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Despite the abundance of available literature that starts with the seminal

paper of Wang and Davison almost forty years ago, when dealing with the problem

of decentralized control for linear dynamical systems, one faces a surprising lack of

general design methods, implementable via computationally tractable algorithms.

This is mainly due to the fact that for decentralized control configurations, the

classical control theoretical framework falls short in providing a systematic analysis

of the stabilization problem, let alone cope with additional optimality criteria.

Recently, a significant leap occurred through the theoretical machinery devel-

oped in “Rotkowitz and Lall, IEEE-TAC, vol. 51, 2006, pp. 274-286” which unifies

and consolidates many previous results, pinpoints certain tractable decentralized

control structures, and outlines the most general known class of convex problems in

decentralized control. The decentralized setting is modeled via the structured spar-

sity constraints paradigm, which proves to be a simple and effective way to formalize

many decentralized configurations where the controller feature a given sparsity pat-

tern. Rotkowitz and Lall propose a computationally tractable algorithm for the



design of H2 optimal, decentralized controllers for linear and time–invariant sys-

tems, provided that the plant is strongly stabilizable. The method is built on the

assumption that the sparsity constraints imposed on the controller satisfy a certain

condition (named quadratic invariance) with respect to the plant and that some

decentralized, strongly stablizable, stabilizing controller is available beforehand.

For this class of decentralized feedback configurations modeled via sparsity–

constraints, so called quadratically invariant, we provided complete solutions to sev-

eral open problems. Firstly, the strong stabilizability assumption was removed via

the so–called coordinate–free parametrization of all, sparsity constrained controllers.

Next we have addressed the unsolved problem of stabilizability/stabilization via

sparse controllers, using a particular form of the celebrated Youla parametrization.

Finally, a new result related to the optimal disturbance attenuation problem in

the presence of stable plant perturbations is presented. This result is also valid

for quadratically invariant, decentralized feedback configurations. Each result pro-

vides a computational, numerically tractable algorithms which is meaningful in the

synthesis of sparsity–constrained optimal controllers.
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Chapter 1

Introduction and a Brief Outline

Despite the abundance of available literature starting with the seminal paper

[4] of Wang and Davison almost forty years ago, when dealing with the problem

of decentralized control for linear dynamical systems, one faces a surprising lack of

general, design methods, computationally tractable algorithms and plug–and–play

software to address the decentralized stabilization problem, yet alone supplemental

optimality criteria.

Recently, a significant leap occurred through the theoretical machinery devel-

oped in [79] which unifies and consolidates many previous results, pinpoints certain

tractable decentralized control structures, and outlines the most general known class

of convex problems in decentralized control. The decentralized setting is modeled

via the structured sparsity constraints paradigm which proves to be a simple and

effective way to formalize many decentralized configurations. The authors of [79]

propose a computationally tractable algorithm for the design of H2 optimal, decen-

tralized controllers for linear and time–invariant systems, provided that the plant

is strongly stabilizable. The method also premises that the sparsity constraints

imposed on the controller satisfy a certain condition (named quadratic invariance)

with respect to the plant and that some decentralized, stable, stabilizing controller

is available beforehand.
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The power of these new results has only begun to be exploited and we believe

that it brings along an excellent opportunity for further research. For the framework

of decentralized information patterns modeled via sparsity constraints, we propose

a set of open problems directed toward numerical algorithms for solving key issues

in the control of decentralized, linear systems.

1.1 Brief Historical Perspective

Throughout this document we make the leading assumption that all systems

are linear, finite–dimensional, time–invariant and with continous time. The most

handy means of describing the dynamical behavior of a system satisfying all these as-

sumptions is the state–space representation. A continuous–time state–space system

is given by the equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(1.1)

where t ∈ R, x(t) ∈ Rns is the state, u(t) ∈ Rnu is the input, y(t) ∈ Rny is the

output of the system, and A,B,C,D are constant matrices with real entries. The

input–output behavior of the system (1.1) is conveniently described by the transfer

function matrix which is the nu rows by ny columns, rational matrix function

P (s)
def
= C(sI − A)−1B +D. (1.2)

Notice that P (s) is obtained by taking the Laplace transform in (1.1) and making

explicit y(s) as a function of u(s) in the form y(s) = G(s)u(s) (where now y(s) and

u(s) are viewed as the Laplace transforms of y(t) and u(t), respectively).
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A classical result in linear control theory is that the poles of a controllable and

observable linear system can be arbitrarily placed (assuming complex conjugated

pole-pairing) by state variable feedback. This result has been extended to get the

class of linear, stabilizing controllers such that the poles of the closed-loop system

consisting of a controllable and observable linear system with the controller can

be freely assigned [1]. These results make up for the backbone of most practical

synthesis procedures.

1.1.1 The Decentralized Stabilization Problem after Davison

A natural extension of the pole-placement problem arises when the set of

admissible controllers is restricted to decentralized feedback control. The conclusive

results were given in the early 70’s by Wang and Davison [4] and Corfmat and Morse

[5, 6]. We give a brief synopsis next.

For a linear system the problem of decentralized pole placement can be for-

mulated as follows: given the linear system

ẋ(t) = Ax(t) +
∑N

i=1Biui(t),

yi(t) = Cix(t),

(1.3)

where i = 1, .., N indexes the input and output variables of the various controllers,

the i-th controller employs dynamic compensation of the form

ui(t) = Mizi(t) + Fiyi(t) +Givi(t).

żi(t) = Hizi(t) + Liyi(t) +Rivi(t).

(1.4)

The decentralized pole-placement problem is to find matrices Mi, Fi, Gi, Hi, Li, Ri

such that the closed-loop system described by (1.4) has prespecified poles. Of course,
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if (Ci, A,Bi) is controllable and observable for some i, the problem is trivial. The

interesting case is to assume that (1.3) is controllable from all controls u1, . . . , uN ,

but not from any single control ui, with a similar observability assumption. For

illustrative simplicity, consider first the special case Mi = 0 in (1.4). This corre-

sponds to nondynamic decentralized output feedback. If F denotes the collection of

feedback matrices (F1, . . . , FN), then the pole-placement problem is to determine F

such that the matrix

AF
def
= A+

∑N

i=1
BiFiCi

has a specified arbitrary set of eigenvalues. A necessary condition for pole placement

in this case is that the polynomials α(λ)
def
= det(λI − AF ) have no common factor.

What is much more interesting is that this condition is both necessary and

sufficient ([4]) for pole placement with dynamic decentralized compensation. More

generally, since the zeros of α(λ) (termed the fixed modes of the system) are invariant

under decentralized dynamic compensation, it follows that a necessary and sufficient

condition for stabilizability is that the roots of α(λ) have strictly negative real parts.

A transfer function caracterisation of fixed modes along with the concept of degree

of a fixed mode was later given by Anderson in [24].

Further research effort was made by Davison et all. [7]–[16] to outline the

canonical invariants of decentralized linear systems (1.3), show the connection be-

tween the decentralized fixed modes and the classical concept of transmission zeros

and develop robust decentralized feedback allocation procedures.

Anderson showed in [23] that oposed to the classical (centralized) case, certain
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time-invariant systems which cannot be stabilized by decentralized time-invariant

controllers, (namely those with unstable decentralized fixed modes), can thus be

stabilized by decentralized time-varying (in fact periodic), linear controllers. Various

applications of this fact such as simultaneous stabilization, and reliable decentralized

control (maintaining stability when any of the controllers fail), strong decentralized

stabilization were later treated by Ozguler et all et all in [30] – [35].

1.1.2 Optimal Control with Sparsity Constrained Controllers

The study of the computational complexity of decentralized control problems

has proved certain problems to be intractable. Tsitsiklis et all [26, 27] showed that

the problem of computing a stabilizing decentralized static output feedback is NP-

complete.

For certain information structures, the optimal control problem may have a

tractable solution, and in particular, it was shown by Voulgaris [42] that the so-

called one-step delay information sharing pattern problem has this property. Also

in [42] a solution is given for the first time to the H2, H1 and H∞ control synthe-

sis problems for this particular decentralized configuration. A class of structured

spatio–temporal systems has also been analyzed in [43], and shown to be reducible

to a convex program. Several information structures are identified in [52] for which

the problem of minimizing multiple objectives is reduced to a finite–dimensional

convex optimization problem.

The new approach in [79] shows that the key, necessary and sufficient condi-

5



tion that allows optimal stabilizing decentralized controllers to be synthesized via

convex programming is for the constraints set of the controller to be preserved under

feedback. This is a significant extension to previous theoretical results and at the

same time a unifying framework since all previously studied tractable structures of

[41, 2, 52, 42, 43] can be shown to be particular cases that satisfy this property.

1.2 Outline of this Thesis’s Contributions

Chapter 2. The solution proposed by Rotkowitz and Lall to the optimal

H2 disturbance attenuation via sparse controllers, is based on the so-called Q–

parametrization of all stabilizing controllers of a given linear, strongly–stabilizable

plant introduced by Zames in [61] and later extended to the case of nonlinear plants

by Anantharam and Desoer in [62]. The merit of Rotkowitz’s method from [79]

is that it manages to cast the sparsity constraints imposed on the decentralized

controller as convex constraints on the Q–parameter.

The first contribution of this thesis is to provide a new parametrization of

all decentralized controllers that satisfy pre-selected, quadratically invariant spar-

sity constraints and stabilize a given linear time-invariant plant. Unlike the prior

work of Rotkowitz and Lall, that hinges on Zames’s Q–parameterization, this chap-

ter adopts a recently developed coordinate-free approach that does not require the

plant to be strongly stabilizable. Hence, the approach proposed here also extends

the applicability of the work in [79] to the case where the plant is not strongly

stabilizable. In this chapter, we show how the new parameterization can be used
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in the design of sparsity constrained controllers that attain the optimal disturbance

attenuation, and how the computational scheme from [79, Theorem 29] can still be

employed here. Moreover, with our new parametrization, we are able to deal with

cost-function of a more general type and in doing so we provide along the way a

tractable solution to the mixed H2 sensitivity problem from [57, pp. 139], with

sparsity constrained controllers.

Chapter 3. The main result of this chapter proves that the minimal gain

attainable by causal feedback in the optimal disturbance attenuation problem, is not

influenced by linear, stable, additive plant perturbations. Furthermore, this is shown

to hold true, irrespective of the used norm (e.g. for 1-D, LTI systems it could be

any of the Lp or `p induced norms, respectively). It follows as a direct consequence

that for the optimal synthesis procedure, it is sufficient to solve the disturbance

attenuation problem only for the anti–stable component of the plant. The solution

obtained for the anti–stable component of the plant can than be used to retrieve the

optimal solution for the entire plant, via a simple algebraic, feedback transformation.

More importantly, we also prove the validity of our result for an important class of

decentralized control systems, namely decentralized configurations that are invariant

under feedback ([79]). Finally, since the proof of the main result is completed without

any assumption on the coprime factorizability of the plant, it also encompasses the

case of linear, n-D systems ([69]).

Chapter 4. All the available algorithms for optimal synthesis via sparse con-

trollers ([79] and the one from Chapter 2 of this thesis) rely indispensably on the

fact that some stabilizing controller that verifies the imposed sparsity constraints
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is a priori known, while synthesis methods for such a controller, (needed to initial-

ize the aforementioned optimization schemes) are not yet available. This provided

the motivation to the work presented here, as in this chapter we develop necessary

and sufficient conditions for such a plant to be stabilizable with a controller having

the pre–selected sparsity pattern. These conditions are formulated in terms of the

existence of a special type of doubly coprime factorization of the plant, which we

have named the input/output decoupled, doubly coprime factorization. More im-

portantly, the set of all decentralized stabilizing controllers is characterized via the

Youla parametrization. The sparsity constraints on the controller are also recast as

convex constraints on the Youla parameter. Furthermore, using the powerful tools

from [79] and the Youla parametrization, we present improved, tractable formula-

tions of the optimal disturbance attenuation problem and optimal mixed sensitivity

problem with sparsity constrained controllers.
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Chapter 2

A Coordinate-Free Parametrization of All Sparse, Stabilizing

Controllers

2.1 Introduction

The authors of [79] propose a computationally tractable procedure for the

design of H2 optimal sparsity constrained controllers for a given class of linear

time-invariant plants. The method is anchored on a convex parametrization, whose

existence can be determined by an algebraic test (quadratic invariance) involving

only the sparsity pattern of the plant and the sparsity constraints to be imposed on

the controller. The solution involves the so-called Q–parametrization of all stabiliz-

ing controllers of a given linear, strong–stabilizable plant introduced by Zames in

[61] and later extended to the case of nonlinear plants by Anantharam and Desoer

in [62]. The merit of the method from [79] is that it manages to cast the sparsity

constraints imposed on the decentralized controller as convex constraints on the

Q–parameter.

Contribution. The main contribution presented in this chapter is to pro-

vide a new parametrization of all decentralized controllers that satisfy pre-selected,

quadratically invariant sparsity constraints and stabilize a given linear time-invariant

plant. Unlike prior work that hinges on Zames’s Q–parameterization, in this chapter
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we adopt a recently developed coordinate-free approach that does not require the

plant to be strongly stabilizable. Hence, the approach proposed here also extends

the applicability of the work in [79] to the case where the plant is non-strongly sta-

bilizable. In this chapter, we show how the new parameterization can be used in the

design of norm-optimal sparsity constrained controllers, and how the computational

scheme from [79, Theorem 29] can still be employed here.

As oposed to the Youla parametrization which is built on the doubly coprime

factorization of the plant, Zames’s Q–parameterization essentially relies on the apri-

ori knowledge of some stabilizable and stable controller. While necessary and suffi-

cient conditions for strong stabilizability have been generalized to the case of MIMO

plants by Vidyasagar in [63], computing such a stable controller is still a daunting

task even in the case of centralized controllers. This happens because the available

techniques e.g. [64, 107, 114], depend on the solutions of some non–standard Riccati

matrix equations which apart from being difficult to compute are in general not even

guaranteed to exist. Furthermore, general conditions for asserting strong stabiliz-

ability via sparsity constrained controllers are currently unavailable (see also [73]),

as is the case for methods for computing such stable controllers. This situation gives

our results the added practical significance of relying on the apriori knowledge of

any decentralized, stabilizing controller instead of a decentralized, stable controller

(as in [79]), whose synthesis may be impractical. The coordinate free method was

pioneered by the authors of [71, 72, 74] and later extended in [67, 68, 70, 69].

10



2.2 Preliminaries

Throughout this chapter we make the leading assumption that all systems are

discrete–time, finite–dimensional, linear time–invariant (LTI).

2.2.1 Basic Concepts

In many instances (e.g. convolution operators) the set of all proper, stable,

linear systems forms a commutative ring. That is, the fact that parallel and serial

connections of systems that are proper, stable and linear yield proper, stable and

linear systems. The seminal work of Desoer et al. [75] and Vidyasagar et al. [81]

show that this abstract ring setup encompasses within a single framework a broad

class of linear systems (lumped or distributed linear systems, 1-D as well as n-D

systems). For consistency and ease of reference, we will adopt the notation from

[81] also used in [67, 68, 70, 69] whose results we use extensively in this chapter.

As in [67, Section 2.2], [68, Section II.A] we denote with A the set of transfer

functions of all proper, stable, linear systems. Note that A has a commutative ring

structure. The set of all possible transfer functions, which we denote with F , is the

ring of fractions of A:

F def
=
{
n/d
∣∣∣n, d ∈ A, where d is not a divisor of zero

}
(2.1)

By a natural extension of notation, we use Any×nu to denote the set of matrices

with ny rows by nu columns and whose entries are in A, that is the set of proper,

stable transfer function matrices of dimension ny × nu. Similarly, Fny×nu is the set

11



u+ν1

w z

+

ν2y

+
K

+

Pzw Pzu

Pyw −G

Figure 2.1: Feedback interconnection between the generalized plant and the con-

troller

of all possible transfer function matrices (TFMs) of size ny × nu. Henceforth we

may omit the indices ny and nu whenever their values are clear from the context.

Throughout this chapter, we require that both the plant and the controller are

proper according to the following definition, which is adapted from [67, Definition

2.3], [68, Definition 2].

Definition 2.2.1. [67, Definition 2.3], [68, Definition 2] Let Z be a prime ideal of

A, with A 6= Z and Z including all the divisors of zero of A. Define, the subsets P

and Ps of F as follows:

P def
=
{n
d
∈ F

∣∣n ∈ A, d ∈ A− Z}, (2.2)

Ps
def
=
{n
d
∈ F

∣∣n ∈ Z, d ∈ A− Z} (2.3)

A transfer function in the set P (Ps) is called proper (strictly proper). Similarly,

12



if all entries of a transfer function matrix over F are in P (Ps), then the respective

transfer function matrix is called proper (strictly proper).

The set A and the ideal Z (of all divisors of zero of A) for discrete-time LTI

systems is characterized in [68, (5) pp.745] and [68, (6) pp.745], respectively.

2.2.2 Feedback Control Systems

In Figure 1, we depict the standard feedback interconnection between a gener-

alized plant P and a controller K. Here, w is the vector of reference signals, while ν1

and ν2 are the disturbance signals and sensor noise, respectively. In addition, u are

the controls, y are the measurements and z the regulated outputs (in general some

error signals). The integers nw, nu, ny and nz denote the dimensions of the vectors

w, u, y and z, respectively. The generalized plant P is proper and it belongs to the

set P(ny+nz)×(nu+nw) while the proper controller K belongs to the set Pnu×ny . The

transfer function matrix of the generalized plant P is conformably partitioned such

that Pzw ∈ Pnz×nw , Pzu ∈ Pnz×nu , Pyw ∈ Pny×nw and Pyu ∈ Pny×nu . For convenience

of notation, henceforward we adopt the following convention:

G
def
= −Pyu (2.4)

Assuming that the loop is well posed – that is (I + KG) is invertible over Fnu×nu

– then we denote the transfer matrix function from [wTνT1 ν
T
2 ]T to [zTuTyT ]T from

Figure 2.1 with Θ(P,K), where we adopt the superscript T to denote matrix trans-

position. For the input–output equations of the standard feedback interconnection

from Figure 1 we refer to [69, pp.230], while the explicit algebraic expression of

13



ν2

w

ν1

z

u

ν2

Θ(P,K)

Figure 2.2: Input/Output representation for Θ(P,K)

Θ(P,K) can be found in [69, pp.231]. If the transfer function matrix Θ(P,K)

belongs to the set A, then we say that K is a a stabilizing controller of P , or equiv-

alently that K stabilizes P . If a stabilizing controller of P exists, we say that P is

stabilizable.

Of particular interest is the feedback system displayed in Figure 2, where

the proper transfer function matrices K ∈ Pnu×ny and G ∈ Pny×nu represent the

controller and the plant respectively. Denote by H(G,K) the transfer function

matrix from [νT1 νT2 ]T to [yT uT ]T (provided that (I + KG) is invertible over

Pnu×nu):

H(G,K)
def
=

 (I +GK)−1 −G(I +KG)−1

K(I +GK)−1 (I +KG)−1

 (2.5)

If the transfer matrix H(G,K) belongs to A, we say that K is a stabilizing

controller of G or equivalently that K stabilizes G. If a stabilizing controller of G

exists, we call G stabilizable.

The following Lemma states that a proper controller K stabilizes the gener-

alized plant P via the feedback configuration of Figure 1 if and only if K stabilizes

the G block of P given in (2.4) via the feedback configuration of Figure 2.
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Figure 2.3: Standard unity feedback interconnection

Lemma 2.2.2. [69, Lemma 1] Let P in the set P(nu+ny)×(nu+ny) be a proper, sta-

bilizable, generalized plant (with the notation from (2.4) in effect). Let K in the

set Pnu×ny be any proper, stabilizing controller of P . Then the transfer function

Θ(P,K) is in A if and only if H(G,K) is in A.

Since Lemma 2.2.2 does not require coprime factorizability of the plant G, it

generalizes the central result in [56, Theorem 4.3.2].

2.3 The Coordinate–Free Approach

This section gives a brief summary of the combined results in [67, 68, 70, 69], on

the so–called coordinate–free approach to linear control design, where we emphasize

results that are used throughout this chapter. The coordinate free approach is

pursued in [71, 72, 74, 67, 68, 70, 69] (within the framework developed in Desoer

et al. [75] and Vidyasagar et al. [81]), pertaining feedback stabilization when the

coprime factorizability of the plant is not viable (e.g. for linear systems with multiple

scales of time, also called n-D systems).
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2.3.1 The Parametrization of All Stabilizing Controllers

via the Coordinate–Free Approach

Unlike Youla’s parametrization, the coordinate–free approach ([67, 68, 70, 69])

parametrizes directly all achievable stable closed–loop transfer function matrices

H(G,K) without prior knowledge of the doubly coprime factorization of the plant’s

transfer function matrix, but it has the drawback of requiring prior knowledge of

some stabilizing controller. Once the parametrization of all closed–loop TFMs

H(G,K) is available, a parametrization of all stabilizing controllers is readily re-

trieved via an algebraic transformation.

From this point onward we assume that the plant G is strictly proper, that is

G ∈ Pny×nu
s (2.6)

It is known that the coordinate free parametrization ([68, Theorem 4]) may

yield nonproper stabilizing controllers when the plant is not strictly proper. The

following Remark details the important consequences of (2.6).

Remark 2.3.1. [69] The assumption in (2.6) implies that the closed–loop system is

well–posed [57, pp.119] for every stabilizing controller [68, Proposition 5]. Equally

important, it ensures that every stabilizing controller of G is proper ([67, Proposi-

tion 6.2], [70, Proposition 1]).

The next statement follows as a summary of [68, Proposition 4 and Proposi-

tion 5], which will be instrumental in the sequel.

16



Theorem 2.3.2. Given positive integers nu and ny, and a strictly proper plant G

in the set Pny×nu
s , let HG be the set of all stable closed–loop transfer functions i.e.:

HG
def
=
{
H(G,K) ∈ A(nu+ny)×(nu+ny)

∣∣∣ K stabilizes G
}

A) [68, Proposition 4] If K0 is a stabilizing controller of G, then the following

equality holds:

HG =
{

Ω(Q)
∣∣ Q ∈ A(nu+ny)×(nu+ny)

}
,

where for any Q in the set A(nu+ny)×(nu+ny), Ω(Q) is defined as

Ω(Q)
def
=

H(G,K0)−

 Iny O

O O


Q

H(G,K0)−

 O O

O Inu


+H(G,K0)

(2.7)

Here Iny and Inu denote the identity matrices of dimension ny and nu, respectively.

B)[68, Proposition 5] For Ω(Q) defined in (2.7) consider the following conformable

partition

Ω(Q) =

ny nu︷ ︸︸ ︷ ︷ ︸︸ ︷ Ω11(Q) Ω12(Q)

Ω21(Q) Ω22(Q)


}
ny}
nu

(2.8)

The set KG of all stabilizing controllers of G can be parametrized as:

KG =
{

Ω21(Q)Ω−1
11 (Q) = Ω−1

22 (Q)Ω21(Q)
∣∣∣Q ∈ A(nu+ny)×(nu+ny)

}
(2.9)

Furthermore, every controller in KG is proper.
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Remark 2.3.3. Assumption (2.6) also guarantees that for any Q in the set A(nu+ny)×(nu+ny),

Ω(Q) given in (2.7) is invertible and belongs to the set A(nu+ny)×(nu+ny). This, in

turn, implies the invertibility of the Ω11 and Ω22 blocks in (2.8), which guarantees

that the expression (2.9) for the controller is well defined.

2.3.2 The Disturbance Attenuation Problem

via the Coordinate–Free Approach

We denote the complex unit circle with D0 and by ∗ the matrix complex

conjugate transposition.

We briefly remind some standard notation for the transfer functions of linear

and time–invariant (LTI) systems (their input–output operators) in the discrete–

time case. A rational function G(ejω) : D0 7−→ C is called real–rational if the

polynomials of the numerator and denominator have real coefficients. Correspond-

ingly, a matrix–valued function G(ejω) : D0 7−→ Cny×nu is qualified as real–rational

if all its entries are real–rational.

We useRH∞ to denote the set of real–rational transfer functions matrices that

are analytic outside the open, complex unit disk. It can be shown that functions in

RH∞ are completely defined by their values on D0.

The so called L2(D0)–norm or H2–norm is defined for any transfer function

matrix of an LTI system with discrete–time belonging to RH∞ as:

‖G‖2
def
=
{ 1

2π

∫ 2π

0

Trace
[
G∗(ejθ)G(ejθ)

]
dθ
} 1

2
(2.10)
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For the continuous–time counterpart definition, we refer to [77, pp. 35]. Since

from this point on we refer exclusively to LTI systems and their H2 norm, the norm

index is dropped.

A standard problem in control is the following: given the proper, stabilizable

generalized plant P in the feedback configuration from Figure 1, design a proper,

stabilizing controller K that minimizes the H2 norm of the transfer function from

w to z, namely:

min

Kstabilizes P

‖f(P,K)‖ (2.11)

where (the transfer function from w to z) f(P,K) is the lower–linear fractional

transformation of the generalized plant P with controller K defined as follows:

f(P,K)
def
= Pzw + Pzu K

(
I +GK

)−1
Pyw. (2.12)

The following result, [69, Theorem 1] is important in our approach, as it

makes clear the equivalence between the disturbance attenuation problem (3.1) and

the model–matching problem of minimizing the norm of some affine (and therefore

convex) functional.

Theorem 2.3.4. [69, Theorem 1] Let P be a proper, stabilizable, generalized plant

with the block G ∈ Pny×nu
s strictly proper (2.4). Given any proper, stabilizing con-
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troller K0 ∈ Pnu×ny , consider the following optimization problem:

min

Q ∈ A(nu+ny)×(nu+ny)

∥∥∥∥ T1 − T2QT3

∥∥∥∥ (2.13)

If there exists an optimal solution Q∗ to (2.13) then K∗ = Ω21(Q
∗)Ω−1

11 (Q∗) is an

optimal solution of problem (3.1). Conversely, if there exists an optimal solution

K∗ to (3.1) then there exists an optimal solution Q∗ to (2.13) such that K∗ =

Ω21(Q
∗)Ω−1

11 (Q∗). Here Ω(Q) is as defined in (2.7), Ω11(Q) and Ω21(Q) are the

blocks in the first column of Ω(Q) with the conformable partition in (2.8), while T1,

T2 and T3 are the transfer function matrices defined below:

T1
def
= Pzw + Pzu K0(I +GK0)

−1Pyw,

T2
def
=

[
PzuK0(I +GK0)

−1 Pzu(I +K0G)−1

]
,

T3
def
=

 (I +GK0)
−1Pyw

K0(I +GK0)
−1Pyw

 .
(2.14)

Remark 2.3.5. Since we use [69] throughout this chapter, we need to clarify that

it contains a typo in Section III. Namely, the expression of the controller K in

[69] is given as Ω21(Q)Ω−1
22 (Q), for some Q in A(nu+ny)×(nu+ny). According to [68,

Proposition 5] the correct expression for the stabilizing controllers (as stated in (2.9)

above ) is K(Q) = Ω21(Q)Ω−1
11 (Q) for some proper, stable Q. References to the

results in [69] are made in the sequel, but using the correct expression.
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2.4 Sparsed Controllers via Information Pattern Constraints

The core of this section consists of the decentralized counterpart of Theo-

rem 4.51, where we use sparsity constraints to impose a pre-selected information

structure on the controller. We will also use this formulation to develop decentral-

ized versions of the feedback stabilization and disturbance attenuation problems.

The notation we introduce next is entirely concordant with the one used in

[78, 79].

2.4.1 Notation

For p ≥ 1, we denote the set of integers ranging from 1 to p with 1, p. Through-

out the sequel, we consider that the block G ∈ Pny×nu
s of the generalized plant P

(2.4) is partitioned in p block–rows and m block–columns. The i-th block–row

has niy rows, while the j-th block–column has nju columns. Hence, it holds that∑p
i=1 n

i
y = ny and

∑m
j=1 n

j
u = nu. For every pair (i, j) in the set 1, p × 1,m, we

denote by [G]ij ∈ P
ni

y×n
j
u

s the transfer matrix formed by the i-th block–row and j-th

block–column of G, leading to the following representation:

G =


[G]11 . . . [G]1m

...
...

[G]p1 . . . [G]pm

 , with [G]ij ∈ P
ni

y×n
j
u

s . (2.15)

Here, we shall use this square bracketed notation for indexing the block transfer

function matrices.

Analogously, the controller’s transfer function matrix K ∈ Pnu×ny is parti-
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tioned in m block–rows and p block–columns, where the j-th block–row has nju rows

and the i-th block–column has niy columns. Correspondingly, [K]ji is the notation

for the element of Pn
j
u×ni

y located at the intersection of the j-th block–row and i-th

block–column of K.

For the boolean algebra, the operations (+, ·) are defined as usual: 0 + 0 =

0 · 1 = 1 · 0 = 0 · 0 = 0 and 1 + 0 = 0 + 1 = 1 + 1 = 1 · 1 = 1. By a binary matrix

we mean a matrix whose entries belong to the set
{

0, 1
}

. With the usual extension

of notation,
{

0, 1
}m×p

stands for the set of all binary matrices with m rows and

p columns. The addition and multiplication of binary matrices are carried out in

the usual way, keeping in mind that the binary operations (+, ·) follow the boolean

algebra.

Binary matrices are denoted by upper-case letters with the “bin” superscript

to distinguish them from transfer function matrices over F , which are represented

in the sequel using plain upper-case font. Henceforth, we adopt the convention that

transfer function matrices are indexed by blocks while binary matrices are indexed

by each individual entry.

Furthermore, for binary matrices only, having the same dimensions, the nota-

tion Abin ≤ Bbin means that aij ≤ bij holds elementwise for all i and j.

With the conformable block partitioning for K introduced earlier, for any

K ∈ Pnu×ny , define Pattern(K) ∈
{

0, 1
}m×p

to be the binary matrix

Pattern(K)ij
def
=


0 if the block [K]ij = 0

1 otherwise

(2.16)

Conversely, for any binary matrix with m rows and p columns, Kbin ∈
{

0, 1
}m×p

,
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we can define the following linear subspace of Fnu×ny :

Sparse(Kbin)
def
=
{
K ∈ Fnu×ny

∣∣ Pattern(K) = Kbin
}

(2.17)

Hence Sparse(Kbin) is the subspace of all controllers K whose sparsity pattern is

Kbin = 0. More specifically, [K]ij = 0 holds if and only if Kbin
ij = 0 also holds. From

a functional point of view, the binary value of Pattern(K)ij determines whether

controller i may read the jth block-row of the output of P .

Let Kbin ∈
{

0, 1
}m×p

be the pre-specified sparsity pattern to be imposed on

the controller. Define the subset S of Fnu×ny as:

S def
=
{
K ∈ Pnu×ny

∣∣∣Pattern(K) ≤ Kbin
}
, (2.18)

that is, the set of controllers whose transfer function matrices satisfy the imposed

sparsity structure. With the terminology from [79], the subspace S (of admissible,

decentralized proper controllers) will be called the information constraint.

The following matrix Gbin, in the set
{

0, 1
}p×m

, is the sparsity pattern of the

plant, which is defined as:

Gbin def
= Pattern(G) (2.19)

Finally, from the matrix multiplication of matrices over F we note that for

any K ∈ Fnu×ny and any G ∈ Fny×nu with arbitrary sparsity patterns the following

holds:

Pattern(KG) ≤ Pattern(K)Pattern(G). (2.20)
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2.4.2 The Decentralized Disturbance Attenuation Problem

Throughout this subsection, we consider that S is the set of controllers that

satisfy a pre-selected sparsity pattern as specified by a binary matrixKbin ∈
{

0, 1
}m×p

,

as defined in (4.6). Assume that P is stabilizable by some proper controller K0 that

is in S. The decentralized disturbance attenuation problem, as introduced in [79,

(1)/pp. 276 ], is formulated by adding the sparsity constraint K ∈ S to problem

(3.1), as follows:

min

Kstabilizes P

K ∈ S

∥∥∥∥ f(P,K)

∥∥∥∥ . (2.21)

The following result is a corollary of Theorem 4.51.

Corollary 2.4.1. Let P ∈ P(nu×ny)×(nu×ny) be a proper, generalized plant, and S

a subspace of proper controllers. If there is a controller K0 in S that stabilizes P ,

then there exists a controller K∗ in S that is optimal for (2.21) if and only if there

exists a Q∗ in A(nu+ny)×(nu+ny) that is optimal for the following minimization:

min

Q ∈ A(nu+ny)×(nu+ny)

Ω21(Q)Ω−1
11 (Q) ∈ S

∥∥∥∥ T1 − T2QT3

∥∥∥∥ . (2.22)
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where K∗ = Ω21(Q
∗)Ω−1

11 (Q∗). Here, T1, T2 and T3 are as in (2.14) while Ω(Q) is as

in (2.7).

Proof. Necessity: Suppose that K∗ is an optimal solution of (2.21). As a conse-

quence of Remark 2.3.1 we know that K∗ is proper. Due to Theorem 2.3.2 B), it

follows that there exists Q∗ ∈ A(nu+ny)×(nu+ny) such that K∗ = Ω21(Q
∗)Ω−1

11 (Q∗) and

therefore Ω21(Q
∗)Ω−1

11 (Q∗) ∈ S. From the argument in the proof of [69, Theorem

1] we get that ‖f(P,K∗)‖ = ‖T1 − T2Q
∗T3‖. We claim now that Q∗ is optimal

for (2.22). Suppose it is not. Then there must exist Q′ ∈ A(nu+ny)×(nu+ny) such

that ‖T1 − T2Q
′T3‖ < ‖T1 − T2Q

∗T3‖. Furthermore, K ′ = Ω21(Q
′) Ω−1

11 (Q′) is a

stabilizing controller (Theorem 2.3.2 B)) and ‖f(P,K ′)‖ = ‖T1 − T2Q
′T3‖ (proof

of [69, Theorem 1]). (From Remark 2.3.1 it follows that K ′ is also proper.) But then

‖f(P,K ′)‖ < ‖f(P,K∗)‖ which contradicts the initial hypothesis on the optimality

of K∗. We conclude that Q∗ is an optimal solution to (2.22).

Sufficiency: Suppose that Q∗ ∈ A(nu+ny)×(nu+ny) is an optimal solution of

(2.22). It follows by Theorem 2.3.2 B) that K∗ = Ω21(Q
∗)Ω−1

11 (Q∗) ∈ S is a proper

(Remark 2.3.1) stabilizing controller of P . Furthermore, via the argument in the

proof of [69, Theorem 1] we get that ‖T1 − T2Q
∗T3‖ = ‖f(P,K∗)‖. We claim

now that K∗ is optimal for (2.21). Suppose it is not. Then, there must exist

a proper, stabilizing controller K ′ ∈ S such that ‖f(P,K ′)‖ < ‖f(P,K∗)‖. It

follows by Theorem 2.3.2 B) that there exists Q′ ∈ A(nu+ny)×(nu+ny) such that K ′ =

Ω21(Q
′)Ω−1

11 (Q′). From [69, Theorem 1] we get that ‖f(P,K ′)‖ = ‖T1 − T2Q
′T3‖

and this implies that ‖T1 − T2Q
′T3‖ < ‖T1 − T2Q

∗T3‖, which contradicts the
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optimality of Q∗ assumed at the beginning of the proof. Hence K∗ is an optimal

solution for (2.21).

2.4.3 Sparsity Constraints on the Q-Parameter

Consider the following conformable partition of the parameter Q (from Theo-

rem 2.3.2 and Theorem 4.51), where Q belongs to the set A(nu+ny)×(nu+ny):

Q =

ny nu︷︸︸︷ ︷︸︸︷ Q11 Q12

Q21 Q22


}
ny}
nu

(2.23)

For Q12 ∈ Any×nu we assume the same partition by blocks as the partition for G in

(2.15). That is, Q12 is partitioned in p block–rows and m block–columns and the i-th

block–row has niy rows, while the j-th block–column has nju columns. Hence for any

(i, j) ∈ 1, p× 1,m we get that [Q12]ij ∈ An
i
y×n

j
u . Similarly, assume for Q21 ∈ Anu×ny

the same partition by blocks as the controller K, namely: m block–rows and p

block–columns and for any (j, i) ∈ 1,m× 1, p, [Q21]ji ∈ An
j
u×ni

y . It follows that Q11

is naturally partitioned in p block–rows by p block–columns and the i-th block–row

has niy rows, while the j-th block–column has njy columns. Consequently, for any

(i, j) ∈ 1, p×1, p we get that [Q11]ij ∈ An
i
y×n

j
y . Similarly, Q22 has m block–rows and

m block–columns and the i-th block–row has niu rows, while the j-th block–column

has nju columns.

In the sequel, we will make use of the set T ⊂ A(nu+ny)×(nu+ny) defined as follows:
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T def
=

{ Q11 Q12

Q21 Q22

 ∈ A(nu+ny)×(nu+ny)
∣∣∣Pattern(Q11) ≤

(
GbinKbin+Im

)
; Pattern(Q12) ≤

≤
(
GbinKbinGbin+Gbin

)
; Pattern(Q21) ≤ Kbin; Pattern(Q22) ≤ KbinGbin

}
.

(2.24)

The set T in (2.24) can be written in a more compact form as follows:

T =
{
Q ∈ A(nu+ny)×(nu+ny)

∣∣∣Pattern(Q) ≤ Qbin
}

(2.25)

where Qbin is the following matrix:

Qbin def
=


(
GbinKbin + Im

) (
GbinKbinGbin +Gbin

)
Kbin KbinGbin

 . (2.26)

Remark 2.4.2. Note that T is a linear space. The alternative characterization of

T in (2.25) reveals that T is solely specified by the sparsity matrix Qbin.

2.4.4 Quadratic Invariance

This subsection comprises a few results from [79], slightly adapted for the scope

of this chapter. Since we deal exclusively with discrete–time, LTI systems with finite

dimensional state we will use the terms proper and causal interchangeably.

Definition 2.4.3. [79, Definition 2] Suppose that a strictly causal plant G ∈ Pny×nu
s

and S, a subset of Pnu×ny , are given. The set S is called quadratically invariant
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under the plant G if

KGK ∈ S, for all K ∈ S

For ease of reference, we restate the following result, in fact another necessary

and sufficient condition for quadratic invariance:

Proposition 2.4.4. [79, Theorem 26] A linear subspace of controllers S is quadrat-

ically invariant under G if and only if

KGJ ∈ S, for all K, J ∈ S

The next Proposition is a slight adaptation of Lemma 5 in [79].

Proposition 2.4.5. Suppose that a strictly causal plant G ∈ Pny×nu
s and a linear

subspace S ⊂ Pnu×ny are given. If S is quadratically invariant under G then

K(GJ)n ∈ S, for all K, J ∈ S, n ∈ Z+

where Z+ denotes the set of positive integers.

Proof. The proof follows by induction. For n = 1 the statement is true due to the

quadratic invariance assumption and Proposition 2.4.4. The induction hypothesis

at step n ∈ Z+ is that K(GJ)n is in S. Now, consider the following identity:

K(GJ)n+1 = (K + F )G(J + F )−KGJ −KGF − FGF (2.27)

where F
def
= K(GJ)n. Because F is in S by assumption and S is a linear space, we

conclude that both K + F and J + F belong to S as well. Since the factors on the

right hand side of (2.27) belong to S, from Proposition 2.4.4, it follows that their

sum stays in (the linear space) S, hence the conclusion that K(GJ)n+1 is in S.
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For any positive integer time-horizon T and an arbitrarily selected function

f : Z+ → R, we define fT as follows:

fT (t)
def
=


f(t), if t ≤ T

0, if t > T

(2.28)

In addition to the standard `p Banach spaces, we define the following extended

space denoted as `e:

`e
def
=
{
f : Z+ → R

∣∣fT ∈ `∞, for all T ∈ Z+

}
.

Given general topological spaces X and Y , we denote with L(X ,Y) the set

of all linear, continuous maps from X to Y . We consider that the topology on

`e is generated by the sufficient family of seminorms {‖ · ‖T | T ∈ Z+} where

‖f‖T
def
= ‖fT‖`2 . We adopt the topology on L(`nu

e , `
ny
e ) that is generated by the

sufficient family of seminorms {‖ · ‖T | T ∈ Z+}, where for any element A of

L(`nu
e , `

ny
e ) we define ‖A‖T

def
= ‖AT‖`nu

2 →`
ny
2

. Here, ‖ · ‖`nu
2 →`

ny
2

denotes the induced

norm on maps from `nu
2 to `

ny

2 and AT is the map defined as AT : f 7→ gT , where

A : f 7→ g.

Definition 2.4.6. [79, Definition 13] A subset S of L(`nu
e , `

ny
e ) is inert with respect

to G if the inequality r((gk(0))) < 1 is satisfied and the inclusion (gk)ij ∈ `e holds

for all K ∈ S and (i, j) ∈ 1,m× 1,m, where (gk) is the impulse response matrix of

(GK) and r(·) denotes the spectral radius.

Remark 2.4.7. [79] In the sequel, we will use the fact that the assumption (2.6)

on strict causality of the plant G ∈ Pny×nu
s implies that any subset S of Pny×nu is
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inert with respect to G.

The following Lemma is a modified version of the first implication of [79,

Theorem 14] and will be used extensively in the proof of our main result.

Lemma 2.4.8. Suppose that G ∈ L(`nu
e , `

ny
e ) and that S is a quadratically invariant

and inert (with respect to G) closed subspace. The following inclusions hold:

K(I −GJ)−1 ∈ S for all K, J ∈ S, (2.29)

(I −KG)−1J ∈ S for all K, J ∈ S (2.30)

Proof. We will only prove (2.29), since (2.30) follows analogously by adequately

adapting the results in Proposition 2.4.5, [79, Theorem 7] and [79, Theorem 8]. For

any arbitrary choice of K and J in S the following holds:

K(I −GJ)−1 = K
∞∑
n=0

(GJ)n =
∞∑
n=0

K(GJ)n

where the first equality follows from [79, Theorem 7] and [79, Theorem 8], while the

second equality follows from the continuity of K. Finally, by Proposition 2.4.5, we

get that K(GJ)n ∈ S for all n ∈ Z+ and since the subspace S is closed, it follows

that (2.29) holds.

2.5 Main Result

The central results of this chapter are stated in Theorems 2.5.4 and 2.5.5.

We start this section with Proposition 2.5.1 and Lemma 2.5.2 that will be used as

preliminary results in the rest of the chapter.
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Proposition 2.5.1. Under the hypothesis of Theorem 2.3.2 A) and B), for any

Q ∈ A(nu+ny)×(nu+ny) the first block column of Ω(Q) from (2.7), with the conformable

partition defined in (2.8), can be written as follows:

 Ω11(Q)

Ω21(Q)

 =

 Iny −GΩ21(Q)

Ω21(Q)

 (2.31)

where Ω21(Q) is given by the following expression:

Ω21(Q) =
(
I+K0G

)−1(
K0+K0GK0+K0Q11+K0Q12K0+Q21+Q22K0

)(
I+GK0

)−1

(2.32)

Proof. The proof is algebraic and is presented in the Appendix section of this chap-

ter.

Lemma 2.5.2. Let P ∈ P(nu+ny)×(nu+ny) be a proper, generalized plant. Assume

that the G block of P is strictly proper (G ∈ Pny×nu
s ) and that P is stabilizable by

a controller K0 that is in S. If S is quadratically invariant under G and K0 is a

stabilizing controller in S, then the map K : T 7−→
(
KG ∩ S

)
defined below is

onto:

K(Q)
def
= Ω21(Q)Ω−1

11 (Q), Q ∈ T (2.33)

Here the set KG is as defined in (2.9), the set T is defined in (2.24), while Ω11(Q)

and Ω21(Q) are the blocks in the first column of Ω(Q) from (2.7) with the conformable

partition defined in (2.8).

Proof. See the Appendix section of this chapter.
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Remark 2.5.3. Lemma 2.5.2 is the centerpiece of our main result, as it bridges

the gap between the sparsity constraint K(Q) ∈ S imposed on the controller and

the convex sparsity constraint Q ∈ T on the Q–parameter. (Note that according to

Remark 2.4.2, the set T is a linear subspace.)

2.5.1 The Coordinate–free Parametrization of All Stabilizing,

Decentralized Controllers

The following Theorem, which is the decentralized counterpart of Theorem 2.3.2,

provides the parametrization of all decentralized, stabilizing controllers subject to

pre-selected, quadratically invariant sparsity constraints.

Theorem 2.5.4. Let P ∈ P(nu×ny)×(nu×ny) be a generalized plant with a strictly

proper block G of P (G ∈ Pny×nu
s ). Given a set S of sparsity-constrained controllers

that is quadratically invariant under G and a controller1 K0 in S that stabilizes P ,

the set of all stabilizing controllers in S is given by:

(
KG ∩ S

)
=
{

Ω21(Q)Ω−1
11 (Q)

∣∣∣Q ∈ T }. (2.34)

Notice that since this Theorem does not involve Zames’s Q–parametrization,

it is not conditional on the strongly stabilizability of the plant and it constitutes an

extension of [79] as it only requires that the plant is stabilizable by a (not necessarily

stable) controller that is in the sparsity constrained set S.

Proof. (Of Theorem 2.5.4) The “⊂” inclusion in (2.34) follows from Theorem 2.3.2,

1Here K0 is used in the expression for Ω(Q) as given in (2.7)
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Lemma 2.2.2 and the fact that the functionK(·) from (2.33) is a well defined function

from T to
(
KG ∩ S

)
(part I in the proof of Lemma 2.5.2). Finally, the “⊃” inclusion

in (2.34) follows from Theorem 2.3.2, Lemma 2.2.2 and the fact that the function

K(·) is onto (Lemma 2.5.2).

2.5.2 The Decentralized, Optimal Disturbance Attenuation Problem

The following Theorem uses the parametrization of Theorem 2.5.4 to cast

problem (2.21) using a convex (model–matching) program. It is important to note

this formulation improves on the approach outlined in [78, (4.8)/ pp.37] as it does

not require stability constraints.

Theorem 2.5.5. Let P ∈ P(nu+ny)×(nu+ny) be a proper, generalized plant whose G

block is strictly proper (G ∈ Pny×nu
s ) and S be a preselected set of sparsity constrained

controllers. In addition, suppose that P can be stabilized by a proper controller

K0 that is in S. If S is quadratically invariant under G then the decentralized

disturbance attenuation problem (2.21) is equivalent to the following convex (model–

matching) program:

min

Q ∈ T

∥∥∥∥ T1 − T2QT3

∥∥∥∥ (2.35)

where T1, T2 and T3 are given in (2.14). An optimal solution K∗ to (2.21) can

always be obtained from the optimal Q in (2.35), denoted with Q∗, via K∗ =
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Ω21(Q
∗)Ω−1

11 (Q∗).

Proof. It is a consequence of Corollary 2.4.1 and Lemma 2.5.2.

A convenient feature of the equivalent convex formulation (2.35) from Theo-

rem 2.5.5 is that the numerical technique from [79, Theorem 29] is readily available

to numerically solve (2.35) (by employing existing tools from standard H2 synthe-

sis). The only draw–back being that the optimization problem from (2.35) although

similar, is larger in size than its (strongly stabilizable case) counterpart from [78,

Section 4.5].

More specifically, the dimension of the Q parameter used in (2.35) is the order

of the closed loop transfer function matrix H(G,K) given in (2.5), while the the

dimension of the analogous parameter in [78, Section 4.5] is the order of the controller

K.

2.5.3 The Decentralized, Mixed H2 Sensitivity Problem

Let G be a strictly proper plant (G ∈ Pny×nu
s ), stabilizable with a proper,

decentralized controller K0 ∈ S. As another classical control application, consider

the mixed H2 sensitivity problem from [57, pp. 139], which consists in minimizing

the weighted first block–column of H(G,K) over all stabilizing controllers in S,

namely:
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min

Kstabilizes G

K ∈ S

∥∥∥∥∥∥∥∥
 We O

O ρWu

H(G,K)

 Wd

O


∥∥∥∥∥∥∥∥ , (2.36)

where We, Wd are preselected weighting transfer function matrices and ρ is an

appropriately chosen positive real constant.

The problem stated in (2.36) is an extension of the original approach in [78, 79],

where only the K(I −GK)−1 entry of H(G,K) (involved in the cost function) was

employed via a change of variables.

The following Theorem shows how problem (2.36) can be solved via a convex

(model–matching) program.

Theorem 2.5.6. Let G be a strictly proper plant (G ∈ Pny×nu
s ) and S a pre-selected

set of sparsity–constrained controllers that is quadratically invariant with respect to

G. If K0 is a controller in S that stabilizes G then the minimum norm control

problem (2.36) can be solved via the following convex (model-matching) program:

min

Q ∈ T

∥∥∥∥ V1 + V2QV3

∥∥∥∥ (2.37)

Here H(G,K) is the closed–loop TFM defined in (2.5), while V1, V2 and V3 are the

following TFMs:
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V1
def
=

 We O

O ρWu

H(G,K0)

 Wd

O

 ,

V2
def
=

 We O

O ρWu


H(G,K0)−

 Iny O

O O



 Wd

O

 ,

V3
def
=

 We O

O ρWu


H(G,K0)−

 O O

O Inu



 Wd

O

 .
(2.38)

An optimal solution K∗ to (2.36) can always be obtained from the optimal Q

in (4.52), denoted with Q∗, via K∗ = Ω21(Q
∗)Ω−1

11 (Q∗). The sets S and T , as well

as Ω11(Q) and Ω21(Q) are as specified in the statement of Theorem 2.5.4.

Proof. It is a direct consequence of Theorem 2.3.2 and Lemma 2.5.2.

We point out that the numerical technique from [79, Theorem 29] is again

readily employable to compute the optimal solution of (4.52).

Appendix

Proof of Proposition 2.5.1 The following algebraic identities will prove to

be useful. They hold true in any ring provided the inverses involved exist:

(I + AB)−1A = A(I +BA)−1, (2.39)

(I + AB)−1 = I − A(I +BA)−1B. (2.40)
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We start with the expression of the first block–column of (2.7) from Theorem 2.3.2.

Ω(Q)

 Iny

Onu×ny

 =

(2.7)
=


(
I +GK0

)−1 − I −G
(
I +K0G

)−1

K0

(
I +GK0

)−1 (
I +K0G

)−1


 Q11 Q12

Q21 Q22

×

×


(
I +GK0

)−1

K0

(
I +GK0

)−1

+H(G,K0)

 Iny

Onu×ny


(2.40,2.39)

=

 −GK0

(
I +GK0

)−1 −G
(
I +K0G

)−1

K0

(
I +GK0

)−1 (
I +K0G

)−1

×

×

 Q11

(
I +GK0

)−1
+Q12K0

(
I +GK0

)−1

Q21

(
I +GK0

)−1
+Q22K0

(
I +GK0

)−1

+H(G,K0)

 Iny

Onu×ny


(2.41)
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(2.39,2.40,2.5)
=

 −G
(
I +K0G

)−1(
K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I +GK0

)−1

(
I +K0G

)−1(
K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I +GK0

)−1

+

+

 I −G
(
I +K0G

)−1
K0

K0

(
I +GK0

)−1



=

 I −G
(
I +K0G

)−1(
K0 +K0GK0 +K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I +GK0

)−1

(
I +K0G

)−1(
K0 +K0GK0 +K0Q11 +K0Q12K0 +Q21 +Q22K0

)(
I +GK0

)−1



(2.42)

which is the desired expression.

Proof of Lemma 2.5.2 We divide the proof in two parts: in part I) we prove

that the function K(·) is a well–defined function indeed, from T to
(
C ∩ S

)
. In

part II) we show that the function K(·) is onto.

I) The invertibility (for every Q ∈ T ) of the block Ω11(Q) in the expression

(2.9) of K(·) is guaranteed by the arguments stated in Remark 2.3.3.

Let Q ∈ T be arbitrary but fixed. Since Q ∈ A(nu+ny)×(nu+ny), it follows by

Theorem 2.3.2 ii) that K(Q) ∈ C, so it only remains to show that K(Q) ∈ S.

We expand the product in (2.32) to get that Ω21(Q) (in the form provided by

Proposition 2.5.1) is the sum of the following six terms:
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Ω21(Q) =
(
I +K0G

)−1
K0

(
I +GK0

)−1︸ ︷︷ ︸
t1

+
(
I +K0G

)−1
K0GK0

(
I +GK0

)−1︸ ︷︷ ︸
t2

+

(
I +K0G

)−1
K0Q11

(
I +GK0

)−1︸ ︷︷ ︸
t3

+
(
I +K0G

)−1
K0Q12K0

(
I +GK0

)−1︸ ︷︷ ︸
t4

+

(
I +K0G

)−1
Q21

(
I +GK0

)−1︸ ︷︷ ︸
t5

+
(
I +K0G

)−1
Q22K0

(
I +GK0

)−1︸ ︷︷ ︸
t6

(2.43)

We prove next that Ω21(Q) is in S. We prove this by showing that each of the

six terms in the sum of the right hand side of (2.43) are in S. Since S is a (closed)

linear subspace, it will follow that Ω21(Q) stays in S as well. Remember that from

the hypothesis K0 ∈ S and define

∆0
def
= K0(I +GK0)

−1. (2.44)

It follows that ∆0 belongs to S, by the assumed quadratically invariance of S under

G and [79, Theorem 14].

The first term in (2.43) is

t1 =
(

(I +K0G)−1K0

)
(I +GK0)

−1 (2.44)
= ∆0(I +GK0)

−1

which is in S by (2.29) from Lemma 2.4.8. The second term

t2 =
(

(I +K0G)−1K0

)
G
(
K0(I +GK0)

−1
)

(2.44)
= ∆0G∆0

which is in S because ∆0 ∈ S, S is quadratically invariant under G and Defini-

tion 4.2.3.
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We know that

KbinGbinKbin = Kbin (2.45)

holds true, as an immediate consequence of Definition 4.2.3.

From (2.24) we know that Pattern(Q11) = GbinKbin + Im and so

Pattern
(
∆0Q11

) (4.8)

≤ Pattern(∆0)Pattern(Q11) = Kbin
(
GbinKbin + Im

)
= KbinGbinKbin +Kbin = Kbin +Kbin = Kbin

(2.46)

because of (2.45) and the fact that Kbin +Kbin = Kbin (due to the way addition is

defined for binary matrices). Define

W11
def
=
(
∆0Q11

)
. (2.47)

Then, since Pattern(W11) ≤ Kbin we conclude W11 ∈ S. The third term is

t3 = ∆0Q11(I +GK0)
−1 (2.47)

= W11(I +GK0)
−1

and it belongs to S by (2.29) in Lemma 2.4.8.

From (2.24) we know that

Pattern(Q12) = GbinKbinGbin +Gbin.

The fourth term is t4 = ∆0Q12∆0. It follows that
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Pattern
(
∆0Q12∆0

) (4.8)

≤ Pattern
(
∆0

)
Pattern

(
Q12

)
Pattern

(
∆0

)
= Kbin

(
GbinKbinGbin +Gbin

)
Kbin = Kbin

(
GbinKbinGbin

)
Kbin +KbinGbinKbin

=
(
KbinGbinKbin

)
GbinKbin+Kbin (2.45)

= KbinGbinKbin+Kbin (2.45)
= Kbin+Kbin = Kbin

(2.48)

From Pattern(t4) ≤ Kbin we get that t4 ∈ S as well.

From (2.24) we know that Pattern(Q21) = Kbin and so Q21 ∈ S. Denote

W21
def
= Q21(I +GK0)

−1. (2.49)

But then W21 ∈ S by (2.29) in Lemma 2.4.8. The fifth term is then

t5 = (I +K0G)−1
(
Q21(I +GK0)

−1
)

(2.49)
= (I +K0G)−1W21

which is in S by (2.30) from Lemma 2.4.8.

Finally, from (2.24) we write that Pattern(Q22) = KbinGbin and so

Pattern
(
Q22∆0

) (4.8)

≤ Pattern
(
Q22

)
Pattern

(
∆0

)
=
(
KbinGbin

)
Kbin

= KbinGbinKbin (2.45)
= Kbin

(2.50)

Denote
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W22
def
= Q22∆0. (2.51)

Since Pattern(W22) ≤ Kbin we get that W22 ∈ S. Therefore the sixth and last term

t6 = (I +K0G)−1
(
Q22∆0

) (2.51)
= (I +K0G)−1W22

and it belongs to S by (2.30) from Lemma 2.4.8.

We have just proved that Ω21(Q) ∈ S for any Q ∈ T . It follows then by [79,

Theorem 14] that

K(Q)
(2.9)
= Ω21(Q)Ω−1

11 (Q)
(4.70)
= Ω21(Q)

(
I −GΩ21(Q)

)−1

∈ S.

and the first part of the proof ends.

II) Let be K ∈
(
C ∩ S

)
, arbitrarily chosen. We will prove that there exists

a Q ∈ T such that K(Q) = K. We show that such a Q is given by

Q =

 −
(
I +GK

)−1 −G
(
I +KG

)−1

K
(
I +GK

)−1
I −

(
I +KG

)−1

 . (2.52)

Note that

Q
(2.5)
=

 −I O

O I

H(G,K)

 I O

O −I

+

 O O

O I


and because K ∈ C implies that H(G,K) ∈ A(nu+ny)×(nu+ny) , we get that Q is in

the set A(nu+ny)×(nu+ny) as well. Next, denote

∆
def
= K

(
I +GK

)−1
. (2.53)
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By the hypothesis of quadratic invariance of S under G it follows via [79, Theorem

14] that ∆ ∈ S. Furthermore, because of the invertibility of the transformation in

(2.53) as a function of K (see [79, pp. 15]), we get that

K
def
= ∆

(
I −G∆

)−1
. (2.54)

Next, because of (2.52) and

G∆−I (2.53)
= GK

(
I+GK

)−1−I (2.39)
= G

(
I+KG

)−1
K−I (2.40)

= I−
(
I+GK

)−1−I = −
(
I+GK

)−1
,

G∆G−G = −
(
I +GK

)−1
G

(2.39)
= −G

(
I +GK

)−1
,

∆G
(2.53)
= K

(
I +GK

)−1
G

(2.40)
= I −

(
I +KG

)−1
.

(2.55)

we get that

Q =


(
G∆− I

) (
G∆G−G

)
∆ ∆G

 (2.56)

Assuming for Q the same conformable partition from (2.23), denote Q11

def
=

(G∆ − I), Q12

def
= (G∆G − G), Q21

def
= ∆ and Q22

def
= ∆G. It follows that

Pattern(Q11) ≤
(
GbinKbin+Im

)
, Pattern(Q12) ≤

(
GbinKbinGbin+Gbin

)
, Pattern(Q21) ≤

Kbin and Pattern(Q22) ≤ KbinGbin. This proves via (2.24) that Q ∈ T .

It only remains to show that K(Q) = K. By plugging (2.56) in (2.32) we get
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Ω21(Q) =
(
I+K0G

)−1(
K0+K0GK0+K0(G∆−I)+K0(G∆G−G)K0+∆+∆GK0

)(
I+GK0

)−1

=
(
I +K0G

)−1(
K0G∆ +K0G∆GK0 + ∆ + ∆GK0

)(
I +GK0

)−1

=
(
I +K0G

)−1(
K0G∆(I +GK0) + ∆(I +GK0)

)(
I +GK0

)−1

=
(
I +K0G

)−1(
K0G∆ + ∆

)
=
(
I +K0G

)−1(
I +K0G

)
∆

= ∆

(2.57)

Finally

K(Q)
(4.70)
= Ω21(Q)

(
I −GΩ21(Q)

)−1 (2.57)
= ∆

(
I −G∆

)−1 (2.54)
= K

hence the proof.
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Chapter 3

Optimal Disturbance Attenuation

in the Presence of Stable, Additive Plant Perturbations

Contribution. In this chapter we deal with the optimal disturbance at-

tenuation problem ([58]) for linear and time invariant (LTI) systems. We look at

performance criteria quantified by a given operatorial induced norm, or gain, of the

lower linear fractional transformation of a generalized plant in feedback interconnec-

tion with the controller. Our main result proves that the minimal gain attainable

by causal feedback is not influenced by linear, stable, additive plant perturbations.

Furthermore, this is shown to hold true, irrespective of the used norm (e.g. for 1-D,

LTI systems it could be any of the Lp or `p induced norms, respectively). It follows

as a direct consequence that for the optimal synthesis procedure, it is sufficient to

solve the disturbance attenuation problem only for the anti–stable component of the

plant. The solution obtained for the anti–stable component of the plant can than

be used to retrieve the optimal solution for the entire plant, via a simple algebraic,

feedback transformation.

Furthermore, we also prove the validity of our result for an important class of

decentralized control systems, namely decentralized configurations that are quadrat-

ically invariant ([79]) or invariant under feedback. Moreover, since the proof of the

main result is completed without any assumption on the coprime factorizability of
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the plant, it also encompasses the case of linear, n-D systems ([69]).

3.0.4 Preliminaries and Notation

We have preferred to present our result in an abstract theoretic setting, which

encompasses a large class of linear systems, including n-D systems ([69]). To this end

we borrow entirely the notation from the previous chapter, specifically the notation

from Subsection 2.2.1 and Subsection 2.2.2. For the proof of our main result, we

employ solely the commutative ring algebra on the set of all stable, linear systems.

That is, the fact that parallel and cascade connections of stable, linear systems are

again stable, linear systems.

The so–called disturbance attenuation problem, which we state next, stands

out as a central topic in systems control theory ([58]).

Problem 1. Consider a proper, stabilizable, generalized plant P in the feed-

back configuration of Figure 2.1. We wish to design a stabilizing controller K that

minimizes a certain norm of the transfer function from w to z, namely

min

Kstabilizes P

∥∥∥Pzw + Pzu K
(
I +GK

)−1
Pyw

∥∥∥ . (3.1)

The functional in (3.1) is called the lower–linear fractional transformation of the

generalized plant P with controller K and it will be denoted it in the sequel with

f(Pzw, Pzu, G, Pyw, K)
def
= Pzw + Pzu K

(
I +GK

)−1
Pyw. (3.2)
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+ν2 y
K

u+
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G

–

Figure 3.1: Standard unity feedback interconnection

In Figure 1, the transfer function matrices K ∈ Pnu×ny and G ∈ Pny×nu
s

represent the controller and the plant respectively, interconnected in the standard

unity feedback configuration. We denote with H(G,K) the transfer function matrix

from [νT2 νT1 ]T to [yT uT ]T in Figure 2, (provided that the feedback loop is

well–posed):

H(G,K)
def
=

 (I +GK)−1 −G(I +KG)−1

K(I +GK)−1 (I +KG)−1

 (3.3)

If the transfer matrix H(G,K) in (3.3) belongs to A we say that K is a stabilizing

controller of G or equivalently that K stabilizes G. If a stabilizing controller of G

exists, we say that G is stabilizable. With the exact same the notation introduced in

the previous chapter, we remark that H(G,K) is the transfer function matrix from

[νT2 νT1 ]T to [yT uT ]T for the system in Figure 1, as well.

The following Lemma is a generalization of the result for LTI systems, from

[56, Theorem 4.3.2]. The generalization comes from the fact that the next Lemma

is proved in [69] using only the algebra of the abstract, commutative ring A and in

doing so, unlike [56, Theorem 4.3.2], it does not assume the coprime factorizability

of the plant.

Lemma 3.0.7. [69, Lema 1] Given a proper, stabilizable, generalized plant P , the
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controller K is a stabilizing controller of P (in the feedback system from Figure 2.1) if

and only if K is a stabilizing controller of G (in the feedback system from Figure 2.2).

We introduce the following notation for the set of all stabilizing controllers of

a given plant G (note that via Remark 2.3.1 any stabilizing controller of the strictly

proper G is proper):

CG
def
=
{
K
∣∣K ∈ Pny×nu and K stablilizes G

}
. (3.4)

Using the notation in (3.2), (3.4) and Lemma 3.0.7, a more compact formulation of

Problem 1 is:

min

K ∈ CG

‖f(Pzw, Pzu, G, Pyw, K)‖ . (3.5)

Whenever the feedback loop H(G,K) is well–posed, we call the transfer func-

tion matrix from ν2 to u, the feedback transformation of G with K and we denote

it in the sequel with

hG(K)
def
= K

(
I +GK

)−1
. (3.6)

Remark 3.0.8. Also note that hG(·) from (3.6), seen as a function from Pnu×ny to

Pnu×ny is bijective and its inverse has the expression h−1
G (K) = K(I −GK)−1.

3.1 Main Result

Figure 2 represents the standard unity feedback configuration of the additively

perturbed nominal plant G. The stable transfer function matrix Gs represents an
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Figure 3.2: Standard unity feedback interconnection with stable additive perturba-

tion

additive plant perturbation of the nominal plant G, while the Ks block represents

the controller. The nominal plant G is not assumed to be stable. We are interested in

how the solution to Problem 1 relates to the solution of the disturbance attenuation

problem with the additively perturbed nominal plant, which we state next.

Problem 2. Let be the proper, stabilizable, generalized plant P , and the

strictly proper, stable plant perturbation Gs of the nominal plant G be given. We

wish to design a stabilizing controller Ks of (G + Gs) that minimizes the following

functional

min

Ks ∈ C(G+Gs)

‖f(Pzw, Pzu, (G+Gs), Pyw, Ks)‖ . (3.7)

With the notation from (3.4), here C(G+Gs) stands for the set of all stabilizing con-

trollers of (G + Gs) in the feedback interconnection from Figure 3 while f(·) is as

defined in (3.2).

Lemma 3.1.1. A) Consider the strictly proper, stabilizable plant G in the set

Pny×nu
s , any strictly proper, stable perturbation Gs also in the set Pny×nu

s and any
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stabilizing controller K of G. Then Ks, defined by the expression

Ks
def
= K(I −GsK)−1. (3.8)

is a stabilizing controller of (G + Gs). Furthermore hG(K) = h(G+Gs)(Ks). Here,

hG(K) is as defined in (3.6).

B) Conversely, given the proper, stabilizable plant G in the set Pny×nu
s , any strictly

proper, stable perturbation Gs in the set Pny×nu
s and any stabilizing controller Ks of

(G+Gs), then K defined as

K
def
= Ks(I +GsKs)

−1. (3.9)

is a stabilizing controller of G. Furthermore h(G+Gs)(Ks) = hG(K).

Proof. The proof is given in the Appendix of this chapter.

An immediate consequence of Lemma 3.1.1 is the following main result of

this paper, connecting the optimal solution to Problem 1 to the optimal solution of

Problem 2. Here follows the precise statement.

Corollary 3.1.2. For any consistent norm over A, consider the given proper, sta-

bilizable, generalized plant P , and any strictly proper, stable plant perturbation Gs

(of the nominal plant G). If K∗ is the optimal solution to Problem 1 then

K∗s = K∗(I −GsK
∗)−1 (3.10)

is the optimal solution to Problem 2.
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Proof. The proof follows by contradiction. Suppose that K∗ is the optimal solu-

tion to Problem 1. According to Lemma 3.1.1 A), hG(K∗) = h(G+Gs)(K
∗
s ) and so

‖f(Pzw, Pzu, G, Pyw, K
∗)‖ (3.2)

= ‖Pzw + Pzu hG(K∗)Pyw‖ =
∥∥Pzw + Pzu h(G+Gs)(K

∗
s )Pyw

∥∥ (3.2)
=

‖f(Pzw, Pzu, G+Gs, Pyw, K∗s )‖. Suppose now that K∗s is not the optimal solution

for Problem 2, therefore there exists K̃s a causal, stabilizing controller of (G +

Gs) such that
∥∥∥f(Pzw, Pzu, (G+Gs), Pyw, K̃s

∥∥∥ < ‖f(Pzw, Pzu, (G+Gs), Pyw, K
∗
s )‖.

Then, according to Lemma 3.1.1 B), K̃ = K̃s(I + GSK̃sGs)
−1 is a stabilizing con-

troller of G and hG(K̃) = h(G+Gs)(K̃s), which in turn implies that ‖f(Pzw, Pzu, G,

Pyw, K̃)
∥∥∥ =

∥∥∥f(Pzw, Pzu, (G+Gs), Pyw, K̃s)
∥∥∥. But this would imply that ‖f(Pzw, Pzu, G, Pyw,

K̃)
∥∥∥ < ‖f(Pzw, Pzu, G, Pyw, K

∗)‖ which is a contradiction with the assumed opti-

mality of K∗.

Remark 3.1.3. As a consequence of Corollary 4.3.4, we remark that the optimal

gain in the disturbance attenuation problem (3.1) is not affected by linear, stable,

additive perturbations Gs of the nominal plant G, irrespective of the operatorial norm

involved.

3.1.1 Numerical Example.

We work out an illustrative numerical example, and show that it is sufficient to

solve the disturbance attenuation problem only for the antistable part of the given

plant. Consider the case of 1-D LTI, continuous–time systems along with the H2

norm. Consider the generalized plant P (s) given below, where nw = 1, nu = 1,
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ny = 1 and nz = 1:

P (s) =

 1
s+10

0.1(s+100)
100s+1

1 s−8
(s−1)(s+2)(s+3)(s+4)(s+5)(s+6)

 (3.11)

Compute the additive factorization of the Pyu block of P , into the sum (G+Gs) of

an antistable plus a stable factor (in fact a partial fraction expansion):

s− 8
(s− 1)(s + 2)(s + 3)(s + 4)(s + 5)(s + 6)

=

−0.002778
s− 1

+
0.002778s4 + 0.05833s3 + 0.4889s2 + 2.1s + 6

(s + 2)(s + 3)(s + 4)(s + 5)(s + 6)

with G(s) = −0.002778/(s− 1).

We want to solve the optimal disturbance attenuation Problem 2 for the gen-

eralized plant P (s) in (3.11). To this end, we compute the solution K∗(s) to Prob-

lem 1, using the Matlab library function h2syn (see reference [83]). We obtain the

following expression for K∗(s):

K∗(s) =
−144669.4215s2 − 1440777.27s− 14393.3058

s3 + 113s2 + 932.1405s− 960.0186

We retrieve K∗s , the solution to Problem 2, via (3.10). The numerator of K∗s (s) is

given by: (−144669.42149s7−4334165.70248s6−51253699.09091s5−307516607.85125s4−

988916656.6116s3 − 1616681573.55368s2 − 1052386247.60308s − 10363180.16506)

while the denominator of K∗s (s) is given by (s8+133s7+3749s6+48219s5+346678s4+

1519556s3 + 4398389.42148762s2 + 8343771.32231411s − 604853.55371882). One

would obtain the exact same expression of the optimal H2 controller K∗s (s), if one
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would run the h2syn Matlab routine ([83]) on the “complete”, generalized plant

P (s) from (3.11).

3.1.2 Numerical Considerations

Remark 3.1.4. For 1-D LTI systems, one can always obtain an additive factor-

ization G + Gs of the Pyu block of the generalized plant, such that the factor G is

antistable while the factor Gs is stable (contains all the stable poles and only those).

This factorization is readily implemented in the Matlab library function stabsep

([83]). The factorization can be computed in terms of state–space realizations (see

[60, ] for complete details), as it only comes down to performing an orthogonal simi-

larity transformation that brings the state matrix to an ordered Schur form ([98, 99])

and then solving a Sylvester matrix equation ([100]).

After the additive factorization is performed, computational effort is spent

to solve Problem 1 (from (3.5)) for the antistable part G, which has a smaller

McMillan degree, in order to obtain the optimal K∗. Once that K∗ is available, a

(nonminimal) state–space realization of the optimal K∗s is readily available in terms

of the realizations K∗ and Gs respectively, via the feedback transformation (3.10)

(see [?, pp. 39] for the state–space formulas). This approach seems promising for

the case in which the plant has a relatively much larger number of stable poles than

unstable poles. Indeed, for the numerical example above we do obtain a slightly

superior average running time than the time for computing the optimal controller

for the entire plant P from (3.11).
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Unfortunately, the operations involved are very badly conditioned from the

numerical point of view. Firstly, the additive decomposition is badly conditioned,

especially for the case when Gs has a large number of poles. Secondly, the feedback

transformation necessary to retrieve K∗s , the solution to Problem 2, via (3.10) is

very badly conditioned due to the large number of poles/zeros cancelation that

occur when computing (3.10).

3.1.3 The Stable Plant Case

We look at the particular case when the plant is stable to begin with (i.e.

G = 0 and Gs is the given, stable plant). Then any stable Q (in the set Anu×ny) will

be a stabilizing controller for the feedback configuration in Figure 1 (with G = 0).

It follows via Lemma 3.1.1 A) that for any stable Q in the set Anu×ny , Ks
def
=

Q(I − GsQ)−1 is a stabilizing controller of Gs. This way we retrieve the classical

result due to Zames and Desoer et al ([61, 90]) of parametrizing all stabilizing

controllers of the stable plant Gs.

As expected, when G = 0, Problem 2 becomes an open loop problem, being

equivalent with a model matching problem. Specifically, solve for the optimal Q∗

the model matching problem

min

Q stable

‖Pzw + Pzu Q Pyw‖ (3.12)

and retrieve the solution to Problem 2 as K∗s
def
= Q∗(I −GsQ

∗)−1.
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3.2 Quadratically Invariant, Sparsity Constrained Controllers

From this point on, by simply instancing A as the RH∞ set, we restrict our

discussion to 1-D, LTI systems. We prove here the validity of our main result to an

important class of decentralized configurations, namely decentralized configurations

that are quadratically invariant or invariant under feedback ([78, 79]). This class

of decentralized configurations is particularly important since it is the most general

one for which there is available a computational method for solving the decentralized

disturbance attenuation problem (the decentralized version of Problem 1).

The decentralized setting is formalized via sparsity constraints ([79, pp. 283]).

We denote with S the set of admissible, decentralized controllers, that satisfy a pre–

specified sparsity constraint. The set S can also be seen as a given linear subspace

of Pny×nu .

Given the proper, generalized plant P and the set S, the decentralized distur-

bance attenuation problem (as introduced in [79, pp. 276 ]) is formulated by simply

adding to Problem 1 from (3.1) the extra constraint K ∈ S on the stabilizing

controllers. We will refer to it as Problem 1’ :

min

K ∈ CG

K ∈ S

∥∥∥∥ f(Pzw, Pzu, G, Pyw, K)

∥∥∥∥ . (3.13)

Definition 3.2.1. [79, Definition 13] Given the plant G ∈ Pny×nu
s and the set S,
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we call S inert with respect to G if it satisfies the definition in [79, Definition 13].

Remark 3.2.2. [79] Throughout this section, both for continuous–time and discrete–

time, finite–dimensional, 1-D LTI systems, the constraint set S is always inert,

since G is assumed strictly proper (Remark 2.3.1) and S is a subset of the set of

finite–dimensional, proper 1-D, LTI systems. Note also, that for the case of sparsity

constraints, S is a linear space.

Definition 3.2.3. [79, Definition 2] Given the plant G ∈ Pny×nu
s and the set S ⊂

Pnu×ny , the set S is called quadratically invariant under the plant G if

KGK ∈ S for all K ∈ S. (3.14)

Remark 3.2.4. For sparsity constraints, condition (4.9) can be elegantly formal-

ized ([79, Theorem 26]) and it completely characterizes the class of invariant under

feedback, decentralized configurations treated in this section. The standard hypothe-

sis for the main result in [79, Theorem 14] (which we also assume here) is for the

pre–specified, (inert) linear space S to be quadratically invariant under the Pyu block

of the generalized plant. Note that quadratic invariance under S does not depend on

the dynamics of Pyu, in the sense made precise by the following proposition.

Proposition 3.2.5. Given the set S and the additive factorization Pyu = G + Gs,

with G antistable and Gs stable, Pyu is quadratically invariant under S if and only

if both G and Gs respectively, are quadratically invariant under S.

Proof. The “If” part, follows immediately via the linearity of the K operator and

the fact that S is a linear space. The “Only If” part follows directly from the fact
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that unless both G and Gs have the same sparsity pattern as Pyu they have an even

sparser pattern.

As for the main result, we are interested in how the decentralized, optimal

solution to Problem 1’ from (3.13) relates to the decentralized, optimal solution

in the presence of additive, stable plant perturbation, which we will refer to as

Problem 2’:

min

Ks ∈ CG+Gs

Ks ∈ S

∥∥∥∥ f(Pzw, Pzu, (G+Gs), Pyw, Ks)

∥∥∥∥ . (3.15)

Lemma 3.2.6. A) Consider S a given linear subspace of Pnu×ny , the plant G in

the set Pny×nu
s , the decentralized, stabilizing controller K ∈ S of G and the stable

perturbation Gs belonging to Pny×nu
s such that S is quadratically invariant under

Pyu = G+Gs. Then Ks given by Ks = K(I −GsK)−1, belongs to the set S and is

an admissible decentralized, stabilizing controller of (G+Gs).

B) Conversely, consider S a given linear subspace of Pnu×ny , the plant G in the set

Pny×nu
s , the stable perturbation Gs in the set Pny×nu

s and the decentralized, stabilizing

controller Ks ∈ S of G + Gs. Assume that S is quadratically invariant under

Pyu = G+Gs. Then the controller K given by K = Ks(I +GsKs)
−1, belongs to the

set S and is an admissible decentralized, stabilizing controller of G.

Proof. A) We get via Lemma 3.1.1 A) that Ks is a stabilizing controller for (G+Gs).
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It only remains to prove that it is an admissible, decentralized controller (i.e. Ks

belongs to the set S). For this we employ the main result from [79]. Note that via

Remark 4.2.2 the set S is inert with respect to Gs. Also, via Proposition 3.2.5, it

follows that S is quadratically invariant under Gs. Then, [79, Theorem 14] implies

that h−1
Gs

(K)
def
= K(I − GsK)−1 (defined in Remark 3.0.8) is a bijection from S to

S and so K ∈ S implies h−1
Gs

(K) belongs to S, i.e. Ks ∈ S.

B) Lemma 3.1.1 B) shows that K is a stabilizing controller for G, so it only

remains to be shown that K ∈ S. Noting that S is inert with respect to Gs and

quadratic invariant under Gs (with the same arguments from point A) of this proof),

we employ [79, Theorem 14] to get that hGs(Ks)
def
= Ks(I + GsKs)

−1 (defined in

(3.6)) is a bijection from S to S. Finally, since Ks ∈ S, we get that hGs(Ks) ∈ S,

i.e. K ∈ S and the proof ends.

Corollary 3.2.7. Consider the given proper, stabilizable, generalized plant P , the

strictly proper, stable plant perturbation Gs and S a given linear subspace of Pnu×ny

such that S is quadratically invariant under Pyu = G+Gs. If K∗ ∈ S is the optimal

solution to the decentralized Problem 1’ then K∗s = K∗(I−GsK
∗)−1 belonging to the

set S, is the optimal solution to the decentralized Problem 2’.

Proof. The proof follows on the exact lines of the proof of Corollary 4.3.4, taking

into account the conclusions of Lemma 3.2.6 and is omitted for brevity.
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Appendix

Proof of Theorem 3.1.1 Throughout this proof, we employ solely the commutative

ring algebra on the set A of all stable, linear systems. That is, the fact that parallel

and cascade connections of any two elements of A are again elements of A.

We will make extensive use of the following identities, which hold true in any

commutative ring, provided that the inverses involved exist.

(A+B)−1 = A−1 − A−1(I +BA−1)
−1
BA−1 (3.16)

(I + AB)−1A = A(I +BA)−1 (3.17)

(I + AB)−1 = I − A(I +BA)−1B (3.18)

We start by pointing out that Ks is given by (3.8) if and only if K is given by

(3.9). We prove next that if Ks is given by (3.8) (and equivalently K is given by

(3.9)) then the identity h(G+Gs)(Ks) = hG(K) holds.

h(G+Gs)

(
Ks

) (3.6)
= Ks

(
(I +GsKs) +GKs

)−1 (3.16)
=

hGs(Ks)− hGs(Ks)
(
I +G hGs(Ks)

)−1

G hGs(Ks) =

hGs(Ks)
(
I −

(
I +G hGs(Ks)

)−1
G hGs(Ks)

)
(3.18)
=

hGs(Ks)
(
I −G

(
I + hGs(Ks)G

)−1
hGs(Ks)

)
(3.18)
=

hGs(Ks)
(
I +G hGs(Ks)

)−1 (3.6)
= hG

(
hGs(Ks)

)
(3.9)
=

hG
(
K
)
.

(3.19)
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A) We prove here that if K is a stabilizable controller for G (and consequently

H(G,K) from (3.3) belongs to A(nu+ny)×(nu+ny)), then Ks given in (3.8) is a stabi-

lizing controller for (G + Gs). Note that due to Remark 2.3.1, if K stabilizes the

strictly proper G, then K is proper.

We consider H(G,K) in (3.3) conformably partitioned into four blocks and

we introduce the following index notation such that H(G,K)(1,1), H(G,K)(1,2),

H(G,K)(2,1), and H(G,K)(2,2) denotes the transfer function matrices from ν2 to

y, from ν1 to y, from ν2 to u and from ν1 to u respectively.

As pointed out before, if Ks is given by (3.8) then K has the expression in

(3.9).

Note that H(G + Gs, Ks)(2,1)
(4.4.6)

= H(G,K)(2,1) which is stable, from the as-

sumption on K to be stabilizable for G, hence

H(G+Gs, Ks)(2,1) ∈ Anu×ny . (3.20)

In prealable we denote ∆
def
=
(
I+KsGs

)−1
in order to get the following identity
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H(G+Gs, Ks)(2,2)
(3.3)
=
(
I +Ks

(
G+Gs

))−1

=((
I +KsGs

)
+KsG

)−1 (3.16)
=

∆−∆
(
I +KsG∆

)−1KsG∆ =(
I −∆

(
I +KsG∆

)−1
KsG

)
∆

(3.18)
=
(
I + ∆KsG

)−1
∆

(3.17)
=(

I +Ks

(
I +GsKs

)−1
G
)−1(

I +KsGs

)−1 (3.9)
=(

I +KG
)−1(

I +KsGs

)−1 (3.18)
=(

I +KG
)−1
(
I −Ks

(
I +GsKs

)−1
Gs

)−1 (3.9)
=(

I +KG
)−1(

I −KGs

)−1 (3.3,3.17)
=

H(G,K)(2,2) −H(G,K)(2,1)Gs.

(3.21)

Note that both terms on the last line of (4.4.7) are stable from the assumption on

K to be a stabilizable controller for G and the hypothesis on Gs to be stable. It

follows that via (4.4.7) above, that

H(G+Gs, Ks)(2,2) ∈ Anu×nu . (3.22)
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The following identity holds

−GH(G+Gs, Ks)(2,2)
(4.4.7)

=

−GH(G,K)(2,2) +GH(G,K)(2,1)Gs
(3.17)
=

H(G,K)(1,2) +
(
G(I +KG)−1K

)
Gs

(3.18)
=

H(G,K)(1,2) +
(
I − (I +GK)−1

)
Gs

(3.3)
=

H(G,K)(1,2) +
(
I −H(G,K)(1,1)

)
Gs =

H(G,K)(1,2) +Gs −H(G,K)(1,1)Gs.

(3.23)

It follows that

H(G+Gs, Ks)(1,2) = −(G+Gs)H(G+Gs, Ks)(2,2)

(4.4.9)
= H(G,K)(1,2) +Gs −H(G,K)(1,1)Gs −GsH(G+Gs, Ks)(2,2)

(3.24)

From the assumption on K to be a stabilizable controller for G, the hypothesis on

Gs to be stable and (3.22) it follows that all terms on the last line of (3.24) are

stable and consequently

H(G+Gs, Ks)(1,2) ∈ Any×nu . (3.25)
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The following identity holds

H(G+Gs, Ks)(1,1)
(3.3)
=(

I + (G+Gs)Ks

)−1 (3.18)
=

I − (G+Gs)
(
I +Ks(G+Gs)

)−1
Ks =

I −GH(G+Gs, Ks)(2,1) −GsH(G+Gs, Ks)(2,1)
(4.4.6)

=(
I −GH(G,K)(2,1)

)
−GsH(G,K)(2,1)

(3.18)
=

H(G,K)(1,1) −GsH(G,K)(2,1)

(3.26)

From the assumption on K to be a stabilizable controller for G and the hypothesis

on Gs to be stable, it follows that all terms on the last line of (3.26) are stable and

consequently

H(G+Gs, Ks)(1,1) ∈ Any×ny . (3.27)

Finally, from (3.20, 3.22, 3.25, 3.27,) we conclude that H(G+Gs, Ks) belongs

to the set A and so Ks is a stabilizing controller of (G+Gs), which ends the proof

of part A) of the Theorem. Finally note that due to Remark 2.3.1, if Ks stabilizes

the strictly proper (G+Gs), then Ks is proper.

B) We prove now that if Ks is a stabilizable controller for (G + Gs) (and

consequently H(G + Gs, Ks) belongs to A(nu+ny)×(nu+ny)) then K given in (3.9) is

a stabilizing controller for G. Note that due to Remark 2.3.1, if Ks stabilizes the

strictly proper G+Gs, then Ks is proper.

As pointed out before if K is given by (3.9) then Ks has the expression in
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(3.8).

Note that H(G,K)(2,1)
(4.4.6)

= H(G + Gs, Ks)(2,1) which is stable, from the as-

sumption on Ks to be stabilizable for (G+Gs), hence

H(G,K)(2,1) ∈ Anu×ny . (3.28)

The following identity holds

H(G,K)(2,2)
(4.4.7)

=

H(G+Gs, Ks)(2,2) +H(G,K)(2,1)Gs
(4.4.6)

=

H(G+Gs, Ks)(2,2) +H(G+Gs, Ks)(2,1)Gs

(3.29)

Note that both terms on the last line of (3.29) are stable from the assumption on Ks

to be a stabilizable controller for (G + Gs) and the hypothesis on Gs to be stable.

It follows via (3.29) above, that

H(G,K)(2,2) ∈ Anu×nu . (3.30)

It follows from identity (3.26) that

H(G,K)(1,1) = GsH(G,K)(2,1) +H(G+Gs, Ks)(1,1) (3.31)

All the terms on the right hand side of (3.31) are stable due to (3.28), the assumption

on Ks to be a stabilizable controller for (G + Gs) and the hypothesis on Gs to be

stable, hence
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H(G,K)(1,1) ∈ Any×ny . (3.32)

It follows from identity (3.24) that

H(G,K)(1,2) = H(G+Gs, Ks)(1,2) −Gs +H(G,K)(1,1)Gs +GsH(G+Gs, Ks)(2,2).

(3.33)

All the terms on the right hand side of (3.33) are stable due to the assumption on

Ks to be a stabilizable controller for (G + Gs), the hypothesis on Gs to be stable

and (3.32), hence

H(G,K)(1,2) ∈ Any×nu . (3.34)

From (3.28, 4.1.2, 3.32, 3.34) it follows that K is a stabilizing controller for G

and the proof ends.
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Chapter 4

Necessary and Sufficient Conditions for Stabilizability

subject to Quadratic Invariance

Contribution. Throughout this chapter, we deal exclusively with LTI sys-

tems and quadratically invariant, feedback configurations. Both available algorithms

for the sparse, optimal controller synthesis ([79] and the ones presented in Chap-

ter 2 of this thesis), rely crucially on the fact that some stabilizing controller that

verifies the imposed sparsity constraints is a priori known, while synthesis methods

for such a controller, (needed to initialize the aforementioned optimization schemes)

are not yet available. This provided the motivation to the work presented here

as in this chapter we provide necessary and sufficient conditions for such a plant

to be stabilizable with a controller having the given sparsity pattern. These con-

ditions are formulated in terms of the existence of a doubly coprime factorization

of the plant with additional sparsity constraints on certain factors. We show that

the computation of such a factorization is equivalent to solving an exact model–

matching problem. We also give the parametrization of the set of all decentralized

stabilizing controllers by imposing additional constraints on the Youla parameter.

These constraints are for the Youla parameter to lie in the set of all stable transfer

function matrices belonging to a certain linear subspace.

Outline of the Chapter. This chapter is organized as follows: after the
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introductive section we follow with a preliminaries section, introducing the feedback

control stabilization problem and a short primer on coprime factorizations of LTI

systems. The third section contains mostly notation and introduces the notion of

sparsity constraints for linear systems along with a summary of the main results on

quadratic invariance from [79]. The fourth section contains the main results of this

paper. We provide a necessary and sufficient condition for a plant to be stabilizable

with a controller satisfying a pre–selected sparsity pattern that is quadratically

invariant with respect to the plant. These conditions are formulated in terms of

the existence of a doubly coprime factorization of the plant with additional sparsity

constraints on certain factors. We prove that the computation of this particular

doubly coprime factorization (when it does exist) is equivalent to solving an exact

model–mathing problem. Along the way we obtain the set of all decentralized

stabilizing controllers, characterized via the Youla parametrization. The sparsity

constraints on the controller are recast as a linear subspace type of constraint on

the Youla parameter. Applications to optimal controller synthesis are presented

as conclusions, following the main results presented here and the optimal synthesis

tools introduced in [79]. The fifth section, revisits the results of the previous section,

under the hypothesis that the given plant admits a special type of doubly coprime

factorization which we have dubbed Input/Output Decoupled. It turns out that this

hypothesis is a generic property, meaning that it is valid for almost all plants. We

show how it spectacularly simplifies all the result from the fourth section while

providing additional insight into the sparse stabilization problem and the Youla

parametrization of all sparse, stabilizing controllers.
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4.1 Preliminaries

Throughout this paper we make the leading assumptions that all systems are

linear and time invariant (LTI), finite dimensional, proper, with either continuous

or discrete–time. We deal with the frequency domain input/output operators of LTI

systems. These operators are transfer function matrices (TFM), meaning matrices

with all entries real–rational functions. By R(λ) we denote the set of all real–rational

functions and by R(λ)ny×nu the set of ny × nu matrices having all entries in R(λ).

The undeterminate λ is either s for continuous–time systems or z for discrete–time

systems, respectively. Almost everywhere in the sequel, the λ argument following a

TFM is omitted if it is clear from the context.

This paper gives a unified treatment for both the continuous and discrete-time

cases. Henceforth, we will denote by Ω the open left half complex plane or the open

unit disk, according to the type of system: continuous or discrete–time, respectively.

The standard interpretation of Ω in systems theory is related to the stability domain

of linear systems. We qualify a TFM G(λ) as stable if all its poles are in Ω.

4.1.1 The Control Problem

In Fig.1 we depict the standard feedback interconnection between a plant and

a controller, with the plant G belonging to R(λ)ny×nu and the controller K in the set

R(λ)nu×ny . Here, ν1 and ν2 are the disturbances and sensor noise, respectively. In

addition, u is the control and y are the measurements. The integers nu and ny denote

the dimensions of u and y respectively. Denote by H(G,K) ∈ R(λ)(nu+ny)×(nu+ny)
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Figure 4.1: Standard unity feedback configuration

the TFM from [νT1 νT2 ]T to [yT uT ]T (provided that the feedback loop is well–posed,

i.e. (I +KG) is invertible as a TFM). For the complete expressions of H(G,K) in

terms of G and K, we refer the reader to [82, Ch. 5.1, (7)]. If the transfer matrix

H(G,K) is stable we say that K is a stabilizing controller of G or equivalently that

K stabilizes G. If a stabilizing controller of G exists, we say that G is stabilizable.

4.1.2 Coprime and Doubly Coprime Factorization for LTI Systems

Let G(λ) be an arbitrary ny × nu TFM and Ω the stability domain in the

complex plane. A right coprime factorization (RCF) of G over Ω is a fractional

representation of the form G = NM−1, with N and M having poles only in Ω, and

for which YM + XN = I holds for certain TFMs X and Y with poles in Ω ([82,

Ch. 4, Corollary 17]). Analogously, a left coprime factorization (LCF) of G (over Ω)

is defined by G = M̃−1Ñ , where Ñ and M̃ are TFMs having poles only in Ω and

satisfying M̃Ỹ + ÑX̃ = I for certain TFMs X̃ and Ỹ with all poles in Ω. Due to

the natural interpretation of the coprime factorizations as fractional representations,

the invertible M̃ and M factors are sometimes called the “denominator” TFMs of

the coprime factorization.
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Definition 4.1.1. [82, Ch.4, Remark pp. 79] A collection of eight TFMs
(
M(λ), N(λ),

M̃(λ), Ñ(λ), X(λ), Y (λ), X̃(λ), Ỹ (λ)
)

having all poles in Ω is called a doubly co-

prime factorization (DCF) of G(λ) over Ω if the “denominator” TFMs M̃(λ) and

M(λ) are invertible and satisfy G(λ) = M̃(λ)−1Ñ(λ)= N(λ)M(λ)−1 and Y (λ) X(λ)

−Ñ(λ) M̃(λ)


 M(λ) −X̃(λ)

N(λ) Ỹ (λ)

 = Iny+nu . (4.1)

To avoid excessive terminology throughout this paper, we will simply refer

to doubly coprime factorizations over Ω simply as doubly coprime factorizations

(DCFs).

4.1.3 The Youla Parametrization of All Stabilizing Controllers

The following theorem is a central result in linear systems theory. We state it

next, as it stands at the core of our main result.

Theorem 4.1.2. (Youla) [82, Ch.5, Theorem 1] Given a plant with the TFM

G ∈ R(λ)ny×nu, and any of its DCF (4.1), the set of all controllers K stabilizing G

(in the standard feedback configuration from Figure 4.1) is given by

K =
(
X̃ +MQ

)(
Ỹ −NQ

)−1

=
(
Y −QÑ

)−1(
X +QM̃

) (4.2)

with Q any stable TFM in the set Rnu×ny(λ).

Definition 4.1.3. Given the plant G and a certain DCF (4.1) of G, when taking

the Youla–parameter Q equal to zero in (4.2) we get K = X̃ Ỹ −1 = Y −1X, which is

called the central controller (associated with the corresponding DCF (4.1)).
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4.2 Feedback Control Configurations with Sparsity Constraints

Throughout this paper, the information constraints that are to be imposed

on the controller are modeled via sparsity constraints ([79, pp. 283]). The precise

formulation of the sparsity constrained stabilization problem is achieved by imposing

a certain pre–selected sparsity pattern on the set of admissible stabilizing controllers.

The notation we introduce next is entirely concordant with the one used in [78, 79].

4.2.1 Conformal Block Partitioning

For p ≥ 1, we denote the set of integers from 1 to p as 1, p . Throughout the

sequel we consider that the transfer function matrix G(λ) ∈ R(λ)ny×nu is partitioned

in p block–rows and m block–columns. The i-th block–row has niy rows, while the

j-th block–column has nju columns. Obviously,
∑p

i=1 n
i
y = ny and

∑m
j=1 n

j
u = nu.

For every pair (i, j) in the set 1, p × 1,m, we denote by [G]ij ∈ Rni
y×n

j
u(λ) the

niy × nju TFM at the intersection of the i-th block–row and j-th block–column of

G(λ). Accordingly,

G(λ) =


[G]11 . . . [G]1m

...
...

[G]p1 . . . [G]pm

 , with [G]ij ∈ Rni
y×n

j
u(λ). (4.3)

Henceforth, we shall use this square bracketed notation for block indexing of transfer

function matrices.

Analogously, the controller’s transfer function matrix K(λ) ∈ Rnu×ny(λ) is

partitioned in m block–rows and p block–columns, where the j-th block–row has
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nju rows and the i-th block–column has niy columns. Correspondingly, [K]ji is the

notation for the nju × niy TFM at the intersection of the j-th block–row and i-th

block–column of K(λ).

4.2.2 Sparsity Constraints

For the boolean algebra, the operations (+, ·) are defined as usual: 0 + 0 =

0 · 1 = 1 · 0 = 0 · 0 = 0 and 1 + 0 = 0 + 1 = 1 + 1 = 1 · 1 = 1. By a binary

matrix we mean a matrix whose entries belong to the set
{

0, 1
}

. With the usual

extension of notation,
{

0, 1
}m×p

stands for the set of all binary matrices with m

rows and p columns. The addition and multiplication of binary matrices is carried

out in the usual way, keeping in mind that the binary operations (+, ·) follow the

boolean algebra.

Binary matrices are denoted by capital letters with the “bin” superscript, in

order to be distinguished from transfer function matrices over R(λ), which are rep-

resented in the sequel by plain capital letters. Henceforth, we adopt the convention

that the transfer function matrices are indexed by blocks while binary matrices are

indexed by each individual entry.

Furthermore, for binary matrices only, having the same dimensions, the nota-

tion Abin ≤ Bbin means that aij ≤ bij for all i and j.

With the conformable block partitioning for K introduced in Subsection 4.2.1,
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for any K ∈ R(λ)nu×ny , define Pattern(K) ∈
{

0, 1
}m×p

to be the binary matrix

Pattern(K)ij
def
=


0 if the block [K]ij = 0;

1 otherwise .

(4.4)

Conversely, for any binary matrix with m rows and p columns, Kbin ∈
{

0, 1
}m×p

,

we can define the following linear subspace of R(λ)nu×ny :

Sparse(Kbin)
def
=
{
K ∈ R(λ)nu×ny

∣∣ Pattern(K) = Kbin
}

(4.5)

Hence Sparse(Kbin) is the set of all controllers K in the set R(λ)nu×ny for which

[K]ij = 0 whenever Kbin
ij = 0. Accordingly, the binary value of Pattern(K)kl de-

termines whether controller k may read the block-row l of the output of the plant

G.

Let Kbin ∈
{

0, 1
}m×p

be the pre-specified sparsity pattern to be imposed on

the controller. Define the linear subspace S of R(λ)nu×ny as:

S def
=
{
K ∈ R(λ)nu×ny

∣∣∣ Pattern(K) ≤ K bin
}
, (4.6)

that is, the set of controllers whose transfer function matrices satisfy the imposed

sparsity structure. With the terminology from [79], the linear space S (of admissible,

sparsity constrained, causal controllers) will be called the information constraint.

The following matrix G bin in the set
{

0, 1
}p×m

is the sparsity pattern of the

plant which is defined as:

G bin def
= Pattern(G) (4.7)
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Finally, from the matrix multiplication of matrices over R(λ) we note that for

any K ∈ R(λ)nu×ny and any G ∈ R(λ)ny×nu with arbitrary sparsity patterns

Pattern(K G) ≤ Pattern(K) Pattern(G). (4.8)

4.2.3 Quadratic Invariance

Assumption 1. From this point on we make the assumption on the plant G to be

strictly proper, i.e. for any of the entries of the transfer function matrix G (which is

a rational function) the degree of the denominator is strictly greater than the degree

of the numerator.

Definition 4.2.1. [79, Definition 13] Given the plant G ∈ R(λ)ny×nu and the subset

S of R(λ)nu×ny , we call S inert with respect to G if it satisfies the definition in [79,

Definition 13].

Remark 4.2.2. [79] Throughout this section, both for continuous–time and discrete–

time systems, the constraint set S is always inert with respect to the plant G, since

G is assumed strictly proper and S is a subset of the set of proper LTI systems.

Note also, that S is a closed set since it is a linear subspace (4.6).

Definition 4.2.3. [79, Definition 2] Given the plant G ∈ R(λ)ny×nu and the set

S ⊂ R(λ)nu×ny , the set S is called quadratically invariant under the plant G if

KGK ∈ S for all K ∈ S. (4.9)

Definition 4.2.4. Define the feedback transformation of G with K, as the following
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function from R(λ)nu×ny to R(λ)nu×ny

hG(K)
def
= K

(
I +GK

)−1
. (4.10)

Proposition 4.2.5. The feedback transformation hG(·) from (4.10) is an invertible

function from R(λ)nu×ny to R(λ)nu×ny and its inverse is given by

h−1
G (K)

def
= K

(
I −GK

)−1
. (4.11)

Proof. First note that hG(·) from (4.10) is indeed a well–posed function from R(λ)nu×ny

to R(λ)nu×ny , due to fact that the inverse of
(
I+GK

)
exists for any K in R(λ)nu×ny .

This is guaranteed by the fact that K is proper and G is strictly proper (Assump-

tion 1). The rest of the proof follows by direct algebraic computations and is omitted

for brevity.

We restate next, for ease of reference, the main result from [78, 79], frequently

invoked throughout the next section.

Theorem 4.2.6. [79, Theorem 14] Given the plant G ∈ R(λ)ny×nu, the set S ⊆

R(λ)nu×ny closed, inert with respect to G and quadratically invariant under G, then

S is quadratically invariant under G⇐⇒ hK(S) = S. (4.12)

Assumption 2. Throughout this entire paper, we assume that the set S that

defines the sparsity constraints to be imposed on the controller is quadratically

invariant under the plant G.
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4.3 Main Result

In this section we develop a necessary and sufficient condition for a plant to

be stabilizable with a controller satisfying a pre–selected sparsity pattern that is

quadratically invariant with respect to the plant. These conditions are formulated

in terms of the existence of a doubly coprime factorization of the plant featuring

additional sparsity constraints on certain factors. This result has an especially

important computational value, as it turns out that such a factorization (when it

exists) is equivalent to solving for the Youla parameter a TFM linear equation (an

exact model matching problem) .

The following preparatory result will be needed.

Proposition 4.3.1. Given any DCF (4.1) of the plant G denote by K = X̃ Ỹ −1 =

Y −1X the “central” controller (from Definition 4.1.3). Then the following identities

hold

MY =
(
I +KG

)−1
,

MX =
(
I +KG

)−1
K,

Ỹ M̃ =
(
I +GK

)−1
,

X̃M̃ = K
(
I +GK

)−1
.

(4.13)

Proof. See the Appendix.

The next Theorem makes out for the main result of this paper.
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Theorem 4.3.2. Given a plant G in the set R(λ)ny×nu then G is stabilizable with

a sparsity constrained controller K belonging to the set S if and only if there exists

a DCF (4.1) of G such that

Pattern(X̃M̃) ≤ Kbin or Pattern(MX) ≤ Kbin. (4.14)

Proof. Throughout the proofs, we shall make use of the following identities (that

hold true in any ring, provided the inverses involved exist).

(I + AB)−1A = A(I +BA)−1, (4.15)

(I + AB)−1 = I − A(I +BA)−1B. (4.16)

“Necessity”. Suppose that there exists a stabilizing controller K in the set S. Then

as a consequence of Youla’s Theorem 4.1.2, there exists a DCF (4.1) of the plant G

for which K is the central controller. According to Proposition 4.3.1 we get from

(4.13) that

X̃M̃ = K
(
I +GK

)−1
. (4.17)

We apply the Pattern operator (4.4) on both sides of equation (4.17) and using

Definition 4.2.4 get that Pattern(X̃M̃) = Pattern(hG(K)). But hG(K) belongs to

S because of Assumption 2 and Theorem 4.2.6 and so Pattern(hG(K)) ≤ Kbin.

For Pattern(MX) we employ (4.13) and identity (4.15) to get that Pattern(MX) =

Pattern(hG(K)). Then by the same arguments as before we also get that Pattern(MX) ≤

Kbin.

“Sufficiency”. Suppose that Pattern(X̃M̃) ≤ Kbin holds, hence X̃M̃ belongs

to the set S. Take each side of (4.17) as an argument for h−1
G (·) in order to get via
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Definition 4.2.4 that h−1
G (X̃M̃) = h−1

G (hG(K)) and equivalently that K = h−1
G (X̃M̃).

Furthermore, via Proposition 4.2.5, Assumption 2 and Theorem 4.2.6 we get that

h−1
G (S) = S which in turn implies that h−1

G (X̃M̃) belongs to the set S. This means

that K = h−1
G (X̃M̃) is also in S.

The sufficiency of the second condition (Pattern(MX) ≤ Kbin) follows by a

similar line of reasoning and so is omitted for brevity.

Kronecker Products and Linear Matrix Equations([88, Chapter 13]) Given two

matrices P ∈ R(λ)a×b and S ∈ R(λ)c×d let the Kronecker product of P and S be

denoted by P ⊗S and belonging to the set R(λ)ac×bd. Given the matrix P , we write

P in terms of its columns as

P =

[
p1 p2 . . . pa

]

and then associate a column vector vec(P ) ∈ R(λ)ab defined as

vec(P )
def
=


p1

...

pa

 . (4.18)

All the presented results related to matrix vectorization and Kronecker prod-

ucts do not depend in any way on the ring of matrices involved, therefore they are

valid for the ring of TFMs (matrices over the field of real–rational functions).

Proposition 4.3.3. [88, Theorem 13.26] Let P ∈ R(λ)a×b, R ∈ R(λ)b×c and S ∈
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R(λ)c×d. Then

vec(PRS) = (ST ⊗ P )vec(R) (4.19)

4.3.1 Outline of the Sparse Controller Synthesis Algorithm

In this subsection, given the plant G we provide a numerically tractable algo-

rithm (based on Theorem 4.3.2 above) for the computation of a sparse, stabilizing

controller, belonging to the set S (when such a controller exists). We start with

any DCF (4.1) of the plant, which can be computed using the standard state–space

techniques from [85]. If this DCF satisfies relations (4.14) then according to Theo-

rem 4.3.2 its associated central controller will be in the set S.

Suppose now that this DCF we start with does not satisfy (4.14), which is

generically speaking the case. An immediate consequence of Youla’s Theorem 4.1.2

states that for any Youla parameter Q (stable TFM, belonging to the set R(λ)nu×ny)

the following identity represents another DCF of the plant G

 (Y −QÑ) (X +QM̃)

−Ñ M̃


 M −(X̃ +MQ)

N (Ỹ −NQ)

 = Iny+nu . (4.20)

We want to find that particular Youla parameter Q, for which the factors of

the newly obtained DCF (4.20) statisfy the relations (4.14), namely that

Pattern
(

(X̃ +MQ)M̃
)
≤ Kbin or Pattern

(
M(X +QM̃)

)
≤ Kbin

or equivalently
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Pattern
(
MQM̃ + X̃M̃

)
≤ Kbin or Pattern

(
MQM̃ +MX

)
≤ Kbin. (4.21)

Corollary 4.3.4. Given a plant G in the set R(λ)ny×nu then G is stabilizable with a

sparsity constrained controller K belonging to the set S if and only if, starting from

any DCF (4.1) of G, there exists a Youla parameter Q (stable TFM, belonging to

the set R(λ)nu×ny) such that (4.21) holds.

Proof. “Sufficiency” If there exists a Youla parameter Q, such that (4.21) holds,

then exactly as in the “Sufficiency” part of the proof of Theorem 4.3.2, the controller

(depending on Q) K = h−1
G

(
(X̃ +MQ)M̃

)
will belong to the set S.

“Necessity” Suppose that a stabilizing controller K of G, belonging to the

set S does exist and we consider K fixed. Then, a direct consequence of Youla’s

Theorem 4.1.2 states that for any DCF (4.1), there exist a (unique) Youla parameter

Q (depending on the DCF), such that K =
(
X̃ +MQ

)(
Ỹ −NQ

)−1
(is the central

controller associated with the DCF (4.20) of G). Then exactly as in the “Necessity”

part of the proof of Theorem 4.3.2, it follows that (4.20) must satisfy (4.21).

Remark 4.3.5. We will provide our further argumentation only for the first relation

from (4.21), since all the needed results for the second relation from (4.21) follow

by a similar line of reasoning.

The intuition behind the equation (4.21) is the following: we want to find

the Youla parameter Q for which certain block–entries in the factor MQM̃ are

identical with the corresponding block–entries in −X̃M̃ , such that they cancel out
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in the sum X̃M̃ + MQM̃ . (This is a so called exact model–matching problem.)

The block–entries of −X̃M̃ are precisely those identified by the zero entries of the

Kbin matrix and only those, because that is necessary and sufficient for making

Pattern
(
MQM̃ + X̃M̃

)
≤ Kbin. Using the same argument, we observe that the

entries equal to one of Kbin do not make out for additional constraints, since their

corresponding block–entries of (X̃M̃ +MQM̃) can be any stable TFM.

We take a look now at the vectorization (4.18) of these relations, meaning the

exact model–matching of certain block–entries of vec(MQM̃) with the correspond-

ing block–entries of vec(−X̃M̃). These block–entries will now be precisely those

identified by the zero entries of the vec(Kbin) matrix and only those. We know

via Proposition 4.3.3 that vec(MQM̃) = (M̃T ⊗M)vec(Q) and so the problem will

become an exact model-matching of certain entries of the vector (M̃T ⊗M)vec(Q)

with the corresponding entries in the vector vec(−X̃M̃). This is a linear system of

equations in the unknown vec(Q). We emphasize that the equivalent problem in not

the entire system of equations (M̃T ⊗M)vec(Q) = vec(−X̃M̃), but only a subset of

its linear equations, consisting only in the block–rows identified by the zero entries

of vec(Kbin).

For illustrative simplicity, we outline all these ideas in a numerical example

before proceeding to the formal statement of the results.

81



4.3.2 A Numerical Example

Suppose we are given as input data the plant G and Kbin, as

G(λ) =

[
1

λ− 1

1

λ+ 2
0

]
and Kbin =

[
1 0 1

]T
(4.22)

where all blocks in the partition (4.3) of G are 1× 1 and both Assumptions 1 and 2

are met. We can start up our synthesis algorithm with any DCF (4.1) of the plant

which can be computed for instance via the classical state–space formulas from [85]:

M(λ) =


λ−1
λ+5

λ−1
λ+6

0

0 λ+2
λ+6

1

0 0 1

 , −X̃(λ) =


40
λ+5

−8
3

1
λ+6

0

 ,

N(λ) =

[
1

λ+5
2

λ+6
1

λ+2

]
, Ỹ (λ) =

λ2 + 17λ+ 66 + 2/3

(λ+ 5)(λ+ 6)
(4.23)

and also

−Ñ(λ) =

[
λ+2

(λ+3)(λ+4)
λ−1

(λ+3)(λ+4)
0

]
, M̃(λ) =

(λ− 1)(λ+ 2)

(λ+ 3)(λ+ 4)
. (4.24)

The remaining factors X and Y that complete the DCF (4.1) of G are not

needed in view of Remark 4.3.5. By looking at (4.23) we can see that Pattern(X̃M̃) =[
1 1 0

]T
. We need to find a Youla parameter Q, such that

(
MQM̃ + X̃M̃

)
has

a zero in the second row entry. This is necessary and sufficient such as to make

Pattern
(
MQM̃ + X̃M̃

)
≤ Kbin.

We discuss next the exact model–matching problem MQM̃ = −X̃M̃ . Linear

matrix equations of this type (also named Sylvester matrix equations) can be solved
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for Q via Proposition (4.3.3), by solving for vec(Q) the following equivalent linear

system of TFM equations.:

(M̃T ⊗M)vec(Q) = vec(−X̃M̃) (4.25)

(For this particular example, it happens that vec(Q) = Q and also vec(Kbin) =

Kbin, but this does not change the mechanic of the algorithm for the general case.)

We reiterate the important fact that we do not need to solve the linear problem

from (4.25). We must solve only a subset of linear equations from (4.25), composed

precisely from the rows identified by the zero entries in the vec(Kbin) binary matrix.

The only zero in vec(Kbin) is in the second row, hence we must solve only the

equation in the second row of (4.25):

M̃T (λ)

[
0 λ+2

λ+6
1

]
Q(λ) = −8

3

1

λ+ 6
M̃(λ) (4.26)

We choose a solution Q for (4.26)

Q =
(λ+ 6 + 8/3)

(λ+ 2)(λ+ 6)

[
(λ+ 5) (λ+ 6)

(λ+ 2)(λ+ 6)

(λ+ 6 + 8/3)

]T

yielding the following controller K =
(
X̃ +MQ

)(
Ỹ −NQ

)−1

K =
1

λ3 + 19λ2 + (103 + 1/3)λ+ (146 + 2/3)


−40(λ+ 2)(λ+ 6)

0

(λ+ 2)(λ+ 5)(λ+ 6)

 (4.27)

which has the desired sparsity pattern.
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4.3.3 Sparse Controller Synthesis as An Exact Model–Matching Prob-

lem

For the remaining part of this section only, we briefly revisit the assumptions

made in Subsection 4.2.1. Specifically, we make the assumption that all the blocks

in the conformal partition (4.3) of the plant G have the size 1 × 1, meaning that

∀i ∈ 1, p and ∀j ∈ 1,m it holds that niy = nju = 1. This hypothesis does not imply

any loss of generality whatsoever, since all the vectorization and matrix Kronecker

product results can be naturally adapted when the factors involved are conformally

block–partitioned. However, this hypothesis does considerably simplify the notation

while outlining all the essential ideas needed for the proof of the general case (for

any conformal block–partition (4.3) of G).

As a consequence of the assumption made at the beginning of the current

subsection we get (see Subsection 4.2.1) that G ∈ R(λ)p×m, K ∈ R(λ)m×p and

consequently Kbin ∈
{

0, 1
}m×p

. Define nG as the number of the zero entries in

the Kbin binary matrix (and also in the vec(Kbin) ∈
{

0, 1
}mp×1

binary vector). (It

follows that the number of one entries in Kbin is equal to (mp− nG).)

Let (i1, i2, . . . , inG
) be the row indices of the zero entries in vec(Kbin). Let Imp

denote the (mp)× (mp) identity matrix and 0nG×1 be the zero column vector with

nG rows. For any index i ∈ 1, (mp) we denote with eTi the i-th row of Imp. We

define next the nG × (mp) matrix Φ made out by selecting nG rows of Imp

Φ
def
=

[
ei1 ei2 . . . einG

]T
(4.28)
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such that

Φ vec(Kbin) = 0nG×1. (4.29)

Theorem 4.3.6. Given a plant G in the set R(λ)p×m then G is stabilizable with a

sparsity constrained controller K belonging to the set S if and only if, starting from

any DCF (4.1) of G, there exists a Youla parameter Q (stable TFM, belonging to

the set R(λ)m×p) such that vec(Q) is a stable solution to the linear system of TFM

equations

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃M̃

)
, (4.30)

where Φ is the matrix defined in (4.28).

Proof. We remind here that the vec(·) operator (4.18) is linear. Also note that the

vec(·) operator and the Pattern(·) operator (4.4) are commutative.

We prove next that the existence of a Youla parameter (stable TFM, belonging

to the set R(λ)m×p) to satisfy the first relation in (4.21) (see also Remark 4.3.5) is

equivalent with vec(Q) being a stable solution to (4.30). The rest of the proof will

follow via Corollary 4.3.4.
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Pattern
(
X̃M̃ +MQM̃

)
≤ Kbin ⇐⇒

vec
(

Pattern
(
X̃M̃ +MQM̃

))
≤ vec(Kbin)⇐⇒

Pattern
(

vec
(
X̃M̃ +MQM̃

))
≤ vec(Kbin)

(4.18)⇐⇒

Pattern
(

vec
(
X̃M̃

)
+ vec

(
MQM̃

))
≤ vec(Kbin)

Prop. 4.3.3⇐⇒

Pattern
(

vec
(
X̃M̃

)
+
(
MT ⊗ M̃

)
vec(Q)

)
≤ vec(Kbin)⇐⇒

Pattern
(

Φ
(

vec
(
X̃M̃

)
+
(
MT ⊗ M̃

)
vec(Q)

))
≤ Φ vec(Kbin)

(4.29)⇐⇒

Pattern
(

Φ vec
(
X̃M̃

)
+ Φ

(
MT ⊗ M̃

)
vec(Q)

))
≤ 0nG×1 ⇐⇒

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃M̃

)
(4.31)

4.3.4 Parametrization of All Sparse, Stabilizing Controllers

In this subsection we present a particularly important corollary of Theo-

rems 4.3.2 and 4.3.6. Given the plant G in the set R(λ)p×m, suppose G stabilizable

with a sparsity constrained controller K belonging to the set S. We provide next

the parametrization of all stabilizing controllers of G, belonging to the set S. We

achieve this parametrization, starting from a DCF (4.1) of G satisfying (4.21) and

imposing additional constraints on the Youla parameter, constraints that guarantee

that the resulted controller will belong to S. The constraints are for the Youla pa-

rameter to lie in the set of all stable TFMs belonging to a certain linear subspace.
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Here comes the precise statement.

Corollary 4.3.7. Given a plant G in the set R(λ)p×m stabilizable with a sparsity

constrained controller K belonging to the set S, and consequently a DCF (4.1) of

G satisfying the first relation in (4.21), the set of all stabilizing controllers of G

belonging to the set S is given by K =
(
X̃ + MQ

)(
Ỹ − NQ

)−1
where the Youla

parameter Q (stable TFM, belonging to the set R(λ)m×p) is such that

vec(Q) ∈ Null
(

Φ
(
MT ⊗ M̃

))
, (4.32)

where Φ is the matrix defined in (4.28). We make here the elementary observation

that Q is stable if and only if vec(Q) is stable.

Proof. The DCF we start with satisfies the first relation (4.21), meaning Pattern(X̃M̃) ≤

Kbin and equivalently vec(Pattern(X̃M̃)) ≤ vec(Kbin). Then for any Youla pa-

rameter Q, we get via Theorem 4.3.6 that K =
(
X̃ + MQ

)(
Ỹ − NQ

)−1
belongs

to the set S if and only if Φ(MT ⊗ M̃)vec(Q) = −Φ vec(X̃M̃). Now, because

vec(Pattern(X̃M̃)) ≤ vec(Kbin), due to the way the Φ matrix is defined in (4.28)

and due to (4.29), we get that Φ vec(X̃M̃) = 0nG×(mp), hence the proof.

4.3.5 Numerical Example – Continued

In this subsection we will illustrate numerically the result of Corollary 4.3.7.

We start with the same data from Subsection 4.3.2 but with a different DCF of the

plant. The factors M̃ , Ñ will still be as in (4.24) and M , N will be as in (4.23) but
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X̃ and Ỹ will be given by

X̃ =

[
− 40

(λ+ 5)
0 1

]T
,

Ỹ =
λ3 + 19λ2 + (103 + 1/3)λ+ (146 + 2/3)

(λ+ 2)(λ+ 5)(λ+ 6)
.

which is the DCF satisfying the first relation in (4.21) since it is the DCF for which

the sparse controller given in (4.27) is the central controller. For the argument

stated in Remark 4.3.5, the remaining factors X and Y of the DCF are not needed.

For this example (as well as for what is presented in Subsection 4.3.2), the Φ

matrix defined in (4.28) is given by Φ =

[
0 1 0

]
. Furthermore, the set of all

stable TFMs in the null space of
(
Φ(MT ⊗ M̃)

)
is given by

Q def
=
{
Q ∈ R(λ)3×1

∣∣∣Q(λ) =

[
α(λ) β(λ) −λ+ 6

λ+ 2
β(λ)

]T
with α(λ), β(λ) stable, real− rational functions

}
(4.33)

The set of all stabilizing controllers of G, belonging to the set S is given by

K =
(
X̃ +MQ

)(
Ỹ −NQ

)−1
, with Q ∈ Q.

4.4 A Meaningful, Particular Case

In this section we look at the same stabilization problem (see Subsection 4.1.1)

via sparse controllers, but with the additional hypothesis that the given plant satis-

fies a particular criteria. Specifically, we look at the case when the plant G admits
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both a left coprime factorization G = M̃−1Ñ over Ω and a right coprime factoriza-

tion G = NM−1 (see Subsection 4.1.2) such that both “denominators” M̃ and M

are block–diagonal. As it turns out such a factorization is guaranteed to exist for

almost all plants, meaning that it is a generic property. Furthermore, for any given

plant it is quite easy to check if such a factorization exists and if this is the case, it is

also easy to compute. The advantages it brings are important. Firstly it makes all

the equivalent results presented in the previous section far less complicated, since

now vectorization is not needed. Secondly, it makes possible to characterize the set

of all decentralized stabilizing controllers via the Youla parametrization, while the

sparsity constraints on the controller are recast as sparsity constraints on the Youla

parameter.

Notation: For p transfer function matrices M̃i of sizes niy × niy respectively, where

i ∈ 1, p and
∑p

i=1 n
i
y = ny, we shall use the common notation diagi∈1,p

{
M̃i

}
for the

ny × ny block matrix that has the M̃i TFMs on its block–diagonal.

4.4.1 The Output Decoupled, Left Coprime Factorization

We start with the given plant G ∈ R(λ)ny×nu , having the block partition from

(4.3) in Subsection 4.2.1. For every index i ∈ 1, p, we can always perform the left

coprime factorization of the i-th block–row of G in (4.3), and we get

[
[G]i1 . . . [G]im

]
= M̃∗

i

−1
Ñ∗i , (4.34)

with M̃∗
i ∈ R(λ)n

i
y×ni

y and Ñ∗i ∈ R(λ)n
i
y×nu . Writing in matrix form, relations (4.34)
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for all the p block–rows of G, we get

G =


M̃∗

1

−1
O

. . .

O M̃∗
p

−1




Ñ∗1

...

Ñ∗p

 . (4.35)

Denote M̃∗ def
= diagi∈1,p

{
M̃∗

i

}
and the remaining factor on the right hand side

of (4.35) with Ñ∗
def
=

[
Ñ∗1

T . . . Ñ∗p
T

]T
respectively, such that (4.35) becomes

G = M̃∗−1
Ñ∗.

Assumption 3. From here on, we assume that given the plant G and the factor-

ization in (4.35), the TFM

[
M̃∗(λ) Ñ∗(λ)

]
(4.36)

has full row rank for all λ outside the stability domain Ω.

Remark 4.4.1. [87] The condition in (4.36) guarantees that the factorization (4.35)

of G is indeed coprime. In this case, we will call (4.35) an output decoupled right

coprime factorization of G.

Remark 4.4.2. Note that (4.36) is generically true, meaning that it holds for almost

all pairs of TFMs M̃∗ and Ñ∗, with M̃∗ invertible (as a TFM).

Remark 4.4.3. Condition (4.36) needs to be checked only at those (finite number

of) points λ that are unstable poles of G. This is because these values and only these

are the unstable zeroes of M̃∗ (note that M̃∗ has only stable poles). Hence for any

unstable λ0 that is not a pole of G, it follows that M̃∗(λ0) is invertible and so the

rank (4.36) condition is satisfied.
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A sufficient condition for Assumption 3 to hold, would be for any two block-

rows of G not to have a common unstable pole, in which case the rank condition

is satisfied due to the coprimeness of each of the p factorizations in (4.34). This

condition is by no means necessary, as even in the case of common unstable poles

the row rank might be held by the Ñ∗ factor.

4.4.2 The Input Decoupled, Right Coprime Factorization

By interchanging the roles of the block–rows of G with its block–columns and

applying the exact same procedure as at the beginning of Subsection 4.4.1, one can

compute the following factorization of G (where the pair N∗j , M∗
j is a right coprime

factorization of the j-th block–column of G):

G(λ) =

[
N∗1 . . . N∗m

]

M∗

1
−1

. . .

M∗
m
−1

 (4.37)

The N∗j and M∗
j in (4.37) are right coprime for any j in 1,m. Denote M∗ def

=

diagj∈1,m

{
M∗

j

}
and the remaining factor on the right hand side of (4.37) with N∗,

such that (4.37) becomes G = N∗M∗−1.

The following assumption is the “right” correspondent of Assumption 3 and

from this point onward it will be considered to hold true.

Assumption 4. Assume that given the plant G and the factorization in (4.37), the

TFM
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[
N∗T (λ) M∗T (λ)

]T
(4.38)

has full column rank for all λ outside the stability domain Ω.

Remark 4.4.4. The condition in (4.38) ensures that the factorization (4.37) of G

is coprime ([87]). In this case, we call (4.37) an input–decoupled right coprime

factorization of the plant G. Note that (4.38) need only be checked (for the finite

number of points) λ that are unstable poles of the plant G. All other comments made

in Remarks 4.4.2 and 4.4.3 can be adapted by simply interchanging the role of the

block–rows of the plant G with its block–columns.

4.4.3 Input/Output Decoupled DCFs

In this subsection, given plant G(λ) satisfying Assumptions 3 and 4, we are

interested in computing (when it exists) a doubly coprime factorization (4.1), where

both denominators M(λ) and M̃(λ) are simultaneously in block–diagonal form. We

have named this type of DCF Input/Output Decoupled DCFs.

It turns out, that provided that there exists an Output–Decoupled Left Co-

prime Factorization (or equivalently Assumption 3 is met) and there exists an Input–

Decoupled Right Coprime factorization (whose existence in equivalent with Assump-

tion 4), then there exists a DCF (4.1) of G where both denominators M(λ) and M̃(λ)

are simultaneously in block–diagonal form.

Lemma 4.4.5. [82, Theorem 60, Ch. 4] Given any G ∈ R(λ)ny×nu partitioned as

in (4.3), satisfying Assumptions 3 and 4, there always exists a DCF of G such that
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the “denominators” M̃∗ and M∗ from the left and right–coprime factorizations of G

respectively, (G = M̃∗−1
Ñ = N∗M∗−1) are in block diagonal form. We call such a

DCF, an Input/Output Decoupled DCF.

The only downside of this result from [82, Theorem 60, Ch. 4] is that it only

deals with the existence of the respective DCF, while providing no clue on how

to actually compute one. All the results presented in this section are founded on

the Input/Output Decoupled DCF. Therefore, we provide an entire section, later

in the paper, devoted to computational, state–space methods for the Input/Output

Decoupled DCF.

4.4.4 Stabilizability with Sparse Controllers

The following preliminary result will be needed later.

Proposition 4.4.6. For any Input/Output Decoupled DCF of G(λ)

Pattern(Ñ) = Pattern(N) = Gbin. (4.39)

Proof. Since the DCF is Input/Output Decoupled, we get that Pattern(M̃) = Ip

and Pattern(M) = Im. Furthermore, Pattern(Ñ) =Pattern(M̃G)≤ Ip Pattern(G)=

Gbin. Similarly, Pattern(N) =Pattern(GM)≤ Gbin.

The following theorem is an immediate consequence of the main result from

Theorem 4.3.2.

Theorem 4.4.7. Given an arbitrary plant G(λ) in the set R(λ)ny×nu, G(λ) is sta-

bilizable with a sparsity constrained controller K(λ) belonging to the set S, if and
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only if there exists an Input/Output Decoupled DCF of G(λ) (as in Lemma 4.4.5)

such that

Pattern(X̃) = Kbin or Pattern(X) = Kbin. (4.40)

Proof. It follows directly from Theorem 4.3.2 and the fact that Pattern(M̃) = Ip

and Pattern(M) = Im.

4.4.5 The Youla Parametrization

The following Theorem is the main result of this section.

Theorem 4.4.8. Given a plant G, stabilizable with a sparsity constrained controller

K in the set S, and an Input/Output Decoupled DCF (M∗(λ), N∗(λ), M̃∗(λ), Ñ∗(λ),

X(λ), Y (λ), X̃(λ), Ỹ (λ)) satisfying (4.40) from Theorem 4.4.7, the set of all sparsity

constrained, stabilizing controllers belonging to the set S is given by

K =
(
X̃ +M∗Q

)(
Ỹ −N∗Q

)−1

=
(
Y −QÑ∗

)−1(
X +QM̃∗) (4.41)

where the Youla–parameter Q is any stable TFM in the set S.

Proof. “⊃” We show, that for any Q stable, in the set S the controller produced

by (4.41) is a sparsity constrained, stabilizing controller of G, belonging to the set

S. That any such K is a stabilizing controller, is an immediate consequence of the

Youla Theorem 4.1.2, so it only remains to show that K belongs to S. Since X̃ ∈ S

(from (4.40)), Q ∈ S (from the hypothesis) and M∗ is block–diagonal (because

the DCF is Input/Output Decoupled), it follows that Pattern(X̃ + M∗Q) ≤ Kbin.
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Since Pattern(M̃) = Ip we get that Pattern
(
(X̃ +M∗Q)M̃

)
≤ Kbin or equivalently

(X̃ + M∗Q)M̃ ∈ S. Then exactly as in the “Sufficiency” proof of Corrolary 4.3.4

we get that (
X̃ +M∗Q

)(
Ỹ −N∗Q

)−1
= h−1

G

(
(X̃ +M∗Q)M̃

)
and since h−1

G (·) is a bijection from S to S, we get that
(
X̃+M∗Q

)(
Ỹ −N∗Q

)−1 ∈ S.

“⊂” To complete the proof, we show next that any sparsity constrained, stabi-

lizing controller K in the set S is of the form (4.41), with Q stable, in the set S. Let

K belonging to the set S be an arbitrarily chosen but fixed, sparsity constrained,

stabilizing controller of G. It follows from Youla’s Theorem 4.1.2 applied for our

Input/Output Decoupled DCF, that there exists a Youla parameter Q, stable TFM

in R(λ)nu×ny such that

K =
(
X̃ +M∗Q

)(
Ỹ −N∗Q

)−1

=
(
Y −QÑ∗

)−1(
X +QM̃∗

)
.

(4.42)

It only remains to prove that Q belongs to the set S. Employing Proposition 4.3.1

for the particular Input/Output Decoupled DCF for which K is a central controller

we get that (
X̃ +M∗Q

)
M̃∗ = hG(K)

or equivalently

X̃ +M∗Q = K
(
I +GK

)−1
M̃∗−1 (4.43)

Note that Pattern
(
K
(
I+GK

)−1)
= Kbin due to the fact thatK belongs to the set S,

Assumption 2 and Theorem 4.2.6. Also remember that M∗ and so Pattern(M∗Q) =

Pattern(Q). Also remember that M̃∗−1 is block–diagonal and that Pattern(X̃) =
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Kbin (from the hypothesis that the Input/Output Decoupled DCF we started with,

satisfies (4.40)). With all these in mind, we apply the Pattern(·) operator from (4.4)

to (4.43) in order to get that Pattern(Q) must satisfy the following (binary) matrix

equation:

Kbin + Pattern(Q) = Kbin. (4.44)

Furthermore, note that Pattern(Q) is a solution to (4.44) if and only if Pattern(Q) ≤

Kbin, or equivalently if and only if Q ∈ S, and the proof ends.

4.4.6 The Model–Matching Problem for Sparse Controller Synthesis

In this subsection we deal with the problem of actually computing (when it

does exist) an Input/Output Decoupled DCF of G that also satisfies the conditions

(4.40), yielding a sparse controller. Just like in Subsection 4.3.3 we dealt with the

general case, it turns out that the problem is equivalent with solving an exact model–

matching problem. Only that now, due to the particularities of the Input/Output

Decoupled DCF, the exact model matching problem can be formulated in a more

compact way and is easier to solve.

We define the binary matrix Kbin
⊥ belonging to the set

{
0, 1
}m×p

as

(
Kbin
⊥
)
ij

def
=


1 if Kbin

ij = 0,

0 otherwise .

(4.45)

With Kbin
⊥ ∈

{
0, 1
}m×p

defined in (4.45) we introduce the linear subspace S⊥
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of R(λ)nu×ny as

S⊥
def
=
{
A ∈ R(λ)nu×ny

∣∣∣ Pattern(A) ≤ K bin
⊥

}
. (4.46)

We start with any Input/Output Decoupled DCF of G, and we want to com-

pute (when it exists) an Input/Output Decoupled DCF that additionally satisfies

the conditions (4.40) from Theorem 4.4.7.

Theorem 4.4.9. Given an arbitrary plant G(λ) in the set R(λ)ny×nu, partitioned

as in (4.3) take any input/output decoupled DCF of G(λ) which we consider fixed.

There always exists an additive factorization of the X̃ factor as X̃ = X̃K + X̃K⊥,

such that Pattern(X̃K) = Kbin and Pattern(X̃K⊥) = Kbin
⊥ . Then G(λ) is stabilizable

with a sparsity constrained controller K(λ) belonging to the set S, if and only if

there exist a solution Q ∈ S⊥ ∩RH∞ to the TFM equation

X̃K⊥ = −MQ. (4.47)

Proof. If a controller K belonging to S does exist, it can be obtained from any

DCF for an adequate Youla parameter Q (depending on K). With this argument

in mind, we start out with a (fixed) input/output decoupled DCF of G. According

to Theorem 4.4.7, a controller K ∈ S exists if and only if there exists a Youla

parameter Q such that Pattern(X̃ +MQ) = Kbin or equivalently

Pattern(X̃K + X̃K⊥ +MQ) = Kbin. (4.48)

For any Youla parameter Q, there always exists an additive factorization of the Q

factor as Q = QK + QK⊥ , such that Pattern(QK) = Kbin and Pattern(QK⊥) =
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Kbin
⊥ and consequently (because M is block–diagonal) Pattern(MQK) = Kbin and

Pattern(MQK⊥) = Kbin
⊥ . We rewrite (4.48) accordingly in order to obtain that

Pattern(X̃K + X̃K⊥ +MQK +MQK⊥) = Kbin. (4.49)

Since Pattern(X̃K + MQK) = Kbin and Pattern(X̃K⊥ + MQK⊥) = Kbin
⊥ , it follows

that (4.49) is equivalent with

X̃K⊥ +MQK⊥ = 0 (4.50)

hence the proof.

4.4.7 Sparse, Optimal Controller Synthesis

In this section we point out how the Youla parametrization from Theorem 4.4.8

can be directly employed within the powerful tools developed in [79] for the synthesis

of the H2 optimal controller satisfying sparsity constraints that are quadratically

invariant with respect to the plant. If G is stabilizable with a K in the set S, then

we can compute an Input/Output Decoupled DCF (as in Lemma 4.4.5), satisfying

(4.40) from Theorem 4.4.7. Following Corrolary 7 [82, pp.110] and Theorem 4.4.8,

the set of all H(G,K) with K stabilizing, K ∈ S admits the affine parametrization

H(G,K) =

 I −N∗X −Ñ∗Y

D∗X D∗Y

+

 −N∗ Ñ∗

D∗ −D∗

Q
 D̃∗ Ñ∗

D̃∗ Ñ∗

 (4.51)
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where the Youla parameter Q is any stable TFM in the set S. This immediately

implies that the sparsity constrained disturbance attenuation problem (as introduced

in [79, (1)/pp. 276 ]), or the sparsity constrained mixedH2 sensitivity problem (from

[57, pp. 139]) can be ultimately written in the form of the following model–matching

problem

min

Q ∈ S ∩RH∞

∥∥∥∥ T1 + T2QT3

∥∥∥∥ (4.52)

where T1, T2 and T3 are certain TFMs (resulting from (4.51) and the problem’s data).

At this point the numerical technique from [79, Theorem 29] is readily available to

numerically solve (4.52) (by employing existing tools from standard H2 synthesis).

4.5 Conclusions

In this paper we have provided necessary and sufficient conditions for the sta-

bilizability of a given plant, with a controller satisfying sparsity constraints that are

quadratically invariant with respect to the plant. These conditions are formulated

in terms of the existence of a specific input/output decoupled doubly coprime fac-

torization of the plant with additional sparsity constraints on certain factors . Along

the way have obtained the set of all decentralized stabilizing controllers, character-

ized via the Youla parametrization. The sparsity constraints on the controller are

also recast as convex constraints on the Youla parameter. In order to achieve this,
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it is noteworthy that the constraints on the Youla parameter become linear sub-

space constraints on the Youla parameter, only from this particular input/output

decoupled doubly coprime factorization with supplemental sparsity constraints on

certain factors. Solving the stabilization problem provides the missing link for fully

exploiting the powerful optimal synthesis methods for sparse controllers from [79].

State–space Computation of the Input/Output Decoupled Douby Co-

prime Factorization

4.5.1 State–space Representations of LTI Systems

Given any n–dimensional state–space representation (A, B, C, D) of an LTI

system, its input–output description is given by the transfer function matrix (TFM)

which is the ny × nu matrix with real, rational functions entries

G(λ) =


A B

C D

 def
= D + C(λIn − A)−1B, (4.53)

where A,B,C,D are n×n, n×nu, ny×n, ny×nu real matrices, respectively while

n is also called the order of the realization (4.53). For any real, invertible, n × n

matrix Z, we call a similarity transformation of the realization (4.53) the following

state–space realization of G


Z−1AZ Z−1B

CZ D

 = G(λ). (4.54)
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The undeterminate λ is either s for continuous–time systems or z for discrete–

time systems, respectively. Frequently in the sequel, the λ argument following a

TFM is omitted if it is clear from the context. The D matrix in any realization

(4.53) of G(λ) is called the gain at infinity of G(λ), and it will be denoted in the

sequel with (the somehow abusive but straightforward notation) G(∞).

By C we denote the complex plane. The identity matrix of size n×n is denoted

by In, while the subscript is dropped if the size is clear from the context. By Λ(A)

we mean the union of eigenvalues of the square matrix A (multiplicities counting).

By R(λ) we denote the set of all real rational functions and by R(λ)ny×nu the set of

ny × nu matrices having all entries in R(λ).

It is well known that for any proper, ny×nu TFMG(λ) there exist (A,B,C,D),

a state–space representation such that (4.53) holds and furthermore such a quartet

of matrices is not unique. A realization (4.53) of order n, (or the pair (A,B)) is

called controllable if rank

[
A− λI B

]
= n holds for any λ ∈ C ([76, Ch. 1.2]).

Analogously, we say that a realization (4.53) is observable (or the pair (C,A) is

observable) provided the pair (AT , CT ) is controllable ([76, Ch. 3.1]), where we

adopt the superscript T as the notation for matrix transposition. A realization that

is controllable and observable is called minimal. For any minimal realization (4.53)

of G(λ), Λ(A) are called the poles of G.

Denote by rankn Θ(λ) the normal rank of the transfer function matrix (TFM)

Θ(λ), i.e. the rank of Θ(λ) for almost all λ ∈ C (but a finite number of points). A

square TFM, Θ(λ) ∈ R(λ)ny×ny that has full normal rank (rankn Θ(λ) = ny), has

an inverse in R(λ)ny×ny .
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This paper gives a unified treatment for both the continuous and discrete-time

cases. Henceforth, we will denote by Ω the open left half complex plane or the open

unit disk, according to the type of system: continuous or discrete–time, respectively.

The standard interpretation of Ω in systems theory is related to the stability domain

of linear systems. We qualify the system (4.53) (or equivalently the TFM G(λ)) as

stable if all its poles are in Ω.

A realization (4.53) of order n, (or the pair (A,B)) is called stabilizable if

for any λ ∈ C − Ω we have that rank

[
A− λI B

]
= n ([76, Ch. 2.4]). Analo-

gously, we say that a realization (4.53) is detectable (or the pair (C,A)) is detectable

provided the pair (AT , CT ) is stabilizable ([76, Ch. 3.4]).

For a given TFM Θ(λ), λ0 ∈ C̄ is a zero of Θ(λ), if the rank of Θ(λ0) is strictly

smaller than the normal rank of Θ(λ). For a square, invertible TFM Θ(λ) it holds

true that the zeroes of Θ(λ) are the poles (multiplicities counted) of Θ−1(λ). A

square TFM Θ(λ) is called unimodular, if it is stable, invertible and has a stable

inverse, or equivalently if it is invertible and all its poles and all its zeroes are in Ω.

Theorem 4.5.1. [59, Theorem 1] Let G(λ) be some proper ny×nu TFM. The class

of all DCFs (4.1) of G(λ) over Ω is given by

 M(λ) −X̃(λ)

N(λ) Ỹ (λ)

 =


A−BL B F

−L I 0

C −DL D I


T , (4.55)
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 Y (λ) X(λ)

−Ñ(λ) M̃(λ)

 = T−1


A− FC B − FD F

L I 0

−C −D I


, (4.56)

where A,B,C,D, F, L and T are real matrices accordingly dimensioned such that

i) T =

 V W

O U

 has its diagonal nu×nu block V and ny×ny block U respectively,

invertible,

ii) F and L are feedback–matrices such that Λ(A−BL) ∪ Λ(A− FC) ⊂ Ω,

iii) G(λ) =


A B

C D

 is a stabilizable and detectable realization.

Proposition 4.5.2. Let G(λ) be an arbitrary ny × nu TFM and Ω a domain in C.

A) The class of all left coprime factorizations of G(λ) over Ω, G = M̃−1Ñ , is given

by [
Ñ(λ) M̃(λ)

]
= U−1


A− FC B − FD −F

C D I

 , (4.57)

where A,B,C,D, F and U are real matrices accordingly dimensioned such that

i) U is any ny × ny invertible matrix,

ii) F is any feedback matrix that allocates the observable modes of the (C,A) pair

to Ω,

iii) G(λ) =


A B

C D

 is a stabilizable realization.

B) The class of all right coprime factorizations of G(λ) over Ω, G = NM−1 is given
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by  M(λ)

N(λ)

 =


A−BL B

−L I

C −DL D


V (4.58)

where A,B,C,D, L and V are real matrices accordingly dimensioned such that

i) V is any nu × nu invertible matrix,

ii) L is any feedback matrix that allocates the controllable modes of the (A,B) pair

to Ω,

iii) G(λ) =


A B

C D

 is a detectable realization.

Proof. We will only prove point A) since the proof for point B) follows by duality.

The fact that (4.57) is a left coprime factorization of G follows directly from [59,

Theorem 1]. One can also note that since for any feedback matrix F the pairs (C,A)

and (C,A − FC) have the same observability subspaces ([76]), it follows that the

poles of both M̃ and Ñ are among the observable modes of (C,A− FC) which are

all in Ω due to ii).

Conversely, let M̃ and Ñ be such that G = M̃−1Ñ is a left coprime factor-

ization of G over Ω. Then according to [82, Ch.4, Theorem 60] it can always be

completed to a doubly coprime factorization (4.1) of G. The respective doubly co-

prime factorization (4.1) of G, must be of the form (4.55), (4.56) because of [59,

Theorem 1]. Furthermore, from (4.56) we get that in fact

[
Ñ(λ) M̃(λ)

]
is given

by (4.57) where (A,B) is stabilizable, (C,A) is detectable and the feedback matrix

F is such that Λ(A− FC) ⊂ Ω. Finally, we remark that the detectability of (C,A)
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is not needed because even if (C,A) is not detectable we take the feedback F to

allocate only the observable part of (C,A), while the unobservable part of (C,A)

which is invariant under the ...to be completed.

State–Space Algorithm for the I/O Decoupled DCF. We provide here a

constructive algorithm that produces an Input/Output Decoupled DCF. Due to the

many degrees of freedom one has at disposal at certain steps within the algorithm,

we point out that in fact, we are able to produce a very broad class of Input/Output

Decoupled DCF. For example, one nice feature that is preserved from the classical

DCF is that we can place the poles of all factors at any desired locations in Ω.

Given the plant G, we compute using the procedure from Subsection 4.4.1,

an Output Decoupled Left Coprime Factorization (4.35) of G(λ) (with G(λ) =

M̃∗−1(λ)Ñ∗(λ) and M̃∗(λ) in block–diagonal form). We stop here to remark that

there is full leverage in placing the poles of M̃∗ def
= diagi∈1,p

{
M̃∗

i

}
from (4.35).

Since any invertible factor M̃∗
i on the block–diagonal is computed by performing a

standard left coprime factorization (of the i-th block–row of G), its poles are freely

assigned and consequently so are the poles of M̃∗ = diagi∈1,p

{
M̃∗

i

}
. The state–space

representation of this Output Decoupled Left Coprime Factorization can be obtained

according to Proposition 4.5.2 A) starting from a certain stabilizable state–space

realization of G(λ) (which we take without loss of generality to be in the Kalman

Structural Decomposition, [89]) and which we consider fixed:
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G(λ) =



? ? ? ? ?

O A22 O A24 B2

O O ? ? O

O O O A44 O

O C2 O C4 D


(4.59)

with the ? denoting parts of the realizations that are of no importance in the proof.

Continuing with Proposition 4.5.2 A), there also exist an invertible matrix U∗ and a

feedback matrix F ∗ (both fixed) such that (with F ∗ partitioned in accordance with

(4.59)) we get

[
−Ñ∗(λ) M̃∗(λ)

]
= U∗−1



? ? ? ? ? ?

O A22 − F ∗2C2 O A24 − F ∗2C4 B2 − F ∗2D F ∗2

O ? ? ? ? ?

O −F ∗4C2 O A44 − F ∗4C4 −F ∗4D F ∗4

O −C2 O −C4 −D I


(4.60)

with

Λ


 A22 − F ∗2C2 A24 − F ∗2C4

−F ∗4C2 A44 − F ∗4C4


 ⊂ Ω. (4.61)

Note that since (4.59) is stabilizable it follows that Λ(A44) ⊂ Ω. After removing

the unobservable part from (4.60) (using the same procedure as from (??) to (??)
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in the proof of Proposition 4.5.2 A)), we get that

[
−Ñ∗(λ) M̃∗(λ)

]
= U∗−1


A22 − F ∗2C2 A24 − F ∗2C4 B2 − F ∗2D F ∗2

−F ∗4C2 A44 − F ∗4C4 −F ∗4D F ∗4

−C2 −C4 −D I


(4.62)

Analogously, we compute an Input Decoupled Right Coprime Factorization

(4.37) of G(λ), (with G(λ) = N∗(λ)M∗(λ)−1 and M∗(λ) in block–diagonal form).

On the same line of reasoning on the poles placement of M̃∗(λ), notice that the poles

of M∗(λ) as well, can be placed at will in Ω. According to Proposition 4.5.2 B), there

exists a certain detectable state–space realization of G(λ) (which we take without

loss of generality to be in the Kalman Structural Decomposition and) which we also

consider fixed:

G(λ) =



A11 A12 ? ? B1

O A22 O ? B2

O O ? ? O

O O O ? O

O C2 O ? D


(4.63)

with the ? denoting parts of the realization that are of no importance.

Any two realizations of G will always have the same the controlable and ob-

servable part, up to a similarity transformation (4.54). That is to say that if the

controlable and stabilizable part of (4.59) is (A22, B2, C2, D) then the controlable

and stabilizable part of (4.63) must be (Z−1A22Z,Z
−1B2, C2Z,D), for some invert-
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ible, real matrix Z . We can apply this similarity transformation adequately on

(4.63), such that the the controlable and stabilizable part (A22, B2, C2, D), appears

identical on both realizations (4.59) and (4.63), respectively. This will simplify some

of the future computations.

We continue with Proposition 4.5.2 B): along with realization (4.63), there

also exist an invertible matrix V ∗ and a feedback matrix L∗ (both fixed) such that

(with L∗ partitioned in accordance with (4.63))

 M∗(λ)

N∗(λ)

 =



A11 −B1L
∗
1 A12 −B1L

∗
2 ? ? B1

−B2L
∗
1 A22 −B2L

∗
2 ? ? B2

O O ? ? O

O O O ? O

−L∗1 −L∗2 ? ? I

−DL∗1 C2 −DL∗2 ? ? D



V ∗ (4.64)

with

Λ


 A11 −B1L

∗
1 A12 −B1L

∗
2

−B2L
∗
1 A22 −B2L

∗
2


 ⊂ Ω, (4.65)

Note that since (4.63) is detectable it follows that Λ(A11) ⊂ Ω. After removing the

uncontrolable part from (4.64) we get that
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 M∗(λ)

N∗(λ)

 =



A11 −B1L
∗
1 A12 −B1L

∗
2 B1

−B2L
∗
1 A22 −B2L

∗
2 B2

−L∗1 −L∗2 I

−DL∗1 C2 −DL∗2 D


V ∗ (4.66)

We fix now the following stabilizable and detectable state–space realization of

G(λ):

G(λ) =



A11 A12 ? B1

O A22 A24 B2

O O A44 O

O C2 C4 D


(4.67)

Since Λ(A11) ⊂ Ω we get that (4.67) is detectable and since Λ(A44) ⊂ Ω we get

that (4.67) is stabilizable, hence (4.67) statisfies the hypothesis from Theorem 4.5.1

iii). Starting from realization (4.67) (which is fixed), (4.55) and (4.56) yield a valid

DCF of G for any feedback matrices F and L (partitioned in accordance with (4.67)

and satisfying Theorem 4.5.1 ii)), and any invertible matrix T satisfying Theo-

rem 4.5.1 i). We will denote the factors of this particular DCF with
(
M(λ), N(λ),

M̃(λ), Ñ(λ), X(λ), Y (λ), X̃(λ), Ỹ (λ)
)
. After removing the unobservable part, the

M̃ factor will be (the computation are similar with those for getting from (4.60) to

(4.62))
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M̃(λ) = U−1


A22 − F2C2 A24 − F2C4 F2

−F4C2 A44 − F4C4 F4

−C2 −C4 I


(4.68)

where

Λ


 A22 − F2C2 A24 − F2C4

−F4C2 A44 − F4C4


 ⊂ Ω. (4.69)

and U is a real, invertible matrix. We compute the factor Θ̃
def
= M̃∗M̃−1 using the

state–space realizations from (4.60) and (4.68) respectively and we get

Θ̃(λ) = U∗−1



A22 − F ∗2C2 A24 − F ∗2C4 F ∗2C2 F ∗2C4 F ∗2

−F ∗4C2 A44 − F ∗4C4 F ∗4C2 F ∗4C4 F ∗4

O O A22 A24 F2

O O O A44 F4

−C2 −C4 C2 C4 I


U. (4.70)

After removing the unobservable part from (4.70) we get that

Θ̃(λ) = U∗−1


A22 − F ∗2C2 A24 − F ∗2C4 F ∗2 − F2

−F ∗4C2 A44 − F ∗4C4 F ∗4 − F4

−C2 −C4 I


U (4.71)

and consequently
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Θ̃−1(λ) = U−1


A22 − F2C2 A24 − F2C4 F ∗2 − F2

−F4C2 A44 − F4C4 F ∗4 − F4

C2 C4 I


U∗, (4.72)

which combined with (4.61) and (4.69) shows that Θ̃(λ) is unimodular. A similar

line of reasoning can be used to prove that Θ(λ)
def
= M(λ)−1M∗(λ) is unimodular.

Finally, compute

( Θ−1 O

O Θ̃


 Ỹ (λ) X̃(λ)

−Ñ(λ) M̃(λ)

)(
 M(λ) −X(λ)

N(λ) Y (λ)


 Θ O

O Θ̃−1

) = Iny+nu

(4.73)

which is still a DCF of G in its own right, due to the unimodularity of Θ and Θ̃.

Plugging in the definitions of Θ̃ and Θ into (4.73) yields

 Θ−1(λ)Ỹ (λ) Θ−1(λ)X̃(λ)

−Ñ∗(λ) M̃∗(λ)

)(
 M∗(λ) −X(λ)Θ̃−1(λ)

N∗(λ) Y (λ)Θ̃−1(λ)

 = Iny+nu (4.74)

which is an Input/Output Decoupled DCF of G and the proof ends.

Appendix

Proof of Proposition 4.3.1. For this proof we will make extensive references to

[82]. The DCF (4.1) of G guarantees that the hypothesis of [82, Ch. 5.2, Theorem 1]

and consequently of [82, Ch. 5.2, Corollary 7] are met.

Consider the expression of H(G,K) defined in Subsection 4.1.1 (with K being

the central controller from Definition 4.1.3) obtained by taking the expression in
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[82, Ch. 5.2, Corollary 7, (8)] with the Youla–parameter equal to zero (according

also to Definition 4.1.3) and equate it with the first expression for H(G,K) from

[82, Ch. 5.1, pp. 101, (7)] in order to obtain an identity. The bottom right entry for

H(G,K) yields the identity MY = (I+KG)−1, which is exactly the first relation in

(4.13). The bottom left entry of H(G,K) yields the identity MX = (I +KG)−1K,

which is exactly the second relation in (4.13).

Consider now the expression of H(G,K) obtained by taking the expression in

[82, Ch. 5.2, Corollary 7, (9)] with the Youla–parameter equal to zero and equate

it with the second expression for H(G,K) from [82, Ch. 5.1, pp. 101, (7)] in

order to obtain another identity. The top left entry for H(G,K) yields the identity

Ỹ M̃ = (I + GK)−1, which is exactly the third relation in (4.13). The bottom left

entry of H(G,K) yields the identity X̃M̃ = K(I +GK)−1, which is exactly the last

relation in (4.13).
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Chapter 5

Future Research Ideas

5.1 2–Inverses for Binary Matrices

As seen in the second Chapter, for linear, time–invariant systems with spar-

sity constraints, the quadratic invariance property does not depend on the actual

dynamics of the plant or controller. It is exclusively a property of the sparsity

patterns of the plant and controller respectively. Specifically, any controller K

with Kbin = Pattern(K) is quadratic invariant with respect to the plant G with

Gbin = Pattern(G)if and only if

KbinGbinKbin = Kbin (5.1)

holds, for the binary matrices Kbin and Kbin.

If we fix the matrix Kbin that all the matrices Gbin satisfying (5.1) are called

generalized inverses (or 1–inverses) of Kbin. Almost 35 years ago by Rao and Rao in

their excellent reference [101] have completely characterized and provided compu-

tational algorithms for the 1–inverses of binary matrices. Further results have been

developed in their second paper [102].

The surprising thing is that apparently people in the control community are

not yet aware of this previous work since it contains remarkable results that we

have not seen cited anywhere yet. For instance in [101] is proved that if Kbin has
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full–rank as a binary matrix, and we only consider its 1–inverses Gbin that are also

full–rank, then both Kbin and Gbin are triangular, modulo some row permutation

operation. This result shows that quadratic invariance doesn’t actually go to far

beyond the so called “nested structured” systems which have been present in the

control literature for quite some time.

Of course a separate investigation in needed for the case when the binary

matrices involved are not full-rank. Some preliminary results in this respect are

already available in the work of Rao and Rao.

For our decentralized control problems, the interesting case is when the matrix

Gbin is fixed and we want to find all matrices Kbin that satisfy (5.1). All Kbin

matrices satisfying (5.1) are called 2–inverses of Gbin. Therefore a systematic study

of 2–inverses of binary matrices would be deeply beneficial for understanding the

nature of quadratic invariant sparsity structures.

Furthermore, it would be nice if we could parametrize all the 2–inverses of

minimum Frobenius norm and then characterize all the 2–inverses around the min-

imum Frobenius ones. That would reveal which links are actually superfluous in

keeping the configuration quadratically invariant. This might prove to be a step

forward towards attempting the problem described next.

5.1.1 Reliable Decentralized Stabilization

The problem of reliable decentralized stabilization consists of computing de-

centralized controllers that are robust to deviations of the closed loop parameters,
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such as unreliable links between the controller and the plant. Interesting results

have been published in [30] and [37].

For the problem of optimal control in a quadratic invariant decentralized con-

figuration, we are interested in investigating how to design controllers that are ro-

bustly stabilizing when certain links fail. One possible scenario could be the follow-

ing. Suppose that we have a feedback system of decentralized, linear time invariant

plant as in Figure 2.1 and the sparsity pattern of the controller is quadratically

invariant with respect to the plant. This implies that (5.1) holds, where we have

used the previously defined notations Gbin and Kbin to denote the sparsity patterns

of the plant and controller respectively. Suppose now that Kbin is not a minimum

Frobenius norm 2–inverse for Gbin. Then, if any link in the controller that represents

an entry that does not belong to the minimum Frobenius norm 2–inverses of Gbin

fails, then the newly obtain sparsity pattern of the controller, call it Kbin
∗ would

still be a 2–inverse of Gbin. Furthermore, the feedback configuration would remain

quadratically invariant and we know that the sparsity pattern of the feedback-loop

would be exactly Kbin
∗ . Of course, if the respective link fails, the optimality of the

controller is lost, but perhaps we can ensure in the initial design procedure, that at

least the stability of the closed–loop is preserved.

Preliminary research shows that the problem of attaining such a design spec-

ification is tractable.
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5.2 Strong Stabilization and Controller Order Reduction

via Fundamental Spaces Analysis

Strong stabilization designates the output feedback stabilization of a given

plant with a stable controller. The benefits of strong stabilization are well estab-

lished in control engineering practice. Equally important, the problem is intimately

related with one of the fundamental limitations of feedback control, namely the fact

that stabilization via a nonstable controller introduces with necessity additional, un-

desirable non–minimum phase zeroes in the feedback loop transfer function, beyond

those of the original plant. Moreover, the problem of “simultaneous stabilization”

is known to be always reducible to a strong stabilization problem of a certain equiv-

alent system [63].

In spite of the considerable research effort that has been and is still being spent

in this direction, a general, tractable scheme for the synthesis of a stable controller

(when one does exist) is still not available. A key result from [63] states that a

certain plant is strongly stabilizable if and only if it satisfies the so–called parity

interlacing property . For SIMO plants (and SISO as a special case) several synthesis

procedures exist and are anchored on interpolation methods that construct a certain

unimodular factor [63, 108]. For the case of MIMO plants, all available techniques

are ultimately based on the heavy theoretical machinery from H2 and H∞ optimal

synthesis [105, 106, 107, 109, 110, 113, 115, 116]. From the perspective of previous

results, our approach is entirely unconventional as it is built solely on the analysis of

the fundamental spaces of certain factors of the doubly coprime factorizations of the
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plant. In fact, the entire research plan proposed in this subsection is envisaged as an

important application to the powerful tools developed in [117], that give a complete

computational, state–space characterization of the fundamental spaces (range and

null space) of an LTI operator. As it will be seen, a cardinal aspect is the fact that

in [117] we were able to characterize all vector bases that span the fundamental

spaces of a given TFM, and we allow for supplemental restrictions on the allocated

poles of these bases.

We remind here that a collection of eight stable TFMs
(
M(λ), N(λ), M̃(λ), Ñ(λ),

X(λ), Y (λ), X̃(λ), Ỹ (λ)
)

is called a doubly coprime factorization (DCF) of the

plant G(λ) if the “denominator” TFMs M̃(λ) and M(λ) are invertible and satisfy

G(λ) = M̃(λ)−1Ñ(λ)= N(λ)M(λ)−1 and Y (λ) X(λ)

−Ñ(λ) M̃(λ)


 M(λ) −X̃(λ)

N(λ) Ỹ (λ)

 = Iny+nu . (5.2)

To the synthesis problem of a stable controller, it corresponds the problem of exis-

tence of a particular DCF (5.2) of the plant, where the denominator of the central

controller is unimodular or (without any loss of generality) is has degree McMillan

zero (is a constant, invertible matrix). This in its own turn, can be broken down to

solving a linear matrix equation (Ỹ (λ)−N(λ)Q(λ)) = ∆(λ) for the Youla–parameter

Q(λ), where the parameter ∆(λ) must be unimodular. We remark here that the

solution Q(λ) (if it exists) must also satisfy the necessary stability constraints, as-

sociated with the celebrated Youla parametrization. Noting that the Ỹ (λ) factor is

invertible, hence its Range is the ambient space, we aim at conveying the existence

of such a solution Q(λ) in terms of the Range of the plant G(λ) (as a rational
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matrix) (which is the same as the range of the factor N(λ) from(5.2)).

The most exciting thing about the aforementioned approach is that it suggests

a novel way to tackle the problem of computing stabilizing controllers of reduced

degree. One can show that if we can solve (Ỹ (λ)−N(λ)Q(λ)) = ∆(λ) for a stable

Q(λ), with the parameter ∆(λ) unimodular, then we can immediately build another

DCF of G(λ), such that Ỹ (λ) has McMillan degree zero (is a constant, invertible

matrix). Then one stable controller would be given by K(λ) = X̃(λ)Ỹ (λ)−1 and

it has the same number of poles as X̃(λ). We can now try to somehow reduce

the McMillan degree of the controller, by looking at all the factors of the form

X̃(λ) + M(λ)Q(λ), for Q(λ) stable TFM, in the Null space of N(λ). We will

do that, by “subtracting” from the Range of X̃(λ), whatever is possible given the

constraints on Q(λ) and the fact that the factor M(λ) is invertible, hence its columns

span the ambient space. The outcome would be a strongly stabilizable controller,

that at the same time would also have minimal McMillan degree.

For the general (not necessarily strong stabilizable ) case, we can easily make

use of the ideas above, for outlining what we hope to be a method for computing

the minimum order controller. We envision this as a sequential method with two

steps, both of them inspired from the strongly stabilizable synthesis above. First,

we reduce the McMillan degree of the controller denominator’s Ỹ (λ). We do that

by “subtracting” the Range of N(λ) from the Range of Ỹ (λ). As a second step, we

minimize the degree of the controller’s numerator X̃(λ) after all the Youla parame-

ters Q(λ) stable TFM, in the Null space of N(λ). This leaves the numerator Ỹ (λ)

unchanged and in doing so it guarantees that what one does obtain is a very special
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DCF of the plant where both the numerator and the denominator of the central con-

troller have reduced their McMillan degrees. Whatismore, it holds true that for any

Youla parameter, one would only obtain another controller for which with necessity,

either one (or both) of controller’s numerator or denominator have larger McMil-

lan degrees. This nice property insinuates that (unless very special poles/zeroes

cancelations occur) our specially computed DCF might yield the minimum order

stabilizing controller.

119



Bibliography

[1] F. M. Brasch, Jr., and J. B. Pearson, ”Pole placement using dynamic com-
pensators”, IEEE Transactions Automatic Control, vol. AC-15, pp. 34-43, Feb.
1970.

[2] Y. C. Ho and K. C. Chu, “Team decision theory and information structures in
optimal control problems - Part I, IEEE Transactions on Automatic Control ,
Volume 17, No 1, 1972, Page(s): 15-22.

[3] Wang, S.H., Davison, E.J., A minimization algorithm for the design of linear
multivari- able systems, IEEE Trans on Automatic Control, vol AC-18, no 3,
June 1973, pp 220-225.

[4] Wang, S.H., Davison, E.J., On the stabilization of decentralized control sys-
tems, IEEE Trans on Automatic Control, vol AC-18, no 5, October 1973, pp
473-478

[5] J. P. Corfmat and A. S. Morse, Control of linear system through specified input
channels, SIAM J. Contr., vol. 14, Jan. 1976.

[6] J. P. Corfmat and A. S. Morse, “Decentralized control of linear multivariable
systems”,Automatica, Vol. 12, Sept. 1976.

[7] Davison, E.J.,Wang, S.H., New results on the controllability and observability
of general composite systems, IEEE Trans on Automatic Control, vol AC-20,
no 1, 1975, pp 123-128.

[8] Wang, S.H., Davison, E.J.Minimization of transmission cost in decentralized
control systems, International J of Control, vol 28, no 6, 1978, pp 889-896.

[9] Davison, E.J., The robust decentralized control of a servomechanism problem
for com- posite systems with input-output interconnections, IEEE Trans on
Automatic Control, vol AC-24, no 2, April 1979, pp 325-327.

[10] Davison, E.J., Gesing, W., Sequential stability and optimization of large scale
decen- tralized systems, Automatica, vol 15, no 3, May 1979, pp 307-324.

[11] Davison, E.J., Ozguner, U., Synthesis of the decentralized robust servomecha-
nism problem using local models, IEEE Trans on Automatic Control, vol AC-27,
no 3, June 1982, pp 583-600

120



[12] Davison, E.J., Ozguner, U., Characterizations of decentralized fixed modes for
inter- connected systems,Automatica, vol 19, no 2, 1983, pp 169-182

[13] Davison, E.J., Wang, S.H., A characterization of decentralized fixed modes in
terms of transmission zeros, IEEE Trans on Automatic Control, vol AC-30, no
1, January 1985, pp 81-82.

[14] Vaz, A.F., Davison, E.J., A measure for the decentralized assignability of eigen-
values, Systems & Control Letters, vol 10, 1988, pp 191-199.

[15] Vaz, A.F., Davison, E.J., The structured robust decentralized servomechanism
problem for interconnected systems, Automatica, vol 25, no 2, 1989, pp 267-272.

[16] Davison, E.J., Chang, T.N., Decentralized stabilization and pole assignment
for general proper systems, IEEE Trans on Automatic Control, vol 35, no 6,
June 1990, pp 652-664.

[17] Davison, E.J., Ozguner, U., Decentralized control of traffic networks, Joint
Special Issue on Large Scale Systems: IEEE Trans on Circuits and Systems,
vol CAS-30, no 6, June 1983, pp 364-375; IEEE Trans on Automatic Control,
vol AC-28, no 6, June 1983, pp 677-688; IEEE Trans on Systems, Man and
Cybernetics, vol SMC-13, no 4, July 1983, pp 476-487

[18] Iftar, A., Davison, E.J., Decentralized control strategies for dynamic routing,
Inter- national J Control, 1998, vol 69, no 5, 1998, pp 599-632.

[19] Aghdam A., Davison, E.J., Pseudo-decentralized switching Control, Automat-
ica, vol 39, No 2, Feb 2003, pp 317 - 324.

[20] Aghdam A.G., Davison E.J., Decentralized Switching Control for Hierarchical
Systems, Automatica, vol 43, no. 6, 2007, pp 1092 - 1100

[21] M. Athans (Guest editor), “Special issue on Large-Scale Systems and Decen-
tralized Control,” IEEE Transactions on Automatic Control, vol 23, no 2, April
1978.

[22] M. Vidyasagar, “Decomposition techniques for large-scale systems with nonad-
ditive interactions: Stability and stabilizability,” IEEE Transactions on Auto-
matic Control , Volume 25, Issue 4, Page(s):773 - 779, 1980.

[23] B.D.O. Anderson, J.B.Moore “Time-Varying Feedback Laws for Decentralized
Control”, IEEE Transactions on Automatic Control, Vol. AC-26, No. 5, 1981.

121



[24] B.D.O. Anderson “Transfer Function Matrix Description of Decentralized Fixed
Modes”, IEEE Transactions on Automatic Control, Vol. AC-27, No. 6, 1982.

[25] A. Linnemann, “Decentralized control of dynamically interconnected systems”,
IEEE Transactions on Automatic Control, Volume 29, Issue 11, Page(s):1052 -
1054, 1984.

[26] C. H. Papadimitriou and J. N. Tsitsiklis, “ Intractable problems in control
theory,”SIAM J. Control Optim., vol 24, 1986, Page(s) 639-654, 1986.

[27] V. D. Blondel and J. N. Tsitsiklis. “A survey of computational complexity
results in systems and control”. Automatica, 36(9):1249–1274, 2000.

[28] A. B. Ozguler “Decentralized control: A stable proper fractional approach”,
IEEE Transactions on Automatic Control, Vol. 35, No. 10, pp. 1109-1117, Oc-
tober 1990

[29] K. A. Unyelioglu and A. B. Ozguler “Decentralized stabilization: Characteriza-
tion of all solutions and genericity aspects”, International Journal of Control,
Vol. 55, No. 6, pp. 1381-1403, 1992

[30] K. A. Unyelioglu, A. B. Ozguler, and P. P. Khargonekar, “Decentralized simul-
taneous stabilization and reliable control using periodic feedback”, Systems and
Control Letters, vol. 18, pp. 23-31, 1992.

[31] K. A. Unyelioglu and A. B. Ozguler “Reliable decentralized stabilization of
feedforward and feedback interconnected systems”, IEEE Transactions on Au-
tomatic Control, vol. AC-37, no. 8, pp. 1119-1132, 1992.

[32] P. P. Khargonekar and A. B. Ozguler “Decentralized control and periodic feed-
back”, IEEE Transactions on Automatic Control, vol. AC-39, No. 4, pp. 877-
881, April 1994.

[33] K. A. Unyelioglu, A. B. Ozguler, and U. Ozguner, “Decentralized blocking
zeros and the decentralized strong stabilization problem”, IEEE Transactions
on Automatic Control, vol. AC-40, No. 11, pp. 1905-1918, November 1995.

[34] K. A. Unyelioglu, Umit Ozguner, and A. B. Ozguler, “Decentralized fixed zeros
of decentralized control systems”, IEEE Transactions on Automatic Control,
Vol. 45, No. 1, pp. 146-151, January 2000.

[35] A. B. Ozguler, “Global stabilization via local stabilizing actions,” IEEE Trans-
actions on Automatic Control, Vol. 51, No. 12, pp. 530-533, 2006.

122



[36] Gundes, A.N.; “Coprime factorizations of parallel, cascade, feedback intercon-
nections” IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, Volume 43, Issue 9, Sept. 1996 Page(s):813 - 814

[37] Gundes, A.N.; “Reliable decentralized stabilization of linear systems” IEEE
Transactions on Automatic Control, Volume 43, Issue 12, Dec. 1998
Page(s):1733 - 1739

[38] Javad Lavaei and Amir G. Aghdam, A Graph Theoretic Method to Find Decen-
tralized Fixed Modes of LTI Systems, Automatica, vol. 43, no. 2, pp. 2129-2133,
Dec. 2007.

[39] Javad Lavaei and Amir G. Aghdam, Control of Continuous-Time LTI Systems
by Means of Structurally Constrained Controllers, Automatica, vol. 44, no. 1,
pp. 141-148, Jan. 2008.

[40] Javad Lavaei and Amir G. Aghdam, Stabilization of Decentralized Control
Systems by Means of Periodic Feedback, Automatica, vol. 44, no. 4, pp. 1120-
1126, Apr. 2008.

[41] C. Fan, J. L. Speyer, and C. R. Jaensch. “Centralized and decentralized solu-
tions of the linear-exponential-gaussian problem”, IEEE Transactions on Au-
tomatic Control, 39(10):1986–2003, 1994.

[42] P. G. Voulgaris. Control under structural constraints: An input-output ap-
proach. In Lecture notes in control and information sciences, pages 287–305,
1999.

[43] B. Bamieh and P. G. Voulgaris. “Optimal distributed control with distributed
delayed measurements”. In Proceedings of the IFAC World Congress, 2002.

[44] B. Bamieh, F. Paganini and M.A. Dahleh, “Distributed control of spatially
invariant systems,” Automatic Control, IEEE Transactions on, Volume 47,
Issue 7, Page(s): 1091-1107, 2002

[45] B. Bamieh and P.G. Voulgaris, Optimal Distributed Control with Distributed
Delayed Measurements, in Proc. IFAC World Congress, 2002.

[46] G. A. de Castro and F. Paganini, “Convex synthesis of localized controllers for
spatially invariant systems,” Automatica, vol. 38, pp. 445 - 456, 2002.

[47] R. Cogill, S. Lall, and P. A. Parrilo, “On structured semidefinite programs for
the control of symmetric systems,” in Proc. Allerton Conf. Communication,
Control, and Computing, 2003.

123



[48] R. D’Andrea and G.E. Dullerud, “Distributed control design for spatially in-
terconnected systems,” Automatic Control, IEEE Transactions on, Volume 48,
Issue 9, 2003, Page(s): 1478-1495.

[49] E. Klavins, R. M. Murray; “Distributed algorithms for cooperative control,”
IEEE Pervasive Computing, Volume 3, Issue 1, Jan.-March 2004 Page(s):56 -
65

[50] J.A. Fax and R.M. Murray, “Information flow and cooperative control of vehicle
formations,” Automatic Control, IEEE Transactions on, Volume 49, pp. 1465-
1476, 2004.

[51] C. Langbort, R.S. Chandra and R. D’Andrea, “Distributed control design for
systems interconnected over an arbitrary graph,” Automatic Control, IEEE
Transactions on, Volume 49, Issue 9, Page(s) 1502-1519, 2004.

[52] X. Qi, M. Salapaka, P. Voulgaris and M. Khammash, Structured Optimal and
Robust Control with Multiple Criteria: A Convex Solution, IEEE Trans. Aut.
Control, Vol.49, No.10, pp 1623–1640, 2004.

[53] B. Recht and R. D’Andrea, “Distributed Control of Systems over Discrete
Groups”, IEEE Transactions on Automatic Control, Vol 49, No 9, pp. 1446-52,
2004.

[54] J. S. Shamma and G. Arslan, “A decomposition approach to distributed con-
trol of spatially invariant systems,” IEEE Transactions on Automatic Control,
Volume 51, Issue 4, Page(s):701 - 707, 2006 .

[55] M. Arcak. “Passivity as a design tool for group coordination”, IEEE Transac-
tions on Automatic Control, vol.52, no.8, pages 1380-1390, 2007.

[56] B. Francis “ A Course in H∞ Control Theory”, Series Lecture Notes in Control
and Information Sciences, New York: Springer-Verlag, 1987, vol. 88.

[57] K. Zhou, J.C. Doyle and K. Glover, “ Robust and Optimal Control”, Upper
Saddle River, NJ: Prentice Hall, 1996.

[58] Doyle J., Glover K., Khargonekar P., and Francis B., “State–space solutions to
standard H2 and H∞ control problems”, IEEE Trans. Aut. Control, Vol. 34,
1989. (pp. 831–847)

[59] V. M. Lucic “ Doubly Coprime Factorization Revisited”, IEEE Trans. Aut.
Control, Vol.46, No.3, 2001. (pp. 457-459)

124
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