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This dissertation is a summary of investigations on the optical properties of

a quantum-noise-limited phase-sensitive amplifier (PSA). The PSA is implemented

using four-wave mixing in hot 85Rb vapor based on a double-Λ atomic scheme.

We experimentally demonstrate the ability of a PSA to pre-amplify quantum

correlations in twin light beams produced by a phase-insensitive amplifier (PIA)

before degradation due to loss and detector inefficiency. By including a PSA before

loss, one is able to preserve the correlations as well as the two-mode squeezing level.

We compare the results to simulations employing a simple quantum-mechanical

model and find a good agreement.

We have demonstrated that the cross-correlation between the two modes of

a bipartite entangled state can be advanced by propagation through a PIA acting

as a fast-light medium. The extra noise added by the PIA has been speculated to

be the mechanism that limits the advance of entanglement, preventing the mutual



information from traveling superluminally. As an extension of this phase-insensitive,

gain-assisted, anomalous dispersion investigation, we explore the advance and delay

of information transmitted through the PSA. We start with a two-mode squeezed

state created by the PIA and measure the mutual information shared by the cor-

related quadratures. We then pass one of these two modes through a PSA and

investigate the shift of the mutual information as a function of the PSA phase. In

the case of a PSA, it is well known that no extra noise will be added to the quadrature

with the correct input phase (e.g., the quadrature with the maximal amplification or

the maximal deamplification). We find that there is no dispersion-like behavior at

these two phases, however, the peak of mutual information could either be delayed

or advanced at any other phase. We also observe an almost identical behavior when

we input an amplitude modulated signal to the PSA. We are able to explain the

physics of this “fast-and-slow-light” type of behavior utilizing a model assuming im-

balanced gain on the positive and negative side bands. We obtain a good agreement

between the experimental results and the theoretical simulations.
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5.1 Experimental setup of using a second PIA cell as the dispersive medium.
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Chapter 1: Introduction

As an experimental atomic, molecular and optical physics lab, we devote our-

selves to investigating the interactions between light and atoms, in particular, the

nonlinear optical properties induced by lasers in an atomic medium. As we learned

from our college physics course, a dielectric medium responds to an external applied

electric field linearly if the field strength is weak enough.1 However, if the applied

field strength is intense enough, it will excite atomic dipoles to oscillate nonlinearly.

The radiated field from the oscillating dipoles will then interact with the applied

field, and new fields with new frequencies will therefore be generated. Although

nonlinear optical effects had been known as early as the nineteenth century (such

as the Pockels and Kerr effects), only DC fields could be produced with enough

intensity to reach the regime of nonlinear optical response. Due to this deficiency,

nonlinear optics remained unexplored until the classic experiment by Franken and

co-workers [1] in 1961 shortly after the demonstration of the first working laser by

Maiman in 1960. They demonstrated second-harmonic generation in quartz with

the use of a ruby laser. Since then the research of nonlinear optics is ever expanding

thanks to the fact that intense applied fields can be easily obtained just by focusing

1Usually the external applied field is much weaker than the atom’s internal field that holds the
electrons, however, what is weak enough depends on specific circumstances.
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laser beams.

In our lab, we use four-wave mixing, a nonlinear optical effect where interac-

tions between two, or three fields produce two, or one new fields respectively. We

use this interaction to create two types of optical amplifiers, i.e., phase-insensitive

and phase-sensitive optical amplifiers. If the amplification has no dependence on

the phase of the input field, it is referred to as phase-insensitive; if the amplification

does depend on the phase of the input field, it is phase-sensitive. Our goal is to

study and understand the optical properties of these two types of optical amplifiers

both classically and quantum-mechanically.

1.1 Four-wave mixing

The traditional method of modeling an optical material’s nonlinear response is

to expand the induced polarization as a power series in the electric field strength [2–

5]:

~P = εoχ
(1) · ~E + εoχ

(2) · ~E ~E + εoχ
(3) · ~E ~E ~E + .... (1.1)

The expansion coefficients χ(2) and χ(3) are known as nonlinear susceptibilities in

analogy to classical linear electromagnetic theory. This method assumes that the

higher order nonlinear susceptibilities grow progressively smaller so that the power

series expansion converges to a finite polarization.

The third order nonlinear susceptibility χ(3) is a fourth rank tensor and is

responsible for the four-wave mixing (4WM) processes. In order to understand the

4WM process, a closer examination of the third order nonlinear polarization ~P (3)
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must be made. One possible form of the polarization may be written as

P
(3)
i (ω4, ~r) =

1

2
εoχ

(3)
ijkl(−ω4;ω1, ω2,−ω3)Ej(ω1)Ek(ω2)E∗l (ω3)×

exp[i(~k1 + ~k2 − ~k3) · ~r − iω4t] + c.c.,

(1.2)

where i, j, k and l denote any x, y and z electric field component. ω1, ω2, ω3 and ω4

are the angular frequencies of the four fields and ~k1, ~k2 and ~k3 are the wave vectors

of the three input fields. They are related by ki = niωi/c, i = 1, 2, 3, 4, where ni is

the index of refraction of the medium at frequency ωi. This nonlinearity describes a

coupling between four waves: three input fields and one generated field, each with

its own direction of propagation, polarization, and frequency. This expression for

the polarization immediately gives insight into the nature of the measured four-

wave-mixing signals. Since the physical quantity that is measured by experiment is

the field intensity, the observed signal will be proportional to |χ(3)|2, the product of

the three field intensities, and will also be related to a “phase mismatching” factor:

~δk ≡ ~k1 + ~k2 − ~k3 − ~k4. (1.3)

Equation (1.2) also implies that efficient coupling between the four waves, i.e.,

strong fourth field generation, will only occur when energy and momentum are both

conserved [2]: ω4 = ω1 + ω2 − ω3 and ~k4 = ~k1 + ~k2 − ~k3, i.e., ~δk = 0. The condition

that ~δk = 0 is called “perfect phase matching”. In Fig. 1.1, we show the satisfaction

of these two conditions schematically.

The use of an atomic medium close to resonance to generate a high χ(3) nonlin-
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Figure 1.1: Energy (a) and momentum (b) conservation in the 4WM described by

Eq. (1.2). ωi and ~ki, i = 1, 2, 3, 4, are the frequencies and wave vectors
of the four fields. They are related by ki = niωi/c, where ni is the index
of refraction of the medium at frequency ωi.

earity has been first proposed in the classical regime in a few theoretical papers [6–9]

where the atomic medium was described as a two-level system. Since then there have

been different approaches to generate 4WM in more complicated level structures,

such as the diamond configuration [10, 11] that consists of four levels: a single

ground state, two intermediate states, and an upper state.

More recently there have been different theoretical descriptions in which the

atomic systems are not described by a two-level atom, but by a 3-level single-Λ or

a 4-level double-Λ atomic configuration (see Fig. 1.2), and where the production of

4WM has been studied [12, 13]. In our case, we are interested in using a double-Λ

configuration to generate two 4WM processes: the phase-insensitive and the phase-

sensitive amplification. Our approach is a consequence of the extraordinarily good

results in [14] where the 4WM enabled by a double-Λ scheme has generated high

levels of squeezed light, i.e., two beams with relative intensity fluctuations smaller

than the shot-noise level.
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(a) (b) 

Figure 1.2: The 3-level single-Λ (a) and 4-level double-Λ (b) atomic configurations.
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Figure 1.3: Sketch and energy diagram for the phase-insensitive amplification. One
of the two input ports is seeded with probe light, the other one is seeded
with only vacuum fluctuations. Due to the 4WM interactions, in ad-
dition to an amplified probe beam, a conjugate beam of light is also
generated. ∆ and δ are the one- and two-photon detuning, respectively.

1.2 Phase-insensitive amplifier

Since the first quantum squeezing generation based on 4WM in sodium vapor

was demonstrated about 30 years ago [15], different squeezing mechanisms involving

atomic vapor have been proposed and experimentally realized [16–22]. Nowadays,

the 4WM-based phase-insensitive amplifier (PIA), constructed using an atomic va-

por, has been proven to be an effective and reliable source of two-mode squeezed
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states and continuous-variable entanglement2. It has become an extremely useful

tool in the quantum capabilities toolbox world wide [14, 23–33].

Figure 1.3 contains the sketch and the energy diagram of this 4WM-based

PIA scheme where a strong pump beam and a weak probe beam are crossed in an

atomic vapor. Two photons are converted from the strong pump beam into “twin”

photons emitted into the spatially separated probe and conjugate modes as a result

of the momentum conservation (see the energy diagram in Fig. 1.3). The output

probe beam is thus amplified and the amplification is independent of the phase of

the input probe field. The atomic ground state coherence largely suppresses the

excess noise due to the spontaneous emission, which is the limiting factor of many

atomic-vapor-based squeezing generation schemes.

This 4WM based PIA scheme has been successfully implemented in a number

of applications in atomic-based quantum memories and precision measurements,

such as an optically tunable delay for entangled beams of light with Einstein-

Podolsky-Rosen (EPR) levels of entanglement [25], the generation of high-purity

narrow-band single photons [34] and the realization of an SU(1, 1) quantum inter-

ferometer with high phase sensitivity [35–37]. In our lab, we use this 4WM based

PIA not only as a source of the two-mode squeezed state but also a gain-assisted

anomalous dispersion medium.

2The two-mode squeezed states and continuous-variable entanglement will be discussed later.
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1.3 Phase-sensitive amplifier

Unlike the phase-insensitive amplification, which inevitably adds extra noise

to the input signal due to the simultaneous amplification of the input vacuum fluc-

tuations [38] as shown in Fig. 1.3, the possibility for a phase-sensitive noiseless

amplification was first demonstrated theoretically by Caves [39]. The idea of this

phase-sensitive amplification is sketched in Fig. 1.4(b). Since the first experimental

demonstrations of phase-sensitive noiseless amplification of temporal optical sig-

nals for continuous-wave [40] and for pulsed optical signals [41] in 1993, optical

parametric phase-sensitive amplification has been intensively investigated both the-

oretically and experimentally. The noiseless amplification feature [38, 39] of the

phase-sensitive amplifier (PSA) is extremely attractive for a variety of fields includ-

ing optical communications [42, 43], quantum information processing [44, 45], and

image amplification [46–49].

The single-mode PSA sketch is shown in Fig. 1.4(b). When inputting a signal

in the correct quadrature component, the PSA amplifies both the signal and the

noise in the quadrature, but deamplifies the noise in the orthogonal quadrature.

By amplifying one quadrature and deamplifying the orthogonal quadrature, the

PSA preserves the statistical properties of the noise in each quadrature of the input

state, but alters the overall statistics. It is possible to amplify a signal encoded

in one quadrature component of a nonclassical state of light using an optical PSA,

without degrading the quantum features in that quadrature.

To date, most PSAs were implemented based on parametric processes in optical
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Figure 1.4: Sketches and energy diagrams for the phase-sensitive amplification. (a)
Two-mode PSA: both of the two input ports are seeded with beams of
light. Due to the 4WM interactions, the output probe and conjugate
beams of light are amplified or deamplified depending on the phase of
the input beams. (b) Single-mode PSA: the roles of beams played in (a)
are swapped so that there is only a single input port for the probe seed.
The output of the probe beam is amplified or deamplified depending on
the phase of the input beams. ∆ and δ are the one- and two-photon
detuning, respectively.

fibers [50–56] partially due to their capability of supporting high signal gain if one

launches the input fields into highly nonlinear fibers and lets them propagate for a

long distance. There are also a few PSAs that were enabled by nonlinear crystals

based on type I phase-matching conditions [46–48, 57]. In our lab, phase-sensitive

amplification is implemented by 4WM in atomic vapor. Previous work in our group

has demonstrated the noiseless amplification of mutliple spatial modes [49] and the

generation of single-beam quadrature squeezed states [58] by use of this PSA.
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1.4 Fast and slow light

It is well known that the group velocity of a narrow-band optical pulse traveling

in a dielectric medium with an index of refraction n can be written as [59]

vg =
c

n+ ω ∂n
∂ω

, (1.4)

where c is the speed of light in vacuum. We emphasize the fact that the expression

for group velocity of an optical pulse is evaluated at the carrier frequency of the

pulse.

Equation 1.4 is very suggestive: the group velocity is given by the speed of

light in vacuum divided by a term that includes both the index of refraction and

the derivative of the index. Accordingly, the denominator is often referred to as the

group index of refraction ng and can assume values that are larger or smaller than

unity, giving rise to “slow” and “fast” light, respectively.

Over the past years, many experiments have demonstrated the ability to

manipulate the group velocities of optical pulses propagating through atomic va-

pors [60–63]. In particular, much work has been done to understand fast-light

phenomena associated with anomalous dispersion (i.e., ∂n/∂ω < 0), which can give

rise to group velocities that are greater than the speed of light in vacuum (or even

negative) [64]. It is of no surprise that, although an optical pulse may propagate

faster than the speed of light in vacuum, the information contained in the pulse

will never travel superluminally [65–67]. Although the experiments in [65–67] were
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conducted to investigate the propagation of information in fast-light media and the

conclusion drawn was the information cannot travel faster than the speed of light in

vacuum, they didn’t specify what limits the speed of information. A point of view

is that it is the quantum noise that limits the information velocity to values less

than c [68]. Although noise may have affected the experimental results in [65–67],

these experiments were not conducted in a regime where quantum noise necessarily

played a crucial role.

To this end, we have studied in the quantum noise regime how the anomalous

dispersion associated with phase-insensitive gain affects the propagation of infor-

mation. We find that the cross-correlation between the two modes of a bipartite

entangled state (i.e., the probe mode and conjugate mode in Fig. 1.3) can be ad-

vanced by propagating through a PIA acting as a fast-light medium and, the extra

noise added by the PIA has been speculated to limit the advance of entanglement,

preventing the information from traveling superluminally [29, 68]. In the case of a

PSA, however, it is well known that no extra noise will be added for the quadrature

with the correct input phase (e.g., at the maximal amplification and the maximal

deamplification). It is therefore of natural interest to extend our investigation to

explore the advance and delay of information transmitted through a PSA.

1.5 Outline

In this thesis, we utilize a PIA to prepare two-mode quantum correlations in

the form of photon-number-difference squeezed optical beams, i.e., twin beams. We
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then use one mode of the generated two-mode squeezed state as the input to our

PSA. We make use of the PSA as an optical phase-modulation quantifier, a quantum

optical pre-amplifier and an “apparent” fast and slow light device in three different

experiments. The investigations of optical properties of the PSA in each experiment

are the main contents of this thesis. This thesis is structured as follows:

Chapter 2 is devoted to the basic quantum mechanics of the linear optical am-

plifiers, both PIA and PSA. We deduce gain and noise properties for both PIA and

PSA. Introduction of some quantum features, such as two-mode squeezed state, en-

tanglement, quadrature squeezed state, is also given. Finally, phase-space represen-

tations of both the phase-insensitive and phase-sensitive amplification are illustrated

for a better understanding of the amplifiers’ optical properties.

In Chapter 3, we describe the effects of input phase and amplitude modulation

on the output of a quantum-noise-limited PSA realized in atomic rubidium vapor.

We investigate the dependence of phase modulation (PM) on the alignment of an

acousto-optical modulator in an optical beam and demonstrate a novel approach to

quantifying PM by using the PSA as a diagnostic tool. We then use this method

to measure the alignment-dependent PM of an optical chopper which arises due to

diffraction effects as the chopper blade passes through the optical beam.

In Chapter 4, we demonstrate the ability of a PSA to pre-amplify quantum

correlations in twin light beams before degradation due to loss and detector ineffi-

ciency. We use a PIA realized in atomic rubidium vapor to generate bright beams in

a two-mode squeezed state. One of these two modes then passes through a PSA to

noiselessly pre-amplify the state before loss is intentionally introduced. We demon-
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strate that the two-mode squeezing can largely be preserved under these conditions.

In Chapter 5, we implement a fast-and-slow-light experiment using a PSA

as the “dispersive” medium. We first use the mutual information contained in a

bipartite entangled state produced by a PIA as the input signal to a PSA. We study

the timing of the peak and leading edge of the mutual information as a function of

PSA phase. We show that there is no dispersion-like3 behavior at the two phases

where the PSA yields the maximal amplification and maximal deamplification. On

the other hand, the peak of mutual information could either be delayed or advanced

at any other phase. As opposed to the behavior of the peak, the leading edge of the

mutual information is always bounded by the reference case recorded without the

presence of the PSA. We then use an amplitude modulated classical beam as the

input signal to the PSA. We compare the results from these two different inputs and

demonstrate the similarities between them. To explain the physics, we provide a

theoretical model with distributed gain on the carrier as well as on both the positive

and negative side bands but with distributed loss only on the negative side band,

which gives good agreement with the experimental results.

Finally, Chapter 6 provides the summary and outlooks for possible future

investigations.

3In our case, this behavior is described as the frequency-dependent gain or loss as opposed to
the frequency-dependent index of refraction in the usual fast-and-slow-light effects.
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Chapter 2: Quantum mechanics for linear optical amplifiers

2.1 Introduction

As described by Caves [39], a linear optical amplifier is an optical amplifier

whose output signal is linearly related to its input signal. Concerning the gain and

noise characteristics, all linear amplifiers can be divided into two categories: phase-

insensitive amplifiers (PIA), whose gain and noise are independent of the phase of the

input signal, and phase-sensitive amplifiers (PSA), whose gain and noise are phase

dependent. As we shall see later, the former amplification process inevitably adds

extra noise to the input signal, while with the latter one it is possible to noiselessly

amplify1 an input signal. In this chapter, a simple quantum-mechanical model

starting from a generic four-wave mixing (4WM) Hamiltonian in the interaction

picture is provided to derive the gain and noise properties of both the PIA and the

PSA.

1In this thesis, noiseless amplification refers to an amplification process where the input signal-
to-noise ratio is preserved.
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2.2 Four-wave mixing

Let us first consider the 4WM based on a double-Λ configuration depicted in

Fig. 2.1.

This 4WM process involves three modes, a, b and c, which are conventionally

referred to as the probe, conjugate and pump respectively. It is a cycle that annihi-

lates a pump photon, creates a probe photon, annihilates another pump photon and

then creates a conjugate photon; or vise versa, two photons, one from the probe and

the other from the conjugate, are converted into the pump mode. This is evident

when examining the simplified phenomenological interaction Hamiltonian [69, 70],

ĤI = i~χĉ2â†b̂† + (−i)~χ∗ĉ†2âb̂, (2.1)

where χ is the effective interaction strength that depends on the third-order non-

linear susceptibility χ(3) and the path length of the interaction L. Most 4WM

experiments use very bright pump modes to drive the nonlinear medium, therefore,

it is safe to treat the pump mode c as classical. The interaction Hamiltonian in

Eq. 2.1 can then be rewritten as:

ĤI = i~ξeiθâ†b̂† + h.c., (2.2)

where ξ is the strength of interaction that depends not only on the third-order

nonlinear susceptibility and the path length of the interaction but also the intensity
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Figure 2.1: (a). 4WM based on a double-Λ configuration. The atomic level scheme
is comprised of two ground states and one excited state and three input
modes a, b and c. ∆ is the one photon detuning. δ is the two-photon
detuning. (b). Experimental realization of the 4WM. Three inputs are
crossed at the center of the atomic vapor with a small relative angle to
fulfill the phase matching condition as depicted in Fig.1.1(b). D1 and
D2 are two detectors which may be intensity detectors or homodyne
detectors. M denotes the processing of the data.
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of the pump. Since the third-order nonlinear susceptibility is a function of atomic

resonances, ξ thus has dependence on ∆ and δ labeled in Fig. 2.1(a) as well. θ = 2φc,

where φc is the phase of the pump field, without loss of generality, it is treated as 0.

From Eq. 2.2 together with the equation of motion for operators in the inter-

action picture,

dÔ

dt
=

1

i~
[Ô, ĤI ], (2.3)

where Ô denotes any mode operator in the 4WM process, one is able to obtain the

time evolutions for operators â and b̂†:

dâ

dt
= ξeiθb̂†,

db̂†

dt
= ξe−iθâ.

(2.4)

It is trivial to solve this set of differential equations with respect to the input

operators â and b̂†:

â(t) = (coshξt)â+ (eiθsinhξt)b̂†,

b̂†(t) = (coshξt)b̂† + (e−iθsinhξt)â.

(2.5)

Define r = ξT , where T is the interaction time and it is related to the path

length of interaction L by T = L/vg, where vg is the group velocity. Then the final

operators after the 4WM are

âf = (coshr)â+ (eiθsinhr)b̂†,

b̂†f = (coshr)b̂† + (e−iθsinhr)â.

(2.6)
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Recall that for a generic linear amplifier, the input-output relation can be

written as

âout = µâin + νb̂†in, (2.7)

where âin and b̂in are the annihilation operators of the input modes, and âout is

the annihilation operator after the amplification process. The complex transfer

coefficients µ and ν are related to the gain and other details of the amplification

process and must satisfy |µ|2−|ν|2 = 1 in order to satisfy the commutation relations

of the output field. Comparing Eqs. 2.6 with Eq. 2.7, we conclude that the 4WM

process is linear amplification.

The experimental realization of the 4WM is sketched in Fig.2.1(b), where three

inputs are crossed in an atomic vapor with a relatively small angle in order to fulfill

the phase matching condition as depicted in Fig.1.1(b). When the probe port a is

seeded with a coherent field and the conjugate port b is seeded with vacuum, the

4WM process acts as a PIA [14, 23]. When the probe and conjugate ports are seeded

with coherent fields simultaneously, the amplifier turns into a PSA. In the following

sections we will use Eqs. 2.6 to derive the gain and noise characteristics for both the

PIA and the PSA.
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2.3 Phase-insensitive amplifier

2.3.1 Two-mode intensity difference squeezing

We now can model a PIA as a linear amplifier described by Eqs. 2.6 with a

coherent state input |α〉, α = |α|eiφi , where φi is the input phase, seeding mode a,

and mode b is only fed by vacuum fluctuations. In this case the input state can

be viewed as |α, 0〉. It is then straightforward to calculate the mean output photon

number 〈n̂a〉 ≡ 〈â†f âf〉 and the photon-number variance ∆n̂2
a ≡ 〈n̂2

a〉 − 〈n̂a〉
2 ≡

〈â†f âf â
†
f âf〉 − 〈â

†
f âf〉2 with this input state |α, 0〉:

〈n̂a〉 = |α|2 cosh2 r + sinh2 r, (2.8)

∆n̂2
a =

1

2
[−1 + (1 + 2|α|2) cosh 2r] cosh2 r. (2.9)

If we define GPIA = cosh2 r and assume an input coherent state that is suffi-

ciently bright, e.g., |α|2 � 1, Eqs. 2.8 and 2.9 could be simplified to

〈n̂a〉 = |α|2 cosh2 r = GPIA〈n̂in〉, (2.10)

∆n̂2
a = |α|2 cosh2 r cosh 2r = GPIA(2GPIA − 1)∆n̂2

in, (2.11)

since for a coherent state input seeding mode a, ∆n̂2
in ≡ 〈n̂in〉 = |α|2. It is clear that
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there is no input phase φi dependence either in the gain or in the noise expression.

In the same manner, one is able to calculate the mean output photon number

〈n̂b〉 ≡ 〈b̂†f b̂f〉 and the photon-number variance ∆n̂2
b ≡ 〈n̂2

b〉 − 〈n̂b〉
2 ≡ 〈b̂†f b̂f b̂

†
f b̂f〉 −

〈b̂†f b̂f〉2 with the input state |α, 0〉 for the b mode:

〈n̂b〉 = |α|2 sinh2 r + sinh2 r, (2.12)

∆n̂2
b =

1

2
[1 + (1 + 2|α|2) cosh 2r] sinh2 r. (2.13)

With the assumption of |α|2 � 1, they are further simplified to

〈n̂b〉 = |α|2 sinh2 r = (GPIA − 1)|α|2, (2.14)

∆n̂2
b = |α|2 sinh2 r cosh 2r = (GPIA − 1)(2GPIA − 1)|α|2. (2.15)

In the quantum optics community, people refer to the output probe and con-

jugate modes na and nb as “twin beams”2.

The noise of the intensity difference n̂diff = n̂a − n̂b = â†f âf − b̂
†
f b̂f of the twin

beams is

∆n̂2
diff =

1

4
[(−1 + 3|α|2) + (1 + |α|2) cosh 4r]− 1

2
(1 + |α|2) sinh2 2r cos 4φc. (2.16)

2In addition to the correlated intensity fluctuations, “twin beams” also implies their phase
fluctuations are anti-correlated.
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For simplicity and without the loss of generality, we set the pump phase φc = 0,

then the above expression is reduced to

∆n̂2
diff = |α|2. (2.17)

The shot noise level of the twin beams is just the sum of Eq. 2.10 and Eq. 2.14:

∆n̂2
snl = (cosh2 r + sinh2 r)|α|2 = (2GPIA − 1)|α|2. (2.18)

We define the two-mode intensity-difference squeezing in dB to be

SQZdiff = 10 log10(
∆n̂2

diff

∆n̂2
snl

) = 10 log10(
1

2GPIA − 1
). (2.19)

In Fig. 2.2 we plot the two-mode intensity difference squeezing as a function

of GPIA. More squeezing can be achieved with greater PIA gain.

Achievements of good two-mode intensity difference squeezing have been re-

ported in [14, 23].

2.3.2 Continuous-variable quantum entanglement

Since this 4WM scheme has manifested itself as a reliable source of not only

two-mode squeezed states and but also continuous-variable quantum entanglement [25,

26], its joint quadrature noise properties are therefore worthy of being derived as

well.

Let us now consider the noise properties of the output mode quadratures.
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Figure 2.2: Two-mode intensity difference squeezing as a function of GPIA.

Define the amplitude quadrature of the output probe mode as X̂a = (âf + â†f )/2,

then the mean and variance of the quadrature 〈X̂a〉 with the input state |α, 0〉 is

〈X̂a〉 = |α| cosφi cosh r =
√
GPIA〈X̂i〉, (2.20)

∆X̂2
a =

1

4
cosh 2r = (2GPIA − 1)∆X̂2

i , (2.21)

since for a coherent state input seeding mode a, 〈X̂i〉 = |α| cosφi and ∆X̂2
i = 1/4.

Calculations of the phase quadrature Ŷa = (âf − â†f )/2i render similar results to

Eqs. 2.20 and 2.21:

〈Ŷa〉 = |α| sinφi cosh r =
√
GPIA〈Ŷi〉, (2.22)
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∆Ŷ 2
a =

1

4
cosh 2r = (2GPIA − 1)∆Ŷ 2

i , (2.23)

since 〈Ŷi〉 = |α| sinφi and ∆Ŷ 2
i = 1/4 for an input coherent state. Notice that,

neither the quadrature amplitudes 〈X̂a〉 and 〈Ŷa〉 nor the noise ∆X̂2
a and ∆Ŷ 2

a have

a dependence on the input phase φi, as we expected for a PIA.

For the sake of completeness, we calculate the mean and noise of the output

conjugate quadratures X̂b = (b̂f + b̂†f )/2 and Ŷb = (b̂f − b̂†f )/2i with the same

treatment:

〈X̂b〉 = |α| cos(φi + 2φc) sinh r =
√
GPIA − 1[|α| cos(φi + 2φc)], (2.24)

∆X̂2
b =

1

4
cosh 2r = (2GPIA − 1)∆X̂2

i , (2.25)

〈Ŷb〉 = −|α| sin(φi + 2φc) sinh r =
√
GPIA − 1[−|α| sin(φi + 2φc)], (2.26)

∆Ŷ 2
b =

1

4
cosh 2r = (2GPIA − 1)∆Ŷ 2

i . (2.27)

Notice that, because the noise of the input coherent state is independent of |α|,

the output quadrature noise is also independent of |α|, and ∆X̂2
a = ∆Ŷ 2

a = ∆X̂2
b =

∆Ŷ 2
b , the noise on both quadratures of the output probe and conjugate modes are

the same.
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In order to characterize the entanglement between the output probe and con-

jugate modes, we need to analyze joint variables. For the case of the electromagnetic

field, these variables correspond to the joint quadrature operators X̂− = X̂a − X̂b

and Ŷ+ = Ŷa + Ŷb, which are the joint quadratures of the amplitude difference,

X̂−, and phase sum, Ŷ+, between the fields. Based on the noise properties of these

quadratures, different degrees of continuous-variable entanglement exist. The vari-

ance, or noise, of these operators for coherent states sets the standard quantum limit

(SQL) of the quadrature fluctuations. The requirement for entanglement is that the

states of the two modes cannot be described independently, a property known as

inseparability. This property can be quantified with the inseparability parameter

I = (∆X̂2
−)N + (∆Ŷ 2

+)N , where the N subscript indicates that the variances have

been normalized to the corresponding SQL. The state of the two modes is insepa-

rable when I < 2 [71], such that having both ∆X̂2
− and ∆Ŷ 2

+ below the SQL, or

squeezed, is a sufficient condition for entanglement.

The joint quadrature variance can be measured using two balanced homo-

dyne detectors (HD). Figure 2.3 is the sketch of the balanced homodyne detector

measuring a generalized target state t̂.

Each output mode, af and bf , is separately combined with its own local oscil-

lator (LO) field at a 50/50 beam splitter so that one can determine the generalized

quadrature for each mode. Then the subtraction or addition is taken to render the

measurement of the joint quadrature variance. This is equivalent to a single HD

measurement where the joint output mode Ĵ∓ = âf ∓ b̂f is combined with a strong
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LO field3 at a 50/50 beam splitter. Specifically, combining Ĵ− with a LO field gives

the measurement of ∆X̂2
−. Similarly, combining Ĵ+ with a LO field gives the mea-

surement of ∆Ŷ 2
+. Assume the LO is a coherent state with a coherent amplitude

β = |β|eϕlo , then the measured variance of the intensity difference between the two

outputs of the beam splitter for the joint output modes Ĵ− and Ĵ+ are

∆X̂2
J− =

1

2
|β|2(cosh 2r + cos 2ϕlo cos 2φc sinh 2r), (2.28)

∆X̂2
J+

=
1

2
|β|2(cosh 2r − cos 2ϕlo cos 2φc sinh 2r), (2.29)

where ∆X̂2
J∓

denotes the variance of the generalized joint quadrature X̂J∓ . We again

are permitted to set the pump phase φc = 0 for simplification. Since the SQL of the

HD measurement is |β|2/4 + |β|2/4 = |β|2/2, the squeezing of the generalized joint

quadrature would be

SQZJ− = 10 log10(cosh 2r + cos 2ϕlo sinh 2r), (2.30)

SQZJ+ = 10 log10(cosh 2r − cos 2ϕlo sinh 2r). (2.31)

In Fig. 2.4, we plot SQZJ− and SQZJ+ as a function of the LO phase ϕlo when

the PIA gain GPIA = cosh2 r = 3. We find that, when ϕlo = π/2, we are measuring

3Assuming the LO field here is bi-chromatic to work on the joint output modes Ĵ∓, since modes
âf and b̂f have different frequencies.
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Figure 2.3: Sketch of the balanced homodyne detector measuring a generalized tar-
get state t̂. The mean and variance of the output photocurrent dif-
ference are i1 − i2 = 2|β|〈X̂θ〉 and ∆(i1 − i2)2 = 4|β|2∆(X̂θ)2, where
X̂θ = t̂eiθ + t̂†e−iθ and θ = ϕlo − π/2.

the variance ∆X̂2
− of the joint quadrature X̂− and, when ϕlo = π we are measuring

the variance ∆Ŷ 2
+ of the joint quadrature Ŷ+, and they are both squeezed by the

same amount 10 log10(cosh 2r − sinh 2r). It clearly indicates the existence of the

quantum entanglement between the output probe and conjugate modes.
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(red) as a function of LO phase ϕlo when GPIA = cosh2 r = 3. The
minima of the blue curve correspond to the squeezing value of ∆X̂2

−,
while the minima of the red curve correspond to the squeezing value of
∆Ŷ 2

+.

2.3.3 Noise figure of the phase-insensitive amplifier

In the noise theory of a classical amplifier, the deterioration of the signal to

noise ratio (SNR) as the signal passes through the amplifier is used as a measure of

the amplifier noise performance. Following this idea, we define the noise figure (NF)

of the optical amplifier as the ratio between the SNR of the input signal (SNRin)

and the output (SNRout):

NF =
SNRin

SNRout

. (2.32)

In general, the amplification process of an input signal does not improve the

SNR. This is because the amplifier can not preferentially amplify the signal over the
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noise. With an amplifier adding no excess noise, we obtain, at best,

NF = 1. (2.33)

For a coherent input state with coherent amplitude α and with unity noise

size, the SNRin ≡ |α|2. By insertion of Eqs. 2.10 and 2.11 into

SNRout ≡
〈n̂a〉2

∆n̂2
a

, (2.34)

it is then trivial for one to get the NF for the PIA:

NFPIA =
SNRin

SNRout

=
2GPIA − 1

GPIA

= 2− 1

GPIA

. (2.35)

In Fig. 2.5, we plot the NFPIA versus GPIA. We observe that the NFPIA is

always larger than one when GPIA > 1. Thus, the PIA always reduces the SNR

of an input signal after amplification. Therefore, quantum mechanics imposes a

fundamental limit on the performance of a PIA, resulting in the degradation of the

SNR, which reaches a factor of 2 (3 dB) at high gains (GPIA → ∞). People often

refer to this noise property of the PIA as the “3 dB noise penalty”.

2.4 Phase-sensitive amplifier

In analogy to PIAs, a generalized PSA can also be modeled as a linear amplifier

described by Eqs. 2.6 but with coherent fields seeding both the input modes a and
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Figure 2.5: Theoretical noise figure of the PIA (NFPIA) as function of the gain (GPIA)
(e.g, Eq. 2.35). The relation NFPIA > 1 is always true when GPIA > 1,
which implies the PIA always degrades the input SNR. When GPIA →
∞, NFPIA → 2.

b. In this section we will investigate the gain and noise properties of the PSA under

two different conditions: 1. The input modes a and b are fed with two different

coherent fields (both of the amplitude and phase are different but with the same

frequency); 2. Both a and b are fed with the same coherent field.

2.4.1 Two-mode phase-sensitive amplifier

Let us first assume the input modes a and b are fed with two different coherent

fields (but with the same frequency) |α〉 (α = |α|eiφα) and |β〉 (β = |β|eiφβ) respec-

tively. Then it is easy for one to obtain photon number mean and variances of the
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output modes af and bf :

〈n̂a〉 = |α|2 cosh2 r + (1 + |β|2) sinh2 r + |α||β| sinh 2r cos(φα + φβ − 2φc), (2.36)

∆n̂2
a =

1

8
[−1 + 2|α|2 + 2|β|2 + 4(|α|2 − |β|2) cosh 2r + (1 + 2|α|2 + 2|β|2) cosh 4r

+4|α||β| sinh 4r cos(φα + φβ − 2φc)],

(2.37)

〈n̂b〉 = |β|2 cosh2 r + (1 + |α|2) sinh2 r + |α||β| sinh 2r cos(φα + φβ + 2φc), (2.38)

∆n̂2
b =

1

8
[−1 + 2|α|2 + 2|β|2 + 4(|β|2 − |α|2) cosh 2r + (1 + 2|α|2 + 2|β|2) cosh 4r

+4|α||β| sinh 4r cos(φα + φβ + 2φc)].

(2.39)

Consider a simpler case where the input coherent states have the same mean

number of photons and are sufficiently bright, i.e., |α|2 = |β|2 � 1, the above

equations can be reduced to

〈n̂a〉 = [cosh2 r + sinh2 r + sinh 2r cos(φα + φβ − 2φc)]〈n̂i〉, (2.40)
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∆n̂2
a =

1

2
[1 + cosh 4r + sinh 4r cos(φα + φβ − 2φc)]∆n̂

2
i , (2.41)

〈n̂b〉 = [cosh2 r + sinh2 r + sinh 2r cos(φα + φβ + 2φc)]〈n̂i〉, (2.42)

∆n̂2
b =

1

2
[1 + cosh 4r + sinh 4r cos(φα + φβ + 2φc)]∆n̂

2
i , (2.43)

where 〈n̂i〉 and ∆n̂2
i are the mean and variance of the input states, and for coherent

states with mean number of photons |α|2, 〈n̂i〉 ≡ ∆n̂2
i = |α|2.

We now define the gain of the PSA process as

GPSA(ψ) = cosh2 r + sinh2 r + sinh 2r cosψ, (2.44)

where ψ = φα + φβ ∓ 2φc is the relative input phase4, − and + are for the modes

a and b, respectively. Unlike the PIA, Eq. 2.40 to Eq. 2.43 tell us that the gain

and noise of the PSA have a clear dependence on the relative input phase ψ. The

maximal value of the PSA gain Gmax
PSA = (cosh r+sinh r)2 = e2r occurs at ψ = 0, while

the minimum value of the PSA gain Gmin
PSA = (cosh r − sinh r)2 = e−2r = 1/Gmax

PSA

occurs when ψ = π. We plot the behavior of GPSA as function of ψ in Fig. 2.6 when

Gmax
PSA = e2r = 5.

4Relative to twice the pump phase φc.
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Figure 2.6: Red line: Theoretical gain of the PSA, GPSA, as function of the rela-
tive input phase, ψ, (e.g, Eq. 2.44) plotted on the left axis. Blue line:
Theoretical noise figure of the PSA, NFPSA as function of the relative
input phase, ψ, (e.g, Eq. 2.49) plotted on the right axis. When ψ = nπ,
(n = 0, 1, 2, ...), NFPSA = 1, which implies the input SNR is preserved
after the amplification process.
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2.4.2 Noise figure of the two-mode phase-sensitive amplifier

In order to properly characterize the NF of the two-mode PSA, we need to

first identify its input and output signals. Notice that, since the PSA has both its

input modes a and b seeded with coherent states, we thus should treat modes a and

b together as the input signal to the amplifier. To this end, the output signal and

noise are

〈n̂a + n̂b〉 = −1 + (1 + |α|2 + |β|2) cosh 2r + 2|α||β| cos(φα + φβ) cos(2φc) sinh 2r,

(2.45)

∆(n̂a + n̂b)
2 =

1

4
[−1 + |α|2 + |β|2 + (1 + 3|α|2 + 3|β|2) cosh 4r + 2(1 + |α|2 + |β|2)×

cos(4φc) sinh2 2r + 8|α||β| cos(φα + φβ) cos(2φc) sinh 4r].

(2.46)

We again take advantage of the assumption of symmetric and bright inputs

|α|2 = |β|2 � 1 and set pump phase φc = 0 to reduce the above equations to

〈n̂a + n̂b〉 = 2[cosh 2r + sinh 2r cos(φα + φβ)]|α|2, (2.47)

∆(n̂a + n̂b)
2 = 2[cosh 4r + sinh 4r cos(φα + φβ)]|α|2. (2.48)
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The NF of the two-mode PSA is readily obtained as

NFPSA =
SNRin

SNRout

=
cosh 4r + sinh 4r cosψ

(cosh 2r + sinh 2r cosψ)2
, (2.49)

where we have used the fact that SNRin = 2|α|2. The relative input phase ψ =

φα + φβ since pump phase φc has been set to 0.

We plot the NFPSA versus the relative input phase ψ in Fig. 2.6 along with the

plot of GPSA as function of ψ. We observe that the NFPSA(ψ) is minimized and in

fact can achieve the limit of NFPSA = 1 for a value of ψ = nπ, where n is an integer.

These values of ψ coincide with both the maximal and minimal values of the PSA

gain

NFPSA(nπ) = 1, n = 0, 1, 2, ... (2.50)

An interesting result is that this limit (NFPSA = 1) is independent of GPSA.

No matter how large the gain of the amplification process is, one will always have

SNRin = SNRout.

This noise characteristic for a PSA, NFPSA = 1, means that one can amplify

an optical signal in the quadrature with the correct input phase without deterio-

rating its input SNR. This is why this type of linear amplifier is called “noiseless”.

Nowadays, this unique noise property of the PSA is of great interest to several

research fields including optical communications [42, 43], quantum information pro-

cessing [44, 45], and image amplification [46–49].
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â
b̂

ĉ
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Figure 2.7: Double-Λ configuration (a), and experimental realization (b), of the
single-mode PSA. Modes b and c are the pump modes, mode a is the
probe mode. ∆ is the one photon detuning. δ is the two-photon detun-
ing. D is a detector for the output probe mode which may be intensity
detector or homodyne detector. M denotes the processing of the data.

2.4.3 Single-mode phase-sensitive amplifier

Let us now consider reversing the geometric configuration shown in Fig. 2.1:

we now pump with two relatively strong modes b and c along the directions of,

the probe and conjugate modes in Fig. 2.1 and probe with a weak mode a having

the direction of the previous pump. Figure 2.7 is the double-Λ configuration and

experimental realization of the single-mode PSA. Notice that, in Fig. 2.7, the fields’
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detunings are different than those in Fig. 2.1. As a matter of fact, simply exchanging

the roles of the pump and the probe and conjugate beams in Fig. 2.7 does not lead

to a properly functioning single-mode PSA. We have found excess noise when the

roles of the beams are simply reversed in this manner. This noise is due, at least

in part, to extraneous 4WM processes. We have, however, been able to make a

properly functioning single-mode PSA by adjusting the operating parameters. In

particular, we found it necessary to tune the two pumps, b and c, so that one is

above, and the other below, the corresponding atomic resonance as shown in the

energy level diagram in Fig. 2.7(a). In this case, the probe mode a is blue of one

resonance and red of the other, whereas in Fig. 2.1 it was blue of both resonances.

By treating the strong pump modes b and c as classical and employing the

same derivations leading to Eq. 2.6, the input-output relation corresponds to this

single-mode PSA can be obtained:

âf = (coshr)â+ (eiθsinhr)â†, (2.51)

where θ = φb + φc is the sum of the pump phases.

This type of single-mode PSA is experimentally investigated in this thesis and

has been demonstrated as capable of generating multi-spatial-mode single-beam

quadrature squeezed states of light [58] as well as noiselessly amplifying images [49].

Using Eq. 2.51 and assuming a coherent state |α〉, α = |α|eiφi , where φi is the

input phase, seeding the input mode a, it is then straightforward for us to get the

mean output number of photons 〈n̂〉 ≡ 〈â†f âf〉 and its variance ∆n̂2 ≡ 〈n̂2〉− 〈n̂〉2 ≡
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〈â†f âf â
†
f âf〉 − 〈â

†
f âf〉2 as

〈n̂〉 = |α|2 cosh2 r + (1 + |α|2) sinh2 r + |α|2 cos(2φi − θ) sinh 2r, (2.52)

∆n̂2 =
1

4
[−1 + (1 + 4|α|2) cosh 4r + 4|α|2 cos(2φi − θ) sinh 4r]. (2.53)

With the same treatment of assuming a bright coherent input, i.e., |α|2 � 1,

we reduce the above equations to

〈n̂〉 = [cosh2 r + sinh2 r + sinh 2r cos(2φi − θ)]〈n̂i〉 (2.54)

∆n̂2 = [cosh 4r + sinh 4r cos(2φi − θ)]∆n̂2
i . (2.55)

We now define the gain of the single-mode PSA process as

GPSA(ψ) = cosh2 r + sinh2 r + sinh 2r cosψ, (2.56)

where ψ = 2φi − θ = 2φi − (φb + φc) is the relative input phase5. Notice that,

Eq. 2.56 is identical to the expression, Eq. 2.44, for the gain of the two-mode PSA.

We now study the noise properties of the output mode quadratures. Define

the generalized quadrature of the output mode as X̂(ϕ) = (âfe
iϕ + â†fe

−iϕ)/2, then

the mean and variance of the generalized quadrature X̂(ϕ) with the input coherent

5Relative to pump phases sum φb + φc.
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state |α〉 is

〈X̂(ϕ)〉 = [cos(φi + ϕ) cosh r + cos(φi − ϕ) sinh r]|α|, (2.57)

∆X̂2
(ϕ) =

1

4
(cosh 2r + cos 2ϕ sinh 2r), (2.58)

where we have set the sum of pump phases θ = φb+φc = 0 without loss of generality.

Therefore, one is able to obtain the mean and variances of the amplitude

quadrature, X̂ = (âf + â†f )/2, and phase quadrature, Ŷ = (âf − â†f )/2i, just by

assigning ϕ = 0 and −π/2 respectively:

〈X̂〉 = (cosh r + sinh r)|α| cosφi, (2.59)

∆X̂2 =
1

4
(cosh 2r + sinh 2r), (2.60)

〈Ŷ 〉 = (cosh r − sinh r)|α| sinφi, (2.61)

∆Ŷ 2 =
1

4
(cosh 2r − sinh 2r), (2.62)

In order to make a succinct expression, from now on, we assign GPSA to denote

the maximal PSA gain: GPSA = Gmax
PSA = (cosh r+ sinh r)2 = cosh 2r+ sinh 2r = e2r.
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Then the above equations can be condensed to

〈X̂〉 =
√

GPSA〈X̂i〉, (2.63)

∆X̂2 = GPSA∆X̂2
i , (2.64)

〈Ŷ 〉 =
1√

GPSA

〈Ŷi〉, (2.65)

∆Ŷ 2 =
1

GPSA

∆Ŷ 2
i , (2.66)

where we have used the fact that for an input coherent state with coherent ampli-

tude α and phase φi, 〈X̂i〉 = |α| cosφi, 〈Ŷi〉 = |α| sinφi and ∆X̂2
i = ∆Ŷ 2

i = 1/4. We

learn from Eq. 2.63 to Eq. 2.66 that the amplitude quadrature always experiences

amplification GPSA , while the phase quadrature always experiences deamplifiction

1/GPSA. They are distinct from Eqs. 2.20 to 2.23 for the PIA, where both quadra-

tures undergo the same amplifications not only for the mean but for the variance as

well.
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2.4.4 Single-mode squeezing

As opposed to the two-mode squeezing enabled by the PIA in Eq. 2.19 and in

Fig. 2.2, the single-mode PSA is capable of generating single-mode squeezed states6,

as demonstrated in [58].

We again use a balanced HD detection to measure the single-mode squeezing.

The output field âf is combined with a strong LO field at a 50/50 beam splitter.

Assume the LO is a coherent state with a coherent amplitude β = |β|eϕlo , then the

measured variance of the intensity difference between the two outputs of the beam

splitter is:

∆X̂2
g =

1

4
|β|2(cosh 2r − cos 2ϕlo sinh 2r), (2.67)

where ∆X̂2
g denotes the variance of the generalized quadrature. Since the SQL of

the HD measurement is |β|2/4, the squeezing of the generalized quadrature would

be

SQZg = 10 log10(cosh 2r − cos 2ϕlo sinh 2r). (2.68)

This is the same as measuring the squeezing of the joint quadratures X̂− and

Ŷ+ in Eq. 2.30 and Eq. 2.31.

In Fig. 2.8, we plot SQZg as a function of the LO phase ϕlo when cosh2 r = 3.

We find that, when ϕlo = π/2, the measurement yields the variance of the amplitude

quadrature X̂ and, when ϕlo = π, the measurement yields the variance of the phase

6In this thesis, two-mode and single mode squeezing are referred to as two brands of squeezing
involving two beams and only one beam respectively. They are not named in terms of spatial
modes. As a matter of fact, both types of squeezing could be multi-spatial-mode as demonstrated
in [58, 72].
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Figure 2.8: Squeezing of the generalized quadrature SQZg as a function of LO phase

ϕlo when cosh2 r = 3. The minima of the curve correspond to the
squeezing value of the amplitude quadrature X̂, while the maxima of the
curve correspond to the anti-squeezing value of the phase quadrature Ŷ .

quadrature Ŷ . It clearly indicates the amplitude quadrature X̂ is squeezed, while

the phase quadrature Ŷ is anti-squeezed by the same amount.

2.4.5 Noise figure of the single-mode phase-sensitive amplifier

From Eqs. 2.54 and 2.55 and SNRin = |α|2 for an input coherent state with

coherent amplitude α, the NF for the single-mode PSA can be reduced to

NFPSA =
SNRin

SNRout

=
cosh 4r + sinh 4r cosψ

(cosh 2r + sinh 2r cosψ)2
, (2.69)

where ψ = 2φi − θ = 2φi − (φb + φc) is the relative input phase. This is exactly

the same as the NF, Eq. 2.49, for the two-mode PSA. Therefore, if we were to plot
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the gain, Eq. 2.56 and the NF of the single-mode PSA as a function of the relative

input phase ψ, we have the identical behavior to that shown in Fig. 2.6.

2.5 Phase-space representations of phase-insensitive and phase-sensitive

amplification

A more illustrative way of describing the gain and noise characteristics of a PIA

and a PSA is to represent them in phase space. The phase-space representation of

the phase-insensitive amplification of an input coherent state is depicted in Fig. 2.9

using Eqs. 2.20 to 2.23. Similarly, by using Eqs. 2.63 to 2.66, we depict the phase-

space representation of the phase-sensitive amplification of an input coherent state

in Fig. 2.10.

In phase space, the quantum noise of a coherent state input is represented

by a disk of unit radius surrounding the vector extremity. The edge of the disk

represents the 1/e isoprobability curve for the possible outcomes of a measurement.

The area of the disk is directly given by the Heisenberg uncertainty principle, which

for a coherent state obeys the relation:

∆X ·∆Y = 1, (2.70)

where X and Y are field quadratures in units of
√

~ω/2.

In Fig. 2.9, we see that the phase-insensitive amplification amplifies both

quadratures by the same amount. All dimensions of the disk are magnified by
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Figure 2.9: Phase-space representation of the phase-insensitive amplification (b) of
an input coherent state (a). The dashed white circle in (b) designates
the noise size of the input coherent state. GPIA = cosh2 r.

the same factor
√

2GPIA − 1. Thus the noise spot remains a disk (i.e., the noise

power is the same in both quadratures), but its area is now larger, indicating that

the amplifier has introduced excess noise beyond that required by the Heisenberg

uncertainty principle in Eq. 2.70.

Whereas, in Fig. 2.10, when inputting a coherent state with an arbitrary input

phase φi, a PSA amplifies both the mean and the noise in X, or amplitude quadra-

ture but deamplifies the mean and noise in the orthogonal Y , or phase quadrature.

By amplifying X quadrature and deamplifying the orthogonal Y quadrature, one

distorts the noise spot into an ellipse, in contrast to the PIA configuration. However,

in spite of the distortion, the area of the noise spot is unchanged and remains equal

to the minimum required by the Heisenberg uncertainty principle.
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Figure 2.10: Phase-space representation of an arbitrary phase-sensitive amplifica-
tion (b) of an input coherent state (a). The dashed black circle in (b)
designates the noise size of the input coherent state. GPSA = e2r.

The maximal phase-sensitive amplification happens, according to Eq. 2.56,

when the input phase φi = 0 (again, assuming the input pump phases, φb and φc,

sum up to 0). This corresponds to the case that only the X, or amplitude quadra-

ture of the input coherent field carries a signal. The phase-space representation of

the maximal phase-sensitive amplification of an input coherent state is shown in

Fig. 2.11. In this case, we see that the phase-sensitive amplification amplifies both

the signal and the noise in the X quadrature but deamplifies the noise in the or-

thogonal Y quadrature. The area of the noise spot is unchanged and remains equal

to the minimum required by the Heisenberg uncertainty principle. The amplifica-

tion thus operates in the quantum-limited regime. This means that no additional

noise is introduced into the signal in the amplified X quadrature, thus resulting in

NFPSA = 1, which is associated with quantum-limited optical amplification.

43



We also plot the phase-space representation of the maximal phase-sensitive

deamplification (φi = π/2) of an input coherent state in Fig. 2.12 for complete-

ness. This configuration has been implemented in our group to generate single-beam

quadrature squeezed states with vacuum quadrature squeezing of -3 dB [58].

    

1

GPSA

GPSA

  
X

Y

1
GPSA

Figure 2.11: Phase-space representation of the maximal phase-sensitive amplifica-
tion (blue) of an input coherent state (red). The dashed black circle
designates the noise size of the input coherent state. GPSA = e2r.
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Figure 2.12: Phase-space representation of the maximal phase-sensitive deamplifi-
cation (blue) of an input coherent state (red). The dashed black circle
designates the noise size of the input coherent state. GPSA = e2r.

2.6 Effect of losses

Realistic experiments are subject to sources of optical loss including surface

reflections and absorption, as well as effective sources of loss such as imperfect

detection efficiency. When one makes a measurement of a quantum state of light, it

is important not only to reduce the losses experienced by the state but to understand

how these losses affect the measurement. The effect of losses can be modeled by a

beam splitter, as shown in Fig. 2.13, with a net transmission of η. In this case, the

transformation of the annihilation operator, also known as the input-output relation
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Figure 2.13: Modeling of losses in the path of a beam or in an imperfect detection
scheme by a beam splitter with a net transmission of η.

of the beam splitter is

âout =
√
ηâin +

√
1− ηâν , (2.71)

where âin is the annihilation operator of the quantum state before the losses, âout

is the annihilation operator associated with the quantum state after the losses, and

âν represents the annihilation operator of the vacuum noise that is coupled into the

unseeded port of the beam splitter.

In order to demonstrate the effect of losses on the measurement of quantum

features of a state of light, we take continuous-variable quantum entanglement as

an example. We add two beam splitters with transmissions ηa and ηb to the out-

put probe and conjugate modes to mimic the total losses before the detection, as

shown in Fig. 2.14. Following the derivations in Section 2.3.2, the squeezing of the

generalized quadrature in the presence of losses can be calculated as

SQZJ− = 10 log10[1− ηa + ηb
2

+
ηa + ηb

2
cosh 2r +

√
ηa
√
ηb cos 2ϕlo sinh 2r], (2.72)
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Figure 2.14: Total losses experienced by the output probe and conjugate modes be-

fore detection are mimicked by two beam splitters with transmissions ηa
and ηb. D1 and D2 are two detectors which may be intensity detectors
or homodyne detectors. M denotes the processing of the data.

SQZJ+ = 10 log10[1− ηa + ηb
2

+
ηa + ηb

2
cosh 2r −√ηa

√
ηb cos 2ϕlo sinh 2r]. (2.73)

In Fig. 2.15, we plot SQZJ− and SQZJ+ as a function of the LO phase ϕlo

when the PIA gain GPIA = cosh2 r = 3 with the presence of losses. We have

assumed ηa = ηb = η for simplicity. We find that, as we increase the losses, the

level of squeezing is degraded accordingly, worsening the level of entanglement as

expected. We also notice that, the reduction of the anti-squeezing level is less than

the elevation of the squeezing level with the presence of loss, indicating the anti-

squeezed joint quadratures Ŷ− and X̂+ are more robust to the loss than the squeezed

joint quadratures X̂− and Ŷ+.
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Chapter 3: Effect of input phase modulation to a phase-sensitive op-

tical amplifier
1

3.1 Introduction

Acousto-optical modulators (AOMs) and electro-optic modulators (EOMs)

are standard devices used in optics laboratories for frequency-shifting, amplitude-

modulating, and phase modulating optical fields [73]. EOMs can provide phase

modulation (PM) using the electro-optic response of a crystal, and can provide am-

plitude modulation (AM) when combined with polarizers. Achieving pure PM or

AM using EOMs requires extreme care. Due to effects such as frequency-dependent

interference and polarization rotation in birefringent crystals, PM is often accom-

panied by residual AM and vice versa [74, 75]. Techniques have been developed for

combining multiple EOMs to impart an arbitrary mixture of AM and PM on light

or to suppress the unwanted modulation [75].

Driving an AOM with modulated radio frequency can also be used to add AM

to the output light in either the zeroth or first diffracted order. This method can also

introduce some amount of PM to the light due to changes to the index of refraction

1This chapter is mainly based on the paper “Effect of input phase modulation to a phase-
sensitive optical amplifier,” Opt. Express 24, 19871 (2016).
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in the AOM crystal, such that the optical phase follows the acoustic phase [76, 77].

This situation, however, is rarely discussed. Many experiments and applications

using AOMs are either phase-insensitive or otherwise unaffected by residual PM.

Nevertheless, certain phase-sensitive processes are affected. Phase modulation from

an AOM has been shown to be an experimental difficulty in some optical phase-

sensitive amplifier (PSA) experiments [72, 78]. In particular, while the PSA can

perform completely noiseless amplification of a particular field quadrature, it can

also convert PM to AM, making signal-to-noise ratio (SNR) measurements hard to

interpret. It can even lead to apparent increases in the SNR after amplification if

inadvertent PM is closely tied to an applied AM signal, as is the case in using many

modulation devices.

While AM can be measured with direct detection methods, PM can only be de-

tected using more complicated phase-sensitive or interferometric measurement tech-

niques, and can therefore be difficult to detect and eliminate. Common techniques

for measuring the AM and PM of optical beams include homodyne and heterodyne

detection [75, 79]. More indirect methods also exist for converting PM to AM such

as using differential absorption in a sample [74], reflected light from a cavity [80],

phase conjugation methods [81], or Brillouin scattering [82]. Phase modulation is

often used in optical communication, such as in phase-shift keying. Signals from

phase-shift keying are often demodulated using homodyne or heterodyne techniques

and phase sensitive amplifiers have been investigated for regeneration of phase keyed

signals [83]. A theoretical and experimental examination of a single-ended coherent

receiver based on a phase sensitive fiber parametric amplifier, including a comparison
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to a single-ended homodyne detector, has been presented in [84]. Our emphasis in

this work is on detecting and quantifying unintended phase modulations introduced

by commonly used free space optical modulators.

In this chapter, we explore the effects of PM on the output of an optical

quantum-noise-limited PSA, where the phase of the input light is central to amplifier

behavior. We study the effects of phase modulation on a PSA both theoretically and

experimentally. We introduce a novel method for quantifying the PM depth on an

input light field using the PSA as part of a phase-sensitive detector. This method

relies on the differing gains of the AC and DC components of the PSA output

intensities with a PM input. We compare the results of this method with the results

of homodyne detection (HD), a standard method for measuring the quadratures of

a light field. We then insert a mechanical chopper in our experiment to amplitude-

modulate a laser beam and use our PSA detection method to find PM in this field.

We find that this detection method is suitable for detecting phase modulation and

that the results for the PSA output match well with our theoretical predictions. We

also note that for experiments already employing a PSA, this method allows one to

recognize and correct for the presence of PM on the input signal.

3.2 Theoretical predictions

In this section, we provide a classical theoretical framework to describe the

effect of PM to the output of a PSA and discuss the possibility of utilizing the PSA

itself to quantify the PM. We also derive the theoretical predictions for a homodyne
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detection scheme measuring the PM on an input beam of light.

3.2.1 Phase-sensitive amplification

In this subsection we describe the operation of a PSA and predict the effect

of phase and amplitude modulation on the outputs. Our optical PSA amplifies

or deamplifies an optical waveform with a gain dependent on the phase of the in-

put light. The phase of the input field is relative to two strong pump fields (see

Fig. 2.7(b)) that drive the nonlinear process that results in phase-sensitive ampli-

fication. Given an input field Ein = |Ein|eiφ, the relationship between the classical

input and output field is given by

Eout = Ein cosh r + E∗in sinh r, (3.1)

where r is the interaction strength of the parametric process derived from the prod-

uct of the pump power, nonlinear susceptibility, and interaction length [85]. In our

case, the phase of the process is defined by φPSA = 2φ − (φ1 + φ2), where φ1 and

φ2 are the pump phases2. Therefore, the output intensity Iout = Eout · E∗out is a

function of input phase φ, making the output phase-sensitive. We define the phase-

dependent gain of the PSA as g(φ) = Iout(φ)/Iin. This leads to a maximum of the

phase-dependent gain of G = g(0) = e2r and a minimum of 1/G = g(π) = e−2r.

Because the gain of the PSA changes with input phase, the output intensity will

be affected by the presence of phase modulation on the input beam, and this effect

2See Section 2.4.3 in Chapter 2 for detailed derivations. There, the phases of the two pumps
are denoted by φb and φc, and the phase of the probe is denoted by φi.
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must be included.

We now consider the case of a modulated input field. We adopt the definitions

used in [79] for an electric field in the rotating carrier frame with both amplitude

and phase modulation:

Ein = [1− A

2
(1− cos Ωt) + i

P

2
cos Ωt]eiφ. (3.2)

Note that we have set |Ein| = 1. Ω is the modulation frequency and A and P are

the AM and PM modulation depths respectively with A� 1 and P � 1.

This input field has a sine-wave modulation on top of a constant offset, and

so we can refer to as the AC and DC components of the field. The intensity of the

input field (expanded to the second order of A and P ) is

Iin = Ein·E∗in =
1

8
[8+A(−8+3A)+P 2−4A(−2+A) cos Ωt+(A2+P 2) cos 2Ωt]. (3.3)

After the PSA, both the AC and DC components will be amplified or deampli-

fied depending on the input phase φ, the intensity of the output field (also expanded

to the second order of A and P ) is

Iout =
1

8
[8 + A(−8 + 3A) + P 2 − 4(−2 + A)A cos Ωt+ (A2 + P 2) cos 2Ωt] cosh 2r+

1

8
{[8 + A(−8 + 3A)− P 2 − 4(−2 + A)A cos Ωt+ (A2 − P 2) cos 2Ωt] cos 2φ+

[4P (−2 + A− A cos Ωt) cos Ωt] sin 2φ} sinh 2r.

(3.4)
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Since A� 1 and P � 1, Eqs. (3.3) and (3.4) can be further simplified to be

Iin = 1− A(1− cos Ωt), (3.5)

and

Iout = (1− A+ A cos Ωt) cosh 2r + [(1− A+ A cos Ωt) cos 2φ−

(P cos Ωt) sin 2φ] sinh 2r.

(3.6)

Due to the presence of PM, the AC and DC components can experience differ-

ent gains. We define gAC(φ) = IAC
out (φ)/IAC

in and gDC(φ) = IDC
out (φ)/IDC

in , where IAC
in/out

and IDC
in/out are the AC and DC parts of the input and output intensities, respectively.

They are defined as

IAC
in/out = Imax

in/out − Imin
in/out, (3.7)

IDC
in/out =

1

2
(Imax

in/out + Imin
in/out), (3.8)

where Imax
in/out and Imin

in/out are the maximum and minimum of the input and output

intensities, respectively. For pure AM (P = 0), gAC(φ) = gDC(φ), implying that the

AC and DC components of the input intensity will be equally amplified/deamplified

at any given input phase. However, this will not be the case when P 6= 0, and so

we can compare IDC
out (φ) with IAC

out (φ) to detect and quantify phase modulation.

As an example, see the curves in Fig. 3.1 which show the PSA AC and DC gains

for five different input signals, all with the same level of AM but varying levels of

PM. In the experiment, the degree of AM modulation is easily determined by direct
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Figure 3.1: PSA theoretical plots: AC gain versus DC gain for an optical signal
with a sine wave modulation and amplified in an optical phase-sensitive
amplifier. Each plot is parametric with respect to the phase φ of the
PSA. The different plots are for different mixtures of AM and PM. All
curves shown here have A = 0.16 and a maximum PSA gain of G =
e2r = 3.

intensity measurements without the PSA. The goal here is to mimic experimental

data (discussed below) from measurements on input signals resulting from slightly

different alignments of an AOM, all producing the same level of AM. All five theory

curves shown here have A = 0.16 and a maximal PSA gain of G = e2r = 3.

By letting φ range from 0 to 2π, we get a parametric plot of the AC versus

DC gains for all phases. Note that if P is zero (the purple curve in Fig. 3.1), we see

a straight line with a slope of unity. On the other hand if P is a substantial fraction

of A, this implies the presence of PM, and we see an oval as the phase is scanned

due to the unequal amplifications of the DC and AC components. For large values

of P the oval has negative AC gain values but we simply plot the absolute value.
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One might also note that, the apparent maximal AC gain exceeds the set value 3.

This is because PSA mixes the two quadratures of the AC components. When P is

a substantial fraction of A, in addition to amplifying both quadratures of the AC

component, PSA also converts part of phase quadrature to amplitude quadrature,

making the apparent maximal AC gain exceed the set value 3. Therefore, by detect-

ing the modulated input and output states of a PSA, we can quantify the amount

of phase modulation present by using the size and shape of this oval.

3.2.2 Balanced homodyne measurement

We now consider homodyne measurements of a signal with amplitude and

phase modulation. Homodyne detection is the standard phase sensitive technique

for measuring the amplitude and phase quadratures of a light field (see Fig. 2.3 in

Section 2.3 of Chapter 2). We will use it below to look at the same input signals as

were measured by the PSA technique (Fig. 3.1) in order to verify the conclusions

drawn from those measurements.

To perform homodyne measurements, the signal beam is combined with a

reference local oscillator (LO) field ELO = ALOe
iφLO on a 50/50 beam splitter, after

which a balanced detection of the output intensities is performed. Depending on

the phase of the reference beam φLO compared to the signal phase, the homodyne

output will be sensitive to either the amplitude or phase of the signal light. For

the modulated input state as in Eq. (3.2), it can be shown that the subtracted
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photocurrent is proportional to

i−out = 2ALO(A−2) sin(φLO−φ)+2ALO[P cos(φLO−φ)−A sin(φLO−φ)] cos Ωt. (3.9)

The first term varies with φLO and is independent of the modulation frequency

Ω, and will be referred to as the DC level. The second term is dependent on the

modulation frequency and will have some AC level.

When the LO phase satisfies φLO = φ + nπ, where n is an integer, the first

term in Eq. (3.9) is 0, and the balanced HD output becomes i−out = ±2ALOP cos Ωt,

+ and − are for the even and odd n’s, respectively. The output is a sine wave at

the modulation frequency whose amplitude is determined by only the PM depth P

and the LO strength ALO. This is the point where the homodyne detector measures

the phase quadrature. At φLO = φ + nπ/2, it is sensitive to only the amplitude

modulation.

Since A � 1, and for simplicity we set ALO = 5 > 1, the DC level is

20 sin(φLO−φ) and the AC level is 10[P cos(φLO−φ)−A sin(φLO−φ)]. In Fig. 3.2,

we plot the AC level as a function of the DC level while φLO is scanned over the

full range. Note that we have normalized the DC level from −1 to 1. The plots are

double valued in general because there are two values of φLO that correspond to the

same DC level. The curves plotted here are for the same input signals as in Fig. 3.1,

and thus all have the same level of AM (A = 0.16).
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Figure 3.2: Homodyne theoretical plots: AC level versus DC level for an optical
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Figure 3.3: (a). Experimental setup. AOM: acousto-optic modulator, TA: semicon-
ductor tapered amplifier, BS: non-polarizing beam splitter, PBS: polar-
izing beam splitter. (b). Level structure of the D1 transition of 85Rb and
the optical frequencies arranged in the double-Λ configuration. Here ν1

and ν2 are the pumps and νp is the probe. The width of the excited
state in the level diagram represents the Doppler broadened line, ∆ is
the one-photon detuning, δ is the two-photon detuning, and νHF is the
hyperfine splitting.

3.3 Experimental setup

A diagram of our experiment is shown in Fig. 3.3. The PSA is created through

the four-wave mixing (4WM) process in 85Rb vapor. The signal probe beam is de-

tuned from the D1 line (795 nm) of Rb while two strong pump beams with frequen-

cies ±3 GHz from the probe intersect it at a small angle within the atomic vapor.

We insert either an 80 MHz AOM or an optical chopper into the probe beam path

before the PSA cell to modulate the input light. Before being aligned into the PSA

vapor cell, the modulated input beam passes through a single-mode polarization-

maintaining fiber. The input probe beam after the fiber is 200 µW with a 1/e2

beam waist of 250 µm. The pump beams have a 1/e2 beam waist of 550 µm and

each has a power of 100 mW. The 12.5 mm vapor cell is filled with isotopically pure
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85Rb and heated to 87 ◦C. All the data shown in this chapter is taken with the

probe beam blue detuned 1.4 GHz from the center of the 5S1/2 F = 3 manifold to

the center of the 5P1/2 Doppler-broadened transition. The pump beams are created

by seeding two 0.5 W tapered amplifiers with light that has been shifted ±3 GHz

using double-passed AOMs. The probe frequency is always centered between the

two pumps. The chosen detunings result in a −4 MHz two-photon detuning for the

probe and each pump compared to the exact hyperfine splitting of the ground state,

in order to compensate for light shifts (see Fig. 3.3(b)).

3.4 Experimental results

We demonstrate, in this section, the experimental results obtained by using

the two detection schemes elaborated in prior section to measure the PM introduced

by a AOM and by a mechanical chopper to an input beam of light.

3.4.1 Acousto-optical modulator

We have found that when using the AOM to amplitude-modulate a light beam,

the amount of (unintended) PM is highly dependent on the AOM alignment rela-

tive to the input beam while the degree of AM is not. For present purposes the

degree of AM can be determined by direct intensity detection without the PSA or

homodyne detector and thus we take it as a fixed parameter in our fits to the PSA

and homodyne data. For a given alignment through the AOM, we can switch be-

tween detecting the light using HD or sending it into the PSA. The input beam is
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Figure 3.4: PSA results: AC gain versus DC gain for an optical signal modulated
with an acousto-optic modulator and amplified in an optical phase-
sensitive amplifier. The different plots are for different mixtures of AM
and PM due to the AOM alignment. Each plot is parametric with re-
spect to the phase of the PSA. The solid curves are theoretical fits with
(a) P/A = 0.00, (b) P/A = 0.11, (c) P/A = 0.50, (d) P/A = 1.65.

modulated at 1 MHz with A = 0.16.

Figures 3.4 and 3.5 show measurements of PM at four different AOM align-

ments using the PSA method and HD method respectively. The alignment is

changed by moving the horizontal tilt on the AOM. The stars are the experimental

data while the solid lines are the theoretical fits using Eqs. (3.1), (3.2) and (3.9).

For the data in Fig. 3.4, the input and pump phases are allowed to drift such

that each data point represents a shot of the experiment at a different PSA phase,

and therefore a different g(φ). The PSA measurements give a well-defined shape
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Figure 3.5: Homodyne results: AC level versus DC level for an optical signal mod-
ulated with an acousto-optic modulator and measured with a balanced
homodyne detector. The different plots are for different mixtures of AM
and PM due to the AOM alignment. Each plot is parametric with re-
spect to the phase of the LO. The solid curves are theoretical fits with
(a) P/A = 0.03, (b) P/A = 0.14, (c) P/A = 0.50, (d) P/A = 1.85.
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which is a function of A, P , φ, and r. To fit the data, we took a subset of the data

that could be plotted using a single-valued function of AC gain as a function of DC

gain, rather than a parametric function of φ. To get a single valued function, we

selected the data points corresponding to a span of π in PSA phase, which can be

found by taking all the data points that lie above the line y = x in Fig. 3.4. This

data is then fit using the AC gain as a function of DC gain. The uncertainties for

these measurements can be found in Fig. 3.6. The uncertainties are 95% confidence

intervals from the fits. Due to systematic errors and our initial uncertainty in A,

we have put lower bounds on the uncertainties corresponding to 1.5% uncertainty

in P/A.

We find that by moving the tilt of the AOM less than one degree, we can

change P/A from nearly zero to greater than 0.2. The AM alone is not appreciably

changed for any of the data shown. Extremely fine tuning of the angle is required

to find the minimum P/A. Unfortunately, aligning for highest diffraction efficiency

does not guarantee minimum phase modulation.

In the case of the homodyne measurements, the shapes are a function of P

and A from the second term of Eq. (3.9), as well as a scaling factor and a vertical

offset. The data in these plots are for same input signals as in Fig. 3.4, and thus

all have the same level of amplitude modulation (A = 0.16), and a variable level

of phase modulation resulting from slight changes in the alignment of the acousto-

optic modulator. To perform fits, we took a subset of the data that could be plotted

using a single-valued function. To select data points consistent with a single valued

function, we selected the data points corresponding to a span of π in LO phase.
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Moving along the parametric curve in a single direction, from the minimum DC

level to the maximum DC level, constitutes a π phase shift in the LO. Instead of

a parametric function of φ, we can now plot AC level as a function of DC level

and perform a standard fit. The uncertainties for these measurements can be found

in Fig. 3.6. The uncertainties are 95% confidence intervals from the fits. Due to

systematic errors and our initial uncertainty of A, we have put lower bounds on the

uncertainties corresponding to 3% uncertainty in P/A.

By switching between the PSA measurement and the HD measurement with-

out disturbing the AOM alignment, we can compare the two methods. In Fig. 3.6,

we plot P/A for the HD measurement versus the PSA measurement. The AOM

alignment was adjusted for each point to increase or decrease the amount of phase

modulation, and thus the ratio P/A. We find that the PSA and HD method track

each other linearly and are in substantial agreement. This shows that measurements

with a phase-sensitive amplifier can act as a diagnostic tool for reducing phase mod-

ulation on a light field.

3.4.2 Optical chopper

Having confirmed that our analysis of the PSA data is consistent with that

based on standard HD measurements, we can now use the PSA results alone. We

consider here a common laboratory technique for amplitude modulating a beam,

namely a mechanical chopper wheel which alternately blocks and un-blocks a beam.

The spatial mode of the beam after the chopper is cleaned with a single mode
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fiber before the beam is sent into the PSA. We find the chopper introduces phase

modulation as its blades cut through the beam. It may seem counter-intuitive that

a chopper can add PM; however, as the blade passes through the beam, the spatial

mode and phase front of the beam are disturbed due to diffraction effects around

the blade. As the chopper moves through the beam, the light intensity will change

with a transient, well-modeled by the error function.

The intensity as a function of time after a blade moving through a Gaussian

beam is given by

Iin =
1

2
[1 + erf(

t− µ√
2σ

)], (3.10)

where t is time, µ is the offset and σ is the width of the error function. We use

this function to fit the intensity transient of the input beam, as shown in Fig. 3.7,

where the thick light blue curve and the dark blue dashed line are the data and fit

respectively.

We introduce a simple empirical model for the phase modulation which we can

test with the PSA measurements. We assume that any phase modulation introduced

to the light follows a Gaussian function in time as the blade traverses across the

beam profile, with a width that matches the error function of the intensity:

Ein = eiφ

√
1

2
[1 + iPe

−( t−µ√
2σ

)2
][1 + erf(

t− µ√
2σ

)]. (3.11)

In this case, P corresponds to the maximum amplitude of the Gaussian shaped

PM. We find the values of µ and σ by fitting Eq. (3.10) to the measured transient
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intensity of the input beam (see the dashed curves in Figs. 3.8(a) and 3.9(a)). We

define the AC part of the PSA output signal as the intensity integrated over the time

window during which the transient turns from off to on; from 6 to 11 µs. The AC

gain is defined as the ratio of the AC signal with the PSA on to the AC signal with

the PSA off. The DC component is the steady state of the intensity after the light is

fully unblocked. The DC gain is defined as the ratio of the DC signal with the PSA

on to the DC signal with the PSA off. Just as when using an AOM, the discrepancy

between AC and DC gain is indicative of the level of PM. This allows us to plot the

AC intensity component versus the DC level and extract a PM depth. We believe

the deviation between theory and experiment is mostly due to our assumption of the

Gaussian form of the PM above and the slight mechanical instability of the chopper

from shot-to-shot.

We found that the phase modulation of a chopper depended strongly on the tilt

of the chopper blades when they intersected the laser beam. Figures 3.8 and 3.9 show

the results of the PSA measurements for two tilts of an optical chopper. Figure 3.8(a)

is the measurement when the blades are tilted off-axis by approximately 10 degrees

from the beam path, and Fig. 3.9(a) shows the results when the blades intersect

the beam path at normal incidence. Figures 3.8(b) and 3.9(b) are theory curves

shown as examples to demonstrate curve shapes for the fit parameters and do not

necessarily match the PSA phases of the individual data curves shown in Figs. 3.8(a)

and 3.9(a). In both cases, the blades are placed within the Rayleigh range of a beam

focus. From Fig. 3.10, it is evident that the phase modulation was reduced by setting

the chopper to normal incidence, however PM may not be eliminated completely.
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Figure 3.8: PM measurements for a tilted chopper alignment using the PSA scheme.
(a) shows the raw data. (b) shows theory curves as examples to demon-
strate curve shapes for the fit parameters and do not necessarily match
the PSA phases of the individual data curves shown in (a). The dashed
black lines are direct intensity detection without a PSA and the other
curves are various phases of the PSA.
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Figure 3.9: PM measurements for the optimal chopper alignment using the PSA
scheme. (a) shows the raw data. (b) shows theory curves as examples
to demonstrate curve shapes for the fit parameters and do not necessarily
match the PSA phases of the individual data curves shown in (a). The
dashed black lines are direct intensity detection without a PSA and the
other curves are various phases of the PSA.
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Figure 3.10: AC gain vs. DC gain, as defined in the text, for measuring the PM from
a chopper. (a) is for the tilted chopper alignment shown in Fig. 3.8, and
(b) is for the optimal chopper alignment shown in Fig. 3.9, respectively.
The solid curves are theoretical fits where P = 0.7 in (a) and P = 0.15
in (b), respectively.

We were unable to reduce the amount of phase modulation below the level shown

in Fig. 3.10(b).

3.5 Conclusions

These demonstrations highlight the importance of being able to measure and

correct for the presence of unintended phase modulation when employing common

amplitude modulation techniques in experiments using phase sensitive amplifiers.

We show that PSA signals can be used as a diagnostic tool for quantifying the phase

modulation depth of an input signal and are consistent with established homodyne

techniques. We find that both AOMs and optical choppers can inadvertently add

phase modulation to a light field in addition to the desired amplitude modulation.
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This can drastically alter the results in applications using phase-sensitive amplifiers.

In each case, the amount of phase modulation can be reduced by adjusting the angle

of incidence between the beam path and the modulator. Similar analysis could be

carried out using optical PSAs and light modulated by electro-optic devices.
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Chapter 4: Improved measurement of two-mode quantum correla-

tions using a phase-sensitive optical amplifier
1

4.1 Introduction

Nonclassical states of light have a wide range of applications in precision mea-

surements, quantum imaging, optical communications, and quantum information

science [86]. A severe limitation in using these quantum states is their sensitiv-

ity to loss, because loss adds noise. Specifically, quantum properties of two-mode

states, such as continuous variable entanglement or two-mode squeezing, are quickly

degraded if one or both modes are subject to loss.

When significant downstream losses are present in a classical communication

channel, classical amplifiers can be used before the loss to improve reception. An

amplifier cannot increase the signal-to-noise ratio (SNR) of a communication chan-

nel, but it can increase the signal strength so that electronic noise in a receiver does

not overwhelm the signal. The same concept can be applied to quantum communi-

cations. By adding the right kind of quantum-limited amplifier before downstream

loss, selected properties of a quantum state can be maintained even in the presence

1This chapter is mainly based on the paper “Improved measurement of two-mode quantum
correlations using a phase-sensitive optical amplifier,”Opt. Express 25, 21301 (2017).
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of loss.

The most common type of amplifier is a phase-insensitive amplifier (PIA)

which amplifies both quadratures of the input channel. A PIA necessarily has an

open input port which admits vacuum noise, and in the limit of large PIA gain,

the signal will suffer an SNR degradation of 3 dB (see Section 2.3 in Chapter 2

for details). In contrast, a phase-sensitive amplifier (PSA) with no open ports can

noiselessly amplify one quadrature of the input. Provided the signal is encoded in

the appropriate quadrature, the SNR remains unchanged [87] (see Section 2.4 in

Chapter 2 for details).

One form of downstream optical loss is the imperfect quantum efficiency of

a photodetector. The concept of using optical amplification to compensate for im-

perfect detection efficiency has been considered previously. It has been shown the-

oretically that by pre-amplifying the observed quadrature component of the input

electric field, one can compensate for the non-unity detector quantum efficiency in a

homodyne detector [88–92]. Experimentally, noiseless optical amplification has been

used in the context of quantum non-demolition measurements [42, 43, 93–97]. In

these experiments, noiseless amplification was used to overcome downstream prop-

agation losses and non-unity detector quantum efficiency, although in each case the

input signal before amplification was classical. Lam et al. [98] used an electro-optic

feed forward scheme to produce an output state with an SNR close to that of the

input state, outperforming a PIA. An amplitude squeezed state was used as the

input to the device. Ulanov et al. [99] demonstrated using noiseless optical amplifi-

cation to restore entanglement in the presence of loss in a probabilistic manner in the
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photon-counting regime, i.e., entanglement distillation. Alon et al. [100] used a PSA

to demonstrate phase-sensitive amplification and deamplification of a non-classical,

quadrature-squeezed state.

In this paper we report the use of a quantum-limited optical PSA to pre-

amplify one mode of a nonclassical two-mode state of light in order to overcome

downstream optical losses for that mode. We make a systematic investigation of

using a PSA to improve the measurement of correlations and squeezing levels that

were present in the input state of light, in particular compensating for various lev-

els of non-unity detector quantum efficiency. While Alon et al. [100] demonstrate

a proof-of-principle experiment, here we investigate more fully the behavior with

respect to varying loss in the system.

4.2 Conceptual diagram

Figure 4.1 shows the conceptual basis of the experiment. The source produces

a quantum state with modes a and b whose properties we wish to measure. Mea-

surements made by the detectors are contaminated by vacuum noise coupled in by

optical losses (ηa and ηb). These losses include less-than-perfect detector efficiencies.

Inserting a PSA in each arm, adjusted to amplify the desired quadrature, allows one

to reduce the influence of the vacuum noise coupled in by the optical losses and

thus make a better measurement of the quantum properties of the state of modes

a and b. Depending on the measurement, the processing of the data may include

electronic gain adjustments to compensate for the optical gain introduced by the
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Figure 4.1: Conceptual schematic of the experiment. The source produces two
modes a and b that are quantum correlated. The non-unity quantum
efficiency of the detection and any other optical losses are symbolized
by two beamsplitters with transmission ηa and ηb. D denotes ideal de-
tectors with perfect quantum efficiency. M represents the processing of
the detected signals to produce information about the quantum state in
modes a and b.

PSAs.

For technical simplicity in our proof-of-principle experiment we use a single

PSA and mitigate the effect of losses in only one arm of the apparatus. The detectors

D are intensity detectors and the PSA is adjusted to amplify the intensity quadrature

of the light in one arm. The quantum properties of the modes a and b which we

choose to measure are the correlation coefficient of the optical intensities and the

squeezing of the intensity difference between these two modes. To explore the effect

of the PSA on these measurements we intentionally introduce a known loss after the

PSA and record the effect that this loss has on the measured intensity correlation

coefficient and twin-beam noise reduction, or intensity-difference squeezing, between

the modes.
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4.3 Experimental setup

A detailed description of our experiment is shown in Fig. 4.2(a). In the exper-

iment, we use a PIA as the source. Both the source and the PSA are implemented

using four-wave mixing (4WM) in 85Rb vapor. Details of the source are discussed

in [101] and of the PSA in [102]. In both cases, the 85Rb atoms are contained in a

12 mm glass cell. The source and PSA cells are heated to 112 ◦C and 86 ◦C, re-

spectively. Figure 4.2(b) shows the atomic energy levels and detunings used in the

4WM process of the source. We seed mode a0 with a weak coherent beam (0.1 mW,

300 µm 1/e2 diameter) tuned to the probe frequency νp and let mode b0 be the vac-

uum. The source is driven by a strong pump (350 mW, 800 µm 1/e2 diameter) that

can be regarded as classical. The output modes ai (at the probe frequency νp) and

bi (at the conjugate frequency νc), are quantum correlated [101]. Losses are modeled

by beamsplitters with transmission ηa1 and ηb1. These represent both losses inside

the source cell as well as external losses. The calculation of loss (as well as gain)

inside the source cell is discussed in the Appendix A. In the absence of the PSA

and any intentionally introduced losses, we measure -5.8 dB of intensity-difference

squeezing, which is roughly constant over an analysis frequency range of 0.5 MHz

to 2.5 MHz.

Probe mode ai passes through a second 85Rb cell which is pumped by two

strong classical pumps, one at ν1 (the same as the source pump) and the other one

at ν2, approximately 6 GHz downshifted relative to ν1, as shown in Fig. 4.2(c). The

two pump beams (100 mW each, 500 µm 1/e2 diameter) and the probe beam are
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Figure 4.2: Experimental setup and 4WM schemes showing atomic energy levels
in 85Rb and laser tunings. (a) Experimental setup. The source (PIA)
generates a two-mode squeezed state. η’s are the transmissions of beam-
splitters that represent losses: ηa1 is the probe transmission before the
PSA and ηa2 is the probe transmission after the PSA representing all
the downstream losses including imperfect detector efficiency. We vary
the value of ηa2 by intentionally introducing extra loss using a half-wave
plate and a polarizing beamsplitter. The transmission ηb2 includes the
effect of imperfect detector efficiency on the measurement of the con-
jugate beam. GDa and GDb are the gains of the probe and conjugate
detectors, respectively. (b) 4WM scheme in the source (PIA) cell. νp, νc
and ν1 are the optical frequencies of probe, conjugate and pump beams,
respectively, and νp + νc = 2ν1. (c) 4WM scheme in the PSA cell. ν1, ν2

are the optical frequencies of the two pump beams, and νp is the optical
frequency of the probe beam, and ν1 + ν2 = 2νp. For both (b) and
(c): the width of the excited state in the level diagram represents the
Doppler broadened line, ∆ is the one-photon detuning, δ = −4 MHz is
the two-photon detuning, and νHF = 3.036 GHz is the hyperfine splitting
in the electronic ground state of 85Rb.
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in a plane with an angular separation of 0.6 degrees between the pumps. The PSA

implemented in this work is the same as in [102–104].

The probe field created in the source is amplified or deamplified in the PSA

depending on the PSA phase

φPSA = 2φ− (φ1 + φ2), (4.1)

where φ1 and φ2 are the optical phases of the pump beams and φ is the probe

optical phase2. Assuming that the input signal is encoded in a single quadrature,

there are two choices of PSA phase for which the PSA will noiselessly amplify this

input quadrature. For one choice, this quadrature intensity experiences a gain GPSA

and for the other, it experiences a deamplification 1/GPSA. In our experiment we

keep φPSA such that the input intensity of the probe beam always sees gain GPSA.

Since GPSA is a function of pump power, one photon detuning ∆ (see Fig. 4.2(c)),

and the number density of 85Rb atoms in the cell, adjusting these parameters allows

us to vary GPSA. In the experiment, we change the one photon detuning ∆ to obtain

different values for GPSA.

All the downstream losses experienced by the probe after the PSA are modeled

by a beamsplitter as shown in Fig. 4.2(a). Its transmission ηa2 is determined by the

transmission of the downstream optics including the exit window of the PSA cell,

the quantum efficiency of the detector photodiode and an intentionally introduced

extra loss from the combination of a half-wave plate and a polarizing beamsplitter.

2See Section 2.4.3 in Chapter 2 for detailed derivations. There, the phases of the two pumps
are denoted by φb and φc, and the phase of the probe is denoted by φi.
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An additional contribution to ηa2 comes from the non-zero electronic noise floor of

the detection electronics. The finite separation of the optical noise power from the

detector electronic noise floor adds noise equivalent to that of an attenuator whose

transmission is 1− 10−
S
10 , where S is the noise power separation in dB [105]. Losses

experienced by the conjugate are modeled by a beamspliter with transmission ηb2.

This includes the less-than-perfect quantum efficiency of the detector photodiode

and the finite separation of the conjugate optical noise power from the detector

electronic noise floor.

The AC and DC components of the intensities of the two modes af and bf

are recorded separately. We post-process the AC time traces by filtering them

between 0.5 MHz to 2.5 MHz (3 dB points) using a 4th-order Butterworth band-

pass filter with a slope of 80 dB/decade on both the low and high pass edges. The

resulting time traces are used to determine the intensity correlation coefficient and

the intensity-difference squeezing between the two beams by employing Eqs. (4.10)

and (4.11) derived in the following section.

4.4 Model

We use a simple quantum-mechanical model to simulate the experiment. We

label the optical field operators for the modes shown in Fig. 4.2(a) as â0,i,f , b̂0,i,f , and

ûa1,a2,b1,b2. Since there is no PSA between the two beamsplitters in the conjugate

path, we can combine the two beamsplitters into one with transmission ηb = ηb1 ·ηb2

and operator ûb associated with the vacuum field coupling into it. We treat all pump
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beams classically. The vectors ~̂V0 and ~̂Vf are the input and output field operators

defined by

~̂V0 =



â0

â†0

b̂0

b̂†0


and ~̂Vf =



âf

â†f

b̂f

b̂†f


. (4.2)

The source and PSA can then be described by the matrices

F1 =



cosh r 0 0 sinh r

0 cosh r sinh r 0

0 sinh r cosh r 0

sinh r 0 0 cosh r


(4.3)

and

F2 =



cosh s eiφPSA sinh s 0 0

e−iφPSA sinh s cosh s 0 0

0 0 1 0

0 0 0 1


, (4.4)

respectively. Here, r and s are the squeezing parameters which are related to the

gains of the source and PSA via Gsource = cosh2 r and GPSA = e2s. φPSA is the phase

of the PSA defined in Eq. (4.1). We keep φPSA = 0 such that the intensity gain of

the probe beam is always GPSA.
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The experiment can then be described by the transformation of field operators

~̂Vf = T2

(
F2

[
T1(F1

~̂V0) + ~̂L1

])
+ ~̂L2, (4.5)

where the matrices T1 and T2 describe the transmission of the beamsplitters, and

vectors ~̂L1 and ~̂L2 contain the field operators for the vacuum modes coupled in by

optical losses:

T1 =



√
ηa1 0 0 0

0
√
ηa1 0 0

0 0
√
ηb 0

0 0 0
√
ηb


, (4.6)

T2 =



√
ηa2 0 0 0

0
√
ηa2 0 0

0 0 1 0

0 0 0 1


, (4.7)

~̂L1 =



i
√

1− ηa1ûa1

−i
√

1− ηa1û
†
a1

i
√

1− ηbûb

−i
√

1− ηbû
†
b


, (4.8)
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~̂L2 =



i
√

1− ηa2ûa2

−i
√

1− ηa2û
†
a2

0

0


. (4.9)

From Eq. (4.5), we can derive the field operators âf and b̂f and the number operators

n̂a = â†f âf and n̂b = b̂†f b̂f for the output modes. n̂a and n̂b allow us to calculate the

expectation values of quantities such as the intensity correlation coefficient and the

intensity-difference squeezing.

The intensity correlation coefficient is calculated from

MXC =
〈(n̂a − 〈n̂a〉)(n̂b − 〈n̂b〉)〉√

∆2n̂a
√

∆2n̂b
, (4.10)

where ∆2n̂a and ∆2n̂b are the variances of the intensities. Since we are only looking

at AC components of the signal, 〈n̂a〉 = 〈n̂b〉 = 0.

The intensity-difference squeezing is calculated from

MSQ = −10 log10

[
∆2(n̂a − n̂b)

∆2n̂SN

]
, (4.11)

where ∆2n̂SN is the shot noise, which is defined as the variance of the intensity

difference of two coherent beams having the same intensities as the measured probe

and conjugate beams.

Figures 4.3 and 4.4 are theoretical plots calculated from Eqs. (4.10) and (4.11),
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respectively for PSA gain of 1, 2, 4 and 100. For simplicity, we assume ηa1 = ηb1 =

ηb2 = 1 and GPIA = 3.0 for both graphs. Note that, in Fig. 4.4 the shot noise is

determined by two coherent beams that have the same intensities as the modes ai and

bi. Since the optical gain of the PSA alters the optical power of the probe, in order

to have a consistent power measurement with the mode ai, for each transmission

ηa2, we introduce a detector gain, Gd, so that GPSA × ηa2 × Gd = 1 to compensate

for the optical gain of the PSA.

These two graphs clearly indicate that the measurements of both the intensity

correlation coefficient and the intensity-difference squeezing are improved when the

PSA is present, and greater improvement is achieved with greater PSA gains. One

noteworthy fact is that, when the gain of the PSA is sufficiently large (e.g., GPSA =

100), these two graphs would basically be two nearly horizontal lines at the intensity

correlation coefficient and the intensity-difference squeezing that would be measured

by perfect detectors.
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Figure 4.3: Theoretical plots of intensity correlation coefficient as a function of probe
transmission ηa2 after the PSA for different PSA gains, calculated from
Eq. (4.10). Other parameters are ηa1 = ηb1 = ηb2 = 1 and GPIA = 3.0.
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Figure 4.4: Theoretical plots of intensity-difference squeezing as a function of probe
transmission ηa2 after the PSA for different PSA gains, calculated from
Eq. (4.11) with detector gainGd adjustments, so thatGPSA×ηa2×Gd = 1
to compensate for the optical gain of the PSA. Other parameters are
ηa1 = ηb1 = ηb2 = 1 and GPIA = 3.0.

To compare the predictions of this model to measurements requires values of
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the various gain and loss parameters. The Appendix A describes how to extract

source parameters from auxiliary measurements of beam intensities. The PSA gain

and the inserted losses are measured directly. No other fitting parameters are re-

quired to generate the theoretical curves shown in the following section.

4.5 Experimental results

We demonstrate, in this section, the experimental results obtained by using

the PSA to compensate for the downstream losses including less-than-perfect detec-

tion efficiency. We show that, with the presence of the PSA, the measurements of

the intensity correlation coefficient and the intensity-difference squeezing are sub-

stantially improved even when there is tremendous amount of loss. We also discuss

using the PSA to compensate for the downstream losses in the case of two-mode

vacuum squeezing in Section 4.5.3.

4.5.1 Intensity correlation coefficient

In Fig. 4.5, we plot the measured intensity correlation coefficient of the probe

and conjugate beams as a function of the probe transmission ηa2 after the PSA.

To operate the PSA at different gains, we adjust the one photon detuning ∆ (see

Fig. 4.2(c)). Since the two 4WM processes share a pump beam, changing the one

photon detuning ∆ changes the gain of the source, Gsource, as well. In order to

have a consistent preparation of the two-mode squeezed state, we adjust the pump

power going to the source so that the intensity-difference squeezing produced by
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Figure 4.5: Intensity correlation coefficient of the probe and conjugate beams as a
function of probe transmission ηa2. Blue points and lines are for the
source gain Gsource = 3.3. Red points and dashed lines are for the source
gain Gsource = 3.0. The diamonds (both open and solid) are for the PSA
cell removed from the probe path (i.e., GPSA = 1). The circles are for
the PSA present with a gain of 2.3 (open circles) and 3.5 (solid circles),
respectively. The solid and dashed lines are theoretical predictions cal-
culated from Eqs. (4.5) and (4.10) using the source parameters given in
the Appendix A.

the source stays at -5.8 dB. Specifically, for the measurements shown in Fig. 4.5 we

choose ∆ = 1.4 GHz and 1.3 GHz to produce a PSA gain of 2.3 and 3.5, respectively.

As we change the detuning, the losses in the source also change, requiring a different

source gain (Gsource = 3.0 and 3.3, respectively) to maintain the squeezing level (see

Appendix A).

Figure 4.5 shows that adding a PSA increases the measured intensity corre-

lation coefficient. The blue (red) circles show data taken with GPSA = 3.5 (2.3),

and the diamonds show data taken when the PSA is removed (i.e. GPSA = 1).
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Gsource for each set of data is given in the figure caption. The vertical error bars

on the data points are one sample standard deviation statistical uncertainties from

60 time traces. Data sets sharing the same ∆ but with the PSA on and off do

not share the same transmission values owing to the variation in the optical noise

power separations from the detector electronic noise floor [105]. The highest value

of the transmission after the PSA is 0.88 (the rightmost open red diamond), which

is determined by the optical transmission of 0.99, the detector photodiode quantum

efficiency of 0.90, and the loss of 1.6 % associated with a noise power separation

of 18 dB from the detector electronic noise floor. Extrapolating to zero loss, the

intensity correlation coefficients are 0.955 and 0.957 for Gsource = 3.0 and 3.3, respec-

tively. For an ideal source with no losses, the correlation coefficient is related to the

squeezing parameter r by MXC = tanh 2r. In the limit of large r (high Gsource), MXC

approaches one. Figure 4.5 clearly shows that the intensity correlation coefficient is

improved when the PSA is present, and greater improvement is achieved with higher

GPSA, e.g., the data points with GPSA = 3.5 are closer to the correlation coefficient

that would be measured with an ideal detector than the ones with GPSA = 2.3.

4.5.2 Intensity-difference squeezing

In Fig. 4.6 we plot the measured intensity-difference squeezing versus the probe

transmission ηa2 after the PSA. The shot noise is measured from the time traces of

two coherent beams that have the same intensities as the modes af and bf for each

transmission. The squeezing is obtained from the time traces of the measured probe
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and conjugate intensities according to Eq. (4.11). In Fig. 4.6, when the PSA is

absent (GPSA = 1), we measure a best intensity-difference squeezing of -5.8 dB.

As we lower the transmission, we gradually lose the squeezing as expected; at the

lowest two transmissions, we lose the squeezing completely. For high transmission

values, turning on the PSA destroys the squeezing. When the PSA is on, the probe

beam power is amplified by the PSA, which causes a power imbalance between the

probe and conjugate beams. Unlike the correlation coefficient, squeezing is affected

by changing the relative probe and conjugate powers. As the probe transmission

decreases, the power of the probe mode af approaches that of the conjugate mode

bf , and squeezing is partially restored.
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Figure 4.6: Intensity-difference squeezing measured from the time traces of the in-
tensities of modes af and bf , as a function of probe transmission ηa2.
Blue points and lines are for the source gain Gsource = 3.3. Red points
and dashed lines are for the source gain Gsource = 3.0. The diamonds
(both open and solid) are for the PSA cell removed from the probe path
(i.e., GPSA = 1). The circles are for the PSA present with a gain of 2.3
(open circles) and 3.5 (solid circles), respectively. The solid and dashed
lines are theoretical predictions calculated from Eqs. (4.5) and (4.11)
using the source parameters given in the Appendix A.

The power imbalance between probe and conjugate caused by the PSA can

be compensated by adjusting the gain GDa of the probe detector. In particular,

by adjusting GDa so that GPSA × ηa2 × GDa = 1, the probe power is the same as

would be measured by an ideal detector in mode ai. Similarly, we adjust GDb so

that ηb2 × GDb = 1. Since we do not vary ηb2, GDb is a constant. By performing

this gain adjustment, the shot noise is determined by the intensity-difference noise

of two shot-noise-limited coherent beams that have the same intensities as the two

modes ai and bi measured by two ideal detectors, regardless of GPSA or ηa2.
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By applying the appropriate value of GDa to the measured time traces at each

value of ηa2 and GPSA in Fig. 4.6, we obtain the points in Fig 4.7. With this gain

adjustment, points which previously did not show squeezing now do. The larger the

GPSA is, the better the improvement in the measured intensity-difference squeezing.

For example, without the PSA the squeezing vanishes at approximately 60 % loss,

while when GPSA = 3.5, all of the measured points show squeezing and the theory

shows that squeezing of -1 dB would still be measured down to even 80 % loss.

The squeezing levels in Figs. 4.6 and 4.7 become positive at small transmission.

This is related to the asymmetric treatment of the two modes in the experiment.

Both beams have thermal statistics coming from the source. The additional at-

tenuation is present only in one beam and slowly changes this beam’s statistics to

that of a vacuum coherent state at large attenuation. Thus, even with the detector

gain adjustment, the probe beam statistics are different from those of the conjugate

beam, which remains a thermal beam, and this gives rise to the anti-squeezing in

the intensity-difference.
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Figure 4.7: Intensity-difference squeezing measured with the detector gain adjust-
ments described in the text. Blue points and lines are for the source
gain Gsource = 3.3. Red points and dashed lines are for the source gain
Gsource = 3.0. The diamonds (both open and solid) are for the PSA
cell removed from the probe path (i.e., GPSA = 1). The circles are for
the PSA present with a gain of 2.3 (open circles) and 3.5 (solid circles),
respectively. The solid and dashed lines are theoretical predictions cal-
culated from Eqs. (4.5) and (4.11) using the source parameters given in
the Appendix A.

4.5.3 Two-mode vacuum squeezing

Let us now consider using the PSA to compensate for the downstream losses

including less-than-perfect detection efficiency in the two-mode vacuum squeezing

configuration. In this experimental arrangement, both of the modes a0 and b0 in

Fig. 4.2(a) are seeded with the vacuum. The output modes ai and bi produced by

the PIA make up a two-mode squeezed vacuum state and joint homodyne measure-

ments can be used to measure the noise reduction in the amplitude-difference or
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phase-sum quadratures of the light state, as described in Section 2.3.2. Therefore,

in Fig. 4.2(a), we replace the two intensity detectors with two balanced homodyne

detectors (BHDs) (see Fig. 2.3 in Section 2.3 of Chapter 2) to measure the ampli-

tude quadratures Xa = (af + a†f )/2 and Xb = (bf + b†f )/2 of the modes af and

bf , respectively. The variance ∆X2
− of the joint amplitude-difference quadrature

X− = Xa−Xb is then measured by a spectrum analyzer taking in the electronically

subtracted photocurrents from the two BHDs.

The homodyne detection is a common technique for characterizing continuous-

variable quantum states. It allows one to observe an arbitrary quadrature. The

inclusion of a PSA to overcome the non-unity quantum effeciency of a BHD can

then be essentially regarded as a “perfect homodyne detector.”

In the experiment, we lock the local oscillator (LO) phase of the probe BHD

such that we always detect the quadrature of the probe field that is most amplified

by the PSA. We then lock the LO phase of the conjugate BHD relative to the LO

phase of the probe BHD such that the spectrum analyzer always measures the joint

amplitude-difference quadrature between the probe and conjugate fields.

It is also important to note that each two-mode vacuum squeezing level is

found by referencing the measured joint amplitude-quadrature noise level to that

found when the probe and conjugate fields output from the PIA cell are blocked.

That is, the conjugate BHD will measure the vacuum field shot noise, while the

probe BHD will measure the thermal noise resulting from a vacuum state being

amplified by the PSA. These are then combined and sent to the spectrum analyzer

giving the reference noise level.
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In addition to the losses aforementioned in the intensity measurement, for

BHD measurement one has to take into account the loss from the less-than-perfect

visibility, which we measure to be 92 % and 96 % for the probe and conjugate

detectors respectively, and the phase noise of the BHD [106] as well. The phase

noise can be estimated according to Nmeasured
min = Nmin cos2 θrms+Nmax sin2 θrms, where

Nmeasured
min is the measured joint noise minimum, Nmin and Nmax are the theoretical

noise powers found by calculating ∆X2
− and ∆X2

+, respectively. The phase noise θrms

then becomes a free parameter in the model, which we estimate at a reasonable level

of 0.26 radians3. Other measured experimental conditions in the two-mode vacuum

squeezing configuration are ηa1 = 0.74, ηb1 = 0.944, ηb2 = 0.90 and GPIA = 4.

Note that the experimental conditions are very different from those in the

bright twin-beam case, as discussed in the previous sections of this chapter. This

two-mode vacuum squeezing experiment was performed earlier and the squeezing

was not as good as the intensity-difference squeezing. After locking the phases

of the LOs to measure the desired joint amplitude-difference quadrature, the best

achievable vacuum squeezing is only -1.5 dB in this experiment.

The measured results are shown in Figs. 4.8 to 4.10 for three different gains of

the PSA. To obtain different PSA gains, we simply change the PSA cell temperature

to have different atomic densities. As expected, the squeezing degrades as the loss

in the probe beam is increased. However, when the PSA preamplies the probe field

before this loss, we expect higher levels of squeezing even for high loss. Depending

3The phase noise of this much corresponds to roughly 4 % of the wavelength, which is a
reasonable number for the vibration of optics.

4The measurement of ηa1 is much less than ηb1 is due to the fact that the probe mode is much
closer to the atomic resonance than the conjugate mode.
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on the amount of loss and the gain of the PSA, some level of the quantum corre-

lations are restored, leading to an expected noise reduction even when there is no

squeezing present with the PSA off. At ηa2 approaching 1, we find that the PSA

will actually increase the joint noise level, degrading the squeezing level, as shown

by the simulations. This is due to an imbalance in the noise powers of the probe

and conjugate beams after the probe has been amplified by the PSA. In principle,

this imbalance can be corrected by post-processing the time traces measured by the

two BHDs to normalize the results by applying a detector gain to account for the

added noise power. However, since the measurements are taken with a spectrum

analyzer, no time traces are recorded, this normalization is not carried out in this

experiment.
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Figure 4.8: Two-mode vacuum squeezing measured from spectrum analyzer as a
function of probe transmission ηa2 after the PSA. The solid blue dots
are for the PSA cell removed from the probe path (i.e., GPSA = 1). The
open orange triangles are for the PSA present with a gain of 2. The
solid blue and orange lines are theoretical predictions for GPSA = 1 and
2, respectively. Other parameters are ηa1 = 0.74, ηb1 = 0.94, ηb2 = 0.90
and GPIA = 4.
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Figure 4.9: Two-mode vacuum squeezing measured from spectrum analyzer as a
function of probe transmission ηa2 after the PSA. The solid blue dots
are for the PSA cell removed from the probe path (i.e., GPSA = 1). The
open purple diamonds are for the PSA present with a gain of 3. The
solid blue and purple lines are theoretical predictions for GPSA = 1 and
3, respectively. Other parameters are ηa1 = 0.74, ηb1 = 0.94, ηb2 = 0.90
and GPIA = 4.

96



○
○○

○

○
○

○

○

0 0.2 0.4 0.6 0.8 1

4

3

2

1

0

-1

-2

Probe transmission after PSA

V
ac
u
u
m
sq
u
ee
zi
n
g
[d
B
]

GPSA = 4

GPSA = 1

Figure 4.10: Two-mode vacuum squeezing measured from spectrum analyzer as a
function of probe transmission ηa2 after the PSA. The solid blue dots
are for the PSA cell removed from the probe path (i.e., GPSA = 1).
The open red circles are for the PSA present with a gain of 4. The
solid blue and red lines are theoretical predictions for GPSA = 1 and 4,
respectively. Other parameters are ηa1 = 0.74, ηb1 = 0.94, ηb2 = 0.90
and GPIA = 4.

4.6 Conclusions

We experimentally demonstrate the use of an optical PSA to reduce the effect

of non-unity quantum efficiency of an intensity detector — an important limitation in

making continuous variable measurements of quantum states. Use of the PSA allows

us to more accurately measure the intensity cross-correlation and intensity-difference

squeezing of a two-mode squeezed state. For large PSA gain, the system of a PSA

followed by a detector with imperfect quantum efficiency approaches a “perfect

detector [94].” We compare experimental measurements taken with various PSA

gains and levels of intentionally introduced loss to a simple quantum-mechanical
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model and find reasonable agreement.

We also show, in a proof-of-principal experiment, that by including an optical

PSA before the downstream loss in a homodyne detection, one is able to make up a

“perfect homodyne detector.” We demonstrate the use of an optical PSA to restore

the squeezing level measured in a two-mode squeezed vacuum state. We find a

decent recovery of the measured vacuum squeezing in the presence of substantial

loss by including a PSA before the loss.

The type of PSA used here is capable of operating on multiple spatial modes [104],

and thus may be useful for overcoming detector efficiency limitations in quantum

imaging applications.
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Chapter 5: Mutual information of a two-mode squeezed state prop-

agating through a phase-sensitive optical amplifier

5.1 Introduction

Over the past decade, there has been great interest in tailoring the dispersive

properties of optical media with the goal of controlling the speed of pulses of light.

Several techniques for dispersion tailoring use optical fields to induce matter-field

resonances, which can be designed to exhibit either large normal or anomalous

dispersion near the resonances, leading to “slow” or “fast” light pulse propagation,

respectively [107]. Potential applications of such optical media include classical and

quantum networks [108].

In this chapter, we present experiments that study the effects of the fast and

slow light on the propagation of information through an optical medium. We use

a phase-insensitve amplifier (PIA) and a phase-sensitive amplifier (PSA) as the

dispersive optical media to investigate the timing as well as the transfer fidelity of the

information. Before we dive into the details of the experiments, let us first introduce

some basic concepts, such as the group velocity and the information velocity, etc.
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5.1.1 Group velocity

For the case when the real part of the refractive index n(ω) varies slowly over

the spectral width of the pulse, it is customary to expand the field wave vector in a

Taylor series centered on the pulse carrier frequency ω0. Such an analysis leads to

the concept of the group velocity

vg =
c

(n+ ω ∂n
∂ω

)|ω=ω0

=
c

ng
, (5.1)

where ng is the frequency-dependent group index [109].

We refer to the quantity ∂n/∂ω as the dispersion of an optical material. For

typical optical materials, there exist narrow spectral regions where n(ω) is a de-

creasing function of frequency (that is, ∂n/∂ω < 0), resulting in a condition known

as anomalous dispersion [110]. When ω0 is within such a region, ng can be less than

one and can even become negative when the anomalous dispersion is large. This

results in “fast light”, for which it is possible that the peak of a light pulse may exit

the optical material before it passes through the entrance face [111]. The amount of

fast-light pulse advancement is largest when vg is negative and near zero (ng large

and negative).

5.1.2 Information velocity and relativistic causality

In the early 1900s, the possibility of superluminal group velocities (vg > c

or vg < 0) was a great concern to researchers until the work of Sommerfeld and
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Brillouin [112]. They used asymptotic analysis1 to study a step-modulated pulse

propagating through a resonant absorber. Sommerfeld found that the front of the

pulse (the moment when the field first becomes nonzero) propagates precisely at c,

consistent with the special theory of relativity. They noted that the “front velocity,”

the velocity at which an infinitely sharp step-function-like disturbance of the light

intensity propagates, should be used as the velocity of signal transmission, not the

group velocity vg of the light pulse [112, 114].

Brillouin extended Sommerfeld’s analysis and found that the pulse breaks up

after the front, consisting of two small wave packets (now called precursors — the

transient behavior of the propagated field resulting from a discontinuity in the wave-

form or one of its derivatives) followed by a large wave packet (the “main signal”).

The first (second) small packet is known as the Sommerfeld (Brillouin) precursor,

which arises from the spectral components of the incident pulse above (below) the

resonance and is predicted to have maximum intensity of 10−7 (10−4) of the even-

tual main signal intensity. Brillouin believed that the arrival of the signal should

be associated with the arrival of the large-amplitude wave packet because of the

smallness of the precursors2, although Sommerfeld stressed that an extremely sen-

sitive detector should be able to register the front of the pulse and hence measure a

propagation speed of c for the signal.

1For the modern asymptotic theory, see Ref. [113].
2Several researchers have identified mistakes in this early work, as reviewed by Oughstun and

Sherman [113]. Most notable is the prediction that the precursors are much larger than previously
thought; their amplitude can be similar to or larger than the amplitude of the main signal. In
fact, Jeong et al. [115] demonstrated that precursors can be readily observed using standard
experimental apparatus in setups similar to that used in fast-light research. They found that both
the Sommerfeld and Brillouin precursors as well as the main signal arrive immediately after the
pulse front, which propagates at c.
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Another outcome of the discussions in the early 1900s, as recounted in the

preface and first chapter of the book by Brillouin [112], was a reformulation of the

fundamental postulate of the special theory of relativity. This reformulation states

that, rather than limiting the speed of an “object”, it is the “information velocity”

vi that is limited by c. Unfortunately, there is no agreed-upon definition of the

information velocity [116].

5.1.3 Determine the information velocity

Measuring the information velocity vi requires an understanding of the fun-

damental mechanism for information encoding and detection. Chiao and collab-

orators [114, 116] proposed that new information is encoded on an optical pulse

by creating a point that is non-analytic (for example, a discontinuity in the pulse

amplitude or its derivatives) and that this point always travels at c regardless of

the value of the other velocities associated with the pulse. Essentially, they have

generalized Sommerfeld’s concept of the front velocity to a non-analytic point of the

pulse amplitude, where the front of a step-modulated pulse is an example of a point

of non-analyticity. They suggest that the point of non-analyticity is the only part

of the pulse representing new information because measurements of the early part

of the pulse cannot be used to predict anything about the part of the pulse arriving

after the point of non-analyticity, and hence vi equals the speed of a point of non-

analyticity. In other words, a smooth analytic signal is entirely determined by its

teeny-tiny front, there is no new information being carried by the peak. Therefore,

102



if the tiniest front of a smooth pulse determines the entire pulse, we must account

for the effect that quantum fluctuations at the front might have on the detection of

the pulse.

Experimentally, particularly in the inevitable presence of quantum noise, the

non-analytic points of the pulse amplitude such as the pulse front may not convey

the full story of what is readily observed in the laboratory. It is thus interesting

to consider other operational definitions of a signal, or information, that apply to

particular systems. For example, Stenner et al. [117] studied the propagation of clas-

sical information encoded in bright, actively-shaped optical pulses traveling through

a fast-light medium. These experiments showed that the operational information

velocity is actually slowed to speeds less than c. Although noise may have affected

the experimental results, these experiments were not conducted in a regime where

quantum noise necessarily played a crucial role. On the other hand, adopting a def-

inition of signal velocity based on observing a given signal-to-noise ratio, Kuzmich

et al. [68] showed how quantum noise associated with gain-assisted3 fast light would

be expected to limit the early detection of smooth, narrow-band pulses consisting

of only a few photons.

5.1.4 Our approach

Throughout this chapter we adopt an alternative definition of a signal by

choosing it to be the random, but strongly correlated quantum fluctuations between

3Gain-assisted fast or slow light utilizes a gain line rather than an absorption resonance of the
medium to render a frequency-dependent group index.
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two spatially separated modes of a bipartite entangled state. The two-mode en-

tangled state in this experiment is generated via a four-wave mixing (4WM) based

phase-insensitive amplifier (PIA), as described in Section 2.3. The fluctuations in

the field quadratures of each individual mode are random, but since the fluctuations

are quantum-mechanically correlated, there are more-than-classical “similarities”

between the correlated probe and conjugate quadratures, and our signal is defined

to be the quantification of these “similarities.” Although entanglement cannot be

used to signal superluminally [118], it is thought to be an essential resource in quan-

tum information science [119, 120]. Accordingly, the prospect of storing [121] or

delaying [25] entanglement has attracted significant interest.

The fluctuations of the probe and conjugate modes are not externally imposed

and they present no obvious pulse fronts or non-analytic features to point to as

defining the signal velocity. As such, most classically rooted approaches to defining

the signal or information content of the individual modes are not readily applicable

to this system. Despite the randomness of these fluctuations, information is shared

between the modes. We take the “mutual information4” between the probe and

conjugate modes as our information measure. This removes the ambiguity of defining

the arrival time of information about a pulse front arrival time in the presence of

noise, quantum or otherwise as well as the finite bandwidth.

4Two suitable definitions of the mutual information will be given in Section 5.2 and Section
5.4.2.1 below.
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Figure 5.1: Experimental setup of using a second PIA cell as the dispersive medium.
The first PIA cell produces a two-mode entangled state. A region of
anomalous dispersion for the conjugate is created in a second PIA cell
driven by pump 2, whose frequency is independently tunable with re-
spect to pump 1. The quantum mutual information shared by the two
modes are characterized by two balanced homodyne detectors followed
by two spectrum analyzers (SAs) and an oscilloscope (scope).

5.2 Phase-insensitive optical amplifier as the dispersive medium
5

We have studied how the dispersion associated with phase-insensitive gain [122]

affects the propagation of the quantum mutual information shared by the probe and

conjugate fields [29]. This was done by inserting a second PIA cell as the dispersive

medium into the path of the conjugate field and driving this 4WM process with a

separate pump (see Fig. 5.1).

The quantum mutual information for bipartite Gaussian states6 is readily ac-

cessible via optical homodyne measurements [119, 120] and naturally provides a

consistent description of information in the system. We use balanced homodyne

detection (BHD) to characterize the quantum mutual information contained in the

5This section is mainly based on the paper “Quantum mutual information of an entangled state
propagating through a fast-light medium,” Nat. Photonics 8, 515 (2014).

6In this chapter, we restrict ourselves to the Gaussian states.
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two-mode entangled state. Specifically, for a general two-mode state this quantity

is defined in terms of the von Neumann entropy SV (ρ) = Tr(ρ log ρ) [123]:

I(ρ) = SV (ρ1) + SV (ρ2)− SV (ρ), (5.2)

where I(ρ) is the quantum mutual information; ρ denotes the full state density

matrix and ρi denotes the reduced density matrix of the two individual modes

after the partial trace has been evaluated over the other mode. For the case of

a continuous-variable Gaussian state, the calculation of the mutual information

involves the symplectic eigenvalues of the standard form and partially-transposed

covariance matrix [124, 125], which is given by

γij =
1

2
〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉〈R̂j〉, (5.3)

where R̂i ≡ (X̂i, Ŷi) is the generalized field quadrature, and i ∈ {p, c} (p denotes

the probe and c the conjugate). In this standard form, the on-diagonal sub-matrices

characterize the individual modes’ quadrature fluctuations while the off-diagonal

sub-matrices capture the covariances between the two modes’ quadrature fluctua-

tions. All of the elements of the sub-matrices can be obtained from the two BHD

measurements of the two modes.

Then, from the delay-dependent covariance matrix of two-mode entangled

state, we can compute the delay-dependent quantum mutual information.

We show, in Fig. 5.2, that when one mode of the two-mode entangled state
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Figure 5.2: Comparison of quantum mutual information between the probe and con-
jugate as a function of relative delay for fast and slow light. The smooth
shape of the curves results from the large amount of data (180 files con-
sisting of 1× 107 points per file) used to calculate the mutual informa-
tion. When considering fast-light advancement of the conjugate (red
trace), we observe an advance in the peak of the mutual information of
3.7± 0.1 ns. The subpanel provides a closer look at the maxima of the
mutual information curves for the reference and fast-light cases. There
is no statistically significant advance of the leading edge of the mutual
information in the case of fast-light propagation. Repeating the same
analysis for slow-light propagation of the probe we observe significant
delays of both the leading and trailing edges of the mutual information
(green trace).

passes through the second PIA cell acting as a fast-light medium, the peak of the

quantum mutual information between the modes is advanced, but the arrival of the

leading edge is not. We also show that — in contrast — the leading and trailing

edges of the mutual information are both delayed when one of the modes propagates

through the PIA cell acting as a gain-assisted slow-light medium.

The experiment clearly shows that the mutual information can be delayed.

We speculate that the degradation of the mutual information due to added noise
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associated with the phase-insensitive gain appears to prevent an advancement of the

leading edge.

5.3 Phase-sensitive optical amplifier as the “dispersive” medium — am-

plitude modulated classical signal as the input

We now consider replacing the second PIA cell with a phase-sensitive amplifier

(PSA) as the dispersive medium. As elaborated in Section 2.4, in the case of a PSA,

no extra noise will be added for the quadrature with the correct input phase (e.g.,

at the phases of the maximal amplification and the maximal deamplification). A

natural question would then be: Do PSAs need to keep information velocities ≤ c

when operating noiselessly7? It is therefore interesting to extend our investigation

to explore the advance and delay of the mutual information transmitted through a

PSA.

Before we conduct the full experiment which involves a PIA cell followed by

a PSA cell, let us first consider a much simpler (and classical) case where the PIA

cell is removed and a sinusoidally amplitude-modulated or a pulsed beam of light is

directly sent to the PSA cell.

5.3.1 Experimental setup

The experimental details are depicted in Fig. 5.3(a) except that the PIA cell

is removed and an 80 MHz acousto-optic modulator (AOM) (the dashed triangle

7Of course, we hope they do!
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in the figure) is inserted in the probe seed beam path to sinusoidally amplitude-

modulate or to pulse the input beam of light. The effect of removing the PIA cell

is the removal of the conjugate beam. We make our modulation and pulses via the

zeroth order of the AOM shifting power away into other AOM orders by modulating

the driving rf power. The PSA is created through the 4WM process in 85Rb vapor,

as described in Section 2.4. The signal probe beam is detuned from the D1 line

(795 nm) of 85Rb while two strong pump beams with frequencies ±3 GHz from the

probe intersect it at a small angle (∼ 0.6 degree) within the atomic vapor. Before

being aligned into the PSA vapor cell, the amplitude-modulated input beam passes

through a single-mode polarization-maintaining fiber. The input probe beam after

the fiber is 160 µW with a 1/e2 beam waist of 300 µm. The pump beams have a

1/e2 beam waist of 500 µm and each has a power of 100 mW. The 12.5 mm vapor

cell is filled with isotopically pure 85Rb and heated to 86 ◦C. All the data shown in

the following sections is taken with the probe beam blue detuned between 1.3 GHz

and 1.4 GHz from the center of the 5S1/2 F = 3 manifold to the center of the 5P1/2

Doppler-broadened transition (see ∆ in Fig. 5.3(c)). The pump beams are created by

seeding two 0.5 W tapered amplifiers (TAs) with light that has been shifted ±3 GHz

using double-passed AOMs. The probe frequency is always centered between the

two pumps. The chosen detunings result in a −4 MHz two-photon detuning for the

probe and each pump compared to the exact hyperfine splitting of the ground state,

in order to compensate for light shifts (see Fig. 5.3(c)).
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Figure 5.3: Experimental setup and 4WM schemes showing atomic energy levels
in 85Rb and laser tunings. (a) Experimental setup. AOM: acousto-
optic modulator, TA: semiconductor tapered amplifier, PBS: polarizing
beam splitter, PM fiber: polarization-maintaining fiber. The quantum
correlated twin beams, probe and conjugate, are generated by the PIA
cell. The PSA cell is placed in the probe beam path as the “dispersive”
medium. The two intensity detectors Dp and Dc measure the intensity
time traces of the probe and conjugate beams, which are post-processed
to calculate the mutual information between them. (b) 4WM scheme in
the PIA cell. νp, νc and ν1 are the optical frequencies of probe, conjugate
and pump beams, respectively. (c) 4WM scheme in the PSA cell. ν1, ν2

are the optical frequencies of the two pump beams, and νp is the optical
frequency of the probe beam. For both (b) and (c): the width of the
excited state in the level diagram represents the Doppler broadened line,
∆ is the one-photon detuning, δ = −4 MHz is the two-photon detuning,
and νHF = 3.036 GHz is the hyperfine splitting in the electronic ground
state of 85Rb.
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5.3.2 Experimental results

5.3.2.1 Sinusoidal amplitude modulation

We first use the AOM to sinusoidally amplitude-modulate the input probe

beam at 1 MHz with a modulation depth of 0.15. Depending on the input phase,

the PSA will amplify or deamplify the input as discussed in Section 2.4. Examples

of outputs from inputting this sinusoidally amplitude-modulated probe beam to the

PSA are plotted in Fig. 5.4(a). The black curve is the input reference probe beam.

The red and blue curves are examples of the amplified (also delayed) and deamplified

(also advanced) outputs from the PSA respectively. The green, purple and brown

curves are sinusoidal fits to the experimental curves. We can see from these curves

that, not only are the amplitudes of the sine waves amplified or deamplified by the

PSA, but also the peaks (and valleys) are advanced or delayed with respect to the

input reference curve. The phase extracted from individual sinusoidal fit is used to

calculate the “delay δt (δt < 0 means advanced, δt > 0 means delayed)” according

to

δt = (
φ− φr

2π
)T, (5.4)

where φ is the phase of the output probe from the PSA, φr is the phase of the input

probe to the PSA and T is the period of the sinusoidal modulation, which is 1 µs.

By calculating the gain, which is defined as the ratio of the output modulation

amplitude over the input modulation amplitude, for each output curve, we can get

a parametric plot of gain versus δt in Figs. 5.5(a) and 5.5(b). As derived in Section
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2.4, the PSA gain is a function of the input relative phase among the two pumps

and the probe (see Eq. 2.44), for the data in Figs. 5.5(a) and 5.5(b), the pump

and probe phases are allowed to drift such that each data point represents a shot

of the experiment at a different PSA phase, and therefore a different gain. Data

points in Figs. 5.5(a) and 5.5(b) are for the one photon detuning ∆ = 1.4 GHz and

1.3 GHz, respectively. The maximal gain in Fig. 5.5(b) is greater than it is in 5.5(a)

is therefore simply because the detuning for the data points in Fig. 5.5(b) is closer

to the atomic resonance (see Fig. 5.3(c)).

From the plots we can learn that, when the PSA is at its maximal or minimal

gain, i.e., the “noiseless” operating conditions, the delays are close to 0; however,

at the intermediate gains where the output signal-to-noise ratio is reduced (see the

noise figure (NF) curve in Fig. 2.6 in Section 2.4), the outputs can be either advanced

or delayed giving rise to nonzero δt’s.

5.3.2.2 Gaussian pulsing

We also use the AOM to generate a Gaussian pulse by modulating the zeroth

order of the AOM. The full width at half maximal (FWHM) of the Gaussian pulse is

500 ns. The delay δt here is simply t−tr, where t is the time of the peak of the output

pulse, and tr is the peak timing of the input reference pulse. In the same fashion as

above for the sinusoidal modulation, we plot examples of amplified (also advanced)

and deamplified (also delayed) output pulses along with the input reference pulse in

Fig. 5.4(b) and the parametric plots of the gain versus δt in Figs. 5.5(c) and 5.5(d)
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Figure 5.4: Output examples from inputting (a) a sinusoidally amplitude-modulated
and (b) a pulsed probe beam to the PSA. The sinusoidal amplitude
modulation is at 1 MHz with modulation depth of 0.15. The FWHM
of the Gaussian pulse is 500 ns. The black curve is the input reference
probe beam. The red and blue curves are the amplified and deampli-
fied outputs from the PSA, respectively. The dashed green, purple and
brown curves are (a) sinusoidal and (b) Gaussian fits to the experimen-
tal curves, and they are almost completely obscured by the experimental
curves.
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for ∆ = 1.4 GHz and 1.3 GHz, respectively. We find the shapes of the plots are

similar and the delay and advance are in a qualitative agreement between the cases

of sinusoidal amplitude modulation and Gaussian pulsing.

One noteworthy fact is that δt in Fig. 5.5 is not exactly zero when the PSA

is at its maximal or minimal gain. As a matter of fact, δt is slightly greater than

zero at these two noiseless operation conditions. We attribute this discrepancy to

the fact that the reference curve is measured with the beam passing through the

cell, but with the pumps blocked. The different optical pumping of the 85Rb atoms

under these conditions leads to a phase shift, like a piece of glass, delaying the input

by a small amount.

Also note that, in order to completely eliminate the detrimental effect of the

phase modulation8 on the results of the present experiments while using an AOM,

we adopt the “AC gain versus DC gain” diagnosis as elaborated in Sections 3.2.1

and 3.4.1. We keep aligning the AOM until the plot of AC gain versus DC gain is

a straight line with slope of 1 as shown in Figs. 3.1 and 3.4(a). In this manner, we

know that our AOM is producing a (nearly) pure amplitude modulation.

8Phase modulation from an AOM has been shown to be an experimental difficulty in some
optical PSA experiments [72, 78]. In particular, while the PSA can perform completely noiseless
amplification of a particular field quadrature, it can also convert phase modulation to amplitude
modulation, making signal-to-noise ratio (SNR) measurements hard to interpret. It can even lead
to apparent increases in the SNR after amplification if inadvertent phase modulation is closely tied
to an applied amplitude modulation signal, as is the case in using many modulation devices. See
Chapter 3 for details.
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Figure 5.5: Parametric plots of PSA gain versus delay δt for (a) and (b): a sinu-
soidally amplitude-modulated input beam, and for (c) and (d): a pulsed
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experiment at a different PSA phase, and therefore a different gain (see
Eq. 2.44).
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5.4 Phase-sensitive optical amplifier as the “dispersive” medium — one

mode of a two-mode squeezed state as the input

In the preceding section, we discussed the experiment which involves using

amplitude-modulated classical signals as input to a PSA. We found that when the

PSA is operating on the noiseless amplification quadrature or noiseless deamlifica-

tion quadrature, it is “dispersion-less9”, otherwise it is “dispersion-like.” In light

of this, we now study a more intricate and interesting case where one mode of a

two-mode squeezed state produced by the PIA is input into the PSA. Similar to

the experiment outlined in Section 5.2, we investigate the “dispersive” behavior of

the mutual information (MI) shared by the two modes by propagating one of them

through the PSA.

5.4.1 Experimental setup

The detailed experimental layout is illustrated in Fig. 5.3 with the AOM re-

moved from the probe seed beam path. The PIA cell is held at a temperature of

112 ◦C and pumped by a strong beam of light (350 mW, 800 µm 1/e2 diameter)

blue-detuned from the center of the 5S1/2 F = 3 manifold to the center of the 5P1/2

Doppler-broadened transition (see the one photon detuning ∆ in Fig. 5.3(b)). The

two-photon detuning for the PIA is δ = -4 MHz. The 4WM process in this cell

is seeded by a weak probe beam (∼0.1 mW, 300 µm 1/e2 diameter) and generates

9After we take into account the reference delay at the maximal amplification and maximal
deamplification.
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bright-beam two-mode squeezed state consisting of an amplified probe beam and a

generated conjugate beam10. The amplified probe beam is sent through the PSA

constructed in the second vapor cell whose experimental details are provided in the

prior section (Section 5.3.1). Detectors Dp and Dc are two intensity detectors mea-

suring the intensity time traces of the probe and conjugate beams, whose AC parts

are post-processed to calculate the MI between them. The number of points in each

time trace is 105 with a sampling rate of 2 ns/sample.

5.4.2 Experimental results

We post-process the AC time traces by filtering them between 0.5 MHz to

5 MHz (3 dB points) using a 4th-order Butterworth band-pass filter with a slope

of 80 dB/decade on both the low and high pass edges. The AC time traces are

further filtered by the detector’s roll-off at 4 MHz. The resulting time traces are

used to determine the intensity-difference squeezing between the two beams by em-

ploying Eq. (4.11) derived in Section 4.4. In the absence of the PSA, we obtain

-3.9 dB of intensity-difference squeezing within this bandwidth. One noteworthy

fact (which we also have specified in Chapter 4) is that, we actually measure -

5.8 dB of intensity-difference squeezing on a spectrum analyzer, and it is roughly

constant over an analysis frequency range of 0.5 MHz to 2.5 MHz. The reason for us

to enlarge the filtering bandwidth in the present experiment is to have more statis-

tically independent samples. We will be specific on this matter in the next chapter.

We use the AC time traces filtered over the same bandwidth used to measure the

10See Section 2.3.1 for details.

117



intensity-difference squeezing to calculate the MI.

The one-photon detuning ∆ is varied in the experiment to change the PSA

gain (See Figs. 5.3(b) and 5.3(c).). As the detuning is changed the PIA pump power

is adjusted to keep both the power and the level of squeezing in the twin beams that

are used in the measurement constant.

5.4.2.1 Calculation of mutual information

Instead of using the quantum mutual information formulated by Eq. (5.2) in

Section 5.2, here we calculate the MI according to its classical definition,

I(p; c) =

Np∑
1

Nc∑
1

P (p, c) log2

P (p, c)

P (p)P (c)
, (5.5)

where P (p, c) is the joint probability obtained by binning the intensities of the probe

and conjugate AC time traces. P (p) and P (c) are the marginal probabilities for the

intensities of the probe and conjugate AC time traces, respectively. Np and Nc are

the number of bins for the two time traces. We then shift the two time traces relative

to each other so that we can get the MI as a function of the time shift, like the ones

shown in Fig. 5.2. Since log2 is used, the MI calculated by Eq. (5.5) is in the unit

of bits.

We want to highlight the difference between the two MI definitions given in

Eq. (5.2) and Eq. (5.5). The MI definition in Eq. (5.2) has information in both the

amplitude and phase quadratures, while the one in Eq. (5.5) has information only

in the amplitude (or intensity) quadrature.
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To illustrate the calculation of the MI, we plot the joint probability distribution

at the peak time of the MI between the filtered probe and conjugate AC time traces

of intensity in Fig. 5.6. We choose Np = Nc = 100 as an example11 to resolve fine

details of the joint probability distribution.

    
    
     (a) 

    
    
     (b) 

Figure 5.6: Joint probability distribution at the peak time of the MI between the
filtered probe and conjugate AC time traces of intensity. (a) 2-D his-
togram of the joint probability distribution. (b) The joint probability
distribution.

Figure 5.6(b) is the joint probability distribution P (p, c) of the two modes. The

x and y axes are the bin number in the filtered AC time traces for the probe and

conjugate beams, respectively. The color bar indicates the probability of each bin.

From Fig. 5.6(b), P (p) and P (c) can be calculated by summing up all probabilities

of the columns and rows, respectively. Then, the MI at the peak time is readily

obtained just by plugging P (p, c), P (p) and P (c) into Eq. 5.5.

11The effect of number of bins on the calculation of MI is discussed in the Appendix B. There,
we will show that 100 bins might be an overkill for calculating the MI under current experimental
conditions. Therefore, unless stated otherwise, for the rest of the results shown in this chapter
we use 30 bins for both the probe and conjugate time traces, which is sufficient for the present
purposes.
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By shifting the two time traces, we can plot the MI as a function of the time

shift. Some examples are shown in Fig. 5.7. In the graph, the dash-dotted gray lines

are 30 reference curves when the two PSA pumps are blocked, and the solid black

line is their average whose peak value is 1.75 bits. In order to show the fidelity of

the information transfer, all the MI peak heights are normalized to the peak of the

solid black line. After passing through the PSA, the output probe is amplified or

deamplified depending on the relative input phase. For each output (or each phase),

we plot the MI as a function of the time shift and color-code it according to the

amplification and deamplification of the probe beam as the red and blue in Fig. 5.7,

respectively. If the peak timing of the output MI is advanced from the peak timing

of the averaged reference MI, it is styled as a solid curve, and if its peak timing is

delayed from the reference peak, it is styled as a dash-dotted curve.
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Figure 5.7: Mutual information as a function of the time shift. The dash-dotted gray
lines are 30 reference curves when the PSA pumps are blocked and the
solid black line is their average whose peak value is 1.75 bits. In order
to show the fidelity of the information transfer, all the MI peak heights
are normalized to the peak of the solid black line. The amplification
and deamplification of the probe beam are color-coded as red and blue,
respectively. The solid and dash-dotted line-styles are for the advanced
and delayed MI, respectively.

By examining the MI curves in Fig. 5.7, we notice that although the peak of

the MI of a bright two-mode squeezed state can be advanced, it is also degraded,

and the leading edge is always bounded by the reference one within the experimental

uncertainty. This observation is consistent with the red MI curve in Fig. 5.2.
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Figure 5.8: Parametric plots of the PSA gain versus the MI peak delay for (a) ∆ =
1.4 GHz and (b) ∆ = 1.3 GHz. The red and blue color codes are for the
PSA gain ≥ 0.8 and < 0.8, respectively.

5.4.2.2 PSA gain v.s. mutual information peak delay

By sufficiently sampling the probe outputs after passing through the PSA and

plotting the MI versus the time shift for each output, as in Fig. 5.7, we are able to

obtain a parametric plot of the PSA gain versus the MI peak delay. Figures 5.8(a)

and (b) are the parametric plots of the PSA gain versus the MI peak delay for

one photon detuning ∆ = 1.4 GHz and 1.3 GHz, respectively. In order to have

sufficient digitization range12 to calculate the MI, we take the data separately in

two parts: PSA gain ≥ 0.8 and PSA gain < 0.8, which we respectively denote as

the red and blue stars in Fig. 5.8. While taking the data with PSA gain < 0.8, we

simply zoom in the oscilloscope to enlarge the dynamic range so that we can have

enough digitization levels on the deamplified time traces.

It is evident that, in Fig. 5.8, the behavior of the MI of a bright two-mode

12We use an 8-bit oscilloscope, which has a maximal digitization level of 28 = 256.
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squeezed state propagating through the PSA is similar to the prior experiments

using amplitude-modulated classical signals as the input to the PSA. In Fig. 5.9,

we report all the parametric results together for the comparison. Notice that, the

curves in the MI case (e) and (f) are noisier and asymmetric, which can be partially

ascribed to the fact that the input probe beam to the PSA has an imperfect spatial

profile. In the experiments using classical modulations, the amplitude-modulated

input probe beam was out of a fiber and therefore has a perfect Gaussian profile.

In the present experiment, however, the input probe beam to the PSA is the one

after interacting with the PIA pump beam, which is from a 2 W TA without strict

spatial profile cleansing (see Fig. 5.3(a)). It inevitably deviates the spatial profile

of the probe beam from a perfect Gaussian, therefore giving rise to a less perfect

phase-matching condition than in the experiments using classical modulations.

5.4.2.3 Peak height v.s. peak delay

We also plot the MI peak height as a function of the MI peak delay in Fig. 5.10

by extracting these parameters from Fig. 5.7. We use the same color codes as in

Fig. 5.8 and normalize the MI peak heights to the averaged reference one when the

PSA pumps are blocked (see the solid black curve in Fig. 5.7) in order to show the

fidelity of the information transfer. Data points in the subfigures (a) and (b) are for

the one photon detuning ∆ = 1.4 GHz and 1.3 GHz, respectively.

We can see from Fig. 5.10 that, when the MI peak heights are close to 1, their

corresponding peak delays are close to 0, indicating the PSA is operating noiselessly
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Figure 5.9: Parametric results from inputting (a) and (b): a sinusoidally amplitude-
modulated classical signal; (c) and (d): a pulsed classical signal; and (e)
and (f): the MI of a bright two-mode squeezed state. Data points in
(a), (c) and (e) are for ∆ = 1.4 GHz, and data points in (b), (d) and (f)
are for ∆ = 1.3 GHz. The red and blue color codes in (e) and (f) are
for the PSA gain ≥ 0.8 and < 0.8, respectively. Subfigures (a), (b), (c)
and (d) are from Fig. 5.5.
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in either the maximal amplification or the maximal deamplification condition (see

Fig. 5.8). While when the MI peak height is degraded, its peak timing can be either

advanced or delayed, and the more the degradation, the more the advancement or

delay. We can also learn from the blue stars that, although the PSA deamplifies the

probe beam, the MI between the probe and conjugate can still be nearly as high as

the reference MI without the PSA.

We speculate that the apparent “dispersive” behavior of the PSA seen in

Fig. 5.9 is due to the “mixing of quadratures.” Specifically, when the PSA is noise-

less, i.e., the entire input signal is encoded in only one of the two “natural” quadra-

tures — the maximally amplifying and maximally deamplifying quadratures, so that

the output signal is either purely amplified or deamplified and is at the same quadra-

ture angle as the input, as shown in Figs. 2.11 and 2.12 in Section 2.5, the PSA is

also “dispersion-less.” However, when the input signal is encoded on a combination

of the two“natural” quadratures, the PSA rotates the input signal so that the out-

put signal is a different mix of the two quadratures than at the input, as shown in

Fig. 2.10 in Section 2.5. The PSA degrades the MI because of this operation, and in

addition it produces the advance and delay that appears to be a “dispersion” effect.
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Figure 5.10: MI peak height as a function of the MI peak delay for (a) ∆ = 1.4 GHz
and (b) ∆ = 1.3 GHz. In order to show the fidelity of the information
transfer, all the MI peak heights are normalized to the averaged refer-
ence one when the PSA pumps are blocked (see the solid black curve in
Fig. 5.7). The peak value of the reference MI is 1.75 bits. The red and
blue color codes are for the PSA gain ≥ 0.8 and < 0.8, respectively.

5.4.2.4 Proving the MI of the twin beams contains contributions from

the quantum correlations

Thus far, we have demonstrated the PSA’s ability of advancing and delaying

the peak of the MI of a bright two-mode squeezed state. We also have showed that

when the PSA is operating noiselessly, it is capable of transmitting almost all the MI

that exists in the original two-mode squeezed state, no matter if one of the modes is

maximally amplified or maximally deamplified. Since the MI is partially determined

by the quantum-mechanically correlated intensity fluctuations of a bright two-mode

squeezed state, in this section, let us study how much “quantumness” associated

with this MI.

To do this, we remove the PSA and replace the twin beams with two split
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Figure 5.11: Examples of the filtered AC time traces of intensities used to calculate
the MI for (a) Twin beams, (b) Split thermal beams and (c) Split
coherent beams. All y-axes denote the digitization level ranging from 0
to 250 (the maximal digitization level is 256 from an 8-bit oscilloscope).
All three cases share the same DC levels, and the twin beams (a) and
split thermal beams (b) share the same AC levels as well.

thermal beams and two split coherent beams and compare the MI among these

three cases. The two split thermal beams are from a single thermal beam split by a

beamsplitter whose two outputs have the same DC and AC levels as the twin beams.

In the same manner, the two split coherent beams are generated from splitting a

single coherent beam by a beamsplitter whose two outputs have the same DC levels

as the twin beams. Figure 5.11 is an example of the filtered (within 0.5 MHz to

5 MHz where the intensity-difference squeezing resides) AC time traces of these

three cases.

An illustrative way to demonstrate the MI of the twin beams contains contri-

butions from the quantum correlations is to bin the intensities of the AC time traces

in Fig. 5.11 and compare their joint probability distributions at the peak time of

the MI. Since the split coherent beams have the same intensities as the twin beams,

thus the fluctuations in Fig. 5.11(c) represent the shot-noise level of fluctuations.

The resulting joint probability distributions are plotted in Fig. 5.12 for comparison.
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Figure 5.12: Joint probability distributions at the peak time of the MI for (a) twin
beams, (b) split thermal beams and (c) split coherent beams, obtained
by binning the intensities of the AC time traces in Fig. 5.11. The
number of bins is 100 in order to resolve fine structures of the joint
probability distributions.

Just as in Fig. 5.6, we choose the number of bins to be 100 to resolve fine structures

of the joint probability distributions.

We see from Fig. 5.12 that the minor axis of the joint probability distribution of

the split thermal beams is equal to the diameter of the joint probability distribution

of the split coherent beams, implying all the correlations in the split thermal beams

are shot-noise limited. The minor axis of the joint probability distribution of the twin

beams, however, is smaller than the diameter of the joint probability distribution of

the split coherent beams, manifestly indicating the existence of the sub-shot-noise

correlations between the twin beams.

We can also normalize the filtered AC time traces in Fig. 5.11 so that they

all have the same standard deviation as one of the twin beams. This normalization

takes out the intensity imbalance between the twin beams caused by seeding the

4WM process. Also because of this normalization, for a given choice of bin size,
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Figure 5.13: Joint probability distributions at the peak time of the MI for (a) twin
beams, (b) split thermal beams and (c) split coherent beams. The
filtered AC time traces are normalized so that they all have the same
standard deviation as one of the twin beams.

each beam, no matter if it is a twin beam, a split thermal beam or a split coherent

beam, would have the same amount of information, or the Shannon entropy, to be

exact (see Appendix B for details). Then we can compare how much MI there is

between any pair of beams, with perfect classical copying giving a MI equal to the

information (in the Shannon sense, see Appendix B for details) of any one of the

individual beams. These joint probability distributions are plotted in Fig. 5.13.

We now calculate the MI for each case and plot them as a function of the time

shift in Fig. 5.14 for comparison. Each of the three curves is an average from 50 pairs

of time traces. The calculation of the MI is based on the binning method shown

in Fig. 5.13, which renders all the individual beams possessing the same amount of

information (or the Shannon entropy) of 6.8 bits (see Appendix B for details). We

see in Fig. 5.14 that, the twin beams have the most MI, and the extra amount of

information acquired when comparing to that of the split thermal beams is due to

the quantum correlations shared by the twin beams. The reason that all the MI

curves have nonzero baselines is discussed in the Appendix B. The fact that the
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MI curves of the twin beams and the thermal beams dip below the baselines is an

artificial effect of the filtering. The 10 ns shift between the peaks of the MI curves

of the twin beams and the thermal beams is due to the different group velocities for

the two beams.

Based on Fig. 5.14, before being input into the PSA, the amount of the MI of

the twin beams calculated by Eq. (5.5) is more than one could acquire classically,

and the “more-than-classical” amount can be preserved when the PSA operates

“noiselessly” (also “dispersion-lessly”). Also, by comparing the data in (e) and (f)

with (a), (b), (c) and (d) in Fig. 5.9, we observe that, the “dispersion” of the PSA

behaves the same regardless of whether the input is classical modulations or one

mode of a two-mode squeezed state.
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Figure 5.14: MI as a function of the time shift for twin beams (red), split thermal
beams (blue) and split coherent beams (black). Each of the three curves
is an average from 50 pairs of time traces. The calculation of the MI
is based on the binning method shown in Fig. 5.13, which renders all
the individual beams possessing the same amount of information (or
the Shannon entropy) of 6.8 bits (see Appendix B for details). The
reason that all the MI curves have nonzero baselines is provided in
the Appendix B. The fact that the MI curves of the twin beams and
the thermal beams dip below the baselines is an artificial effect of the
filtering. The 10 ns shift between the peaks of the MI curves of the twin
beams and the thermal beams is due to the different group velocities
for the two beams.

5.5 Theoretical model

In this section, we explore the model that can explain the “dispersion” behavior

of the PSA described in the preceding sections. A straightforward approach for us to
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physically understand the “dispersion” behavior of the PSA is to measure the gain

line profile and calculate the group velocity from the measurement, as Glasser, et al.

did in [126]. In order to measure the gain line of the PSA, we keep the one-photon

detunings of the two pump beams fixed (see Fig. 5.3(c)) and scan the one-photon

detuning of the probe beam generated from a separate laser13. We measure the gain

lines with the two-photon detuning δ at +6 MHz, -4 MHz and -14 MHz, and plot

them in Fig. 5.15 alongside their corresponding plots of gain versus delay obtained

from injecting into the PSA a sinusoidally amplitude-modulated signal at 1 MHz and

allowing the PSA phase to drift. Note that there is no obvious change in the plots

of gain versus delay although the overall profiles of the gain lines change noticeably

among these three two-photon detunings.

An important feature of this gain line measurement is the ubiquitous oscilla-

tions. An example is plotted in Fig. 5.16 when the gain line in Fig. 5.15(b) is zoomed

in around 1 MHz. This is due to the fact that the output of the PSA is dependent

on the phase, φPSA = (φ1−φp)+(φ2−φp), where φ1 and φ2 are the optical phases of

the pump beams and φp is the probe optical phase14. Since the probe beam is from

a third laser and when it is tuned away from the center frequency the two pumps

13As opposed to prior experiments where all the beams are derived from the same laser.
14See Section 2.4.3 in Chapter 2 for detailed derivations. There, the phases of the two pumps

are denoted by φb and φc, and the phase of the probe is denoted by φi.
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Figure 5.15: Profiles of the gain lines and their corresponding plots of gain versus
delay for (a) and (b): δ=+6 MHz, (c) and (d): δ=-4 MHz and (e)
and (f): δ=-14 MHz. The plots of gain versus delay are obtained
from inputting to the PSA a sinusoidally amplitude-modulated signal
at 1 MHz.
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(i.e., νp 6= (ν1 + ν2)/2, see Fig. 5.3(a) and (c)), φPSA becomes

φPSA(t) = (φ1(t)− φp(t)) + (φ2(t)− φp(t))

= [(
ν1

2π
t+ φ1)− (

νp
2π
t+ φp)] + [(

ν2

2π
t+ φ2)− (

νp
2π
t+ φp)]

= (
ν1 + ν2 − 2νp

2π
)t+ [(φ1 − φp) + (φ2 − φp)].

(5.6)

Obviously, φPSA is now oscillating at the angular frequency of (ν1+ν2−2νp)/2π,

making the output of the PSA oscillate accordingly, and the further the detuning of

the probe frequency from the center frequency of two pump beams, the faster the

oscillation of the PSA output. It is therefore difficult for us to determine the group

index from the gain line measurement15. For the rest of this section, we provide a

theoretical model, which does not require the knowledge of the gain line but still

gives good agreement with the experimental results.

We consider the simplest case where the input is a sinusoidally amplitude-

modulated classical signal (See Section 5.3.2.1), which is composed of a carrier,

a positive and a negative sideband in the frequency domain. The essence of this

theoretical model is to have distributed (i.e., divide the whole medium into multiple

sections) PSA gain on the carrier as well as on both the positive and negative

sidebands but to have distributed loss only on the negative sideband.

An input purely amplitude-modulated signal can be written as

Ein(t) = [1 + A cos(Ωt+ β)]eiφ

= [1 + αeiΩt + α∗e−iΩt]eiφ,

(5.7)

15Or maybe the calculation of the gain line is not meaningful at all.
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Figure 5.16: A zoomed-in version of the experimentally measured gain line in
Fig. 5.15(b) around 1 MHz.
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where α = (1/2)Aeiβ, A is the modulation depth, Ω = 1 MHz is the modulation

frequency, and φ is the phase of the input field. A = 0.15 can be well determined

experimentally. One can think of the input field in terms of the carrier and two

sidebands at ±Ω. The basic defining equation of the classical phase-sensitive linear

amplifier is [85]

Eout(t) = Ein(t) cosh r + E∗in(t) sinh r, (5.8)

where the parameter r is related to the maximal gain of the PSA as GPSA = e2r

(See Section 2.4.3).

Since the amplifier is linear (in the electric field) we can consider the effect on

each piece of the input field separately. We have considered the carrier (or “DC”)

part in Chapter 3. The effect of the amplifier on the positive and negative frequency

sidebands is

E+
out(t) = αeiΩteiφ cosh r + α∗e−iΩte−iφ sinh r,

E−out(t) = α∗e−iΩteiφ cosh r + αeiΩte−iφ sinh r,

(5.9)

where E+
out(t) and E−out(t) are the output fields for the positive and negative side-

bands, respectively. From Eq. 5.9, we see that the amplifier mixes the positive and

negative sidebands, i.e., the output from the positive frequency input has both pos-

itive and negative frequency components and likewise for the negative frequency

input. The final electric field, when we reassemble all three pieces (carrier and ±Ω
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sidebands) is

Eout(t) = (cosh r + e−2iφ sinh r)(1 + αeiΩt + α∗e−iΩt)eiφ

= (cosh r + e−2iφ sinh r)Ein.

(5.10)

The output field is the same as the input field, multiplied by an overall factor,

which, upon squaring to get intensity, gives the AC and DC gain we identified

in Chapter 3. Therefore, a purely amplitude-modulated input signal simply gets

amplified or deamplified.

In a multimode description of the amplifier one can imagine that the effect of

the amplifier depends on the sideband frequency. In particular, if in contrast to the

treatment of Eq. (5.10), we imagine that the amplifying medium has a linear index of

refraction variation as in the usual fast-and-slow-light case, then one sideband could

be shifted slightly ahead in phase and one symmetrically behind in phase (relative

to the carrier). Thus the angle β on the output might be different from that on the

input. If angle β changes by ∆β in going through the amplifier, then this amounts

to a shift in the peak of the modulation envelope relative to the underlying carrier

wave:

1 + A cos(Ωt+ β)→ 1 + A cos(Ωt+ β + ∆β) = 1 + A cos[Ω(t+ τ) + β], (5.11)

where τ = ∆β/Ω. Thus the modulation envelope is shifted in time by time τ , which

could be either positive or negative. That is the usual fast-and-slow-light effect.

In addition to the above discussion where the carrier and both sidebands only
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experience gain and no loss, let us consider introducing a small amount of loss to

one of the sidebands, and have the gain and loss distributed across the medium16.

For simplicity, we assume the loss is on the negative sideband. The gain and loss

sections can then be described by the matrices

G =

cosh rn sinh rn

sinh rn cosh rn

 (5.12)

and

L =

1 0

0 tn · ei∆βn

 , (5.13)

respectively. Here, rn is the gain parameter for each gain section, and tn is the

transmission of the negative sideband in each loss section. ∆βn is the phase shift of

the negative sideband relative to the carrier.

We can calculate the output fields of the carrier, Eco, and the two sidebands,

E±so by cascading the gain and loss sections:

Eco
E∗co

 = GN ·

Eci
E∗ci

 and

E+
so

E−so
∗

 = (G ·L)N ·

E+
si

E−si
∗

 , (5.14)

where Eci = 1 · eiφ, E+
si = αeiΩt · eiφ and E−si = α∗e−iΩt · eiφ are the input fields of the

carrier, the positive and negative sidebands, respectively. N is the total number of

gain and loss sections.

It is straightforward to obtain the relation between rn and the overall maximal

16The ideal of describing the nonlinear process by a “distributed gain and loss” model is from
the Refs. [127] and [128].

138



gain of the PSA, GPSA, since GPSA = (e2rn)N , therefore rn = lnGPSA/(2N). It is

also easy to calculate the overall phase shift as ∆β = N∆βn. The overall transmis-

sion of the negative sideband, however, is a bit more involved to be characterized.

Equation 5.9 tells us that after each section, the PSA mixes the positive and neg-

ative sidebands converting one to the other. Although we introduce the non-unity

transmission only to the negative sideband for each section, because of the mix-

ing operation of the PSA, both sidebands are actually affected by this non-unity

transmission at the output of each section. It is therefore not trivial to assign a

transmission or a gain only to a specific sideband.

Gathering the output fields, Eco and E±so, together, we can have the output

intensity:

Iout = (Eco + E+
so + E−so)

2. (5.15)

For each phase φ of the input field, the output intensity is a periodic function

of time (i.e., it is amplitude-modulated like the input) whose peak positions can

be used to determine the advance/delay relative to the input reference signal as in

Fig. 5.4(a). The PSA gain at each input phase φ can be obtained from the gain of

the carrier, which is just the output intensity of the carrier, Ico = Eco ·E∗co, since the

input intensity of the carrier, Ici = Eci · E∗ci = 1. Then, by varying the input phase

φ from 0 to 2π and assigning reasonable values to the free parameters of GPSA, tn

and ∆βn, we are able to make parametric plots of gain versus delay as in Figs. 5.17,

5.18 and 5.19. Without loss of generality, we assume the amplitudes for both the

positive and negative sidebands are real (β = 0 in Eq. 5.7), and we set the total
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number of gain and loss sections N = 10.

For simplicity, in plotting Figs. 5.17 and 5.18, we also set ∆βn = 0. Figure 5.17

is plotted for 3 maximal PSA gains, all with the negative sideband transmission

tn = 0.95. Figure 5.18 is plotted for 3 negative sideband losses, all with the maximal

PSA gain GPSA = 3.

It can be seen from Figs. 5.17 and 5.18 that, the advance and delay appear

to be more prominent with larger GPSA and greater loss on the negative sideband.

Greater GPSA also tends to change the shape of the plot while greater loss on the

negative sideband only enlarges the horizontal spread but maintains the shape of

the plot.
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Figure 5.17: Parametric plots of gain versus delay for the maximal PSA gain GPSA =
2 (brown), 3 (blue) and 4 (red), respectively. Other parameters are
tn = 0.95, ∆βn = 0 and N = 10.
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Figure 5.18: Parametric plots of gain versus delay for the negative sideband trans-
mission tn = 0.95 (brown), 0.90 (blue) and 0.85 (red), respectively.
Other parameters are GPSA = 3, ∆βn = 0 and N = 10.

To examine the effect of the phase shift ∆βn on the advance and delay, we

also plot the parametric plots of gain versus delay for 3 values of ∆βn in Fig. 5.19.

We can learn from these plots that, the phase shift ∆βn simply moves the overall

shape forward or backward in time, as does the phase shift ∆β in Eq. 5.11 in the

case of the usual fast-and-slow-light effect.

If we set the transmission of the negative sideband tn = 1 and keep all the

rest of the parameters unchanged, Fig. 5.19 becomes Fig. 5.20. This clearly shows

that, under our theoretical model, the advance and delay, or the apparent “disper-

sive” behavior of the PSA is purely due to the imbalanced gain or loss on one of

the sidebands. In other words, this “dispersive” behavior can be described as the

frequency-dependent gain or loss as opposed to the frequency-dependent index of
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refraction in the usual fast-and-slow-light effects.
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Figure 5.19: Parametric plots of gain versus delay for the phase shift ∆βn = -π/500
(red), 0 (brown) and π/500 (blue), respectively. Other parameters are
GPSA = 3, tn = 0.95 and N = 10.
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Figure 5.20: Parametric plots of gain versus delay for the phase shift ∆βn = -π/500
(red), 0 (brown) and π/500 (blue), respectively. Other parameters are
GPSA = 3, tn = 1 and N = 10.

We now apply our model to fit the experimental data. We use the same

data shown in Figs. 5.9(a) and 5.9(b) since the input is a sinusoidally amplitude-

modulated classical signal. We fit the theory curves to the data in Fig. 5.21 manually

with fitting parameters enumerated in the caption. We find an excellent agreement

between the theory and the data with reasonable fitting parameters.

Because of the similarities between the MI data shown in Figs. 5.9(e) and 5.9(f)

and the classical modulation data shown in Figs. 5.9(a) and 5.9(b), we can also apply

our theory to fit the MI data. Because the theory is developed with a monochromatic

classical input, we expect it will not fit the MI data as well as the modulation data

since the MI data is analyzed within a frequency bandwidth of 0.5 MHz to 5 MHz.

The results are shown in Fig. 5.22 with the fitting parameters enumerated in the
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Figure 5.21: Theoretical fits to the data shown in Figs. 5.9(a) and 5.9(b). The fitting
parameters for (a) are GPSA = 1.81, tn = 0.961 and ∆βn = −π/5000.
The fitting parameters for (b) are GPSA = 3.02, tn = 0.946 and ∆βn =
−π/2000. Both with A = 0.15, Ω = 1 MHz and N = 10.
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Figure 5.22: Theoretical fits to the data shown in Figs. 5.9(e) and 5.9(f). The fitting
parameters for (a) are GPSA = 1.81, tn = 0.961 and ∆βn = −π/1000.
The fitting parameters for (b) are GPSA = 2.82, tn = 0.946 and ∆βn =
−π/500. Both with A = 0.15, Ω = 1 MHz and N = 10.
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caption. We see that the fits are decent17 and the fitting parameters are at least for

most of the part quite similar to the ones used in Fig. 5.21.

We can go one step further to fit the data shown in Fig. 5.10. Once we obtain

the fits in Fig. 5.22, we gain the knowledge of the MI peak delay as a function of

the input phase φ (since the gain on the vertical axis is a function of φ). Moreover,

since the joint probability distribution for the probe and conjugate time traces is

a bivariate normal distribution (both of the probe and conjugate marginal distri-

butions are normally distributed), therefore, there is an exact relationship between

the MI and the intensity correlation coefficient MXC of the twin beams formulated

by Eq. 4.10 in Section 4.4 [129]:

I(p; c) = −1

2
log2(1−M2

XC), (5.16)

where I(p; c) is the MI in the unit of bits since log2 is used. The simple quantum-

mechanical model developed in Section 4.4 enables us to attain the relationship

between the normalized cross-correlation function and the input phase φ, then from

Eq. 5.16, the relationship between the MI and φ can be easily derived as well. Since

we now know both the MI and the MI peak delay as functions of φ, we thus are

able to make a theoretical parametric plot of MI versus MI peak delay by varying

φ from 0 to 2π and fit it to the data shown in Fig. 5.10. The results are shown in

Fig. 5.23. Although the fits exhibit some deviations from the data, e.g., they do not

cover the notable asymmetry between the wings of the advance and delay, they do

17One should not expect the fits to be perfectly working since the data is broadband.
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Figure 5.23: Theoretical fits to the data shown in Fig. 5.10. Derivation of the fits
is detailed in the text. In order to show the fidelity of the information
transfer, all the MI peak heights are normalized to the peak of the
reference one, which is 1.75 bits.

capture most of the features of the data.

5.6 Conclusions

We elaborate in this chapter two experiments that explore the fast-and-slow-

light effects on the propagation of the mutual information (MI) shared by the twin

beams of a two-mode squeezed state produced by a 4WM-based PIA.

The first experiment utilizes a second 4WM-based PIA as a dispersive medium,

and the input signal is from a vacuum two-mode squeezed state. We find in this

experiment that although the peak of the MI between the modes can be advanced

when the PIA acts as a gain-assisted fast-light medium, the degradation of the

MI due to the added noise from the phase-insensitive gain appears to prevent an

advancement of the leading edge. In contrast, we demonstrate a significant delay of

both the leading and trailing edges of the MI when the PIA acts as a gain-assisted
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slow-light medium.

The second experiment replaces the second PIA with a 4WM-based PSA as the

“dispersive” medium, and instead of using an input signal from a vacuum two-mode

squeezed state, we input to the PSA a signal from a bright two-mode squeezed state.

Our experimental observations make us speculate that the apparent “dispersive”

behavior of the PSA is due to the “mixing of quadratures.” Specifically, we find that

when the PSA is noiseless, i.e., the entire input signal is encoded in only one of the

two “natural” quadratures (the maximally amplifying and maximally deamplifying

quadratures) so that the output signal is either purely amplified or deamplified and

is at the same quadrature angle as the input, the PSA is also “dispersion-less.”

However, when the input signal is encoded on a combination of the two“natural”

quadratures, the PSA rotates the input signal so that the output signal is a different

mix of the two quadratures than at the input. Because of this operation the PSA

degrades the MI, and in addition it produces the advance and delay that appears

to be a “dispersion” effect.

We also provide a theoretical model capable of explaining our observations.

The model adopts the idea that, in addition to the phase shift between the positive

and negative frequency sidebands in the case of usual fast-and-slow-light effects, one

of the sidebands also sustains a partial transmission during the propagation through

the PSA. We demonstrate that it is this partial transmission (or imbalanced gain) of

one sideband that gives rise to the apparent “dispersive” behavior of the PSA, and

with reasonable fitting parameters, our theory fits the experimental observations

very well. We can use our model to describe this “dispersive” behavior as the

147



frequency-dependent gain or loss as opposed to the frequency-dependent index of

refraction in the usual fast-and-slow-light effects.
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Chapter 6: Concluding remarks

In this chapter, we highlight the main results obtained from the work presented

in this thesis. We also provide an outlook of some possible investigations that can

be implemented in the future as continuations to the research presented here.

6.1 Summary of results

The work presented in this thesis studies the optical properties of a quantum-

noise-limited phase-sensitive amplifier (PSA). This PSA is created through the four-

wave mixing process in 85Rb vapor, and has already been demonstrated to have the

ability of generating multi-spatial-mode single-beam quadrature squeezed states of

light [58] and of noiselessly amplifying hundreds of spatial modes [72].

We first take advantage of the phase-sensitivity of the amplifier and study the

effects of input amplitude and phase modulation on the output of the PSA. We

show that PSA signals can be used as a diagnostic tool for quantifying the phase

modulation depth of an input signal and are consistent with established homodyne

techniques. We find that both AOMs and optical choppers can inadvertently add

phase modulation to a light field in addition to the desired amplitude modulation.

This can drastically alter the results in applications using PSAs. In each case, we
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demonstrate that the amount of phase modulation can be reduced by adjusting the

angle of incidence between the beam path and the modulator.

We then demonstrate the use of an optical PSA to reduce the effect of non-

unity quantum efficiency of an intensity detector, which is an important limitation in

making continuous variable measurements of quantum states. We show that the use

of the PSA allows us to more accurately measure the intensity correlation coefficient

and intensity-difference squeezing of a two-mode squeezed state. We also show, in

a proof-of-principal experiment, this scheme also works for a homodyne detector.

Therefore the system of a PSA operating at a large gain followed by a detector with

imperfect quantum efficiency would in principle approach a “perfect detector.”

We commit the rest of the thesis to investigate the “dispersive” behavior of

the mutual information (MI) of a two-mode squeezed state propagating through the

PSA. We speculate that, based on the results from our investigations using a phase-

insensitive amplifier as the dispersive medium [29], the added noise which degrades

the information also prevents the information from traveling superluminally. Our

present experimental observations make us believe that it is the PSA’s “mixing

of quadratures” that gives rise to the apparent “dispersive” behavior of the PSA.

Specifically, we find that when the PSA is noiseless, i.e., the entire input signal is

encoded in only one of the two “natural” quadratures (the maximally amplifying

and maximally deamplifying quadratures) so that the output signal is either purely

amplified or deamplified and is at the same quadrature angle as the input, the PSA is

also “dispersion-less.” However, when the input signal is encoded on a combination

of the two“natural” quadratures, the PSA rotates the input signal so that the output
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signal is a different mix of the two quadratures than at the input, and because of this

operation the PSA degrades the MI, and in addition it becomes “dispersive.” We

also find that, the “dispersion” of the PSA behaves the same regardless of whether

the input is classical modulations or one mode of a two-mode squeezed state.

A model which is capable of fitting our experimental results reasonably well

is also developed. The theory assumes that in addition to the phase shift between

the positive and negative frequency sidebands in the case of usual fast-and-slow-

light effects, one of the sidebands also sustains a partial transmission during the

propagation through the PSA. It is this partial transmission (or imbalanced gain)

of one sideband that gives rise to the apparent “dispersive” behavior of the PSA.

We can use our model to describe this “dispersive” behavior of the PSA as the

frequency-dependent gain or loss as opposed to the frequency-dependent index of

refraction in the usual fast-and-slow-light effects.

6.2 Outlook

In regard to the experimental results presented in this thesis, we have some

views of the future investigations that one could take on.

6.2.1 The “perfect detector” experiment

In Section 4.5.3 of Chapter 4, we discuss the experiment using homodyne

detectors. There, the initial two-mode vacuum squeezing is only -2 dB, after the

propagation through the PSA and the engagement of quantum-noise lock-in, the
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available vacuum squeezing reduces to -1.5 dB. Moreover, the adverse effect of power

imbalance between the twin beams on the vacuum squeezing is not taken care of

since there are no time traces recorded. Therefore, there is undoubtedly much room

to improve the experiment and to make better and more convincing measurements.

Once we succeed in achieving a better measurement of the two-mode vacuum squeez-

ing, we could further pursue a good measurement of the entanglement between the

two modes in the presence of loss. An even more challenging but highly rewarding

proposal is to use our scheme to overcome detector efficiency limitations in quan-

tum imaging applications since our PSA is capable of operating on multiple spatial

modes [72].

6.2.2 The mutual information experiment

During the research on the “dispersive” behavior of the MI of a two-mode

squeezed state propagating through the PSA, most of our questions have centered

on Fig. 5.7. The most notable difference of this graph from Fig. 5.2 is the MI curves

with delayed peaks. In Fig. 5.2, both of the leading and trailing edges of the MI

curve are delayed by the phase-insensitive-gain-assisted slow-light system. However,

in Fig. 5.7, the trailing edges of the MI curves with delayed peaks are also bounded

by the reference one within the experimental uncertainty. Although we have proved

that the apparent “dispersive” behavior of the PSA is not a typical fast-and-slow-

light effect, we are not so sure whether this trailing edge bounding is due to physical

effects or just due to the not-so-great statistics. Since the MI curves in Fig. 5.7 are
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calculated from the filtered time traces within 0.5 MHz to 5 MHz (and are further

filtered by the detector’s roll-off at 4 MHz), the time interval between statistically

independent samples is 250 ns, this implies an over-sampling of 125 points given our

sampling rate is 2 ns/sample. The total number of points in our time traces is 105

(so that the data acquisition time window is 0.2 ms, during which the PSA phase

is a constant), which gives the number of statistically independent points of 800 in

calculating the MI curves in Fig. 5.7. A straightforward improvement would then be

to take the MI data without so much over-sampling during a correlation time and

with a better resolution (using a 12-bit digitizer rather than an 8-bit oscilloscope).

Certainly, there is plenty left to do.
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Appendix A Calculation of gain and loss inside the PIA (source)

cell
1

The correlation properties of a two-mode squeezed state emitted by a lossless

PIA are solely determined by its gain. In the experiment, however, the atomic

absorption and scattering from the 85Rb atoms in the PIA cell inevitably introduce

loss. Therefore, a complete description of the PIA requires a distributed gain and

loss model [127, 128]. Here we adopt a simpler model that assumes an ideal lossless

PIA followed by loss as shown in Fig. 4.2(a). To determine the gain of the PIA and

the beamsplitter transmissions ηa1 and ηb1, we take auxiliary measurements of laser

intensities and component transmissions.

The main issues are that ηa1 includes losses that occur inside the cell and

change as a function of laser detuning, and that the gain required by the model is

different from the intensity gain measured in the presence of loss. Previous studies

have shown that the losses on the probe beam are much larger than those on the far

detuned conjugate beam [101]. Here we assume there is no loss due to the vapor on

the conjugate beam. To model the losses in the PIA, we introduce an effective probe

1This appendix is associated with the theoretical predictions for the intensity cross-correlation
and the intensity-difference squeezing of the bright twin-beam case in Chapter 4. For the case of
two-mode vacuum squeezing discussed in Section 4.5.3, we had not gone through this calculation.
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beam transmission, η4WM, which contributes to ηa1 along with the ordinary optical

losses, whereas ηb1 is due simply to ordinary optical losses that can be measured

directly. The advantage of this model is that one is able to determine the desired

GPIA and η4WM just by measuring the optical powers of the probe and conjugate

beams with and without the presence of the pump beam. The detailed derivation

is as follows.

We shine a probe beam with optical power Ps into the PIA cell, temporarily

blocking the pump beam and detuning the probe so that absorption in the atomic

vapor is negligible. The probe beam experiences losses due to reflection from the cell

windows, downstream optics, and the non-unity quantum efficiency of the detector.

The measured optical power is

Pr = Ps · ηoff
a1 · ηa2, (A.1)

where ηoff
a1 = 0.92 is the transmission of the PIA cell windows and the optical elements

up to the position where the PSA cell would be inserted, and ηa2 = 0.89 is the

product of the transmission of the optics after the PSA insertion point and the

quantum efficiency of the detector.

With the pump beam present, and the probe frequency reset to its usual

detuning, the probe power gets amplified to Pp and a conjugate beam is generated

with power Pc, where

Pp = Ps ·GPIA · ηon
a1 · ηa2, (A.2)
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Pc = Ps · (GPIA − 1) · ηb1 · ηb2, (A.3)

and ηon
a1 = ηoff

a1 · η4WM. Here ηb1 = 0.94 is the transmission of the PIA cell windows

and the optical elements up to the position of the conjugate detector, and ηb2 = 0.90

is the quantum efficiency of the detector.

Solving for Ps in Eq. (A.1) and plugging it into Eqs. (A.2) and (A.3), one

obtains

Pp
Pr

= GPIA ·
ηon

a1

ηoff
a1

= GPIA · η4WM, (A.4)

Pc
Pr

= (GPIA − 1) · ηb1 · ηb2

ηoff
a1 · ηa2

. (A.5)

The gain of the PIAGPIA and the effective probe beam transmission η4WM are readily

calculable from Eqs. (A.4) and (A.5) using the measured optical transmissions and

known detector quantum efficiencies, and the measured powers Pp, Pc and Pr.

As noted in the main text, when we adjust the one photon detuning, ∆, to

vary the PSA gain, we also adjust the pump power in the PIA to maintain the same

measured squeezing level. Following this procedure we find that for ∆ = 1.4 GHz

the effective PIA parameters are GPIA = 3.0 and η4WM = 0.92 and thus ηon
a1 = 0.85.

For ∆ = 1.3 GHz the effective PIA parameters are GPIA = 3.3 and η4WM = 0.90 and

thus ηon
a1 = 0.83. With these numbers plugged into the model described in Section

4.4, the correlation properties of the modes ai and bi can thus be fully characterized.
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In calculating AC noise powers one needs to account, by modifying ηa2 and ηb2, for

the finite signal power separations from the electronic noise floors, as discussed in

the main text. The intensity-difference squeezing predicted by this theory is -5.6

dB, which is very close to the experimental value of -5.8 dB. This verifies that the

approximation of treating the distributed cell loss by a lumped value after the cell

is sufficiently accurate for the present purposes.
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Appendix B The effect of number of bins on the calculation of the

mutual information
1

In this appendix, we explore the effect of number of bins on the calculation

of the mutual information (MI). In Section 5.4 of Chapter 5, we use the classical

definition to calculate the MI:

I(p; c) =

Np∑
1

Nc∑
1

P (p, c) log2

P (p, c)

P (p)P (c)
, (B.1)

where P (p, c) is the joint probability of the probe and conjugate AC time traces.

P (p) and P (c) are the marginal probabilities for the probe and conjugate, respec-

tively. Np and Nc are the number of bins for the two time traces. This approach of

calculating the MI clearly depends on the choice of the number of bins Np and Nc.

Intuitively, one would think the more the number of bins, the more the information

one would gain since more bins implies finer resolution to the small fluctuations in

the time traces. However, since every piece of data acquisition equipment has a dig-

itization limit, like an 8-bit oscilloscope has a maximal digitization level of 28 = 256,

it is an overkill to bin the traces beyond the digitization limit set by the apparatus.

Moreover, the MI is a characterization of the “similarities” between the two beams,

1This appendix is associated with Section 5.4 in Chapter 5.
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Figure B.1: Simulations of the time traces of the two beams. The standard devia-
tions of the correlated and uncorrelated parts are 1 and 0.125, respec-
tively.

it should be a finite value set by the physical properties of the two beams, increasing

the number of bins should not help one to acquire more information once all the

“similarities” have been procured. For each individual beam, however, the amount

of information (or the Shannon entropy) is a monotonic function of the number of

bins.

To better understand this binning effect, let us first make some simulations.

We generate a random time trace and make a copy of it, this would be a pair of

perfectly correlated beams (or the intensity fluctuations of the beams, to be exact).

We then generate two random uncorrelated time traces with a much smaller size

and add each one to each beam. The resulting time traces are the mimicries of

the time traces we take from the experiment. An example is shown in Fig. B.1

where the standard deviations of the correlated and uncorrelated parts are 1 and

0.125, respectively. Note that the total number of points in the time traces is 105,

consistent with the experiment, Fig. B.1 only shows the first 200 points.

We now bin these two time traces with different number of bins to calculate

159



    
    
     (a) 

    
    
     (b) 

    
    
     (c) 

- 4 - 2 2 4
Intensity (binned)

0.05

0.10

0.15

0.20
Probability

- 4 - 2 2 4
Intensity (binned )

0.05

0.10

0.15

0.20
Probability

5 10 15

5

10

15

Beam 1 (No. of Bins)

Be
am

2 
(N

o.
 o

f B
in

s)

Figure B.2: Probability distributions of each beams, (a) and (b), and the joint prob-
ability distribution of the two beams, (c), when binned with 17 bins.
The information in each beam is 3.07 bits calculated by the definition
of the Shannon entropy. The MI is 1.95 bits.

the MI between them. Figure B.2 is an example with the number of bins of 17.

We plot the individual probability distributions of the two beams in Figs. B.2(a)

and B.2(b), and plot the joint probability distribution in B.2(c). We can calculate

the information contained in each beam binned with N bins from the definition of

the Shannon entropy, H = −
∑N

i=1 Pi log2 Pi, where N is the number of bins and Pi

is the probability of each bin. With the number of bins of 17, the information in

each individual beam is 3.07 bits, and the MI between them is 1.95 bits.

In Fig. B.3, we plot the information (both in individual beams and the MI) as

a function of the number of bins for two pairs of time traces, one has an uncorrelated

part with a standard deviation of 0.25, and the other one has an uncorrelated part

with a standard deviation of 0.125. In both cases, the standard deviation of the per-

fectly correlated part is 1. Figure B.3 depicts that, as the number of bins increases,

so do the information in each individual beams, the MI, however, are plateaued out

after an initial growth. Also, it can be seen that the MI from the pair with the

smaller uncorrelated part reaches the plateau at a greater number of bins than the
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Figure B.3: Information in individual beams and the MI as a function of the number
of bins for two pairs of simulated time traces. The “1/4 noise” and “1/8
noise” in the legend denote the standard deviations of the uncorrelated
parts are 0.25 and 0.125, respectively. The standard deviation of the
perfectly correlated part is 1 in both cases. The overlapping of the
three list plots of the single beam information indicates adding a small
uncorrelated part to the initial time trace has no appreciable effect
on the amount of information it originally possesses. The amount of
information of a single beam is solely determined by the number of
bins.
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one with the greater uncorrelated part, and the plateaued MI value is also higher

for the pair with the smaller uncorrelated part. This is because resolving smaller

uncorrelated fluctuations requires finer bins with narrower bin width, therefore more

bins are needed to fully acquire the MI. The overlapping of the three list plots of

the single beam information indicates adding a small uncorrelated part to the ini-

tial time trace has no appreciable effect on the amount of information it originally

possesses. The amount of information of a single beam is solely determined by the

number of bins. Whereas, the MI degrades substantially when even a small amount

of randomness is added2.

In this demonstration, it seems that using a lot of bins (within the digitization

limit of the apparatus) is not a terrible idea, if one only cares about the absolute

amount of the MI, not the one relative to the amount of information in each indi-

vidual beam (increasing monotonically with the number of bins). However, in what

follows, we prove that this is actually not a good idea in real life with all kinds of

physical limitations.

We now shift the two machine-generated time traces to simulate our analysis

of attaining the MI as a function of time shift shown in Fig. 5.14 in Section 5.4.2.4 of

Chapter 5. The results of the simulated MI versus time shift calculated with different

number of bins are plotted in Fig. B.4 using both Matlab and Mathematica. The

number of points in the simulated time traces is 105, consistent with the experiment.

For all the plots produced by both Matlab and Mathematica, we use the same

2Note that, if there is no uncorrelated part added to the perfectly correlated pair of time traces,
i.e., one is the copy of the other, the MI between them is just the Shannon entropy of the individual
beam.
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Figure B.4: Simulated MI as a function of time shift calculated with different num-
ber of bins using (a) Matlab and (b) Mathematica. The number of
points in the simulated time traces is 105, consistent with the experi-
ment.

pair of time traces generated by the random number generator in Matlab. In this

simulation, the standard deviation of the uncorrelated part is 0.25, and the standard

deviation of the perfectly correlated part is kept at 1. We see that as the number

of bins increases, both of the MI peak and the baseline increases, but the baseline

rises more aggressively than the peak does when the number of bins is large. If we

subtract the baseline value from the peak value for each number of bins, we end up

with the graph in Fig. B.5 where the results from the Matlab and Mathematica are

plotted together. They are in good agreement and both show the reduction of the

MI when the number of bins are greater than 81.

Figures B.4 and B.5 clearly tell us that, for time traces containing a finite

number of points, using a large number of bins is detrimental to the calculation of

the MI, as the nonzero baseline becomes more prominent when the number of bins

is large.
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Figure B.5: MI peak value minus the baseline value as a function of the number
of bins plotted for both Matlab (blue dots) and Mathematica (brown
dots).

Let us now find out the physics and/or mathematics that gives rise to the

nonzero baseline. Consider a simpler case where the information is in a single

beam. As usual, bin the data to obtain a probability distribution from which the

MI is calculated. In Fig. B.6, we plot the probability distribution inferred from

various number of bins. The number of data points used here is 104. We learn

from Fig. B.6 that for a finite number of data points there will be some numerical

noise in the probability distribution inferred from the finite data set. This is more

of an issue as the number of bins is increased. We blame this numerical noise in the

probability distributions for causing the nonzero baselines in Fig. B.4.
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Figure B.6: Probability distributions of a single beam binned with 3 numbers of
bins. (a) 21 bins, (b) 61 bins and (c) 181 bins. The number of points
in the time trace is 104.
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Figure B.7: Probability distributions of a single beam with 3 lengths of data sets.
(a) 104 points, (b) 105 points and (c) 106 points. All binned with 361
bins.

To further illustrate this point, we also plot the probability distribution in-

ferred from various length data sets in Fig. B.7. The number of bins (361) used here

is large. Figure B.7 tells us that when the number of bins is large, one also needs

to use large numbers of data points to reduce the numerical noise in the probability

distributions inferred from the binning.

Repeating this for 20 realizations for each length of data set, we find that the

information content of the distribution depends on the data set length. Doing an

analytic calculation of the probability distribution by expressing the probabilities

in each bin in terms of error functions, which are then evaluated numerically, one
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Figure B.8: Numerically derived information values as a function of the data set
length, compared to the reference value of 7.36824 bits calculated ana-
lytically.

finds the information of this distribution (for this number of bins covering the range

shown) should be 7.36824 bits. Figure B.8 shows the numerically derived informa-

tion values as a function of the data set length, compared to this reference value.

The length of the data sets used goes from 104 data points to 107 data points.

As one can see that, with larger data set length the mean value approaches the

expected value derived analytically. The main point is that a finite number of data

points in the time traces gives rise to noise in the inferred probability distribution.

In Fig. B.8, it also appears that there is a small systematic shift from the mean

value as the data set length decreases.

Now, with all the knowledge gained from the simulations, let us consider ana-

lyzing the real data from our experiment. The bottom line of choosing a number of

bins to calculate the MI is to have enough of them to fully acquire all the MI (i.e.,

the bin width is sufficiently narrow to resolve the sub-shot-noise fluctuations) but
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Figure B.9: Comparison of the calculations of MI with 2 numbers of bins for the
twin, thermal and coherent beams. (a) 30 bins and (b) 100 bins.

not to introduce too much baseline. In Fig. 5.14, the MI are calculated with 100

bins, and we see the MI of the twin beams peaks at 1.97 bits with a baseline of 0.28

bits. To make a comparison, we recalculate the MI in the three cases with 30 bins

and plot them alongside Fig. 5.14 in Fig. B.9. When calculated with 30 bins, we find

that although the MI of the twin beams peaks at a lower value of 1.80, the value of

its baseline is only 0.07, so the net (peak value minus the baseline value) MI is 1.73

bits, higher than the net MI of 1.69 bits calculated with 100 bins. Therefore, under

current experimental conditions, using 30 bins to calculate the MI is sufficient for

our purpose.
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Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd. Gaus-
sian quantum information. Rev. Mod. Phys., 84:621–669, May 2012. doi:
10.1103/RevModPhys.84.621. URL https://link.aps.org/doi/10.1103/

RevModPhys.84.621.

179

https://link.aps.org/doi/10.1103/PhysRevA.1.305
https://link.aps.org/doi/10.1103/PhysRevA.1.305
https://link.aps.org/doi/10.1103/PhysRevLett.96.143901
http://www.sciencedirect.com/science/article/pii/S0375960198003818
http://www.sciencedirect.com/science/article/pii/S0375960198003818
http://dx.doi.org/10.1038/nature02016
https://link.aps.org/doi/10.1103/RevModPhys.76.93
https://link.aps.org/doi/10.1103/RevModPhys.77.513
https://link.aps.org/doi/10.1103/RevModPhys.77.513
https://link.aps.org/doi/10.1103/RevModPhys.84.621
https://link.aps.org/doi/10.1103/RevModPhys.84.621


[121] A. I. Lvovsky, B. C. Sanders, and W. Tittel. Optical quantum memory.
Nat. Photon., 3(12):706–714, Dec 2009. URL http://dx.doi.org/10.1038/

nphoton.2009.231.

[122] Robert W. Boyd. Slow and fast light: fundamentals and ap-
plications. Journal of Modern Optics, 56(18-19):1908–1915, 2009.
doi: 10.1080/09500340903159495. URL http://dx.doi.org/10.1080/

09500340903159495.

[123] Mark M. Wilde. Quantum Information Theory. Cambridge University Press,
2013. URL https://doi.org/10.1017/CBO9781139525343.

[124] Alessio Serafini, Fabrizio Illuminati, and Silvio De Siena. Symplectic in-
variants, entropic measures and correlations of gaussian states. Journal of
Physics B: Atomic, Molecular and Optical Physics, 37(2):L21, 2004. URL
http://stacks.iop.org/0953-4075/37/i=2/a=L02.

[125] Ulrich Vogl, Ryan T. Glasser, Quentin Glorieux, Jeremy B. Clark, Neil V.
Corzo, and Paul D. Lett. Experimental characterization of gaussian quantum
discord generated by four-wave mixing. Phys. Rev. A, 87:010101, Jan 2013.
doi: 10.1103/PhysRevA.87.010101. URL https://link.aps.org/doi/10.

1103/PhysRevA.87.010101.

[126] Ryan T. Glasser, Ulrich Vogl, and Paul D. Lett. Stimulated generation of
superluminal light pulses via four-wave mixing. Phys. Rev. Lett., 108:173902,
Apr 2012. doi: 10.1103/PhysRevLett.108.173902. URL https://link.aps.

org/doi/10.1103/PhysRevLett.108.173902.

[127] C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett. Strong low-
frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev.
A, 78:043816, Oct 2008. doi: 10.1103/PhysRevA.78.043816. URL http://

link.aps.org/doi/10.1103/PhysRevA.78.043816.

[128] M. Jasperse, L. D. Turner, and R. E. Scholten. Relative intensity squeezing by
four-wave mixing with loss: an analytic model and experimental diagnostic.
Opt. Express, 19(4):3765–3774, Feb 2011. doi: 10.1364/OE.19.003765. URL
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-4-3765.

[129] I.M. Gel’fand and A.M. Yaglom. Calculation of amount of information about a
random function contained in another such function. American Mathematical
Society Translations: Series 2, 12:199–246, 1957.

180

http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1080/09500340903159495
http://dx.doi.org/10.1080/09500340903159495
https://doi.org/10.1017/CBO9781139525343
http://stacks.iop.org/0953-4075/37/i=2/a=L02
https://link.aps.org/doi/10.1103/PhysRevA.87.010101
https://link.aps.org/doi/10.1103/PhysRevA.87.010101
https://link.aps.org/doi/10.1103/PhysRevLett.108.173902
https://link.aps.org/doi/10.1103/PhysRevLett.108.173902
http://link.aps.org/doi/10.1103/PhysRevA.78.043816
http://link.aps.org/doi/10.1103/PhysRevA.78.043816
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-4-3765

	Dedication
	Acknowledgements
	List of Figures
	List of Abbreviations
	Introduction
	Four-wave mixing
	Phase-insensitive amplifier
	Phase-sensitive amplifier
	Fast and slow light
	Outline

	Quantum mechanics for linear optical amplifiers
	Introduction
	Four-wave mixing
	Phase-insensitive amplifier
	Two-mode intensity difference squeezing
	Continuous-variable quantum entanglement
	Noise figure of the phase-insensitive amplifier

	Phase-sensitive amplifier
	Two-mode phase-sensitive amplifier
	Noise figure of the two-mode phase-sensitive amplifier
	Single-mode phase-sensitive amplifier
	Single-mode squeezing
	Noise figure of the single-mode phase-sensitive amplifier

	Phase-space representations of phase-insensitive and phase-sensitive amplification
	Effect of losses

	Effect of input phase modulation to a phase-sensitive optical amplifier
	Introduction
	Theoretical predictions
	Phase-sensitive amplification
	Balanced homodyne measurement

	Experimental setup
	Experimental results
	Acousto-optical modulator
	Optical chopper

	Conclusions

	Improved measurement of two-mode quantum correlations using a phase-sensitive optical amplifier
	Introduction
	Conceptual diagram
	Experimental setup
	Model
	Experimental results
	Intensity correlation coefficient
	Intensity-difference squeezing
	Two-mode vacuum squeezing

	Conclusions

	Mutual information of a two-mode squeezed state propagating through a phase-sensitive optical amplifier
	Introduction
	Group velocity
	Information velocity and relativistic causality
	Determine the information velocity
	Our approach

	Phase-insensitive optical amplifier as the dispersive medium
	Phase-sensitive optical amplifier as the ``dispersive'' medium — amplitude modulated classical signal as the input
	Experimental setup
	Experimental results

	Phase-sensitive optical amplifier as the ``dispersive'' medium — one mode of a two-mode squeezed state as the input
	Experimental setup
	Experimental results

	Theoretical model
	Conclusions

	Concluding remarks
	Summary of results
	Outlook
	The ``perfect detector'' experiment
	The mutual information experiment


	Calculation of gain and loss inside the PIA (source) cell
	The effect of number of bins on the calculation of the mutual information
	Bibliography

