Promotes positive attributional and self-competency beliefs among all students 
 
Context and Situation 
        Creates a caring and affirming learning environment 
        Makes effective use of available resources in planning and promotes their use  
        Uses a variety of social interaction patterns during the lesson 
        Welcomes and engages all students’ thoughts and reactions 
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Appendix K 

Instructor Interviews
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Instructor Pre-Interview 

 
1) Have you ever taught this class or one like it before? 
 
2) Why are you teaching this class?  
 
3) Are you looking forward to teaching it?  
 
4) In your opinion, what is the purpose of MATH 212? 
 
5) What are your particular goals for the course? 
 
6) What instructional approaches will you use to meet those goals? 
 
7) I understand that the students in MATH 212 are elementary education majors. How 
might that influence what you teach and how you teach? 
 
8) What is your opinion of the curriculum materials? 
 
9) What do you think the challenges will be for teaching this course? 

 

 

Instructor Post-Interview 
 
1) Will you teach this class or one like it again? 
 
2) Looking back, how was the experience of teaching this class? 
 
3) In your opinion, what was the purpose of MATH 212? 
 
5) What were your particular goals for the course? 
 
6) What instructional approaches did you use to meet those goals? 
 
7) How did the fact that these students are elementary education majors influence what 
you taught and how you taught? 
 
8) What is your opinion of the curriculum materials? 
 
9) What were the challenges for teaching this course? 
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