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Abstract

Nonlinear phenomena, including bifurcations and chaos, occurring in power system
models exhibiting voltage collapse have been the subject of several recent studies.
These nonlinear phenomena have been determined to be crucial factors in the inception
of voltage collapse in these models. In this paper, the problem of controlling voltage
collapse in the presence of these nonlinear phenomena is addressed. The work focuses
on an example power system model that has been studied in several recent papers. The
bifurcation control approach is employed to modify the bifurcations and to suppress
chaos. The control law is shown to result in improved performance of the system for a

greater range of parameter values.
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I. Introduction

Voltage collapse in electric power systems has recently received significant attention in the
literature (see, e.g., [1] for a synopsis). This research has been motivated by increases
in power demand which result in operation of electric power systems near their stability
limits. A number of physical mechanisms have been identified as possibly leading to voltage
collapse. From a mathematical perspective, voltage collapse has been viewed as arising from
a bifurcation of the power system governing equations as a parameter is varied through some
critical value. In a number of papers (e.g., [2], [3], [4], [15], [16]), voltage collapse is viewed
as an instability which coincides with the disappearance of the steady state operating point
as a system parameter, such as a reactive power demand, is quasistatically varied. In the
language of bifurcation theory, these papers link voltage collapse to a fold or saddle node
bifurcation of the nominal equilibrium point.

Dobson and Chiang [3] postulated a mechanism for voltage collapse tied to the saddle
node bifurcation, stressing the role of the center manifold of the system model at the bi-
furcation. In the same paper, they introduced a simple example power system containing
a generator, an infinite bus, and a nonlinear load. The saddle node bifurcation mechanism
for voltage collapse [3] was investigated for this example in subsequent papers, including [4]
and [9]. On the other hand, instead of attributing voltage collapse to a single bifurcation
mechanism, [10] refined the term of voltage collapse to distinguish transitions resulting from
finite-sized disturbances in state space from bifurcations in parameter space. Thus in the
terminology of [10], the saddle node bifurcation mechanism of voltage collapse is classified
as a paramelric voltage collapse.

An essential distinction exists between the mathematical formulation of voltage collapse
problems and transient stability problems. In studying transient stability, one often is in-
terested in whether or not a given power system can maintain synchronism (stability) after
being subjected to a physical disturbance of moderate or large proportions. The faulted
power system in such a case has been perturbed in a severe way from steady-state, and one

studies whether the post-fault system returns to the initial steady-state (regains synchro-



nism). In the parametric voltage collapse scenario, however, the disturbance may be viewed
as a slow change in a system parameter, such as a power demand. Thus, the disturbance
does not necessarily perturb the system away from steady-state. The steady-state varies
continuously with the changing system parameter, until it disappears at a saddle node bifur-
cation point. It is therefore not surprising that the saddle node bifurcation has been studied
as a possible route to voltage collapse.

However, the presence of a saddle node bifurcation in a dynamical system does not
preclude the presence of other, possibly more complex, bifurcations. In fact, the recent papers
[5], [6], [8], [9] have shown that other bifurcations do occur in the example power system
model studied in [3]. The bifurcations found in this model include Hopf bifurcations from
the nominal equilibrium, a cyclic fold bifurcation, period doubling bifurcations, as well as a
period doubling cascade leading to chaotic behavior. (See, e.g., [19] and references therein
for a general discussion of these phenomena.) Other papers have also studied bifurcations
in voltage dynamics in other power system models [25], [26], [10].

The fact has therefore now been established that a variety of bifurcations, static and
dynamic, occur in power system models exhibiting voltage collapse. The purpose of this
paper, which continues the work reported in [6], [7], is to determine the implications of
these bifurcations for the voltage collapse phenomenon and to address the issue of voltage
collapse control. In our paper [6], a link was suggested between the voltage collapse phe-
nomenon and the occurrence of dynamic bifurcations: specifically, we showed the possible
role of an oscillatory transient in voltage collapse. In the present paper, we continue the
study of dynamic bifurcations and voltage collapse, showing the possible role of catastrophic
bifurcations, including crises of strange attractors [20], [21] in voltage collapse.

Upon revealing the various bifurcations (static and dynamical, local and global) and
the associated rich dynamics, one would naturally ask the question: what can we do about
voltage collapse? More specifically, what is the possible role of feedback control in such
situation? In the present paper, we report some positive results in this direction. In previous

work [11], [12], [14] problems of bifurcation control have been addressed. This involves design



EO“’C) cC_— LOAD QD B Lbm

Figure 1: Power system model

of feedback controls to modify the stability and amplitude of bifurcated solutions in general
nonlinear control systems. The latter work has been applied to control problems in high
angle of attack flight, stall of jet engines, and oscillatory behavior of tethered satellites. The
latter part of the present paper shows the utility of the bifurcation control approach in the
control of voltage collapse. The resulting controllers can be linear, nonlinear, or composite
linear-plus-nonlinear depending on the desired objective. It is demonstrated that voltage
collapse can be postponed through modifying the bifurcations and suppressing the chaos
and crises.

The remainder of the paper proceeds as follows. In the next section, we present the power
system model which is used in the ensuing analysis. In Section 3, bifurcations occurring in
this model, including the emergence of two strange attractors and their disappearance in
boundary crises (or chaotic blue sky catastrophes), are reviewed and studied. The implica-
tions of these bifurcations for the voltage collapse phenomenon are discussed. In Section 4,
the issue of voltage collapse control is investigated using the bifurcation control approach.

Conclusions are collected in Section 5.

II. The Model

The power system under consideration in this paper, previously considered by Dobson

and Chiang (3], is depicted in Figure 1. The three nodes of the equivalent circuit in Fig. 1 are
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an infinite busbar, a generator node represented by a constant voltage behind a reactance,
and a load busbar. It follows from [3] that the system dynamics is governed by the following
four differential equations (P(é,,,6,V), Q(6.,,6,V) are specified below):

b = w (1)
Mo = —dpw+ Pp+ EnVYpsin(6 — 6, — 01)

+E2Y,, sinb, (2)

Kpb = —KpaV2— KoV 4 Q(61,6,V) — Qo — Q1 (3)

TquK,,,,V = KpKp2V: + (KpwKgw — KpwKp)V
Ky (P(61,8,V) — Py — P,)
K @Em 6,V) ~ Qo — Q1) (4
All symbols and parameters are the same as in [3]. The load includes a constant PQ load in
parallel with an induction motor. The real and reactive powers supplied to the load by the
network are
P(6,,,6,V) = —Eo'VYy'sin(§+0y) — E, VY, sin(6 — 6, + 0,)
+(Yy sin 0 + Y,, sin 6,,) V2 (5)
Q(6m,6,V) = Ei'VYy cos(§+60y) + E, VY, cos(§ — 6, + 0,,)
~(Yy cos 0y + Yy, cos 8,,)V? (6)

ITI. System Dynamics and Voltage Collapse

II1.1 Bifurcations Analysis

In this subsection, the result of a bifurcation analysis of the model (1)-(6) is presented (See
also [6], [7], [9]). The continuation/bifurcation software package AUTO [24] is employed to
assist this analysis. A representative bifurcation diagram for the system (1)-(6) appears in
Fig. 2. This diagram relates the voltage magnitude V to the bifurcation parameter Q, (the

reactive power demand).
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Figure 2: Bifurcation diagram of open loop system

To simplify the discussion, note first that in Fig. 2 six bifurcations are depicted. These
are labeled HB@), CFB®), PDB@®), PDB®, HB®), and SNB@. For simplicity, we may also
refer to these bifurcations by their numbers (I)-®), respectively. The acronyms have the
following meanings:

o HB: Hopf bifurcation

o SNB: Saddle node bifurcation

o CFB: Cyclic fold bifurcation

e PDB: Period doubling bifurcation
For ease of reference, we denote the values of the parameter (); at which the bifurcations
(D-® occur by Q1®—Ql© , respectively. In Fig. 2, a solid curve represents a locus of locally
asymptotically stable equilibrium points, while a dashed curve corresponds to an unstable
branch. For @)1 < QICD = 10.9461..., a stable equilibrium point exists with voltage mag-
nitude in the neighborhood of 1.2 (upper left in Fig. 2.). As ) is increased, an unstable
(“subcritical” in the sense of increasing Q1) Hopf bifurcation is encountered at the point

labeled HBQ) in Fig. 2. As (J; is increased further, the stationary point regains stability at



Q1 = 1© during a stable (“supercritical” in the sense of decreasing ();) Hopf bifurcation.
This stable equilibrium merges with another, unstable stationary branch and disappears in
the saddle node bifurcation labeled SNB®) in Fig. 2. The numerical computations show that
the family of periodic solutions emerging from the Hopf bifurcation at () and the family of
periodic solutions emerging from the Hopf bifurcation at(®) are one and the same.

Besides the bifurcations of the nominal equilibrium described in the foregoing, the peri-
odic solutions born during the Hopf bifurcations at () and (§) themselves undergo (secondary)
bifurcations. In Fig. 2, the circles denote the minimum value of the variable V of periodic
solutions. Open circles indicate unstable periodic solutions; filled circles denote stable orbits.
Because HBQ) is a subcritical bifurcation, the periodic solution branch emanating from this
point consists of unstable limit cycles. At @), = Q1®, the unstable periodic solution branch
undergoes a cyclic fold bifurcation CFB(@). Since this bifurcation is a saddle-node bifurcation
of limit cycles, we should expect the branch to turn around and give rise to a segment of
locally asymptotically stable periodic solutions for some range of ); > Q1® .

The stable periodic orbit born at CFB(@) loses stability at the period doubling bifurcation
point PDB@@). During this bifurcation, a new periodic orbit appears which initially coincides
with the original orbit, except that it is of exactly twice the period. The original orbit
necessarily loses stability during this bifurcation. The branch of period-doubled orbits is not
shown in Fig. 2, nor are any further bifurcating solutions from that branch. However, note
that an analogous period doubling bifurcation sequence (but in reverse order, w.r.t. @)
1s found to occur from the periodic obits emanating from HB@); this bifurcation is labeled
PDB@®) in Fig. 2.

Simulations of the system in the parameter range corresponding to the “Hopf window”
indicate the presence of additional bifurcations of periodic orbits, and of aperiodic (and ap-
parently chaotic) orbits. This is expected. There are further period doublings (not shown)
just beyond the period doublings PDB@) and PDB®@) indicated in Fig 2. This indicates
there are two period doubling cascades, which ultimately result in chaotic orbits. Indeed,

one surmises there are an infinite number of periodic branches, of higher and higher period,



paralleling the single branch shown, extending from PDB@) to PDB@. These consist en-
tirely of unstable orbits, save for the regions near PDB@) and @ where the period-doubling
sequences take place. The post-period doubling chaos is stable—there are two strange at-
tractors for a certain range of the parameter values in the Hopf window. One is near HBQ
in the approximate range Q; = 10.89 — 10.894, the other is near HB(®) in the approximate
range (); = 11.377 — 11.3825. Note that, in [8], Liapunov exponents and power spectra are
calculated as evidence for the presence of strange attractors. More interestingly, the strange
attractor near the HBQ) disappears suddenly at Q7 = 10.89434... and the strange attractor
near the HB(®) disappears at approximately QI = 11.376. In chaos literature, the sudden
death of these strange attractors is known as a boundary crisis.

The term crisis was introduced in [20], [21] to describe sudden qualitative changes in
strange attractors with quasistatic changes in parameters. A crisis involving the destruction
of a strange attractor through collision with a saddle point or a saddle periodic orbit, (or,
equivalently, the stable manifold of either) is known as a boundary crisis. In a boundary crisis,
a strange attractor exists for parameter values up to the critical value, at which the collision
takes place. Subsequent to this value, the strange attractor no longer exists, but it leaves
its signature: transient chaos. The transient motion appears chaotic for an arbitrarily long
time (depending on the initial condition), and then suddenly experiences a sharp excursion
to another, possibly distant attractor (which may be at infinity). Here we surmise for the
strange attractor nearer to HB(D) it is the unstable limit cycle born through the subcritical
Hopf bifurcation that collides with the strange attractor. For the strange attractor near

HB®), it is the low voltage saddle point that collides with the strange attractor.

III.2 Voltage Collapse

Analysis of the bifurcation scenario discussed in the foregoing section is important for or-
ganizing our understanding of the dynamics of voltage collapse for the model power system
under consideration. To consider the implications of the bifurcations studied above in terms

of the system dynamics, assume that the parameter @, is quasistatically increased. For the



‘usual’ values of the parameter @1, the system operates at the stable equilibrium, At Q1®,
we cross the cyclic fold bifurcation point. At this point, a stable/unstable limit cycle pair
is born and coexists with the stable equilibrium point. The sets of initial conditions which
asymptotically approach each of the two attractors is separated by the stable manifold of the
saddle limit cycle born during CFB@®). As @; varies from Q1® to Ql@, this periodic solution
also loses stability, but in doing so gives birth to a new stable (period doubled) periodic
orbit. This scenario repeats itself in a cascading fashion, each time making available a stable
periodic orbit, until a strange attractor emerges. This strange attractor then disappears at
Q3. Notice that all these bifurcations take place prior to the HB®. Thus, in the interval of
Ql® — @3, there exists a partial hysteresis loop, i.e., in addition to the stable equilibrium,
there is another coexisting attractor. This means voltage collapse can occur through two
different routes in this system.

In the interval of Q1® — @7, if the system is perturbed away from the stable equilibrium,
the system may settle down to the coexisting attractor. The coexisting attractor, depending
on the parameter value, is either a stable limit cycle or a strange attractor. Then as Q4
is quasistatically increased, a boundary crisis of the strange attractor is encountered at Q7,
at which point voltage collapse occurs. On the other hand, even after the disappearance of
the strange attractor, the nominal equilibrium of the system is still stable until the Hopf
bifurcation HB(J). Hence another possible mechanism of voltage collapse is linked to the
subcritical Hopf bifurcation as suggested in [6]. As ()1 passes the Hopf bifurcation point, the
excursion of voltage exhibits increasing oscillations and then a sharp decrease. Note that
subcritical Hopf bifurcation is a form of catastrophic bifurcation. Hence in this example,
voltage collapse is triggered either by a boundary crisis or by a catastrophic Hopf bifurcation.

We remark that for parameter values very near the saddle node bifurcation there exists a
range of stable operating conditions for the system. Depending on the parameter value, this
stable operating condition can be a stable equilibrium, a stable periodic orbit, or a strange
attractor. However, it is also true that the system would in all likelihood not be operating

at these conditions, since voltage collapse would probably have already occurred as a result



of the mechanisms discussed above.

ITI1.3 Related Voltage Collapse Phenomena

In [7], we studied system (1)-(6) with some modifications, mainly through the deletion of
the capacitor from the system. It is found that in the modified system, the voltage collapse
is triggered by the boundary crisis of a strange attractor. In the modified system, there
is only one Hopf bifurcation, a subcritical bifurcation analogous to HB@. The unstable
limit cycle born during this bifurcation also undergoes a cyclic fold bifurcation, giving a
stable limit cycle which persists beyond the Hopf bifurcation point, giving a true hysteresis
loop. Eventually, the limit cycle proceeds through a period doubling cascade, giving rise to
a strange attractor, which ultimately is destroyed in a boundary crisis.

In [10], it was shown that in a rudimentary but representative power system model,
a (parametric) voltage collapse occurs following either a subcritical Hopf bifurcation or a
saddle node bifurcation as control gain and load are varied as parameters. The model
is essentially two dimensional, therefore there is no strange attractor. Also the model in
[10] is subject to algebraic system constraints in the form of load flow equations and thus
is a differential-algebraic system. Despite the existence of singularities in the state space
due to the constraints, the occurrence of the parametric voltage collapse is still triggered
by catastrophic bifurcations, namely subcritical Hopf and saddle node bifurcations. In the
classification of voltage collapse phenomena in [10], another type of voltage collapse is the so-
called dynamic (state space) voltage collapse. As discussed in the introduction of this paper,
dynamic voltage collapse occurs when the post fault state lies outside the transient stability
region and so the quantification of this nonlinear stability characteristic requires computing
the basins of attraction of the stable equilibria. In this work, we focus on the parametric
aspect of the voltage collapse phenomena. Of course, the understanding of voltage dynamics
will not be complete without performing analysis in the entire state space and the entire
parameter space (or a relevant region), which is beyond the scope of this paper.

Generally speaking voltage collapse may be linked with the sudden loss of stable bounded
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solutions of a power system model in the vicinity of a pre-collapse operating condition. In
the next section, we consider using feedback control to postpone the occurrence of voltage

collapse or to improve the operability in the presence of a rich structure of bifurcations.

IV. Bifurcation Control of Voltage Collapse

In this section, we consider local control of voltage collapse at its inception. That is, we design
controllers which can delay the occurrence of voltage collapse, as opposed to controllers
for recovery from voltage collapse. The controllers we seek do not involve forced system
operation in parameter ranges where voltage collapse does not occur, but are designed to
work in the parameter ranges of difficulty. In order to control voltage collapse in power system
models such as the one studied in the preceding section, one has to design control laws to deal
with bifurcations, chaos and crises. In our work [13], [14], we have shown that control laws
which significantly reduce the amplitude of a bifurcated solution, or significantly enhance
its stability over a nontrivial parameter range, are viable tools in the taming of chaos. Here
similar techniques will be employed to control the bifurcations, chaos, and crises. In doing
so we expect to increase the stability margin of the system in parameter space. In other
words, voltage collapse will be ‘postponed’ so that stable operation of the system will be
allowed beyond the point of impending collapse in the open loop system. In particular, the
control laws are designed to increase two types of stability margin: a static stability margin
and a dynamic stability margin. The static stability margin is measured in parameter space
from the point where the nominal equilibrium loses its stability. The dynamic stability
margin is measured in parameter space from the point where voltage collapse takes place.
As discussed in the previous section, these two stability margins are not necessarily the
same. In the system model under study, the static stability margin is measured from the
Hopf bifurcation point ¢},~; the dynamic stability, however, is measured either from Q1® or
the crisis point ()7 depending on the route to collapse.

In this particular model, the stable equilibrium point loses its stability through the sub-

11



critical Hopf bifurcation HBJ). The subcriticality of the Hopf bifurcation has several negative
effects on the system: the system may exhibit a jump from the stable equilibrium to the
coexisting attractor under perturbation, and the boundary crisis is also a direct consequence
of the subcriticality of the Hopf bifurcation. Moreover, the region of attraction of the stable
equilibrium is bounded by the stable manifold of the unstable limit cycle, and so this region
shrinks as criticality is approached. These factors motivate the design of feedback control
laws directed at the Hopf bifurcation which reduce the negative effects and increase the sta-
bility margin of the system in parameter space. As shown in [13], [14], such control action
can also suppress the chaos and crises by ‘squeezing’ the period doubling cascades. Next
we present a brief summary of the bifurcation control approach in the context of Hopf [11]
and period doubling [14] bifurcation control and then proceed to use these techniques in the

voltage collapse control problem.

IV.1 Nonlinear Bifurcation Control

Consider a one-parameter family of nonlinear autonomous control systems

z :fu(:c,u). (7)

where z € IR™ is the state vector, 4 € IR is the system parameter, f, is a smooth map from
IR™ x IR to IR™, and wu is a scalar input. Local bifurcation control deals with the design of
smooth control laws © = u(z) which stabilize a bifurcation occurring in the one-parameter
family of systems (7). These control laws exist generically, even if the critical eigenvalues of
the linearized system at the equilibrium of interest are uncontrollable. The feedback control
designs of [11] transform a subcritical (unstable) Hopf bifurcation to a supercritical and
hence stable, bifurcation.

The design procedure aims to ensure the asymptotic stability of the Hopf bifurcation
point as well as orbital asymptotic stability of the periodic solutions emerging from the
bifurcation point for a range of parameter values. Suppose for u = 0, z.,, is the nominal

equilibrium of (7) with ¢ = p. and the following hypothesis holds: The Jacobian matrix
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D, fyu.(zepu.,0) has a simple pair of nonzero pure imaginary eigenvalues A;(p.) = jw. and

A2(pe) = —jw, with w, # 0 and the transversality condition

ORe[A(c)] 40 (8)

Op
is satisfied, and all the remaining eigenvalues are in the open left half complex plane.
The Hopf Bifurcation Theorem [17], [18] asserts the existence of a one-parameter family
Pe,0 < € < €o of nonconstant periodic solutions of system (7) emerging from z = =z,  at
the parameter value yu. for ¢, sufficiently small. The periodic solution p(t) occurring at
parameter values p(€) have period near 27w, 1. Exactly one of the characteristic exponents

of p. governs the asymptotic stability and is given by a real, smooth and even function

Be) = Pre® + Bac* + - --. (9)

That is, p. is orbitally asymptotically stable if 3(¢) < 0 but is unstable if 3(¢) > 0. Gener-
ically the local stability of the bifurcated periodic solutions p, is typically decided by the
sign of the coeflicient 3;. Note the sign of §, also determines the stability of the critical
equilibrium point z., . Therefore, a feedback control law v = u(z) which renders 8; < 0
will stabilize both the critical equilibrium point z. ,_ and the bifurcated periodic solutions.
An algorithm for computing the “stability coefficient” 3, can be found in, e.g., [11].

It is well known that only the quadratic and cubic terms occurring in a nonlinear system
undergoing a Hopf bifurcation influence the value of ;. Thus only the linear, quadratic, and
cubic terms in an applied control u have potential for influencing F;. If the critical mode
is controllable, a linear stabilizing feedback exists. Interestingly it is shown in [11] that a
cubic stabilization feedback also exists in such case. On the other hand, if the critical mode
is uncontrollable, the system may still be stabilizable by a quadratic feedback control law.
See [11] for details.

Now suppose the periodic solution emerging from the Hopf bifurcation point undergoes
a cascade of period doubling bifurcations to chaos. As shown in [14], nonlinear feedback

control laws can be designed which influence the degree of stability and amplitude of a given
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period-doubled orbit. If the amplitude of the periodic orbit can be constrained sufficiently,

then the cascade of period doublings to chaos can be eliminated.

IV.2 Voltage Collapse Control

In this subsection, we carry out the design of controllers for voltage collapse control in the
model (1)-(4). Consider system (1)-(4) subject to control u by adding a control function u
to the end of the right hand side of Eq. (4) to give

b = w (10)
Mo = —dpw+ P+ EnVYysin(6 — 6, — 0)

+E2Y,, sin O, (11)

Kpbd = —KpaV:P=KpV +Q(65,6,V) — Qo — Q1 (12)

TKpwKpV = KpuKp2V?:+ (KpwKg — KpuwKpo)V
+ Ky (P(8,8,V) = Py — P,)
~Kpu(Q(6, 6, V) — Qo — Q1) + u(w) (13)

where P(6,,,6,V), Q(6,,6,V) are given by (5) and (6).
Note that the control is implemented by injecting a speed signal into the load node.
eedback signals which are some dynamic function of the speed w are injected into the
excitation system, a scheme that is widely used and is known as a power system stabilizer
(PSS). The speed signal needs no washout since it does not affect the system equilibrium
structure at steady state. Note also that such a controller does not affect the position of the
saddle node bifurcation SNB®.

One control law design transforms a subcritical Hopf bifurcation into a supercritical
bifurcation and ensures a sufficient degree of stability of the bifurcated periodic solutions so
that chaos and crises are eliminated. These control laws allow stable operation very close
to the point of impending collapse (saddle node bifurcation). Because the critical mode in

this case is controllable, a purely cubic control is designed to handle all these tasks. Another
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control design involves changing the critical parameter value at which the Hopf bifurcations
occur by a linear feedback control. Because of the special structure of the system under
study, this linear feedback law eliminates the Hopf bifurcations and the resulting chaos and
crises. Thus, the linearly controlled system can operate at a stable equilibrium up to the

saddle node bifurcation.

IV.2.1 Nonlinear Bifurcation Control

To render the Hopf bifurcation HBQ supercritical, we employ a cubic feedback with mea-
surement of w. The closed loop is Eq. (10)-(13) and u is of the form

u = knw® (14)

where k,, > 0 is the (scalar) cubic feedback gain.

Values of k, which give a supercritical HB are determined by computing the stability
coefficient B, of the closed loop system. Since transforming HB(Q) to a supercritical Hopf
bifurcation is strictly a local result, computational analysis techniques must be used assess
the effects of the nonlinear control on the global dynamical behavior of the closed-loop
system. As shown in [13], [14], larger values of the gain k, not only enhance the stability of
the bifurcation but also result in a reduced amplitude of the stable limit cycle over a range of
parameter values. Recalling the discussion in subsection IV.1, if the amplitude of the periodic
orbit can be constrained sufficiently, then the cascade of period doublings to chaos can be
eliminated. Fig. 3 shows a bifurcation diagram for the closed loop system with control gain
k, = 0.5. In the closed-loop system, HB() is rendered supercritical. Moreover, the period
doubling bifurcations, including the two period doubling cascades and the resulting two
strange attractors and their crises are all eliminated. The benefits of changing HBQ to a
supercritical bifurcation can be seen in Fig. 5 where the dynamic response of the system to
increasing ()4 to a value beyond HB(D) is shown. Transient trajectory (a) shows the increasing
oscillations and ultimate voltage collapse without control. With nonlinear control and same
initial conditions, however, we see that voltage settles to a small amplitude oscillation in

trajectory (b) rather than collapsing.
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Figure 3: Bifurcation diagram of closed loop system with cubic control (&, = 0.5)

Evidently such a control has a very favorable effect on the voltage collapse dynamics.
By transforming the Hopf bifurcation HB(Q) to a supercritical bifurcation, the multistability
near the HB(Q) is eliminated and hence the occurrence of jump behavior of the system
operating point under perturbation is prevented. More significantly, the system can operate
at a small amplitude limit cycle as @; crosses the previous collapse point QICD and this
transition can be done in a continuous fashion. Also because of the supercriticality of the
Hopf bifurcation in the closed loop system, the region of attraction of the nominal stable
equilibrium is increased. As ; increases further, the nominal equilibrium regains stability
at ¢ = Ql@ through the supercritical Hopf bifurcation HB®). The operation of the system
takes yet another continuous transition from the small periodic orbit to the stable equilibrium
as (J1 crosses Ql@ . The system can operate at the stable equilibrium until the saddle node
bifurcation point SNB@®) is encountered. Then a sharp voltage collapse will take place.

Note that by introducing a new type operating condition (a stable small amplitude limit
cycle), though the static stability margin of the system remains the same as in the open

loop case, the dynamic stability margin is increased up to the saddle node bifurcation point.
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Thus, in the closed loop system, the fatal voltage collapse then occurs at the saddle node

bifurcation point as postulated in [3].

IV.2.2 Linear Bifurcation Control

Since the critical mode is controllable, a linear stabilizing control exists for the stabilization
of the Hopf bifurcation point. However, in the context of voltage collapse control, one has to
consider the effect of such control over a range of parameters. The effect may be difficult to
determine since linear feedback will affect all the eigenvalues and eigenvectors. In particular,
a high gain linear feedback may well destabilize modes that are open-loop stable. Also it
should not be surprising that in some situations a linear feedback which locally stabilizes
an equilibrium may in result in globally unbounded behavior [12]. For small feedback gains,
however, one can expect that the bifurcation will reappear at a different parameter value.

Fortunately, in this particular example, linear feedback with measurement of w in the form
u = kiw (15)

can impart desirable effects on the system. In (15), k; > 0 is the (scalar) linear feedback
gain.

Since system (10)-(13) is a parametrized system, it is very difficult to study the effect
of the linear control (15) over a range of parameter values by standard pole placement
techniques directed at a particular equilibrium for a particular parameter value. However,
if we consider the control gain k; as a second parameter to the system in addition to the
parameter )y, the effect of linear control can be tracked with two-parameter continuations
of the Hopf bifurcation points (HB(@ and HB®)). Recall that the control design does not
affect the position of SNB®).

Fig. 4a shows a two-parameter (k; and @) curve of the Hopf bifurcation points () and
®. It can be seen that as k; increases from 0, HBQ) and HB@) move closer to each other with
HB(Q@) having a much faster pace. As k; increases further, HB() merges with HB®) leading
to their disappearance. Figs. 4b, 4c and 4d show the Hopf window shrinks and ceases to

exist. The benefits of eliminating the Hopf window are seen in trajectory (c) of Fig. 5, where
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Figure 4: With linear bifurcation control: (a) two-parameter curves of the Hopf bifurcation

points; bifurcation diagrams with (b) & = 0 (no control), (c) k; = 0.01, (d) k = 0.025.

increasing ¢); to a point which is beyond the location of the original HB(Q) results in the
system settling down to the original, high voltage equilibrium branch. The initial conditions
of trajectory (c) coincide with those of (a) and (b).

With linear bifurcation control (15), both the static and dynamic stability margins can
be increased. When the Hopf bifurcations cease to exist (approximately for k; > 0.0245), the
static and dynamic stability margins are maximized in that the system can operate at a stable
nominal equilibrium up to the saddle node bifurcation. Also, all the dynamic bifurcations,
including Hopf bifurcations, period doubling bifurcations, period doubling cascade to chaos

and crises, are extinguished.
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Figure 5: Dynamic responses of the system at ¢); = 11.35: a. without control; b. with

nonlinear control k, = 0.5; c. with linear control k; = 0.025.

IV.2.3 Composite Bifurcation Control

The two types of control law given above, namely the cubic control (14) and the linear control
(15), can be combined to result in a composite control law. The closed loop is Eq. (10)-(13)
and u is of the form

u = kw + k,w® (16)

where k; > 0 and k, > 0 are the (scalar) linear and nonlinear feedback gains, respectively.
With this composite control, the designer has the freedom to choose proper static and
dynamic stability margins. Besides the flexibility in terms of achievable behavior of the

system under such control (over a range of parameter values), the nonlinear term in the
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control may be used to improve the transient response.

V. Conclusions

Nonlinear phenomena have been studied for a power system dynamic model which has previ-
ously been used to illustrate voltage collapse. It was found that for this model, the nominal
operating point undergoes dynamic bifurcations prior to the static bifurcation to which volt-
age collapse has been attributed. These dynamic features, including chaos and crises, result
in a reduced stability margin in parameter space. Moreover, the issue of voltage collapse
control is addressed. It is demonstrated that, via the bifurcation approach, both the static
and dynamic stability margins can be increased and the voltage collapse can be postponed
by feedback control of the nonlinear phenomena. The resulting controllers are not explicit
functions of the bifurcation parameter, and are effective over a range of parameter values.
Although the relative importance of the effects of these nonlinear phenomena in general
power systems under stressed conditions is still a topic of continuing research, the bifurca-

tion control approach appears to be a viable technique for control of these systems.
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Figure Captions
Fig. 1. Power system model
Fig. 2. Bifurcation diagram of open loop system
Fig. 3. Bifurcation diagram of closed loop system with cubic control (k, = 0.5)

Fig. 4. With linear bifurcation control: (a) two-parameter curves of the Hopf bifurcation

points; bifurcation diagrams with (b) k; = 0 (no control), (c) k; = 0.01, (d) k; = 0.025

Fig. 5. Dynamic responses of the system at @; = 11.35: a. without control; b. with

nonlinear control k, = 0.5; ¢. with linear control k; = 0.025
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