SRC TR 85-36

Adapting The Spreadsheet To
Engineering Problems

by

M.E. Palmer, M.G. Pecht
and J.V. Horan

TR-85-26

Vol. 4 No 2
Sept. 1995

Adapting the
Spreadsheet to
Engineering
Problems

Lotus 1-2-3 can do useful work in numerical analysis.
Experience with programming in a spreadsheet’s language
will also show what it lacks, and where—hopefully—
software developers will make improvements.

M. E. Palmer 1l
Assistant Professor
M. G. Pecht
Assistant Professor
J. V. Horan
Research Assistant
Department of Mechanical
Engineering
University of Maryland
College Park, Marytand

he popularity of financial
spreadsheet programs for
microcomputers is well
known. The newer spread-
sheet packages take advantage of
many advances in microcomputer
technology, especially growth in
the processor’'s memory-address

Editor’'s Note: This article is adapted
from the authors’ presentation during the
1985 ASME International Computers in En-
gineering Conference in Boston this August.

space. They have extended abili-
ties to represent data graphically
and some have programming lan-
guages included.

Using operations common {0 nu-
merical analysis, spreadsheets can
also be used to solve engincering
problems. To demonstrate this,
Lotus 1-2-3 and a Compaq micro-
computer have been used as a mod-
el spreadsheet and hardware envi-
ronment,.

The Spreadsheet As
A Programming Environment
A spreadsheet is composed of a
two-dimensional matrix of entries.
called cells, which can contain in-
formation of three types: text,
numbers, or formulas.
can be thought of as a formula with
a constant value. The formula in a
cell can contain references to other
cells or even to itself. The value of

Numbers

the formula is inferred from these
references. Text either has a zero
value or an error value. Cells are
specified by giving their coordi-
nates in the spreadshect matrix,
generally using sequential letters
for the horizontal coordinate and
numbers for the vertical coordi-
nate. The cell B3 thus represents
the second column and the third
row of the matrix. The formulas in
spreadsheet cells are simple alge-
braic equations, with cell coordi-
nates used as algebraic variables.

The cell references are of two
types, relative and absolute. An
absolute reference is to a specific
cell; a relative reference is a loca-
tion relative to the location of the
formula. These modes of reference
can be mixed in the horizontal or
vertical coordinates. The prefix $ is
used to denote an absolute refer-
ence, and the absence of a prefix

Computers in Mechanical Engineering/September 1985/49

e A

cell Bi contents —
{calcy/ XI(A1<A2)~/X
cell B2 contents — '/ XG Bl~

assuming that cell A1 contains the
iterate crror and cell A2 contains
the stopping criteria.

A spreadshect can be used to
solve noalinear equations in more
than one variable. The fixed-point
and Newton algorithms are easily
extended to multiple dimensions
and the secant method can also be
extended. One such extension is
the Broyden algorithm. Except for
the fixed-point method, the multi-
ple dimension nonlincar methods
require at least the ability to per-
form matrix multiplications (Broy-
den’s algorithm) and usually matrix
inversion or an equivalent linear
equation solution. Most spread-
sheets do not have these capabili-
ties built in. The multidimensional
fixed-point algorithm is the most
suitable and easily programmed
method for use with spreadsheets,
but convergence is not always as-
sured, even for arbitrarily precise
initial estimates. When conver-
gence occurs it is generally slow
since the algorithm is only first-
order-convergent. Nonetheless, many
multidimensional rooting problems
encountered in engineering prac-
tice can be solved using a fixed-
point formulation.

-Solution of linear equations. The

ability to solve systems of linear
equations is the second fundamen-
tal operation in numerical analysis.
Two classes of techniques used to
solve linear equations are direct
and iterative. Examples of direct
methods are Gaussian and Gauss-
Jordan elimination and various re-
duction methods such as LU de-
composition and Crout’s method.
Iterative methods include Gauss-
Jacobi, Gauss-Siedel, and relax-
ation methods. '
Solving arbitrary linear systems
of equations by direct methods is
difficult because the spreadsheet
cannot efficiently index values into
defined ranges and the keyboard
macro language is primitive. The

authors have written a macro for
Gaussian elimination (without any
pivoting strategies) for a system of
three unknowns. The resulting
macro was approximately 100 com-
mands long and execution was very
slow. The construction of this algo-
rithm was closer to assembly lan-
guage programming than higher
level expression. For more realistic
algorithms with pivoting and arbi-
trary matrix sizes, the resulting
keyboard macro would be clumsy
and quite slow.

These observations also apply to
frequently used operations such as
matrix multiplication, evaluation of
determinants, matrix inversion and
transposition. Inner products and

Spreadsheets have all the ad-
vantages of other interpretive
environments, with the addi-
tional advantage of immediate
and global feedback. They
also have the disadvantages.

some matrix norms are easily eval-
uated using @SUM, @MAX, and
other built-in functions. Inclusion
of range (matrix) inversion, range
multiplication, and range transposi-
tion functions among the prede-
fined operations would expand the
power of commercially available
spreadsheets.

Iterative solutions of linear equa-
tions are much easier to program
with spreadsheets because these
are really just applications of the
multidimensional fixed-point algo-
rithm. The major difficulty remains
the determination of convergence,
and the need for vector multiplica-
tions (inner products) for some of
these algorithms tends to make the
cell or macro coding tedious unless
the matrix is sparse. Iterative algo-
rithms are mainly used to solve
linear equations resulting from the
discretization of elliptic field prob-
lems by finite difference or finite
clement tcchniques. Here, the

structure of the resulting equations
makes the cell coding quite simple.

The ability to solve tridiagonal
systems of linear equations {3] is
especially important because these
systems appear frequently when
solving second-order boundary val-
ue problems using finite difference
or finite element methods. If the
natural order of calculation is se-
lected, this algorithm can be pro-
grammed directly in the spread-
sheet cells. Natural order calcula-
tion means that cell values are
calculated each time they are men-
tioned in a cell formula, although
the results are the same as recur-
sive-descent calculations. Table |
Is a sample spreadsheet showing
.he formulas for solution of tridiag-
onal equations. The formulation is
simple and extremely quick, with
one hundred equations being
solved in just under four seconds.
The equations to be solved are (for

i=1,...N)
A,’X,'_l + B,‘,\'i + C,‘ X = Di

The unknown x ’s are calculated
using { in the following algorithm:

ay :DI/B‘ Bl = _Cl /B]
;=D — oy AMAB;i— + By
i=1,...N

Bi= —C/ABi-1 + B)

XN = QN

x=o; + Bix;y =N-1,...1

As can be seen in Table I, the
vectors A, B, C, D, «, B, and x are
assigned columns in the spread-
sheet, with the appropriate formu-
las entered for the a, B, and x
columns.

It should be noted that in Table I
all equations between the first and
last are relocated duplicates of
each other. Therefore once one of
the rows is entered the others can
be obtained by use of the range
copy facilities.

Interpolation and approximation.
Interpolation formulas are impor-
tant to construct if analytic compu-
tations are to be performed on tab-
ular data. In general, interpolation
formulas are generated by forcing
some interpolating function to ex-

Computers in Mechanical Engineering/September 1985/51

cell Bl contents —
{calc)/ XA 1<A2)~IX
cell B2 contents — ‘/XG B~

assuming that cell Al contains the
iterate crror and cell A2 contains
the stopping criteria.

A spreadshect can be used to
solve noalinear equations in more
than onc variable. The fixed-point
and Newton algorithms are easily
extended to multiple dimensions
and the secant method can also be
extended. One such extension is
the Broyden algorithm. Except for
the fixed-point method, the multi-
ple dimension nonlinear methods
require at least the ability to per-
form matrix multiplications (Broy-
den’s algorithm) and usually matrix
inversion or an cquivalent lirecr
equation solution. Most spread-
sheets do not have these capabili-
ties built in. The multidimensional
fixed-point algorithm is the most
suitable and easily programmed
method for use with spreadsheets,
but convergencce is not always as-
sured, eveun for arbitrarily precise
initial estimates. When conver-
gence occurs it is generally slow
since the algorithm is only first-
order-convergent. Nonetheless, many
multidimensional rooting problems
encountered in engineering prac-
tice can be solved using a fixed-
point formulation.

-Solution of lincar equations. The
ability to solve systems of linear
equations is the second fundamen-
tal operation in numerical analysis.
Two classes of techniques used to
solve linear equations are direct
and iterative. Examples of direct
methods are Gaussian and Gauss-
Jordan elimination and various re-
duction methods such as LU de-
composition and Crout’s method.
Iterative methods include Gauss-
Jacobi, Gauss-Siedel, and relax-
ation methods. '
Solving arbitrary linear systems
of equations by direct methods is
difficult because the spreadsheet
cannot efficiently index values-into
defined ranges and the keyboard

macro language is primitive. The

authors have written a macro for
Gaussian elimination (without any
pivoting strategies) for a system of
three unknowns. The resulting
macro was approximately 100 com-
mands long and execution was very
slow. The construction of this algo-
rithm was closer to assembly lan-
guage programming than higher
level expression. For more realistic
algorithms with pivoting and arbi-
trary matrix sizes, the resulting
keyboard macro would be clumsy
and quite slow.)

These observations also apply to
frequently used operations such as
matrix multiplication, evaluation of
determinants, matrix inversion and
transposition. Inner products and

33

eRe

PRI

Spreadsheets have all the ad-
vantages of other interpretive
environments, with the addi-
tional advantage of immediate
and global feedback. They
also have the disadvantages.

some matrix norms are easily eval-
uated using @SUM, @MAX, and
other built-in functions. Inclusion
of range (matrix) inversion, range
multiplication, and range transposi-
tion functions among the prede-
fined operations would expand the
power of commercially available
spreadsheets.

Iterative solutions of linear equa-
tions are much easier to program
with spreadsheets because these
are really just applications of the
multidimensional fixed-point algo-
rithm. The major difficulty remains
the determination of convergence,
and the need for vector multiplica-
tions (inner products) for some of
these algorithms tends to make the
cell or macro coding tedious unless
the matrix is sparse. lterative algo-
rithms are mainly used to solve
linear equations resulting from the
discretization of elliptic field prob-
lems by finite difference or finite
clement techniques. Here, the

structure of the resulting equations
makes the cell coding quite simple.

The ability to solve tridiagonal
systems of linear equations {3} is
especially important because these
systems appear frequently when
solving second-order boundary val-
ue problems using finite difference
or finite element methods. If the
natural order of calculation is se-
lected, this algorithm can be pro-
grammed directly in the spread-
sheet cells. Natural order calcula-
tion means that cell values are
calculated cach time they are men-
tioned in a cell formula, although
the results are the same as recur-
sive-descent calculations. Table |1
is a sample spreadsheet showing
the Jormulas for solution of tridiag-
onal equations. The formulation is
simple and extremely quick, with
one hundred equations being
solved in just under four seconds.
The equations to be solved are (for

i=1,...N)
A, Xi—1 + Bi-\—i + C,‘,\' = Di

The unknown x s are calculated
using { in the following algorithm:

ay = D] /Bl Bl = —Cl /Bl

Q;p = (Dl — O Ai)/(AiBi—l + Bl)
i=1,...N

Bi= —CHABi- + B)

XN = ap

.l’,':(l,'”*'Bi-rHl i:N—l,... l

As can be seen in Table I, the
vectors A, B, C, D, «, B, and x are
assigned columns in the spread-
sheet, with the appropriate formu-
las entered for the «, B, and x
columns.

It should be noted that in Table I
all equations between the first and
last’ are relocated duplicates of
each other. Therefore once one of
the rows is entered the others can
be obtained by use of the range
copy facilities.

Interpolation and approximaticn.
Interpolation formulas are -impor-
tant (o construct if analytic compu-
tations are to be performed on tab-
ular data. In general, interpolation
formulas are generated by forcing
some interpolating function to ex-

Computers in Mechanical Engineering/September 198561

actly represent a table of data. The
unknown coefficients in the inter-
polating function are then obtained
by solving the set of linecar (or
nonlinear) equations derived by
substitution of the tabular data. As
noted previously, the resulting
equations are difficult to solve with
a spreadsheet. Simple interpola-
tions such as polynomials and trig-
onometrics are therefore difficult to
evaluate. Alternative methods of
obtaining interpolating polynomi-
als, such as Newton’s divided dif-
ference interpolant, are simple to
implement on a spreadsheet, the
major difficulty being the calcula-
tion of the interpolating polynomial
values from the computed coeffi-
cients.

One form of interpolation which
can be implemented simply using a
spreadsheet is the cubic spline [3].
The linear equations generated
when determining a cubic spline
are tridiagonal and thus easily
solved using the formulation shown
in Table 1. The resulting interpolat-
ed values can then be obtained by
programming a cell with a cubic
evaluation routine and by using the
spreadsheet’s data sorting func-
tions. This routine provides a
smooth function to represent a rel-
atively sparse set of data. The
spreadsheet can then graph the
curve. Without this function, it
would only draw straight lines be-
tween data points.

One can easily approximate inte-
grals by programming cells of the
spreadsheet. The trapezoid rule is
particularly useful because the
weights of the quadrature formula
are all constant. More accurate for-
mulas, such as Simpson’s rule, are
still possible, but entering the vari-
able weights makes the resulting
programming somewhat tedious.
Gaussian quadrature formulas are
particularly simple to implement,
assuming that a table of weights
and abscissas is available to the
spreadsheet. Derivative approxi-
mation is a matter of direct calcula-
tion if finite difference formulas are
used. Otherwise, cubic splines can
be implemented and differentiated.

Least-squares fitting of data. A fre-
quently applied technique in nu-
merical analysis is the fitting of
experimental data using least
squares |4]. Linear least-squares
fitting is equivalent to solving an
overspecified set of linear equa-
tions and requires matrix transposi-
tion, muitiplication, and inversion.
The spreadsheet’s deficiencies in
these tasks have already been not-
ed. The fitting of a straight line
through data, which is probably the
most frequently used least-square
technique, or the fitting of any two-
parameter linear or linearizable
model, can be performed by direct-
ly programming the necessary lin-
ear algebra. The spreadsheet’s sta-
tistical functions for average and
standard deviation can also simpli-
fy the process. The formulas for
the coefficients in the model y = 4
+ b x, given a set of data (x;, y;),

A spreadsheet can be created
and executed much more
quickly than writing and run-
ning a program in, for in-
stance, Basic.

can be obtained from the equations

a ==
((Sx* +E()c)Z)E(y)—E(xy)E(x))/S)c2
b = (E(xy)-E()E(y))/Sx’

where E(.) is the expectation func-
tion (@2AVG in spreadsheet nota-
tion) and Sx is the standard devi-
ation (@STD) of the x range. If the
spreadsheet also includes a correla-
tion function, E(xy) can be ob-
tained from its use. Otherwise a
range containing the arrays x, y
must be programmed.

For the more general case of
linear least-squares fitting, the in-
clusion of a generalized matrix in-
verse along the lines of the APL
domino function [5] would be of
fundamental importance. This
function operates as matrix divi-
sion, giving a solution to simulta-
neous equations either in the classi-

cal sense or in a least-square sense
if the system is overdetermined.
Such a generalized function could
also be used as a range inversion
function.

For nonlinear, least-squares
problems, Gauss-Newton algo-
rithms could be employed if a
spreadsheet could invert matrices.
The matrix elements could be pro-
grammed into cells in a range, and

during every iteration the matrix

would be automatically updated.
Levenberg-Marquardt enhance-
ments and more complex algo-
rithms, such as Gauss-Newton or
Broyden’s methods, could be add-
ed fairly easily.

Initial value problems for ordinary
differential equations. Marching
problems, such as initial value
problems for ordinary differential
equations, can be programmed di-
rectly in a spreadsheet. Explicit
formulas, such as the Euler method
and the Runge-Kutta methods [3],
can be defined, and the formulas
copied. Implicit methods, such as
the improved Euler method [3], can
also be programmed directly, and
the entire spreadsheet recalculated
iteratively. However, this is very
inefficient, because while values
near the initial value are being iter-
ated, so are those near the desired
endpoint, using poor estimates for
previous steps. This inefficiency
can be overcome by using a key-
board macro, such as the one pre-
sented for nonlinear equations, to
complete the iteration on a given
time level and then to move the
cursor down to the next level and
repeat. Simultaneous differential
equations cause no difficulties. The
authors have found that if explicit
numerical methods are used, prob-
lems of this type can be solved
much faster using a spreadsheet
than using a conventional program-
ming language, such as interpreted
Basic.

Boundary value problems for ordi-
nary differential equations, There
are three major techniques used to
solve boundary value problems for

52/September 1985/Computers in Mechanical Engineering

1
2

3 i A(1) B(1) c(1) D()
4 1 0 2 -1 1

5 1+Ad -1 2 -1 0

6 1+A5 -1 2 -1 0

71+4A6 -1 2 -1 0

8 1+A7 -1 2 -1 0

9 1+A8 -1 2 -1 0

10 1+A9 -1 2 -1 0

11 1+A10 -1 2 -1 0

12 1+A11 -1 2 -1 0

13 1+A12 -1 2 0 0

Table |
Spreadsheet to Solve
Tridiagonal Equations

F G H
Alpha(1) Beta(1) X{(1)

+E4/C4 -D4/C4 +F4+G4+H5
(E5—F4+B5)/(B5+G4+C5) ~D5/(B5+Gi4+C5) +F5+G5+H6
(E6~F5+B6)/(B6+G5+C6) ~D6/(B6+G5+C8) +F6+GE+H7
(E7-F6+B7)/(B7+G6+C7) -D7/(B7+G6+C7) +F7+G7+H8
(E8—F7+B8)/(B8+G7+C8) ~D8/(B8+G7+C8) +F8+G8+H9
(E9—F8+B9)/(B9+G8+C9) ~D9/(B9+G8 +G9) +F9+G9+H10
(E10—F9+B10)/(B10+G9+C10) —D10/(B10+*G9+C10) +F10+G10+H11

(E11-F10+B11)/(B11+G10+C11) —D11/(B11+xG10+C11) +F11+G11xH12
(E12—-F11B12)/(B12+G11+C12) —D12/(B12xG11+C12) +F12+G12xH13
(E13—-F12+B13)/(B13+*G12+C13) —D13/(B13+G12+C13) +F13

ordinary differential equations. For
highly nonlinear boundary value
problems, the conventional method
is called the shooting technique [3].
Basically, this is equivalent to
transforming the boundary value
problem into an initial value prob-
lem with unknown initial values.
The proper initial values are then
determined to cause the solution to
yield the given boundary values.
This is a two-step process, the first
being the solution of an initial value
problem and the second being an
update of the unknown initial val-
ues. The first step is easily imple-
mented on a spreadsheet. The sec-
ond step is equivalent to solving a
set of nonlinear equations for the
unknown initial values. The diffi-
culties of using a spreadsheet in the
multivariate case have already
been noted: the single variable case
is casily solved using the secant
algorithm.

The other two methods of solv-
ing boundary value problems in-
volve discretization by either finite
difference or finite element meth-
ods. These are usually applied to
quasilinear problems and produce a
system of quasilinear equations
with a bandwidth equal to the order
of the differential equation plus
one. For second order ordinary dif-

ferential equations, the bandwidth
is three, so the resulting equations
are tridiagonal and solvable by
techniques already, with nonlinear-
ities handled by iteration.

Solution of partial differential equa-
tions. Two distinct classes of par-
tial differential equations will be
discussed here: field or elliptic
problems. and the class of parabol-
ic and hyperbolic equations with a
time-like independent variable.
Elliptic field problems in rectan-
gular or intersecting rectangular re-
gions are ideally suited for sotution
using a spreadsheet. In such a re-
gion, a rectangular, not necessarily
uniform, grid can be set up, and the
governing equation discretized us-
ing either finite difference or finite
element techniques. In such a dis-
cretization, the resulting equations
have a highly geometrical connec-
tivity. The finite difference and cer-
tain finite element solutions of La-
place’s equation on a uniform grid
yield the simple geometric state-
ment that each node value is the
average of its four closest neigh-
bors. In a spreadsheet, the program
becomes exactly that statement,
and only need be entered at one
node, then copied into all other
interior nodes, each node being a

cell. The appropriate constants or
equations are then developed and
entered into the cells that represent
the boundary nodes. The simplicity
of this representation has been not-
ed elsewhere [1]. The spreadsheet
is set on iteration and the calcula-
tions started. On nonuniform grids,
an array of horizontal and vertical
coordinate values can be kept in a
row and column outside the region
and these values used in the interi-
or equations. These interior equa-
tions are relative copies of one fun-
damental equation. The region ge-
ometry and boundary values are
easily changed. Relaxation can be
added to the discretized equations
to speed convergence. For three-
dimensional problems in blocked
regions, similar arguments can be
made. The major difference in im-
plementation is that the region
must be divided into planes, with
each plane representing a different
depth. The equations can then be
programmed in the same way as for
the two-dimensional case.

For regions that are more irregu-
lar than piecewise rectangular re-
gions the same difficulties are en-
countered whether one is using a
spreadsheet or conventional pro-
gramming. A rectangular mesh is
placed on as much of the region as

Computers in Mechanical Engineering/September 1985/53

possible and programming of this
subregion proceeds as described.
The complementary part of the re-
gion 1s then programmed essential-
ly point by point, with special
equations to represent the local
geometric nonuniformitics. This ar-
gument is more appropriate to fi-
nite difference than to finite cle-
ment techniques. It would be difh-
cult to assemble finite eclement
“stiffness™ equations in the con-
ventional manner by means of
spreadsheet programming.

Parabolic or hyperbolic differen-
tial equations can be solved by
using a combination of the tech-
niques used for elliptic equations
and those used for initial value
problems for ordinary differential
equations. This is quite possible if
the equations contain at most two
space-like independent variables,
the time-like variable being treated
like the depth in the elliptic three-
dimensional case. All of the neces-
sary techniques have bcen de-
scribed.

Miscellaneous methods and applica-
tions. Because it is important for
modeling, most spreadsheets han-
dle statistical analysis with ease.
However, the distribution func-
tions provided with spreadshects
are not complete for enginecring
applications. The addition of statis-
tical distributions such as Weibull,
Poisson, F, Chi-square and Stu-
dent-t would be helpful. In addi-
tion, probability functions associat-
ed with these distributions, as well
as the normal distribution, should
be included.

Most applications that use Mon-
te Carlo or probabilistic methods
[1}] can be programmed on a
spreadsheet but are slow to exe-
cute even in a compiled environ-
ment on mainframe computers be-
cause their ‘‘convergence’’ rate is
only on the order of the square root
of the number of random experi-
ments. In a spreadsheet, where all
computations are interpreted,
these methods tend to be intoler-
ably slow and reasonable solutions
are impractical.

' EﬁoXy'circuit board "+ -

o
|
|

Chip package

- Heat sirk :
" contactarea - .

Conductive rail

{a)
- Junction
. node R XU
- Package Dissipated .
o/ heat ¢

resistance

. Heat

sink Case node

Fig. 1
thermal mode!.

R
Rail
resistance

Heat transfer in printed circuit boards. (a) Top view of conduction-cooled PCB; (b)

An interesting teaching applica-
tion of spreadsheets [6] involves
the simulation of digital logic func-
tions found on common integrated
circuit chips.

Spreadsheet in Action:
Heat Transfer in
Printed Circuit Boards

In certain avionic applications,
the environment demands that
cooling of printed circuit boards
(PCBs) be accomplished through
thermal conduction. To provide the
necessary cooling capacity a sys-
tem of thermally conducting rails is
placed in contact with the chip car-

rying packages (DIPs or flatpacks)
to allow thermal diffusion to heat
sinks placed at the edges of the
board [5.8]. In order to evaluate the
reliability of the resulting PCB, one
must perform a thermal analysis.
This is typically done using a resist-
ance network model for the heat
transfer in the packages and along
the rails [7], with the networks hav-
ing on the order of two hundred to
one thousand nodes. The thermal
networks are then evaluated using
large computer codes, such as
Ansys or Sindas.

While developing a design sup-
port system for a chip package
placement algorithm {7], the au-

54/September 1985/Computers in Mechanical Engineering

Y

Vo U e

Table 1l

Spreadsheet for Thermal Analysis
Of Conduction Cooled PCBs

A B C D E F G H i J K L M N
1
2
3
4
5
6 Chip type --- enter chip numbers Chip type Dissipation Case conductance
7 watts watts/deg. C
8
9 0 5 2 3 0 0 o 0.05
10 0 1 2 3 0 1 0.0625 0.05
11 0 5 4 2 0 2 0.125 0.05
12 3 0.1825 0.05
13 4 0.25 0.05
14 Junction temperatures (deg. C) 5 0.5 0.05
15
16 Rail conductances
17 0 345 268 267 0 watts/deg. C
18 0 229 249 258 0
19 0 349 301 258 0 2 0.12
20 3 0.75
21 4 0.5
22 Case temperatures (deg. C)
23
24 Sink temperatures (deg. C)
25 205 245 243 231 204
26 204 216 224 221 203 Left 20
27 205 249 251 233 204 Right 20
28
29 Junction temperatures
30 Maximum 34.9

31 KBD MACRO\C

32 {calc} {calc} {calc}

33 {calcy/XI(J32<J33)"/XQ
34 /XG A33”

Previous 34.9

Error 0

Test 0.01

thors had to formulate and test
several production rules based
upon thermal considerations. Net-
works with approximately 20 to 50
nodes were tested. These small
scale models are easily implement-
ed with a spreadsheet program on a
microcomputer. The thermal re-
sistance network is simply a set of
linear equations with cells repre-
senting nodal temperatures. Con-
ductances and chip energy dissipa-
tions are found using lookup tables
in the spreadsheet, allowing these
parameters to be changed without
difficulty. Figure I shows a typical
test PCB along with a resistance

network. The junction tempera-

tures are the temperatures experi-
enced by the chips at the junction
with the chip carrier. Case tem-
peratures are those at the interface
between the chip package and the
underlying rail. The spreadsheet in
Table II corresponds to the net-
work in Figure 1. The user enters
the chip types into the appropriate
range in the spreadsheet matrix and
executes the keyboard macro \C
which controls the convergence of
Gauss-Siedel iterations used to
solve the equations. As output, the
maximum junction temperature is
given, as well as the entire tem-
perature field.

Most of the production rules

tested involved the switching of
chip packages on a board based
upon the chip energy dissipation
and the package location relative to
the heat sinks and the local pack-
age temperatures. The effects of
applying a rule could be immediate-
ly observed by performing cell
moves in the chip location matrix.
The capability of a set of produc-
tion rules to provide a reasonable
chip package distribution could be
tested interactively, with minimal
programming overhead. The imme-
diate, visual feedback from the
spreadsheet was found to be ex-
tremely helpful in the production
rule testing.

Computers in Mechanical Engineering/September 1985/55

—
Recommendations For
Future Spreadsheet Designs

For frequently encountered
small problems, such as fitting a
straight line through data or rooting
a nonlinear equation, the spread-
sheet provides an excellent alterna-
tive programming tool. A spread-
sheet can be created and executed
much more quickly than writing
and running a program in, for in-
stance, Basic. As the problem be-
comes larger, or requires using
multiple techniques as building
blocks for a solution, spreadsheets
and conventional programming re-
quire about the same amount of
development time. The spread-
sheet is more flexible in the ability
to independently test modules. For
two-dimensional field problems the
spreadsheet is a better environ-
ment due to the simplicity of enter-
ing the discretized formulas and the
explicit display of the underlying
geometric concepts.

Simple extensions to current
spreadsheets which would make
them more competitive with envi-
ronments such as Basic are:

® Improved indexing. Direct ac-
cess to the elements of a range or
matrix would allow keyboard mac-
ro programming of many matrix
operations. Such a feature was in-
cluded in Symphony as @INDEX.

® Expanded matrix operations.
Direct operations on ranges such as
transposition and matrix inversion
would remove many of the obsta-
cles encountered in the program-
ming of various numerical analysis
techniques. Functions for the eval-
uation of determinants and matrix
products would also be useful.

® Extension of functions., Al-
though spreadsheets can compute
most of the common functions en-
countered in engineering applica-
tions (i.e. sine, square root) they
cannot perform more specialized
functions as readily as Basic or
Fortran can. The user needs access
to the internal storage and details
of the spreadsheet. A programmer
could then write a subroutine or
function in Fortran, Pascal, or as-
sembly language that could be

called from within the spreadsheet.

® Improved iterative control.
Most nonlinear numerical analysis
involves iteration. For efficiency,
computations should only be per-
formed until the required precision
is obtained. With current spread-
sheets, iterations are performed a
predetermined number of times. In
addition, a programmer has very
little control over the order of com-
putations other than the use of a
keyboard macro. These macros
tend to be difficult to program,
compared to the entering of cell
formulas, and their execution is
slow. A linear linked list structure
could give the programmer control
over the order and convergence
determination of a set of spread-
sheet computations. The list could
contain cells or ranges to be itera-
tively computed, along with a con-
vergence criteria for each list en-
try. Thus a list such as

Al1/.001/absolute
C2 ... D4/.003/relative

could represent the instructions to
calculate the value in cell A1 until
the absolute change in value is less
than .001, then iteratively calculate
(using the spreadsheet default re-
calculation procedure) the values
in the range C2 ... D4 until the
maximum relative change in value
is less than .003. This structure
could be implemented as new
keyboard macro instructions or
through an external subroutine.

® Improved speed of computa-
tion. Probably the major advantage
of a conventional programming lan-
guage such as Basic is the ability to
test a program in the interpretive
mode and then compile the verified
code. An equivalent capability
could be provided for spreadsheets
in the form of a meta-compiler.
Thus a saved spreadsheet could be
meta-compiled by an external pro-
gram. The compilation would not
be an exact duplication of function
since this would imply that the pro-
grammer could change a formula in
acell entry, thus requiring the com-
piled version to interpret the new
formulas and defeating the purpose

of compiling. Instead, the compiled
version of a spreadsheet would
have predefined cells for input,
which the programmer could enter
values into, and predefined output
cells whose values would be dis-
played. These cells can be defined
by using only unprotected cells for
input and by using windowing to
define the output values. It is use-
ful to note that the speed of the
interpreted spreadsheet could be
improved by using incremental
compilation of the cell formulas.
The authors know of at least one
spreadsheet which uses this tech-
nique. Hardware enhancements
such as math coprocessors should
also be implemented.

Many interesting engineering
problems can be solved with
spreadsheet—particularly small
problems in numerical analysis.
For these types the spreadsheet
sometimes offers a quicker solution
than a conventional language can.
Spreadsheets’ range of engineering
applications can be greatly broad-
ened if they are improved in the
ways discussed here. |

Acknowledgments

The author’s research was partially sup-
ported by NSF grant CDR8500108 through
the University of Maryland Systems Re-
search Center.

References

1 Hayes, B., "*Computer Recreations,”
Scientific American, Vol. 249, No. 1, July
1983, pp. 22-36.

2 Ferziger, J. H., Numerical Methods for
Engineering Application, New York: John
Wiley & Sons, 1981.

3 Burden, R. L., Faires, J. D. and Reyn-
olds, A. C., Numerical Analysis, 2nd ed.
Boston: Prindle, Weber & Schmidt, 1981.

4 Miller, A. R., Basic Programs for Sci-
entists and Engineers, Berkeley: Sybex,
1981.

5 Jenkins, M.A., “"Domino: An APL
Primitive Function for Matrix Inversion—
Its Implementation and Applications,”” APL
Quote Quad, Vol. 3, No. 4, February 1972.

6 Cortesi, D. E., Dr. Dobb’s Journal,
No. 83, Sept. 1983, pp. 12-16.

7 Horan, J. V., “*Graphical Integration of
Thermal Analysis with Computer-Aided
PCB Design,”” M.S. Thesis, University of
Maryland, May 198S.

8 Steinberg, D. S., Cooling Techniques
for Electronic Equipment, New York: Wi-
ley-Interscience, 1980.

56/September 1985/Computers in Mechanical Engineering

