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Visual representation is one of the central problems in computer vision. The
essential problem is to develop a unified representation that effectively encodes both
visual appearance and spatial information so that it can be easily applied to various
vision applications such as face recognition, image matching, and multimodal image
retrieval. Along with the history of computer vision research, there are four major
levels of visual representations, i.e., geometric, low-level, mid-level and high-level.
The dissertation comprises four works studying effective visual representations in the
four different levels. Multiple approaches are proposed with the aim of improving
the robustness, interpretability, and scalability of visual representations.

Geometric features are effective in matching images under spatial transfor-
mations however their performance is sensitive to the noises. In the first part, we

propose to model the uncertainty of geometric representation based on line segments



and propose to equip these features with uncertainty modeling so that they could
be robustly applied in the image-based geolocation application.

We study in the second part the robustness of feature encoding to noisy key-
points. We show that traditional feature encoding is sensitive to background or
noisy features. We propose the Selective Encoding framework which learns the rel-
evance distribution of each codeword and incorporate such information with the
original codebook model. Our approach is more robust to the localization errors or
uncertainty in the active face authentication application.

The mission of visual understanding is to express and describe the image con-
tent which is essentially relating images to human language. That typically involves
finding a common representation inferable from both domains of data. In the third
part, we propose a framework to extract a mid-level spatial representation directly
from language descriptions and match such spatial layouts to the detected object
bounding boxes for retrieving indoor scene images from user text queries.

Modern high-level visual features are typically learned from supervised datasets,
whose scalability is largely limited by the requirement of dedicated human annota-
tion. In the last part, we propose to learn visual representations from large-scale
weakly supervised data for a large number of natural language-based concepts, i.e.,
n-gram phrases. We propose the differentiable Jelinek-Mercer smoothing loss and
train a deep convolutional neural network from images with associated user com-
ments. We show that the learned model can predict a large number of phrase-based
concepts from images, can be effectively applied to image-caption applications and

transfers well to other visual recognition datasets.
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Chapter 1: Introduction

1.1 Motivation

Visual representation is one of the central problems in computer vision which
studies how the visual information can be represented so that the representation can
be easily applied to various vision applications such as object tracking [1-5], image
segmentation [6-8] and video classification [9-11]. Since the early days of computer
vision, probably in 1960s [12], much research effort has been focused on developing
effective and efficient visual representations, most of which are driven by tasks.

From 1960s to around 1990s, a majority of work is focused on extracting
geometric representations from image data such as boundary detection [13], line
detection [14], early vision processing [15], chamfer matching [16], edge detection
[17,18]. Geometry is an essential representation in various vision applications which
inherently occurs in our visual world. The research on geometry is still continuing
in the recent years, such as line segment detector [19].

Since the 1990s, research attentions were shifted a little to the low-level visual
representations based on key-point feature descriptions. Renowned works include
Harris corner detection [20], Scale Invariant Feature Transform (SIFT) [21], His-

togram of Oriented Gradients (HOG) [22]. The central idea of these representations



is to represent an image using a set of feature key-points and represent each feature
key-point using local appearance descriptors.

Following the invention of local features, many approaches are developed aim-
ing at matching two images represented by key-point descriptors. Bag-of-visual-
words [23] models first quantize the visual features into multiple clusters and rep-
resent the set of features as the histogram of quantized features. Many other works
include Pyramid Match Kernels [24], Spatial Pyramid Matching [25], Deformable
Part-based Models [26] and mining mid-level discriminative patches [27]. Among
these works, many methods are categorized into mid-level representations which
utilize both low-level features and global geometric structure of the whole image.

Since around 2010s when the first large scale image classification dataset, Im-
ageNet [28], was created, research was speeded up on understanding the high-level
semantics of the image data. While most of the existing approaches had been trained
and evaluated in small datasets, the creation of large dataset brought new promis-
ing research in creating visual representations, capable of recognizing a large set of
visual semantics. Driven by large scale training data, the deep learning technique
has been one of the most successful methods in computer vision, the emerging of
which probably starts in 2012 when AlexNet [29] won the ImageNet challenge. Lots
of new neural network architectures are invented afterward such as GoogLeNet [30],
VGG network [31], ResNet [32], and DenseNet [33].

To summarize, along with the history of visual representation research, there
are four major categories of visual representations, i.e., geometric, low-level, mid-

level and high-level representations. While there are several objectives in designing



visual representations, the thesis focuses on the following three major ones:
e robustness: the representation should be robust to the input data noise;
e interpretability: the representation should be interpretable by human;
e scalability: the representation should cover a large amount of visual semantics.

The dissertation comprises four works, motivated by different applications and
aiming at improving the visual representation in terms of robustness, interpretabil-
ity, and scalability. The next section gives an overview introduction to each of the

four approaches separately.

1.2 Approaches

Probabilistic geometric representation for cross-view matching. Cross-view or cross-
pose image matching is seen as one of the most challenging problems in computer
vision. An interesting application of such is the image-based geolocation task, which
aims at matching a ground-based photo to a large set of satellite images in order to
estimate the geolocation of the photo. It is essentially a cross-view image matching
but what makes it much more difficult is the large projective transformation and
the color discrepancy between the two domains of image data. Considering that,
we choose to use the geometric structure as the feature representation which can be
easily transformed with projection. Geometry is probably the lowest level represen-
tation that one can use, which is sufficiently simplified to reduce the effect of color

discrepancy issues. However, their performance is sensitive to the noises, especially



when the noise can be amplified under the non-linear projective transformation. So
we propose to model the uncertainty of such linear geometric structure and propose
a probabilistic geometric representation that is incorporated with the uncertainty
modeling. We show such probabilistic representation is more robust to line segment

annotation or detection noises.

Robust encoding of low-level features for mobile face authentication. Keypoint based
visual features have been studied for decades and shown their strength in many
low-level vision problems especially image matching and retrieval. Bag-of-words
or codebook models are invented as a way to encode a set of extracted low-level
features into a compact feature representation, based on feature quantization (clus-
tering) and feature assignment. Improvements are made in terms of how the internal
statistics of each feature cluster is represented. The most successful ones are vector
of locally aggregated descriptors (VLAD) [34] and Fisher vector encoding [35]. We
look at the application of mobile-phone based active face authentication where the
real-time recorded face images are matched to a constrained set of pre-recorded user
faces in order to authenticate the current users. However, these face images are
often under very different poses due to the limited viewpoint of the front cameras of
smartphones. That leads to a high failure rate of pre-trained face detectors. Con-
sidering also the computational power of smartphones, we follow a popular pipeline
that uses densely sampled SIFT features and Fisher vector encoding to represent
every incoming image. However, such approach suffers from severe sensitivity to

background noises. To address this issue, we propose to learn a probability distri-



bution of each cluster in the codebook with respect to the relevance of features to
the facial area. Based on such relevance estimation, we inject a new selector com-
ponent into the codebook pipeline so that the final feature encoding becomes more

robust to the distractions from the background area.

Mud-level spatial layout representation for multimodal matching. The mission of
visual understanding is to express and describe the image content which is essen-
tially relating images to human language. That typically involves finding a common
representation inferable from both domains of data. We propose a framework to
extract a mid-level spatial representation directly from language descriptions. Such
spatial representation is based on solving a mathematical programming to sample
the object bounding boxes in 3D world space and further projected into the 2D
image space. We match such spatial layouts to the detected object bounding boxes
for retrieving indoor scene images from user text queries. Our approach is inspired
by human’s capability of generating vague scenes in their own mind without any
reference to visual inputs. While such generative modeling process is still challeng-
ing, we provide an alternative way to address the multimodal matching problem by
showing that our solver is able to generate feasible abstract scenes from language
only and that the image retrieval success rate can be significantly improved based

on matching these sampled abstractions.

Learning large scale high-level visual representations of phrases. Modern high-level

visual features are typically learned from supervised datasets, for example, the Im-



ageNet challenge dataset. However, the scalability of these approaches is largely
limited by the requirement of dedicated human annotation. That is, the super-
vised model becomes difficult to generalize to many other real world concepts which
are not necessarily included in the training categories. In order to increase the
model’s capability, more human annotations are needed which could be expensive
and sometimes even infeasible to collect considering the scale of real world concepts
(an estimation on the number of phrases in English would be over several million).
Motivated by that, we propose to explore weakly supervised approaches. We propose
to learn visual representations from large-scale social media data for a large number
of natural language-based concepts, i.e., n-gram phrases. We use a feedforward Con-
volutional Neural Network to learn from images with associated user comments. By
noticing that the naive softmax loss function does not necessarily make use of the
relationships between different n-grams and does not handle the out-of-vocabulary
phrases, we propose the differentiable Jelinek-Mercer smoothing loss and train a
deep convolutional neural network using such loss. The Jelinek-Mercer loss function
is inspired by the Jelinek-Mercer smoothing technique in the conventional n-gram
language modeling. We show the proposed Jelinek-Mercer loss significantly outper-
forms traditional softmax loss function and we show that the proposed feedforward
network can be efficiently trained and effectively applied to several high-level multi-
modal applications such as phrase prediction, phrase-based image retrieval, caption
prediction, sentence-based image retrieval and transfer learning. The resulted model
captures a much wider range of visual concepts compared to traditional supervised

models learned from constrained datasets.



Previous publication. The material in this thesis has been published at top-tier
venues on computer vision. The probabilistic geometric representation for cross-view
matching was published in Furopean Conference on Computer Vision in 2014 [36].
The robust encoding of low-level features for mobile-phone active face authentica-
tion was published in International Conference on Computer Vision in 2015 [37].
The mid-level spatial representation extracted from the language for multimodal
matching appeared in IEEE Conference on Computer Vision and Pattern Recogni-
tion in 2017 [38]. The work for learning large scale high-level visual representations

of phrases is accepted in International Conference on Computer Vision, 2017 [39,40].

1.3 Organization

The thesis is organized as follows. Chapter 2 introduces the probabilistic
geometric representation for cross-view matching. Chapter 3 introduces the robust
encoding of low-level features for mobile-phone active face authentication. Chapter
4 introduces the mid-level spatial layout representation extracted from the language
for multimodal matching. Chapter 5 introduces learning large scale high-level visual
representations of phrases. The thesis is then concluded in Chapter 6. Additional
theoretical proofs in the image geolocation work is shown in Appendix A. Additional
results for text-based image retrieval using the abstract spatial layout representation
are shown in Appendix B. Additional results for the visual n-gram models are shown
in Appendix C. License information for images from YFCC100M dataset used in

this thesis is detailed in Appendix D.



Chapter 2: Representing linear geometry under projective uncertainty

2.1 Motivation

Figure 2.1: Geolocation involves finding the corresponding location of
the ground image (on the left) in ortho images (an example on the right).

Given a ground-level photograph, the image geolocation task is to estimate
the geographic location and orientation of the camera (Figure 2.1). Such systems
provide an alternative way to localize an image or a scene when and where GPS is
unavailable. Visual based geolocation has wide applications in areas such as robotics,
autonomous driving, news image organization and geographic information systems.

We focus on a single image geolocation task which compares a single ground-based



query image against a database of ortho images over the candidate geolocations.
Each of the candidate ortho images is evaluated and ranked according to the query.
This task is difficult because (1) significant color discrepancy exists between cameras
used for ground and ortho images; (2) the images taken at different times result in
appearance difference even for the same locations (e.g. a community before and
after being developed); (3) the ortho image databases usually have a very large
scale, which requires efficient algorithms.

Due to the difficulty of the geolocation problem, many recent works include
extra data such as georeferenced image databases [41,42], digital elevation models
(DEM) [43], light detection and ranging (LIDAR) data [44], etc. Whenever pho-
tographs need to be geolocated in a new geographic area, this side data has to be
acquired first. This limits the expandability of these geolocation approaches. One
natural question to ask is whether we can localize a ground photograph using only
widely accessible satellite images.

We address this geolocation task with no side data by casting it as an im-
age matching problem. This is challenging because the camera orientation of a
ground image is approximately orthogonal to that of its corresponding ortho image.
Commonly used image features are not invariant to such wide camera rotation. In
addition, considering the presence of color and lighting difference between ground
and ortho images, color-based and intensity-based image features become unreliable
for establishing image correspondence. Therefore, structural information becomes
the most feasible feature for this application. We utilize linear structures — line

segments — as the features to be matched between ground and ortho images.



Both ground and ortho images are projections of the 3D world. The informa-
tion loss between these two images becomes an obstacle even for matching binary
line segments. Instead of inferring 3D structure, we extract and match the linear
structures that lie on the ground a large subset of which is visible in both ground
and ortho images. The ortho images can be regarded as approximately 2D planes
and we use classic line extraction algorithms to locate the extended linear structures
in them. The ground images are more challenging so we ask humans annotate the
ground lines for these images. This is not a burdensome task. Additionally, the
horizon line is annotated by the human so we can construct its corresponding aerial
view with the camera parameters known.

Based on chamfer matching [45], we derive a criterion function for matching
each ortho image with the ortho-rectified view of the ground image. However, the
projection matrix for transforming the ground image to its ortho view is usually
numerically ill-conditioned. Even a small perturbation to the annotated end points
of a line segment may result in significant uncertainty in location and orientation
of the projected line segments, especially those near the horizon line. Therefore, we
propose a probablistic representation of line segments by modeling their uncertainty
and introduce a model of geometric uncertainty into our matching criterion. Within
each ortho image, the matching scores for possible pairs of camera locations and
orientations are exhaustively evaluated. This sliding window search is speeded up

by means of distance transforms [46] and convolution operations.

Contribution. The main contributions of this work include
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e An uncertainty model for line segments under projective transformations;
e A novel distance transform based matching criterion under uncertainty;

e The application of geometric matching to single image geolocation with no

side data.

2.2 Related work

2.2.1 Image geolocation

Previous work on image geolocation can be classified into two main streams:
geotagged image retrieval and model based matching. Hays et al. [41] were among
the first to treat the image geolocation as a data driven image retrieval problem.
Their approach is based on a large scale geotagged image database. Those images
with similar visual appearance to the query image are extracted and their GPS
tags are collected to generate a confidence map for possible geolocations. Li et
al. [47] devised an algorithm to match low level features from large scale database
to ground image features in a prioritized order specified by likelihood. Similar
approaches improve the image retrieval algorithms applied to ground level image
databases [48-51]. Generally, data driven approaches assume all possible views of
the ground images are covered in the database. Otherwise, the system will not
return a reasonable geolocation.

Apart from the retrieval-style geolocation, the other track is to match the

image geometry with 3D models to estimate the camera pose. Battz et al. [43]
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proposed a solution to address the geolocation in mountainous terrain area by ex-
tracting skyline contours from ground images and matching them to the digital
elevation models. From the 3D reconstruction viewpoint, some other approaches
estimate the camera pose by matching images with 3D point cloud [52-54].

Few works make use of the satellite images in the geolocation task. Bansal et al.
[55] match the satellite images and aerial images by finding the facade of the building
and rectifying the facade for matching with the query ground images. Lin et al. [42]
address the out-of-sample generalization problem suffered by data-driven methods.
The core of their method is learning a cross-view feature correspondence between
ground and ortho images. However, their approach still requires a considerable
amount of geo-tagged image data for learning.

Our work differs from all of the above work in that our approach casts the
geolocation task as a linear geometric matching problem instead of reconstructing
the 3D world, and it is relatively “low-cost” using only the satellite images without

the need for large labeled training sets or machine learning.

2.2.2  Geometric matching

In the geometric matching domain, our approach is related to line matching
and shape matching. Matching line segments has been an important problem in
geometric modeling. Schmid et al. [56] proposed a line matching approach based
on cross correlation of neighborhood intensity. This approach is limited by its re-

quirement on prior knowledge of the epipolar geometry. Bay et al. [57] match line
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segments using color histograms and remove false correspondences by topological
filtering. In recent years, line segments have been shown to be robust to matching
images in poorly textured scenes [58,59]. Most of the existing works rely on local
appearance-based features while our approach is completely based on matching the
binary linear structures.

Our approach is motivated by chamfer matching [60], which has been widely
applied in shape matching. Chamfer matching involves finding for each feature
in an image its nearest feature in the other image. The computation can be effi-
ciently achieved via distance transforms. A natural extension of chamfer matching
is to incorporate the point orientation as an additional feature. Shotton et al. [61]
proposed oriented chamfer matching by adding an angle difference term into their
formulation and applied this technique in matching contour fragments for general
object recognition. Another method for encoding the orientation is the fast direc-
tional chamfer matching proposed by Liu et al. [45]. They generalize the original
chamfer matching approach by seeing each point as a 3D feature which is composed
of both location and orientation. Efficient algorithms are employed for computing
the 3D distance transform based on [46]. However, for geolocation, our problem is
to match a small linear structures to fairly large structures that contain much noise,
especially in ortho images. Our approach is carefully designed specifically for the
needs of geolocation: it takes into account the projective transformations and line

segments with uncertain end points as part of the matching criterion function.
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2.2.3 Uncertainty modeling

Uncertainty is often involved in various computer vision problems. Olson [62]
proposed a probabilistic formulation for Hausdorff matching. Similar to Olsons
work, Elgammal et al. [63] extended Chamfer matching to a probabilistic formula-
tion. Both approaches consider only the problem of matching an exact model to
uncertain image features, while our work handles the situation when the model is
uncertain. An uncertainty model is proposed in [64] for projective transformations
in multi-camera object tracking. They considered the case where the imaged point
is sufficiently far from the line at infinity and provided an approximation method to
compute the uncertainty under projective transformation. Our work differs in that
(1) we provide an exact solution for projective uncertainty of line segments, and (2)
we do not assume that line segments are far from the horizon line. To our knowl-
edge, none of the previous work in geolocation were incorporated with uncertainty

models.

2.3 Assumptions

A query consists of a single ground image with unknown location and orienta-
tion is provided. This ground image is then matched exhaustively to each candidate
ortho images, and ortho images are ranked according to their matching scores. The
ortho images are densely sampled by overlapped sliding windows over the candidate
geographic areas. The scale of each ortho image can be around 10 centimeters per
pixel. The ground images could be taken at any location within ortho images. Even
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in a 640 x 640 ortho image, there are over millions of possible discretized camera
poses. The geolocation task is to localize the ground image into the ortho images,
not necessarily the camera pose.

We have two assumptions here to simplify this problem. First, the camera
parameter (focal length) for ground images is known, a reasonable assumption, since
modern cameras store this information as part of the image metadata. Second, we
assume the photographer holds the camera horizontally, i.e. the camera optical axis
is approximately parallel to the ground. Camera rotation around the optical axis
may happen and is handled by our solution. No restrictions assumed for the satellite
cameras as long as satellite imagery is rectified to ensure linear structures remain

linear, which is generally true.

2.4 Preprocessing

We reconstruct the aerial view of the ground image by estimating the per-
spective camera model from the manually annotated horizon line. In our matching
approach, line segments are matched between ground and ortho images. Lines on
the ground are most likely to be viewed in both ground and ortho images — most
other lines are on the vertical surfaces that are not visible in satellite imagery — so we
ask users to annotate only line segments on the ground plane in query images. Once
the projection matrix is known, the problem becomes one of geometric matching

between two planes.
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2.4.1 Line segment labeling

Line segments in ground images are annotated by human users clicking pairs
of ending points. It is affordable to incorporate such human labeling process into
our geolocation solution since the annotation is inexpensive and each query image
needs to be labeled only once. A person can typically annotate a query image in at
most two minutes. Figure 2.2 shows four ground image samples with superimposed
annotated line segments.

Line segments in the ortho images are automatically detected using the ap-
proach of [65] (Figure 2.3). The detected line segments lie mostly on either the
ground plane or some plane parallel to the ground, such as the roof of a building.
We do not attempt to remove these non-ground lines. In fact, some of the non-
ground plane lines prove useful for matching. For example, the rooflines of many
buildings have the same geometry as their ground footprints. Human annotators
label linear features around the bottoms of these buildings. Thus, the line segments
lying on the edges of a building roof still contribute to the structure matching. Our
geometric matching algorithm assumes a high level of outliers, so even if the rooflines

and footprints are different the matching can still be successful.

2.4.2 Aerial view recovery

Using the computed perspective camera model, we transform the delineated
ground photo line segments to an overhead view (Figure 2.4). Two assumptions are

made for recovering the aerial view from ground images: (1) the camera focal length
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() (d)

Figure 2.2: Examples of line segments annotated in ground images.

f is known, and (2) the optical axis of camera is parallel to the ground plane, i.e. the
camera is held horizontally. These assumptions are not sufficient for reconstructing
a complete 3D model but is sufficient for recovering the ground plane given the

human annotated horizon line. The horizon line is located by finding two vanishing
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Figure 2.3: Examples of line segments detected in ortho images.

points, i.e. intersections of lines parallel in the real world.
Assuming the horizon line has slope angle 6, the ground image can be rotated
clockwise by € so that the horizon line becomes horizontal (the y-coordinate of

rotated horizon line yj). The rotated coordinates are (2/,y')" = Ry(z,,y,)" for
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Figure 2.4: Ortho view recovery: (a) the original ground image where the
red line is the horizon line and the blue line is shifted 50 pixels below the
red line so that the ortho-rectified view will not be too large. The blue
line corresponds to the top line in the converted view (c); (b) is the same
image with superimposed ground line segments; (c) is the ortho-rectified
view; (d) is the corresponding linear features transformed to aerial view
with field of view shown by dashed lines. The field of view (FOV) is 100
degrees which can be computed according to the focal length. ©Google

every pixel (z4,7,) in the original ground image. In the world coordinate system
(X,Y,Z), the camera is at the origin, facing the positive direction of the Y-axis,
and the ground plane is Z = —Z,. If we know pixel (2/,%) is on the ground, then

its corresponding world location can be computed by

FX 2 +' Z 7
R L N y = 120 2.1
Ty TR Ty T T (21)

For the ortho image, a pixel location (z,,¥,) can be converted to world coordinates
by (X,Y) = (x,/s,y,/s) where s is a scale factor with unit 1/meter relating the

pixel distance to real world distance.

2.5 Uncertainty modeling for line segments

User annotations on ground images are often noisy. The two hand-selected end

points could easily be misplaced by a few pixels. However, after projective transfor-
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Figure 2.5: (a) G is the ground image, O is the ortho-view and C is the
camera. The projection from G to O results in dramatic uncertainty (b)
Let a and b are centers of normal distributions. If pixel location x and

the slope angle ¢ of the line it lies on are known, then the two end points
must be on the alternative directions starting from .

mation, even a small pertubation of one pixel can result in significant uncertainty
in the location and orientation of the line segment, especially if that pixel is close
to the horizon (see Figure 2.5(a)). Therefore, before discussing the matching algo-
rithm, we first study the problem of modeling the uncertainty of line segments under
projective transformation to obtain a principled probabilistic description for ground
based line segments. We obtain a closed form solution by assuming that the error
of labeling an end point on ground images be described by a normal distribution in
the original image.

We first introduce a lemma which is essentially the integration of Gaussian

density functions over a line segment.
Lemma 2.1. Let a,b be column vectors in R™ and ||a|| = 1, then

/t2 1 _llatrb)? " _Ib2-@Tm? 1 ( f(tz + aTb) f(tl + aTb))
€ 202 =e€ 202 =lerf{ ——— | —erf{ ———
4 V2mo? 2 V20 V20

(2.2)
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The proof of this lemma can be found in Appendix. Using this lemma, we
derive our main theorem about uncertainty modeling. A visualization of the high

level idea is shown in Figure 2.5(b).

Theorem 2.1. Let ¢ be a 2D line segment whose end points are random variables
drawn from normal distributions N(a,c?) and N(b,c?) respectively. Then for any

point X, the probability that x lies on ¢ and { has slope angle ¢ is

llx—al? = [{(x—a,ap) |2 +[lx—b||2 — [(x—b,Ap) |

p(X, S0|a7 b) =€ 207

o) (52)

where A, = (cos p,sin )" is the unit vector with respect to the slope angle ¢.

Proof. Let p,(x; u,0?) be the probability density function for normal distribution
N(p,0?). The probability that x lies on the line segment equals the probability
that random variables of the two ending points are x +t,A, and x +t,A,, for some

te,ty € R and t, - t, <0, therefore

0

i olab) = |

—00

Pn(x +tA,; A, O'Q)dt/ pa(x +tAy; b, 0%)dt
0

0o 0
+ / Pn(x +tA,; a, 02)dt/ Po(x + A b, 0%)dt (2.4)
0

—00

According to Lemma 2.1, Equation A.8 is equivalent to Equation 2.3. O

Proposition 2.1. Let ¢’ be a line segment transformed from line segment £ in 2D
space by nonsingular 3 X 3 projection matriz P. If the two ending points of £ are ran-
dom wvariables drawn from normal distributions N(a,o?) and N(b,o?) respectively,

then for any x, the probability that x lies on €' and ¢’ has slope angle  is
Poroj(X: 0P, 2, b) = p((2', ¢') = proj(P~, x, ¢)[a, b) (2.5)
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where proj(Q, x, ¢) is a function returns the corresponding coordinate and slope angle

with respect to x and ¢ after projection transformation Q.
Proof. The mapping from (x, ¢) to (x/,¢') is bijective, thus Equation 2.5 holds. [

The point coordinate transformed by Q can be obtained by homogeneous
coordinate representation. For the slope angle, let q; be the i-th row vector of

projection matrix Q, the transformed slope angle ¢’ at location x = (x,y)" is

f(qQ) qs3, T, Y, @)

/
¢ = arctan 2.6
f(QMClSaIayaSO) ( )
where
fu, v,z y, ) =(ugvy — wyvy)(z sing — y cos @)
+ (u1v3 — u3v1) €os Y + (Ugvs — uzvs) Sin @ . (2.7)

According to the above, for each pixel location in the recovered view of a ground
image, the probability that the pixel lies on a line segment given a slope angle can
be computed in closed form. Figure 2.6 shows an example probability distribution
for line segments under uncertainty. It can be observed from the plot that more
uncertainty is associated with line segments farther from the camera and is resulted

from a larger o value.

2.6 Geometric matching under uncertainty

Our approach to planar structure matching is motivated by chamfer match-

ing. Chamfer matching efficiently measure the similarity between two sets of image
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Figure 2.6: Examples of uncertainty modeling: (a) the ortho-rectified
line segments (b-d) the negation of probability log map for points on
lines. The probability for each pixel location is obtained by summing up
the probabilities for all discretized orientations. The camera is located
in the image center and faces upward.

features by evaluating the sum of distances between each feature in one image and
its nearest feature in the other image [60]. More formally,

D.(A,B)=> d(a,arg min d(a, b)) (2.8)

acA
where A, B are two sets of features, and d(-, -) is the distance measure for a feature
pair. Commonly, feature sets contain only the 2D coordinates of points, even if those
points are sampled from lines that also have an associated orientation. Oriented
chamfer matching (OCM) [61] makes use of point orientation by modifying the
distance measure to include the sum of angle differences between each feature point
and its closest point in the other image. Another way to incorporate orientation
is directional chamfer matching (DCM) [45] which defines features to be, more
generally, points in 3D space (x-y coordinates and orientation angle). This approach
uses the same distance function as the original chamfer matching but has a modified

feature distance measure. We follow the DCM method [45] to define our feature
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space. In our case, point orientation is set to the slope angle of the line it lies on.

2.6.1 Notation

All of the points in our formulation are in the 3D space. A point feature is
defined as u = (w;,u,) where u; represents the 2D coordinates in real world and
ug is the orientation associated with location w;. G, is the set of points {g} in the
ground image with uncertainty modeled by probability distribution p(-). O is the
set of points in the ortho image. L¢ is the set of annotated line segments in the
ground image. A line segment is defined as £ = (ay, by) where a, and b, are the end
points of £. For any line segment £ and an abitrary line segment 2 in the feature

space, p(£]£) is the confidence of £ by observing £.

2.6.2 Distance metric

The feature distance for u, v is defined as
d(u,v) = [[u—vlly = [ = vill2 + [ug — v4a (2.9)

where ||[u; — vi|| is the Euclidean distance between 2D coordinates in meters and
|up — Vpla = Amin(Juy — vg|, ™ — |up — vy|) is the smallest difference between two
angles in radians. The parameter A\ relates the unit of angle to the unit of world
distance. We choose A = 1 so that 7 angle difference is equivalent to around 3.14
meters in the real world. For this feature space definition, the chamfer distance in
Equation 2.8 can be efficiently computed by pre-computing the distance transform
for the reference image (refer to [45,46] for more details) and convolving the query

24



image with the reference distance transform.

2.6.3 Formulation

The distance function for matching ground image G, to ortho image O is

formulated as
D(G,,0) = D,,(G,,0) + Dy (G,, O) (2.10)

where D,, is the probablistic chamfer matching distance and D is a term penalizing

line segment crossings. The probablistic chamfer matching distance is defined as

D, (G, |Z/ ew/ (gle) <géig||g—o||g) dgde . (2.11)

£eLlg
The marginal distribution [ p(@]ﬂ)p(gw)d@ = p(gl|#) is the probability that point g;

lies on line segment £ with slope angle g4. Equation 2.11 is equivalent to

DG 0) = 1= 3 [ wtele) (sig s~ ol ) de (212)

ZGL

whose discrete representation is

Da(Gy,0) = Y- i (elL) (g g — ol (2.13)

where p'(g|Lg) = \Lc\ > ecLe Zp(i(‘ 77 is the probability of points lying on the struc-

ture and each line segment equally contributes to the distance value. In fact, Equa-
tion 2.12 is equivalent to the original chamfer matching (Equation 2.8) if no uncer-
tainty is present.

Intersections between ortho line segments and ground line segments indicate
low matching quality. Therefore, we add an additional term into our formulation to
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penalize camera poses that result in too many line segment intersections. The cross

penalty for line segments is defined as

DG, 0) = Seere S PEIO) Y oco [ P(8l0)]gs — 0slad (g — or)dgdl 214

Secre S PO Y oco [ p(8]£)d (g — 0)dgdl

where §(-) is the delta function. This function is is a normalized summation of

angle differences for all intersection locations, which are point-wise equally weighted.

Because fp(2|£)p(g]@)d2 = p(gl|€), the function is equivalent to

Dy(G,,0) = ZZELG fp(g!ﬂ) Zoeo 96 — 04lad (g1 — 01)dg (2.15)

ZeeLG fp(glf) Zoeo d(g —o))dg

whose equivalent discrete formulation is

> ¢ P'(8Lc) Xooco 196 — 0slad[gr — 0
> e P'(8lLc) D oco bl — 0l

where p'(g|L¢) is defined in Equation 2.6.3 and 0[] is the discrete delta function.

D, (G, 0) = (2.16)

2.6.4 Hypothesis generation

Given a ground image G, the score for ortho image O; corresponds to one of
the candidate geolocations. is evaluated as the minumum possible distance, so the

estimated fine camera pose within ortho image O; is

X; = X(04, G,) = argmin D(R,, G, + x;, 0;) (2.17)

xl,x¢

where R, is the rotation matrix corresponded to angle a.

2.6.5 Implementation remark

The two distance functions can be computed efficiently based on distance
transforms in which the orientations are projected into 60 uniformly sampled angles

26



and the location of each point is at the pixel level. Firstly, probability p(g|€) can be
computed in closed form according to Proposition 2.1. So the distribution p'(g|L¢)
can be pre-computed for each ground image. Based on 3D distance transform [45],
Equation 2.13 can be computed with a single convolution operation. The compu-
tation of Equation 2.16 involves delta functions, which is essentially equivalent to a
binary indicator mask for an ortho image: Mq(x) = 1 means there exists a point
o € O located at coordinate x and 0 means there is no feature at this position. Such
indicator mask can be directly obtained. So we compute for every orientation ¢ and
location x a distance transform Ay, (x) = > conr0—x |9 — 9¢la- The denominator of
Equation 2.16 can be computed directly by convolution, while the numerator needs
to be computed independently for each orientation. For a discretized orientation @,
a matrix is defined W(g) = p'(g|Le)Mo(g:) for all g such that g, = 6 and other-
wise W(g) = 0. Convolving matrix W with the distance transform A, will achieve
partial summation of Equation 2.16. Summing them up for all orientations gives

the numerator in Equation 2.16.

2.7 Experiment

2.7.1 Dataset

We build a data set from Google Maps with an area of around 1km x 1km. 35
ground images are randomly extracted from Google Street View together with their
ground truth locations. Each ground image is a 640 x 640 color image. Field of view

information is retrieved. A total of 400 satellite images are extracted using a sliding
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Figure 2.7: Example ground images (upper) and ortho images (lower)
from our dataset. The ground image can be taken anywhere within one
of the satellite images. ©Google

window within this area. Each ortho photo is also a 640 x 640 color image. The scale
of ortho images is 0.1 meters per pixel. 10 ground images are used for experiments
on the uncertainty parameter ¢ and the remaining 25 ground images are used for
testing. Example ground and satellite images are shown in Figure 2.7. Geolocation
in this dataset is challenging because most of the area share highly similar visual

appearance.

2.7.2 FEvaluation criterion

Three quantitative criteria are employed to evaluate the experiments. First,
we follow previous work [42] by using curves on percentage of ranked candidate

vs. percentage of correctly localized images. By ranking all the ortho images in
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descending order of their matching scores, percentage of ranked candidates is the
percentage of top ranked images in all of the ortho images and percentage of correctly
located images is the percentage of all the queries whose ground truth locations are
among the corresponding top ranked candidate images. Second, we obtain a overall
score by counting the area under this curve (AUC). A higher overall score generally
means more robustness in the algorithm. Third, we look into the percentage of

correctly localized 1mages among 1%, 2%, 5% and 10% top ranked locations.

2.7.3 Parameter selection

Intuitively, o represents the pixelwise variance of the line segment end points,
so it should not be more than several pixels. We randomly pick 10 ground images
and 20 ortho images including all ground-truth locations to compose training set
for tuning 0. The geolocation performance over a set of o values ranged from 0
to 3 with a step 0.5 are evaluated and shown in Figure 2.8 where 0 = 0 means no
uncertainty model is used. The peak is reached when the o is between 1.5 and 2.

Therefore, we fix 0 = 2 in all of the following experiment.

2.7.4 Results

Our geometric matching approach returns distance values densely cover every
pixel and each of the 12 sampled orientations in each ortho image. The minimum
distance is picked as the score of an ortho image. Therefore, our approach not only

produces ranking among hundreds of ortho images but also shows possible camera
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Figure 2.8: Geolocation AUC score under different uncertainty variances
o where 0 = 0 represents the approach without uncertainty modeling.

Table 2.1: Comparison among oriented chamfer matching [61], directional cham-
fer matching [45] and our approach. The uncertainty model is evaluated for each
method. For each evaluation criterion, the highest score is highlighted in bold and
the second one highlighted with underline. Our uncertainty based formulation is top
among all these methods. Both of the three methods can be improved by our uncer-
tainty model. OCM boosts its performance when incorporated with our probablistic
representation.

w /0 uncertainty w/ uncertainty
Method OCM DCM ours OCM DCM ours
Top 1% 0.08 0.00 0.00 0.04 0.00 0.12
Top 2% 0.08 0.04 0.08 0.04 0.04 0.20
Top 5% 0.16 0.12 0.12 0.20 0.12 0.32
Top 10% 0.24 0.24 0.28 0.28 0.28 0.44
Score(AUC) 0.6814  0.7419  0.7500 0.7688  0.7577  0.8219

locations and orientations.
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We compare our approach with two existing matching methods i.e. oriented
chamfer matching [61] and directional chamfer matching [45]. To study the effec-
tiveness of our uncertainty models, we also evaluate these methods with uncertainty
model embedded. DCM is equivalent to the first term D,, in our formulation. OCM
is to find the nearest feature in the other image and compute the sum of pixel-wise
distance and the angle differences to the same pixel. We apply our uncertainty
model into their formulation in a similar way as the probablistic chamfer matching
distance does. Thus, in total we have six approaches in our comparison. Their
performance curves are shown in Figure 2.9. Over 90% of the ground queries can
be correctly located when half of the ortho images are rejected. Numerical results
are in Table 2.1. While our approach significantly outperforms at any percentage of
retrieved images, our performance improvement is particularly large for top ranked
images.

Four successfully localized queries are shown in Figure 2.10. For these ground
images, the ground truth locations are included in the top 5 ranked candidate ortho
images out of 400. From this visualization, few labeling errors can be noticed from
miss-alignment between ortho images and rectified line segments. Among these top
responses, most false alarms are building roofs. A common property is that they
have relatively denser line features. Another issue is the line detection in ortho
images does not handle shadows well. Most linear structures in these shadow areas

are not detected.
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Figure 2.9: Performance curve for six approaches: the ortho images are
ranked in ascending order. The x-axis is the number of selected top
ranked ortho images and the y-axis is the total number of ground im-
age queries whose true locations are among these selected ortho images.
The overall AUC scores are shown in the legend where ”[u]” means ”with
uncertainty modeling”. The black dash-dot line indicates chance perfor-
mance.
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Figure 2.10: Four queries successfully geolocated within top five candidates are shown. The leftmost column is the
ground image with annotated line segments. For each query, top five scoring ortho images are shown in ascending
order of their rank. Ground-truths are highlighted by green bounding boxes. For each ortho image, blue lines are
automatically detected and red lines are parsed from ortho-rectified ground images. Green cross indicates the most
probable camera location within that ortho image.



2.8 Discussions and future work

2.8.1 Automatic line segment annotation

The cross-view image matching problem has been one of the most challenging
problems in computer vision. Our approach essentially finds a common set of linear
geometric features that is visible from both viewpoints. Although the linear struc-
ture preserves the invariance of a visual scene and tends to be much more reliable
than color or intensity based features, it is still observed that the process of extract-
ing such line segment features could be greatly improved. Multiple future directions
could be taken in this area such as automating the ground line segment detection
and horizon line detection in the ground-based photos, and removing noisy linear

features that are not lying on the ground in the ortho photos.

2.8.2 Joint and iterative matching

The proposed feature matching is based on an one-time estimation of the
projective transformation, which can be noisy. Another interesting direction is to
explore how the parameters in projection matrices could be jointly estimated to-
gether with the feature matching. This would be a challenging problem in terms of

efficiency, considering the large scale of the satellite imagery.

34



2.8.3 Invariant feature learning

From the perspective of feature learning, one natural question to ask is whether
it is possible to learn directly a feature representation that can be used for visual
reasoning under unknown projective transformations. And it would be interesting
to see if we could learn such representation in an unsupervised or weakly supervised

way, considering the lack of registered (or corresponded) training image pairs.

2.9 Conclusion

We investigated the single image geolocation problem by matching human
annotated line segments in the ground image to automatically detected lines in the
ortho images. An uncertainty model is devised for line segments under projective
transformations. Using this uncertainty model, ortho-rectified ground images are
matched to candidate ortho images by distance transform based methods. The
experiment has shown the effectiveness of our approach in geographic areas with

similar local appearances.
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Chapter 3: Spatially robust encoding of low-level visual features

3.1 Motivation

As face recognition techniques have gradually matured over the past few
decades, the research focus has shifted from recognizing faces with controlled varia-
tions to unconstrained real-world scenarios [66]. Modern approaches based on high
dimensional feature encoding [67-70] and deep neural networks [71,72] have recently
emerged and achieved promising results on unconstrained face databases [73,74].
However, most existing face recognition systems depend on accurate face detection
and registration. Unfortunately, these two components are a significant source of
error in real-world environments or real-time applications.

In the application of mobile face authentication, for example, faces recorded
from a front-facing smartphone camera often exhibit rare non-horizontal poses (i.e.,
neither frontal nor profile) and are often partly outside the camera’s viewpoint.
This problem is exacerbated when users are performing other tasks (as opposed to
actively ensuring that their face is within the camera view) in which case the facial
video quality becomes even worse, further challenging existing face detection and
registration systems. For example, one of our experiments shows that the popular
Viola-Jones face detector [75] fails on a significant portion of a smartphone-recorded
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Figure 3.1: Performance of Viola-Jones (OPENCV) multi-scale face de-
tector on a mobile based video face authentication dataset [76] with a
total of 19,158 sampled video clips each 30 frames long. The x-axis is
the number of frames in each video and the y-axis shows the percentage
of video clips with at least the corresponding number of frames having
faces detected. While all of the video clips contain faces, only 54% of
the videos have at least one face detected and 22% have faces detected
across all the 30 frames.

face dataset [76] (Figure 3.1).

Most current face recognition datasets use images viewed from a distance for
benchmarking. This type of data involves other challenges, compared to those from
mobile applications: low image resolution and background distractions, because of
which we can still expect some degree of errors in the detection step, i.e., improper
estimation of face centers and bounding box sizes. A statistical illustration of the
face detection errors using FDDB benchmark data [77] is shown in Figure 3.2.

Motivated by these observations, we explore the possibility of addressing un-
constrained face verification problems without explicit face detection or registra-
tion. The central idea of our approach is that the codebook can be optimized to

encode additional information for discriminating relevant image patches from irrel-
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Figure 3.2: Viola-Jones (OPENCV) multi scale face detection results on
Face Detection Dataset and Benchmark (FDDB) [77]: the relative cen-
troid errors are computed as the centroid distance between detected faces
and their closest ground truths, divided by the averaged axis length of
ground truth ellipses. The chart shows 68% of faces are detected faces
while the other 32% are false alarms with no overlap with any of the
ground truth faces. Notably, 50% of the detected faces produce some
levels of offsets from 0% to 25% where the peak is around 20% of the
face size (e.g., for 150 x 150 faces, the peak of errors is 30 pixels).

evant background distractions. We propose a unified codebook-based framework,
named “selective encoding”, the core of which is a component named “selector”
which injects trained relevance information into codewords via a set of “relevance
weights” and utilizes these weights to select semantically relevant patch descriptors
and codewords at test time. Patch descriptors and codewords that successfully pass
the selector will be used for encoding images. The selector essentially finds a good
relevant sub-matrix of the posterior probability (assignment) matrix for feature en-
coding.

For recognizing unreliably localized faces, we define the descriptor relevance as
foreground probabilities, so image patches belonging to the facial region are selected

over those that do not. The relevance distribution training involves counting for each
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codeword the foreground/background distribution of its assigned patch descriptors.
These distributions are used for computing the foreground probability of each newly
observed patch in testing. Background distractions are thereafter removed from the
descriptor set so that the encoded representation can achieve spatial robustness.
Fisher vector encoding [78] is one of the most powerful codebook based feature
encoding techniques. However, its most recent applications in face verification re-
quire face detection and registration. One of our experiments shows that this method
degrades quickly with inaccurate estimation of face centers and bounding box sizes
due to the inclusion of more distractive patches. We validate our framework using
the Fisher vector encoding on public datasets and show that our method is capable
of robustifying such encoding technique with respect to uncertain face localization.
We further apply our framework to a mobile based active face authentication task

to show its applicability in real-world scenarios.

Contribution. The main contributions of this work include
e A generic and unified framework for selecting and encoding relevant features
which does not require accurate detection or registration;

e The application of Selective encoding to Fisher vector encoding for spatially

robust face verification;

e The application of Selective Fisher vector encoding to mobile based active face

authentication.
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3.2 Related work

3.2.1 Feature encoding

The bag of visual words model [23] is the most popular feature encoding frame-
work for many computer vision tasks. In this model, a codebook is built using
K-means clustering and each feature is assigned a weight for each cluster center
(aka. codeword) according to their distances. An image is thereafter represented by
the distribution (histogram) of those assignments. Most modern feature encoding
techniques are extensions of this codebook model such as Fisher vectors [35] and
the vector of locally aggregated descriptors [34]. The central idea is that, instead of
using only an assignment distribution, an image can also be represented using the
first order (mean of difference) and second order (standard deviation) statistics of
all the (soft or hard) assigned features for each codeword. Fisher vector encoding
is now among the state-of-the-art on various computer vision applications such as
image classification [35,69, 78], image retrieval [79] and face verification [68]. Our
work is built upon Fisher vectors and integrates additional supervised information

into the codebook for encoding semantically relevant patches.

3.2.2 Unconstrained face recognition

The upsurge of research on unconstrained face recognition gave rise to the
creation of Labeled faces in the wild (LFW) dataset [73]. Besides the Fisher vector

faces [70], many works have been developed on this topic, such as high dimensional
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local binary patterns [67], deep learning based approaches [71,72] and sparse coding
based approaches [80,81]. Considering that face recognition problems are often
challenged by pose variations, many works try to improve the recognition accuracy
by means of robust facial alignment and correction using sophisticated 3D models
or shape matching [66, 72, 80, 82]. However, the vulnerablility of face detectors
under real-world scenarios is usually overlooked and most existing face verification
methods generally assume detected and well aligned faces are given [68,70]. The
goal of our work is to remove the strong dependency on face detection by improving

the encoding scheme to be significantly more robust to spatial misalignments.

3.2.3 Joint localization and classification

The general image object classification problems are also affected by the per-
formance of object localization. Most works try to find good localization and seg-
mentation of the objects to relieve the subsequent recognition task [83,84]. However,
detection is even harder than classification in some sense (e.g., robust bounding box
estimation). A few recent works are motivated by the idea of jointly detecting and
classifying objects in images in the hope that the two tasks help each other. Nguyen
et al. [85] proposed to jointly localizing discriminative regions and training a region-
based SVM for image categorization. Lan et al. [86] proposed a figure-centric model
learned by latent SVM for joint action localization and recognition. The most sim-
ilar work to ours is the object-centric pooling [87]. Its main idea is to infer, jointly

with classification, tight object bounding boxes and pool features within detected
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regions. They developed an MIL-like SVM formulation for joint object localization
and classification. However, our work differs in that (1) instead of finding perfect
detections, we explore the implicit feature selection power of the codebook, and
(2) our framework is designed for feature encoding and does not depend on any

subsequent classification.

3.3 Preliminary — Fisher vector encoding

The Fisher vector (FV) encoding was first proposed in [35] and applied to face
verification problems in [70] and [68]. The central idea of Fisher vector encoding
is to aggregate higher order statistics of each codebook into a high dimensional
feature. More specifically, a Gaussian mixture model (GMM) is trained as the
visual codebook. First-order and second-order distance statistics w.r.t.each of the
Gaussian mixture components are concatenated into the final feature representation.
Let x, be the p-th descriptor and (uy, 0%, 7;) be the k-th Gaussian component.
The assignment coefficient (posterior probabilities) of x, with respect to the k-th
Gaussian is represented using a(x,). Let X = [x1,...,xy] be the descriptor set,
the Fisher vector representation is computed as ¢(X) = [@5”, CI>§2), . ,q)%), @ﬁ?]

where
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Most existing works on Fisher vectors apply signed square root and ¢? normalization
to the feature vectors which tend to further improve the representation capability

of Fisher vectors [69, 70].

3.4 Selective encoding overview

The proposed selective encoding framework is illustrated in Figure 3.3. Exist-
ing codebook based face recognition approaches require detection and registration
beforehand, while our framework reduces the need for such prerequisites. Generally
speaking, our framework is composed of three main stages: (1) building a vocabu-
lary (2) descriptor and codeword selection (selector) and (3) feature encoding. The
key component for achieving spatial robustness is the selector, which selects relevant
descriptors and codewords for the feature encoding stage. The selector is trained
with weakly supervised prior knowledge on the descriptor relevance (i.e., rough de-
tection bounding boxes). An advantage of our framework is that we do not require
any extra computational cost during testing because the selector is essentially per-
formed on the matrix of posterior probabilities (assignment) for the codebook, which

is necessarily computed in the conventional codebook framework.
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3.5 Vocabulary

3.5.1 Descriptor extraction

Following [70], we extract densely sampled SIFT descriptors [88] at 5 different
scales. The 128-D descriptors are further reduced to 64-D by principal component
analysis. Fisher vectors are often learned using an augmented descriptor which adds
two additional dimensions for the spatial coordinates of each SIFT descriptor. A
normalization is utilized for the augmented dimension, i.e., [Taug, Yaug] = [ —0.5, % —

0.5] where w, h are the width and height of the window.

3.5.2 Codebook construction

The Fisher vector encoding uses Gaussian mixture models to provide softer
structures and capture smoother feature distributions in the encoding than the K-
means clustering based codebook. As [70], we use 512 Gaussian components for our

experiments.

3.6 Selector

The selector consists of two parts: (1) descriptor selection and (2) codeword
selection. Both stages are executed based on the trained relevance weights of each
codeword and their corresponding posterior probabilities w.r.t.newly observed image

patches.
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3.6.1 Codeword relevance

Given a trained codebook (Gaussian mixture model), the selector is trained to
associate additional foreground /background information with each codeword (Gaus-
sian component). The training involves calculation of the relevance weights for each
codeword.

Let x; be the i-th patch descriptor, 8, be the k-th Gaussian mixture component
and their corresponding posterior probability be p(6x|x;). The selector is trained
using n-dimensional patch descriptors x; € R™ with their binary labels y; € {0,1}
which represent whether they should be selected for feature encoding, by counting

for each codeword the expected descriptor relevance, i.e.,

SN p(Ok]x)y:
SV p(0r]x;)

p(Ok) = (3-3)

The codeword relevance value ranges between 0 and 1. Codewords with higher rel-
evance weights (larger than 0.5) are more likely to aggregate foreground descriptors
while those with lower relevance weights (lower than 0.5) have higher chance of being
background. Although keeping unnecessary codewords will not damage the encod-
ing space, discarding those background codewords naturally reduces the feature
dimension and in some cases improves the recognition accuracy (Figure 3.11(b)).
For recognizing unregistered faces, the training patches and their semantic
labels are obtained by using images with valid detection outputs. Those features
located within detected face bounding boxes are labeled as 1 and those outside

labeled as 0. In our experiments we are using loose detection bounding boxes which
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contain background areas; however, the learned relevance distributions is sufficient

for improving the encoding robustness.

3.6.2 Descriptor relevance

At test time, the posterior probabilities for each patch descriptor are given
from the codebook model. The descriptor relevance weight is then computed by
counting the relevance contribution from each codeword with respect to their pos-

terior probabilities, i.e.,

K

Pg(xz') = Zp(ek‘xi)pg(ok) . (3.4)

k=1

The posterior probability can be computed via either soft or hard assignment (in
hard assignment settings, the highest posterior probability for each descriptor is
lifted to 1 and all the others reduced to 0). The descriptor relevance also ranges
between 0 and 1, similar to codeword relevance. Intuitively, the descriptor selection
plays a key role in achieving spatial robustness of feature encoding by removing
background patches. In our experiment, we remove all descriptors with relevance
lower than 0.5 (a threshold for separating foreground from background) for patch

selection.

3.7 Encoding

The encoding stage receives from the selector a subset (or a modified version) of
the posterior probability matrices and encodes them as Fisher vectors (as described
in Section 3.3). The encoded Fisher vectors can be further reweighed or reduced to
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lower dimensions by multiple metric learning approaches; however, with restricted
training samples, learning a low rank metric is difficult [70]. The mobile face authen-
tication problem comes with a limited training set — users are not likely to spend
much time actively training the smartphones. So in our experiments, we employ
the % metric and diagonal metric learning (i.e., training a diagonal metric using

support vector machines) proposed in [70] for evaluating encoding performance.

3.8 Learning with spatial-sensitive features

Intuitively, the location features help when the face images are properly reg-
istered. However, when the registration is poor, augmented location information
may instead hurt the performance. The GMM model can smooth out the Gaus-
sian component on the location dimensions (Figure 3.4) and may also learn the
location distribution of patches when the training images have some underlying
mis-registration patterns. However, the robustness to localization errors is not suf-
ficient for unconstrained spatial patterns, in which case performance drops quickly
and becomes worse than ignoring location information altogether. The main reason
is because patches belong to the same facial part are assigned to different codewords
due to the influence of the augmented location dimension. However, our framework
can adapt to such location sensitive augmented features. The central idea is that
we can identify relevant patches in the codebook and renormalize the augmented di-
mensions of their corresponding descriptors so that patches belonging to close facial

parts can be aggregated into the same codewords.
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Figure 3.4: LFW: averaged variance of Gaussian components on aug-
mented location dimensions vs. (a) window side length with zero offset
and vs. (b) standard deviation of window offsets (window side length
200). As the window spatial uncertainty increases, the learned GMM

increases the variance of Gaussian distributions on location dimensions,
which essentially reduces the influence of location information on code-

word assignment.

Since the augmented dimensions are spatially sensitive, they should not be in-
volved in learning the descriptor and codeword relevance distributions. As a result,
we use the appearance-based dimensions (first 64 dimensions) of each Gaussian mix-
ture component when computing the relevance weights of codewords and descriptors.
Once patches are selected, the last two augmented dimensions of corresponding de-
scriptors are reduced by their mean values, i.e., [27,., Vhue] = [Taug — Taugs Yaug — Jaug)»

and the updated descriptors are used in feature aggregation and encoding.

3.9 Experiments

We validate our approach on three face datasets with different foci: (a) image

based face verification (b) video based face verification and (c) mobile based face
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authentication. In the first two datasets, we perform random shifts to the detected
face bounding box to compare the spatial robustness of the original Fisher vector

encoding and the proposed selective Fisher vector encoding.

3.9.1 Image based face verification

Labeled faces in the wild (LFW) [73] is an image based face verification dataset.
The dataset contains 13,233 images of 5,749 celebrities. The evaluation set is di-
vided into 10 disjoint splits each of which contains 600 image pairs. Of these 300 are
positive pairs describing the same person and the other 300 are negatives represent-
ing different identities. Two protocols are used for the benchmark: restricted and
unrestricted. The restricted protocol prohibits using any outside data for training
the models while the unrestricted version allows that. We validate our framework
on the restricted protocol to show its performance with limited access to training

data.

3.9.1.1 Perturbation generation

To study the sensitivity of localization, we randomly shift the annotated face
centers (which are detected by Viola-Jones detector) using a Gaussian distribution
N(0,0%) where o is chosen from 0, 25, 35 and 50 pixels. We set the window side

length to 200 pixels, around 1.7 times the size of the tight facial bounding box.
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3.9.1.2 Evaluation

Performance is evaluated using true positive rates at equal error rate (TPRQEER)
averaged over the 10 splits. The codebook is trained using perturbed images with 512
Gaussian mixture components. For selective encoding, codeword relevance distribu-
tions are learned using 150 x 150 windows at the face center detected by Viola-Jones
detector in the training set. It is worth noting that these windows do not tightly

bound the faces.

3.9.1.3 Comparison with original Fisher vectors

Comparison with the original Fisher vectors is shown in Figure 3.5 using both
appearance and augmented descriptors. The proposed selective encoding outper-
forms conventional Fisher vectors using both ¢? metric and diagonal metric learning
with 64-D PCA-SIFT descriptors. Interestingly, our method performs better even
when there is no centroid perturbation. This might be because even the true facial

bounding box includes a small number of distractive patches from the background.

With augmented descriptors, a 1% performance drop of our framework is ob-
served with no center offset using ¢? metric. However, this performance gap vanishes
using diagonal metric learning. Our approach also produces more stable performance

across multiple levels of window offsets.
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Figure 3.5: LEFW: Original FV vs. hard selective FV encoding with PCA-
SIFT descriptors with (a) ¢2 and (b) diagonal metric learning; original
FV vs. soft selective FV encoding with augmented descriptors with (c)
(% and (d) diagonal metric learning.

3.9.1.4 Comparison with perfect face localization

Since our goal is to make the original encoding technique more robust to
localization, we compare our framework with the ideal case, where the ground truth
face bounding box is known (this will serve as an upper bound on performance,
since localization will be perfect). The results with both PCA-SIFT and augmented

descriptors are shown in Figure 3.6, where under ¢2 metric there is less than 0.5%
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Figure 3.6: LFW: Hard selective F'V encoding on perturbed images vs.
Original FV encoding on ground truth facial windows with PCA-SIFT
descriptors with (a) 2 and (b) diagonal metric learning; and Soft selec-
tive FV encoding on perturbed images vs. F'V encoding on ground truth

facial windows with augmented descriptors with (c) £ and (d) diagonal
metric learning.

difference between our approach and the ideal one. A larger gap is seen with diagonal
metric learning. The ideal case is about 2% better with offset o = 0,25, 35; our

approach performs better when more severe face occlusions occur with offset o = 50.
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patch locations to true face centers.

3.9.1.5 Appearance-only vs. augmented descriptors

Fisher vectors are usually computed over descriptors augmented with their spa-
tial coordinates, encoding spatial structures into the feature representation. These
coordinate features are spatially sensitive and not suitable for learning foreground
/ background distributions. However, our framework can adapt to such spatially
sensitive features by “re-centering” selected patches. Figure 3.7 shows the relative
distance between the true face center and the mean coordinates of those selected
patches when the window side length is 200 and offset standard deviation is 25. The
peak error is around 5% (i.e., 10 pixels).

Our experiments suggest that, compared to appearance-only descriptors, the
spatially augmented descriptors perform better with low spatial uncertainty (85.63+
1.53 vs. 83.27 + 1.26 with zero offset and 200 window side length) and gradually

degrades with similar performance when the spatial uncertainty increases (80.77 +
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1.42 vs. 80.53 £ 2.28 with 35 offset standard deviation and 200 window side length).

3.9.2 Video based face verification

Youtube Faces (YTF) [74] is a benchmark for video based face verification. The
dataset contains 3,425 videos for 1,595 celebrities collected from YouTube movies.
All of the faces are localized by the Viola-Jones face detector. The evaluation set
is composed of 5,000 pairs of tracks which are also divided into 10 splits. In each
split, 250 pairs are positive and the other 250 are negative. For each of the 10 runs,
9 splits are used for training and the remaining split is used for testing. Similar to
LFW, the dataset has restricted and unrestricted protocols. Our experiment adopts
the restricted protocol in which only 4,500 pairs of videos are available for training

the model and the similarity metric.

3.9.2.1 Data preparation

Youtube Faces contains a set of original video frames (faces and background)
and a set of cropped and registered face videos. We randomly shift the anno-
tated centers of the faces on each of original videos obeying a uniform distribution
U= Sofiset W, Sofiset W] in both z and y directions to guarantee that perturbed images
have intersections with detector bounding boxes, where sget is a scale factor and
W is the side length of the detected facial bounding box, which differs from person
to person. We choose the scale factor s,g.; among values 0, 0.25, 0.5 and 0.75. For

the scale of the windows, we enlarge the side length with another scale factor chosen
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(a) (b) (c) (d)
Figure 3.8: Sample perturbed face images in Youtube Faces dataset:

(Uscale, Oscales Sofiset) = (a) (1, 0, 0), i.e., labeled face bounding box, (b)
(2,0, 0), (c) (2,0, 0.5) and (d) (2, 0.5, 0.5).

from a Gaussian distribution N (fiscale, agcale). The mean jigeq1e 18 chosen between 1
(original size) and 2 (double size). The 0yl values are chosen from 0, 0.25 and 0.5.
We resize all of the perturbed windows to 150 x 150 for feature encoding. Sampled

perturbed images are shown in Figure 3.8.

3.9.2.2 Evaluation

Verification accuracy is also evaluated using TPRQEER, averaged over 10
splits. We downsample each video to 5 frames long. It is worth noting that increasing
the sample rate to 20 frames per video produces only 0.04% higher TPRQEER
(80.88%) on tightly bounded detected faces than 80.84% obtained from sampling
5 frames per video. Following [68], we apply the incremental “video pooling” for
encoding each video, i.e., patch descriptors across frames from the same video are
pooled together before being encoded into one Fisher vector. We train PCA and
GMM using perturbed training images and learn codeword relevance distributions

using detection bounding boxes in sampled training frames for each split.
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3.9.2.3 Result

The results comparing the proposed selective encoding and the original Fisher
vectors are shown in Tab. 3.1, with different configurations of window scale and offset
uncertainty. Both methods use the augmented descriptors and the selector in our
approach is trained with soft assignment and tested with no codewords discarded.
The results show that our approach outperforms the original Fisher vectors in all
settings. Even for the true detected face windows (fiscale = 1, Oscale = Softset = 0),
our approach obtains slightly improved accuracy. Both approaches experience a 3%
performance drop when fig..e is increased from 1 to 2, which is due to the decrease
in face resolution, and a 2% drop when oy increases from 0.25 to 0.5 with no
window offset. Fortunately such high scale uncertainty is typically rare for face
detectors and mobile applications. When the scale uncertainty ranges between 0
and 0.25, the encoding quality is relatively stable. The performance gap between
the two approaches becomes larger when offset uncertainty increases (over 3% gain

when Hscale = 27 Oscale = 0257 Soffset = O75)

3.9.3 Active face authentication on mobile devices

The use of mobile devices has increased dramatically over the last decades.
The privacy protection of mobile phone users has always been an important prob-
lem. Verifying the faces recorded by the smartphone camera plays a central role in
identifying the users. However, authentication is passively performed in the back-

ground, and users may not be actively trying to ensure that their face is viewed
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Table 3.1: Youtube Faces: TPRQEER averaged over 10 folds for different perturba-
tion settings using augmented PCA-SIFT descriptors and diagonal metric learning,
comparing the proposed selective encoding with original Fisher vectors. Each row
represents a setting of face window scaling and relative centroid offset distributions.
The better result for each setting is annotated in bold.

Iscale Oscale Soffsct Original FV Selective FV
1 0 0 80.84 +£1.91 81.00 £+ 2.32
2 0 0 76.72 4+ 3.33 77.24 + 2.02
2 0 0.5 74.52 +1.81 76.96 +1.73
2 0.25 0 76.84 £ 2.27 77.40 +1.53
2 0.25 0.25 75.04 +1.92 77.72 +2.40
2 0.25 0.5 74.44 +1.26 75.76 &+ 2.08
2 0.25 0.75 69.64 + 1.87 72.88 +1.60
2 0.5 0 74.52 +1.90 75.32 +1.60
2 0.5 0.5 70.92+1.35 72.72 +2.07

clearly by the camera. This results in face videos with unconstrained poses, some of
which are raised faces because users are likely to read while their smartphones are

below their faces instead of looking directly at the phone.

3.9.3.1 Dataset

We validate our approach on a dataset that contains 750 long videos recorded
from the viewpoint of mobilephone cameras when user activities are present [76].
More specifically, there are 50 persons (subjects) participated in the video recording.
Each subject is asked to use the same smartphone to perform 5 different tasks, i.e.,
Enrollment, Scrolling, Popup, Picture and Document, under three different lighting
conditions, i.e., well-lit, dim-lit and natural. The Enrollment task is to ask the user

to record their faces in different poses and this data will be the gallery in the face
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verification protocol. All the other four tasks involve the users performing some
activities on the cellphone (refer [76] for details); these videos make up the probe
set.

In practice, it is sufficient to identify users every few seconds. So we sample
30 short clips, each 30 frames long (approximately one second) for each test video.
For the gallery set, each enrollment video is segmented into consecutive clips of 30
frames uniformly instead of random sampling. We use the Enrollment data of 10
persons for training and use those of the remaining 40 persons for constructing the
gallery set. The lengths of enrollment videos vary for different persons. Figure 3.9
shows the distribution of the training videos and the gallery. Eventually, we have a
training set of 393 video clips and a gallery set that contains on average 43 video
clips per person. The probe set contains 4 tasks for each person out of 40 for each

of the 3 illumination conditions, i.e., 360 video clips per person and 14,400 in total.

3.9.3.2 Evaluation

The evaluation protocol is different from LFW and YTF datasets because,
for face authentication, each device has access to only the videos of the owner. So
during test time, only the gallery of the corresponding identity is accessible. More
specifically, each test clip is compared to all the gallery clips of the corresponding
person and a maximum similarity score is calculated. Thereafter, an ROC curve can

be generated either by averaging over identities with independent similarity score
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Figure 3.9: Distribution of the video numbers in (a) training set and
(b) gallery set. Identities are sorted in ascending order of their video
numbers. Orange bars show the number of videos with no face detected
at any of their frames and the blue bars show the number of those with

at least one face detected. The training set contains 393 videos in total
and the gallery set contains in average 43 videos clips per person.

thresholding or by using a global similarity threshold for all persons. According
to our experiments, there is no significant difference between using person-specific
thresholds and using a global threshold. So, in all of our experiments, we use global
thresholding for ROC curves. Equal error rates (EER) are also used for performance

evaluation and comparison.

3.9.3.3 Result

We use the training clips which cover only 10 identities (Figure 3.9) for train-
ing PCA and GMM of SIFT descriptors. Also we use all of the images with detected
faces in the training set for learning the relevance distribution for selective encod-

ing. Sometimes, real applications may not have large amount of data available for
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Figure 3.10: Probe identity #17: (a) patch centers with relevance (color
annotated) larger than 0.5 are shown on top of the origin image and (b)
max dot product similarity scores between the Fisher vector of selected

patches and that of each gallery video clip. Red color shows the similarity
for the ground truth identity.

training. So we use such limited training data to evaluate the generalization ability
of our trained selector. This experiment is based on appearance descriptors without
location features.

We first run an example experiment on a sampled video frame from identity
#17. The frame is taken under dark lighting condition and the chin of the identity is
slightly out of sight. We apply the selector to dense multi-scale descriptors extracted
over the image and obtain for each descriptor a relevance weight. The centroids of
patches with higher than 0.5 relevance are plotted on top of the original image in
Figure 3.10(a). Most patches within the facial area are selected, although we still see
a few background patches selected above the face on the ceiling. These incorrectly

selected patches have an insignificant influence on the descriptor distribution when
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pooled with a large number of facial patches. We use these selected patch descriptors
and the selected codewords (with 0.5 relevance or higher) for encoding the image
and compare the feature representation with those from the 40 gallery sets using
dot product similarity (equivalent to ¢* since features are normalized). Similarity
scores are shown in Figure 3.10(b). The top scored identity is the ground truth and
its score is over 0.2 larger than that of the second most similar identity which shows
that even using such a dark and low quality image, we are still able to distinguish
the identity from all other 39 identities.

The face authentication results are shown in Figure 3.11. We compare our
selective encoding framework (based on hard assignment selector) with the original
Fisher vectors and a variant of our framework which discards only the codewords
with relevance weights lower than 0.5. While the original Fisher vectors achieve
0.455 equal error rate, our approach improves significantly and achieves 0.036 equal
error rate. Using only codeword selection achieves 0.157 equal error rate. That
means the codeword selection is useful; however the selection of visual descriptors
plays a more central role in robustifying feature encoding.

It is worth noting that the detector used for learning the relevance distribution
is not specifically tuned in this experiment, so it might still produce errors. However,
the experimental results suggest that our selection strategy is robust and does not

require accurate registration.
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Figure 3.11: Results on active authentication dataset: (a) Equal error
rate (EER) for each person and (b) ROC curves. Three approaches
are compared: the original Fisher vector (Original FV), selective en-
coding with only codeword selection (Selected Codeword), selective en-

coding with both descriptor selection and codeword selection (Selected
Desc+Codeword).

3.10 Discussions and future work

3.10.1 Feature selection

Our work can be seen as a case of doing feature selection. However, typically
feature selection is only adopted in the features. Our framework not only selects
features but also selects codewords. Another major difference is that the relevance
weights of features and codewords are learned from an external weak supervision,

i.e., bounding boxes annotated by an existing face detector.
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3.10.2 Uncertainty modeling of the codebook

The soft weighted version of our model can also be seen as a special case of
modeling the uncertainty of each codeword in the codebook. The weights corre-
spond to how much corresponding codewords contribute to the spatial robustness
of the model, i.e., noisy codewords are assigned with much lower weights (high

uncertainty).

3.10.3 Deep learning based approaches

There has been a substantial body of work on training deep neural networks
for face recognition. However, deep neural nets usually require a large amount of
training data, while our approach does not have such requirement and all our experi-
ments are conducted on small training sets, which are insufficient for training neural
nets. On the other hand, most existing neural net-based face recognition systems
are designed for cropped and aligned face images such as Deepface [20]. Little effort
has been devoted to analyzing the spatial robustness of those networks, which could
be another interesting story beyond the scope of this paper. Additionally, improv-
ing the spatial robustness of neural nets from the perspective of architecture design
could be another fruitful topic for future research. A simple approach that utilizes
a similar idea of this work in deep neural network would be training a multi-task
model that jointly classifies and localizes facial regions. However, the problem of

how to train deep nets with limited data and resources is still a big challenge.
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3.11 Conclusion

We have proposed a generic selective encoding framework for representing ob-
jects of interest that are unreliably localized in images. Our framework introduces
the selector component into the codebook model so that it does not require test time
detection or registration and becomes robust to localization errors in real scenarios.
Our method is also computationally efficient which can benefit real-time applica-
tions. We have applied selective encoding to general face verification and mobile
phone face authentication. Experimental results suggest that our approach is able
to improve the spatial robustness of feature encoding when face detectors produce
errors or even fail to localize faces. We expect that our framework could be applied

to general image classification and object recognition in the future.
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Chapter 4: Generating mid-level spatial representations from lan-

guage

4.1 Introduction

Text-based image retrieval, dating back to the late 1970s, has evolved from
a keyword-based task to a more challenging task based on natural language de-
scriptions (e.g., sentences and paragraphs) [89-91]. Queries in the form of sentences
rather than keywords refer to not only object categorical information but also intera-
tions, such as spatial relationships, between objects. Those relationships are usually
described in the real (3D) world due to the nature of human language. Intuitively,
they can be the core feature for ranking images in many application scenarios, e.g.,
a user searching for images that are relevant to a particular mental image of a room
layout. Not surprisingly, researchers have recently increased their focus on under-
standing spatial relationships from text input and retrieving semantically consistent
visual information [89,92-94].

Matching images with user provided spatial relations is challenging because
humans naturally describe scenes in 3D while images are 2D projections of the world.

Inferring 3D information from a single image is difficult. Most existing approaches
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learn from annotated data to map language directly to a probability distribution of
pairwise relationships between object locations [89,92]. However, such a distribution
is non-convex and highly non-linear in the 2D image space because the (unknown)
camera view affects the bounding box configurations. Consequently, the success of
2D learning based approaches naturally depends on the size of annotated training
data. Also, the learner overfits easily since annotated spatial relations have a long-
tailed distribution; many valid configurations happen rarely in the real world (e.g.,
a desk on another desk). With pairwise relations, it is also hard to enforce the fact
that all objects are viewed from the same direction in an image. This argues for a
holistic model for object relationships that jointly optimizes object configurations.
Motivated by this, we explore an alternative model of spatial relations that generates
3D configurations explicitly based on physics.

We explore an approach that uses physical models and complex spatial rela-
tion semantics as part of an image retrieval system that generates 3D object layouts
from text (rather than from images) and performs image retrieval by matching 2D
projections of these layouts against objects detected in each database image. Our
framework requires the a priori definition of a fixed set of object and spatial relation
categories. Spatial relation terms are extracted from the dependency tree of the text.
Objects are modeled using cuboids and spatial relations are modeled as inequality
constraints on object locations and orientations. These inequality constraints can
become very complex, containing nonlinear transformations represented using first
order logic. Consequently, an interval arithmetic based 3D scene solver is intro-

duced to search for feasible 3D spatial layout solutions. Camera orientations are
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constrained and sampled for obtaining 2D projections of candidate scenes. Finally,
images are scored and ranked by comparing object detection outputs to a sampled
set of 2D reference layouts.

Compared to 2D learning based approaches, our approach has the following
advantages: (1) the mapping from language to 3D is simple since the text-based
spatial constraints have a very concrete and simple meaning in 3D, simple enough
to define with a few rules by hand; (2) no training data is needed to learn complex
distributions over the spatial arrangement of 2D boxes given linguistic constraints
(the non-linear mapping from language to 2D is handled by projective geometry) and
(3) adding common sense constraints is easy when referring to physical relationships
in 3D (Section 4.6.2), while it is hard if these constraints are specified and learned
in 2D (due to the non-linearity of projective geometry). We evaluate our approach
using two public scene understanding datasets [95,96]. The results suggest that
our approach outperforms baselines built upon object occurrence histograms and

learned 2D relations.

4.2 Related work

Text-based image retrieval has been studied for decades [91]. As both com-
puter vision and natural language processing have advanced, recent efforts have
emerged that build connections between linguistic and visual information [97,98].
Srivastava and Salakhutdinov [99] extend Deep Boltzman Machines (DBMs) to mul-

timodal data for learning joint representations of images and text. They apply such
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representations to retrieving images from text descriptions. Their model learns map-
pings between objects with attributes and their corresponding visual appearances;
however spatial relations are not modeled.

Spatial relationships play an important role in visual understanding. Previous
works make use of text-extracted spatial relations in image retrieval. Zitnick et
al. [94] generate and retrieve abstract cartoon images from text. Cartoon object
models are pre-defined and 2D clipart images are composed according to the text.
Siddiquie et al. [100] devise a multi-modal framework for retrieving images from
sources including images, sketches and text by jointly considering objects, attributes
and spatial relationships, and reducing all sources into 2D sketches. However, their
framework handles text with only two or three objects and very limited 2D spatial
relationships. Lin et al. [92] retrieve videos from textual queries. A set of motion
text is defined with visual trajectory properties and parsed into a semantic graph
to to match video segments via a generalized bipartite graph matching. All these
works rely on 2D spatial relations while our work is based on real world physical
models of 3D scenes to retrieve semantically consistent images.

Interesting recent work on retrieving images from text is based on the scene
graph representation [89,93]. A scene graph is a graph-based representation which
encodes objects, attributes and object relations. In Johnson et al. [89], text input
is converted to a scene graph by a human and a CRF model is used to match scene
graphs to images by encoding global spatial relations of objects rather than only
pairwise relations. Their approach requires learning spatial relations from annotated
image data. Our work differs in that we take a generative perspective and inject
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physical relation models and human knowledge into the retrieval system without
the requirement of large-scale data annotation.

Many existing works utilize 3D geometry in vision tasks such as object recogni-
tion [101], image matching [36], object detection [102,103], etc. However, to the best
of our knowledge, the use of 3D geometry in relating images with language has not
been exploited. While inferring the 3D structure from a single image is challenging
and complicated in vision [95,104-107], the problem of rendering scenes from text
is of interest in the graphics community. The wordseye system [108] renders scenes
from text with given 3D object models. Chang et al. [109] generates 3D scenes from
text by incorporating the spatial knowledge learned from data. In addition, some
recent works cast computer vision as inverse graphics and try to incorporate com-
puter graphics elements into visual understanding systems [110-112]. Our work also
involves scene generation. However, our purpose is to retrieve similar images based
on bounding boxes, which can be efficiently computed using off-the-shelf software
during a database indexing step, so real object models are not required, although

better scene generation could potentially improve image retrieval accuracy.

4.3 Preliminary — Interval Analysis

Our approach involves finding feasible solutions to a mathematical program
where the variables are object coordinates and orientations, and the constraints are
inequalities translated from user descriptions. Since small placement pertubations

usually do not affect the fullfilment of constraints, feasible variables can naturally
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be represented by a set of intervals (any value within the interval is feasible).
Interval analysis represents each variable by its feasible interval, e.g., [, u]
(with lower bound [ and upper bound «) and the goal is to find the bound for each
dimension that satisfies all constraints [113]. When an interval does not satisfy all
the constraints, it is split into smaller intervals and evaluated recursively. Arithmetic

operators are defined in terms of intervals, e.g.,

e addition: [ll, Ul] -+ [12, Ug] = [ll -+ lg, uy + UQ],
o subtraction: [ly,ui] — [la, us] = [l1 — ug, uy — lo};
o comparison: [ly,u1] < [la,us] equals [0,0] if uy < I} (definitely false); equals

[1,1] if uy < Iy (definitely true); equals [0, 1] otherwise (maybe true).

The fulfillment of a constraint can be represented by any of the three logical intervals,

i.e., [0,0],[1,1],0,1].

4.4 Approach overview

The proposed framework, as illustrated in Figure 4.1, consists of several mod-
ules. First, the input text is parsed into a set of semantic triplets of object names
and their spatial relationships. Second, the semantic triplets are used to solve pos-
sible 3D layouts of objects along with sampled camera locations and orientations.
The 2D projections of the 3D scenes are used for generating 2D bounding boxes of
objects, which we call reference configurations. Finally, the reference configurations
are matched to the detected bounding boxes in each database image to score and

rank according to their configuration similarity.
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4.5 Text parsing

The text parsing module translates text into a set of semantic triplets which
encode the information about two object instances and their spatial interactions.
How to robustly extract relations from text is still an open research problem in
natural language processing [90], which is beyond the scope of this paper. For our
application, a simple rule-based pattern matching works sufficiently well, requiring
a pre-defined dictionary of object and spatial relation categories. A text example
and its parsing output is shown in Table 4.1.

The input text is processed by the Stanford CoreNLP library [114] with part-
of-speech tagging and dependency tree. We implement a rule-based approach to
extract spatial relations (such as on, under, in front of, behind, above, etc.) from
the dependency tree and compose its corresponding semantic triplet representation
(target object, reference object, relation). The co-reference module in the CoreNLP
library is used to aggregate multiple noun occurrences that correspond to the same
object instance. Each object reference is represented by its category name and a
unique ID within the category, e.g. sofa-0 and dining-table-2.

Natural objects are usually composed of multiple sub-objects and there are
often cases when a sub-object is referenced instead of the whole object. A bed,
for instance, has its head and rear. And a chair has its back and seat. We take
sub-objects into consideration and represent any sub-object reference by its object
category name, unique in-category ID and sub-object name, e.g. “the rear of the

bed” is represented as bed-0:rear if the ID is 0.
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Table 4.1: Semantic triplet parsing from an example query

#  Sentence — (object-1, object-2, relation)

1 A picture is above a bed.
(picture-0, bed-0, above)

2 A night stand is on the right side of the head of the bed.
(night-stand-0, bed-0:head, right)

3 A lamp is on the night stand.
(lamp-0, night-stand-0, on)

4 Another picture is above the lamp.
(picture-1, lamp-0, above)

5) A dresser is on the left side of the head of the bed.
(dresser-0, bed-0:head, left)

Besides object categories and spatial relationships, we also consider the count
of each object, e.g. three chairs, two monitors, etc. The parser maintains a list
of object ID and their counts. If the count of chair-0 is 3, then the parser will
expand chair-0 to a set of three instances {chair-0-0,chair-0-1,chair-0-2} in

the outputs.

4.6 3D abstract scene generation

The 3D abstract scene generation module is the central component in our
image retrieval framework; it takes as input semantic triplets and generates a set of
sampled possible 3D object layouts. We describe below the three core components
of the scene generator: the cuboid based object model, the spatial relation model

and the 3D scene solver.
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4.6.1 Cuboid based object model

The basic cuboid representation of an object is C = (I, 1, 1, z5) where (I, 1, 1)
is the size of the cuboid that bounds the object in x,y, z directions respectively and
zs 1s the z-coordinate of the supporting surface of the object. We mostly use regu-
lar sizes but also set different sizes for objects with attributes such as long-desk,
triple-sofa, etc. The supporting surface is usually the top face of the object
cuboid, but it can sometimes be located elsewhere with respect to the cuboid, e.g.,
for a chair it is in the middle of the cuboid. Spatial relations such as on and
under are modeled with respect to the surface of the object. Most of the objects
can be modeled using this cuboid representation such as garbage-bin, picture,
night-stand, etc.

However, the single cuboid representation is not sufficient for some object
categories such as chair and desk since the under-surface area is empty. Considering
the fact that most objects can be easily decomposed into smaller sub-objects, we
represent these object categories as the union of a set of cuboids, which we call
a cuboid set representation. Each sub-cuboid corresponds to a sub-object and is
considered a simple object, whose top face is the supporting surface. The k-th sub-
cuboid is represented by SF = (d*, d’yf, dr Ik, l’zj, I¥) where (d¥, d’y“, d") is the offset from
the lowest point of the sub-cuboid to the lowest point of the original object, and
(%, 15,1%) is the size of the sub-cuboid. The sub-cuboid parameters S* are computed
as functions of the original object parameters C. Four sampled cuboid based object

models are visualized in Figure 4.2.
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Figure 4.2: Sample cuboid based object representations: (a) table (b)

chair (c¢) bed (d) night-stand. Different colors represent different sub-
objects. The night stand (d) is represented by a single cuboid.

4.6.2 Spatial relation model

The spatial location and orientation of each object is represented as X =
(x,y, z,0) where (z,y, z) is the lowest point of the object cuboid and d is its orien-

tation. The object rotation is around the z-axis.

Atomic relations.  We model 8 basic spatial relations using the following mathemat-
ical expressions. Given the object pose and its size, the lowest point p = (2, Yp, 2p)7
and highest point q = (4, y,, 2,)7 of the object cuboid can be computed by rotating

the object models w.r.t. the object orientation such that

L1, L] L 1, L]
p_R9 |:_§a_§a_§:| +|:x+§7y+§vz+§:| )

L 1, 1] L 1, L]
_ be by b2 il i = 4.1
q R9{2,2,2] +{x+2,y+2,z+2] (4.1)

where Ry is the z-axis rotation matrix w.r.t. to orientation 6. So an object can be

represented using tuple (p,q,6). Letting the cuboid of object-1 be O1(p1,q1, b1)
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with support surface z,; and the cuboid of object-2 be Oz (p2, qq, 82) with support

surface z4, we define 8 atomic relations as

® near: 01 N (p2 - dneareeza q2 + dnear6027 92) 7é ®7

. — p1tai .
® ON:! Zp) = Zg2 N 3 Cay ()27

. pP1+q: .
e above: Zq2 + dmin-above S Zpl S Zq2 + dmax-above A D) eazy OZ;

e under: zg < zgp A Op Ny Og # 0;
e behind: max(uj p1,uj 1) < min(ug ps, uj, qs);

e front: min(uy,p1,uy,q1) > max(ug p2, up, qz);

e on-left: min(ugz_ﬂ/zpl,ugrwﬂql) > max(ugz_ﬂ/gpg,u;2_ﬂ/2q2);

e on-right: maX(ugrﬂ/zpl,ugrﬁ/qu) < min(ugz_ﬂ/ng,ugz_,r/zqﬂ;

where dpear, dmin-above, dmax-above are distance thresholds, p €., C means point p is
inside the cuboid C on the z-y plane, N represents the intersection of two cuboids
and N, the intersection of two cuboids on the z-y plane, and uy = (cosf,sind,0)7
is a unit direction vector and ey = (cosf — sin#,sinf + cosd,1)7 is a vector that

enlarges the effective object cuboid.

Composite relations. In natural language, there are far more spatial relation de-
scriptions than the above mentioned 8 relations. However, most of the spatial rela-

tions can be defined based on the 8 atomic relations. Two examples are
e next-to: on-left(0;,0y) V on-right(Oq, Oy);

e side-by-side: 0; = 0 A near(O;, O,);
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In addition, another relation is modeled which is usually used for a set of multiple

instances {O1, Oy, ..., 0} of the same object category, i.e.,

e in-a-row: 6; = 0,11 Aon-right(O;, 0;41), Vi.

Group relations. If an object reference has a count more than 1, then all of its
instances form a group, which often interacts with other objects as an entirety. If
a group of k instances occurs in the triplet as the target, we create k new triplets
with the same reference and relation. If the group occurs as the reference, then we

create a new virtual object whose cuboid is bounded by all of its instances.

Prior constraints. An effective way to reduce the search space is to incorporate
common sense and reasonable assumptions into the constraints. First, we make the
following assumptions: (a) the room has two walls (x = 0 and y = 0); (b) the text
description is coherent, i.e., the objects in each semantic triplet are close to each
other; (c) objects are usually oriented along z-axis or y-axis directions. Second, no

pair of objects overlap with each other, i.e.,
e exclusive: S/ NSY = Wi, j,v,w

where SY is the v-th component (sub-cuboid) of the i-th object. Many other con-
straints are related with object properties: (a) picture, door, mirror are on the wall,
i.e. x =0V y=0; (b) for relation next-to, in-a-row, side-by-side, if either reference
or target is against the wall, the other ones are also against the wall and they should
also have the same orientation; (c) bed, night-stand, sink are against the wall; (d)

bed, night-stand, sofa are on the ground.
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4.6.3 3D scene solver

Let X = {x1, 91, 21,01, -, T, Yn, Zn, On} € R¥™ be a layout state representing
the locations and orientations of all objects. We construct constraint function F' :
R* — {0,1} which evaluates all prior constraints and relational constraints. The
goal is to find the feasible solution set S such that F(X) =1 for all X € S.

Our solver is based on interval analysis [113] where any variable is represented
by an interval (an uncertain value) instead of a certain value. We use a vector of
size 2 to represent an interval, i.e., a lower bound and an upper bound. Under
interval analysis, the domain of layout states becomes R*"*? and the constraint
function becomes F': R**2? — {[0,0], [0, 1], [1,1]}. Starting with a candidate queue
containing an initial interval layout state {Xg}, our solver examines the candidate
states one at a time. For each state X; € R¥"*? if F(X;) = [1,1], then X is feasible
and appended to the solution set. If the constraint fullfillment is undecidable, i.e.,
F(X;) = [0,1], then X; is divided into two equally sized intervals by splitting the
variable with the largest uncertainty. The two new states are appended to the
candidate queue. Otherwise, F'(X;) = [0,0] and no feasible solution is within the
space bounded by X;. In the end, any layout in the solution set is guaranteed
to meet all constraints. An advantage of the method is that it does not require

computing the gradient of constraint F'. The pseudo-code is shown in Algorithm 1.

Interval shrinkage. The original interval analysis does not make full use of equality

constraints, e.g., when a variable is constrained to equal another variable, it becomes
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(a) (b) (c)

Figure 4.3: The generated scene geometry for the query in Table 4.1: (a)
a sampled 3D layout with the sampled camera location (a blue cross in
the figure), (b) 2D projections of the object cuboids and (c¢) 2D bounding
boxes of the objects.

redundant to divide both of their intervals since one can be directly computed
based on the other. In addition, many spatial relations are transitive, e.g., if object
A is in front of object B and B is in front of C, then A is likely to be in front
of C but with a larger distance. Such inferred constraint can benefit the solver
with a better pruning power. Based on these observations, we develop the interval
shrinkage operation which pre-computes lower bound matrices L* LY, L* € R™"
and upper bound matrices U*, UY, U* € R™™" for pairwise coordinate differences,
e, Li; <z —x; < UE A sz <y —y; < Uf{j NLi; < 2z — 2z < Uf;. The
bound matrices are initialized using the original constraints and updated once we
find L}; < Lj, + Ly, or U, < Ul + U, (x € {r,y,2}). Before evaluating
each candidate interval layout state, we shrink its variables according to the bound
matrices, e.g., x{"K = N[z, + LY x; + U] Nx; where x; is the interval of variable

i 1,57

shrink

x; and x; is the interval after shrinkage.
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Algorithm 1: 3D scene solver

Data: Initial bounds Xy = [x1,y1,%1,01, - - -, Xn, Yn, Zn, 0] € RIW2
Data: Constraint F : R**? — {[0,0], [0, 1], [1, 1]}
Result: Feasible regions (or solution set) S

1 initialization: S =0, Q = {Xy};

2 while Q # () do

3 read the first interval: X; = Q.front();

4 remove the first interval: Q.pop();

5 interval shrinkage: X; = shrinkage(X;);

6 if F(X;)=[0,0] then

7 X, is not feasible;

8 else if F(X;)=[1,1] then

9 ‘ X; is feasible: S.append(X;);

10 else if maxy | X;p.max — Xj;.min| > tol then

11 k = arg maxy, | X;;.max — X;.min|;

12 half split k-th dimension of X; into Xgl) and XEZ);
13 Q.append(Xgl));

14 Q.append(XZ@));

15 end

16 return S;

Early stopping. The feasible solution space can be large if the input constraints are
weak. Since we sample K layouts in our framework for subsequent image matching,
the 3D scene solver stops when at least K layouts are found. The sampling behaviour
is achieved by implementing the candidate queue with Knuth shuffling, i.e., each time
after appending a new element, the queue randomly pick an element and swaps it
with the new element.

The problem is a combinatorial optimization which is NP-hard and interval
analysis is essentially a breadth first search with pruning. As a result, the algorithm
has no time limit guarantee. However, with interval shrinkage and early stopping,
our algorithm is able to solve most queries in a reasonable amount of time. Without

interval shrinkage, our MATLAB implementation can not find a solution for the query

81



in Table 4.1 within 10 minutes, while it returns 5 solutions with only 6 seconds using

the shrinkage operation.

4.7 Image retrieval

To compare a query with image bounding boxes, we first sample feasible 3D
layouts and potential camera locations and orientations to produce reasonable 2D
projections of objects and then compute their bounding boxes. The whole image
database is scored and ranked according to the similarity between bounding boxes

detected by object detectors and those from sampled 2D layouts.

4.7.1 3D layout sampling

The 3D solver finds (continuous) interval solutions for 3D object coordinates;
any solution within such intervals is feasible. However, the solutions within an
interval are redundant; those object locations shift in tiny distances. So we sample
only one layout within each interval, which results in a set of representative feasible
3D layouts. We further sample a few 3D layouts from this feasible set in order to

generate their 2D projections.

4.7.2 2D layout projections

For each layout, we sample camera locations and orientations to obtain 2D
projections which allows matching images under multiple views. Object bounding

boxes are computed according to the 2D projections. Since we solve for scale and
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translation for each image individually during matching, in this step we only consider
a canonical camera. Some heuristics are used for sampling camera locations and
orientations. First, the camera always faces the objects and should be neither too
close nor too far, so we sample its location from 5-10 meters from the origin. Second,
the camera should not be located behind the wall, so the coordinates are positive.
Third, when an object is on the wall, the camera direction should be within 60 degree
offset from the object orientation. We assume the camera is 1.7 meters above the
ground and situated horizontally. Figure 4.3 shows an example of 3D layout, 2D

projections and 2D bounding boxes for the query in Table 4.1.

4.7.3 2D layout similarity

Both detection outputs and 2D reference layouts can be represented by {b;, ¢;}
where b; is the 2D box of the i-th object and ¢; is its category. Let {b;, ¢;} be a 2D
/ /

¢} be the detected boxes. Since scaling and translation

)1

reference layout and {b

are left as free variables, the bounding box matching involves optimizing

max Y p(b),) -10U(sb; + b ), st oc=d,, (4.2)

s,t,a

where p(bj,) is the detection confidence, 10U is intersection-over-union and assign-
ment vector a indicates the correspondence between two sets of bounding boxes. In
our experiment, we evaluate two versions: (a) the hard version uses a threshold on
detection outputs and uniform p(b}) and (b) the soft version makes p(b}) equal to
the detection score. We use a sliding window to find the best matched transforma-

tion and assignment. Specifically, we uniformly sample 5 scale factors from 0.5 to 1
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w.r.t.the image space and search with a 10-pixel stride. We use a greedy strategy to
compute assignments and scores (Equation 4.2). The score for a query is computed

as the highest score among the scores of all its sampled 2D layouts.

4.8 Experiments

We validate our approach using two indoor scene datasets (SUN RGB-D [96]
and 3DGP [95]). Although the original goal of the two datasets is not text-based
image retrieval, both contain groundtruth object bounding boxes which enables
evaluation in our image retrieval setting. We compare 3 baselines built upon object

occurrence histogram and 2D spatial relation based scene graph matching.

4.8.1 Experimental setup

Baseline (H). The first baseline is based on the histogram of object occurrences.
Specifically, both the image and text are converted to a histogram representation,
i.e., a vector x = {1, xs,...,xN}, where x; is the number of occurrences of the i-th
object category. The similarity between occurrence histograms is measured by ¢!

distance.

Baseline (2D). The second baseline is based on learned object relations in 2D image
space. Specifically, the baseline learns a bounding box distribution of the first object
w.r.t.the second object box (normalized in both x and y coordinates). We have all
eight atomic relations annotated in 1,000 images in the training set of SUN RGB-D

dataset and use IOU-based nearest neighbor (IOU-NN) classifier to score for each
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test image the spatial relationships between object pairs. Following [115], we convert
the text to a simplified scene graph that maps all instances of an object category
into a single node, and assign the count of each relation as an attribute of the
corresponding edge. An image scene graph with relation probabilities on edges can
be constructed for each test image by using the IOU-NN relation classifier upon
each pair of detected object instances. To measure the similarity between text scene
graph and image scene graph, we sum for each edge (u, v, r) in the text scene graph
the top k, ., corresponding relation scores in the image scene graph, where k, , , is

the count of the relation r between object categories v and v in text scene graph.

Baseline (CNN). The third baseline replaces the IOU-NN relation classifier in Base-
line 2D with a Convolutional Neural Network (CNN). Following [116], we finetune
the pretrained VGG-19 [31] to predict predicates from cropped union image regions
of the two objects. The word2vec vectors of the two objects are concatenated with
the response of layer fc7. We backpropagate through the whole network with initial

learning rate 0.001 for 90 epochs.

Evaluation metric. We evaluate different approaches to retrieving indoor images
from text descriptions by measuring the percentage of queries (recall) at least one
of whose ground truth images are retrieved within top k& ranked images (R@k).
The median rank (median of the ranks of all ground truths) is used as a global

measurement.
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Parameter selection. We set the room size to be 5m X bm X dm. dyear = 0.5m,
Amin-above = 0.25m, and dyaxabove = 0.5m. The tolerance in 3D scene solver is 0.2m
because 20cm replacement of objects is unlikely to change the constraint fulfill-
ment. We sample 5 reference layouts per query and 1 camera view per layout unless

otherwise specified.

4.8.2 SUN RGB-D dataset with R-CNN detectors

SUN RGB-D Dataset [96] is a recent dataset for scene understanding which
contains 10,335 RGBD images. We use only the RGB images without depth in-
formation. We follow the same protocol as [96] by using 5,285 images for training
the detectors and the remaining 5,050 images as the evaluation set. We annotated
text queries for 150 sampled test images. SUN RGB-D contains various objects
and complex spatial relations. We choose 19 object categories in our evaluation:
{bed, chair, cabinet, sofa, table, door, picture, desk, dresser, pillow, mirror, tv, boz,
whiteboard, night_stand, sink, lamp, garbage_bin, monitor}, which contains not only
objects on the floor but also those off the ground or on the wall such as picture and
MITTor.

We use the 5,285 training images and their ground truth object bounding
boxes to train Fast R-CNN [117] detectors for the 19 object categories. The R-CNN
approach is built upon object proposals; non-maximum suppression is not used in
postprocessing. For each test image, R-CNN detectors generate probability-like

scores for all object categories on each object proposal bounding box. The category
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Table 4.2: SUN RGB-D: Top-k retrieval accuracy for 150 queries. The retrieval
candidate set contains 5,050 images. We evaluate the occurrence baseline (H), 2D
relation baseline (2D), CNN baseline, the proposed hard version, proposed soft
versions, and a combination between our soft version and the 2D baseline. The
parameter of our model [z,y] means sampling x 3D layouts and y camera views
for each layout. All results of our model are averaged over 5 random trials. The
threshold for detection outputs is 0.5. The best is shown in bold and the second
best is shown with underline.

R@1 R@10 R@50 R@100 R@500

Baseline H 1.3 4.0 14.0 20.0 43.3
Baseline 2D 2.7 15.3 35.3 44.0 64.0
Baseline CNN 2.7 16.7 30.7 36.0 63.3
Ours hard|[5,1] 3.9 16.4 31.7 42.3 T71.7
Ours soft[5,1] 4.5 16.7 34.0 46.4 76.0
Ours soft[5,5] 4.9 18.7 37.9 48.1 76.9
Ours soft[5,5] + 2D 8.7 21.6 40.5 50.7 77.6

with the highest score is chosen as the bounding box category and its score is used
as the bounding box confidence.

The top-k retrieval recalls are shown in Table 4.2. In addition with the base-
lines, two versions of our approach are evaluated. The baselines and our hard model
use bounding boxes with over 0.5 confidence and weigh them equally, while our
soft models use all bounding boxes and assign their confidences as weights in Equa-
tion 4.2. The results suggest that the hard model with 5 layout samples outperforms
the occurrence baseline and is on par with the 2D baseline. Our soft models per-
form even better than the hard one. With increased layout samples, our approach
outperforms the baselines significantly. We also evaluate a combination between
our soft model and the 2D baseline by adding their normalized scores. The result
suggests that such combination further boost the accuracy and that our physical

model based solution is complementary to learning based approaches.
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(a) A picture is above a bed. A night stand is
on the right side of the head of the bed. A lamp
is on the night stand. Another picture is above
the lamp. A dresser is on the left side of the
head of the bed.

T

(b) There is a triple sofa. The sofa is against
the wall. A chair is next to the sofa. And the
chair is also against the wall. Two pictures are
above the sofa. And another picture is above
the chair.

o] A B

(¢) A chair is in front of the desk. Some boxes
are on the desk. A monitor is on the desk. The
desk is against the wall.

Figure 4.4: Matched object layouts based on our greedy 2D layout matching for three ground truth images that are
ranked top 5 among all candidate images. Green bounding boxes are object detection outputs that match the 2D
layouts generated from the text queries. Red bounding boxes represent a missing object (not detected by the object
detector) within the expected region proposed by 2D layouts.
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(a) (b)
Figure 4.5: Influence of # viewpoint samples and # layout samples: (a)
5 3D layouts sampled for each query, and (b) 5 viewpoint sampled for

each 3D layout. The y-axis is median rank of ground truths. We random
5 times for each data point. Lower is better.

Qualitative results. Figure 4.4 shows 3 examples whose ground truths are ranked
top 5. The object bounding boxes that best match the generated 2D layouts are
shown on the images. Green boxes are matched objects and red boxes are missing
ones, expected in the generated 2D layout but unseen in the object detection output.
The figure shows that our model has some level of tolerance on missing detections.
A more interesting finding is that our model suggests potential locations for missing

objects even though they could be heavily occluded.

Sampling effects. To obtain 2D layouts, we sample 3D layouts and camera views.
Figure 4.5 shows how the sample size of both affects the the median rank of ground
truths (keeping one and varying the other). Figure 4.5 suggests that more samples

generally yield better performance and the improvement saturates as the sample

89



size increases. The improvement brought by more 3D layouts is more significant
than that brought by more camera views. In addition, the performance uncertainty

due to randomness decreases as the sample size increases.

4.8.3 3DGP dataset with DPM detectors

The 3DGP dataset [95] contains 1,045 images with three scene types: living
room, bedroom and dining room. Each image is annotated with bounding boxes for
6 object categories: sofa, table, chair, bed, side table and dining table. Following the
same protocol as in [95], 622 training images are used to train the furniture detectors
and the remaining 423 images are used as the retrieval image database. We use pre-
trained Deformable Part Models (DPM) [26] of indoor furnitures provided by the
3DGP dataset and use the thresholds in the pre-trained models to cut off false
alarms. Non-maximum suppression is used to remove duplicates.

3DGP dataset is less diverse than SUN RGB-D; many images have very similar
layouts. We annotated 50 unique layout descriptions which cover 222 test images.
The retrieval results are shown in Table 4.3. Because our method is agnostic about
object detector algorithms, we split the results into two parts to separate the im-
pact from using a specific detection algorithm: one using ground truth bounding
boxes and the other using DPM detection outputs. The results suggest that our
approach outperforms baseline algorithms under both bounding box settings and

the improvement is independent from detector performances.
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Table 4.3: 3DGP dataset: Top-k image retrieval accuracy. Left half is based on
DPM (the best is with bold) and right half is based on ground truth bounding
boxes (the best is in underline). The results of our approach (soft[5,5]) are averaged
over 10 random trials.

w/ DPM bbox w/ GT bbox
H 2D CNN Ours H 2D CNN Ours

R@1 4.0 2.0 4.0 4.4 4.0 4.0 4.0 3.0
R@10 10.0 14.0 16.0 16.8 16.0 18.0 14.0 20.2
R@50 30.0 30.0 30.0 31.2 34.0 38.0 32.0 41.4
R@100 46.0 32.0 32.0 52.0 64.0 66.0 66.0 68.0

4.9 Discussions and future work

4.9.1 Generative vs. discriminative

Our work is a generative framework which generates an abstract scene layout
from a given textual description. The proposed generative model is based on human
common sense about spatial relationships and indoor scene structures. We show our
generative approach is effective when there is a lack of training pairs of image and
descriptions. We argue that it would be difficult to collect sufficient training pairs
in this task considering the diversity of human language descriptions. However, it
would still be interesting to see how we could effectively learn a generative model
following the recent emerging directions such as Generative Adversarial Network
(GAN) models and its variant Conditional GAN models.

Another direction to address this problem would be the discriminative way,
i.e., interpreting the spatial relationships or textual phrases directly from images.

There has been a recent effort in this problem. However, a major challenge of such
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problem is still how to learn the predictive model under a limited size of annotated
training data. In the next chapter, we introduce an approach to predicting phrases

from images using large scale weakly supervised data.

4.9.2 Diverse solutions and joint optimization

A bottleneck of our framework is the need to sample layout solutions. In
terms of sampling, an important problem is how to sample diverse solutions and
avoid near duplicates in order to improve the efficiency of sampling process. The
interval analysis is essentially the breadth first search. A naive way would be dedu-
plicate the solutions after sampling a large number of solutions. Efficient sampling
strategies could benefit the system very much. On the other way around, instead
of sampling, an interesting further direction would be exploring how to unify the
the whole pipeline by combining top-down and bottom-up approaches so that the
need of sampling could be largely reduced. Essentially, this would lead to a joint

optimization of the object layouts given both textual descriptions and images.

4.9.3 Nonrigid objects and natural scenes

Our framework works mostly for rigid objects and indoor scenes because the
generative model assumes a cuboid based object representation. It would be inter-
esting to see whether and how this idea could be generalized to natural scnes with
nonrigid objects and complex relationships. A possible direction to pursue would

be representing the objects as probabilistic distributions instead of using concrete
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shapes. That would benefit the system by not only allowing more flexibility of the
object rigidness but also allowing the interactions between objects more tolerable

to small noises or uncertainty.

4.10 Conclusion

We presented a general framework for retrieving images from a natural lan-
guage description of the spatial layout of an indoor scene. The core component of
our framework is an algorithm that generates possible 3D object layouts from text-
described spatial relations and matching these layout proposals to the 2D image
database. We validated our approach via the image retrieval task on two public
indoor scene datasets and the result shows the possibility of generating 3D layout
proposals for rigid objects and the effectiveness of our approach to matching them

with images.
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Chapter 5: Large scale wealy supervised learning of high-level repre-

sentations

5.1 Motivation

Research on visual recognition models has traditionally focused on supervised
learning models that consider only a small set of discrete classes, and that learn
their parameters from datasets in which (1) all images are manually annotated for
each of these classes and (2) a substantial number of annotated images is available
to define each of the classes. This tradition dates back to early image-recognition
benchmarks such as CalTech-101 [118] but is still common in modern benchmarks
such as ImageNet [119] and COCO [120]. The assumptions that are implicit in such
benchmarks are at odds with many real-world applications of image-recognition
systems, which often need to be deployed in an open-world setting [121]. In the
open-world setting, the number of classes to recognize is potentially very large and
class types are wildly varying: they include generic objects such as “dog” or “car”,
landmarks such as “Golden Gate Bridge” or “Times Square”, scenes such as “city
park” or “street market”, and actions such as “speed walking” or “public speaking”.

The traditional approach of manually annotating images for training does not scale

94



lights

Burning Man
Mardi Gras

parade in progress

GP

Silverstone Classic

Formula 1
race for the

navy yard

construction on the

Port of San Diego

cargo

Figure 5.1: Four high-scoring visual n-grams for three images in our test
set according to our visual n-gram model, which was trained solely on
unsupervised web data. We selected the n-grams that are displayed in
the figure from the five highest scoring n-grams according to our model,
in such a way as to minimize word overlap between the n-grams.

well to the open-world setting because of the amount of effort required to gather and
annotate images for all relevant classes. To circumvent this problem, several recent
studies have tried to use image data from photo-sharing websites such as Flickr to

train their models [122-128]: such images have no manually curated annotations,
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but they do have metadata such as tags, captions, comments, and geo-locations
that provide weak information about the image content, and are readily available
in nearly infinite numbers.

We propose to follow [125] and study the training of models on images and their
associated user comments present in the YFCC100M dataset [129]. In particular,
we aim to take a step in bridging the semantic gap between vision and language
by predicting phrases that are relevant to the contents of an image. We develop
visual n-gram models that, given an image I, assign a likelihood p(w|I) to each
possible phrase (n-gram) w. Our models are convolutional networks with output
layers that are motivated by n-gram smoothers commonly used in language modeling
[130,131]: for frequent n-grams, the image-conditional probability is very precisely
pinned down by trainable parameters in the model, whereas for infrequent n-grams,
the image-conditional probability is dominated by the probability of smaller “sub-
grams”. The resulting visual n-gram models have substantial advantages over prior
open-world visual models [125]: they recognize landmarks such as “Times Square”,
they differentiate between ‘Washington DC” and the “Washington Nationals”, and

they distinguish between “city park” and “Park City”.

Contribution. The technical contributions are threefold:

e We are the first to explore the prediction of n-grams relevant to image content

using convolutional networks;
e We develop a novel, differentiable smoothing layers for such networks;

e We provide a simple solution to the out-of-vocabulary problem of traditional
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image-recognition models.

We present a series of experiments to demonstrate the merits of our proposed model

in image tagging, image retrieval, image captioning, and zero-shot transfer.

5.2 Related work

There is a substantial body of prior work that is related to this study, in
particular, work on (1) learning from weakly supervised web data, (2) relating image
content and language, and (3) language modeling. We give a (non-exhaustive)

overview of prior work below.

5.2.1 Learning from weakly supervised web data

Several prior studies have used Google Images to obtain large collections of
(weakly) labeled images for the training of vision models [122-124,126-128, 132].
We do not opt for such an approach here because it is very difficult to understand
the biases it introduces, in particular, because image retrieval by Google Images is
likely aided by a content-based image retrieval model itself. This introduces the
real danger that training on data from Google Images amounts to replicating an
existing black-box vision system. Various other studies have used data from photo-
sharing websites such as Flickr for training; for instance, to train hierarchical topic
models [133] or multiple-instance learning SVMs [134], to learn label distribution
models [135,136], to finetune pretrained convolutional networks [137], and to train

weak classifiers that produce additional visual features [138]. Like this study, [125]
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trains convolutional networks on the image-comment pairs. Our study differs from
[125] in that we do not just consider single words, as a result of which our models
distinguish between, e.g., “city park” and “Park City”. Indeed, the models in [125]

are a special case of our models in which only unigrams are considered.

5.2.2 Relating image content and language

Our approach is connected to a wide body of work that aims at bridging the
semantic gap between vision and language [139]. In particular, many studies have
explored this problem in the context of image captioning. Most image-captioning
systems train a recurrent network or maximum entropy language model on top of
object classifications produced by a convolutional network; the models are either
trained separately [140-142] or end-to-end [143,144]. We do not consider recur-
rent networks in our study because test-time inference in such networks is slow,
which hampers the deployment of such models in real-world applications. An image-
captioning study that is closely related to our work is [145], which trains a bilinear
model that outputs phrase probabilities given an image feature and combines the
relevant phrases into a caption using a collection of heuristics. Several other works
have explored joint embedding of images and text, either at the word level [146] or
at the sentence level [147,148]. What distinguishes our study is that prior work is
generally limited in the variety of visual concepts it can deal with; these studies rely
on vision models that recognize only small numbers of classes and / or on the avail-

ability of “ground-truth” captions that describe the image content — such captions
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are very different from a typical user comment on Flickr. In contrast to prior work,
we consider the open-world setting with very large numbers of visual concepts, and
we do not rely on ground-truth captions provided by human annotators. Our study
is most similar to that of [149], which uses n-gram to generate image descriptions;
unlike [149], we we do not rely on separately trained image-classification pipelines.

Instead, we train our model end-to-end on a dataset without ground-truth labels.

5.2.3 Language models

Several prior studies have used phrase embeddings for natural language pro-
cessing tasks such as named entity recognition [150], text classification [151-153],
and machine translation [154,155]. These studies differ from our work in that they
focus solely on language modeling and not on visual recognition. Our models are
inspired by smoothing techniques used in traditional n-gram language models®, in
particular, Jelinek-Mercer smoothing [130]. Our models differ from traditional n-
gram language models in that they are image-conditioned and parametric: whereas
n-gram models count the frequency of n-grams in a text corpus to produce a distribu-
tion over phrases or sentences, our model measures phrase likelihoods by evaluating
inner products between image features and learned parameter vectors.

Below, we describe the dataset we use in our experiments, the loss functions

we optimize, and the training procedure we use for optimization.

LA good overview of these techniques is given in [156,157].
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5.3 Dataset

We train our models on the YFCC100M dataset, which contains 99.2 million
images and associated multi-lingual user comments [129]. We applied a simple
language detector to the dataset to select only images with English user comments,
leaving a total of 30 million examples for training and testing. We preprocessed
the text by removing punctuations, and we added [BEGIN] and [END] tokens at
the beginning and end of each sentence. We preprocess all images by rescaling
them to 256 x 256 pixels (using bicubic interpolation), cropping the central 224 x
224, subtracting the mean pixel value of each image, and dividing by the standard
deviation of the pixel values.

For most experiments, we use a dictionary of all English n-grams (with n
between 1 and 5) with more than 1,000 occurrences in the 30 million English com-
ments. This dictionary contains 142,806 n-grams: 22,869 unigrams, 56,830 bi-
grams, 32,560 trigrams, 17,351 four-grams, and 13,196 five-grams. We emphasize
that the smoothed visual n-gram models we describe below are trained and evalu-
ated on all n-grams in the dataset, even if these n-grams are not in the dictionary.
However, whereas the probability of in-dictionary n-grams is primarily a function
of parameters that are specifically tuned for those n-grams, the probability of out-
of-dictionary n-grams is composed from the probability of smaller in-dictionary n-

grams (details below).
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5.4 Loss functions

The main contribution is in the loss functions we use to train our phrase pre-
diction models. In particular, we explore (1) a naive n-gram loss that measures
the (negative) log-likelihood of in-dictionary n-grams that are present in a comment
and (2) a smoothed n-gram loss that measures the (negative) log-likelihood of all
n-grams, even if these n-grams are not in the dictionary. This loss uses smooth-
ing to assign non-zero probabilities to out-of-dictionary n-grams; specifically, we

experiment with Jelinek-Mercer smoothing [130].

5.4.1 Notation

We denote the input image by I and the image features extracted by the
convolutional network with parameters § by ¢(I;0) € RP. We denote the n-gram
dictionary that our model uses by D and a comment containing K words by w €
[1, C)¥, where C is the total number of words in the (English) language. We denote
the n-gram that ends at the i-th word of comment w by w!_,, ., and the i-th word in
comment w by w!. Our predictive distribution is governed by a n-gram embedding

matrix E € RPXDI,

With a slight abuse of notation, we denote the embedding
corresponding to a particular n-gram w by e,. For brevity, we omit the sum over

all image-comment pairs in the training / test data when writing loss functions.
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5.4.2 Naive n-gram loss

The naive n-gram loss is a standard multi-class logistic loss over all n-grams in
the dictionary D. The loss is summed over all n-grams that appear in the sentence

w; that is, n-grams that do not appear in the dictionary are ignored:

(T, w; 0, E) ZZH W1 € D) 10g pobs (Wi |60 E),  (5.1)

m=1 i=n

where the observational likelihood pps(-) is given by a softmax distribution over
all in-dictionary n-grams that is governed by the inner product between the image

features ¢(I;0) and the n-gram embeddings:

exp (—e,¢(I;0))

Pons (W]6(L; 0 B) = 5= eXp( ¢><I 0)

(5.2)

The image features ¢(I;0) are produced by a convolutional network ¢(-), which we
describe in more detail in 5.5.

The naive n-gram loss cannot do language modeling because it does not model
a conditional probability. To circumvent this issue, we construct an ad-hoc condi-
tional distribution based on the scores produced by our model at prediction time
using a “stupid” back-off model [158]:

. . Pobs ( |wz n+1) lf wffn+1 S D
P (wilwiZps1) = (5.3)

Ap (wilw/Zh,,),  otherwise.

For brevity, we dropped the conditioning on ¢(I;6) and E.
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5.4.3 Jelinek-Mercer (J-M) loss

The simple n-gram loss has two main disadvantages: (1) it ignores out-of-
dictionary n-grams entirely during training and (2) the parameters E that corre-
spond to infrequent in-dictionary words are difficult to pin down. The Jelinek-

Mercer loss aims to address both these issues. The loss is defined as:

(T, w; 6, E) Zlogp jwizl, 1, oL 0);E), (5.4)

where the likelihood of a word conditioned on the (n—1) words appearing before it

is defined as:

( |wz n+1) = /\pobs( |wz n+l) + (1 - )‘) ( |wz n+2) (5~5)

Herein, we removed the conditioning on ¢(I;0) and E for brevity. The parameter
0 <A <1isasmoothing constant that governs how much of the probability mass from
(n—1)-grams is (recursively) transferred to both in-dictionary and out-of-dictionary
n-grams. The probability mass transfer prevents the Jelinek-Mercer loss from assign-
ing zero probability (which would lead to infinite loss) to out-of-vocabulary n-grams,
and it allows it to learn from low-frequency and out-of-vocabulary n-grams.

The Jelinek-Mercer loss is differentiable with respect to both E and 6, as a
result of which the loss can be backpropagated through the convolutional network.

In particular, the loss gradient with respect to ¢ is given by:

0
— Zp (Wi 41, 0(L;0); E) é;, (5.6)
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where the partial derivatives are given by:

8]) o apobs @

a—¢_Aa¢ +(1—)\)8¢ (5.7)
8 o0s
ooy = Pors (0|0 (8 0); B) (Blew v, — ) (58)

This error signal can be backpropagated directly through the convolutional network

().

5.5 Training

The core of our visual recognition models is formed by a convolutional network
¢(I;0). For expediency, we opt for a residual network [32] with 34 layers. Our
networks are initialized by an Imagenet-trained network, and trained to minimize
the loss functions described above using stochastic gradient descent using a batch
size of 128 for 10 epochs. In all experiments, we employ Nesterov momentum of
0.9, a weight decay of 0.0001, and an initial learning rate of 0.1; the learning rate is
divided by 10 whenever the training loss stabilizes (until a minimum learning rate
of 0.001).

A major bottleneck in training is the large number of outputs of our obser-
vation model: doing a forward-backward pass with 512 inputs (the image features)
and 142, 806 outputs (the n-grams) is computationally intensive. To circumvent this
issue, we follow [125] and perform stochastic gradient descent over outputs [159]: we
only perform the forward-backward pass for a random subset (formed by all positive
n-grams in the batch) of the columns of E. This simple approximation works well
in practice, and it can be shown to be closely related to the exact loss [125].
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5.6 Experiments

Below, we present the four sets of experiments we performed to assess the
performance of our visual n-gram models in: (1) phrase-level image tagging, (2)
phrase-based image retrieval, (3) relating images and captions, and (4) zero-shot

transfer.

5.6.1 Phrase-level image tagging

We first gauge whether relevant comments for images have high likelihood
under our visual n-gram models. Specifically, we measure the average perplexity
of predicting the correct words in a comment on a held-out test set of 10,000 im-
ages. We only consider in-dictionary n-grams in our perplexity measurements. The

perplexity of a model is defined as 27®) where H (p) is the cross-entropy:

K
H(p) =~ > logyp (wflui=h 1, 6(T,0): ). (5.9)
=1

Based on the results of preliminary experiments on a held-out validation set,
we set A =0.2 in the Jelinek-Mercer loss. Following common practice in language
modeling [157], we replace the likelihood of out-of-vocabulary unigrams in the results
for naive n-gram loss by a uniform distribution over unigrams: this prevents the
perplexity from becoming infinite.

We compare models that use either of the two loss functions (the naive in-
dictionary n-gram loss and Jelinek-Mercer loss) with a baseline trained with a linear

layer on top of Imagenet-trained visual features trained using naive n-gram loss. We
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Table 5.1: Perplexity of visual n-gram models on in-dictionary n-grams, measured
on YFCC100M test set of 10,000 images comprising 268,972 five-grams. Results
for two losses (rows) with and without smoothing at test time (columns). Lower is
better.

Loss / Smoothing “Stupid” back-off Jelinek-Mercer
Imagenet + linear 349 233
Naive n-gram 297 212
Jelinek-Mercer 276 199

consider two settings of our models at prediction time: (1) a setting in which we
use the “stupid” back-off model with A=1; and (2) a setting in which we smooth
the p(-) predictions using Jelinek-Mercer smoothing (as described above).

The resulting perplexities for all experimental settings are presented in Ta-
ble 5.1. From the results presented in the table, we observe that: (1) the use of
smoothing losses for training image-based phrase prediction models leads to better
models than the use of a naive n-gram loss; and (2) the use of additional smoothing
at test time may further reduce the perplexity of the n-gram model. The former
effect is the result of the ability of smoothing losses to direct the learning signal to
the most relevant n-grams instead of equally spreading it over all n-grams that are
present in the target. The latter effect is the result of the ability of prediction-time
smoothing to propagate the probability mass from in-dictionary n-grams to relevant
out-of-dictionary n-grams.

To obtain more insight into the phrase-prediction performance of our models,
we also assess our model’s ability to predict relevant phrases (n-grams) for images.
To correct for variations in the marginal frequency of n-grams, we calibrate all

log-likelihood scores by subtracting the average log-likelihood our model predicts

106



Table 5.2: Phrase-prediction performance on YFCC100M test set of 10,000 images
measured in terms of recall@k at three cut-off levels k (lefthand-side; see text for
details) and the percentage of correctly predicted n-grams according to human raters
(righthand-side) for one baseline model and two of our phrase prediction models.
Higher is better.

Model R@1 R@5 R@10 Accuracy
Imagenet + linear 5.0 10.7 14.5 32.7
Naive n-gram 5.5 11.6 15.1 36.4
Jelinek-Mercer 6.2 13.0 18.1 42.0

on a large collection of held-out validation images. We predict n-gram phrases for
images by outputting the n-grams with the highest calibrated log-likelihood score
for an image. Examples of the resulting n-gram predictions are shown in Figure 5.1.

We quantify phrase-prediction performance in terms of recall@k on a set of
10,000 images from the YFCC100M test set. We define recallQk as the average
percentage of n-grams appearing in the comment that are among the k front-ranked
n-grams when the n-grams are sorted according to their score under the model. In
this experiment and all experiments hereafter, we only present results where the
same smoothing is used at training and at prediction time: that is, we use the
“stupid” back-off model on the predictions of naive n-grams models and we smooth
the predictions of Jelinek-Mercer models using Jelinek-Mercer smoothing. As a
baseline, we consider a linear multi-class classifier over n-grams (i.e., using naive
n-gram loss) trained on features produced by an Imagenet-trained convolutional
network. The results are shown in the lefthand-side of Table 5.2.

Because the n-grams in the YFCC100M test set are noisy targets (many words

that are relevant to the image content are not present in the comments), we also
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performed an experiment on Amazon Mechanical Turk in which we asked two human
raters whether or not the highest-scoring n-gram was relevant to the content of the
image. We filter out unreliable raters based on their response time, and for each
of our models, we measure the percentage of retrieved n-grams that is considered
relevant by the remaining raters. The resulting accuracies of the visual n-gram
models are reported in the righthand-side of Table 5.2.

The results presented in the table are in line with the results presented in
Table 5.1: they show that the use of a smoothing loss substantially improves the
results compared to baseline models based on the naive n-gram loss. In particular,
the relative performance in recall@k between our best model and the Imagenet-
trained baseline model is approximately 20%. The merits of the Jelinek-Mercer
loss are confirmed by our experiment on Mechanical Turk: according to human
annotators, 42.0% of the predicted phrases is relevant to the visual content of the
image.

Next, we study the performance of our Jelinek-Mercer model as a function
of n; that is, we investigate the effect of including longer n-grams in our model
on the model performance. As before, we measure recall@k of n-gram retrieval as
a function of the cut-off level k£, and consider models with unigrams to five-grams.
Figure 5.2 presents the results of this experiment, which shows that the performance
of our models increases as we include longer n-grams in the dictionary. The figure
also reveals diminishing returns: the improvements obtained from going beyond

trigrams are limited.
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Figure 5.2: Recall@k on n-gram retrieval of five models with increasing
maximum length of n-grams included in the dictionary (n=1,...,5),
for varying cut-off values k. The dictionary size of each of the models is
shown between brackets. Higher is better.
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5.6.2 Phrase-based image retrieval

In the second set of experiments, we measure the ability of the system to
retrieve relevant images for a given n-gram query. Specifically, we rank all images
in the test set according to the calibrated log-likelihood our models predict for the
query-image pairs.

In Figure 5.3, we show examples of twelve images that are most relevant from
a set of 931,588 YFCC100M test images (according to our model) for four different
n-gram queries; we manually picked these n-grams to demonstrate the merits of
building phrase-level image recognition models. The figure shows that the model
has learned accurate visual representations for n-grams such as “Market Street”
and “street market”, as well as for “city park” and “Park City” (see the caption
of Figure 5.3 for details on the queries). We show a second set of image retrieval
examples in Figure 5.4, which shows that our model is able to distinguish visual
concepts related to Washington: namely, between the state, the city, the baseball
team, and the hockey team.

As in our earlier experiments, we quantify the image-retrieval quality of our
model on a set of 10,000 test images from the YFCC100M dataset by measuring
the precision and recall of retrieving the correct image given a query n-grams. We
compute a precision-recall curve by averaging over the 10,000 n-gram queries that
have the highest tf-idf value in the YFCC100M dataset: the resulting curve is shown
in Figure 5.5. The results from this experiment are in accordance with the previous

results: the naive m-gram loss substantially outperforms our Imagenet baseline,
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Market Street

Figure 5.3: Four highest-scoring images for n-gram queries “Market
Street”, “street market”, “city park”, and “Park City” from a collection
of 931,588 YFCC100M images. Market Street is a common street name,
for instance, it is one of the main thoroughfares in San Francisco. Park
City (Utah) is a popular winter sport destination. The figure only shows
images from the YFCC100M dataset whose license allows reproduction.
We refer to the appendix for detailed copyright information.

111



Table 5.3: Caption retrieval performance on YFCC100M test set of 10,000 images
measured in terms of recall@k at three cut-off levels k (lefthand-side; see text for
details) and the percentage of correctly retrieved captions according to human raters
(righthand-side) one baseline model and two of our phrase prediction models. Higher
is better.

Model R@1 R@5 R@10 Accuracy
Imagenet + linear 1.1 3.3 4.8 38.3
Naive n-gram 1.3 4.4 6.9 42.0
Jelinek-Mercer 7.1 16.7 21.5 53.1

which in turn, is outperformed by the model trained using Jelinek-Mercer loss.
Admittedly, the precisions we obtain are fairly low even in the low-recall regime.
This low recall is the result of the false-negative noise in the “ground truth” we use
for evaluation: an image that is relevant to the n-gram query may not be associated
with that n-gram in the YFCC100M dataset, as a result of which we may consider
it as “incorrect” even when it ought to be correct based on the visual content of the

image.

5.6.3 Relating Images and Captions

In the third set of experiments, we study to whether visual n-gram models
can be used for relating images and captions. While many image-conditioned lan-
guage models have focused on caption generation, accurately measuring the quality
of a model is still an open problem: most current metrics poor correlated with hu-
man judgement [165]. Therefore, we focus on caption-based retrieval tasks instead:
in particular, we evaluate the performance of our models in caption-based image

retrieval and image-based caption retrieval. In caption-based image retrieval, we
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Washington State Washington DC

Figure 5.4: Four highest-scoring images for n-gram queries “Washington
State”, “Washington DC”, “Washington Nationals”, and “Washington
Capitals” from a collection of 931,588 YFCC100M test images. Wash-
ington Nationals is a Major League Baseball team; Washington Capitals
is a National Hockey League hockey team. The figure only shows im-
ages from the YFCC100M dataset whose license allows reproduction.
We refer to the appendix for detailed copyright information.
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Figure 5.5: Precision-recall curve for phrase-based image retrieval of our
models on YFCC100M test set of 10,000 images one baseline model
and two of our phrase-prediction models. The curves were obtained by
averaging over the 10,000 n-gram queries with the highest tf-idf value.

rank images according to their log-likelihood for a particular caption and measure
recall@k: the percentage of queries for which the correct image is among the £ first
images.

We first perform an experiment on 10,000 images and comments from the
YFCC100M test set. In addition to recall@k, we also measure accuracy by asking
two human raters to assess whether the retrieved caption is relevant to the image
content. The results of these experiments are presented in Table 5.3: they show that

the strong performance of our visual n-gram models extends to caption retrieval?.

2We also performed experiments with a neural image captioning model that was trained on
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Table 5.4: Recall@k (for three cut-off levels k) of caption-based image retrieval on
the COCO-5K and Flickr-30K datasets for eight baseline models and our visual
n-gram models (with and without finetuning). Baselines are separated in models
dedicated to retrieval (top) and image-conditioned language models (bottom).

Image retrieval COCO-5K Flickr-30K
R@1 R@5 R@10 R@1 R@5 R@10
Retrieval models
Karpathy et al. [148] - - - 10.2  30.8 44.2
Klein et al. [160] 11.2 29.2 41.0 25.0 527 66.0
Deep CCA [161] - - - 26.8 529 66.9
Wang et al. [162] - - - 29.7 60.1 721
Language models
STD-RNN [163] - - - 8.9 29.8 41.1
BRNN [141] 10.7  29.6 42.2 15.2 37.7 50.5
Kiros et al. [164] - - - 16.8  42.0 56.5
NIC [144] - - - 17.0 - 57.0
Ours
Naive n-gram 0.3 1.1 2.1 1.0 2.9 4.9
Jelinek-Mercer 5.0 14.5 21.9 8.8 21.2 29.9
J-M + finetuning 11.0 29.0 40.2 176 394 50.8

According to human raters, our best model retrieves a relevant caption for 53.1% of
the images in the test set. To assess if visual n-grams help, we also experiment with
a unigram model [125] with a dictionary size of 142,806. We find that this model
performs worse than visual n-gram models: its recall@k scores of are 1.2, 4.2, and
6.3, respectively.

To facilitate comparison with existing methods, we also perform experiments

on the COCO-5K and Flickr-30K datasets [120, 166] using visual n-gram models

COCO [144], but this model performs poorly: it obtains a recall@k of 0.2, 1.0, and 1.6 for k=1
5, and 10, respectively. This is because many of the words that appear in YFCC100M are not in

COCO.
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trained on YFCC100M?. The results of these experiments are presented in Table 5.4;
they show that our model performs roughly on par with the state-of-the-art based on
language models on both datasets. We emphasize that our models have much larger
vocabularies than the baseline models, which implies the strong performance of our
models likely generalizes to a much larger visual vocabulary than the vocabulary
required to perform well on COCO-5K and Flickr-30K. Like other language models,
our models perform worse on the Flickr-30K dataset than dedicated retrieval models
[148,160-162]. Interestingly, our model does perform on par with a state-of-the-art
retrieval model [160] on COCO-5K.

We also perform image-based caption retrieval experiments: we retrieve cap-
tions by ranking all captions in the COCO-5K and Flick-30K test set according to
their log-likelihood under our model. The results of this experiment are presented
in Table 5.5, which shows that our model performs on par with state-of-the-art
image-conditioned language models on caption retrieval. Like all other language
models, our model performs worse than approaches tailored towards retrieval on
the Flickr-30K dataset. On COCO-5K, visual n-grams perform on par with the

state-of-the-art.

5.6.4 Zero-Shot Transfer

Because our models are trained on approximately 30 million photos and com-

ments, they have learned to recognize a wide variety of visual concepts. To assess

3Please refer to Appendix C for additional results in the COCO-1K dataset and additional

baseline models for relating images and captions.
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Table 5.5: Recall@k (for three cut-off levels k) of caption retrieval on the COCO-5K
and Flickr-30K datasets for eight baseline systems and our visual n-gram models
(with and without finetuning). Baselines are separated in models dedicated to re-
trieval (top) and image-conditioned language models (bottom). Higher is better.

Caption retrieval COCO-5K Flickr-30K
R@1 R@5 R@10 R@l1 R@5 R@10

Retrieval models

Karpathy et al. [148] - - - 16.4 40.2 54.7
Klein et al. [160] 17.7 40.1 51.9 35.0 62.0 73.8
Deep CCA [161] - - - 27.9 56.9 68.2
Wang et al. [162] - - - 40.3  68.9 79.9
Language models

STD-RNN [163] - - - 9.6 29.8 41.1
BRNN [141] 16.5 39.2 52.0 22.2 48.2 61.4
Kiros et al. [164] - - - 23.0 50.7 62.9
NIC [144] - - - 23.0 - 63.0
Ours

Naive n-gram 0.7 2.8 4.6 1.2 5.9 9.6
Jelinek-Mercer 8.7 23.1 33.3 15.4 35.7 45.1
J-M + finetuning 17.8 41.9 53.9 28.6 o4.7 66.0

the ability of our models to recognize visual concepts out-of-the-box, we perform
a series of zero-shot transfer experiments. Unlike traditional zero-shot learners
(e.g., [167-169]), we simply apply the Flickr-trained models on a test set from a
different dataset. We automatically match the classes in the target dataset with the
n-grams in our dictionary. We perform experiments on the aYahoo dataset [170],
the SUN dataset [171], and the Imagenet dataset [28]. For a test image, we rank
the classes that appear in each dataset according to the score our model assigns
to the corresponding n-grams, and predict the highest-scoring class for that image.
We report the accuracy of the resulting classifier in Table 5.6 in two settings: (1)

a setting in which performance is measured only on in-dictionary classes and (2) a
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Table 5.6: Classification accuracies on three zero-shot transfer learning datasets on
in-dictionary and on all classes. The number of in-dictionary classes is 10 out of 12
for aYahoo, 326 out of 1,000 for Imagenet, and 330 out of 720 for SUN. Higher is
better.

aYahoo Imagenet SUN
Class mode (in dictionary) 15.3 0.3 13.0
Class mode (all classes) 12.5 0.1 8.6
Jelinek-Mercer (in dictionary) 88.9 35.2 34.7
Jelinek-Mercer (all classes) 72.4 11.5 23.0

setting in which performance is measured on all classes.

The results of these experiments are shown in Table 5.6. For reference, we
also present the performance of a model that always predicts the a-priori most
likely class. The results reveal that, even without any finetuning or re-calibration,
non-trivial performances can be obtained on generic vision tasks. The performance
of our models is particularly good on common classes such as those in the aYahoo
dataset for which many examples are available in the YFCC100M dataset. The
performance of our models is worse on datasets that involve fine-grained classifica-
tion such as Imagenet, for instance, because YFCC100M contains few examples of

specific, uncommon dog breeds.

5.7 Discussions

5.7.1 Visual n-grams and recurrent models

This study has presented a simple yet viable alternative to the common prac-

tice of training a combination of convolutional and recurrent networks to relate
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images and language. Our visual n-gram models differ in several key aspects from
models based on recurrent networks. Visual n-gram models are less suitable for
caption generation® [173] but they are much more efficient to evaluate at inference
time, which is very important in real-world applications of these models. Visual
n-grams are more interpretable than recurrent models because the likelihood of any
n-gram or sentence can be readily evaluated and ranked. This allows to compute
test log-likelihoods for entire sentences, instead of just the log-likelihood of a sin-
gle, subsequent word. Such test log-likelihoods can, in turn, be used to perform
(Bayesian) model comparison.

Visual n-gram models can be combined with class activation mapping [174,175]
to perform visual grounding of n-grams, as shown in Figure 5.6. Such grounding
is facilitated by the close relation between predicting visual n-grams and standard
image classification. This makes visual n-gram models more amenable to transfer
to new tasks than approaches based on recurrent models, as demonstrated by our
zero-shot transfer experiments.

Whilst a recurrent model trained on the YFCC100M dataset can only be used
for image captioning, visual n-grams models trained on the same dataset can be
used in a range of tasks, including image tagging, image retrieval, image captioning,

class discovery, and traditional image classification.

40ur model achieves a METEOR score [172] of 17.2 on COCO captioning with a test set of 1,000

images, versus 15.7 for a nearest neighbor baseline method and 19.5 for a recurrent network [141].
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Figure 5.6: Discriminative regions of five n-grams for three images, com-
puted using class activation mapping [174,175].

5.7.2 Learning from web data

Another important aspect that discerns our work from most work in computer
vision is that our models are capable of being learned purely from web data, without
any manual data annotation. We believe that this type of training is essential if we
want to construct models that are not limited to a small visual vocabulary and that
are readily applicable to real-world computer-vision tasks. Indeed, this paper fits in
a recent line of work [123,125] that abandons the traditional approach of gathering
images, manually annotating them for a small visual vocabulary, and training and
testing on the resulting image-target distribution. As a result, models such as ours

may not necessarily achieve state-of-the-art results on established benchmarks, be-
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cause they did not learn to exploit the biases of those benchmarks as well [176-178].
Such “negative” results highlight the necessity of developing less biased benchmarks
that provide more signal on progress towards visual understanding.

Such approaches suffer from strong biases that do not reflect biases in the
real world [179] and do not scale to the large visual vocabularies that are necessary
for vision systems to operate in open-world setting. Moreover, models trained on
datasets such as the YFCC100M dataset tend to be less biased towards the anno-
tations that computer-vision researchers assign to their image data, but instead,
possess biases that are more in line with the distribution by which the real world
generates images. As a results, models such as those studied in this paper may not
always achieve state-of-the-art results on established benchmarks, simply because
they did not learn the biases of those benchmarks well. When interpreting such
seemingly negative results, it is thus essential to continuously reflect on to what ex-
tent benchmarks provide signal on whether we are progressing towards the hallmark
of true visual understanding.

For the reasons outlined above, we believe it will become increasingly common
to train vision models on web data, and only use image annotation to analyze the
capabilities of the resulting systems. In this paper, we have adopted this approach
by (1) asking human raters to assess the relevance of captions or phrases to images
and (2) by transferring our models to benchmark datasets for image captioning and

attribute recognition.
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5.8 Future work

The Jelinek-Mercer loss we studied in this paper is based on just one of many
n-gram smoothers [157]. An interesting future work is to perform an in-depth com-
parison of different smoothers for the training of convolutional networks. In partic-
ular, we will consider loss functions based as absolute-discounting smoothing such

as Kneser-Ney smoothing [131], as well as back-off models [180].

p (wﬂwz:rlz—l—la ¢(I§ 6)5 E) = %;‘:in (w§|w§:711+27 ¢(I§ 9)? E)

+max {pos (wiwi—p,1, 6(L0); E) — 6,0} .

Herein, 9 is an absolute discount factor that governs how much probability mass
from (n—1)-grams is transferred to n-grams, and v~ is a term that ensures the

likelihood function remains a probability distribution (that is, that it sums up to

one). Specifically, 7.~} 41 is given by:

yf:iﬂ = Zmin {pobs (w’|wi‘:}1+1, (L; 0); E)) ,5} )

Another direction of future research is to explore the use of visual n-gram
models in systems that operate in open-world settings, combining them with tech-
niques for zero-shot and few-shot learning. Finally, it would be interesting to see
how well our models could be applied to tasks that require recognition of a large
variety of visual concepts and relations between them, such as visual question an-

swering [181,182], visual Turing tests [183], and scene graph prediction [184].
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5.9 Conclusion

We presented a way to learn end-to-end visual n-gram models from large scale
weakly supervised data. We proposed a novel smoothing loss function that utilizes
the relationships between higher-order n-gram labels with lower-order n-grams and
handles the out-of-vocabulary problem in traditional models, called Jelinek-Mercer
loss. The visual n-gram models are applied and evaluated in multiple tasks such
as predicting phrases from images, retrieving images from phrase queries, retriev-
ing captions from images, retrieving images from captions and transfer learning.
These experiments demonstrated the effectiveness of the proposed Jelinek-Mercer
loss function. The most interesting part of our model is probably the capability of
capturing the visual patterns for an extremely large number of n-gram concepts. It
is mostly due to the fact that the proposed model can be efficiently trained from

millions of paired images and user comments.
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Chapter 6: Conclusion

We investigated ways to improve the robustness, interpretability and scalabil-
ity of visual representations in four different works. These works are motivated by
real world applications such as image-based geolocation, active face authentication,
text-baesd image retrieval and phrase prediction from images. The works also stud-
ies geometric representations, low-level feature encoding, mid-level representation
and high-level representation learning, respectively.

We show in our works that (1) incorporating feature space uncertainty esti-
mation in the visual represenation can significantly improve the effectiveness and
robustness of the features, (2) mid-level abstract representations can be effective in
linking multimodal data, and (3) learning from large scale weakly supervised data
is a promising way for representation learning.

While computer vision has started to work in real applications, there are still
many problems remaining unsolved for building robust, interpretable and scalable
visual representations. These include but not limited to learning representations
from noisy, biased and small data, increasing the transferability of representations,
incorporating uncertainty modeling in complex models for representation learning

and incorporating generative models of mid-level concepts in representations.
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Appendix A: Proofs in the projective uncertainty of line segments

A.1 Uncertainty modeling

Proof of Lemma 2.1.

_ llat+b)?
e 202
Vi 271'02
_ llal? +2aT2bt+ubu2
\/ 2mo?
2 T102
_(a'b) 2
(1aie+ ) == 08 +im
20
\/ 2mo?
aTb)
_Ll?[p)?—(aTp)? (” lal2
—e 202][a]2 252/lalZ

2 2 T _aTb

‘W U (o t2 + o2 erf
—¢ 202|a - _
2 V20 /|l

Since ||a|| = 1, hence

202

/t2 1 _ Jlat+b)? @t
e
4, V2mo?

@ m? 1 ts+a'b ti+a'b
=€ 202 - = erf —_— — erf —_—
2 20 V20

i+ ||a||2 ))
V20 /|al]

))

Proof of Theorem 2.1. Let p,(x; p,0?) be the probability density function for nor-
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mal distribution N(u,0?), i.e.

Pa(x; p, 0%) = e 2 (A7)

The probability that x lies on the line segment equals the probability that random
variables of the two ending points are x 4 ¢{,A, and x + A, for some t,, % € R

and t, - t, <0, therefore

0

i olab) = |

—0o0

pn(x+tA<p;a,a2)dt/ po(X + A b, 0%)dt

oo 0
+/ Pn(x +tA,; A, 02)dt/ po(x +tA,; b, o?)dt (A.8)
0

—0o0

According to Lemma 2.1,

0 o)
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Therefore,

p(x,pla,b) = %C’ (1 - erf(

which is equivalent to Equation 2.3.

(x = A¢>> - <<x ~b,A,)

A.2 Line slopes under projective transformation

V20

(A.15)

[]

The point coordinate transformed by Q can be obtained by homogeneous

coordinate representation. For the slope angle, let q; be the i-th row vector of

projection matrix Q, the transformed slope angle at location x

/
Then tan ¢’ = % where

(z,y)" is ¢"

/

/ qj (z,y,1)" _qux+ gyt qi3 A16)
Ly = T nNT (A
q; (7,9, 1) g317 + q32Y + G33
P q (z,y,1)" G217 + g2y + g3 A7)
Yay) = 7 nNT (A
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Since a line is still a line under projective transformation, hence
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where
X, = (z+cosp,y +sing, 1)" (A.20)
X_ = (z—cosp,y—sing,1)" . (A.21)
By equivalent transformations, it can be proved that
A X a3 Xy — s X qy X = f(dq2,q3, 2,4, ) (A.22)
o Xyqz Xy —q/ X gy X = f(a,q3,2, 9, 9) (A.23)
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where

f(u7 V,T,Y, QO> :(U2U1 - U1U2)(Z’ Singo — Y Ccos gp)

+ (u1v3 — uzvy) cos @ + (ugvs — uzvy) sing . (A.24)

Therefore,

f(Q2>Q3>$aZ/>90) (A25)

/
' = arctan .
flai, as, 2,9, ¢)
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Appendix B: Additional results in abstractive scene representation

B.1 Additional details about datasets

We have 150 of the images annotated in the SUN RGB-D test dataset. We
show the statistics about queries used in SUN RGB-D evaluation. In average, SUN
RGB-D annotation has 4.26 objects, 2.65 relations, 19.85 words and 2.69 sentences
per query. Figure B.1(a) shows the averaged occurrences per query of each object
category and Figure B.1(b) shows the averaged occurrences per query of each spatial
relation category. The object and relation categories are sorted in the descending
order w.r.t. the frequency.

In average, 3DGP annotation has 3.06 objects, 1.94 relations, 17.06 words
and 1.94 sentences per query. Similarly, we show the object category and spatial
relation frequencies in Figure B.2. Different from the statistics of SUN RGB-D
where spatial relation on has the highest frequency, spatial relations in 3DGP are
mostly horizontal. This is because, for 3DGP, we only have DPM detectors for 6

furniture categories and all of them are on the floor.

129



0 < ® N -
o o o o o
(A1anp 1ad seoua1In20Q) Aouanbaly

© 0 < @ N -
o o o o o o
(A1enp Jad saouannoo(Q) Aousnbaly

130

(a) frequency (occurrences per query) of objects and (b) frequency

Figure B.1: SUN RGB-D query statistics:

(occurrences per query) of spatial relations.
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Figure B.2: Query statistics in 3DGP evaluation: (a) Frequency (occur-
rences per query) of objects, and (b) frequency (occurrences per query)
of spatial relations.

B.2 Additional qualitative retrieval results

We provide additional results in SUN RGB-D for top-3 retrievals in Figure B.3.
The ground truth image is shown with a blue bar on its top. Although it happens
rare in this evaluation, there are cases when there are images other than the ground
truth that meet the descriptions of the query (e.g., the last example in Figure B.3).
Qualitative results with matched 3D layout are shown in Figure B.4. The figure
shows the 3D layouts with camera location corresponding to the best matched 2D

spatial layouts (from 5 layout samples).
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Query

Thereisa TV ona TV desk.
The TV desk is against the
wall. Another desk is next to
the TV desk. A chair is near
the desk. A lamp is on the
desk. And a picture is above
the desk.

A desk is against the wall. A

garbage bin is on the right : B ]
side of the desk. Some boxes | = . o
are on the left side of the desk. \ 1%

Three pillows are on a triple
sofa. The sofa is against the
wall. A picture is above the
sofa. A table is on the right
side of the sofa. The table is
also against the wall. A lamp is
on the table. Another table is
in front of the sofa.

Atable is in front of three
sofas.

Two pictures are above the
bed. Some pillows are on the
bed. A white night stand is on

the left side of the bed.

Another black night stand is

on the left side of the white
night stand. A lamp is on the

black night stand.

A mirror is above the sink.

Figure B.3: Top 3 retrieved images in SUN RGB-D. Ground truth im-
ages appear with blue bars on top. Green bounding boxes are detection
outputs matching the generated 2D layouts. Red boxes are missing ob-
jects (not detected) w.r.t. the expectation of generated 2D layouts.
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Query Matched 3D geometry Matched 2D layout

There is a triple sofa. The sofa D 4
is against the wall. A chair is
next to the sofa. And the chair
is also against the wall. Two
pictures are above the sofa.
And another picture is above
the chair.

A picture is above the bed.
Some pillows are on the bed.
A night stand is on the left side
of the bed. A lamp is on the
night stand. A dresser is on
the left side of the night stand.
Two lamps are on the dresser.

A whiteboard is above the
table. Two chairs are on the
right side of the table. Another
chair is on the left side of the
table. Another table is in front
of the table.

Figure B.4: Matched 3D and 2D layouts based on our greedy 2D layout
matching for three ground truth images in SUN RGB-D. Blue crosses
represent camera locations. Green bounding boxes are object detection
outputs that match the 2D layouts generated from the text queries. Red
bounding boxes represent a missing object (not detected by the object
detector) within the expected region proposed by 2D layouts.

B.3 Learned 2D spatial relationships in baseline

The learned distributions of 2D spatial relationships in the nearest neighbor
baseline algorithm are shown in Figure B.5. The figure shows the relationship be-
tween the subject and the object (subject-relation-object) w.r.t. all eight atomic

spatial relations (other relations are built upon these atomic relations). For each
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relationship, the annotated bounding boxes of each pair of subjects and objects are
normalized (rescaled in both x— and y— coordinates) so that the subject bounds
to a 1 x 1 square with bottom left (0,0) and top right (1,1). All of the normalized
relation annotations are visualized in the figure. The nearest neighbor classifier is

based on the IOU scores of normalized bounding boxes.
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Figure B.5: Learned distribution of 2D spatial relations in subject-relation-object relationships. Red bounding
boxes represent the subject and blue bounding boxes represent the sampled objects in the annotations corresponding
to each relation. The subject is normalized to 1 x 1 squares (with bottom-left (0,0) and top-right (1,1)) and all
objects are rescaled with the same normalization factors in z-y coordinates.



Appendix C: Additional results of visual n-gram models

C.1 Relating images and captions: additional results

As an addition to the image and caption retrieval results on COCO-5K and
Flickr-30K presented in the paper, we also provide retrieval results on the COCO-1K
dataset, a test set of 1,000 images provided by Karpathy and Fei-Fei [141]. In Table
C.1, we show the caption retrieval (left) and image retrieval (right) performance of
four baseline models and our visual n-gram models on COCO-1K. We do not report
results we obtained with the last version of the neural image captioning model [185]
here because that model was trained on COCO validation set that was used as the
basis for the COCO-1K test set.

The results on the COCO-1K dataset are in line with the results presented
in the paper: our n-gram model performs roughly on par with recurrent language
models [141, 142], but like these language models, it performs worse than models
that were developed specifically for retrieval tasks [160,162].

We provide additional results to demonstrate the effectiveness of end-to-end
training. We trained a Jelinek-Mercer model on the ImageNet features as an addi-
tional baseline and compare it with the end-to-end Jelinek-Mercer model in COCO-

5K. The results are shown in Table C.2 which reveals that an end-to-end trained
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Table C.1: Recall@k (for three cut-off levels k) of caption and image retrieval on the
COCO-1K dataset for three baseline systems and our visual n-gram models (with
and without finetuning). Baselines are separated in models dedicated to retrieval
(top) and image-conditioned language models (bottom). Higher is better.

COCO-1K Caption retrieval Image retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Retrieval models

Klein et al. [160] 38.9 68.4 80.1 25.6 60.4 76.8
Wang et al. [162] 50.1 79.7 89.2 39.6 75.2 86.9
Language models

BRNN [141] 38.4 69.9 80.5 27.4 60.2 74.8
M-RNN [142] 41.0 73.0 83.5 29.0 42.2 77.0
Ours

Naive n-gram 3.1 9.2 14.6 1.1 4.2 7.3
Jelinek-Mercer 22.5 47.6 60.7 12.8 33.5 46.5
J-M + finetuning 39.9 70.5 82.5 25.4 55.8 70.2

Table C.2: Recall@k (for three cut-off levels k) of caption and image retrieval on the
COCO-5K dataset for four variants of our visual n-gram models (with and without
finetuning). Higher is better.

COCO-5K Caption retrieval Image retrieval
R@l1 R@5 R@10 R@1 R@5 R@10

Imagenet + J-M 8.0 21.6 31.2 4.4 14.0 21.5

End-to-end J-M 8.7 23.1 33.3 5.0 14.5 21.9

Imagenet + J-M (finetuning) 12.7  31.0 43.0 6.5 18.9 28.1
End-to-end J-M (finetuning)  17.8  41.9 53.9 11.0  29.0 40.2

Jelinek-Mercer model outperforms the one trained with ImageNet features in both

non-finetuning and finetuning modes.
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C.2 Phrase prediction: additional results

We show additional qualitative results for predicting unigrams and bigrams in

Figure C.1 and Figure C.2.

Unigrams Bigrams
Sign Neon sign
Bar Motel in
Ave Store in
Store Sign for
Diner Sacramento CA
Ferris Ferris wheel
Blue Lafayette Park
Wheel Coney Island
Lafayette Blue sky
Tower Amusement park
Carriage Horse drawn
Winter Horse and
Horse Winter in
Snow Blizzard of
Blizzard Snowy day

Figure C.1: Five highest-scoring visual unigrams and bigrams for five
images in our test set. From top to bottom, photos are courtesy of:
(1) Mike Mozart (CC BY 2.0); (2) owlpacino (CC BY-ND 2.0); and (3)
brando.n (CC BY 2.0).
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Unigrams
Times
Shinjuku
Ginza
Manhattan
NYC

Tokyo
Osaka
Shinjuku
Vending

Store

Golden
Marin
Suspension
Cruise

Forth

Bigrams
Times Square
Shinjuku Tokyo
Manhattan new
Hong Kong

Eaton Center

Shinjuku Tokyo
Tokyo Japan
Vending machine
Osaka Japan

Store in

Golden Gate
Suspension bridge
Mackinac Island
Oracle Team

Brooklyn Bridge

Figure C.2: Five highest-scoring visual unigrams and bigrams for five
images in our test set. From top to bottom, photos are courtesy of: (1)

Laura (CC BY-NC 2.0); (3) inefekt69 (CC BY-NC-ND 2.0); and (3)

Yahui Ming (CC BY-NC-ND 2.0).
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Appendix D: License Information for YFCC100M Photos

We reproduce all YFCC100M photos that appear in the main thesis with

relevant authorship and license information in Figure D.1, D.2, D.3 and D.4.

lights

Burning Man
Mardi Gras

parade in progress

GP

Silverstone Classic

Formula 1
race for the

navy yard

construction on the

Port of San Diego

cargo

Figure D.1: Four high-scoring visual n-grams for three images in our test
set according to our visual n-gram model, which was trained solely on
unsupervised web data. We selected the n-grams that are displayed in
the figure from the five highest scoring n-grams according to our model,
in such a way as to minimize word overlap between the n-grams. From
top to bottom, photos are courtesy of: (1) Stuart L. Chambers (CC
BY-NC 2.0); (2) Martin Pettitt (CC BY 2.0); (3) Gav Owen (C).
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Washington State Washington DC

Figure D.2: Four highest-scoring images for n-gram queries “Washington
State”, “Washington DC”, “Washington Nationals”, and “Washington
Capitals” from a collection of 931,588 YFCC100M test images. Wash-
ington Nationals is a Major League Baseball team; Washington Capitals
is a National Hockey League hockey team. The figure only shows images
from the YFCC100M dataset whose license allows reproduction. From
the top-left photo in clockwise direction, the photos are courtesy of: (1)
Colleen Lane (CC BY-ND 2.0); (2) Ryaninc (CC BY 2.0); (3) William
Warby (CC BY 2.0); (4) Cliff (CC BY 2.0); (5) Boomer-44 (CC BY
2.0); (6) Dannebrog (CC BY-ND 2.0); (7) S. Yume (CC BY 2.0); (8)
Bridget Samuels (CC BY-NC-ND 2.0); (9) David G. Steadman (Public
Domain Mark 1.0); (10) Hockey Club Torino Bulls (CC BY 2.0); (11)
Brent Moore (CC BY-NC 2.0); (12) Andrew Malone (CC BY 2.0); (13)
Terren in Virginia (CC BY 2.0); (14) Guru Sno Studios (CC BY-ND
2.0); (15) Derek Hatfield (CC BY 2.0); and (16) Bruno Kussler Marques
(CC BY 2.0).
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Figure D.3: Four highest-scoring images for n-gram queries “Market
Street”, “street market”, “city park”, and “Park City” from a collection
of 931,588 YFCC100M images. Market Street is a common street name,
for instance, it is one of the main thoroughfares in San Francisco. Park
City (Utah) is a popular winter sport destination. The figure only shows
images from the YFCC100M dataset whose license allows reproduction.
From left to right, photos are courtesy of the following photographers
(license details between brackets. Row 1: (1) Jonathan Percy (CC
BY-NC-SA 2.0); (2) Rachel Clarke (CC BY-NC-ND 2.0); (3) Richard
Lazzara (CC BY-NC-ND 2.0); and (4) AboutMyTrip dotCom (CC BY
2.0). Row 2: (1) Alex Holyoake (CC BY 2.0); (2) Marnie Vaughan (CC
BY-NC 2.0); (3) Hector E. Balcazar (CC BY-NC 2.0); and (4) Marcin
Chady (CC BY 2.0). Row 3: (1) Rien Honnef (CC BY-NC-ND 2.0);
(2) IvoBe (CC BY-NC 2.0); (3) Daniel Hartwig (CC BY 2.0); and (4)
Benjamin Chodroff (CC BY-NC-ND 2.0). Row 4: (1) Guido Bramante
(CC BY 2.0); (2) Alyson Hurt (CC BY-NC 2.0); (3) Xavier Damman
(CC BY-NC-ND 2.0); and (4) Cassandra Turner (CC BY-NC 2.0).
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on the grass the grass red brick the football being pushed
—
open mike a string her hair the equipment performing at the

the table sitting around a plate friends at the the foliage

Figure D.4: Discriminative regions of five n-grams for three images,
computed using class activation mapping. From top to down, photos are
courtesy of the following photographers (license details between brackets.
Row 1: DebMomOf3 (CC BY-ND 2.0). Row 2: fling93 (CC BY-NC-
SA 2.0). Row 3: Magnus (CC BY-SA 2.0).
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