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The Kuramoto model (KM) was initially proposed by Yoshiki Kuramoto in

1975 to model the dynamics of large populations of weakly coupled phase oscillators.

Since then, the KM has proved to be a paradigmatic model, demonstrating dynamics

that are complex enough to model a wide variety of nontrivial phenomena while

remaining simple enough for detailed mathematical analyses. However, as a result

of the mathematical simplifications in the construction of the model, the utility of

the KM is somewhat restricted in its usual form. In this thesis we discuss extensions

of the KM that allow it to be utilized in a wide variety of physical and biological

problems.

First, we discuss an extension of the KM that describes the dynamics of theta

neurons, i.e., quadratic-integrate-and-fire neurons. In particular, we study networks

of such neurons and derive a mean-field description of the collective neuronal dy-

namics and the effects of different network topologies on these dynamics. This

mean-field description is achieved via an analytic dimensionality reduction of the



network dynamics that allows for an efficient characterization of the system attrac-

tors and their dependence not only on the degree distribution but also on the degree

correlations.

Then, motivated by applications of the KM to the alignment of members in a

two-dimensional swarm, we construct a Generalized Kuramoto Model (GKM) that

extends the KM to arbitrary dimensions. Like the KM, the GKM in even dimensions

continues to demonstrate a transition to coherence at a positive critical coupling

strength. However, in odd dimensions the transition to coherence occurs discontin-

uously as the coupling strength is increased through 0. In contrast to the unique

stable incoherent equilibrium for the KM, we find that for even dimensions larger

than 2 the GKM displays a continuum of different possible pretransition incoherent

equilibria, each with distinct stability properties, leading to a novel phenomenon,

which we call ‘Instability-Mediated Resetting.’ To aid the analysis of such systems,

we construct an exact dimensionality reduction technique with applicability to not

only the GKM, but also other similar systems with high-dimensional agents beyond

the GKM.
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4.3 Representative plots demonstrating the short-lived macroscopic burst
of coherence and the resulting IMR. (a) The magnitude of the order
parameter (orange solid curve) and 〈Cmin〉 (blue dashed curve) as a
function of time for a system setup with a minimally stable distribu-
tion corresponding to 〈Cmin〉 = 0 and evolved with K = 1.4. Note
the sharp rise and fall of |ρ|, i.e. the macroscopic burst of coherence,
accompanied by the increase of the value of 〈Cmin〉 (i.e., IMR). This
results in an increase of the critical coupling constant for instability
onset of the new incoherent distribution. Panels (b) and (c) show the
order parameter evolution beginning with the distribution function
at the last time-step of (a) but with K increased to K = 1.6 and 2.0
respectively. The presence of a macroscopic burst of |ρ| in (c) and
not in (b) indicates that Kc has been reset to a value between 1.6 and
2.0. In panel (d) |ρ|max indicates the largest value of |ρ| for systems
initialized similar to (b) or (c) following a discontinuous increase of
the coupling constant to a value K plotted on the horizontal axis.
|ρ|max is macroscopically observable (i.e., distinguishable from finite-
N -induced fluctuations) for bursts of |ρ|, and approximately 0 for
incoherent steady-state distributions without any such burst. Hence
(d) indicates that, by the end of the simulation in panel (a), due to
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4.5 Evolution of |ρ(t)| for a system having N = 106 initialized at a min-
imally stable incoherent steady-state distribution with slow tempo-
rally linear increase in K shown in orange, and a sliding average
shown in red. The temporal increase of K is linear in time and is
indicated by the horizontal axis at the top of the figure panel. The
vertical dashed lines correspond to K

(−)
c and K

(+)
c . For K ≤ K

(−)
c the

initialized steady-state distribution is stable and hence |ρ| maintains

a value close to zero. For K
(−)
c < K < K

(+)
c the system demonstrates

enhanced fluctuations of |ρ| about increased, nonzero values that are

apparently sustained by the continuous increase of K. For K ≥ K
(+)
c

no incoherent distribution is stable, and |ρ| attains a larger value
similar to Fig. 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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5.1 (a),(b): Comparison between the dynamics of the magnitude of the
order parameter, |z|, as a function of time via full system modeling of
the generalized Kuramoto model with D = 3 (Eq. (5.2) for ρ given by
Eq. (5.19)) using N = 5000 agents shown in black, with the modeling
of the reduced differential equation Eq.(5.15) plotted as the orange
dashed line. K = 2 for both figures. (a) is the case of homogenous
agents, i.e., G(W) = δ(W −W0). (b) is the case of heterogeneous
agents, where the distribution G(W) is nonsingular and chosen as de-
scribed in the main text. Only NW = 500 Monte-Carlo samples were
required to produce the curve for the reduced system of equations,
representing the N →∞ limit of the full system, approximated by the
noisy curve generated using N = 5000 agents for the full system. (c)
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Chapter 1: Introduction

1.1 Overview

In his very first paper [1], shortly before starting graduate school, Winfree

asked the question “What special phenomena can we expect to arise from rhyth-

mical interaction of whole populations of periodic processes?” Winfree formulated

this problem via interactions between large populations of limit cycle oscillators,

whose dynamics he attempted to simplify for the case of near-identical oscillators

with weak coupling. Under this setup, he argued that one can characterize the state

of each oscillator via only their phase along the limit cycle, i.e., each entity of the

population can be described as a ‘phase oscillator’. While he could not derive a

complete mathematical analysis of the system, he used a mixture of numerical and

mathematical analysis to observe the presence of a phase transition to synchroniza-

tion in the system.

Kuramoto, in 1975, motivated by some previous work of his on chemical in-

stabilities, wrote down the following equations to model a community exhibiting
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mutual synchronization [2]

dθj
dt

= ωj +
K

N

N∑
k=1

sin(θk − θj), (1.1)

where θi represents the phase angle of the ith oscillator, ωi is its natural frequency

of oscillation, and K is the coupling strength between oscillators. The natural fre-

quencies are usually assumed to be drawn from a unimodal probability distribution,

g(ω), characterizing how similar individual oscillators are. While Kuramoto only

briefly noted in 1975 that his model exhibits the kinds of phase transitions Winfree

and earlier described, he later [3] demonstrated that these equations arise naturally

from Winfree’s setup after further simplifications and assumptions regarding the

nature of the phase oscillators being considered.

Since this initial work, the Kuramoto model and its generalizations have since

been used to study synchronization behavior in a wide variety of systems, modeling

biological problems such as the behavior of cardiac pacemaker cells [4], synchroniza-

tion in large groups of flashing fireflies [5, 6], circadian rhythms [7, 8], and neuronal

synchronization [9], as well as problems in physics and engineering such as synchro-

nization of power-grid networks [10, 11], superconducting Josephson junctions [12],

atomic physics [13], and neutrino oscillation [14], among others; Kuramoto him-

self has remarked that he has been surprised at such physical systems following his

model [15].

Given this wide applicability of the Kuramoto model to systems that are not

immediately apparent as phase oscillators, in this thesis we will often refer to the
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individual entities of the populations as ‘agents’.

To describe the collective dynamics of the entire population, a complex order

parameter ρ = |ρ|eiψ is defined as

ρ =
1

N

N∑
k=1

eiθk . (1.2)

This order parameter can be interpreted as a single quantity that characterizes

the state of synchronization in the system; |ρ| measures the magnitude of phase

coherence in the system, and ψ measures the average phase in the system. In terms

of this order parameter, we can rewrite Eq. (1.1) as

dθj
dt

= ωj +K Im
[
ρe−iθj

]
= ωj +K|ρ|sin(ψ − θj). (1.3)

In terms of this expression, we can see that the Kuramoto model essentially models

an interplay between the collective dynamics of the system, ρ (which is usually

some mean field quantity, such as in Eq. (1.2)), and the individualistic tendency of

each agent, ωj. Using the above equations, under the additional assumption that

g(ω) was a Lorentzian distribution, Kuramoto [2] showed that a continuous phase

transition to coherence occurs at a critical coupling strength

Kc =
2

πg(0)
. (1.4)

One can relax the assumption that g(ω) is Lorentzian for the above result to hold

— it is sufficient that g(ω) is unimodal, symmetric about its mean and continuous
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(for a proof of more general versions of this result, see Chapters 3 and 4).

In the decades that followed, there have been a large number of interesting

mathematical results treating the Kuramoto model (see Refs. [9,16,17] for reviews).

A seminal contribution to this subject was made in 2008 by Ott and Antonsen

[18], where they discovered that the dynamics of the Kuramoto model admit a low

dimensional invariant manifold in the infinite population size limit. This result was

further refined in the next two years [19, 20] where it was shown under a set of

weak assumptions that this invariant manifold is attracting. Thus, for problems

where this infinite size limit was relevant, it was shown to be sufficient to study

the dynamics of the population on the invariant manifold, a significantly simpler

problem due to the low dimensionality of the manifold.

A surprising discovery of these papers was that this attracting invariant mani-

fold exists for not only the Kuramoto model as stated in Eq. (1.1), but to the wider

class of models given by Eq. (1.3), where ρ need not be given by Eq. (1.2) and

can be a more general function of the individual agent phases. This allowed the

‘Ott-Antonsen’ (OA) method to be immediately applicable to several problems that

could be modeled via this form of an extension to the Kuramoto model [12,21–26].

One particular instance of this extension to the Kuramoto model is the ‘theta

neuron’ model, which describes the dynamics of quadratic-integrate-and-fire neurons

[22]. This particular model is the main focus of interest of Chapter 2, where we

discuss how the OA method can be applied to networks of such theta neurons.

Studying the dynamics of this system on the underlying invariant manifold allows

us to efficiently analyze the dynamics of such networks of neurons.
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By the construction of our setup thus far, our attention has been restricted to

problems where the state of each agent is described by a single scalar angle. Thus,

the Kuramoto model can be thought of as describing the collective dynamics of

points that lie on the unit circle. Motivated by this observation, and the application

of the Kuramoto model to classical XY spins [27–30] and herding animals [31–33],

in Chapter 3 we construct a generalization of the Kuramoto model to arbitrary

dimensions. This generalization is the primary object of our focus in Chapters 3, 4

and 5. In particular, Chapters 3 and 4 describe the wide range of novel dynamical

phenomena displayed by this generalization, and Chapter 5 discusses how the OA

method can be extended to this generalized system.

The remainder of this thesis is organized into the following chapters:

1.2 Modeling the Network Dynamics of Pulse-Coupled Neurons

In this chapter, we derive a mean-field approximation for the macroscopic dy-

namics of large networks of pulse-coupled theta neurons in order to study the effects

of different network degree distributions, as well as degree correlations (assortativ-

ity). Using the Ott-Antonsen ansatz [18], we obtain a reduced system of ordinary

differential equations describing the mean-field dynamics, with significantly lower di-

mensionality compared with the complete set of dynamical equations for the system.

We find that, for sufficiently large networks and degrees, the dynamical behavior

of the reduced system agrees well with that of the full network. This dimensional

reduction allows for an efficient characterization of system phase transitions and
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attractors. For networks with tightly peaked degree distributions, the macroscopic

behavior closely resembles that of fully connected networks previously studied by

others. In contrast, networks with highly skewed degree distributions exhibit dif-

ferent macroscopic dynamics due to the emergence of degree dependent behavior

of different oscillators. For nonassortative networks (i.e., networks without degree

correlations) we observe the presence of a synchronously firing phase that can be

suppressed by the presence of either assortativity or disassortativity in the network.

We show that the results derived here can be used to analyze the effects of net-

work topology on macroscopic behavior in neuronal networks in a computationally

efficient fashion. This work was published as Ref. [34]

1.3 Continuous versus Discontinuous Transitions in theD-Dimensional

Generalized Kuramoto Model: Odd D is Different

The Kuramoto model has been used and generalized for a wide range of appli-

cations involving the collective behavior of large heterogeneous groups of dynamical

units whose states are characterized by a scalar angle variable. One such application

in which we are interested is the alignment of orientation vectors among members of

a swarm. Despite being commonly used for this purpose, the Kuramoto model can

only describe swarms in 2 dimensions, and hence the results obtained do not apply

to the often relevant situation of swarms in 3 dimensions. Partly based on this

motivation, as well as on relevance to the classical, mean-field, zero-temperature

Heisenberg model with quenched site disorder, in this chapter we study the Ku-
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ramoto model generalized to D dimensions. We show that in the important case of

3 dimensions, as well as for any odd number of dimensions, the D-dimensional gen-

eralized Kuramoto model for heterogeneous units has dynamics that are remarkably

different from the dynamics in 2 dimensions. In particular, for odd D the tran-

sition to coherence occurs discontinuously as the inter-unit coupling constant K is

increased through zero, as opposed to the D = 2 case (and, as we show, also the case

of even D) for which the transition to coherence occurs continuously as K increases

through a positive critical value Kc. We also demonstrate the qualitative applica-

bility of our results to related models constructed specifically to capture swarming

and flocking dynamics in three dimensions. This work was published as Ref. [35].

1.4 Observing Microscopic Transitions from Macroscopic Bursts: Instability-

Mediated Resetting in the Incoherent Regime of theD-dimensional

Generalized Kuramoto Model

In the previous chapter it was shown that, for even (but not odd) D, similar

to the original Kuramoto model (D = 2), there exists a continuous dynamical phase

transition from incoherence to coherence of the time asymptotic attracting state

(time t→∞) as the coupling parameter K increases through a critical value which

we denote K
(+)
c > 0. We consider this transition from the point of view of the

stability of an incoherent state, where an incoherent state is defined as one for

which the N → ∞ distribution function is time-independent and the macroscopic

order parameter is zero. In contrast with D = 2, for even D > 2 there is an infinity
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of possible incoherent equilibria, each of which becomes unstable with increasing K

at a different point K = Kc. Although there are incoherent equilibria for which

Kc = K
(+)
c , there are also incoherent equilibria with a range of possible Kc values

below K
(+)
c , (K

(+)
c /2) ≤ Kc < K

(+)
c . How can the possible instability of incoherent

states arising at K = Kc < K
(+)
c be reconciled with the previous finding that, at

large time (t→∞), the state is always incoherent unless K > K
(+)
c ? We find, for a

given incoherent equilibrium, that, if K is rapidly increased from K < Kc to Kc <

K < K
(+)
c , due to the instability, a short, macroscopic burst of coherence is observed,

in which the coherence initially grows exponentially, but then reaches a maximum,

past which it decays back into incoherence. Furthermore, after this decay, we observe

that the equilibrium has been reset to a new equilibrium whose Kc value exceeds

that of the increased K. Thus this process, which we call ‘Instability-Mediated

Resetting,’ leads to an increase in the effective Kc with continuously increasing K,

until the equilibrium has been effectively set to one for which Kc ≈ K
(+)
c . Thus

Instability-Mediated Resetting leads to a unique critical point of the t → ∞ time

asymptotic state (K = K
(+)
c ) in spite of the existence of an infinity of possible

pretransition incoherent states. This work was published as Ref. [36].

1.5 Complexity Reduction Ansatz for Systems of Interacting Ori-

entable Agents: Beyond The Kuramoto Model

Previous results have shown that a large class of complex systems consisting

of many interacting heterogeneous phase oscillators exhibit an attracting invariant
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manifold. This result has enabled reduced analytic system descriptions from which

all the long term dynamics of these systems can be calculated. Although very

useful, these previous results are limited by the restriction that the individual in-

teracting system components have one-dimensional dynamics, with states described

by a single, scalar, angle-like variable (e.g., the Kuramoto model). In this chapter

we consider a generalization to an appropriate class of coupled agents with higher-

dimensional dynamics. For this generalized class of model systems we demonstrate

that the dynamics again contain an invariant manifold, hence enabling previously

inaccessible analysis and improved numerical study, allowing a similar simplified de-

scription of these systems. We also discuss examples illustrating the potential utility

of our results for a wide range of interesting situations. This work was published as

Ref. [37]
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Chapter 2: Modeling the Network Dynamics of Pulse-Coupled Neu-

rons

In April 2013, the U.S. President announced ‘The Brain Initiative,’ an exten-

sive, long range plan of scientific research on human brain function. Computer mod-

eling of brain neural dynamics is an important component of this long-term overall

effort. A barrier to such modeling is the practical limit on computer resources given

the enormous number of neurons in the human brain (∼ 1011). Our work addresses

this problem by developing a method for obtaining low dimensional macroscopic

descriptions for functional groups consisting of many neurons. Specifically, we for-

mulate a mean-field approximation to investigate macroscopic network effects on the

dynamics of large systems of pulse-coupled neurons and use the ansatz of Ott and

Antonsen to derive a reduced system of ordinary differential equations describing

the dynamics. We find that solutions of the reduced system agree with those of the

full network. This dimensional reduction allows for more efficient characterization

of system phase transitions and attractors. Our results show the utility of these

dimensional reduction techniques for analyzing the effects of network topology on

macroscopic behavior in neuronal networks.
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2.1 Introduction

Networks of coupled oscillators have been shown to have a wide variety of

biological, physical and engineering applications [10, 11, 22, 25, 38–46]. In modelling

the dynamics of such networks, simulating the microscopic behavior at each node

can be a computationally intensive task, especially when the network is extremely

large. In this regard, we note that the dimension reduction analyses in Refs. [18–20]

has recently proved to be very effective and has been used to derive the macroscopic

behavior of large systems of coupled dynamical units in a variety of settings [25,44,

47–52]. In particular, Refs. [22, 25, 44, 45] consider networks with globally coupled

neurons and use these dimension reduction techniques to analyze the macroscopic

behavior of the systems.

In 1986, Ermentrout and Kopell [53] introduced the theta neuron model. Their

work, along with later studies by Ermentrout [54] and by Izhikevich [55], established

the applicability of the theta neuron model for studying networks of Class I excitable

neurons (as defined by Hodgkin, [56] i.e., those neurons whose activity lies near the

transition between a resting state and a state of periodic spiking, and can exhibit

spiking with arbitrarily low frequencies).

Previous studies modeling networks of theta neurons [22, 48, 52, 57] have gen-

erally been restricted to particular classes of network topologies. In this chapter

we study the macroscopic dynamics of networks of pulse coupled theta neurons on

networks with fairly general topologies including arbitrary degree distributions and

correlations between the degrees of nodes at opposite ends of a link, resulting in so-
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called ‘assortativity’ or ‘disassortativity’ [58]. Assortativity (disassortativity) occurs

when network nodes connect preferentially to those with similar (different) degrees.

We note that, studies [59–63] have shown the biological relevance of assortativity.

Motivated by the results of Restrepo and Ott [47] on networks of Kuramoto oscil-

lators, we use a mean field approach in conjunction with the analytical techniques

developed by Ott and Antonsen [18–20] to study the behavior of pulse coupled theta

neurons on networks with arbitrary degree distributions and assortativity. We ob-

tain a reduced system of equations describing the mean-field dynamics of the system,

with lower dimensionality compared with the complete set of dynamical equations

for the system. This allows us to examine the behavior of the network under various

conditions in a computationally efficient fashion. We primarily use the example of

a highly skewed degree distribution as an application of the obtained dynamical

equations for the order parameter and observe the existence of a partially resting

phase, an asynchronously firing phase, and a synchronously firing phase that is sen-

sitive to the presence of assortativity or disassortativity in the network. We also

demonstrate that, in contrast to networks with sharply peaked degree distributions,

networks with highly skewed degree distributions exhibit different macroscopic dy-

namics due to the emergence of degree dependent behavior of different oscillators.

The remainder of this chapter is organized as follows. In Sec. 5.2 we describe

the model of pulse coupled theta neurons used on an arbitrary network. In Sec. 2.3

we setup a mean field description of the behavior on the network, and then (Sec.

2.4) show how the methods developed by Ott and Antonsen [18–20] can be used to

write a low dimensional set of equations describing the dynamics of the mean field
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order parameter. In Sec. 2.5 we then use this low dimensional system to describe the

behavior of the system under different parameters and network topologies. Section

2.6 concludes the chapter with further discussion and summary of the main result.

2.2 The model

The theta neuron model encodes the dynamics of a single neuron in isolation

as follows,

θ̇ = (1− cos θ) + (1 + cos θ)η, (2.1)

where θ represents the neuron’s state and the parameter η specifies its excitability.

The dynamics can be visualized as a point traveling around the unit circle (Fig. 2.1).

A neuronal spike is said to occur each time the phase angle of the neuron, θ, crosses

the leftmost point at θ = π. When η < 0, there are two zeros of the right hand

side of Eq. (2.1), representing a stable rest state (solid circle in Fig. 2.1(a)) and an

unstable equilibrium (open circle in Fig. 2.1(a)). Thus, starting from a typical initial

condition, the state of the neuron goes towards the stable equilibrium at the rest

state represented by the filled circle. A resting neuron will spike if an external force

pushes its state (i.e. the angle θ) from the rest state past the unstable equilibrium

(termed as the ‘spiking threshold’). As η is increased above 0, the neuron exhibits

a Saddle Node bifurcation on an Invariant Cycle (SNIC). In this case there are no

fixed points (i.e. no zeros of the right hand side of Eq. (2.1)), and the neuron now

fires periodically, as shown in Fig. 2.1(c). Note that the neuron does not move at

the same rate along the entire circle, and may go faster or slower around θ = π
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dependent on whether η is less than or greater than 1, respectively (eg. see the plot

of (1− cos θ) versus time in Fig. 2.1(c)).

The theta neuron model can be extended from a single neuron in isolation to

networks of neurons. We consider a system of N theta neurons coupled together in

a general network via pulse-like synaptic signals, Ii, to each neuron i:

θ̇i = (1− cos θi) + (1 + cos θi)[ηi + Ii], (2.2)

Ii =
K

〈k〉

N∑
j=1

AijPn(θj), (2.3)

where Aij is the adjacency matrix of a network; Aij = 1 if there is a directed edge

from node j to node i, and Aij = 0 otherwise. The average degree is then given by

〈k〉 =
∑

i,j Aij/N . Pn(θ) = dn(1 − cos θ)n represents the pulse-like synapse, whose

sharpness is controlled by the integer parameter n. The normalization constant dn

is determined so that
∫ 2π

0
Pndθ = 2π, giving dn = 2n(n! )2/(2n)!. Note that in the

case of a fully connected network, where Aij = 1 for all i and j, this model reduces

to that of Luke et al. [22]

2.3 Mean Field Formulation

We consider the limit of many neurons, N � 1, and assume the network is

randomly generated from a given degree distribution P (k) (normalized such that∑
k P (k) = N), where k, the node degree, represents a two-vector of the in-degree
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Figure 2.1: The dynamics of the theta neuron undergo an SNIC (Saddle node on an
Invariant Cycle) bifurcation at η = 0. For negative η the neuron lies in a rest state,
with a threshold for excitation, and for positive η the oscillator undergoes periodic
spiking.

and the out-degree, (kin, kout). Additionally, we consider an assortativity function

a(k′ → k), which specifies the probability of a link from a node of degree k′ to

one of degree k. In this N → ∞ limit, we assume that the state of the neurons

can be represented by a continuous probability distribution, f(θ, η|k, t), such that

f(θ, η|k, t)dθdη is the probability that a node of degree k has an excitability pa-

rameter in the range [η, η + dη] and a phase angle in the range [θ, θ + dθ] at time t.

Since we are assuming that the excitability parameters do not vary with time, we

define g(η|k) =
∫
fdθ, which is the time independent distribution of the excitability

parameters ηi in the network for a randomly chosen node of degree k.

In order to describe the synchronization behavior of this system, we define the

order parameter to be,1,

1Some authors, such as Restrepo and Ott [47] define the order parameter differently so as to

be weighted with the out-degree at each node, i.e., R(t) =
∑N
i=1

∑N
j=1 Aije

iθj/
(∑N

i=1

∑N
j=1 Aij

)
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R(t) =
1

N

N∑
j=1

eiθj . (2.4)

As in previous work by Restrepo and Ott [47], we hypothesize that in networks with

large nodal degrees, the order parameter can be well approximated via a mean field

order parameter, defined by a continuum version of Eq. (2.4),

R̄(t) =
1

N

∑
k′

P (k′)

∫ ∫
f(θ′, η′|k′, t)eiθ′dθ′dη′. (2.5)

Additionally, the distribution f is constrained by the continuity equation,

∂f

∂t
+

∂

∂θ
(vθf) = 0, (2.6)

where vθ is the continuous version of the right hand side of Eq. (2.2),

(2.7)

vθ = (1− cos θ) + (1 + cos θ)

[
η + dn

K

〈k〉
∑
k′

P (k′)a(k′ → k)

×
∫ ∫

f(θ′, η′|k′, t)(1− cos θ′)ndθ′dη′

]
.

2.4 Dimension Reduction

Employing the dimensional reduction method of Ott and Antonsen [18–20],

and following its previous application to the theta neuron [22], we assume that f is
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given by the Fourier expansion,

(2.8)

f(θ, η|k, t) =
g(η|k)

2π

{
1

+
∞∑
p=1

[
b(η,k, t)pe−ipθ + b∗(η,k, t)peipθ

]}
.

We then use the binomial theorem to expand the pulse function Pn(θ) using

dn(1− cos θ)n = A0 +
n∑
p=1

Ap[e
ipθ + e−ipθ], (2.9)

where

Ap =
(n! )2

(n+ p)! (n− p)!
. (2.10)

If we now assume a Lorentz distribution of the excitability parameters,

g(η|k) =
1

π

∆(k)

[η − η0(k)]2 + ∆2(k)
, (2.11)

we obtain

∫ ∫
f(θ′, η′|k, t)eipθdθ′dη′ =


b̂(k, t)p, p > 0

1, p = 0

b̂∗(k, t)|p|, p < 0,

(2.12)

with b̂(k, t) ≡ b(η0(k) + i∆(k),k, t). This now allows us to rewrite vθ in terms of

b̂(k, t) as

vθ = geiθ + h+ g∗e−iθ, (2.13)

17



where

g = −1

2
(1− η − K

〈k〉
Hn(k, t)), h = 1 + η +

K

〈k〉
Hn(k, t), (2.14)

and

(2.15)

Hn(k, t) =
∑
k′

{
P (k′)a(k′ → k)

×

[
A0 +

n∑
p=1

Ap(b̂(k
′, t)p + b̂∗(k′, t)p)

]}
.

Substituting the phase velocity Eq. (2.13) and the Ott-Antonsen ansatz Eq. (2.8)

into the continuity equation (2.6), we find that b(η,k, t) satisfies:

∂b

∂t
= i(gb2 + hb+ g∗). (2.16)

Inserting the forms for g and h from Eq. (2.14) and (2.15) into this expression,

and evaluating each quantity at the pole, η = η0(k) + i∆(k), we obtain a reduced

system of equations for b̂(k, t) describing the mean field dynamics of the neuronal

network,

(2.17)

∂b̂(k, t)

∂t
= −i(b̂(k, t)− 1)2

2

+
(b̂(k, t) + 1)2

2

{
−∆(k) + iη0(k) + i

K

〈k〉
∑
k′

P (k′)a(k′ → k)

×

[
A0 +

n∑
p=1

Ap(b̂(k
′, t)p + b̂∗(k′, t)p)

]}
.

The mean field order parameter, R̄(t) can now be written in terms of b̂(k, t). Using

the assumed form for f(θ, η|k, t), we can evaluate the integrals in Eq. (2.5) using
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Cauchy’s residue theorem to obtain

R̄(t) =
1

N

∑
k

P (k)b̂(k, t). (2.18)

For the discussion in this chapter, we will restrict the assortativity function to

be of the form used previously by Restrepo and Ott [47]

a(k′ → k) = h(ak′→k), (2.19)

where h(x) = min(max(x, 0), 1) is defined to ensure that a(k′ → k) is a valid

probability (i.e. 0 ≤ a(k′ → k) ≤ 1), and

ak′→k =
k′outkin
N〈k〉

[
1 + c

(
k′in − 〈k〉
k′out

)(
kout − 〈k〉

kin

)]
, (2.20)

where c is a parameter used to vary the network assortativity (with c > 0 and c < 0

corresponding to assortative and disassortative networks, respectively). In networks

with neutral assortativity (c = 0), the probability of forming a link between two

nodes is simply proportional to the out-degree of the source node and the in-degree

of the target node.

The in-out Pearson assortativity coefficient, r, is a statistic used to characterize

the overall assortativity of a network, and is defined [64] as

r =

∑
e [(k′in − 〈k〉)(kout − 〈k〉)]√∑

e(k
′
in − 〈k〉)2

√∑
e(kout − 〈k〉)2

, (2.21)
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where
∑

e is the sum over all edges connecting a node of degree k′ to a node of degree

k.2. Assuming that a(k′ → k) = ak′→k, and that the in and out degree distributions

are independent, we can relate the assortativity coefficient to the parameter c as

r =
c

〈k〉2
√

(〈k2
in〉 − 〈k〉2)(〈k2

out〉 − 〈k〉2), (2.22)

which can be seen by noting that the sum of a quantity Q(k,k′), defined on each edge

connecting a node of degree k′ to a node of degree k, over edges in our mean field

formulation would be given by
∑

eQ(k,k′) =
∑

k

∑
k′ P (k′)a(k′ → k)P (k)Q(k,k′).

The expression for the assortativity coefficient as a function of c, Eq. (2.22), is

unbounded, while the Pearson assortativity is by definition bounded between−1 and

1. This difference arises because, for sufficiently large c, the assortativity function

given in Eq. (2.20) is not a probability. However, for the network parameters used in

our numerical example below, we find that Eq. (2.22) is very accurate for |c|≤ 2.5,

corresponding to an assortativity range, |r|. 0.198.

If we assume the excitability parameters are drawn from a degree independent

distribution (g(η|k) ≡ g(η)) and the b̂’s are given k independent identical initial

conditions, b̂(k, 0) ≡ b̂(0), then there are a few notable cases in which particular

degree distributions and our chosen assortativity function Eq. (2.20) allow for fur-

ther dimensional reduction. For networks with a delta-function degree distribution,

P (k) = δkin,kδkout,k, the Eq. (2.17) reduces to a single equation describing the mean

field dynamics,

2For another, often useful, definition of a coefficient quantitatively characterizing the assorta-
tivity or disassortativity of a network see Ref. [65]
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∂b̂(t)

∂t
=−i(b̂(t)− 1)2

2
+

(b̂(t) + 1)2

2

{
−∆ + iη0 + iK

[
A0 +

n∑
p=1

Ap(b̂(t)
p + b̂∗(t)p)

]}
.

(2.23)

We note that this equation is identical to earlier results for a fully connected network

[22]. Thus, networks with only a single allowed degree have identical asymptotic

dynamics to a fully connected network. This result is consistent with analogous

results by Barlev et al [49] for a network of Kuramoto oscillators. More generally,

if the network has fixed in-degree, P (k) = P (kout)δkin,k, the system is similarly

reduced to the single dynamical equation, Eq. (2.23). On the other hand, if the

out-degree is fixed, P (k) = P (kin)δkout,k, then dynamics of b̂(k, t) is independent of

kout, further reducing the dimensionality of the problem.

Reduction efficiency

Equation (2.17) represents a reduction of the original system of N theta neu-

rons to a system with as many equations as there are k values in the support of

the degree distribution P (k). We denote this quantity by Mk, which, in the case of

independent in and out-degree distributions, is equal to Min×Mout, where Min and

Mout are the number of possible in-degrees and out-degrees respectively. In general,

simulating the full network, Eq. (2.2), requires O(N2) floating point operations

per time step. Using the form of the assortativity function given in Eq. (2.20) the

sum over k′ in the reduced system of equations can be split into two sums, each

independent of k,
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kin
N〈k〉

∑
k′

P (k′)k′outA+ c
kout − 〈k〉
N〈k〉

∑
k′

P (k′)(k′in − 〈k〉)A. (2.24)

where A = A0 +
∑n

p=1 Ap

(
b̂(k′, t)p + b̂∗(k′, t)p

)
. Since the two sums in Eq. (2.24)

are independent of k, each must be calculated only once per simulation iteration.

Thus, simulating the reduced system Eq. (2.17) only requires O(Mk) floating point

operations per time step — Mk operations performed once for each of these two

sums and Mk operations for each of the b̂(k, t) equations. In many cases, Mk � N2,

so that simulating Eq. (2.17) is significantly more efficient that simulating the

full network. Furthermore, if c is set to 0, which is the case of networks with

neutral assortativity, then b̂(k, t) will have no dependence on kout, and hence the

overall problem is reduced to Min independent equations, allowing even greater

computational efficiency.

Since b̂(k′, t), P (k′), and a(k′ → k) are each smoothly varying functions, we

can achieve further dimensional reduction by interpolating the summand in Eq.

(2.17) using a coarse-grained grid of k values. In particular, Eq. (2.17) is not

solved for b̂(k, t) for all of the Mk values of k, but only for the small subset of k

values that lie on the coarse-grained grid in k-space. The summands on the right

hand side of Eq. (2.17) at k values not on the grid are approximated by a bilinear

interpolation of the values at the surrounding chosen k values. To perform the

bilinear interpolation, we first interpolate linearly between neighboring grid values

in one direction. The value of the summand at a given k value is then approximated

by linearly interpolating in the other direction between values estimated with the
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previous linear interpolation. We find that using as few as 10% of the network

degrees yield very accurate results, while an even coarser interpolation still produces

the same qualitative behavior as can be seen in Fig. 2.2.

2.5 Numerical simulations and results

In the following examples, we consider a directed network of N = 5000 nodes,

with in and out degrees chosen from independent, identical highly skewed distribu-

tions. In particular, we use a truncated power law distribution given by

P (k) =



0 if k < kmin

Ak−γ if kmin ≤ k < kmax

0 if kmax ≤ k.

(2.25)

The exponent of the power law component, γ, was set to 3, and kmin and kmax were

set to 750 and 2000, respectively. As mentioned earlier, the normalization constant

A is chosen to make
∑

k P (k) = N . We will also set the parameter n controlling

the sharpness of the synaptic pulse to 2 for all examples considered, and will use an

interpolation level of 10% for all calculations using the reduced system of equations

for the mean field theory (cf. Fig. 2.2).

From numerical simulations of the reduced equations, (2.17), we find that the

long term dynamics of the order parameter can be broadly classified into one of

three phases – (1) the partially resting (PR) phase; (2) the asynchronously firing

(AF) phase; and (3) the synchronously firing (SF) phase. The PR phase and the
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Figure 2.2: The effect of varying levels of interpolation on the calculated results for
the trajectories of R̄(t) in the complex plane starting from an initial condition of
R̄(t) = 0 and ending at a fixed point attractor for K = 3 in a network with neutral
assortativity, with η0 = −2 and ∆ = 0.1. Calculation of the order parameter
dynamics is robust to a large range in the level of interpolation. Using as few as
10% of the total available degrees and interpolating the remaining 90% give results
close to the calculation without interpolation. In the rest of this chapter we employ a
10% interpolation level in all our mean field calculations. The black arc is a segment
of the unit circle |R̄(t)|= 1.
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AF phase appear as fixed points in the dynamics of the order parameter, whereas

the SF phase appears as a limit cycle of the order parameter.

2.5.1 Fixed points
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As a particular example to illustrate the different types of fixed points, we

look at a network with neutral assortativity (c = 0) having excitability parameters

distributed according to a Lorentzian distribution with mean η0 = −2 and width

∆ = 0.1 (Fig. 2.3).

When the network is in the PR phase, the order parameter goes to a fixed point

that lies near the edge of the unit circle |R̄|= 1. In this phase, most of the individual

neurons in the network are independently in their resting states, in a fashion similar

to Fig. 2.1(a). This corresponds to the case of K = 1 in Fig. 2.3(a), in which

the fixed point is located near the edge of the unit circle marked in black. Further,

the time series of a few randomly chosen neurons (Fig. 2.3(b)) demonstrates that

almost all of the neurons are in a resting state. While there may be a small number

of neurons that are in the spiking phase due to the spread in the distribution of

values of excitability parameters, η, these do not have any significant effect on the

full order parameter of the system.

As we increase the coupling constant K, the system transitions to the asyn-

chronously firing (AF) phase, in which the order parameter goes to a fixed point

located near the center of the unit circle. In this phase, most of the individual

neurons in the network are asynchronously firing, in a fashion similar to Fig. 2.1(c).

This can be seen in the case of K = 6 in Fig. 2.3(c) which shows that almost all

of the neurons are in a recurrent spiking state. Note that even though the neurons

are spiking asynchronously, i.e., their firing times are independent of one another,3

3this definition of asynchronous spiking is consistent with remarks by other authors [66, 67],
wherein asynchronous states have been defined as states in which at each neuron the term coupling
it to the other neurons in the network is independent of time, as is observed in the cases of fixed
points.
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the fixed point of the order parameter is not at R̄ = 0. This is because the angular

velocity of an individual neuron is not constant along the circle, thus in the average

over the ensemble of neurons a bias is present towards the direction for which the

angular velocity of neurons is minimized. As discussed in Sec. 5.2, this may occur

at either θ = 0 or at θ = π, dependent on how large the excitability parameter is

for the neuron.

We now examine the transition from the PR phase to the AF phase. Micro-

scopically, in the PR phase, almost all of the neurons are individually in a resting

phase, whereas in the AF phase almost all neurons are in the spiking state. To

examine the behavior at an intermediate point, we look at the fixed point for the

case of K = 3, as shown in Fig. 2.3(c). At this intermediate value of the coupling

constant, a fraction of the neurons are in the spiking state. In particular, the nodes

that begin to spike first are those which have larger in-degrees. This is demonstrated

in Fig. 2.4, in which we examine b̂(k) at the fixed point for K = 3. Since we are

looking at a network with neutral assortativity (c = 0), Eq. (2.24) implies that

the sum only depends on the out-degree through a common multiplicative factor.

Thus b̂ is only plotted as a function of kin. Analogously, for the fixed point of the

dynamics on the full network, the range of degrees from kmin to kmax is divided uni-

formly into several intervals, and for each interval we find a partial order parameter,

calculated such that the average in Eq. (2.4) is only performed over those nodes
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whose in-degree lie within that interval, i.e.,

R(kin, t) =
1

||N ||
∑
j∈N

eiθj , (2.26)

where N is the set of nodes having an in-degree within one of the intervals of the

range of degrees, ||N || is the number of nodes in the set, and kin is the average

in-degree of nodes within that set.

In addition, we find that the transition from the PR phase to the AF phase

occurs via a hysteretic process mediated by saddle node bifurcations. To illustrate

this, we evolved the dynamics of the full network in a step wise fashion by increasing

the coupling constant K in small increments of 0.2, and allowing the system to

relax to an equilibrium before the next increment (Fig. 2.5(a)). We also compare

this with the analogous hysteresis curve observed for the evolution of the system

dynamics on an Erdős-Rényi network having the same size and average degree as

the highly skewed degree distribution being considered (Fig. 2.5(b)). While the

hysteretic region begins at around the same value of the coupling constant, K,

for both network topologies, we find that for the case of the Erdős-Rényi network,

which has a sharply peaked degree distribution, the range in K that allows hysteresis

(3 . K . 7.25) is significantly larger than the corresponding range for the network

with the highly skewed degree distribution (3.25 . K . 4).

To compare with the simulation of the dynamics on the full network, we also

calculate the fixed points of the mean field equations Eq. (2.17). While the fixed

points cannot be readily determined analytically, we can efficiently compute them
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Figure 2.4: Comparison of |b̂(kin)| from the reduced system of equations and the
time average of |R(kin)| from the full system, Eq. (2.26), for a network with neutral
assortativity (c = 0), η0 = −2, and ∆ = 0.1 at K = 3. The dynamics under
these parameters were simulated in a network with 5000 nodes, and the network
was allowed to relax to a fixed point. Nodes were divided into classes according
to their in-degree to calculate the time averaged effective order parameter for each
class, which is shown in blue, with the error bars denoting the root mean squared
time fluctuation of the order parameter for that class. The time fluctuations are
due to the finite number of nodes in each class. (See text for details.)
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via a numerical calculation. Setting ∂b̂(k, t)/∂t = 0 for the fixed points, we find

that the equilibrium b̂(k) satisfy,

b̂±(k) =
1± z(k)

1∓ z(k)
, (2.27)

where

(2.28)

iz2(k) = −∆ + iη0 + i
K

〈k〉
∑
k′

P (k′)a(k′ → k)

×

[
A0 +

n∑
p=1

Ap(b̂(k
′, t)p + b̂∗(k′, t)p)

]
,

and the sign is chosen to ensure |b̂(k)|≤ 1. Using our form of the assortativity

function Eq. (2.20), we may again split the above sum into two parts as in Eq.

(2.24). Thus we may rewrite Eq. (2.28) as

iz2(k) = −∆ + iη0 + ikinX + i(kout − 〈k〉)Y, (2.29)

where X and Y are given by,

(2.30a)X =
K

N〈k〉2
∑
k′

P (k′)k′out

[
A0 +

n∑
p=1

Ap(b̂(k
′, t)p + b̂∗(k′, t)p)

]

(2.30b)Y =
K

N〈k〉2
∑
k′

P (k′)(k′in − 〈k〉)

[
A0 +

n∑
p=1

Ap(b̂(k
′, t)p + b̂∗(k′, t)p)

]
.

These simplifications allow for efficient calculation of the system fixed points. Choos-

ing initial values, X0 and Y0, we calculate the associated z(k) and b̂(k) using Eq.

(2.29) and Eq. (2.27), and then recalculate new values, X1 and Y1 using Eq. (2.30).

For fixed points of the reduced equations δX = X1 − X0 and δY = Y1 − Y0 are
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both zero. We calculate δX and δY for several different initial values at regularly

spaced intervals for X0 and Y0, and identify the fixed points as the points where

δX = δY = 0. The interpolation procedure described earlier can also be applied to

this calculation to further increase efficiency. For the nonassortative case (c = 0),

Y = 0 always, so identifying the fixed points in this case only requires calculating

the variation in the single parameter X. We use this method to evaluate the fixed

points of the reduced equations for the range of K over which hysteresis was ob-

served, and find close agreement between the results of this fixed point analysis and

the direct evolution of the full network (Fig. 2.5).
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2.5.2 Limit Cycles

As a representative example of limit cycles of R̄(t), we consider a network with

neutral assortativity with excitability parameters η distributed as a Lorentzian with

mean η0 = 10.75 and width ∆ = 0.5, and with a coupling constant K = −9. In

the SF phase, the order parameter goes to a limit cycle in the complex plane. In

this phase, a majority of the neurons are synchronously in a spiking state. Plots

for such limit cycles are shown in Fig. 2.6, in which we plot the trajectory of the

order parameter in the complex plane (after removing transients) for a network

with the highly skewed degree distribution given in Eq. (2.25) (blue solid curve), a

corresponding Erdős-Rényi network having a Poissonian degree distribution (green

dashed curve), and a regular network having a delta function degree distribution (i.e.

P (k) = δkin,kδkout,k) (red dotted curve), each having the same average degree of 1090.

As seen earlier in Eq. (2.23), a network with a delta function degree distribution

has mean field dynamics identical to those of a fully connected network, and the

corresponding limit cycle in Fig. 2.6 is identical to the limit cycle obtained at these

parameters for the fully connected network by Luke et al. [22] In comparison with

the limit cycles that are observed for the case of the regular network or the Erdős-

Rényi network, the limit cycles in networks with highly skewed degree distributions

were diminished in size, due to the large variation in nodal behavior as a function

of degree. Nodes with smaller in-degrees were observed to predominantly be in the

spiking phase, with high synchronization and a larger limit cycle for the partial order

parameter, whereas nodes with larger in-degrees were in the resting phase. Due
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to this differentiation of behavior with degree, the averaged full order parameter

exhibits a limit cycle that is somewhat reduced in size when compared with the

results for a fully connected network by Luke et al [22]. However, we see that the

limit cycles for the Erdős-Rényi network are similar in shape and structure to the

limit cycles obtained for the regular network, as would be expected in accordance

with the discussion in Sec. 2.4, since the Poissonian degree distribution for the

Erdős-Rényi network is sharply peaked about the average degree and hence cannot

admit a large variation of behavior with nodal degree. As the average degree, 〈k〉

increases, the red and green curves converge because the Poisson degree distribution

appropriate for an Erdős-Rényi network approaches a delta function.

2.5.3 Effect of Assortativity
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Figure 2.6: Comparison of the limit cycle attractor for R̄(t) in the complex plane
across varying degree distributions in a network with neutral assortativity (c = 0)
with η0 = 10.75, ∆ = 0.5 and K = −9. The highly skewed network (blue solid
curve) has a degree distribution according to Eq. (2.25), the Erdős-Rényi network
(green dashed curve) has a Poissonian degree distribution, and the regular network
(red dotted curve) has a delta function degree distribution. The black circle is the
unit circle |R̄|=1
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We now consider the effect of assortativity on the limit cycle dynamics of the

order parameter in the network. While limit cycle behavior exists in networks with

neutral assortativity (c = 0), introduction of assortativity or dissasortativity in the

network can cause the limit cycle attractor to transform to a fixed point attractor

(AF like state) via a Hopf bifurcation. This is demonstrated in Fig. 2.7, in which we

show that varying c away from zero to ±2.5 (corresponding to Pearson assortativity

coefficients of r ≈ ±0.198) is sufficient to cause the Hopf bifurcation and send the

system to a fixed point attractor. The fixed points for the order parameters in these

networks exhibit relatively large amounts of finite N induced noise as seen from the

size of the clouds surrounding the fixed point position calculated from the reduced

system.

2.6 Conclusion

Using a mean field approximation, in conjunction with the Ott-Antonsen

ansatz, we obtained a reduced system of equations that successfully model the

macroscopic order parameter dynamics of a large network of theta neurons. This

reduced system of equations allows us to examine the effects of varying the network

parameters and the network topology (in terms of degree distributions, as well as

degree correlations) in a computationally efficient fashion. The order parameter of

the network is used for describing the macroscopic behavior of the network of theta

neurons, whose attractors can be of various types. In particular, we find resting

states, asynchronously firing states and synchronously firing states, the first two of
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which appear as a fixed point for the order parameter (Fig. 2.3), while the third

appears as a limit cycle for the order parameter (Fig. 2.6). We also used the re-

duced system of equations to observe the effect of varying the assortativity in the

system and demonstrated that a synchronously firing phase was only present for

networks with neutral or small assortativity, and the addition of moderate amounts

of assortativity or disassortativity to the network causes the system to go to an asyn-

chronously firing state instead (Fig. 2.7). Further, for networks with highly skewed

degree distributions, we find that nodes with different values of their degrees admit

a large variation of behavior (Fig. 2.4), a phenomenon not possible in networks with

all-to-all connectivity. In all cases close agreement was observed between the order

parameter dynamics as predicted by the reduced system of equations (Eq. 2.17),

and as calculated by evolution of the full system of equations Eq. (2.2).
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Chapter 3: Continuous versus Discontinuous Transitions in the D-

Dimensional Generalized Kuramoto Model: Odd D is

Different

3.1 Introduction

3.1.1 Background

Collective behavior in large populations of interacting elements has been a

subject of intense study in physical, social, biological and technological systems

[10, 11, 39, 40, 43, 44, 68–70]. An important, frequently encountered example is the

case of interacting phase oscillators, i.e., coupling between elements whose state is

characterized by a point on a unit circle. In 1967 Winfree first systematically studied

the dynamics of a population of weakly coupled phase oscillators [1]. A few years

later [2], Kuramoto presented a simplified version of the Winfree model which he

solved in the limit of N → ∞, where N is the number of oscillators. This model,

now known as the Kuramoto model, is

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), (3.1)
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where θi represents the phase angle of the ith oscillator, ωi is its natural frequency

of oscillation (which we will also refer to as the natural rotation), and K is the

coupling strength between oscillators. Typically the ωi are chosen randomly from

some unimodal distribution with a finite spread ∆, and N � 1 (the case of interest

in this chapter) is often considered. In the N →∞ limit Kuramoto was able to show

the presence of a continuous phase transition between asynchronous and partially

synchronous states of the system [2,3].

The Kuramoto model and its generalizations have since been used to study

synchronization behavior in a wide variety of systems, modeling biological problems

such as the behavior of cardiac pacemaker cells [4], synchronization in large groups

of flashing fireflies [5,6], circadian rhythms [7,8], and neuronal synchronization [9], as

well as problems in physics and engineering such as synchronization of power-grid

networks [10, 11], superconducting Josephson junctions [12], atomic physics [13],

and neutrino oscillation [14], among others. Another class of applications of the

Kuramoto model has been modeling the alignment of unit vectors representing the

direction of motion of interacting members of a swarm or flock of moving agents in

two dimensions [31–33]. Alternately, one can think of such unit vectors as charac-

terizing the opinion of an individual in a group of interacting individuals [71]. In

this later case, alignment of unit vectors can be viewed as modeling the evolution

toward social consensus.

The aforementioned studies all describe the alignment of agents via a single

scalar variable θi, which characterizes the alignment state of the individual coupled

units. However, for several of the above cited applications alignment in higher-
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dimensional spaces is important, and this is the subject of this chapter. For exam-

ple, the problem of alignment of velocity vectors in a flock of birds, a school of fish,

or a swarm of flying drones is more realistically set up in three-dimensional space,

whereas the alignment of opinion dynamics of a population could in general be mul-

tidimensional depending on the characteristics of the opinions considered. With

such examples in mind, Olfati-Saber [71] introduced a higher-dimensional gener-

alization of the Kuramoto model without the presence of any individual natural

rotation [analogous to the ωi term in Eq. (4.1)]. (In 2013, Zhu [72] considered the

equivalent case of identical natural rotations for each agent.) The choice of the gen-

eralization in Refs. [71, 72] maintains the form of the coupling between two agents

in all dimensions, i.e., in D dimensions the state of each agent is taken to be a

D-dimensional unit vector, and the coupling between two agents is proportional to

the sine of the angle between their unit vectors1. Network characteristics leading to

complete alignment were discussed; however, no complete stability analysis of the

system was presented. In this chapter we consider globally coupled systems, with

a spread of the individual natural rotations of each unit, which follows from the

generalization of the spread in the natural frequencies of the standard Kuramoto

model. These natural rotations act as constant biases to the states of the agents. In

particular, for a given swarming agent, the natural rotation term can be thought of

as a systematic error in the dynamics of the agent, which causes the agent to drift

away from traveling in purely a straight line. We motivate the form natural rotation

1For generalizations of the Kuramoto model wherein agent states are represented by elements
of a Lie group, see Refs. [73, 74].
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term in the context of flocking and swarming in D = 3 in Sec. 3.4. In assuming

these natural rotations we set up a model more general than the one that has been

studied by previous authors, leading to new and interesting results.

3.1.2 Main Result

A key point in this chapter is the remarkable difference between the standard

two-dimensional Kuramoto model and its generalizations to 3 dimensions (and also

to odd values of D ≥ 5). A striking example of this is the nature of the transition

from the incoherent state to the partially aligned state. As previously noted, the

two-dimensional Kuramoto model, in the limit of infinite system size, was shown by

Kuramoto [2,3] to exhibit a continuous phase transition to coherence with increasing

coupling strength K. This is represented by the dashed curve in Fig. 3.1, where

the horizontal axis is the coupling strength, K, and the vertical axis represents

the ‘order parameter’ [Sec. 3.2, defined in Eq. (3.5)], which is a measure of the

coherence (or degree of synchronization). The exact shape of this curve can be

derived analytically [16], and it can be shown that this phase transition to synchrony

is effectively a low-dimensional bifurcation [18]. The three-dimensional Kuramoto

model, on the other hand, exhibits a discontinuous phase transition as we increase

the coupling strength through zero (solid curve in Fig. 3.1): For negative values

of the coupling strength (indicative of repulsive interactions between agents), the

agents tend to a completely incoherent state (defined by an ‘order parameter’ with

zero magnitude), and as we increase the coupling strength through zero, there is a
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discontinuous jump of the coherence as measured by the order parameter. Further,

we find that this discontinuous phase transition occurs nonhysteretically.

3.1.3 Relation to Statistical Physics Models

It is interesting to note that if the time-independent frequencies ωi in Eq. (4.1)

are replaced by independent, zero-mean, white noise of uniform strength, then the

statistical equilibria and phase transitions of the Kuramoto model are the same as

those of the mean-field classical XY model, which describes the interactions of clas-

sical two-dimensional spins with global coupling [27–30]. In this case, the strength of

the white noise corresponds to the temperature, and the magnitude of the coherence

corresponds to the magnetization. Thus the Kuramoto model can be thought of as

the mean-field XY model with thermal noise replaced by quenched randomness (the

randomly chosen time-independent frequencies ωi). Specifically, the mean-field XY

model and the Kuramoto model yield similar behavior [9,28] in that they both show

a continuous (‘second order’) transition as the coupling constant increases through a

critical value Kc > 0 (which, for the Kuramoto model, increases with the spread ∆

in the distribution of the natural frequencies, while, for the XY model, Kc increases

with temperature). A surprising result of this chapter is that, when these models

are extended to three dimensions, the two-dimensional qualitative similarity of the

behavior for the cases of the quenched randomness and thermal noise versions of the

XY model no longer applies: As mentioned above, the three-dimensional Kuramoto

model with quenched disorder shows a discontinuous (‘first order’) phase transition

44



at a zero coupling strength. Independent of the magnitude of the spread in the

rotations comprising the quenched disorder, the three-dimensional Kuramoto model

always shows partial alignment for K > 0. Since in the three-dimensional model the

coupling between any two agents is identical to the two-dimensional case, i.e., pro-

portional to the sine of the angle between the unit vectors σi of the two agents, this

model also describes the interactions of classical three-dimensional spins with global

coupling, i.e., the mean-field classical Heisenberg model. If this quenched disorder

in terms of the spread of natural rotations were to correspond with the a temporally

noisy disordered system, then allowing for larger spread would correspond to higher

temperatures and larger noise. However, at finite positive temperature the classi-

cal Heisenberg model, like the XY model, has a continuous phase transition at a

positive critical coupling strength Kc [75]. Thus, in contrast to the two-dimensional

case, for these problems in three dimensions there is a qualitative difference between

temperature and quenched disorder.

3.2 Model Description

In order to see how the Kuramoto model can be generalized to higher dimen-

sions [71, 72], we note that Eq. (4.1) for θi can be rewritten (see Fig. 3.2 and its

caption) in terms of the evolution of a collection of N two-dimensional unit vectors,

σi with (x, y) components (cos θi, sin θi):

dσi
dt

=
K

N

N∑
j=1

[σj − (σj · σi)σi] + Wiσi, (3.2)
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Figure 3.1: Phase transitions for the standard two-dimensional Kuramoto model
from theory, shown as the black dashed curve, and for the Kuramoto model gen-
eralized to three dimensions as calculated from the theory in Eq. (3.18), shown
as the solid red curve. Note the continuous transition in the two-dimensional Ku-
ramoto model at a critical coupling of Kc > 0, and the discontinuous transition of
the three-dimensional Kuramoto model at Kc = 0. The blue dotted line represents
the maximum possible value of coherence, corresponding to |ρ|= 1.
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( − )  

 

 

Figure 3.2: Illustration showing that [σj − (σj · σi)σi] = θ̂i sin(θj − θi), where θ̂i is
a unit vector in the direction of increasing θi.

where

Wi =

 0 ωi

−ωi 0

 . (3.3)

From this point of view the natural generalization of the Kuramoto problem,

Eq. (4.1), to D dimensions is to consider Eq. (3.2), but now with σi being a unit

vector in D dimensions and Wi being a real D × D antisymmetric matrix. Thus,

unlike the standard Kuramoto model where the state of an agent is described by a

single scalar variable θi, the state of each agent in this generalized Kuramoto model

is completely described by a D-dimensional unit vector σi.

Each Wi term can be thought of as a constant bias to the dynamics of σi. In
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the uncoupled dynamics, dσi/dt = Wiσi, each agent is acted on by a constant linear

operator, which causes each agent to move along the surface of the unit sphere S. For

example, in the context of swarms or flocks, it is natural to assume that each agent,

in the absence of coupling (K = 0), has some imperfection that causes it to deviate

away from the ideal of straight-line steady motion (dσi/dt = 0). Antisymmetry of

Wi is imposed so as to ensure that the state vectors σi are unit vectors at all times.

For example, D = 3, as discussed above, is of particular interest. In this case

the term Wiσi can be represented as

Wiσi = ωi × σi, ωi = ωiω̂i, ωi = |ωi|, ω̂i = ωi/|ωi|, (3.4)

where ωi is referred to as the rotation vector; see Fig. 3.3 which schematically

represents the solution of Eq. (3.2) for the case K = 0 and D = 3, in which σi is

shown precessing around the vector ω̂i = ωi/|ωi| at the rate ωi = |ωi|. (Here, and

later in this chapter, we use the notation |v| to represent the Euclidean norm of the

vector v) Note that the dot product of the right-hand side of Eq. (3.2) with σi is

identically zero in all dimensions D, implying that d|σi|/dt = 0, consistent with σi

being a unit vector.

In the context of the spin models discussed earlier in Sec. 3.1.3, for positive K,

the first term in Eq. (3.2) corresponds to the interaction term between individual

spins, with each pair of spins tending to align themselves parallel to each other.

This term leads to macroscopic magnetization in the system of spins. The second

term in Eq. (3.2), Wiσi, corresponds to the quenched disorder discussed in Sec.
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3.1.3 which inhibits coherence among the spins.

In the context of flocking models, each σi is interpreted as the unit vector

along the velocity vector for the ith agent. It is also assumed that the state of

the agent is completely described by σi, i.e., the agent is effectively axisymmetric

about σi. For positive K, the summation term in Eq. (3.2) corresponds to all-to-all

communication between agents in the flock, with each agent tending to align itself

with each of the other agents. This term promotes coherence within the flock. The

second term, Wiσi, corresponds to a simple dispersing term causing decorrelation

of the agent orientations σi. In particular, if we wish to consider the addition

of a dispersal term that maintains the norm of σi, and for simplicity is assumed

to be time independent and linear, then it must be of the form Wiσi for some

antisymmetric matrix Wi.

In the context of swarms and flocks of three-dimensional agents, further mo-

tivation and justification for the form of the dispersing term Wiσi is presented in

Sec. 3.4. In particular, in order to support the possible generality of our main result

(exemplified in Fig. 3.1), in Sec. 3.4 we consider another model, different from the

generalized Kuramoto model Eq. (3.2), and show that our result also applies to this

other model.

To better understand the dynamics of the generalized, D-dimensional Ku-

ramoto model, we define an ‘order parameter’, ρ, that is analogous to the Kuramoto

order parameter, N−1
∑

j exp(iθj), used to analyze the system of Eq. (3.2) and is
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Figure 3.3: σi precesses around ω̂i with an angular frequency of ωi for K = 0 with
D = 3.

equivalent to it for D = 2:

ρ =
1

N

N∑
i=1

σi. (3.5)

Like the Kuramoto order parameter, |ρ|= 1 corresponds to the system being a

completely coherent state, σi = σj for all i, j; while |ρ|= 0 corresponds to an

incoherent state. Using this order parameter, we can rewrite Eq. (3.2) as

dσi
dt

= K[ρ− (ρ · σi)σi] + Wiσi. (3.6)

It can be seen in the above equation that the dynamics of each agent is determined

by the two terms on the right-hand side. The first term (i.e., the term proportional

to K) represents a global coupling of each agent to all the other agents through

the order parameter. For positive K, this term attracts the state of each agent, σi,

towards the average orientation of the full population, characterized by the direction

of ρ; whereas for negative K, this term causes dispersal of the system agents away

from coherence, with each agent moving away from the average orientation of the

50



agents. The second term also gives dispersing dynamics, with each individual agent

having distinct individual dynamics when uncoupled from the other agents in the

system.

To completely specify the setup of the system, we need to specify the choice

of the N natural rotations in Eq. (3.6). In the case of the standard D = 2 Ku-

ramoto model, Eq. (4.1), the natural rotations are added in the form of individual

distinct natural frequencies ωi for each individual agent. Assuming that the natu-

ral frequency of each agent is independently picked randomly according to a fixed

unimodal distribution g(ω), the change in coordinates, θi → θi + ω0t, effectively

reduces the natural frequency of each agent by any constant ω0. Thus the mean

of the distribution g(ω) can be set to 0 without loss of generality. In the unit vec-

tor formulation of the D = 2 Kuramoto model, this is equivalent to the change of

variables σi → eW0tσi, where

W0 =

 0 ω0

−ω0 0

 .

The new equation after the change of variables has the rotation matrix shifted as

Wi → eW0tWie
−W0t −W0. In the case of D = 2, the matrices eW0t and Wi com-

mute, and hence the change is equivalent to the time-independent transformation

Wi →Wi −W0, allowing us to shift the mean of the distribution to any arbitrary

quantity. For D > 2, however, commutation of antisymmetric matrices or rotation

matrices does not generally apply (i.e., the rotation group in D > 2 is nonabelian),
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and hence this change of coordinates does not yield an equivalent model with a

change of rotation matrices. Thus for D > 2 the mean of this distribution cannot

be simply shifted as in D = 2.

In general, for D dimensions, we specify the distribution over the space of

antisymmetric matrices that we use to choose the individual Wi for each agent i.

We denote this distribution by G(W), which is analogous to the distribution g(ω)

in the case of D = 2. In this chapter, we restrict the choice of G(W) as follows:

we choose each of the upper-triangular elements of W independently from a normal

distribution with zero mean and a standard deviation of ∆. The lower-triangular

elements are then set according to the constraint that W is an antisymmetric ma-

trix. This particular choice of G(W) corresponds to an ensemble of antisymmetric

matrices that has zero mean, and is invariant to rotations (choosing an anisotropic

distribution, such as shifting the mean of the upper-triangular elements, or choos-

ing the upper-triangular elements from normal distributions with unequal variance

does not appear to change the qualitative results illustrated in Fig. 3.1). Hence,

due to the rotational symmetry, |ρ|= 0 will be a solution to our system (note that

this solution may be stable or unstable). Further, we also note that Eq. (3.2) is

invariant to the transformation t→ ∆× t, K → K/∆ and W→W/∆, and hence,

without loss of generality, we set ∆ to be unity for the remainder of this chapter.

For future reference, it is useful to point out the following facts that apply to

any real antisymmetric matrix A (such as Wi):

(i) Since iA is Hermitian, the real part of all the eigenvalues of A is zero. Hence
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all nonzero eigenvalues will be purely imaginary or zero.

(ii) If λ is an eigenvalue of A, then so is −λ.

(iii) If D is odd, then A must have at least one zero eigenvalue [implied by (ii)].

Further, the corresponding eigenvector is real.

For example, following Eq. (3.2) we have noted that for D = 3 we can express

Wjσj in the form ωj × σj, with ωj = ωjω̂j. In terms of the above discussion, ω̂j

is the real eigenvector corresponding to the zero eigenvalue of the 3× 3 matrix Wj

(Wjω̂j = 0), and ±iωj are the nonzero eigenvalues of Wj.

As discussed earlier, for D = 3 we can now represent the second term on the

right-hand side of Eq. (3.6) as a cross product, giving

dσi
dt

= K[ρ− (ρ · σi)σi] + ωi × σi. (3.7)

Given the choice of the distribution G(W) made above, we can write the distribution

of the natural rotations of individual agents as G(ω) = g(ω)U(ω̂), where ω = ωω̂,

with ω = |ω| and ω̂ = ω/ω. The distribution of rotation directions, U(ω̂) is

then isotropic, and independent of the distribution of rotation magnitudes, and

the distribution of magnitudes is g(ω) =
√

2ω2 exp[−ω2/(2∆2)]/(π3/2∆3). This

choice of the distribution G(ω) sets the mean of the distribution to always be 0.

In numerically simulating this system, we observe that the order parameter always

goes to a fixed point, similar to the case of the standard Kuramoto model with zero

mean of the distribution of frequencies.
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3.3 Dynamics and Equilibria

To map out the interplay between the tendency to align and the natural ro-

tation of the individual units [i.e. the two opposing tendencies represented by the

two terms on the right-hand side of Eq. (3.2)], we plot numerically obtained phase

transition diagrams for D = 2 – 9 (see Fig. 3.4). For large N and varying values of

the coupling strength K, we allow the system to reach its time asymptotic equilib-

rium, and then we plot the magnitude of the order parameter at equilibrium as a

function of K. We note that the results in Fig. 3.4 apply for all the random initial

realizations of the distributions of the individual states σi that we have tested.
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As would be expected from the earlier discussion, in the case of negative cou-

pling, i.e., K < 0, the system of agents goes to a state which is incoherent, |ρ|≈ 0.

For even D, as in the D = 2 Kuramoto model (Fig. 3.4), there exists a positive

critical coupling constant Kc > 0. In contrast, for odd D, coherence begins at

K = 0, i.e., Kc = 0. Moreover, in contrast to the even D case where the transition

is continuous (‘second order’), for odd D the transition is a discontinuous jump

from |ρ|= 0 in K < 0 to |ρ|> 0 for K → 0+, past which |ρ| increases continuously

with increasing K, asymptoting at |ρ|= 1 as K → ∞. For example, for D = 3 we

find that |ρ|= 0.5 at K = 0+, and this result (as we shall subsequently show) is

independent of the distribution g(ω). Furthermore, we find that this discontinuous

transition is nonhysteretic. To better understand these observed phenomena, we

now present a mathematical analysis of this system.

3.3.1 Coherent states for D = 3

We first focus on the case of a positive coupling constantK in three dimensions.

We seek fixed points of the order parameter. To study these analytically we first

solve for fixed points of the agents, assuming that the order parameter is at a fixed

point with positive magnitude. We hence solve

0 = K[ρ− (ρ · σFi )σFi ] + ωi × σFi (3.8)

for σFi .The superscript F indicates that the agent is at a fixed point. Given a

spherically symmetric distribution of rotation vectors, we can choose the direction
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of the order parameter ρ arbitrarily. The magnitude of the order parameter must

be chosen to be self consistent given the orientation of the agents, according to Eq.

(3.5). We define a quantity µi = ωi/(K|ρ|) to rewrite the above equation as

0 = [ρ̂− (ρ̂ · σFi )σFi ] + µi(ω̂i × σFi ), (3.9)

where ρ̂ = ρ/|ρ| is a unit vector in the direction of ρ. This vector equation can be

solved (see Appendix A.1) to obtain

ρ̂ · σFi = ±

√
(1− µ2

i ) +
√

(µ2
i − 1)2 + 4µ2

i (ρ̂ · ω̂i)2

2
, (3.10)

and in terms of ρ̂ · σFi

σFi =
1

1 + ξ2
i µ

2
i

[
µi(ω̂i × ρ̂) + ξiµ

2
i ω̂i + tiρ̂

]
(3.11)

where ti = ρ̂ · σFi , and ξi = ρ̂ · ω̂i/ρ̂ · σFi .

From Eq. (3.10) we observe that there are two fixed points for each agent, one

in the same hemisphere as the order parameter vector (corresponding to ρ̂ ·σFi > 0),

and the other in the opposite hemisphere (corresponding to ρ̂·σFi < 0). Importantly,

we also observe that there is a fixed point solution σFi for any given ωi, ρ and K. Do

these solutions correspond to a stable or unstable fixed points? Given a steady-state

solution with all agents at one of their fixed points, for some ρ such that |ρ|> 0, we

consider a perturbation εi to the ith agent. Assuming that σi(t) = σFi + εi(t), we
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linearize Eq. (3.7) for small εi to obtain

d|εi(t)|
dt

= −K(ρ · σFi )|εi(t)|, (3.12)

where we have used εi · σFi = 0 so that the perturbed σi remains a unit vector.

Thus we see that the stability of the fixed point σFi depends on the sign of ρ · σFi ,

with positive (negative) ρ ·σFi implying a stable (an unstable) fixed point. Since for

each agent σi there are two solutions for σFi with opposing signs of ρ ·σFi according

to Eq. (3.10), each agent has a stable fixed point and an unstable fixed point. We

assume that each agent will approach its stable fixed point.

This behavior is in contrast to the two-dimensional Kuramoto model, where

the proportion of agents in the entrained population increases continuously from 0

as we increase K beyond Kc. (This fundamental difference is due to the previously

noted fact that Wi for odd D always has zero as one of its eigenvalues.) To under-

stand the presence of the discontinuous phase transition, we first look at the case of

small coupling, such that 0 < K � ∆. By ignoring the first term on the right-hand

side of Eq. (3.8), or by considering the limit of µi → ∞ in Eqs. (3.10) and (3.11),

we see that σFi = ±ω̂i. Since the stable fixed points corresponds to ρ · σFi > 0,

each agent will go to a stable fixed point given by [sgn(ρ · ω̂i)]ω̂i. Note that this

location of the fixed point on the unit sphere is independent of the magnitude of the

agent’s rotation vector, and depends only on the orientation of the rotation vector.

Since the distribution of rotation vectors was chosen such that the distribution of

directions U(ω̂) was uniform on the unit sphere, the fixed points sgn(ρ · ω̂i)ω̂i will
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be a set of uniformly distributed points over the hemisphere, ρ · σ > 0, of unit

radius. This is demonstrated in Fig. 3.5, where we illustrate the orientations of

N = 5 · 103 agents at a fixed time for a coupling strength K = 0.1. In this plot, we

have mapped the endpoints of the orientation vectors σi on the unit sphere S to a

rectangle via an area-preserving transformation (see Fig. 3.5 caption for details).

At the initial time, corresponding to an initial uniform distribution on S, the agents

are uniformly distributed on the rectangle, whereas after T = 50000 time units it

can be seen that the agents are uniformly distributed over only the upper half of

the rectangle, corresponding to the hemisphere ρ · σ > 0 of S.
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As discussed earlier, the magnitude of the order parameter must be consistent

with the orientations of the agents, according to Eq. (3.5). Thus, being the average

of the orientations of all the agents, the order parameter will have |ρ|= 1/2, since

the centroid of a hemisphere is located at a distance of half of the radius from the

center of the sphere.

This result is independent of the choice of the distribution g(ω), provided the

rotation vector directions are isotropically distributed. As discussed earlier, negative

values of coupling result in the system going to an incoherent state, with |ρ|= 0,

while here we see that for small positive coupling the order parameter attains a value

of |ρ|= 0.5. This result naturally generalizes to higher odd dimensions. As for the

case of D = 3, let ω̂i be the real eigenvector corresponding to the zero eigenvalue

of the D ×D matrix Wi. In the limit of 0 < K � ∆, we can again ignore the first

term on the right-hand of Eq. (3.2). Solving for fixed points, we set dσi/dt = 0, and

hence the fixed point solutions will be given by Wiσ
F
i = 0, or σFi = ±ω̂i. Following

the same analysis as performed above for D = 3, we reach the conclusion that for

small positive K, the agents will go to fixed points given by sgn(ρ · ω̂i)ω̂i. Hence

the magnitude of ρ at K = 0+ will be given by the position of the centroid of a

uniform hemisphere in D dimensions:

|ρ(K → 0+)|= 2Γ(D/2)

(D − 1)
√
πΓ[(D − 1)/2]

. (3.13)

This matches well with numerical results shown in Fig. 3.4 (b), where the colored

arrows indicate the theory predictions according to Eq. (3.13). Note the close
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Figure 3.6: Phase transition for Kuramoto model generalized to three dimensions.
The solid (dashed) black curve represents the derived stable (unstable) fixed points
for the order parameter, and the red plus sign markers represent numerical results
from a simulation with N = 104 agents and ∆ = 1.

agreement with the prediction of the magnitude of ρ indicated by these arrows at

K = 0, and the K > 0 start of the phase transition curves at K = 0.2 shown by the

various colored symbols.

By setting up a consistency relation in a similar fashion (see below), we can

calculate the magnitude of the order parameter as a function of the coupling constant

for D = 3. As shown in Fig. 3.6, this theory (solid black curve) agrees well with

results from simulations of Eq. (3.2) with N = 104 (red plus signs).

We now give our analysis for D = 3 resulting in the solid curve in Fig. 3.6. As

earlier, we assume that ρ is in some particular fixed direction. Since the distribution
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of the direction of the unit vectors σi has been taken to be isotropic, we can assume

that there will be rotational symmetry of the distribution of stable fixed points of

the agents about the axis along ρ. Thus

|ρ|= 1

N

N∑
i=1

ρ̂ · σFi . (3.14)

Since each agent has a unique natural rotation vector, we label the agent state

variables as functions of their rotation vectors, as opposed to the index label i. Since

the rotation vectors are chosen from a given distribution G(ω), we can approximate

the above sum as

|ρ|=
∫
ρ̂ · σF (ω)G(ω)dω, (3.15)

which applies in the limit N →∞ in Eq. (3.2). We interpret ρ̂ ·σF (ω) as cos[θ(ω)],

where θ(ω) is the angle between the direction of the order parameter, and the stable

fixed point of the agent with rotation vector ω. We will later use Eq. (3.10) to insert

the expression for cos[θ(ω)]. We write the above as

|ρ|=
∫

cos[θ(ω0, ω̂)]g(ω0)U(ω̂)dω0dω̂. (3.16)

Performing a change of variables from ω0 to µ = ω/(K|ρ|) we get

|ρ|=
∫

cos[θ(µ, ω̂)]g(µK|ρ|)U(ω̂)K|ρ|dµdω̂, (3.17)

63



and hence

1 =

∫
cos[θ(µ, ω̂)]g(µK|ρ|)U(ω̂)Kdµdω̂. (3.18)

This can now be numerically solved to obtain |ρ| for a given K. For example, for

the particular choice of G(ω) discussed above, where the three components of each

vector ωi are chosen independently from a normal distribution centered at 0 with

a standard deviation of ∆, the integral in Eq. (3.18) over ω̂ can be split into an

azimuthal integral about the axis ρ̂, which is trivial, and an integral over the angle

between ρ̂ and ω̂, i.e., the ζ integral below

(3.19)1 =
K

2

∫ 1

−1

dζ

∫ ∞
−∞

dµ

√
[1− µ2 +

√
(µ2 − 1)2 + 4µ2ζ2]

2
× e
−(µK|ρ|)2/(2∆2)

(
√

2π∆)3
(µK|ρ|)2(2π),

where the integration variable ζ represents ρ̂ · ω̂. Solving this integral equation

numerically for |ρ| for different values of the coupling constant K we obtain the

solid black curve in Fig. 3.6.

To complete the analysis of the coherent states for K > 0, we now discuss why

the state vectors σi approach their stable fixed points σFi . We demonstrate this in

the limit of 0 < K � ∆. Under this assumption, we note that in Eq. (3.7), the

typical magnitude of the second term on the right-hand side, O(∆), is much larger

than the first term, which is O(|Kρ|). We refer to O(∆) as the fast time-scale, and

O(|Kρ|) as the slow time-scale. The assumed separation of time-scales implies that,

to lowest order, we can neglect the first term in Eq. (3.7), leading to the equation

dσi
dt

= ωiω̂i × σi. (3.20)
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This has the solution depicted in Fig. 3.3, where the state vector σi uniformly

precesses rapidly about ω̂i, with the quantity zi(t) = σi(t) · ω̂i constant on the fast

time-scale. To determine the dynamics over the slow time-scale, we consider the dot

product of Eq. (3.7) with ω̂i, and average both sides of the equation over the fast

time scale. This gives the evolution of zi as

dzi(t)

dt
= K〈ρ〉 · ω̂i[1− zi(t)2], (3.21)

where 〈ρ〉 = N−1
∑
ziω̂i, with the angle brackets representing averaging over the

fast time-scale. This equation has a single stable fixed point at +1 or −1 dependent

on the sign of 〈ρ〉 · ω̂. Thus starting from random initial conditions, zi(t) will move

to its fixed point at sgn(〈ρ〉 · ω̂). This is equivalent to stating that each σi will

move to its fixed point [sgn(ρ · ω̂i)]ω̂i. While we have only thus proved that σi will

approach σFi in the limit of small K, we numerically observe this to be true for all

K, i.e., each agent goes to its corresponding stable fixed point as discussed above.

Until now, we have restricted our discussion of coherent states to K > 0. Are

there any stable coherent states for K < 0? If the answer were yes, the fixed points

of the agents could be calculated as earlier resulting in Eqs. (3.10) and (3.11), and

would be governed by the stability equation given in Eq. (3.12). Since K < 0, the

stable fixed points will correspond to solutions where ρ · σF < 0 for each of the

agents. This would imply that all of the agents would point to the hemisphere that

the vector ρ points away from (not toward), contradicting the definition of ρ as

the average of the orientations of all the agents. Thus there cannot be any stable
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fixed point solutions with positive magnitude of the order parameter for negative

coupling.

This, however, does not rule out the possibility of unstable coherent states

with K < 0. Going back to Eq. (3.7), we make a few observations. First, since all

natural rotations were chosen such that the distribution of rotation directions was

uniform on the sphere, the transformation ω → −ω does not affect the distribution

or the macroscopic dynamics of the agents. After this transformation, we note that

transforming K → −K, and changing the direction of time, i.e., t→ −t, leaves Eq.

(3.7) invariant. Thus, each stable fixed point of the macroscopic order parameter,

ρ, for a given value of coupling strength K > 0, is also a fixed point at a coupling

strength of −K, but is unstable (since we have reversed the sign of time). Thus

the curve of coherent stable states for K > 0 extends symmetrically to K < 0

representing coherent unstable states. These stable (solid black curve) and unstable

states (dashed black curve) are shown in Fig. 3.6. We call these coherent states the

‘upper’ branch of the phase transition diagram.

3.3.2 Incoherent states for D = 3

When the order parameter has zero magnitude, the system is said to be inco-

herent. As we demonstrate, this state is stable for negative values of the coupling

constant and unstable for positive vales of the coupling constant.

In order to address the incoherent state, we first consider the following ques-

tion: Given a state where |ρ|= 0 for all time, what are the possible dynamics of the
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individual agents? Setting ρ = 0 in Eq. (3.2), we get dσi/dt = Wiσi. In the case

D = 3, this means that the state σi of each agent precesses about their own rotation

axes, as illustrated in Fig. 3.3. If each agent were randomly placed uniformly on S,

then this would be consistent with |ρ|= 0, and would be a steady state. However,

this is not the only such arrangement of σi that is possible corresponding to |ρ|= 0.

For example, if each agent, σi was placed on the axis of the corresponding rotation

vector, such that σi = ω̂i (or σi = −ω̂i), then this would also be consistent with

|ρ|= 0 [since we have assumed that U(ω̂) is uniform], and the agents would each be

at fixed points (this will be possible whenever D is odd). In fact, the steady-state

|ρ|= 0 applies for any random proportion p of agents oriented parallel to the axes of

their natural rotations, and the remaining agents at uniformly distributed locations

on the sphere. Thus for N →∞ there are an infinite number of distributions of ω

and σ for which |ρ|= 0 is a steady state.

To characterize these states in the limit of N → ∞, we assume that the

distribution of agent orientations σ rendered onto the unit sphere S is well defined.

We denote by F (σ,ω, t) the distribution of agents on S, such that F (σ,ω, t)dσdω

is the fraction of agents that lie in the two-dimensional differential element on the

surface S centered at σ at time t, and have a natural rotation vector within the

differential element dω centered at ω. Since the natural rotations of each agent are

time independent and are independent of σ, we can write

F (σ,ω, t) = G(ω)f(σ,ω, t), (3.22)
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where

G(ω) =

∫
S
F (σ,ω, t)dσ

is the distribution of the antisymmetric natural rotation vectors,
∫
G(ω)dω = 1, and

G(ω) = g(ω)U(ω̂). In terms of this distribution function F , the order parameter

will be given as

ρ(t) =

∫
S
σG(ω)f(σ,ω, t)dσdω. (3.23)

An example of a class of distributions in D = 3 for which |ρ|= 0 is a steady state is

given by

(3.24)F0(σ,ω) = g(ω)U(ω̂)

[
p

2
δ(σ − ω̂) +

p

2
δ(σ + ω̂) +

1− p
4π

]
= g(ω)U(ω̂)f0(σ,ω),

for any p ∈ [0, 1], where δ(·) represents the Dirac delta function.

As we will demonstrate shortly, in the limit N → ∞, this entire class of

distributions is stable to small perturbations for all K < 0, i.e., for the incoherent

region demonstrated in Fig. 3.1. This is in sharp contrast to the case of D = 2,

wherein there is a single stable incoherent steady-state distribution in the large

system size limit (corresponding to f = 1/(2π)) for the incoherent region in Fig.

3.1.

However, we observe from numerical simulations with K < 0 (done at large,

but necessarily finite N) that, starting with an initial condition corresponding to

Eq. (3.24) with p = 0 (i.e., with σi distributed isotropically and independently

of its corresponding ωi, for all i) we observe that σi evolves slowly with time to
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either σi = +ω̂i or σi = −ω̂i (i.e., σi aligns with its rotation vector), with about

half of the population {σi} going to +ω̂i, and half to −ω̂i. Furthermore, as N

increases, the rate of this relaxation becomes slower and slower, approaching zero as

N → ∞. In addition, the fractions of agents going to +ω̂i and −ω̂i approach 1/2

as N → ∞. Thus, taking the limit t → ∞ followed by taking the limit N → ∞,

Eq. (3.24) with p = 1 (i.e., F (σ,ω) = g(ω)U(ω̂)[δ(σ − ω̂) + δ(σ + ω̂)]/2) appears

to approximate the distribution of agents on S. If the order in which the limits

are taken is reversed, then p = 0, its initial value (i.e., F (σ,ω) = g(ω)U(ω̂)U(σ))

represents the distribution of agents on S. Similar results apply for other odd values

of the dimension D, where ω̂i is now the D-dimensional eigenvector of Wi having

zero eigenvalue and with magnitude one (i.e., Wiω̂i = 0).

We illustrate these numerical results in Figs. 3.7 where we show the histograms

of the initial (plotted in blue) and final (plotted in red) distributions of ω̂i·σi over the

N agents. These numerical simulations were performed with N = 1000, K = −2,

∆ = 1. In the insets we plot the time-series of zi vs time for 50 randomly chosen

agents. We see that for all odd D, ω̂i · σi evolves towards ±1. Note that a similar

consideration of even D is inapplicable since a randomly chosen even-dimensional

Wi typically does not have a zero eigenvalue, and thus ω̂i does not exist.
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While macroscopically, in terms of the magnitude of the order parameter (|ρ|=

0), the N → ∞ stationary states with distributions given by Eq. (3.24) appear

identical for all p, their stability to perturbations depends on p. To analyze the

stability of this class of N →∞ stationary states we perform a linear analysis. To

do this, we first describe the dynamics of the system in terms of the distribution F .

We treat Eq. (3.7) as a velocity field for the flow of this distribution and hence set

up a continuity equation:

∂f/∂t+ ∇S · (f(σ,ω, t)v) = 0, (3.25)

with a velocity field v given by

v = K[ρ− (σ · ρ)σ] + ω × σ, (3.26)

where ∇S ·A represents the operator for the divergence of an arbitrary vector field

A, along the surface S of the unit sphere in σ-space. The order parameter, ρ is

described in terms of the distribution function F according to Eq. (3.23). We show

in Appendix A.2 that the continuity equation Eq. (3.25) can be rewritten as

(3.27)∂f/∂t+ [∇Sf(σ,ω, t)− 2f(σ,ω, t)σ] · ρ
+ (ω × σ) ·∇Sf(σ,ω, t) = 0,

where ∇SΦ is the component of the gradient of a scalar field Φ that is parallel to the

surface S. We consider a small perturbation, such that the distribution f(σ,ω, t)
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can be written as

f(σ,ω, t) = f0(σ,ω) + ξ(σ,ω)est, (3.28)

where ξ(σ,ω) is small. Inserting Eq. (4.25) into Eq. (3.27) and linearizing gives

sξ(σ,ω, t) + (ω × σ) ·∇ξ(σ,ω, t) = 2K(ρ · σ)f0(σ,ω). (3.29)

To further simplify this equation, we make a choice of basis, such that ω = ωẑ. This

allows us to rewrite the above equation as

sξ(σ,ω, t) + ω
∂

∂φ
ξ(σ, ω, t) = 2K(ρ · σ)f0(σ, ω), (3.30)

where φ is the azimuthal coordinate around the z-axis. In this basis, we can then

write f0 as

f0(θ, φ,ω) =
p

2

δ(θ) + δ(θ − π)

π sin(θ)
+

1− p
4π

, (3.31)

where θ is the angle measured from the z-axis, and together θ and φ represent σ.

Inserting the form f0 from Eq. (3.31) into Eq. (3.30), we then solve for

ξ(σ,ω, t) and insert the obtained solution into Eq. (3.23) to obtain

ρ = ρ(1− p)2K

3

(
1

3s
+

2s

3

∫
g(ω)dω

s2 + ω2

)
+ ρp

2K

3s
,

giving the final dispersion relation,

1 = (1− p)2K

3

[
1

3s
+

2s

3

∫
g(ω)dω

s2 + ω2

]
+ p

2K

3s
. (3.32)
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Note that the case of p = 0 (corresponding to an initial condition with independently

chosen, uniformly random σ) and the case of p = 1 (corresponding to an initial

condition with each σ being either ω̂ or −ω̂) have different dispersion relations.

Thus, despite having the same macroscopic characteristic of |ρ|= 0, they will have

different stabilities to perturbation. In the limit of small K, s will also be small,

and we can ignore the second term in the square brackets in the above expression.

Thus,

s = (1− p)2K

9
+ p

2K

3
.

Note that since K is small, this represents the behavior of s for K around zero.

Since s ∝ K, we see that the incoherent state, having |ρ|= 0, will be stable (s < 0)

for K < 0, and unstable (s > 0) for K > 0 as has been represented in Fig. 3.6. We

call these incoherent states the ‘lower’ branch of the phase transition diagram.

It can be seen from Fig. 3.6 that the upper branch is stable whenever the lower

branch is unstable (i.e., for K > 0), and the upper branch is unstable whenever the

lower branch is stable (i.e., for K < 0). Thus, for no value of K are there two

values of |ρ| that are stable. This lack of bistability implies that the transition from

incoherence to partial coherence occurs nonhysteretically at K = 0.

3.3.3 Phase transition in even dimensions

So far our primary focus has been on the cases of odd dimensions. As discussed

earlier in Sec. 3.3 and in Fig. 3.4, the even-dimensional cases exhibit continuous

(‘second order’) phase transitions at positive critical coupling strength Kc > 0. To
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better understand this, we extend the treatment of the D = 2 case (e.g., Ref. [16])

to even D > 2. Like in the case of D = 3, we assume that the system has reached an

equilibrium, with the order parameter having a magnitude |ρ|. Unlike Eq. (3.11),

wherein a fixed point for each agent exists for all values of W, this will no longer

be the case for even D. Rather, only certain values of the natural rotation W will

permit the existence of fixed points above a certain value of K. Similar to Ref. [16],

we first determine the conditions on W that permit fixed points of the corresponding

agents, and then use this to set up a consistency relation similar to Eq. (3.14) to

determine Kc. A key assumption in this approach is that for steady states with

|ρ|> 0 with N → ∞, only agents for which σ is at a fixed point contribute to

the sum in Eq. (3.5), which we prove a posteriori [see Eqs. (3.39) and (3.40) and

accompanying discussion].

As in Eq. (3.8), we see that the fixed points of σi must satisfy

0 = K[ρ− (ρ · σF )σF ] + WσF , (3.33)

where we have dropped the index i for simplicity. Denoting the term (ρ · σF ) as γ,

we observe

σF = (γ1−W)−1ρ, (3.34)
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where 1 denotes the D-dimensional identity matrix. Since |σF |2= (σF )TσF = 1,

1 = ρT (γ1 + W/K)−1(γ1−W/K)−1ρ (3.35)

= ρT (γ2
1−W2/K2)−1ρ. (3.36)

We now transform the above equation to a basis that block-diagonalizes the anti-

symmetric matrix W. There exists a real orthogonal matrix, R such that RTWR

is a block-diagonal matrix whose jth block is the 2× 2 matrix

W(j) =

 0 ωj

−ωj 0


for all j ∈ {1, 2, . . . , D/2}. We will refer to these ωj as the Λ = D/2 natural

frequencies associated with W. Further, we define ρ2
k to be the sum of the squares

of the magnitudes of the 2k− 1th and 2kth components of Rρ. Then Eq. (3.36) can

be simplified to

1 =
Λ∑
k=1

ρ2
k

γ2 + ω2
k/K

2
≡ H(γ). (3.37)

Note that this change of basis does not affect the value of γ, since it is a scalar

quantity. Each term in the summand of the above expression can be interpreted as

being proportional to a Lorentzian function of γ centered about γ = 0, and hence

has a single maximum at γ = 0. Thus, H(γ) will also have a single maximum at

γ = 0, from which it follows that in order for Eq. (3.37) to have a real solution for

γ, H(γ = 0) must be greater than or equal to 1. Hence the condition on W that
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will permit the existence of σF will be

H(γ = 0) = K2
∑
k

ρ2
k

ω2
k

> 1. (3.38)

For the case of the standard D = 2 Kuramoto model, the above criteria reduces to

|ω|< |Kρ| (Ref. [16], Eq. (4.2)). For a given ρ, we denote the region in W-space

that satisfies that the above criteria as Γ. Each Wi ∈ Γ will have a corresponding

fixed point for σi and the set of such agents i will be referred to as the entrained

population. For each Wj /∈ Γ, σj is continually in motion, and we refer to these

agents as the drifting population. We now argue that the contribution to the order

parameter, ρ from the drifting population will be zero, and then use the Eq. (3.37)

to write out a consistency relation for the order parameter as calculated only from

the remaining entrained population.

Assuming an equilibrium of the system, such that the order parameter is at

a fixed point, the drifting agents must form a stationary distribution on S. We

denote this distribution by f(σ,W), which is analogous to f(σ,ω, t) defined in Eq.

(3.22). Since the velocity of each agent is governed by Eq. (3.6), stationarity of

the distribution requires that f(σ,W) is inversely proportional to the magnitude of

this velocity. Hence

f(σ,W) =
C(W, Kρ)

|K[ρ− (ρ · σ)σ] + Wσ|
, (3.39)
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where C(W, Kρ) is a normalization constant,

∫
|σ|=1

f(σ,W)dσ = 1 (3.40)

for each W not in Γ. Since Γ is invariant to the transformation W→ −W, it follows

from the definition of C(W, Kρ) that it must also be invariant to W→ −W. The

contribution to the order parameter from the drifting population is then given by

ρdrift =

∫
|σ|=1

∫
W/∈Γ

σ
C(W, Kρ)

|K[ρ− (ρ · σ)σ] + Wσ|
G(W)dWdσ.

Applying the variable transformations of σ → −σ and W → −W we obtain

ρdrift = −ρdrift, and hence |ρdrift|= 0.

Thus, the only contribution to the order parameter is from the entrained popu-

lation of agents. LetH(γ) = 1 give rise to some solution (ρ·σF ) = γ ≡ γ({ωi}, {ρi}).

Then, dotting both sides of Eq. (3.5) with ρ in the limit of infinite system size gives

|ρ|2=

∫
Γ

γ({ωi}, {ρi})G(W)dW. (3.41)

As in the two-dimensional case, the critical coupling strength, Kc, will be such that

the magnitude of the order parameter is infinitesimally small but nonzero. We can

use this to determine a value of the critical coupling as

Kc =
2

πg̃(0)
, (3.42)
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where

g̃(0) =

∫ ∞
−∞

. . .

∫ ∞
−∞

g(0, ω2, . . . , ωΛ)dω2 . . . dωΛ, (3.43)

and g(ω1, . . . , ωΛ) is the joint distribution of natural frequencies associated with the

distribution W (see Appendix A.3 for details). Note that, for our particular choice

of an antisymmetric matrix ensemble from which we randomly draw the Wi (i.e.,

independently Gaussian upper-triangular matrix elements), there are known results

for g and g̃ from random matrix theory. In particular, Ref. [76] yields2

g̃(0) =
1

D

√
2

π

(D/2)−1∑
n=0

(2n)!

22n(n! )2
. (3.44)

The predictions for the critical coupling strength, Kc, made according to Eqs. (3.42)

and (3.44) for D = 2, 4, 6 and 8 have been marked by vertical arrows in Fig. 3.4(a).

We expect that with increasing N the numerically observed transitions will appear

to be sharper at the marked critical coupling strength. Note that continuing the

curve from large values of |ρ| to the x-axis without changing its curvature (as would

be expected from the shape of the phase transition curve in D = 2; see Fig. 3.1)

approximates the predicted values accurately.

3.4 Model variant: Extended-body agents in three dimensions

From Eq. (3.2), the dynamics of the system of agents can be thought of

resulting from the interplay of two terms, K[ρ − (ρ · σi)σi], promoting coherence

2In comparing the equation in Ref. [76], with our numerical results, we observe that there
appears to be a misprint of a factor of 1/(D

√
2) in their expression
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among agents, and Wiσi, promoting decoherence between agents. We have shown

that the competition between these two opposing tendencies is resolved by a critical

transition from incoherence to coherence that is qualitatively different for even and

odd dimensionality (Figs. 3.1 and 3.4). In order to show that this qualitative result

is not restricted to our particular assumed form of the K = 0 agent dynamics

(dσi/dt = Wiσi), we here consider a very different model with D = 3, and show

that our conclusion for the behavior shown for the solution of Eq. (3.2) continues to

apply. Specifically, we consider a different form of the dispersal term in the context

of the three-dimensional dynamics of extended objects (e.g., the fish in Fig. 3.8).

We will also further justify the term Wiσi as a simple choice of dispersive dynamics

for interacting agents.

As we discuss in Sec. 3.2, the setup of Eq. (3.2) considers interactions be-

tween agents that are fully described by a single D-dimensional unit vector. For

an extended object, a single unit vector does not uniquely specify the agent state.

In the specific context of three-dimensional extended objects in three-dimensional

space (e.g., the dynamics of flocks of birds, swarms of drones etc.), the orientation

of the extended body must be specified by two unit vectors. We call such agents

extended-body agents, and describe their state via the two vectors σ, which as

earlier represents the direction of the velocity of the extended-body agent; and η,

chosen orthogonal to σ (see Fig. 3.8). For simplicity, we define ν = σ × η to form

the right-handed orthonormal triple {σ,η,ν}. It should be noted that extended-

body agents in two dimensions are completely described by a single unit vector,

σ, as in the standard D = 2 Kuramoto model. We will first set up the dynamics
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Figure 3.8: Illustration of an extended-body agent. Unlike the agents in the gen-
eralized Kuramoto model Eq. (3.2), we assume that the state of an extended-body
agent cannot be described by a single unit vector σ. Rather, the pair of vectors
σ and η together describe the orientation and state of the agent. The direction of
agent velocity is assumed to be along the direction σ as earlier. The unit vector ν
is defined as ν = σ × η
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of this extended-body agent when it is not coupled to other agents. Motivated by

the uncoupled dynamics of this extended-body agent representing some fixed er-

rors/biases, we assume that the uncoupled dynamics of this extended-body agent

is autonomous, i.e., not explicitly dependent on time. Under this assumption, we

write

dσ/dt = Φ(σ,η),

dη/dt = Ψ(σ,η), (3.45)

dν/dt = Θ(σ,η) = Φ× η + σ ×Ψ.

Further, we make the natural assumption that the dynamics do not depend on

information of its orientation with respect to any fixed frame of reference, i.e., there

is no ‘special’ direction in space that determines the dynamics of the extended-body

agent. Thus,

Φ(Rσ,Rη) = RΦ(σ,η), (3.46)

Ψ(Rσ,Rη) = RΨ(σ,η), (3.47)

Θ(Rσ,Rη) = RΘ(σ,η), (3.48)

for any rotation matrix R. Since the unit vectors {σ,η,ν} form an orthonormal
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basis, we can write the vector field Φ in this basis,

Φ(σ,η) = a(σ,η)σ + b(σ,η)η + c(σ,η)ν. (3.49)

Using Eq. (3.46),

a(Rσ,Rη)Rσ + b(Rσ,Rη)Rη + c(Rσ,Rη)Rν

= R[a(σ,η)σ + b(σ,η)η + c(σ,η)ν]. (3.50)

Comparing components along Rσ on both sides of the above equation,

a(Rσ,Rη) = a(σ,η), (3.51)

and hence the scalar a(σ,η) must be independent of σ and η, a(σ,η) = a. Similarly,

b(σ,η) and c(σ,η) must also be independent of σ and η. Applying similar reasoning

to all the components of Φ(σ,η), Ψ(σ,η) and Θ(σ,η), we see that they must each

be linear functions of σ, η and ν. Hence [noting that Rν = (Rσ)× (Rη)]

Φ(σ,η) = aσ + bη + cν,

Ψ(σ,η) = a′σ + b′η + c′ν, (3.52)

Θ(σ,η) = a′′σ + b′′η + c′′ν.
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Further, since {σ,η,ν} are unit vectors forming a right-handed triple,

σ · Φ = η ·Ψ = ν ·Θ = 0, (3.53)

and, using d/dt(σ · η) = d/dt(σ · ν) = d/dt(η · ν) = 0,

σ ·Ψ + η · Φ = σ ·Θ + ν · Φ = η ·Θ + ν ·Ψ = 0. (3.54)

Thus, Eqs. (3.52) reduce to

dσ/dt = Φ(σ,η) = −αη + βν,

dη/dt = Ψ(σ,η) = ασ + γν, (3.55)

dν/dt = Θ(σ,η) = −βσ − γη.

for some scalar, extended-body-agent specific quantities α, β and γ. Having specified

the uncoupled dynamics of an extended-body agent, we add the effect of inter-agent

coupling, in the form of the Kuramoto-like interactions described in Sec. 3.2. Thus,

analogous to Eq. (3.2), we write

dσi
dt

= K[ρ− (ρ · σi)σi] + Φi(σi,ηi), (3.56)

where ρ is given by Eq. (3.5), which is the average of the velocity directions σi of

each extended-body agent. Note that this form of coupling treats σ as a special

direction as compared to η and ν, since we assume that the goal of the swarm is to
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maintain coherence via coupling that aligns the velocity direction σi of each agent

i to the the motion of the swarm as a whole. We then write η̇i and ν̇i such that the

constraint Eqs. (3.53) and (3.54) continue to hold for the coupled system and that

K = 0 corresponds to Eqs. (3.45).

dηi/dt = −K[ρ · ηi]σi + Ψi(σi,ηi), (3.57)

dνi/dt = −K[ρ · νi]σi + Θi(σi,ηi). (3.58)

We perform a simulation of N = 104 such extended-body agents by numeri-

cally integrating Eqs. (3.56), (3.57) and (3.58) for a range of values of K similar

to Fig. 3.4. Since the dynamics captured by the Eqs. (3.45) represent random

biases/errors, we choose the quantities α, β and γ for each agent from independent,

normal distributions with zero mean and unit variance. In Fig. 3.9 we present the

phase transition displayed by this system of evolving extended-body agents. For

each value of K we numerically integrate the system until |ρ| reaches a steady-

state value. Note that we continue to observe a discontinuous transition of |ρ| as

K increases through 0. Further, we also numerically observed that if α, β and γ

are chosen anisotropically, i.e., if they are chosen from normal distributions with

zero mean but differing variance, the qualitative result shown in Fig. 3.9 does not

change, i.e., the transition to coherence is still discontinuous at K = 0. This in-

dicates that the phenomenon of discontinuous transitions in odd dimensions is not

specific to the form of the dispersal term chosen in Eq. (3.2), rather, it is a more

general phenomena occurring for a potentially wide range of systems of interacting
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Figure 3.9: Phase transition for interacting three-dimensional extended-body agents
described by Eqs. (3.56) – (3.58). The dynamics of individual agents in this system
have been constructed to satisfy constraints imposed by extended-body dynamics,
and are not equivalent to the dynamics of the generalized Kuramoto model de-
scribed in Sec.3.3. Despite this, we continue to observe a discontinuous jump in the
asymptotic steady-state value of |ρ| as K in increased through 0.

agents in odd dimensions. In contrast, this model for two dimensions (β = γ = 0)

is the same as the original Kuramoto model and hence has a continuous transition

to coherence at a critical positive value of K.

To further examine the dynamics of the uncoupled agents Eqs. (3.55), we

adopt notation where we represent Eqs. (3.55) as

d

dt

(
σ η ν

)
=

(
σ η ν

)
U, (3.59)
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where U is the 3× 3 antisymmetric matrix,

U =


0 α −β

−α 0 −γ

β γ 0

 , (3.60)

and

(
σ η ν

)
represents a 3× 3 matrix whose columns are the vectors σ, η and

ν. We can then consider a change of basis R such that

RTUR =


0 ω 0

−ω 0 0

0 0 0

 , (3.61)

where ω2 = α2 + β2 + γ2. Using the same convention as Eq. (3.59), we define the

orthonormal triple of unit vectors {u,v,w} as

(
u v w

)
=

(
σ η ν

)
R. (3.62)

Thus Eq. (3.59) becomes

du/dt = ωv,

dv/dt = −ωu, (3.63)

dw/dt = 0.
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According to Eqs. (3.63), the vectors u and v, which are fixed linear combinations of

σ, η and ν, undergo uniform rotation with an angular frequency of ω about the axis

w. Since σ, η and ν describe the physical orientation of the uncoupled extended-

body agent, the extended-body agent will demonstrate dynamics that correspond

to rotations in three dimensions, and there will exist a W such that σ̇ = Wσ.

In particular, the axis of this rotation will be along the unit vector w given by

w = R13σ +R23η +R33ν, where Rij is the ijth component of R. Since ẇ = 0,

w = R13σ(0) +R23η(0) +R33ν(0).

Note that R (and hence its components) is dependent on the random biases/systematic

errors present, arising from the particular form of Φ and Ψ, whereas σ(0),η(0) and

ν(0) = σ(0) × η(0) depends on the initial orientation/state of the extended-body

agent. Thus the axis of rotation is dependent on the initial state of the extended-

body agent, while the frequency of rotation, ω is determined solely by the random

systematic errors of the extended-body agent [i.e., α, β and γ in Eq. (3.55)].

Thus, under the assumptions made above, the dynamics of uncoupled extended-

body agents can be described as σ̇ = Wσ for some initial-condition-dependent W

(in particular, Wσ = −ωw × σ). Note however that this is not identical to the

uncoupled dynamics of the agents described in Eq. (3.2). In particular, the axis

of rotation of the extended-body agent under the dynamics described here is along

the vector w, which is determined by the initial conditions of the extended-body

agent state (σ(0),η(0)). However, in the uncoupled dynamics of the generalized Ku-
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ramoto agents described by Eq. (3.2) the axis of rotation is predetermined by the

rotation matrix Wi assigned to agent i and is independent of the initial condition

chosen for the agent. An isotropic ensemble of rotation matrices for the generalized

Kuramoto agents in the case of extended-body agents corresponds to an ‘isotropic’

distribution of the extended-body agent parameters (α, β, γ), as well as isotropic

initial conditions of the extended-body agents.

Further, this simple interpretation of σ undergoing uniform rotation no longer

holds for the case of coupled extended-body agents, and Eqs. (3.56), (3.57) and

(3.58) cannot be simply written in the form of Eq. (3.2) with an initial-condition-

dependent W for arbitrary K (this, however, is possible in the limit of K → 0 or

|ρ|→ 0, hence our results for the stability analysis of the |ρ|= 0 state will recreate

the phase transitions in higher dimensions). The qualitative dynamics of coupled

extended-body agents and coupled generalized Kuramoto agents described by Eq.

(3.2) are in general distinct, yet our main point of discontinuous phase transitions

for odd dimensions at K = 0 continues to hold.

Thus, for the case of extended-body agents, under the assumptions made in

this section, rotation matrices as dispersal terms arise naturally as simple error/fixed-

bias terms for the individual agents. Rather than considering the case of initial-

condition-dependent rotation matrices, in Eq. (3.2) we have considered the simpli-

fication of choosing fixed rotation matrices W. This motivates the generalization

of the Kuramoto model presented in Eq. (3.2) as a simple model to capture the

dynamics of swarming and flocking agents. Further, we also see that the result ob-

tained from our toy model Eq. (3.2) for the qualitative continuous or discontinuous
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behavior of the incoherent-to-coherent transition continues to hold for other three-

dimensional agent dynamics, such as the extended-body agent dynamics described

in this section.

In Sec. 5.5 we briefly describe other extensions and variants to the generalized

Kuramoto model described in Sec. 3.2.

3.5 Discussion and conclusions

We have considered a generalization of the Kuramoto model to arbitrary di-

mensions, describing a system of interacting, orientable units, whose state is com-

pletely described by D-dimensional unit vectors. Our main result (Fig. 3.4) is

that the macroscopic dynamics of the Kuramoto model is strongly dependent on

the dimensionality of the system, with odd-dimensional systems behaving similar

to one other, and likewise for even-dimensional systems. For odd-dimensional sys-

tems, including the practically important case of D = 3, we find that the phase

transition from incoherence to partially coherent states occurs via a discontinuous,

nonhysteretic transition as the coupling strength K increases through 0 (Sec. 3.3.1,

also see Fig. 3.6). In contrast, even-dimensional systems, like D = 2, numerically

appear to undergo continuous transitions of the coherence at a critical coupling

strength Kc > 0 (Fig. 3.4 (a)). We also note that, unlike the two-dimensional

Kuramoto model, the state of the system is not always completely classified by the

magnitude of the order parameter. In particular, for the two-dimensional Kuramoto

model there is a single stable incoherent steady-state distribution in the infinite size
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limit (f = 1/(2π)), whereas the three-dimensional Kuramoto model has an infinite

number of such distributions (for example, Eq. (3.24)) each with different stability

properties (see Eq. (3.32)). By considering a setup of extended-body agents, in Sec.

3.4 we further motivated our choice of model Eq. (3.2) in the context of swarms

of drones or flocks of birds. In particular, we demonstrated that our qualitative

results relating to the difference between odd- and even-dimensional systems con-

tinue to hold for models that use a different choice of the dispersal term. This study

of extended-body agents in Sec. 3.4 also explains why the choice of the dispersal

term Wσ in the context of the qualitative phase transitions observed for D = 3 is

justified .

While other authors [71,72] have also studied the Kuramoto model generalized

to higher dimensions, their consideration has been limited to the case of identical

natural rotations. Our setup of the problem (i.e., with heterogeneous natural rota-

tions) by setting G(W) = δ(W−W0) reproduces the results in Refs. [71,72] for the

case of globally coupled systems (here we interpret the Dirac delta function acting

on the antisymmetric matrix W as the product of Dirac delta functions acting on

each of the upper-triangular elements of the matrix individually). This heteroge-

neous setup of the problem now describes the interplay of two opposing tendencies,

i.e., the tendency for agent states to align due to the inter-agent coupling, and the

tendency for agents to disperse themselves in opposition to such alignment. This

leads to the possibility of new and interesting phenomena such as the difference

between the odd and even dimensionality described in this chapter.

In addition to the variant described in Sec. 3.4, the setup of the generalized
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Kuramoto model given by Eqs. (3.6) and (3.5) can be modified and generalized in

various ways. An interesting question for possible future study is whether a striking

difference between odd and even dimensions (as we have found for the generalized

Kuramoto model and its variant in Sec. 3.4) manifests in these modifications. For

example, beyond the globally coupled systems we have considered, one might con-

sider network-based coupling, wherein agent j influences agent i with a strength

Aij. This is equivalent replacing ρ in Eq. (3.6) with ρi, where

ρi =
1

N

∑
j

Aijσj.

In the context of swarms of drones, a further natural generalization would be to

have the network-based coupling Aij depend on the spatial distance and relative

orientation between the ith and jth swarm agent.

As discussed earlier, for positive K the dynamics of each σi are attracted to-

wards the average state of the system, ρ. This could be interpreted as a target

direction for each σi, and can be generalized by replacing Eq. (3.5) by other defini-

tions of ρ. For example, in the context of swarms of drones, it could be desirable for

the orientation of the drones to be biased towards the plane of the horizon, or to be

biased toward the direction of a given target destination. To achieve this, the ‘target

direction’, ρ in Eq. (3.6) could be modified from the average state of the system

to the average state biased towards a given target. Studying the dependence of the

dynamics of such swarms of agents on modifications to ρ (via either the presence of

network dependent interaction, or other bias targets) would be an interesting line
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of future research.

In Chapter 5 we will present a mathematical formulation for studying the

D-dimensional Kuramoto model in the infinite size limit via a generalization of the

Ott-Antonsen ansatz [18,19], wherein we will also address the issue of generalization

of ρ.
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Chapter 4: Observing Microscopic Transitions from Macroscopic Bursts:

Instability-Mediated Resetting in the Incoherent Regime

of the D-dimensional Generalized Kuramoto Model

The dynamical phase transition from incoherence to coherence for a recently

proposed, higher-dimensional generalization of the Kuramoto model, is examined

from the point of view of the stability of the incoherent state. It is found that, due

to the higher dimensionality, there is a continuum of different possible pretransition

incoherent equilibrium states, each with distinct stability properties. This, in turn,

leads to a novel phenomenon, which we call ‘Instability-Mediated Resetting,’ which

enables the existence of a unique critical transition point in spite of the infinite

continuum of possible pretransition states. In general, these results provide an

example illustrating that, for systems with a large number of entities described via

a macroscopic variable(s), a degeneracy of microscopic states corresponding to the

same macroscopic variable may occur, and that signatures of such a degeneracy may

be observable in the transient macroscopic system dynamics.
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4.1 Introduction

4.1.1 Background

Motivated by a host of applications, much recent research has been focused

on efforts aimed at understanding the behavior of large systems of many interacting

dynamical agents. An important tool elucidating issues in this general area has been

the study of simplified paradigmatic models. A prime example of such a model is

the Kuramoto model [2, 9, 16, 17],

dθi/dt = ωi +
K

N

N∑
j=1

sin(θj − θi), (4.1)

where N is the number of agents (i = 1, 2, . . . , N), θi is an angle variable that

specifies the state of agent i, the parameter K characterizes the coupling strength,

and ωi is the natural frequency of agent i (θ̇i = ωi in the absence of coupling),

where ωi is typically chosen randomly for each i from some distribution function

g(ω) (
∫
g(ω)dω = 1). Because the parameter ωi characterizing the dynamics of

each agent i is different for each agent, the agents are said to be heterogeneous.

This model and its many generalizations have been used to study a wide variety of

applications and phenomena. Examples include synchronously flashing fireflies [77],

cellular clocks in the brain [46], Josephson junction circuits [39], pedestrian-induced

oscillation of foot bridges [78], and motion direction alignment in large groups of

agents (e.g., drones or flocking animals) [79–81], among many others. In the first
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four of these examples θi represents the phase angle of an oscillation experienced by

agent i, while, in contrast, in the fifth example, θi specifies the direction in which

agent i moves.

One aspect of the Kuramoto model and is previous generalizations is that

the state of agent i is given by the single scalar angle variable θi(t). Recently, a

generalization of these models has been introduced in which the state of the agent i

is a D-dimensional unit vector, σi(t), thus allowing for more degrees of freedom in

the dynamics of the individual agents. In this generalized model the D-dimensional

unit vector, σi(t), is taken to evolve according to the real equation [72, 82] (see

Chapter 3),

dσi/dt = K[ρ− (ρ · σi)σi] + Wiσi, (4.2)

where the D-dimensional vector ρ(t) (to be specified subsequently) is a common

field felt by all the agents, and Wi (analogous to ωi in Eq. (4.1)) is a D × D

antisymmetric matrix (WT
i = −Wi) which we refer to as the rotation rate matrix.

Note that for K = 0 Eq. (4.1) becomes σ̇i = Wiσi which represents a uniform

rate of rotation of σi in D-dimensional space, σi(t) = [exp(Wit)]σi(0), analogous

to the action of the frequency ωi in D = 2. Dotting Eq. (4.2) with σi, we obtain

d|σi|2/dt = 0, as required by our designation of σi as a unit vector. In general,

depending on the situation to be modeled, ρ(t) can be chosen in different ways [18]

(see also Chapter 3). In this chapter we focus on the simplest interesting choice,

ρ(t) =
1

N

N∑
i=1

σi(t), (4.3)
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and we call |ρ(t)|, the ‘order parameter.’ We note that, as shown in Chapter 3, Eqs.

(4.2) and (5.16) reduce to Eq. (4.1) for D = 2 with

σi =

cos θi

sin θi

 and Wi =

 0 −ωi

ωi 0

 ,

thus justifying Eqs. (4.2) and (5.16) as a ‘generalization’ of the Kuramoto model,

Eq. (4.1), to higher dimensionality. One motivation for this generalization is the

previously mentioned example of the application of Eq. (4.1) to model motion

alignment in flocks: For D = 2 (equivalent to the standard Kuramoto case, Eq.

(4.1)) the direction of agent motion (characterized by the scalar angle θi or the unit

vector (cos θi sin θi)
T ) can be described for agents moving along a two-dimensional

surface (like the surface of the Earth), while, if the agents are, e.g., moving in

three dimensions (as for drones flying in the air), then the direction of an agent’s

motion (σi for agent i) is necessarily given by a three-dimensional unit vector. In

addition, Ref. [82] has considered the dynamics of the vector σi as characterizing the

evolution of the opinions of an individual within a group of interacting individuals

as the group evolves towards consensus. Another interesting point, as discussed in

Chapter 3 is that the inter-agent coupling for Eqs. (4.2) and (5.16) is the same

as that for the classical, mean-field, zero-temperature, Heisenberg model for the

evolution of N interacting spin states σi in the presence of frozen-in random site

disorder (the terms Wiσi, with Wi randomly chosen).

Based Chapter 3 we view Eqs. (4.2) and (5.16) as the simplest D-dimensional
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generalization of the Kuramoto model subject to the assumption that the state of

any agent is a unit vector. See Sec. IV of Chapter 3 for a generalization, motivated

by flocking drones, in which the agents are regarded as D-dimensional extended-

body agents whose states of orientation are described by (D − 1) mutually perpen-

dicular unit vectors. Although the model in Sec. IV of Chapter 3 is quite different

from that considered here, Chapter 3 shows that it shares the same qualitative type

of transition behavior as Eq. (4.2). Thus we conjecture that the model we study

in the present chapter can provide a general guide to the possible behavior of other

related systems.

4.1.2 The Rotation Rates Wi

Equation (4.2) with zero rotation rate (Wi = 0) or a uniform rotation rate

(Wi = W) was introduced in Refs. [72,82]. The generalization to heterogeneous ro-

tation rates (the situation to be considered in the present chapter) makes Eq. (4.2)

more similar to the original Kuramoto model and widens its range of applicability.

In what follows, as in Chapter 3, we assume that the rotation rate matrix Wi is

randomly generated for each i, by choosing each of its D(D− 1)/2 upper triangular

matrix elements, w
(i)
pq (with p < q), independently from a zero-mean, Gaussian dis-

tribution function as described in Sec. 4.2. Alternately, we can say that each of the

Wi is randomly drawn from the ensemble of random antisymmetric matrices corre-

sponding to the Gaussian distribution. It is important to note that this ensemble is

invariant under rotations; i.e., the ensemble is unchanged when every matrix in the
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ensemble is subjected to the same rotation, W → RW, for any orthogonal matrix

R (e.g., Ref. [76]).

4.1.3 The N →∞ limit and the multiplicity of incoherent equilibria

We are interested in the case where N � 1, and, to facilitate analysis, we

consider the limit N → ∞, for which we characterize the system state for dimen-

sionality D by a distribution function F (W,σ, t) such that the fraction of the agents

lying in the differential volume element dσdW centered at (σ,W) in σ-W space is

F (W,σ, t)dσdW at time t. We define an incoherent equilibrium distribution to be

such that ∂F/∂t = 0 and |ρ|= 0, where, since we consider the limit N → ∞, Eq.

(5.16) is replaced by

ρ(t) =

∫ ∫
F (W,σ, t)σdσdW. (4.4)

As shown in Sec.4.2, for D > 2 there is an infinite continuum of equilibrium (i.e.,

time-independent) distribution functions F for which |ρ|= 0. We can think of these

distributions as defining a manifold M in the space of distribution functions.

Within this manifold, a given F is neutrally stable to a perturbation δF such

that F + δF also lies in M. Section 4.3 is devoted to an analysis of the stability of

the manifold M; i.e., what happens if δF , the perturbation to F , is transverse to

M. Before discussing what we find in Sec. 4.3 for the case D > 2, it is first useful

to recall the well-known results for the original Kuramoto model, corresponding to

D = 2, as well as relevant results from Chapter 3 for D > 2.
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4.1.4 The Dynamical phase transition

In the case of the original (D = 2) Kuramoto model, Eq. (4.1), for N → ∞

one can consider a distribution function in (ω, θ); i.e., F (W,σ, t) → f(ω, θ, t). In

this D = 2 case, in contrast to the D > 2 generalized model, Eq. (4.2), there is only

one |ρ|= 0 equilibrium distribution function, namely f = g(ω)/(2π). Furthermore,

it has long been well-established for D = 2, that, as K increases continuously from

zero, the long-time (t → ∞) stable value of the order parameter |ρ| undergoes a

continuous transition from incoherence (|ρ|= 0) to partial coherence (0 < |ρ|< 1)

as K passes a critical value that depends on g(ω), see the green curve marked by

the star symbols in Fig. 4.1. We denote this critical value by K
(+)
c . This transition

has been studied from two different points of view (see Refs. [2, 9, 16, 17]):

Method (i): It is assumed that f reaches a steady-state distribution (∂f/∂t =

0) and the resulting nonlinear equation for f is then analytically solved, yielding two

possible solutions for the order parameter |ρ|; one has |ρ|= 0 and corresponds to

f = g(ω)/(2π); the other satisfies a transcendental equation for |ρ| as a function of

K involving an integral of the ω-distribution function g. Taking g to be continuous,

unimodal, symmetric, and peaked at ω = 0, the transcendental root for |ρ| only

exists for K ≥ K
(+)
c > 0 and gives the |ρ|> 0 branch in Fig. 4.1. In this approach,

an analytical result forK
(+)
c is obtained by taking the limit |ρ|→ 0+ in the expression

for the transcendental branch. This is the approach originally taken by Kuramoto,

who then essentially assumed that the |ρ|= 0 branch applies for K ≤ K
(+)
c , and the

|ρ|> 0 branch applies for K > K
(+)
c .
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Figure 4.1: Dynamical Phase Transition for the Generalized Kuramoto model for
D = 2 (green stars), 4 (orange triangles), 6 (magenta squares) and 8 (blue dia-
monds) dimensions. The |ρ| values indicated by the plotted markers are obtained
by choosing the values of σi(t = 0) and Wi for each of the N = 105 agents randomly
(where the probability distribution of σi(0) is isotropic in direction and that of Wi is
as given in Sec. 4.2) and then integrating Eq. (4.2) from each such initial condition
until |ρ(t)| attains a steady value. These steady state values attained appeared to
be independent of this choice of initial condition. The theoretical predictions from
Chapter 3 for the critical coupling strength, K

(+)
c , above which stable |ρ|> 0 steady

states exist are indicated by correspondingly colored vertical arrows on the x-axis.
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Method (ii): Considering the |ρ|= 0 equilibrium distribution, a linear stability

analysis was applied [2, 9, 16, 17, 83], and it was found that the |ρ|= 0 equilibrium

distribution (which exists for all K) becomes unstable when K increases through a

critical value which is the same as that found for K
(+)
c by method (i).

Thus the value of K
(+)
c for the original Kuramoto problem can be obtained

straightforwardly by following either method (i) or method (ii).

In Chapter 3 using Method (i), previously employed for the original Kuramoto

problem, analysis giving the critical transition values for even D were obtained.

These values are indicated by the vertical arrows in Fig. 4.1, and agree well with

the plotted numerical results.

Parenthetically, we note that for odd D ≥ 3, which is not considered in this

chapter, the transition is qualitatively different from that shown in Fig. 4.1. Namely,

as shown in Chapter 3, when D is odd, as K increases from negative values through

zero there is a discontinuous jump in the coherence |ρ|.

4.1.5 Linear Stability of the incoherent equilibria

Motivated by the results in Fig. 4.1, in Sec. 4.3 we report results of a stability

analysis of the incoherent equilibria for evenD greater than two. That is, we attempt

an analysis similar to method (ii), previously applied to the original Kuramoto

model. We find that the straightforward correspondence that applies for D = 2

between the method (i) result for K
(+)
c and the method (ii) stability result does not

hold for D = 4, 6, 8 . . ., and that the apparent paradox presented by this finding is
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resolved by a novel phenomenon that we call Instability-Mediated Resetting (IMR).

Specifically, our stability analysis in Sec. 4.3 applied to the infinity of pos-

sible incoherent equilibrium distributions found in Sec. 4.2, shows that different

incoherent equilibria have different stability properties. Considering one such in-

coherent equilibrium, as K increases, the equilibrium will become unstable as K

passes through some value Kc which depends on the specific incoherent equilibrium

considered. There are thus many possible values of Kc, in fact we find a continuum

of such Kc values spanning a range between (K
(+)
c /2) and K

(+)
c .

4.1.6 Instability-Mediated Resetting (IMR)

These stability results for D = 4, 6, . . . suggest the following question. How

can instability of incoherent equilibrium distributions for K < K
(+)
c be reconciled

with the numerical results of Fig. 4.1 and the corresponding method (i) analytical

results (the vertical arrows in Fig. 4.1)? The answer to this question is given in Sec.

4.4 which reports the following results on the nonlinear evolution of the instability

found in Sec. 4.3: Considering an incoherent equilibrium which becomes unstable

at K = Kc < K
(+)
c , if one starts with K < Kc and then rapidly increases K to lie in

the range Kc < K < K
(+)
c , the order parameter |ρ| initially experiences growth con-

sistent with the existence of instability. This growth, however, slows as |ρ| reaches a

maximum, and subsequently decays back to zero. But, after this short-lived macro-

scopic burst, once |ρ| returns to essentially zero the resulting incoherent equilibrium

is different from that which existed before the instability occurred, and this resulting
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new incoherent equilibrium loses stability only at a value of the coupling strength

between the value that K has been increased to and K
(+)
c .

In fact, if the initial burst occurred due to a value of K roughly in the middle

of the range Kc < K < K
(+)
c , the resulting equilibrium may be one which loses

stability only at K
(+)
c itself, i.e., upon further increase of K, |ρ| remains near zero

until K increases past K
(+)
c . If K is suddenly increased through K

(+)
c there is

unstable growth of |ρ|, as for when K is increased suddenly through Kc, but now

|ρ| asymptotically approaches a positive value consistent with Fig. 4.1 forK > K
(+)
c .

The essential point is that the instability for Kc < K < K
(+)
c resets the equilibrium

to one which is stable for K < K
(+)
c and becomes unstable only when K exceeds

K
(+)
c , consistent with the plot (Fig. 4.1) of the t→∞ order parameter vs K. This

is the IMR phenomenon previously referred to.

4.1.7 Main points of this chapter

This chapter focuses on the case of even dimensional generalizations of the

Kuramoto model of the form Eq. (4.2). A main message of this chapter is that,

although the curves, |ρ(t → ∞)| versus K plotted in Fig. 4.1 for D = 4, 6, . . ., are

qualitatively similar to the curve for D = 2, the transient dynamics of ρ(t) starting

from a given incoherent distribution at t = 0 are surprisingly different for even D ≥ 4

as compared with D = 2. We will demonstrate in Sec. 4.2 that for even D > 2,

in contrast to D = 2, there is an infinite continuum of incoherent stable equilibria

in the limit of N → ∞. In Sec. 4.3 we will perform a linear stability analysis
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of these equilibria, and show that these equilibria have different critical coupling

strengths, i.e., values of K beyond which the equilibria are unstable. Further, we

also show that in a continuous range of K, each value of K corresponds to the

critical coupling strength of some incoherent equilibrium. The upper limit of this

range corresponds to earlier results for the critical coupling strength for the t→∞

macroscopic phase transition of the order parameter shown in Fig. 4.1. To reconcile

these lower values of critical stability coupling strengths for incoherent equilibria,

with the phase transition of Fig. 4.1, we will examine the dynamics of the incoherent

equilibria beyond their critical coupling strengths. This examination results in the

observation of short-lived macroscopic bursts of |ρ| which lead to the phenomenon

of Instability-Mediated Resetting, which we demonstrate and describe in Sec. 4.4.

We also discuss the effect of finite N on the evolution of these incoherent equilibria

in Sec. 4.4.

4.2 Incoherent Equilibria

We reiterate that in this chapter we will only consider the case of even D. For

each W there are D/2 two-dimensional invariant subspaces for the |ρ|= 0 evolution

equation

dσ/dt = Wσ. (4.5)
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To see this, we define the rotation RD to be a D ×D orthogonal matrix that puts

W in block-diagonal form,

RT
DWRD = W̃ =



0 ω1

−ω1 0

0 ω2

−ω2 0

. . .

0 ωD/2

−ωD/2 0



, (4.6)

with ωk real. Furthermore, we define Pk to be the projection operator that projects a

D-vector onto the kth invariant subspace of W, i.e., RT
DPkRD = P̃k has all elements

zero except for the (2k − 1)th and (2k)th elements on the diagonal which are set to

1. By construction

1 =

D/2∑
k=1

P̃k =

D/2∑
k=1

Pk,

where 1 is the D-dimensional identity matrix. Setting σ̃ = RT
Dσ transforms the

|ρ|= 0 evolution equation Eq. (4.5) to

dσ̃/dt = W̃σ̃. (4.7)
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Thus, for each k,

Ck = (P̃kσ̃)T (P̃kσ̃) = σTPT
kPkσ = σTPkσ (4.8)

is a constant of motion for the |ρ|= 0 evolution equation dσ/dt = Wσ.

Since we are interested in the case where the number of agents, N , is large,

N � 1, it is appropriate to simplify the analysis by considering the limit N → ∞,

in which case the state of the system can be described by a distribution function,

F (W,σ, t) satisfying

∂F/∂t+ ∇S · (vF ) = 0, v = K[1D − σσT ]ρ+ Wσ, (4.9)

where ∇S · (vF ) represents the divergence of the vector field vF on the spherical

surface |σ|= 1. Hence any time independent distribution function, F0(W,σ), for

the |ρ|= 0 dynamics must satisfy

∇S · [(Wσ)F0] = (Wσ) ·∇SF0 = 0, (4.10)

where ∇S represents the gradient operator on the spherical surface |σ|= 1. The

first equality follows from the fact that ∇S · (Wσ) = 0 for W an antisymmetric

matrix. Since

0 = dCk/dt = ∇SCk(σ) · dσ/dt = (Wσ) ·∇SCk(σ), (4.11)
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by comparing Eqs. (4.10) and (4.11), we see that the most general solution for a

time-independent distribution F0 is

F0(W,σ) = F0(W;C1, . . . , CD/2) = F0(W, c), (4.12)

where c denotes the (D/2)-vector (C1, . . . , CD/2)T , i.e., F0 depends on W and the

(D/2) constants of the motion. There are two constraints. The first one is that,

since |σ|= 1, we have that |c|= 1. The second constraint is that

0 = ρ0 =

∫ ∫
|σ|=1

σF0(W,σ)dWdσ, (4.13)

which is automatically satisfied if, as we henceforth assume, F0 is isotropic in the

sense that

F0(RTWR,Rσ) = F0(W,σ) (4.14)

for any rotation matrix R. Thus

F0(RTWR, c) = F0(W, c), (4.15)

since the constants Ck are invariant to such rotations. Equation (4.13) for ρ0

then yields ρ0 = Rρ0 for any rotation R, which then implies that the integral∫
σF0dWdσ = 0, as required by our definition of an incoherent distribution, Eq.

(4.13).

In our work we consider the case where the marginal distribution of W ex-
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pressed in terms of the matrix elements

wii = 0, wij = −wji (4.16)

is Gaussian. That is,

(4.17)

G(W)dW =

[∫
|σ|=1

F0(W, c)dσ

]
dW

=
D∏
j=1

D∏
i>j

gM(wij)dwij,

where gM(w) is the Gaussian distribution

gM(w) =
1√

2π〈w2〉
e
− w2

2〈w2〉 , 〈w2〉 =

∫ ∞
−∞

w2gM(w)dw. (4.18)

Thus
(4.19)G(W) = (2π〈w2〉)−D(D−1)/4 exp

[
−Trace(WTW)/(4〈w2〉)

]
.

Since Trace(WTW) = −Trace(W2) is invariant to rotations of W (i.e., W →

RTWR) and dW = d(RW) (since det(R)=1), we see that G(W) as defined above

is isotropic in the sense that

G(W) = G(RTWR) (4.20)

for any D ×D rotation matrix R.

According to random matrix theory, the distribution of block frequencies ωk in

Eq. (4.6) for such a Gaussian ensemble of even-dimensional random antisymmetric
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matrices with 〈w2〉 set to 1 is [76]

(4.21)

g̃(ω1, . . . , ωD/2)

= κ
∏

1≤j≤k≤D/2

(ω2
j − ω2

k)
2 exp

− D/2∑
i=1

ω2
i /2

 ,

where κ is a constant chosen to ensure that the integral of the distribution g̃(ω1, . . . , ωD/2)

is normalized to 1. Note that g̃ is symmetric to interchanges of any two of its argu-

ments.

As an aside, we also mention that using Eq. (4.6), W = RDW̃RT
D, an alter-

native representation of G(W)dW is

g̃(ω1, . . . , ωD/2)dω1 . . . dωD/2dµ(RD),

where µ is the Haar measure for D ×D rotation matrices. (The Haar measure for

rotation matrices essentially gives a formal rigorous specification of what we loosely

refer to as isotropy [84]. In what follows we use our informal notion of ‘isotropy’

and do not invoke Haar measures.)

Returning to the distribution function F0, we define F̂0 by

F0(W, c) = G(W)F̂0(W, c), (4.22)

where ∫
F̂0(W, c)δ(|σ|−1)dσ = 1. (4.23)

Note that |σ|2= C1+. . .+CD/2 = 1. Clearly, even with G(W) specified as Gaussian,
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there is still an infinity of choices for F̂0 and hence F0. These choices specify how

σ is distributed over the D/2 subspaces of W that are invariant for the |ρ|= 0

dynamics of σ.

4.3 Stability of incoherent equilibria

We linearize Eq. (4.2) about distributions corresponding to incoherent equi-

libria, i.e., |ρ|= 0, by setting σ = σ0 + δσ and ρ = δρ for small perturbations δσ

and δρ. This yields,

dσ0/dt = Wσ0, (4.24)

dδσ/dt = K[1− σ0σ
T
0 ]δρ+ Wδσ. (4.25)

Transforming Eq. (4.24) to the basis that block-diagonalizes W (as in Eq. (4.6)),

we obtain

dσ̃0/dt = W̃σ̃0. (4.26)

Thus each two-dimensional subspace k will undergo independent rotation with fre-

quencies corresponding to real ωk frequencies of W̃. This gives the solution

σ̃0(t) = Q(t)σ̃0(0), (4.27)

110



where Q(t) is a block diagonal matrix with (D/2) blocks of dimensions 2× 2 given

by

Q(t) =



Q1(t)

. . .

Qk(t)

. . .

QD/2(t)


, (4.28)

with

Qk(t) =

 cosωkt sinωkt

− sinωkt cosωkt

 (4.29)

for 1 ≤ k ≤ D/2. We can equivalently represent Eq. (4.27) as

xk(t) = Qk(t)xk(0) (4.30)

for each k, where xk(t) is the two-dimensional vector formed by the (2k− 1) and 2k

components of σ̃0.

Now, assuming that δρ(t) = estδρ(0), Eq. (4.25) yields

(4.31)δσ(t) = K

{∫ t

−∞
eW(t−τ)

[
1− σ0(τ)σ0(τ)T

]
esτdτ

}
δρ(0),

where σ0(τ) = RDQ(t)RT
Dσ0(0).

We note that the order parameter of the perturbed system, δρ, will be given

by the average of δσ over each agent (corresponding to an average over all W). We

also perform an ensemble average over all choices of initial conditions corresponding

111



to a given incoherent equilibrium characterized by F̂0(W, c). Thus

δρ(t) = 〈〈δσ(t)〉σ0(0)〉W, (4.32)

where 〈•〉σ0(0) denotes an average over σ0(0) at fixed W, and 〈•〉W denotes an

average over W. We first average Eq. (4.31) over σ0(0):

(4.33)〈δσ(t)〉σ0(0) = K

{∫ t

−∞
eW(t−τ)

[
1− 〈σ0(τ)σ0(τ)T 〉σ0(0)

]
esτdτ

}
δρ(0).

We focus on the evaluation of the term

〈σ0(τ)σ0(τ)T 〉σ0(0) (4.34)

= RD〈σ̃0(τ)σ̃0(τ)T 〉σ0(0)R
T
D, (4.35)

= RD

[∫
|σ|=1

F̂0(W, c)σ̃0(τ)σ̃0(τ)Tdσ

]
RT
D. (4.36)

Note that σ0σ
T
0 is a D ×D matrix which can be constructed from (D/2) × (D/2)

blocks of 2× 2 matrices, where the block at index (k, l) will be xkx
T
l for 1 ≤ k, l ≤

D/2. Defining xk(0) = (y+
k , y

−
k )T , we obtain from Eq. (4.27)

xk(τ) =

 y+
k cosωkτ + y−k sinωkt

−y+
k sinωkt+ y−k cosωkt

 . (4.37)

Since Ck = (y+
k )2 + (y−k )2, we write

y+
k =

√
Ck cos θk, y−k =

√
Ck sin θk. (4.38)
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Thus

xk(τ) =
√
Ck

cos(ωkτ − θk)

sin(ωkτ − θk)

 . (4.39)

We interpret the average to be performed in Eq. (4.36) as an average over θk and

√
Ck for each k, with the differential element dσ transforming to

∏
k

√
Ckd
√
Ckdθk.

Noting that 〈xk〉 averaged over θk is zero, we see that 〈xkxTl 〉 can only be

nonzero if k = l. Further, in averaging xkx
T
k , the diagonal terms corresponding to

Ck cos2(ωkτ − θk) and Ck sin2(ωkτ − θk) will yield (Ck/2) when averaged over θk,

and the cross terms corresponding to Ck sin(ωkτ − θk) cos(ωkτ − θk) will yield zero.

Thus, we obtain

〈xkxTk 〉θk =
Ck
2
12, (4.40)

where 12 represents the 2×2 identity matrix. Note that the average over θk removes

all τ dependence in Eq. (4.36). Performing the average over Ck, we obtain

〈xkxTk 〉σ0(0) =
C̄k(W)

2
12, (4.41)

where

C̄k(W) =

∫
Γ
F̂0(W, c)Ckdc∫
Γ
F̂0(W, c)dc

, (4.42)

with the domain Γ corresponding to the set of all c such that 0 ≤ Ck ≤ 1 for all k,

and
∑

k Ck = 1.
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Thus the quantity 〈σ0(τ)σ0(τ)T 〉σ0(0) in Eq. (4.35) becomes

〈σ0(τ)σ0(τ)T 〉σ0(0) = RDC̄(W)RT
D, (4.43)

where C̄(W) is the D-dimensional diagonal matrix,

C̄(W) =
1

2
diag

[
C̄1(W), C̄1(W), C̄2(W), C̄2(W),

. . . , C̄D/2(W), C̄D/2(W)
]
.

Now performing the average over W as prescribed in Eq. (4.32), we obtain

from Eqs. (4.33) and (4.43)

δρ(t) = δρ(0)est

= K

{∫
dWG(W)

∫ t

−∞
eW(t−τ)RD

[
1− C̄

]
RT
De

sτdτ

}
δρ(0),

or {
1−K

∫
dWG(W)

∫ t

−∞
e(t−τ)(W−s1)RD

[
1− C̄(W)

]
RT
Ddτ

}
δρ(0) = 0.

Integrating over τ , we obtain{
1−K

∫
dWG(W)(s1−W)−1RD

[
1− C̄(W)

]
RT
D

}
δρ(0) = 0.

Using the change of basis Eq. (4.6),

(4.44)

{
1−K

∫
dWG(W)RD(s1− W̃)−1

[
1− C̄(W)

]
RT
D

}
δρ(0) = 0.

Since RD(W) = RD(−W), G(W) = G(−W), and by Eq. (4.15) C̄(W) = C̄(−W),

we can replace the (s1− W̃)−1 term in Eq. (4.44) by

1

2

[
1

s1− W̃
+

1

s1 + W̃

]
=

s

s21− W̃2
. (4.45)
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Noting that 0 −ω

ω 0


2

= −ω2
12,

the quantity in Eq. (4.45) becomes

(4.46)

H(s;ω1, . . . , ωD/2)

= s diag

[
1

s2 + ω2
1

,
1

s2 + ω2
1

, . . . ,
1

s2 + ω2
D/2

,
1

s2 + ω2
D/2

]
,

which when inserted into Eq. (4.44), yields

(4.47)

{
1−K

∫
dWG(W)RDVRT

D

}
δρ(0) = 0,

where

V = H(s;ω1, . . . , ωD/2)
[
1− C̄(W)

]
= s diag

[
1− C̄1

2

s2 + ω2
1

,
1− C̄1

2

s2 + ω2
1

,

. . . ,
1− C̄D/2

2

s2 + ω2
D/2

,
1− C̄D/2

2

s2 + ω2
D/2

]
.

Noting that G(W) is isotropic in the sense of Eq. (4.20), we can aver-

age RDVRT
D (equivalently V) over an isotropic ensemble of rotations and replace

dWG(W) by the distribution of the rotation invariant quantities characterizing W,

i.e., {ω1, . . . , ωD/2}. Noting that Trace(V) = Trace(RVRT ) for any rotation R and

that the average 〈RVRT 〉R over an isotropic ensemble of rotations R must, by the
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isotropy, be a scalar multiple of the D ×D identity matrix, we obtain

〈RVRT 〉R =
1

D
Trace(V)1

=

2s

D

D/2∑
k=1

1− C̄k(W)/2

s2 + ω2
k

 1. (4.48)

Using Eqs.(4.48) and (4.21), we find that, for δρ(0) 6= 0, Eq. (4.47) yields the scalar

equation

(4.49)

1− 2Ks

D

∫
dω1 . . .

∫
dωD/2g̃(ω1, . . . , ωD/2)

×
D/2∑
k=1

1− C̄k(W)/2

s2 + ω2
k

= 0,

where after averaging over the ensemble of rotations, we have replaced G(W)dW

in Eq. (4.47) by

g̃(ω1, . . . , ωD/2)dω1 . . . dωD/2,

with g̃ being the distribution of block frequencies (Eq.(4.21)) corresponding to the

distribution G(W). Note that, by the invariance of F̂0(W, c) with respect to rota-

tions of W, although in our definition of C̄k we write C̄k ≡ C̄k(W) (see Eq. (4.42)),

we can more specifically write it as a function only of the rotation invariant block

frequencies {ω1, . . . , ωD/2} characterizing W:

C̄k(W)→ C̄k(ω1, . . . , ωD/2).

Due to the isotropy of the ensemble of matrices W, the function C̄k(ω1, . . . , ωD/2)
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will be invariant to any swapping of indices, i.e.,

C̄k(ω1, . . . , ωk, . . . , ωD/2) = C̄1(ωk, . . . , ω1, . . . , ωD/2),

for all k. Since g̃ is also invariant to swapping of its arguments (see Eq. (4.21)), we

obtain

(4.50)
1−Ks

∫
dω1 . . .

∫
dωD/2g̃(ω1, . . . , ωD/2)

×
1− C̄1(ω1, . . . , ωk, . . . , ωD/2)/2

s2 + ω2
1

= 0,

To obtain Kc, the critical coupling constant at instability onset, we consider

the limit Re(s) → 0 from Re(s) > 0. Denoting the real and imaginary parts of s

by p and q respectively, we hence consider the limit of s = p+ iq → iq from p > 0.

Note that

lim
p→0+

s

s2 + ω2
1

= lim
p→0+

1

2

{
−i

ω1 − i(p+ iq)
+

i

ω1 + i(p+ iq)

}
= π[δ(ω1 + q) + δ(ω1 − q)]/2 (4.51)

− iPV
{

1

ω1 + q
− 1

ω1 − q

}
, (4.52)

where δ(x) represents the Dirac delta function at x and PV represents the Cauchy
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Principal value of the integral over ω1. Thus we find from Eq. (4.49) that

(4.53)

1−Kc(q)

×

(π/2)

∫
g̃(ω1, . . . , ωD/2)

[
1− C̄1(ω1, . . . , ωD/2)/2

]
× [δ(ω1 + q) + δ(ω1 − q)]

D/2∏
j=1

dωj

− iPV
∫
g̃(ω1, . . . , ωD/2)

[
1− C̄1(ω1, . . . , ωD/2)/2

]
×
[

1

ω1 + q
− 1

ω1 − q

]D/2∏
j=1

dωj

 = 0,

where Kc(q) is the critical coupling strength at which a small perturbation to the

distribution F0 begins to have an unstable mode growing as est with Im(s) = q.

Given our choice of an isotropic ensemble of rotation matrices W, the functions g̃

and C̄1 must be even functions in each of their arguments. Further, since Kc(q)

represents a coupling strength, it must be real. Thus, from the real and imaginary

parts of Eq. (4.53) we obtain

(4.54)

Kc(q) =
1

π

[∫
g̃(q, ω2, . . . ωD/2)

×
[
1− C̄1(q, ω2, . . . ωD/2)/2

]∏
j≥2

dωj

]−1

,

and

(4.55)

0 = PV
∫
g̃(ω1, . . . , ωD/2)

[
1− C̄1(ω1, . . . , ωD/2)/2

]
×
[

1

ω1 + q
− 1

ω1 − q

]D/2∏
j=1

dωj.

Using Eq. (4.54) the above expression reduces to

0 = PV
∫

dω1

(ω1 + q)Kc(ω1)
− PV

∫
dω1

(ω1 − q)Kc(ω1)
. (4.56)
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For a given distribution g̃(ω1, . . . , ωD/2) and a given C̄1(ω1, . . . , ωD/2), Eq. (4.56)

can be solved to obtain a set of solutions for q, which we denote as Q. Note that

q = 0 ∈ Q. The q dependence of Kc indicates that for each value of q ∈ Q there

exists a mode of instability that arises at the corresponding value of Kc(q). However,

the critical coupling strength Kc of a distribution F0 is the smallest value of K for

which there is an unstable mode. Thus

Kc = min
q∈Q

Kc(q). (4.57)

For notational convenience we define

h(ω) =

∫
dω2 . . .

∫
dωD/2g̃(ω, ω2, . . . , ωD/2). (4.58)

Recalling Eq. (4.42), we see that C̄1 is the expected value of the fraction of |σi|2

lying in the first invariant subspace of W. Hence, for D ≥ 4,

0 ≤ C̄1(ω1, . . . , ωD/2) ≤ 1

for all realizations of W. For the case of D = 2 (i.e., the standard Kuramoto model)

there is only a single frequency associated with W, and hence C̄1 = 1. Thus, Eq.

(4.54) shows that Kc(q) must lie in the range

1

πh(q)
≤ Kc(q) ≤

2

πh(q)
. (4.59)
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Following the form of g̃ given in Eq. (4.21), we observe that h(q) is maximized at

q = 0 ∈ Q. Thus, minimizing each of the three terms in the above inequality over

q ∈ Q,

0 ≤ K(−)
c =

1

πh(0)
≤ Kc ≤ K(+)

c =
2

πh(0)
. (4.60)

Using the above inequality we make the following observations:

• For all incoherent equilibria, the corresponding Kc is greater than K
(−)
c . Thus

any incoherent equilibrium will be stable for coupling strengths K < K
(−)
c

• There does not exist any incoherent equilibrium distribution whose Kc is

greater than K
(+)
c . Thus, all incoherent equilibria become unstable for cou-

pling strengths K > K
(+)
c . This is consistent with Fig. 4.1, where we see that

for K > K
(+)
c the system attains an equilibria with |ρ|> 0.

• For an arbitrary choice of C̄k it is not necessary that Kc(q) will be minimized

at q = 0. However, for several of the examples we consider below we will

consider simple choices for C̄1 such that the minima will occur at Kc(0).

• The inequality in Eq. (4.60) does not have an explicit D dependence. However,

as noted above for D = 2, C̄1 = 1, resulting in a single critical coupling

constant Kc = K
(+)
c = 2/(πh(0)) = 2/(πg̃(0)).

In the subsequent discussion we will consider the special case of D = 4 and

give examples of distributions and their corresponding critical coupling strengths

for the onset of instability.
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Uniform σ: For each Wi, the corresponding unit vector σi is chosen randomly

with uniform probability in all directions. Thus the expected value of the magnitude

squared of the projection σiPkσi onto subspace k (see Eq. (4.8)) is the same for all

of the D/2 subspaces, and, since |σi|2= 1, this expected value is (2/D), i.e.,

C̄1 = 2/D. (4.61)

The uniform distribution is of particular interest because of its ease of implementa-

tion in computer simulations and because of the intuitive naturalness of this choice.

From Eq. (4.54) we obtain

Kc(q) =
1

π

[∫
g̃(q, ω2, . . . ωD/2)

(D − 1)

D

∏
j≥2

dωj

]−1

,

=
D

(D − 1)πh(q)
,

and since h(q) is minimized at q = 0 ∈ Q, thus

K(u)
c =

D

(D − 1)πh(0)
, (4.62)

giving K
(u)
c = 4/[3πh(0)] for D = 4.

Minimally Stable Distribution: We define a minimally stable distribution to

be one whose critical coupling constant for the onset of instability corresponds to

the lower bound of Eq. (4.60), i.e., Kc = K
(−)
c . To construct such a distribution we

initialize each agent arbitrarily but restricted to the subspace that is orthogonal to
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the subspace corresponding to the smallest absolute value of the frequency, i.e., for

each agent we set Cmin = 0 where

Cmin = Ck if |ωk|≤ |ωj| for all 1 ≤ j ≤ (D/2). (4.63)

For D = 4 this corresponds to

C̄1(ω1, ω2) =


0 if |ω1|≤ |ω2|,

1 if |ω1|> |ω2|.

(4.64)

Note that for this distribution C̄1(0, ω2) = 0 for all ω2. To see why this results in a

minimally stable distribution we compute the integral in Eq. (4.54) and observe that

Kc(q) for this distribution is minimized at q = 0 (see Fig. 4.2 ; For this minimally

stable distribution Kc(q) has been labelled as K
(min)
c (q), shown in purple). This

gives Kc = Kc(0) = 1/(πh(0)) = K
(−)
c .

Maximally Stable Distribution: We define a maximally stable distribution to

be one whose critical coupling constant for the onset of instability corresponds to

the upper bound of Eq. (4.60), i.e., Kc = K
(+)
c . In D = 4, such a distribution can

be set up similar to the case of the minimally stable distribution, by choosing the

σi to lie entirely in the subspace corresponding to the smallest absolute value of the
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frequency, i.e., by setting Cmin = 1 for each agent. This corresponds to

C̄1(ω1, ω2) =


1 if |ω1|≤ |ω2|,

0 if |ω1|> |ω2|.

(4.65)

As earlier, integration of Eq. (4.54) with the above C̄1 results in an expression for

Kc(q) which is again minimized at q = 0 (see Fig. 4.2; For this maximally stable

distribution Kc(q) has been labelled as K
(max)
c (q), shown in green). This gives

Kc = Kc(0) = 2/(πh(0)) = K
(+)
c . (An analogous construction of setting Cmin = 1

for each agent does not work to construct a maximally stable distribution in D ≥ 6.

While this implies that Cmin = 1 for each agent is not always a maximally stable

distribution, it does not imply that there is no such distribution in D ≥ 6. We leave

the construction of such a distribution to future work.)

In addition to yielding an upper bound on Kc, maximally stable distributions

are of particular interest because they surprisingly tend to arise naturally in our

numerical simulations performed on necessarily finite system size, even when other

equilibrium distributions F0(W,σ) are initialized (e.g., when the uniform σ distri-

bution is initialized); see Sec. 4.4.3. Note that it is not necessary for a maximally

stable distribution to have Cmin = 1 for each agent; for example, the maximally

stable distributions attained due to the long-time limit of finite-N -effects as shown

in Fig. 4.6 do not have Cmin = 1 for each agent.

The largest possible value of the critical coupling constant, K
(+)
c , beyond which

no stable incoherent equilibria exist, corresponds to the calculation of Kc performed
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Figure 4.2: Kc(q) vs q for the case of the minimally stable distribution (shown in

green, labelled K
(min)
c (q)) corresponding to Eq. (4.64) and the maximally stable

distribution (shown in purple, labelled K
(max)
c (q)) corresponding to Eq. (4.65) for

D = 4. Note that Kc(q) is always bounded by 1/[πh(q)] (shown as the red dashed
curve) and 2/[πh(q)] (shown as the orange dashed curve) as indicated in Eq. (4.59).
The critical coupling strength for the onset of instability, Kc for a given distribution
is given by the minimum value attained by Kc(q), which for K

(min)
c (q) and K

(max)
c (q)

is at q = 0. (K
(max)
c (q) appears to be approximately minimized at q ≈ 2.12, cor-

responding to a value of Kc(q) = 2.141. The true minima however is at q = 0,
corresponding to Kc(q) = 2.128)
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h(0) K
(−)
c K

(u)
c K

(+)
c

D = 2 (2π)−1/2 N/A 1.596 1.596
D = 4 (3/4)× (2π)−1/2 1.064 1.418 2.128
D = 6 (5/8)× (2π)−1/2 1.277 1.532 2.553
D = 8 (35/64)× (2π)−1/2 1.459 1.667 2.918

Table 4.1: Expressions for h(0) and numerical values of K
(−)
c , K

(u)
c and K

(+)
c for

D = 2, 4, 6 and 8. The expression for h(0) is obtained from Chapter 3, and the
values of the various critical coupling strengths are obtained from Eq. (4.66)

in Chapter 3 for D ≥ 4, as shown via the arrows marked in Fig.4.1. Thus, for D ≥ 4

we obtain

K(−)
c =

1

πh(0)
< K(u)

c =
D

(D − 1)πh(0)
< K(+)

c =
2

πh(0)
(4.66)

In particular, for the choice of the distribution of rotations matrices Eq. (4.19),

Chapter 3, presents an expression for h(0), which we use to give values of K
(−)
c , K

(u)
c

and K
(+)
c for the cases of even D ≤ 8 in Table 4.1.

In order to demonstrate that any Kc value between K
(−)
c and K

(+)
c can occur

depending on the equilibrium, we consider a particular simple example: For every

Wi in our randomly chosen W-ensemble, we determine σi according to either one

of the three protocols specified above with probabilities p(u) (for the uniform case),

p(+) (for the maximally stable case) or p(−) (for the minimally stable case), with

p(u) + p(−) + p(+) = 1 (4.67)

Using the expected value interpretation of C̄1, we thus obtain from Eqs. (4.61),
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(4.64) and (4.65)

C̄1 =


p(+) + 2p(u)/D if |ω1|≤ |ω2|,

p(−) + 2p(u)/D if |ω1|> |ω2|,

corresponding to

Kc = p(u)K(u)
c + p(+)K(+)

c + p(−)K(−)
c . (4.68)

Hence for D = 4, by choosing values of p(u,+,−), we can construct a distribution to

have any given value of Kc between K
(−)
c and K

(+)
c (We expect similar constructions

to exist for all even D ≥ 4). Furthermore, for any given Kc in the range Eq. (4.60),

Eqs. (4.67) and (4.68) represent only two constraints on the three parameters, p(u),

p(−) and p(+). Thus, for each value of Kc in the range K
(−)
c < Kc < K

(+)
c there

are an infinity of possible choices for p(u), p(+) and p(−) (i.e., an infinite number of

distribution functions) satisfying Eq. (4.68).

4.4 Macroscopic bursts and Instability-Mediated Resetting

In the previous section we considered N → ∞ and showed that, for even

D ≥ 4, the stability of incoherent equilibria depends on their associated equilibrium

distribution function, F . In particular, we observe a range of critical parameter

values Kc for instability onset from K
(−)
c to K

(+)
c = 2K

(−)
c , where Kc depends on

F . By definition, for any K < K
(−)
c all incoherent distributions are stable, and for

K > K
(+)
c all incoherent distributions are unstable.

We now return to the central question posed in Sec. 4.1, namely, how can we

reconcile the loss of the stability of an incoherent distribution at a critical coupling
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value of Kc < K
(+)
c with Fig. 4.1, which shows the attracting value of the magnitude

of the order parameter, |ρ|, characterizing the coherence of the agent population

for t → ∞? In particular, in Fig. 4.1, how is the time-asymptotic value for |ρ|

maintained at zero for K
(−)
c < K < K

(+)
c despite multiple incoherent equilibria

losing their stabilities at critical coupling strengths Kc < K?

4.4.1 Macroscopic bursts of coherence

To examine the aforementioned question, we first consider the following setup:

We initialize the system to a minimally stable incoherent equilibrium distribution

by setting Cmin = 0 for each agent (see Sec.4.3). This initial setup will be invariant

to evolution with a coupling strength of K < K
(−)
c . We then consider a sudden

increase in K to a value satisfying K
(−)
c < K < K

(+)
c .

The dynamics observed following this change of K is represented in Fig. 4.3(a),

for a numerical simulation of N = 106 agents in D = 4 dimensions, initialized to

the minimally stable distribution with Cmin = 0, and then numerically integrated

according to Eq. (4.2) with a coupling strength of K = 1.4 > K
(−)
c ≈ 1.064 (see

Table 4.1). In Fig. 4.3(a) we plot two quantities — in the orange solid curve we

present |ρ(t)|, and in the blue dashed curve we show the average value of Cmin over

all agents, 〈Cmin〉. Note the rapid rise and fall of |ρ| which is accompanied by a

change in value of 〈Cmin〉. This rapid change in 〈Cmin〉 indicates the evolution of

the system away from the initialized incoherent distribution (constructed to have

〈Cmin〉 ≈ 0) to a different different incoherent distribution with a larger value of
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Figure 4.3: Representative plots demonstrating the short-lived macroscopic burst of
coherence and the resulting IMR. (a) The magnitude of the order parameter (orange
solid curve) and 〈Cmin〉 (blue dashed curve) as a function of time for a system setup
with a minimally stable distribution corresponding to 〈Cmin〉 = 0 and evolved with
K = 1.4. Note the sharp rise and fall of |ρ|, i.e. the macroscopic burst of coherence,
accompanied by the increase of the value of 〈Cmin〉 (i.e., IMR). This results in an
increase of the critical coupling constant for instability onset of the new incoherent
distribution. Panels (b) and (c) show the order parameter evolution beginning with
the distribution function at the last time-step of (a) but with K increased to K = 1.6
and 2.0 respectively. The presence of a macroscopic burst of |ρ| in (c) and not in
(b) indicates that Kc has been reset to a value between 1.6 and 2.0. In panel (d)
|ρ|max indicates the largest value of |ρ| for systems initialized similar to (b) or (c)
following a discontinuous increase of the coupling constant to a value K plotted on
the horizontal axis. |ρ|max is macroscopically observable (i.e., distinguishable from
finite-N -induced fluctuations) for bursts of |ρ|, and approximately 0 for incoherent
steady-state distributions without any such burst. Hence (d) indicates that, by the
end of the simulation in panel (a), due to IMR the critical coupling strength has
been reset to Kc ≈ 1.75. See text for more details.
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〈Cmin〉.

To explain the origin and consequences of this short-lived macroscopic burst

of |ρ| we describe the evolution of the system in the space of distribution functions.

Let us consider a given incoherent steady-state distribution, corresponding to a

distribution F and having a corresponding critical coupling stability strength Kc for

K
(−)
c ≤ Kc < K

(+)
c (in the numerical example presented above, F was constructed

to be a minimally stable distribution with Kc = K
(−)
c ). Denote a distribution of

agents for a system initialized close to this incoherent steady-state distribution by

F + δF , for some perturbation δF . We then examine the expected dynamics for

evolution of the system under the dynamics of Eq. (4.2) for a coupling strength K

abruptly increased from K < Kc to Kc < K < K
(+)
c .

For almost every perturbation δF , the distribution F + δF will no longer lie

in the manifold of incoherent distributions M. Since the initially chosen incoher-

ent distribution is unstable at the increased value of K, for small t the system will

rapidly evolve away from the initial distribution, F + δF , at a rate governed by Eq.

(4.49), with the perturbation δF increasing as δFest, Re(s) > 0. This corresponds

to increasing distance away from the manifold of incoherent distributions, M, and

hence appears as the sharp increase in |ρ| described earlier (orange curve in Fig.

4.3(a)). Note, however, that for K ≤ K
(+)
c the analysis in Chapter 3 shows that

are no time-independent attractors with |ρ|> 0, and, further, our numerical experi-

ments indicate that there are no |ρ|> 0 time-dependent attractors (e.g., periodic or

chaotic). Hence the distribution function must evolve to a stable steady-state distri-

bution function on the manifoldM. Thus, in the space of distribution functions, the
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evolution of the system will follow a trajectory that begins near the initial incoher-

ent steady-state distribution inM, moves away fromM, and is then attracted back

towards M, but to a different incoherent steady-state distribution (corresponding

to some distribution F1) that is stable for the chosen coupling strength K. Thus,

observing this system at large finite N via the order parameter demonstrates an

initially small value of |ρ| near zero, which rapidly rises to a large (macroscopic)

value, and then falls back to a small value near zero as depicted in the representative

illustration Fig. 4.3(a).

This transition from the distribution F ∈ M to the distribution F1 ∈ M

with F1 6= F is not distinguishable solely by observation of the time-asymptotic

values of ρ, since both F and F1 correspond to incoherent steady-state distributions.

However, a signature of this transition is displayed in the transient dynamics of the

macroscopic observable ρ in the form of a rapid short-lived burst of |ρ| away from

its steady state value near zero.

4.4.2 Instability-Mediated Resetting

An important expected consequence of the above described behavior is an

‘Instability-Mediated Resetting’ of the system stability properties, which we de-

fine and describe as follows: The critical coupling constant of F1, denoted K
(1)
c ,

is necessarily greater than K. Hence, due to the evolution of the system from

F ∈M to F1 ∈M the critical coupling strength of the system has been reset from

Kc < K to K
(1)
c > K. This change in critical coupling strength without change
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in the time-asymptotic macroscopic steady-state of the system (i.e., the system is

on the manifold M corresponding to |ρ|= 0 at the initial distribution and at the

asymptotic final distribution) is what we call Instability-Mediated Resetting. To

demonstrate this change in critical coupling strength we choose the resulting distri-

bution at the end of the aforementioned simulation (corresponding to time t = 500

in Fig. 4.3(a)) as the initial distribution for the following two situations: (i) evolu-

tion with K = 1.6 < K
(+)
c ≈ 2.128, corresponding to Fig. 4.3(b), and (ii) evolution

with K = 2.0 < K
(+)
c , corresponding to Fig. 4.3(c). Note that in Fig. 4.3(b) |ρ|

and 〈Cmin〉 do not change significantly, whereas in Fig. 4.3(c) for K = 2.0 we see

a characteristic short burst of |ρ(t)|, accompanied by a change in 〈Cmin〉. Thus we

infer that 1.6 < K
(1)
c < 2.0, hence indicating this instability-mediated resetting of

the critical coupling constant for instability. To more precisely pin down the value

of K
(1)
c , we evolve the system for a range of values of K with each evolution having

the initial condition described earlier. In Fig. 4.3(d) we plot the maximum value of

|ρ| attained during the evolution as a function of K. We interpret Fig. 4.3(d) as

follows: For all values of K < K
(1)
c there is no burst in |ρ| and hence the maximum

value is near zero; for K > K
(1)
c the burst in |ρ| results in a large value of this

maximum, and this transition from zero indicates a value of K
(1)
c ≈ 1.75.

We use a similar setup to verify Eq. (4.66). We consider three series of

numerical simulations, corresponding to initial conditions of the minimally stable

distribution (constructed with 〈Cmin〉 = 0), the uniform σ distribution (setup as

described in Sec. 4.3), and the maximally stable distribution (constructed with

〈Cmin〉 = 1). For each initial condition, we evolve the system with an abrupt increase
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Figure 4.4: Transitions demonstrating the results derived in Eq. (4.66) for a system
with N = 106. For the minimally stable distribution (red circles), the uniform σ
distribution (blue triangles), and the maximally stable distribution (green stars),
the system is evolved for various values of K. The maximum value attained by
|ρ(t)| over a short evolution is shown as a function of K. For incoherent steady-
state distributions that undergo stable evolution at a given value of K, |ρ|max is
approximately zero, whereas instability of incoherent steady-state distributions re-
sults in a short-lived burst of coherence, resulting in a larger value of |ρ|max. The
theoretical predictions for the transitions to instability are shown in the respective
colors using vertical dashed lines, and agree well with the numerical results. (Note

that for K > K
(+)
c , |ρ|max corresponds to the stable state of |ρ|> 0 shown in Fig.

4.1 as opposed to the peak value during these short bursts.)
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from a coupling strength less than 0.5 at t = 0 to a given value of K and note the

maximum value of |ρ| attained during the evolution t ≥ 0. This is then repeated for

the same initial condition with a different value of K, over a range of values for K.

The results are then plotted for this maximum attained value of |ρ(t)| as a function

of K. As earlier, for K below the corresponding Kc this maximum value will be

approximately zero, and for K above Kc the rapid macroscopic burst of |ρ| will be

apparent with a larger maximum value of |ρ|. Thus we expect the onset of such

transient bursts for the three cases at the theoretically described values K
(−)
c , K

(u)
c

and K
(+)
c , respectively, according to Eq. (4.66). These values have been marked

with the vertical dashed lines in Fig. 4.4. Note the close agreement between these

theoretically predicted values and the numerically observed burst onset. We expect

improving agreement with increasing N . (Note that for K > K
(+)
c the maximum

attained value corresponds to the stable distribution with |ρ|> 0 as opposed to the

rapid rise and fall described earlier.)

In each of the above cases, for a system initialized to a distribution F , with a

corresponding critical instability coupling strength of Kc, we examined the case of an

abrupt increase in K from a value of K < Kc to a value K > Kc. The distribution

F remains invariant to evolution for K < Kc, and then, after the abrupt increase,

there is an initial repulsion away from the state with distribution F , followed by an

attraction back towards an invariant state with distribution F1 ∈M.

While the system state is away from M and is being attracted towards F1, if

the value of K is altered again to one greater than K
(1)
c , then the system will again

be repelled away from M. As the system is then attracted towards another dis-
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Figure 4.5: Evolution of |ρ(t)| for a system having N = 106 initialized at a minimally
stable incoherent steady-state distribution with slow temporally linear increase in
K shown in orange, and a sliding average shown in red. The temporal increase of
K is linear in time and is indicated by the horizontal axis at the top of the figure
panel. The vertical dashed lines correspond to K

(−)
c and K

(+)
c . For K ≤ K

(−)
c the

initialized steady-state distribution is stable and hence |ρ| maintains a value close

to zero. For K
(−)
c < K < K

(+)
c the system demonstrates enhanced fluctuations of

|ρ| about increased, nonzero values that are apparently sustained by the continuous

increase of K. For K ≥ K
(+)
c no incoherent distribution is stable, and |ρ| attains a

larger value similar to Fig. 4.1
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tinct distribution F2 (with a critical coupling strength of K
(2)
c > K

(1)
c ), the coupling

strength can be varied again to K > K
(2)
c , resulting in additional delay in the attrac-

tion towardsM. In this fashion, if we consider a slowly increasing coupling strength,

then we can delay this attraction towards the manifoldM for large amounts of time,

resulting in |ρ(t)|> 0 for extended periods of time without any such steady state

existing at the corresponding coupling strength. This phenomenon is demonstrated

in Fig 4.5, where we consider a linearly increasing coupling constant K, and plot |ρ|

as a function of K and time. We observe |ρ| to show a small fluctuating increase

at K ≈ K
(−)
c , which is sustained until K ≈ K

(+)
c , after which |ρ| approaches the

steady state value of |ρ|> 0 shown in Fig. 4.5. If we consider successively slower

rates of increase of K, the resulting plot of |ρ| as a function of K displays smaller

fluctuations from |ρ|= 0 sustained through K
(−)
c < K < K

(+)
c . In the limit of an

infinitely slow rate of increase of K, we expect that |ρ| will remain at zero for all

K < K
(+)
c , reproducing Fig. 4.1.

4.4.3 Resetting due to finite size
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So far we have restricted our analysis to the N → ∞ limit, wherein several

incoherent equilibria in the manifold M can simultaneously be stable to pertur-

bations orthogonal to M and are neutrally stable to perturbations in M. Hence,

a small perturbation within M can move an incoherent equilibrium in M to an-

other nearby incoherent equilibrium in M, and many such small perturbations can

cumulatively cause a large change from an initial incoherent distribution. As we

have observed earlier, transient dynamics away from M appear to shift the critical

coupling strength for loss of stability towards K
(+)
c . Thus, we suspect that per-

turbations away from M are biased towards maximally stable distributions. Since,

in practice, N is always finite it is of interest to consider the effect of finite N .

Viewing the difference between N finite but large and N → ∞ as small, we can

regard the system with N finite but large as being akin to the N →∞ limit system

with small added perturbations. Thus we might suspect finite, large N to induce

a slow secular evolution of the N → ∞ incoherent equilibria towards a maximally

stable distribution within M. In particular, we observe that for large-but-finite N ,

a system initialized at any stable incoherent equilibrium undergoes slow evolution

to a equilibrium corresponding to a maximally stable distribution. We demonstrate

this effect in Fig. 4.6(a), where we plot 〈Cmin〉 as a function of time for evolution

of N = 103 agents initialized to the minimally stable distribution with 〈Cmin〉 = 0,

evolved with K = 0.9 < K
(−)
c . Note that 〈Cmin〉 undergoes slow growth and even-

tually asymptotes to a large value of 〈Cmin〉 ≈ 0.7 at very long times. After this

long time, the large value of 〈Cmin〉 indicates that a large fraction of agents have

moved to the subspace corresponding to the lowest frequency of rotation, similar to
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our setup of the maximally stable distribution in Sec. 4.3. From this state if we

consider sudden changes in K to values in the range of K
(−)
c < K < K

(+)
c , we do not

observe any characteristic burst in the value of |ρ|, indicating that our distribution

was indeed a maximally stable distribution.

Since this evolution towards a maximally stable distribution appears to be

mediated by finite-N effects, we expect this evolution to become progressively slower

as N increases, with stationarity of the incoherent distributions restored as N →∞.

This picture is confirmed numerically Fig. 4.6, where it can be clearly seen that for

a larger value of N = 104 initialized as earlier with 〈Cmin〉 = 0 and evolved at

K = 0.9 < K
(−)
c takes about ten times longer time to reach an asymptotic state for

〈Cmin〉 (Note the different scales on the x-axes of the plots). Thus, for N large but

finite, if one were to initialize an incoherent equilibrium distribution with K < Kc

(where Kc is calculated in the N →∞ limit) and wait for sufficiently long time, then

one could continuously increase K without the incoherent distribution becoming

unstable until K reaches K
(+)
c .

4.5 Conclusions

In this chapter we look at a D-dimensional generalization of the Kuramoto

model. Unlike the case of the standard (D = 2) Kuramoto model, we have shown

that for even D ≥ 4 there are an infinite number of time-independent distributions

of agents (defining the manifold M) that correspond to the completely incoherent

distribution (i.e., having |ρ|= 0) in the infinite system-size limit (Sec. 4.2). We
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then proved that these distributions demonstrate different stabilities, with each

distribution being stable for coupling strengths below a critical coupling strength

Kc corresponding to the given distribution (Sec. 4.3). Further, for each value of

Kc within a range K
(−)
c < Kc < K

(+)
c = 2K

(−)
c there exists an infinite number of

distributions that become unstable as K is increased through Kc. In Sec. 4.4 we

show that these properties result in transitions within the |ρ|= 0 manifold M of

steady-state distributions as K is increased in the range [K
(−)
c , K

(+)
c ], which leave

their signatures as short-lived macroscopic bursts in the value of |ρ| (Fig. 4.3).

These transitions imply a change in the microscopic state of the system, with the

distribution after a transient having a significantly larger critical coupling strength

for instability due to an Instability-Mediated Resetting of the distribution function

(Fig. 4.3(d)). While for all K < K
(+)
c the only stable steady-state distributions are

on M, we demonstrate (Fig. 4.5) that considering a linearly increasing K results

in a small positive fluctuating value of |ρ(t)| (and hence indicating evolution not

on M) which can be sustained for long periods of time as K is linearly increased

through the range Kc < K < K
(+)
c (where Kc refers to the originally initialized

distribution); also, these fluctuations in |ρ| become smaller as the rate of increase of

K with time becomes slower. Since there are a multitude of stable distributions on

M, with neutral stability to perturbations in M, noise can cause slow evolution of

distributions inM. We observe such slow evolution due to noise induced by finite-N

effects (Fig. 4.6), which evolves the system towards a maximally stable distribution.
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Chapter 5: Complexity Reduction Ansatz for Systems of Interacting

Orientable Agents: Beyond The Kuramoto Model

The dynamics of systems with many coupled dynamical agents is a subject

of increasing importance with a very broad range of applications. Much of the

progress in this field has flowed from the discovery of solvable paradigmatic ‘toy’

systems. In many such systems, the agents are assumed to have one-dimensional

dynamics, and a certain class of such systems has been shown to be in some sense

‘solvable’ via a novel analytic technique. In our work we consider a more general

class of dynamical systems of coupled agents that may have arbitrary dimension.

This is a significantly broader class of systems that contains, but is not limited to

the previously described class of systems with one-dimensional agents. We then

demonstrate that in this broader class of dynamical systems we can construct an

analogous technique that can be used to solve such systems. Our method provides

analytic techniques to allow previously inaccessible mathematical analyses of these

systems. We give significant examples applying our method to large systems of

interacting higher-dimensional agents, with a particular focus on the Kuramoto

model generalized to higher dimensions.
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5.1 Introduction

Models of systems of many coupled dynamical agents are useful tools for study-

ing a very wide variety of phenomena [68]. Examples include flashing fireflies [5,6],

circadian rhythms of mammals [7, 8], oscillating neutrinos [14], arrays of Josephson

junctions [12], oscillation of footbridges [43], biochemical oscillators [40,85], power-

grids [10, 11], collections of neurons [22, 25, 44], flocking dynamics [79–81, 86] and

others. In many cases the states of the individual agents can be described by a sin-

gle angle-like variable, θ. This class of model systems includes situations for which

the dynamical agents are oscillators [68], neurons [22, 25, 44] or robots moving on

a two-dimensional plane [79], among others. Many such models, possibly involving

network-based interactions [47,87], such as the Kuramoto model [2], the Kuramoto-

Sakaguchi model [87,88], and models of theta neurons [22] among others [19], reduce

to the form

θ̇i = ω(ηi, {θ}, t) +
1

2ι
[H(ηi, {θ}, t)e−ιθi −H∗(ηi, {θ}, t)eιθi ], (5.1)

where θi represents the state of the ith agent, ηi is a (possibly vector) constant pa-

rameter that is associated with the ith agent, ω(ηi, {θ}, t) is its “natural frequency”,

N is the total number of agents, and H(ηi, {θ}, t) is a common field that acts on

each agent, dependent on the agent’s parameter ηi, and {θ} indicates a dependence

on the set of states {θ1, . . . , θN} in the form of an average over i of a function of the

angle θi.
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For example, the well-studied Kuramoto model [2, 3] can be expressed in the

form of Eq. (5.1) by choosing H(ηi, {θ}, t) = N−1
∑

j exp(ιθj), independent of

ηi, and choosing ω(ηi, {θ}, t) to independent of {θ} and t, allowing ω(ηi, {θ}, t)

to be replaced by ωi. Reference [18] introduced an ansatz to analytically achieve

substantial reductions in the complexity of problems of the type exemplified by Eq.

(5.1) in the limit of a large number of agents (N →∞). Subsequently, this reduction

has been applied in studies of a wide variety of systems (e.g., Refs. [8, 12,22,25,43,

44,52,89]).

Several flocking models employ the Kuramoto model (e.g., Refs. [79, 80, 86])

to describe orientational alignment of the velocities of individuals in a flock. Since

the standard Kuramoto model (in common with other models conforming to the

general form of Eq. (5.1)) describes the dynamics of scalar angles, these models

are restricted to describing flock dynamics in a two-dimensional plane. Other work

has shown that the Kuramoto model can be generalized to flocks moving in three

and higher-dimensional space [72, 73, 82, 90–92]. In this case each agent’s state is

assumed to be specified by a unit vector σi(t) in the D-dimensional space. Alter-

nately we may think of σi as specifying a point on the unit sphere in D-dimensional

space. Reference [82] notes that the vector σi can be thought of as representing the

opinion of an individual in a group, or the orientation of the velocity of a member

of a flock. (For the case of flocking of birds, fish or flying drones, the generalization

to D = 3 is of most interest.) For D = 2, the unit vector σi is determined by

its scalar orientation angle θi specifying a point on the unit circle, thus recovering

the previous model, Eq. (5.1) (see Sec. 5.2). References [93–96] have also studied

142



the Kuramoto model and its generalizations to higher dimensions in the contexts

of continuous-time consensus protocols, multi-agent rendezvous, distributed control,

and coalition formation. In this chapter we present a new technique that enables an-

alytic treatment of the dynamics of a large class of systems with higher-dimensional

agents, including the aforementioned systems. In particular, in this chapter we focus

on the continuum limit of infinitely many higher-dimensional agents, allowing us to

use ideas similar to those developed previously in the context of Eq. (5.1).

The remainder of the chapter is organized as follows: In Sec. 5.2 we construct a

generalization of Eq. (5.1) to arbitrary dimensions and describe the infinite system

size limit in such systems. Then, in Sec. 5.3 we extend the ansatz of Ref. [18],

resulting in a simplified analytic description of this generalized class of systems. In

Sec. 5.4 we demonstrate the utility of our results to example systems, with particular

focus on the Kuramoto model generalized to higher dimensions. Finally, in Sec. 5.5

we conclude with a discussion and summary of our results.

5.2 Generalizing Kuramoto-like Agents to Higher Dimensions

In Chapters 3 and 4, we constructed a generalization of the Kuramoto model

to D dimensions. Here we consider an even more general setup, where we consider

a generalization to Eq. (5.1) to a system in D dimensions,

σ̇i = [ρ(ηi, {σ}, t)− (σi · ρ(ηi, {σ}, t))σi] + W(ηi, {σ}, t)σi, (5.2)
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where for each i, σi(t) is a real D-dimensional unit vector, |σi(0)|= 1, ρ(ηi, {σ}, t)

is an arbitrary real D-dimensional vector, which can be thought of as a common

field that affects each agent in an ηi dependent fashion, W(ηi, {σ}, t) is a real D×D

antisymmetric matrix, ηi is a (possibly vector) constant parameter associated with

each agent, and, as earlier, {σ} indicates a dependence on the set of all states

{σ1, . . . ,σN} in the form of the average over i of a function of the unit vectors σi

(we further quantify this dependence on {σ} later). For example, in the context

of flocking agents in D dimensions, σi represents the orientation of the ith agent,

ρ(ηi, {σ}, t) represents a ‘goal’ orientation to which the ith agent attempts to align

itself, and W(ηi, {σ}, t) represents a fixed bias, or a systematic error to the agent

dynamics causing the agent to head in a direction that deviates from the direction

of ρ. Note from the form of Eq. (5.2) that the dot product of the right-hand side

of Eq. (5.2) with σi is identically zero, so that d|σ|/dt = 0, as required by our

identification of σ as a unit vector. Thus the dynamics of each σi is restricted to

the (D− 1)-dimensional surface, S, of the unit sphere, |σ|= 1. For D = 2, choosing

σi = (cos θi, sin θi)
T , ρ(ηi, {σ}, t) = (Re[H(ηi, {θ}, t)], Im[H(ηi, {θ}, t)])T and

W(ηi, {σ}, t) =

 0 ω(ηi, {θ}, t)

−ω(ηi, {θ}, t) 0

 ,

reduces Eq. (5.2) to Eq. (5.1), thus justifying Eq. (5.2) as a D-dimensional gener-

alization of Eq. (5.1).

We now consider the limit of a large number of agents, and denote by F (σ, η, t)
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the distribution of agents on S, such that F (σ, η, t)dD−1σdη is the fraction of agents

that lie in the (D − 1)-dimensional differential element dD−1σ on the surface S

centered at σ at time t, and have an associated parameter η within the differential

element dη centered at η. Since the associated parameter η for each agent is time

independent, we define

g(η) =

∫
S
F (σ, η, t)dD−1σ,

and

f(σ, η, t) = F (σ, η, t)/g(η).

Noting that Eq. (5.2) specifies the vector field of the flow controlling the

dynamics of the distribution f , we write a continuity equation for f ,

∂f(σ, η, t)/∂t+ ∇S · [f(σ, η, t)v(σ, η, t)] = 0, (5.3)

where the velocity field v(σ, η, t) is given by v(σ, η, t) = (ρ(η, t)− (σ · ρ(η, t))σ) +

W(η, t)σ, and ∇S ·A represents the divergence of a vector field A, along the surface

S. This can be done if the dependence of ρ and W on {σ} can be specified as a

functional of F (σ, η, t) that is not explicitly dependent on σ. (A simple example

of such a dependence on {σ} would be the average value of p(σi) for some given

function p , which can be written as
∫ ∫

p(σ)F (σ, η, t)dσdη.) Following Appendix

A, Eq. (5.3) can be rewritten as

(5.4)∂f/∂t+ [∇Sf(σ, η, t)− (D − 1)f(σ, η, t)σ] · ρ(η, t)
+ (W(η, t)σ) ·∇Sf(σ, η, t) = 0,
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where ∇SΦ is the gradient of a scalar field Φ projected on the surface S.

5.3 Analytic Solution in the Limit of Large Systems

For D = 2, Refs. [18, 19] demonstrated that the ansatz that f(θ, t) is in the

form

f(θ, η, t) =
1

2π

1− |α(η, t)|2

|eιθ − α(η, t)|2
, (5.5)

where α(η, t) is a complex scalar function of η and t, |α(η, 0)|< 1, reduces Eq. (5.1)

to the following θ-independent form

∂α

∂t
+ ιη +

1

2

(
H∗(η, t)α2(η, t)−H(η, t)

)
= 0. (5.6)

The form Eq. (5.5) represents an invariant manifold in the space of possible distri-

butions f , that satisfy the continuity equation Eq. (5.3) for D = 2. Furthermore,

previous work [19, 20] has shown that initial conditions for f are attracted to the

invariant manifold Eq. (5.5) for a large class of possible models of the form Eq.

(5.1). Thus Eq. (5.5) can be used to greatly simplify the study of the long-term

dynamics of these systems.

Here we present an ansatz demonstrating the existence of a similar invariant

manifold for Eq. (5.3) in any dimension D. Noting that eιθ can be interpreted as a

unit vector in the complex plane and that the complex quantity α can similarly be

interpreted as a two-dimensional vector of its real and imaginary parts, based on Eq.

(5.5) we posit the following guess for the form of f(σ, η, t) for arbitrary dimension
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D,

f(σ, η, t) =
ND(α(η, t))

|σ −α(η, t)|βD
, (5.7)

where α is a real D-dimensional vector such that |α(η, 0)|< 1, βD is a yet-to-be-

determined constant, and ND(α) is a scalar normalization chosen to ensure that

∫
S
f(σ, η, t)dD−1σ = 1. (5.8)

Inserting Eq. (5.7) into the continuity equation in Eq. (5.4), we obtain after some

algebra,

(5.9)
(1 + |α|2 − 2α · σ)∂tND(α)− βDND(α)(α · ∂tα− σ · ∂tα)

+ND(α){βD(α · ρ) + [2(D − 1)− βD](α · σ)(ρ · σ)

− (D − 1)(ρ · σ)(1 + |α|2)− βDσ ·Wα} = 0.

For our ansatz Eq. (5.7) to apply, the above equation must hold for all σ. Focusing

on the term in Eq. (5.9) that is quadratic in σ, i.e., ND(α)[2(D−1)−βD](α·σ)(ρ·σ),

since in general α and ρ will not be zero for all t, we require that

βD = 2(D − 1). (5.10)

With βD in Eq.(5.7) determined, we now obtain the normalization constant

ND(α). To perform the integral in Eq. (5.8), without loss of generality we take

the vector α to be along the ẑ axis. For an arbitrary point σ on S, we denote

the angle between σ and ẑ by θ. In particular, we note that the distance of the

point σ from the ẑ axis is sin θ. For a coordinate system on the surface S, we
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use θ as one of the coordinates, denoting position with respect to ẑ on the sphere.

From the symmetry of f in Eq.(5.7) about the direction α, we see that the integrals

over these remaining coordinates give the surface area SD−1 sinD−2 θ of the (D − 2)

dimensional surface of a sphere with radius sin θ embedded in (D − 1) dimensions,

where SD−1 = (2π)(D−1)/2/Γ((D − 1)/2) is the area of the sphere of unit radius in

D − 1 dimensional space. Thus Eq. (5.8) becomes

1 = SD−1

∫ π

0

ND(α) sinD−2 θdθ

(1 + |α|2−2|α|cos θ)D−1
, (5.11)

which can be evaluated to give

1 = K−1
D

ND(α)

(1− |α|2)D−1
, (5.12)

where KD is a constant dependent only on D. This results in

ND(α) = KD(1− |α|2)D−1, (5.13)

giving the form of the ansatz for arbitrary dimensions as

f(σ, η, t) = KD
(1− |α(η, t)|2)D−1

|σ −α(η, t)|2(D−1)
, (5.14)

which, for D = 2, agrees with Eq. (5.5).

To determine whether the ansatz Eq. (5.14), is consistent with Eq. (5.9) we

insert it into Eq. (5.9). We find that the ansatz with βD given by Eq. (5.10) indeed

148



is a solution of Eq. (5.9) and that Eq. (5.9) reduces to the following equation for α

(see Appendix B.1 for details),

∂tα =
1

2
(1 + |α|2)ρ− (ρ ·α)α+ Wα. (5.15)

The key point is that Eq. (5.15) does not involve σ (and remarkably, also does

not involve any dependence on D). Thus, analogously to Eq. (5.6), we have a

σ-independent description of the dynamics of α. This is our main result.

We note that for initial conditions with |α|< 1, |α| will remain less than 1 at

all finite times since from Eq. (5.15) ∂t|α|= 0 at |α|= 1, thus verifying that f given

by Eq. (5.14) does not diverge for t <∞.

5.4 Example Systems

We now consider a few examples illustrating the utility of the generalized

ansatz, Eq. (5.14), to systems of the form given in Eq. (5.2). We detail the particular

example of the Kuramoto model generalized to D dimensions (introduced in Chapter

3) as representative of the utility of our main result Eq. (5.15), and thereafter briefly

mention applications of this result to a variety of other systems.

5.4.1 The Kuramoto Model Generalized to Higher Dimensions

A generalization of the Kuramoto model with homogenous oscillators to arbi-

trary dimension was introduced by Olfati-Saber in 2006 [82] in the context of flocking

dynamics, consensus protocols, and opinion dynamics. We generalized this to het-
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erogeneous systems in Chapter 3. For generalization to D dimensions, a system

order parameter, z, can be defined as

z(t) =
1

N

∑
i

σi(t). (5.16)

The magnitude of z(t) is a measure of the coherence of the set of agents {σ}. The

common field ρ is then defined as the ηi-independent function,

ρ(η, {σ}, t) = Kz(t) = (K/N)
∑
i

σi(t), (5.17)

whereK is a coupling constant. By interpreting the vector parameters ηi in W(ηi, {σ}, t)

as the D(D− 1)/2 independent elements of a D-dimensional antisymmetric matrix

Wi, we can replace g(η)dη in integrals by G(W)dW where G(W) is a distribution of

antisymmetric matrices. In cases such as these where W(ηi, {σ}, t) is independent

of {σ} and t, we interpret W(ηi) = Wi as the “natural rotation” of σi.

In the limit of infinite system size, with a distribution of agents given according

to Eq. (5.14),

z(t) =

∫
S
F (σ,W, t)σdD−1σdW,

(5.18)
=

∫
dWG(W)α(W, t)/|α(W, t)|

×
∫ π

0

KD(1− |α(W, t)|2)D−1 cos θ sinD−2 θdθ

(1 + |α(W, t)|2 − 2|α(W, t)|cos θ)D−1

For D = 2 (i.e, the original Kuramoto model) Eq. (5.18) evaluates to give

ρ(t) = Kz(t) = K
∫
dωg(ω)α(ω, t). Equation (5.15) is then equivalent to Eq. (6)
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from Ref. [18]. For D = 3, the integral in Eq. (5.18) gives

(5.19)
ρ = K

∫
dWG(W)α(W, t)/|α(W, t)|

×
[
2|α|(1 + |α|2) + (1− |α|2)2 log

(
1− |α|
1 + |α|

)]/
4|α|2 .

This now allows us to use Eq. (5.15) with some given G(W) to numerically integrate

for the dynamics of α, and the dynamics of the order parameter ρ.

Using this simplification, we can efficiently simulate the dynamics of the full

system of agents governed by Eq. (5.2). We first focus on the case of homogenous

agents, i.e., identical natural rotations for each agent, G(W) = δ(W−W0), where

δ(·) is the Dirac-delta function. We can then change to a rotating basis in which

the natural rotation term of each agent is zero, W0 → 0. This makes the W-

integral in Eq. (5.18) trivial, allowing a direct representation of ρ in terms of α.

Further, α is only dependent on time (rather than W and t). This represents a

very large simplification in the complexity of the dynamics of the system of agents,

since Eq. (5.15) is now a single D-dimensional ordinary differential equation which

represents the collective dynamics of the N →∞, D-dimensional system of coupled

differential equations in Eq. (5.2). The utility of this result is demonstrated for

D = 3 in Fig. 5.1(a), where we show (plotted in black) the time-series for |ρ(t)| as

generated from a system of N = 5000 agents (approximating the N → ∞ limit),

compared with the time-series generated from the theory derived in Eq. (5.15)

(orange dashed curve). The initial condition for the full system was chosen such

that the agents were uniformly randomly distributed on the sphere. For the theory

derived in Eq. (5.15), i.e., the reduced equations, the initial value of α was chosen to
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have magnitude 0.01 in an arbitrary direction. Note the remarkably close agreement

between the black and the orange dashed curve, demonstrating that the dynamics

on the reduced manifold of Eq. (5.14) indeed gives the large-N dynamics of the full

system of interacting agents.

For the case of heterogeneous agents, α in Eq. (5.18) depends on W, and we

perform the integral in a Monte-Carlo fashion. We randomly choose NW values of W

from the given distribution G(W) and simulate the dynamics of the corresponding

α(W)s. These randomly chosen α(W)s are then used as the Monte-Carlo samples

to evaluate z according to Eq. (5.18), simulating the dynamics of the system in the

N →∞ limit by only simulating the dynamics of NW variables. Here we choose an

isotropic distribution G(W) constructed by choosing each upper triangular element

from identical independent normal distributions with zero mean and unit variance,

and choosing the remaining elements to make W antisymmetric. Results are shown

in Fig. 5.1(b) for D = 3, where NW = 500 Monte-Carlo samples were chosen

to evaluate the |ρ(t)| curve via the theory in Eq. (5.15), and are compared with

the curve obtained for simulating the dynamics of the full system of equations in

the N → ∞ limit, approximated by a simulation of N = 5000 agents. Note how

simulating the dynamics of NW � N Monte-Carlo samples yields a smooth curve

approximating the noisy curve generated by simulating the individual dynamics of

N = 5000 agents. Initial conditions for the full system were chosen as a bimodal

distribution of σis, independent of the corresponding Wi, with the two peaks being

anti-podal to each other, hence representing a distribution explicitly not on the

manifold dictated by Eq. (5.14). The initial condition for the reduced equations,
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i.e., Eq. (5.15) were chosen to be uniform on a sphere of radius 0.01, corresponding

to an approximately uniform distribution of f(σ, η, t) in σ. Despite not lying on the

invariant manifold described by Eq. (5.14), we observe that the dynamics of the full

system rapidly approach the dynamics as predicted by Eq. (5.15) for the N → ∞

limit for dynamics on the invariant manifold. This indicates that for the case of

heterogeneous agents the invariant manifold Eq. (5.14) is attracting, as has been

proven for the case of D = 2 [19]. Full system simulations with initial conditions

described by a uniform distribution in σ (and hence lying on the invariant manifold

Eq. (5.14) for |α|= 0) yielded a curve that is not discernibly different from the

curve presented in Fig. 5.1(b).

5.4.2 Applications of Eq. (5.15) to previous results on the General-

ized Kuramoto model

As demonstrated in Fig. 5.1, numerical integration of the dynamics on the

invariant manifold, via Eq. (5.15) closely reproduces the time evolution of the order

parameter of the Kuramoto model generalized to higher dimensions (Eq. (5.2) for

ρ according to Eq. (5.19)). As we demonstrate in Fig. 5.2, this close similarity

between a simulation of the full N -agent dynamics and the simulation of the reduced

equation Eq. (5.15) holds at all values of the coupling constant K. This allows us

to recreate the discontinuous phase transition of the Kuramoto model generalized

to 3 dimensions reported in Chapter 3 (The continuous phase transition observed

through reduced equations of the form Eq. (5.15) for the standard Kuramoto model
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(a)

(b)

(c)

Figure 5.1: (a),(b): Comparison between the dynamics of the magnitude of the
order parameter, |z|, as a function of time via full system modeling of the gener-
alized Kuramoto model with D = 3 (Eq. (5.2) for ρ given by Eq. (5.19)) using
N = 5000 agents shown in black, with the modeling of the reduced differential
equation Eq.(5.15) plotted as the orange dashed line. K = 2 for both figures. (a)
is the case of homogenous agents, i.e., G(W) = δ(W −W0). (b) is the case of
heterogeneous agents, where the distribution G(W) is nonsingular and chosen as
described in the main text. Only NW = 500 Monte-Carlo samples were required to
produce the curve for the reduced system of equations, representing the N → ∞
limit of the full system, approximated by the noisy curve generated using N = 5000
agents for the full system. (c) demonstrates similar agreement for the case of hetero-
geneous agents in D = 4, where the system is evolved at K = 1.7 from the uniform
incoherent distribution as the initial condition. N = NW = 106 was used for nu-
merical integration of the two curves. Note how the reduced equations capture the
transient behavior of the Instability-Mediated Resetting phenomenon (introduced
in Chapter4). Since the initial finite-size noise is different in the two cases, in order
to make the curves for the full system and the reduced equations lie on each other,
we shift them in time to align them. See text for further details of initial conditions
used.
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Figure 5.2: A simulation of the phase transition to coherence via numerical integra-
tion of Eq. (5.2) for ρ given by Eq. (5.19) representing the full system dynamics with
N = 5000 (shown in the black triangular markers), and via numerical integration
of Eq. (5.15) representing the dynamics on the invariant manifold with NW = 500
(shown as the orange inverted triangles) for D = 3. For each value of K, the system
is evolved until |ρ| reaches an equilibrium. Note the close agreement between the
time asymptotic values of |ρ| at all values of K. The distribution G(W) was chosen
as described earlier for heterogeneous agents.

in two dimensions has been demonstrated and discussed in Ref. [18]).

Chapter 4 demonstrated that the Kuramoto model generalized to even dimen-

sions D ≥ 4 exhibits the unusual behavior of Instability-Mediated Resetting: If

the coupling strength K is increased abruptly while remaining below the critical

coupling strength for the onset to coherence, the Kuramoto model displays a short

burst of coherence (see Ref. Chapter 4 for further details). This is illustrated by

the results shown in Fig. 5.1(c). In Fig. 5.1(c) the initial conditions for the σi in

the full system simulation were chosen independently to be uniformly random over
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the sphere |σ|= 1. For the reduced equations, initial conditions for α were chosen

similar to the earlier discussion on heterogeneous agents, i.e., uniform on a sphere

of radius 0.01, corresponding to an approximately uniform distribution of f(σ, η, t)

in σ. Figure 5.1(c) demonstrates that the dynamics of Eq. (5.15), representing the

dynamics on the invariant manifold described by Eq. (5.14) (shown in the dashed

orange curve), accurately captures these short bursts of coherence, further demon-

strating the capability of Eq. (5.15) in capturing the transient dynamics of the

Kuramoto model generalized to higher dimensions.

To demonstrate the applicability of Eq. (5.15) in improving theoretical un-

derstanding of such systems, we present an example of a stability analysis of the

Kuramoto model generalized to three dimensions via a study of the dynamics on the

reduced manifold Eq. (5.14). In particular, we study the stability of the completely

incoherent state for a system of heterogeneous agents, wherein the initial condition

of each agent σi is to be distributed independently and uniformly over the sphere

|σ|= 1. In the N → ∞ limit this is the distribution F (σ, η, t) = g(η)/(4π) corre-

sponding to setting |α|= 0 in Eq. (5.14). [In the context of the stability analysis

presented in Sec. 3.3.2 of Chapter 3, we are considering the case of p = 0]. Thus

we are interested in the stability analysis of Eq. (5.15) about |α|= 0. Performing a

first order expansion of Eq. (5.15) for |α|� 1,

∂α(W, t)/∂t = ρ(t)/2 + Wα(W, t). (5.20)
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Assuming α(W, t) = α(W)est, we obtain

α(W) =
1

2
(s1−W)−1ρ. (5.21)

Note that in the limit of |α|� 1, Eq. (5.19) can be written as

ρ =

(
4K

3

)∫
dWG(W)α(W). (5.22)

Multiplying Eq. (5.21) by (4/3)G(W) and integrating, we obtain

ρ =
2K

3

∫
(s1−W)−1ρdW. (5.23)

Note that in three dimensions the linear transformation Wσ can be represented as

the cross product ω × σ. Without loss of generality we may choose a basis that

block-diagonalizes W, corresponding to the choice of ω = ωẑ and

W = ω


0 −1 0

1 0 0

0 0 0

 .

Thus,

(s1−W)−1 =


s

s2+ω2
ω

s2+ω2 0

−ω
s2+ω2

s
s2+ω2 0

0 0 1
s

 .

This can now be inserted into Eq. (5.23), and written in a basis independent format
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as

(5.24)
ρ =

∫
G(ω)

2K

3

(
(ρ · ω̂)ω̂

s
+
ω × ρ
s2 + ω2

+
s

s2 + ω2
(ρ− (ρ · ω̂)ω̂)

)
dω.

We choose the distribution G(ω) to be an isotropic distribution (i.e., a distribu-

tion that is invariant to orthogonal transformations) which can hence be written

as G(ω)dω = g(ω)U(ω̂)dωdω̂, where U(ω̂) = 1/(4π) represents the isotropic dis-

tribution of rotation directions, and g(ω) is the distribution of the magnitudes of

rotation (see Chapter 3 for further discussion on the choice of this distribution and

its implications). Integrating over the rotation directions ω̂ in Eq. (5.24) gives us

1 =
2K

3

(
1

3s
+

2s

3

∫
g(ω)dω

s2 + ω2

)
, (5.25)

which is identical to the result obtained in Chapter 3. As discussed in Chapter 3,

the above equation implies that in the limit of small K,

s = 2K/9, (5.26)

indicating that this completely incoherent state loses stability at K = 0. Thus using

Eq. (5.15) allows us to perform the stability analysis of a state easily without having

to solve the partial differential equation of the dynamics of the distribution of agents

in both σ and t as was necessary in Chapter 3.
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5.4.3 Other Examples

Extensions appropriate to various contexts may be studied using Eq. (5.14).

For example, each of the agents in the model described above could have a

bias towards a particular subspace, such as birds in a flock that have a preference

to align parallel to the surface of the Earth. In this case, the common field of such

a system is then defined similar to Eq. (5.17) as

ρ(η, t) = K[(1− c)z + cΠz], (5.27)

where Π is the operator that projects onto the preferred subspace (e.g., if x̂, ŷ and ẑ

are unit vectors in rectangular coordinates with ẑ being vertical, then Π = x̂x̂T+ŷŷT

would represent the preference to align to a horizontal surface), and 0 ≤ c ≤ 1

models the strength of the preference. Writing z using Eq. (5.18), along with Eq.

(5.15) then represents the reduced equations for this problem.

Another extension to the Kuramoto model that is often studied is the Kuramoto-

Sakaguchi model [88]. In this model the sin(θj − θi) coupling term of the Kuramoto

model is replaced with sin(θj − θi + δ). A possible generalization of this to higher

dimensions, is represented by defining ρ as ρ = KRz, where R is a given rotation

matrix (for D = 2, R is the two-dimensional rotation matrix that rotates vectors

by an angle of δ).

Another D-dimensional generalization whose analysis can be facilitated by the

ansatz Eq. (5.14) is the consideration of time delay, ρ(t) = Kz(t − τ), as studied
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for D = 2 in Ref. [26].

Also, we note that interactions between multiple communities of Kuramoto-

like agents has received attention due to a variety of applications (e.g. Refs. [87,97,

98]), as well as the presence of interesting dynamics, such as chimera states [87]. For

example, for the case of homogenous natural rotations of Wξ within each community

ξ,

∂tαξ =
1

2
(1 + |αξ|2)ρξ − (ρξ ·αξ)αξ + Wξαξ, (5.28)

where the subscript ξ denotes quantities applying to community ξ. For a case of

generalizing the Kuramoto model, we define the order parameter zξ for community

ξ as the average orientation of that community, and take ρξ to be

ρξ =
∑
ξ′

Kξ,ξ′zξ′ ,

with Kξ,ξ′ representing the coupling between community ξ and ξ′. The order param-

eters zξ can be written in terms of αξ using Eq. (5.18) by writing the distribution

of rotations for the community ξ as δ(W −Wξ).

The Kuramoto model with the order parameter defined as Eq. (5.16) is the

globally-coupled Kuramoto model, wherein each agent is coupled to every other

agent. In two dimensions, network-based interaction of agents in Kuramoto-like

models have been solved for by an application of the ansatz Eq. (5.5) for a wide

range of network topologies, via a mean-field approach [47]. An analogous analysis

will apply for our generalized ansatz, Eq. (5.14), for network-based interactions of
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D-dimensional Kuramoto-like units.

5.5 Discussion and Conclusions

There are some strong differences between the case D = 2 and the case of

D > 2 that must be considered in general. In the case of D = 2, making the

additional assumption that g(η) is a suitable analytic distribution of the scalar pa-

rameter η (e.g., a Lorentzian distribution is often employed), allows the integral in

Eq. (5.18) to be performed via a contour integral, and hence requiring the dynamics

of α(η) according to Eq. (5.15) to be calculated for only one or a few particular

complex values of η [18]. In D = 2 this implies that many problems of the form Eq.

(5.1) with heterogeneous ηi reduce to a system of a small number of ordinary dif-

ferential equations in the N →∞ limit. For our generalization to higher dimension

(where η is now a vector parameter with at least two components), we are unable

to straightforwardly employ contour integration. Thus, while Eq. (5.14) represents

a strong reduction in the dimensionality of the dynamics as compared to the full

system in the N →∞ limit, i.e., Eq. (5.3), it is still not a ‘low-dimensional system’

in the sense of Ref. [18], since we must still calculate the dynamics of α(η, t) as a

function of the vector parameter η (as opposed to integrating η away via, e.g., a

Lorentzian assumption for g(η)).

For the case of homogenous systems, i.e., where g(η) is the Dirac-delta func-

tion, the dynamics of the full system Eq. (5.2) reduces to the single D dimensional

differential equation Eq. (5.15). For the particular case of the Kuramoto model
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generalized to higher dimensions in the manner given in Sec. 5.4.1, this exactly

reproduces recent results by Lohe [91] for the case of a finite number of homogenous

agents derived in the context of a generalization of the Watanabe-Strogatz (WS)

transform [99,100]. In 2014 Tanaka [92] considered a generalization of the Kuramoto

model with higher dimensional complex vectors. In this setup (which is different

from ours) he derived an extension of the Ott-Antonsen method in the context of

a generalized WS transform. In 2008, Pikovsky and Rosenblum [101] demonstrated

that there is a relationship between the WS transform and the Ott-Antonsen ansatz

in the case of the original (D = 2 in our notation) Kuramoto model. It is possible

that similar relationships may exist between our generalization of the Ott-Antonsen

ansatz Eqs. (5.14), (5.15) and the generalization of the WS transform described in

Refs. [91, 92] — we leave the study of this relationship to future work.

In conclusion, we have developed a technique to tackle the generalization of

several Kuramoto-like systems into higher dimensions. While our analysis has only

demonstrated the existence of an invariant manifold to the dynamics of Eq. (5.3),

from numerical experiments we observe for all examined examples of systems given

Eq. (5.2) with a continuous distribution g(η) that this manifold is attracting. That

is, initial conditions set up not satisfying Eq. (5.14) appear to be rapidly attracted

towards this invariant manifold. While, in the case of D = 2, it has been shown

analytically that, for a broad class of models of the form given by Eq. (5.1), this

manifold is a global attractor of the dynamics [19], proof of attraction for D >

2 remains an open problem. Given the wide applicability of Eq. (5.1) and its

rich variety of dynamical phenomena, we expect that the generalization to higher
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dimensions, Eq. (5.2), may be a useful model system, applicable to diverse situations

of interest, while remaining amenable to analysis via the methods developed in this

chapter.
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Chapter 6: Conclusions

The Kuramoto Model has been the subject of intense study over the last

few decades. This stems from the simplicity of the model allowing for detailed

mathematical study, while supporting complex dynamical behavior. In this thesis

we have discussed extensions of the Kuramoto model that allow for applications in

new setups, while remaining accessible to rigorous analysis.

In Chapter 2, we studied an extension of the Kuramoto model that describes

the dynamics of large networks of theta neurons. We used the Ott-Antonsen ansatz

to derive a set of reduced equations that exactly describe the dynamics of the collec-

tive behavior of the neurons in the network in the infinite size limit. The dynamics

described by these reduced equations were found to be in close agreement with the

full network of neurons in all cases. Thus, this reduced system of equations allowed

us to efficiently study system, including the effect of the network topology in terms

of the degree distribution and assortativity. In terms of the range of dynamical

behavior, we showed that the network of neurons displays three phases: resting

states, asynchronously firing states and synchronously firing states, the first two

of which appear as a fixed point for the order parameter, while the third appears

as a limit cycle for the order parameter. Remarkably, in networks with a skewed
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degree distribution, the synchronously firing state was found to only occur in net-

works with neutral or weak assortativity — moderate amounts of assortativity or

disassortativity pushed the network into asynchronously firing state instead.

In Chapter 3, we generalize the Kuramoto model to arbitrary dimensions,

describing a system of interacting, orientable units, whose state is completely de-

scribed by D-dimensional unit vectors. This is a natural generalization to consider

when studying agents whose state is higher than two dimensional, such as swarming

drones, flocking birds, opinion dynamics, classical D-dimensional spins, and several

others. One of the main results discussed in the chapter is that the nature of the

phase transition has a strong dependence on the dimensionality of the system. Odd-

dimensional generalizations of the Kuramoto model display a non-hysteretic, discon-

tinuous phase transition to coherence that occurs as the coupling strength increases

through zero. In contrast, even-dimensional generalizations (including the standard

Kuramoto model) display a continuous phase transition to coherence at a positive

critical coupling strength. To further motivate the application of our results on

swarming and flocking behavior we extended our model to describe extended-body

agents; this extension continued to demonstrate the remarkably different behavior in

odd and even dimensions, indicating that our results apply not just to the Kuramoto

model, but more generally to aligning agents in two and three dimensions.

Chapter 4 discusses the particular case of even dimensional generalizations to

the Kuramoto model. Unlike the case of the standard (D = 2) Kuramoto model,

we showed that for even D ≥ 4 there are an infinite number of time-independent

distributions of agents (defining the manifoldM) that correspond to the completely
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incoherent distribution (i.e., having |ρ|= 0) in the infinite system-size limit. Further,

we showed that the distributions on this manifold have varying critical coupling

strengths Kc, lying in the range K
(−)
c < Kc < K

(+)
c = 2K

(−)
c , and conversely, for

each Kc within the range K
(−)
c < Kc < K

(+)
c there is a distribution that loses its

stability at that coupling strength. These properties result in transitions within the

|ρ|= 0 manifold as the coupling strength is varied through this range, which can

be observed as short-lived macroscopic bursts in the value of |ρ|. After each such

transition the critical coupling strength is reset to a higher value, via a process that

we termed as Instability-Mediated Resetting. We showed that via this process the

critical coupling strength is continually reset as the coupling strength is increased,

until it attains the maximum possible value of K
(+)
c at which point the macroscopic

phase transition to coherence is observed. Thus, via the results in this chapter we

reconcile the critical coupling strength as calculated from stability of the incoherent

states of the generalized Kuramoto model (resulting in a range of critical couplings

in [K
(−)
c , K

(+)
c ]) and the critical coupling strength as calculated from the existence of

stable coherent states (resulting in a single critical coupling of K
(+)
c , corresponding

to the value we calculate in Chapter 3).

In Chapter 5, we develop a method to analyze the generalized Kuramoto model

and other Kuramoto-like systems. Analogous to the Ott-Antonsen ansatz for the

standard Kuramoto model [18], we showed the existence of an invariant manifold to

the dynamics of the wide generalization of the Kuramoto model (described in Eq.

(5.2)) in the infinite size limit. Unlike the standard Kuramoto model, however, we

were unable to show that this invariant manifold was attracting. Nonetheless, our
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numerical experiments have suggested that this manifold is attracting, and thus our

results describing the dynamics on this manifold are important in describing the

Kuramoto-like models that we have considered.

Thus, in this thesis, we have constructed models that build on an underlying

framework of the Kuramoto model, while describing new and interesting dynamics.

Our models describe dynamics that include spiking neurons, flocking birds, opinion

dynamics, classical spins, and several other systems, owing to the general classes of

models that we have set up. Further, using the mathematical tools and techniques

that we have devised, we can perform a detailed analysis, leading to theoretical

insights into these systems and new scientific understanding in a wide variety of

physical, biological and social systems.
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Appendix A: Additional proofs pertinent to Chapter 3

A.1 Equation for fixed points of agents

We here present a derivation of Eq. (3.11). In what follows in this appendix,

we write the fixed point solution of the ith agent, i.e., σFi in Eq. (3.9) as simply σ.

We also similarly drop the index i from µi and ω̂i for simplicity of notation.

Taking the second term on the left-hand side of Eq. (3.11) to the right-hand

side and considering the square of the norm of both sides, we obtain

[1− (ρ̂ · σ)2] = [1− (ω̂ · σ)2]µ2. (A.1)

Also, dotting Eq. (3.9) with ω̂ we obtain

ρ̂ · ω̂ = (ρ̂ · σ)(ω̂ · σ) (A.2)

Using Eq. (A.2) to replace the term (ω̂ · σ) in Eq. (A.1) we obtain

1− (ρ̂ · σ)2 =

(
1− (ρ̂ · ω̂)2

(ρ̂ · σ)2

)
µ2. (A.3)
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Thus we have

1− (ρ̂ · σ)2 = µ2 − (ρ̂ · ω̂)2

(ρ̂ · σ)2
µ2 = 0, (A.4)

which is a quadratic equation in (ρ̂ · σ)2, whose solution is Eq. (3.10). For K > 0

the positive solution Eq. (3.10) will be stable, as is argued in the text. Equation

(3.9) dotted with ρ̂ gives

[1− (ρ̂ · σ)2] + µρ̂ · (ω̂ × σ) = 0. (A.5)

This can be rewritten using Eq. (A.1) as

ω̂ · [µω̂ − µ(ω̂ · σ)σ + σ × ρ̂] = 0. (A.6)

Keeping ω̂ fixed, we can independently choose K, and hence µ. Thus the term in

Eq. (A.6) in the square brackets must be independently zero.

µω̂ − µ(ω̂ · σ)σ + σ × ρ̂ = 0. (A.7)

Using Eq. (A.2) again we obtain

ρ̂× σ = µ (ω̂ − ξσ) , (A.8)

where

ξ =
ρ̂ · ω̂
ρ̂ · σ

. (A.9)
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Since the solution to a× b = c, is b = (c× a)/|a|2+ta for any t,

σ = ((ω̂ × ρ̂)− ξ(σ × ρ̂))µ+ tρ̂. (A.10)

Dotting both sides of Eq. (A.10) with ρ̂, we see that t = ρ̂ ·σ, which was solved for

earlier, resulting in Eq. (3.10). We now go back to Eq. (A.10) and use Eq. (A.8)

to obtain

σ = (µ(ω̂ × ρ̂) + µ2ξ(ω̂ − ξσ)) + tρ̂, (A.11)

which can be rearranged to give

σ =
1

1 + ξ2µ2

[
µ(ω̂ × ρ̂) + ξµ2ω̂ + tρ̂

]
, (A.12)

with t = ρ̂ · σ and ξ according to Eq. (A.9). This completes our derivation of Eq.

(3.11)

A.2 Simplification of continuity equation

In this appendix we give a derivation of Eq. (3.27) from Eq. (3.25). We

present this proof in arbitrary dimensions, where we rewrite Eq. (3.26) as

v = K[ρ− (σ · ρ)σ] + Wσ, (A.13)

where v is defined on the (D−1)-dimensional surface of the unit sphere S embedded

in D dimensions. To simplify the continuity equation for the flow along the surface
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S, i.e., Eq. (3.25), we first extend the velocity flow field to the entire space RD by

allowing σ to be a general D-vector (rather than restricting it to a unit vector).

We then write the continuity equation using the regular divergence defined over the

entire space, and demonstrate that this reduces to Eq. (3.27) when considered on

the surface S.

We write σ = rr̂. Let the velocity flow field as extended to R
D be

vσ = Wr̂ +K[ρ− r̂(ρ · r̂)], (A.14)

= Wσ/r +K[ρ− σ(ρ · σ)/r2]. (A.15)

Note that this extension to R
D can be performed in multiple ways and does not

affect our final result. Since r̂ · vσ = 0, this flow field maintains the surfaces of

spheres centered at r = 0 as invariant manifolds. We then extend the distribution

f(σ, t), that was defined on the surface S, to the entire space RD as

F(r̂, r,W, t) = f(r̂,W, t)δ(r − 1), (A.16)

where δ(·) is the Dirac delta function. We can write the continuity equation for the

flow in R
D as

0 = ∂tF + ∇ · [vσF ],

= ∂tF + vσ ·∇F + F∇ · vσ. (A.17)
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We express ∇F as

∇F =
1

r
∇SF + r̂

∂F
∂r

, (A.18)

where ∇SF is the component of the gradient of F along the surface S, as has been

described in the main text. Since vσ · r̂ = 0, and ∇ ·Wσ = 0, we can simplify Eq.

(A.17) to

(A.19)∂tF + (1/r){Wσ/r + [ρ− σ(ρ · σ)/r2]} ·∇SF
+ F∇ · [ρ− σ(ρ · σ)/r2] = 0.

Now,

∇ ·
[
ρ− σ(ρ · σ)

r2

]
= −∇ ·

(
σ(ρ · σ)

r2

)
,

= −
[ρ · σ
r2

∇ · σ + σ ·∇ρ · σ
r2

]
,

= −σ · ρ
r2

(D − 1).

Also note that

[ρ− σ(ρ · σ)/r2] ·∇SF = ρ ·∇SF ,

since σ ·∇SF = 0 by the definition of ∇SF . Thus, Eq. (A.19) simplifies to

∂F
∂t

+
1

r
(Wr̂ + ρ) ·∇SF − (D − 1)F r̂ · ρ. (A.20)

Integrating the above equation over r from 1−ε to 1+ε for small ε, gives the desired

result Eq. (3.27).
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A.3 Critical coupling constant for even dimensions

We now determine Kc for even D = 2Λ as that value of K such that |ρ|→ 0

with |ρ|6= 0 as K → Kc from above. For notational simplicity, we write ρ = |ρ|.

As discussed earlier in Sec. 3.3.3, W can be written as W = RTDR, where R is

an orthogonal matrix, and D is a block-diagonal matrix with the jth block being a

2× 2 antisymmetric matrix with nonzero entries ωj and −ωj for all j ∈ {1, . . . ,Λ}.

By construction, we choose G(W) to be a distribution invariant to rotation, and

hence we can rewrite G(W) as

G(W) = g({ωi})U [R], (A.21)

where {ωi} = {ω1, ω2, . . . ωΛ} represents the set of associated frequencies for each

of the 2 × 2 blocks of D, with g({ωi}) representing the joint distribution of these

frequencies, and U [R] representing the uniform distribution of orthogonal matrices

(corresponding to the Haar measure on the group of orthogonal matrices). We then

write Eq. (3.41) as,

ρ2 =

∫
R

∫
Γ

γ({ωi}, {ρi})g({ωi})dω1 . . . dωΛU [R]dR. (A.22)

Recall that ρ2
k is the sum of the squares of the magnitudes of component 2k− 1 and

component 2k of ρ in the basis that block-diagonalized W, corresponding to the

components of ρ that are acted on by the kth block of W.
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L

Figure A.1: The shaded regions (in blue, green and orange) correspond to the
domain Γ in which

∑
k 1/µ2

k > 1 for the case of D = 4 (Λ = 2) in the {µ1, µ2}-space.
The subdomain Γ0, shown in blue, is the part of Γ inside the circle of radius L; and
the subdomains Γi are the parts of the domain Γ that lie outside Γ0 which do not
contain the µi axis (Γ1 is shown in orange, and Γ2 in green). The width of the strips
in Γ far away from the origin is 1, hence the volume of the subdomain Γ0 will scale
as O(LΛ−1) for large L.

Define µi = ωi/(Kρi). In {µi}-space, Γ is the region
∑

k 1/µ2
k > 1, shown in

Fig. A.1.

Then

ρ2 =

∫
R

∫
Γ

γg({µiKρi})KΛρ1dµ1 . . . ρΛdµΛU [R]dR. (A.23)

We next define a quantity L � 1 by choosing L ∼ O(ρ−1/2). Since we are

interested in ρ → 0, L → ∞. Taking motivation from the shape of the domain Γ
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shown in Fig. (A.1), we express Γ as the disjoint union of Γ0,Γ1, . . . ,ΓΛ, where Γ0 is

the component of Γ within the dashed circle of radius L in Fig. A.1, and for j ≥ 1,

Γj is the region for which |µj|. 1 and |µk|≥ L for all k 6= j.

Note that the left-hand side of Eq. (3.41) is ρ2, hence we can ignore terms on

the right-hand side of order smaller than O(ρ2). We now show that the contribution

from Γ0 is of a smaller order than this. By construction, in the subdomain Γ0,

|µi|≤ L, and hence µiKρi ∼ O(
√
ρ) → 0 as ρ → 0. Further, γ = ρ · σF ≤ ρ. Thus

the contribution IΓ0 to the integral in Eq. (A.23) from the subdomain Γ0 will be

IΓ0 .
∫

Γ0

ρg(0, . . . , 0)KΛρ1dµ1 . . . ρΛdµΛ

∼ O[ρΛ+1Volume(Γ0)].

Since L � 1, the volume of Γ0 will scale as O(LΛ−1) ∼ O(ρ−(Λ−1)/2). Thus IΓ0 ∼

O(ρ(Λ+3)/2), which for D > 2 is negligible compared to ρ2 and the contributions

to the integrals in Eq. (A.23) from the subdomains Γj. Since Kc for D = 2 is

already known (e.g. Ref. [16]), we focus on the cases D ≥ 4, and hence will ignore

the contribution from the subdomain Γ0. By symmetry, each Γi will give the same

contribution. Hence, without loss of generality, we will look at the contribution from

the subdomain Γ1, and will append a factor of Λ. We will also only look at µi > 0
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and will hence append a factor of 2Λ.

ρ2 = Λ2Λ

∫
R

∫ 1

µ1=0

∫ ∞
µ2=L

. . .

∫ ∞
µΛ=L

γg({µiKρi})KΛ

ρ1dµ1 . . . ρΛdµΛU [R]dR

Going back to Eq. (3.37), we rewrite it as

∑
k

1

γ2/ρ2
k + µ2

k

= 1. (A.24)

In the subdomain Γ1, µi � µ1 for all i ≥ 2, and thus we can use the above equation

in the small ρ1 approximation,

1 ∼=
1

γ2/ρ2
1 + µ2

1

, (A.25)

γ ∼=
√
ρ2

1(1− µ2
1). (A.26)

Also, µ1 < 1 implies µ1Kρ1 ∼ O(ρ)→ 0 as ρ→ 0. Thus,

(A.27)ρ2 = Λ2ΛKΛ

∫
R

∫ ∞
µ2=L

. . .

∫ ∞
µΛ=L

∫ 1

µ1=0

ρ1

√
1− µ2

1dµ1

g(0, {µiKρi}Λ
i=2)ρ1 . . . ρΛdµ2 . . . dµΛU [R]dR.

We then change variables back to ωi for each of the µi integrals for i = 2 . . .Λ, and

explicitly evaluate the integral over µ1. The lower limits of the integrals change from

L to LKρi which goes to zero in the limit of small ρ, since L ∼ O(ρ−1/2). Thus
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ρ2 = Λ2ΛK
π

4

∫
R

∫ ∞
0

. . .

∫ ∞
0

g(0, {ωi}Λ
i=2)ρ2

1

dω2 . . . dωΛU [R]dR,

= Λ2ΛK
π

4

∫
R

ρ2
1

g̃(0)

2Λ−1
U [R]dR, (A.28)

where

g̃(0) = 2Λ−1

∫ ∞
0

. . .

∫ ∞
0

g(0, {ωi}Λ
i=2)dω2 . . . dωΛ, (A.29)

equivalent to the definition given earlier in Eq. (3.44). Since U [R] is the uniform

distribution, thus by symmetry

Λ

∫
R

ρ2
1U [R]dR =

∫
R

Λ∑
k

ρ2
kU [R]dR

=

∫
R

ρ2U [R]dR

= ρ2 (A.30)

Inserting Eqs. (A.29) and (A.30) into Eq. (A.28) gives us

ρ2 = 2ΛKc
π

4
ρ2 g̃(0)

2Λ−1
.

Since we are in the limit of small but nonzero ρ, we can cancel ρ2 from both sides

to obtain the desired result in Eq. (3.42)
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Appendix B: Additional proof pertinent to Chapter 5

B.1 Proof of Eq. (5.15)

Inserting the form of f(σ, η, t) from Eq. (5.14) into Eq. (5.9) we obtain

(B.1)

[
(D − 1)(1− |α|2)D−2

] {
(1 + |α|2 − 2α · σ)(−2α · ∂tα)

− (1− |α|2)(2α · ∂tα− 2σ · ∂tα)

+ (1− |α|2)
[
2(α · ρ)− (ρ · σ)(1 + |α|2)− 2σ ·Wα

]}
= 0.

Remarkably, the explicit D dependence of the differential equation cancels out, and a

differential equation involving only terms that are linear and constant in σ remains.

For this equation to be identically zero for each direction σ, the linear and constant

terms must independently be zero. From the constant term we obtain

(1 + |α|2)(−2α · ∂tα)− (1− |α|2)(2α · ∂tα)

+ (1− |α|2)(2(α · ρ)) = 0,

which simplifies to

α · ∂tα = (1/2)(1− |α|2)(ρ ·α), (B.2)

or alternately

∂t|α|=
(

1− |α|2

2|α|

)
(ρ ·α). (B.3)
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From the σ dependent portion we get

σ ·
[
2α(2α · ∂tα) + (1− |α|2)(2∂tα)

− k(1− |α|2)(1 + |α|2)ρ− 2(1− |α|2)Wα
]

= 0.

Since σ is allowed to be in any direction, we can cancel out the σ and obtain a vector

equation that must be satisfied. To further simplify this vector expression, we write

∂tα = ∂t(|α|α̂) = |α|∂tα̂ + α̂∂t|α|, where α̂ is a unit vector in the direction of α.

We can then use Eqs. (B.2) and (B.3) to simplify the expression to obtain

∂tα̂ =

(
1 + |α|2

2|α|

)
(ρ− (ρ · α̂)α̂) +W α̂. (B.4)

Equations (B.3) and (B.4) can then be combined to obtain Eq. (5.15).
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