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ABSTRACT

Title of dissertation: COMPARING STRENGTH OF LOCALITY
OF REFERENCE: POPULARITY, TEMPORAL
CORRELATIONS, AND SOME FOLK THEOREMS
FOR THE MISS RATES AND OUTPUTS OF CACHES

Sarut Vanichpun, Doctor of Philosophy, 2005

Dissertation directed by:  Professor Armand M. Makowski
Department of Electrical and Computer Engineering and
Institute for Systems Research

The performance of demand-driven caching is known to depend on the locality of
reference exhibited by the stream of requests made to the cache. In spite of numerous
efforts, no consensus has been reached on how to formalize this notion, let alone on
how to compare streams of requests on the basis of their locality of reference. We take
on this issue with an eye towards validating operational expectations associated with the
notion of locality of reference. We focus on two “folk theorems,” that is, (i) The stronger
the locality of reference, the smaller the miss rate of the cache; and (ii) Good caching
is expected to produce an output stream of requests exhibiting less locality of reference
than the input stream of requests. These two folk theorems are explored in the context
of demand-driven caching for the two main contributors of locality of reference, namely
popularity and temporal correlations.

We first focus exclusively on popularity by considering the situation where there

are no temporal correlations in the stream of requests, as would be the case under the



Independent Reference Model (IRM). As we propose to measure strength of locality
of reference in a stream of requests through the skewness of its popularity distribution,
we introduce the notion of majorization as a means for capturing this degree of skew-
ness. We show that these folk theorems hold for caches operating under a large class
of replacement policies, the so-called Random On-demand Replacement Algorithms
(RORA), which includes the optimal policy, and the random policy. However, coun-
terexamples prove that this is not always the case under the (popular) Least-Recently-
Used (LRU) and CLIMB policies. In such cases, conjectures are offered (and supported
by simulations) as to when the folk theorems would hold under the LRU or CLIMB
caching, given that the IRM input has a Zipf-like popularity pmf.

To compare the strength of temporal correlations in streams of requests, we define
the notion of Temporal Correlations (TC) ordering based on the so-called supermodular
ordering, a concept of positive dependence which has been successfully used for com-
paring dependence structures in sequences of random variables. We explore how the TC
ordering captures the strength of temporal correlations in several Web request models,
namely the higher-order Markov chain model (HOMM), the partial Markov chain model
(PMM) and the Least-Recently-Used stack model (LRUSM). We establish the folk the-
orem to the effect that the stronger the strength of temporal correlations, the smaller the
miss rate for the PMM under certain assumptions on the caching policy. Conjectures
and simulations are offered as to when this folk theorem would hold under the HOMM
and under the LRUSM. In addition, the validity of this folk theorem for general request
streams under the Working Set algorithm is studied.

Lastly, we investigate how the majorization and TC orderings can be translated into
comparisons of three well-known locality of reference metrics, namely the working set

size, the inter-reference time and the stack distance.
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Chapter 1

Introduction

1.1 Web caching

Web caching aims to reduce network traffic, server load and user-perceived retrieval
latency by replicating “popular” content on (proxy) caches that are strategically placed
within the network. This approach is a natural outgrowth of caching techniques which
were originally developed for computer memory and distributed file sharing systems,
e.g., [2, 24] (and references therein).

Since its inception, the World Wide Web has seen an exponential increase in the
number of its users and in the volume of objects to be accessed. This trend, which
is not likely to abate anytime soon, is challenging current cache architectures to meet
the complementary mandates spieed, scalability andreliability which are central to
delivering a satisfactory user experience.

Generally speaking, scalability requires some fornhiefarchical organization. In
the context of Web caching, this notion has led naturally to the deploymemntildif
layered systems ofnterconnected caches which may be organized in a tree-like hierar-
chy or in more complicated meshes [12, 16, 29] (and references therein).

Even a cursory review of the literature [5, 54, 69] already reveals the large number



of difficult and challenging issues that need to be addressed in order to ensure proper
operations of these distributed multi-level caching systems. Examples of these issues
include (i) cache replacement strategies [15, 39, 54, 55]; (ii) prefetching algorithms [25]
(and references therein); (iii) cache location [43, 44]; (iv) content placement [23, 57, 68];

and (v) cache cooperation techniques [16, 17, 30].

1.2 Locality of reference

Although these challenges have renewed interest in caching in general, some basic is-
sues are still not well understood. Indeed, the performance of any form of caching is
determined by a number of factors, chief amongst them the statistical properties of the
streams of requests made to the cache. One important such propertyasality of
reference present in a stream of requests whereby “bursts of references are made in the
near future to objects referenced in the recent past.”

The notion of locality and its importance for caching were first recognized by Belady
[10] in the context of computer memory, and attempts at characterization were made
early on by Denning through the working set model [26, 27]. Subsequently, a number
of studies have shown that request streams for Web objects exhibit strong locality of
referencé [40, 41, 46] and various metrics have been proposed for characterizing the
locality of reference in Web request streams [1, 34, 40].

Although several competing definitions for locality of reference are available, it is by
now widely accepted that the two main contributors to locality of referencesisueral
correlations in the streams of requests and fapularity distribution of requested ob-

jects. To describe these two sources of locality, and to frame the subsequent discussion,

1At least in the short timescales.



we assume the following generic setup: We consider a univerdé @dcheable items
or documents, labeled= 1,..., N, and we write\' = {1,..., N}. The successive
requests arriving at the cache are modeled by a sequenee{R;, t = 0,1,...} of
N-valued rvs.

1. The popularity of the sequence of requedt®&;, ¢ = 0,1, ...} is defined as the

pmfp = (p(i),...,p(N)) onN given by

whenever these limits exist (and they do in most models treated in the literature). Popu-
larity is usually viewed as a long-term expression of locality which captures the likeli-
hood that a document will be requested in the future relative to other documents.

2. Temporal correlations are more delicate to define due to the “categorical” nature
of the requesty R;, t = 0,1,...}. Indeed, it is somewhat meaningless to use the

covariance function
v(s,t) := Cov[Rs, Ry], s,t=0,1,....

as a way to capture these temporal correlations as is traditionally done in other contexts.
This is because of theategorical nature of the rvs{ R, t = 0,1, ...} which take values

in a discrete set — We tooKl, . .., N} but could have selectef, %, . %} instead;

in fact any set of N distinct points in an arbitrary space would do the job. Thus, the
actual values of therv§ R, t = 0,1,...} are of no consequence, and the focus should
instead be on theecurrence patterns exhibited by requests for particular documents

over time. The literature contains several metrics for doing this, e.g., the inter-reference

time [34, 40, 53], the working set size [26, 27] and the stack distance [1, 3, 50].



1.3 Folk theorems

Like the notion of burstiness used in traffic modeling, locality of reference, while en-
dowed with a clear intuitive content, admits no simple definition. Not surprisingly, in
spite of numerous efforts, no consensus has been reached on how to formalize the no-
tion, let alone on how t@ompare streams of requests on the basis of their locality of
referencé. In addition, lacking in most of the work done thus far, is a clear recognition

of the system-wide nature of Web caching, whereby |teailsformative actions shape

the streams of requests as they pass through successive talihese problems have

precluded a formal study of the following “folk theorems”:

1. Folk theorem on miss rates -The stronger the locality of reference in the stream
of requests, the smaller the miss rate, since the cache ends up being populated
by objects with a higher likelihood of access in the near future. Such a property,
if true, would confirm the central role played by locality of reference in shaping
cache performance. In fact, the very presence of locality of reference in the stream

of requests is what makes caching at all possible; and

2. Folk theorem on output streams -Good cache replacement strategies “absorb”
locality of reference to a certain extent by producing a stream of misses from
the cache — its so-called output — which exhibéss locality of reference than
the input stream of requests. In the context of multi-level caching, this reduction
property is often perceived as one of the main reasons for why caching looses its

effectiveness after some level in a hierarchy of caches.

2Exceptions can be found in [34, 65].
3Recent works on this issue can be found in [17, 30, 32] for cache management and in [47, 70, 71] for

Web traffic analysis.



Such folk theorems are expected to hold for demand-driven caching that exploits
recency of reference. Interest in establishing them ugolific definitions of locality
of reference stems from a desire to validate tloperational significance on caching
systems. Counterexamples would cast some doubts as to whether a particular definition
indeed captures the intuitive meaning of locality of reference and to whether a particular

caching algorithm is indeed a well-behaved policy.

1.4 Contributions

In this dissertation, we identify notions of locality of reference which are capable of
comparing the strength of locality of reference between streams of requests. Such no-

tions allow a comparison statement of the form
R' <;r R? (1.1)

to the effect that “a request stredRt has less locality of reference than a request stream
R*" under some appropriate notion of locality of reference. With the comparison (1.1),
we are able to formally investigate the folk theorems mentioned above, albeitin a simple
framework under demand-driven cache replacement policies. Indeed, the folk theorem

for miss rates can be formalized as
M, (R?*) < M,(R') whenever (1.1) holds (1.2)

where M, (R') and M, (R?*) denote the miss rates of the request stre&hsand R?
under the cache replacement policyrespectively, while the folk theorem for output
streams simply states that

R, <;r R (1.3)
whereR is the output stream of the cache operating under the poligjien the input

stream isR.



The tasks above have been carried out separately for the two main sources of local-
ity of reference, namely popularity and temporal correlations. We now summarize the

corresponding results in some details.

1.4.1 Majorization and popularity

We first focus exclusively on popularity as a way to formalize (1.1). To isolate its contri-
butions, we consider the situation where thererareemporal correlations in the stream
of requests as would be the case under the stardagbendence Reference Model
(IRM). More precisely, under the IRM with popularity prpf= (p(1),...,p(N)), the
request§ Ry, t = 0,1, ...} form a sequence of i.i.dV-valued rvs, each distributed ac-
cording to the pmp. Even in the absence of temporal correlations, locality of reference
is present, in that thekewness of p acts as an indicator of the strength of locality of
reference under the intuition that the more “balanced” the prtiie weaker the locality

of reference.

In a recent paper, Fonseca et. al [34] introduced a notion of comparison based on the
entropy of the popularity pmfs, i.e., the pmifis considered to be less skewed (or more
balanced) than the pnif whenever the entropy @b is greater than the entropy qf
Unfortunately, this notion is not strong enough to allow for results of the forms (1.2) and
(1.3) to be established. Here, the degree of skewness in the popularity pmf is captured
formally through the notion ofmajorization (ordering) [Chapter 2]. This concept has
been used previously in the context of caching by van den Berg and Towsley [65]. With
this notion, the comparison (1.2) can be recast as saying that the miss rate (as a function
of popularity) belongs to the rich and structured class of monotone functions associated
with majorization, the so-called Schur-convex/concave functions. Moreover, basic facts

regarding majorization enable us to develop generic comparison results between the



popularity pmfs of the input and output streams [Chapter 6].

Equipped with the notion of majorization ordering, the folk theorems for the miss
rates and output streams can be established for a number of policies, namely the optimal
policy Ay, the random policy and the FIFO (First-In/First-Out) policy [Chapter 6]. These
positive results are then extended to a very large class of replacement policies, the so-
called Random On-demand Replacement Algorithms (RORA) [Chapter 7].

However, these folk theorems dot always hold under two self-organizing policies,
namely the LRU (Least-Recently-Used) and CLIMB replacement policies [Chapter 8].
We first exhibit situations where under these policies, the IRM stream with more skewed
popularity pmf may have a smaller miss rate than the IRM stream with less skewed
popularity pmf. Yet, when the popularity pmfs are Zipf-like [Section 6.2], simulations
show that the comparison (1.2) under these policies does hold. We formally establish
this fact only in the limiting regime where the skewness parameter of the Zipf-like pmf
is large, i.e., highly skewed.

It also happens that the LRU and CLIMB policies fail to reduce locality of refer-
ence in that under these policies, the input popularity pnjdf R) is not necessarily
more skewed than the output popularity ppif(of R). We explore the issue through
counterexamples which are developed within some classes of input popularity pmfs. In
particular, when the input popularity pmf lies in the class of Zipf-like pmfs, we iden-
tify a condition involving the cache size and the number of cacheable documents under
which reduction fails to occur at large enough values of the skewness parameter of the
input Zipf-like pmf. Under this condition, which we expect to be satisfied in practice,
we show that the output pmf may not exhibit less locality of reference than the input
pmf p when the latter has too much of it to begin with. Additional simulations were

carried out and suggest conjectures as to when LRU and CLIMB policies indeed reduce



locality of reference with Zipf-like input pmfs. All indications point to the possibility

that for small enough cache sizes, the desired folk theorem will hold.

1.4.2 Positive dependence and temporal correlations

As mentioned earlier, the catagorical nature of the requestst = 0,1, ...} makes

it difficult to define appropriate notions of temporal correlations. Even though several
metrics have been proposed, e.g., the inter-reference time, the working set size and the
stack distance, none has been found appropriate for formalizing these folk theorems.

We take on this issue by applying the concepts of positive dependence [Chapter 3]
to capture the strength of temporal correlations exhibited by streams of requests. Posi-
tive dependence has been used previously in a number of contexts, e.g., network traffic
and queueing theory [8, 9, 66], and reliability theory [6, 60]. Specifically, relying on
the notion of supermodular ordering [Definition 3.4] which has been used to compare
dependence structures in sequences of rvs, we defintethmral Correlations (TC)
ordering [Definition 9.1] as a way to compare streams of requests on the basis of the
strength of their temporal correlations. This new ordering is well suited for comparing
the relative strength of temporal correlations as we note that request streams compara-
ble in the TC ordering must have the same popularity profiles (under the assumption
that they exist); in other words, the TC ordering cannot capture any contribution from
popularity toward locality of reference.

We apply the TC ordering to capture the strength of temporal correlations present
in several Web request models that are believed to exhibit such correlations, namely the
higher-order Markov chain model (HOMM), the partial Markov chain model (PMM)
and the Least-Recently-Used stack model (LRUSM). Indeed, we demonstrate that the

HOMM exhibits temporal correlations in the sense that it has stronger strength of tempo-



ral correlations than the IRM with the same popularity pmf in the TC ordering [Section
9.2]. This property is shown to hold also for the LRUSM under a reasonable condition
on its stack distance pmf [Section 9.4]. Lastly, for PMM, we show that the strength
of temporal correlations is indeed captured by the correlation parameter as expected
[Section 9.3].

With the TC ordering, we establish the folk theorem for miss rates when the input
to the cache is modeled according to the PMM under certain assumptions on the cache
replacement policies [Section 9.5.1]. Conjectures and simulations are offered as to when
this folk theorem would hold under the HOMM [Section 9.5.2] and under the LRUSM
[Section 9.5.2]. We also investigate this folk theorem with general input streams under
the so-called Working Set (WS) algorithm [Section 10.4] which is a cache management
policy associated with the working set model. The result indicates that (1.2) does hold
when the cache holds only one document in which case the WS algorithm is identified
with any demand-driven caching with unit cache size. However, the folk theorem may
not hold in some other situations, as shown by counterexamples in the class of PMM
request streams.

It is also desirable to establish the folk theorem for output streams via the TC or-
dering. However, there are only limited cases of interests as we recall that the output
popularity pmfp* is not necessarily the same as the input popularity prahd that
the comparison in the TC ordering between the input stream and the output stream re-
quires that both popularity pmfs be identical. This shortcoming calls for further study
to develop orderings that can compare the strength of locality of reference contributed

by both components, namely popularity and temporal correlations.



1.4.3 Locality of reference metrics

Lastly, we investigate whether the comparison in the majorization ordering of two IRM
streams and the comparison in the TC ordering of two request streams translate into the
expected comparisons for three well-established locality of reference metrics, namely,
the working set size, the inter-reference time, and the stack distance.

For the working set size, the majorization ordering of two IRM streams implies the
(strong) stochastic ordering between their working set sizes, while the TC ordering of
two request streams only gives a comparison between their average working set sizes.
In addition, both the majorization ordering and the TC ordering allow a comparison
of the steady state inter-reference times in the convex ordering. However, implications
of these orderings on the stack distances are not fully understood and require further
investigation.

These locality of reference metrics are sometimes used for cache dimensioning and
cache performance evaluation. Thus, the aforementioned relations naturally lead to var-
ious bounds on these performance metrics. For instance, because the IRM with uniform
popularity pmf acts as a lower bound (in the sense of majorization ordering) for any IRM
stream, its corresponding locality of reference metrics are bounds for those of other IRM
streams. Furthermore, if the request streRnexhibits temporal correlations stronger
than that of the IRM with similar popularity pmf in the sense of the TC ordering, then
the performance metrics associated with this IRM, which are usually known or easier to

be computed, can provide bounds for those of the request sifam
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1.5 Organization

The dissertation is organized as follows: The theory of majorization and its compan-
ion notion, Schur-convexity, are summarized in Chapter 2. Basic definitions and facts
regarding positive dependence and stochastic orderings are collected in Chapter 3.

In Chapter 4, we introduce a simple framework of demand-driven caching and give
the definitions of miss rate and output of a cache. We then use the concept of ma-
jorization ordering for comparing popularity pmfs of IRM request streams in Chapter 6.
With the majorization ordering, we establish the folk theorems for miss rates and out-
put streams under the random policy and the poligy These results are extended in
Chapter 7 to a large class of demand-driven replacement policies, the so-called Random
On-demand Replacement Algorithm (RORA). In Chapter 8, we show that the folk the-
orems do not hold in general for two well-known self-organizing policies, the LRU and
CLIMB policies, where counterexamples are established. Asymptotics and conjectures
under the class of IRM streams with Zipf-like popularity pmf are investigated.

In Chapter 9, we use the concepts of positive dependence and supermodular ordering
to define the TC ordering as a means to compare strength of temporal correlations.
This ordering is then used to capture the temporal correlations present in three request
models, namely HOMM, PMM and LRUSM. The folk theorem for miss rates of the
PMM is established under certain assumptions on the caching policy. Specific results
and conjectures on this folk theorem under the HOMM and the LRUSM are provided.

The working set model is considered in Chapter 10 where we demonstrate how
the majorization ordering between IRM streams and the TC ordering between request
streams can be translated into comparisons of the working set sizes. Next, under the
Working Set algorithm, we find that the folk theorems for miss rates and output streams

do not always hold for IRM input streams. For general input models, the folk theorem

11



for miss rates holds when the cache holds only one document, but fails otherwise.
Lastly, in Chapter 11, we show that the majorization ordering and the TC ordering

imply the comparison in the convex ordering of the steady state inter-reference times.

We also investigate whether these orderings would lead to some appropriate compar-

isons of the stack distances.
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Chapter 2

Majorization and Schur-convexity

2.1 Majorization — A primer

The concept ofmajorization [49] provides a powerful tool to formalize statements con-
cerning the relative skewness in the components of two vectors, viz., the components
(z1,...,xy) Of the vectorz are “more spread out” or “more balanced” than the com-
ponents(y,, ..., yx) of the vectory: For vectorsz andy in R”, we say that is

majorized by y, and writex < y, whenever the conditions

Zx[i]§2y[i], n:1,2,...,N—1 (21)
=1 i=1

and
N N
dwi=Y i (2.2)
=1 =1
hold withz;) > x5 > ... > xv) andyp) > yjg > ... > yn) denoting the components
of & andy arranged in decreasing order, respectively.
As elegantly demonstrated in the monograph of Marshall and Olkin [49], this notion
has found widespread use in many diverse branches of mathematics and their applica-

tions, viz. in computer databases [20] and storage [73].
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We begin with a sufficient condition for majorization which is extracted from the

discussion in [49, B.1, p. 129].

Proposition 2.1 Letx andy be distinct elements dk” such that
N N
Z%‘ = Zyz (2.3)
=1 =1

Whenevere, > xo > ... > xy, If there exists somé = 1,...,N — 1 such that

v <vy,i=1,....,kandx; > y;,i=k+1,..., N, then the comparison < y holds.

The following sufficient condition for majorization will be useful in the sequel; it

was already announced in [49, B.1.b, p. 129] without proof.

Theorem 2.2 Letx andy be distinct elements @k such that (2.3) holds. Whenever
Ty > 1> ... >y >0, andthe ratiog*,i = 1,..., N, are decreasing i we have

the comparisor: < y.

Proof. Under the conditiorr; > 0,7 =1,..., N, we find that (2.3) can be rewritten as
N .
Sz, (y— - 1) — 0. (2.4)
i=1 Li

If the ratios®:, i = 1,..., N, are decreasing ii) then by virtue of (2.4) there must exist

somek with 1 < k£ < N such that

Yo 1>0, i=1,... k
Z;

and

Y 1<0, i=k+1,...,N.

Z;

14



In other wordsz; < y; fori = 1,... ., kandy; < x;fori = k+1,..., N, and we

readily obtain the comparisan < y by applying Proposition 2.1. [ |

With any element oRY such tha‘LZiN:1 x; # 0, we associate theormalized vector

Z as the element dR” defined by

T = (Zwi)fl(arl,...,x]v). (2.5)

=1

With this notation, we can now present a useful corollary to Theorem 2.2.

Corollary 2.3 Letx andy be distinct elements @&" such thas_Y , y; > 0. Whenever
T > 19 > ... > 1wy > 0,and theratiod*,i = 1,..., N, are decreasing i) we have

the comparisox < .

Proof. Under the enforced assumptions, we note the inequalitigs »; > 0 and
T1 > T > ... > Ty > 0with the ratios%, i =1,..., N, decreasing in. Obviously,
YN,z = N, 7 = 1 and we get the desired result by applying Theorem 222 and

Y. [ ]

The following reformulation of Corollary 2.3 is used in the sequel.

Lemma 2.4 Let 2 andy be distinct elements dR™ such thatc; > 0,7 = 1,...,N
and>" Ny > 0. If
i Y (2.6)

.Z'i_l'j

whenever:; > x; for distincti,j =1, ..., N, then the comparisa® < g holds.

Before giving a proof, we introduce the following notation: ketlenote a permuta-

tion of {1,..., N}. With any element in R", we associate thgermuted vectoro(x)

15



in RY through the relation

O'(w) = (l’g(l), c 7$0(N)>-

It is plain from the definition of majorization that for vectarsandy in R", we have

x < yifand only if o(x) < y for any permutatiom of {1,..., N}.

Proof. Leto denote a permutation §fl, ..., N} suchthatr,q) > 2,2 > ... > 2,).

The enforced monotonicity assumptions can be restated as

Yo (1) > Yo (2) > > Yo (N)

To(l) To(2) ~ Tg(N)

Y

and the desired result follows by an easy application of Corollary 2.3 to the elements

o(x)ando(y). u

One such application of Lemma 2.4 is given in
Lemma 2.5 For anye > 0, define theN -dimensional vectop, by
p.=(1—(N—-1e,e,...,e).

If ¢ andn satisfy the relatiof < n < e < % then it holds thap, < p,,.

Proof. As we have in mind to apply Lemma 2.4, we take- x = p_ andy = y = p,,.
It is plain that the requisite monotonicity assumptions of Lemma 2.4 hold wiaexaln

satisfy the relatio) < n <e < 1. |
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2.2 Schur-convexity

Key to the power of majorization is the companion notion of monotonicity associated
with it: An R-valued functiony defined on a setl of R" is said to be Schur-convex

(resp. Schur-concave) ohif

() < ply) (resp.p(z) > ¢(y))

wheneverz andy are elements im satisfyingz < y. If A = R”, theny is sim-
ply said to be Schur-convex (resp. Schur-concave). In other words, Schur-convexity
(resp. Schur-concavity) corresponds to monotone increasingness (resp. decreasingness)
for majorization (viewed as a pre-order on subsef&o.

Let {o;, ¢ = 1,...,N!} be a given enumeration of all th¥! permutations of
{1,..., N}, this enumeration will be held fixed throughout this section. A subset
of RY is said to besymmetric if for any x in A, the element;(z) also belongs tol for
eachi = 1,..., N!. Moreover, for any subset of R", a mappingy : A — R is said
to besymmetric if A is symmetric and for ang in A, we havep(o;(x)) = ¢(x) for
each: =1,..., N!. If the mappingy : A — IR is Schur-convex (resp. Schur-concave)
with symmetricA, theny is necessarily symmetric sineg(xz) < x < o;(x) implies
o(oi(x)) = p(x) foreachi =1,..., N

In the following, we have collected some useful technical results concerning Schur-
concave functions. Asin [49, p. 78], foreath=1,..., N, theelementary symmetric
function By v : RY — R is defined by

Eyn(x):= Z Ty Xiy, TE RY (2.7)
{i1,ensing YEA (MN)

with A*(M; N') denoting the collection of allinordered subsets of size/ of N =

1,...,N}. By convention we writeF, y(xz) = 1 for all  in RY. It is well known
{ y ,
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[49, Prop. F.1., p. 78] that the functidf,, ; is Schur-concave oE{f for eachM =
0,1,...,N.

We note from [49, Prop. C.2, p. 67] that any mappingA — IR which is symmet-
ric and convex (resp. concave) on some convex symmetric sutifdR " is necessarily
Schur-convex (resp. Schur-concave). The following result is due to Schur [49, F.3, p.

80] and will be key to a number of proofs.

Proposition 2.6 ForeachVl =1,..., N, the mapping®; x : ]Rf — R given by

EM,N(Q’}>

==Y zeRY
EMA,N(CU) *

q)M,N (ZB) .
is increasindg, symmetric and concave, hence increasing and Schur-concave.

Proposition 2.7 Let A be a convex symmetric subsetBf'. Assume the mapping
¢ : A — R to be concave and the mappihg R — R to be increasing, symmetric

and concave. Then, the mappipg: A — R given by

on(x) = h(p(o1(x)),...,plom(x))), €A

is symmetric and concave, thus Schur-concave on

Proof. The mappingp,, is symmetric by virtue of the symmetry 6f The concavity of
¢, can be shown as follows: First, for=1,..., NI, we setp;(x) = p(0;(x)) (x € A);
this definition is well posed sincé is symmetric. The concavity ap implies that of

;. For arbitraryx andy in A, anda in [0, 1] (with @ = 1 — «), we see thatvx + ay is

IForzin ]Rf suchthatEy;_1 v (z) = 0, we haveEy, y(x) = 0 and se,; x (x) = 0 by continuity.

2Here, increasing means increasing in each argument.
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also an element oft, and we obtain

onlax +ay) = h(p(ax+ay),...,on(ax + ay))

v

h(api(x) + api(y), . .., apn(x) + apn(y))

v

ah(ei(), ..., om(®)) + ah(er(y), .. em(y))

= app(®) + apn(y).
The first inequality follows from the concavity of each of the mappipgg = 1,..., N!
and the increasingness bf while the second inequality is implied by the concavity of

h. |

With vectorst andx in RY, we associate the elementz of R” defined by
t-x:.= (tll’l, Ce ,tNxN).
With this notation, we can state an important consequence of Proposition 2.7.

Proposition 2.8 Assume the mapping : ]Rﬂf — IR to be concave and the mapping
h : RM — R to be increasing, symmetric and concave. For any non-zero veator

RY, the mapping) : RY — R defined by

Yi(x) = h(P(t - or(x)), ..., vt -om(x)), =eRY

is symmetric and concave, thus Schur-concave.

Proof. If the mappingy is concave, then the mapping : ]RiV — IR given by
Ui(@) == (t-x), =eRY

is also concave. We obtain the desired result by applying Proposition Z.MV&HIRf

andy = ). m
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Chapter 3

Stochastic Orderings and Positive Dependence

3.1 Integral stochastic orderings

In this section, we summarize some important definitions and facts concerning the
stochastic orderings of random vectors. Additional information can be found in the
monographs by Nller and Stoyan [52] and by Shaked and Shanthikumar [59]. The

basic definition of integral stochastic orderings can be stated as follows:

Definition 3.1 Let F be a class of Borel measurable functigns R" — R. We say

that the twaR"-valued rvsX andY satisfy the order relatioX <z Y if
Ep(X)] <E[p(Y)] (3.1)
for all functionsyp in F whenever the expectations exist.

This generic definition has been specialized in the literature. Here are some impor-

tant examples.

Definition 3.2 ForIR"-valued rvsX andY , the rvX is said to be smaller than the rv

Y according to
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e the usual stochastic ordering, writtéa <,, Y, if (3.1) holds for all increasing

functionsy : R" — R whenever the expectations exist;

e the convex ordering, writtelX <., Y, if (3.1) holds for all convex functions

¢ : R" — R whenever the expectations exist;

e the concave ordering, writteN <., Y, if (3.1) holds for all concave functions

¢ : R"™ — R whenever the expectations exist;

e the increasing convex ordering, writtéh <;., Y, if (3.1) holds for all increasing

convex functiong : R" — IR whenever the expectations exist; and

e the increasing concave ordering, writt&n<,., Y, if (3.1) holds for all increas-

ing concave functiong : R" — IR whenever the expectations exist.

Let X andY belR-valued rvs. We note from [59, p. 3] that the comparisor<,; Y
is equivalent to

PX>#<P[Y>t, teR (3.2)

It is also known [59] that ifX’ <., Y, we haveE [X] = E[Y]andVar(X) < Var(Y).
In other words X has the same mean &sbut less variability than”. WhenX <., Y,
there exists afiR-valued rvZ such thatX <, Z <. Y [48, Thm. 1], whencd: [ X| <
E [Y] and we can interpreY” as being greater thaX in both “size and variability.”
Consequently, the orderings cx and icx are appropriate for comparing the variability of
rvs. However, in the case of random vectors, it is also desirable to compare their degree
of “dependence.” In the next section, we describe a stochastic ordering which is well
suited for comparing the dependence structures of random vectors and sequences.

A few words on the notation in use: TwB"-valued rvsX andY are said to be

equal in law if they have the same distribution, a fact we denoteXoy=,; Y. For two
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sequences of vX = {X,,n = 1,2,...} andY = {Y,,n = 1,2,...}, the notation
X =, Y indicates thatX andY have the same finite dimensional distributions, i.e.,
(X1,...,Xpn) =« (Y1,...,Y,) foralln = 1,2,.... Lastly, convergence in law or in

distribution (with¢ going to infinity) is denoted by=,.

3.2 Supermodular ordering

Several stochastic orderings have been found well suited for comparing the dependence
structures of random vectors. Here we rely on sheermodular ordering which has
been used recently in several queueing and reliability applications [7, 8, 9, 60, 66]. We

begin by introducing the class of functions associated with this ordering.

Definition 3.3 A functiony : R" — IR is said to be supermodular (sm) if
elxVy)+exAy) =e@) +e(y), =yeR”

wherewesetVy = (x1Vy,...,x,Vyy) @nde Ny = (1 Ay1, ..., Tn AYn).

The supermodular ordering is the integral ordering associated with the class of su-

permodular functions.

Definition 3.4 ForR"-valued rvsX andY, the rvX is said to be smaller than the
rv'Y according to the supermodular ordering, writtdn <,,, Y, if (3.1) holds for
all supermodular Borel measurable functigns R" — IR whenever the expectations

exist.

It is a simple matter to check [8] that for afiy/*-valued rvsX andY’, the compari-

sonX <., Y necessarily implies the stochastic equalities

Xi =t Yvia 1=1,...,n, (33)
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as well as the covariance comparisons
Cov]X;, X;| < Cov]Y,,Y;], 4,j=12...,n. (3.4)

Thus, the comparisoX <, Y represents a possible formalization of the statement to
the effect that Y is more positively dependent thaq.”
The definition of the supermodular ordering can be extended to sequences of rvs in

a natural way.

Definition 3.5 We say that the twdR-valued sequenceX = {X,,n = 1,2,...}
andY = {Y,,n = 1,2,...} satisfy the relationX <., Y if (X1,...,X,) <im
(Y1,...,Y,) foralln=1,2,....

In what follows, we introduce several concepts of positive dependence.

3.3 Positive dependence

Positive dependence in a collection of rvs can be captured in several ways. The as-
sociation of rvs is one of the most useful such characterizations; it was introduced by
Esary, Proschan and Walkup [31] and has proved useful in various settings [6, 42] (and

references therein).

Definition 3.6 TheR"-valued rvX = (X,,...,X,) is said to be associated the
inequality

E[f(X)g(X)] = E[f(X)]E[g(X)]

holds for all increasing functiont g : R™ — IR for which the expectations exist.

A stronger notion of positive dependence is given by

1Sometimes, we say that tiie-valued rvsX 1, ..., X,, are associated.
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Definition 3.7 TheR"-valued rvX = (X3,...,X,) is said to be conditionally increas-
ing in sequence (CIS) if for eaéh= 1,2, ... ,n — 1, the family of conditional distribu-

tions{[Xy1|X1 = z1,..., X} = zx]} is stochastically increasing it = (x1, ..., z).

More precisely, this definition states that for eachk- 1,2,...,n — 1, for x andy

in R* with = < y componentwise, it holds that
(X1 [(X1, - X)) = @] <o [Xiqa[(X, - X)) = 9]

where [ X;.1|(X1,...,X,) = x| denotes any rv distributed according to the condi-
tional distribution of X, given (Xy,..., X}) = = (with a similar interpretation for
(X1 (X1, - X)) = y)).

We next show how the supermodular ordering induces a notion of positive depen-

dence but first, a definition:

~

Definition 3.8 For R"-valued rvsX and X, we say thatX = (X,,...,X,) is an
independent version oX = (X,...,X,) ifthe rvsX,, X,,..., X, are mutually in-

dependent with,, =, X, foreachk =1,....n.

From the concept of supermodular ordering, the positive dependence between the
componentsYy, ..., X,, of thelR"-valued rvX can be formalized by requiring that the
rv X be larger in the supermodular ordering than its independent vek§icthis gives

rise to the following notion of positive dependence [52]:

Definition 3.9 TheR"-valued rvX = (X3,...,X,) is said to be positive supermodu-
lar dependent (PSMD) if
X < X (3.5)

whereX is the independent version &F.
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The next proposition explores the relationships between the various notions of posi-

tive dependence introduced thus far.

Theorem 3.10 Consider amR"-valued rvX = (Xi,...,X,).
(a) If X is CIS, thenX is associated; and

(b) If X is associated, theK is PSMD.

Part (a) can be found in the monograph by Barlow and Proschan [6, Thm. 4.7, p.
146] while Part (b) has been established recently by Christofides and Vaggelatou [21,
Thm. 1]. Earlier, Meester and Shanthikumar [51, Thm. 3.8] have shown that CIS implies
PSMD.

Lastly, we naturally extend these definitions to sequences of rvs along the lines of

Definition 3.5.

Definition 3.11 For sequences dR-valued rvsX = {X,,n = 1,2,...} andX =
{X,,n=1,2,...}, we say thaiX is an independent version & if the rvs{X,,n =

1,2,...} are mutually independent witki,, =4 X, foralln =1,2,....

Definition 3.12 We say that théR -valued sequencX = {X,,n = 1,2,...} is asso-
ciated (resp. CIS, PSMD) if for each= 1,2,..., theR"-valued rv(Xy,...,X,) is
associated (resp. CIS, PSMD).
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Chapter 4

Demand-driven Caching

Consider a universd/ of N cacheable documents, sAy:= {1,..., N}. The system

is composed of a server where a copy of each of tiéskbocuments is available, and

of a cache of sizéd/ (1 < M < N). Documents are first requested at the cache: If the
requested document has a copy already in cache (i.e., a hit), this copy is downloaded
from the cache by the user. If the requested document is not in cache (i.e., a miss), a
copy is requested instead from the server to be put in the cache. If the cache is already
full, then a document already in cache is evicted to make place for the copy of the
document just requested. The document selected for eviction is determined through a
cache replacement or eviction policy.!

We now develop below a mathematical framework to address some of the issues
discussed in this dissertation. Additional details are available in the monographs by
Aven, Coffman and Kogan [2] and by Coffman and Denning [24]. We begin with some
notation that will be used repeatedly: L&t(M;N) be the collection of alunordered
subsets of siz&/ of V' = {1, ..., N}, and letA(M; V) be the collection of albrdered
sequences af/ distinct elements from\. We write{iy, ..., iy} (resp.(iy, ..., ix)) tO

denote an element i*(M; N) (resp.A(M;N)). Foreach = 1,... N, letAs(M;N)

1We use the terms interchangeably.
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(resp.A;(M; N)) denote the set of elements it (M; N) (resp.A(M; N)) which do

not contain, i.e.,
AN (M N) i={s={i1,...in} EN(M;N) : i & s}

and

N(MN) :={s = (i1,...im) € AM;N) : i & s}

4.1 A simple framework

Consecutive user requests are modeled by a sequet¢evafued rvsR = {R;, t =
0,1,...}. For simplicity we say that requeBt occurs attime = 0,1, .. .. LetS; denote

the cache just before tineso thatS; is a subset of\" with at mostM elements. Also,

the decision to be performed according to the eviction policy in force is the iddntity
of the document irb; which needs to be evicted in order to make room for the request
R, (if the cache is already full).

Demand-driven caching considered here is characterized by the dynamics

St if R, € S,
Stv1 = { S+ R, if R, & 5,15, <M (4.1)

Sy — Ui+ Ry if Ry & S, |S:| =M
forallt = 0,1,..., where|S;| denotes the cardinality of the s&t, andsS; — U; + R;
denotes the subset ¢f, ..., N} obtained fromS; by removingU, and then addind?,
to it, in that order. These dynamics reflect the following operational assumptions: (i)
Actions are taken only at the time requests are made, hence the terminology demand-
driven caching; (ii) a requested document not in cachavigys added to the cache if
the cache is not full at the time of request; and (iii) evictiomandatory if the request

R, is not in caches; and the cachég, is full, i.e.,|S;| = M.
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4.2 Web request models and reduced dynamics

Throughout we assume the following for the request stréam {R;, ¢t = 0,1,...}:
The popularity pmp = (p(1),...,p(N)) of R exists and is defined as then-random
limits

p(i)=lim - > 1[R, =4 a.s., i=1,...,N. (4.2)

p(i)>0, i=1,... N. (4.3)

Apmfpon{l,..., N} satisfying (4.3) is said to badmissible.
Under this non-triviality condition (4.3), every document will eventually be re-

guested as we note that

1 t
Jim ; Y 1[R, =i]=p(i) >0 aus.
R g

under the assumption (4.2). Thus, as we have in mind to study long term characteristics
under demand-driven replacement policies, there is no loss of generality in assuming (as
we do from now on) that the cache is full, i.e., for al= 0,1, ..., we have|S;| = M

and (4.1) simplifies to

St |f Rt € St
St = (4.4)

Si—U+ R, it Ry &5;.
A number of request models will be considered here, the best known one being the
Independent Reference Model (IRM). The IRM will serve as the first model for which
we attempt to formalize the folk theorems introduced in this dissertation. It is a basic

model which is often used for checking various properties of caching systems [13].

2Additional assumptions on the request streams, e.g., stationarity and ergodicity, will be required in

some parts of the dissertation and will be stated when appropriate.
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Moreover, recent results by Jelenkovic and Radovanovic [38] and by Sugimoto and
Miyoshi [63] suggest some form of insensitivity of caching systems to the statistics of
requests. However, the IRM does not possess any of the correlations which have been
observed in Web reference streams, thus making it less suitable for modeling streams
of requests with strong temporal correlations. Some examples of models displaying

temporal correlations will be discussed later in Chapter 9.

4.3 Cache states and eviction policies

The decision§U,, t = 0, 1, ...} are determined through an eviction policy; several ex-
amples will be presented shortly. For most eviction policies considered in the literature,
as well as here, the dynamics of the cache can be characterized through the evolution
of suitably defined variable§&?,, ¢t = 0,1,...} where(, is known as thestate of the

cache at timet.

Consider an eviction policyr. The cache state is specific to the eviction policy
and is selected with the following in mind: (i) The sgtof documents in the cache at
time ¢ can be recovered frof,; (ii) the cache stat€), ., is fully determined through
the knowledge of the triplé<,, R, U,) in a way that is compatible with the dynam-
ics (4.4); and (iii) the eviction decisioli; at timet can be expressed as a function of
the past(Q, Ro, Uo, - .., %1, Ri—1, U1, 8, R;) (possibly through suitable random-

ization), i.e., foreachh = 0, 1, . . ., there exists a mapping such that
Ut = 7.‘.t(sza R07 U07 ceey Qtfly Rtfla Ut717 Qta Rt7 Et) (45)

where=, is arv taken independent of the p&St, Ry, Uy, . .., 1, Ri—1, U1, Qu, Ry).
Collectively, the mappingér;, t = 0, 1, ...} define the eviction policyt.

We close this section with some examples of eviction policies which have been dis-
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cussed in the literature (see e.qg., [2, 24]):

According to therandom policy, when the cache is full, the document to be evicted
from the cache is selected randomly according to the uniform distribution.

Any permutatiorv of {1, ..., N} induces an ordering of the documents by consider-
ing the documents(1),0(2),...,0(N) as “ordered” in decreasing order. This ranking
of the documents allows us to define the evictpmhicy A, as follows: When at time
t=0,1,..., the cache5; is full and the requested documeRy is not in the cache, the

policy A, prescribes the eviction of the documéntgiven by
U, = arg max (O'_l(j) 1 J € St) . (4.6)

The documents (1),...,0(M — 1), once loaded in the cache, will never be evicted,
and in the steady state, the cache under the pdligywill contain the documents
ol),...,0(M —1).

The so-calledpolicy A, is associated with the underlying popularity pmbf the
request stream, and evicts the least popular document in the cache, i.e., when the re-

placement is required at tinte= 0, 1, . . ., selectl, to be
U, =argmin (p(j): j €S;). (4.7)

This policy A, coincides with the policyd,- associated with the permutatiort of
{1,..., N} which orders the components of the underlying pmf decreasing order,
namelyp(o*(1)) = p(o*(2)) > ... = p(o*(N)).

Under the random policy and the policiels,, we can take the cache state to be
the (unordered) set of documents in the cache, i.e., the cache state is an element of
A*(M;N)and$, = S;forallt =0,1,....

TheFirst-in/First-out (FIFO) policy replaces the document which has been in cache
for the longest time, while théeast-Recently-Used (LRU) policy evicts the least re-

cently requested document already in cache.
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TheCLIMB policy is a close relative of the LRU policy. It ranks documents in cache
according to their recency of access: If the request document is not in the cache, the
document at the last position (positidn) is evicted and replaced by the new document.

If the requested document is in the cache at position= 2,..., M, it exchanges
position with the document at positian— 1. The cache remains unchanged if the
requested document is in the cache at position

The definition of the FIFO, LRU and CLIMB policies necessitates that the cache
state be an element of(M; N) with ; being a permutation of the elementsinfor

allt=0,1,....

4.4 Miss rate

A standard performance metric to evaluate and compare various caching policies is the
miss rate of a cache. This quantity has the interpretation of being the long-term fre-
guency of the event that the requested document is not in the cache, and therefore deter-
mines the effectiveness of a caching policy.

For a given request streal® = {R;,t = 0,1...}, the miss rate\/,(R) under a

cache replacement policyis defined as the a.s. limit
1 t
M. (R) = Jim n Y 1[R, ¢ S;] as. (4.8)
* =1

(whenever the limit exists) wher&, denotes the set of documents in cache operating
under the replacement poliayat timer when the input to the cache is the request stream
R. Almost sure convergence in (4.8) (and elsewhere) is taken under the probability
measure on the sequence of f¢%, R;, U;, t = 0, 1, ...} induced by the request stream
{R;, t =0,1,...} through the eviction policyt.

The existence of the limit (4.8) depends on the request sti®sand on the cache
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replacement policyt. Even in the case where the limit (4.8) exists, its expression is not
known for general classes of request streams. However, when the request Btisam
the IRM, the limit (4.8) exists under most cache replacement policies of interest. This

special case will be treated in Chapter 5.

4.5 Output

Under the demand-driven caching operation (4.4), the output of the cache is the se-
guence of requests that incur a miss, i.e., when the incoming request cannot find the
desired document in the cache. More precisely, a miss occurs at tini is not in S;.

Thus, we define recursively the time indices, k =0, 1, ...} by
v=0; V1 =vgt+my, k=0,1,...
and

Meyr = inf {0 =1,2,...0 Ry o &S 40}

with the conventiom,.; = oo if either v, = oo or if v is finite but the set of indices
entering the definition ofy..,; is empty. Withé denoting an elememiot in N/, we define

the output procesR* = {R;,k = 1,2,...} simply as

R, if v, < o0
Ry = g g
) if v, =00
for eachk = 1,2,.... The request{R},k = 1,2,...} are those requests among

{R:,t = 0,1,...} which incur a miss and which get forwarded to the server (or to
the higher level cache in a hierarchical caching system).
The statistics of the output stred;, k = 1,2, ...} are determined by the statistics

of the input stread R;,t = 0, 1, ...} and by the cache replacement policin use. We
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are interested in evaluating the popularity pmif= (p%(1),...,p%(N)) defined by

1 K
pi(i) == [}131)0 e kz::l 1[R; =1 a.s. (4.9)
foreachi = 1,..., N, whenever these limits exist.

As with the limit (4.8) of the miss rate, the existence and form of the limits (4.9)
are not known for general classes of input models. However, as we shall see in the next
chapter, when the input stream is modeled according to the IRM, the limits (4.9) exist

and admit simple expressions for most cache replacement policies of interest.
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Chapter 5

The Independent Reference Model (IRM)

TheIndependent Reference Model (IRM) is a basic model for Web reference streams; it

is commonly used to evaluate various properties of caching policies [13]. We say that
the request streal® = {R;,t = 0,1,...} is an IRM with popularity pmfp if the rvs

{R;,t = 0,1,...} are i.i.d. rvs distributed according to the pmf In this chapter, we
show that under the IRM with popularity prpfand under a particular cache replacement
policy 7, the limit (4.8) for the miss rate and the limits (4.9) for the output popularity

pmf p* exist and admit simple expressions whenever the a.s. limit
1 t
pa(s;p) = Jim ; Y 1[5, =3 as. (5.1)
o T=1

exists for each elementin A*(M; N') with S; being the set of documents in cache at
time 7. We now discuss these results for the miss rate and for the output popularity pmf,

respectively.

5.1 Miss rate under the IRM

Before stating the main result, we note from the definition of the IRM that the requests

{R;, t = 0,1,...} are characterized solely by the popularity pménd thus all IRM
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streams with the same popularity ppimust produce the same miss rate (4.8) under a
given replacement policy. Therefore, it is more appropriate to view the miss rate under
the IRM as a function of the popularity prnpf and denote the limit (4.8) bMW(p) to

reflect this fact.

Theorem 5.1 Consider an eviction policy such that the limits (5.1) exist under the

IRM with popularity pmfp. Then, the limit (4.8) exists and is given by

. N
M(p) = Y p(i) > wi(sip) (5.2)
=1 seAr(M;N)
= > wsp)Yop). (5.3)
sEA*(M;N) i¢s

Theorem 5.1 is established in the process of proving Theorem 5.2 in Section 5.3.
The existence of the limits (5.1) is a mild assumption which is satisfied under all eviction
policies of interest considered here (and in the literature). Indeed, under the IRM with
popularity pmfp, the sequence of cache staf€s, ¢t = 0, 1, ...} usually form a Markov
chain over a finite state space, and standard ergodic results for finite state Markov chains
readily yield the existence of the limits (5.1). This issue will be briefly discussed in each
situation at the appropriate time. Note also that the limits (4.8) and (5.1) under the IRM
are often constants which are independent of the initial cache(atdowever this is

not always the case as we shall see in the discussion of RORA policies [Chapter 7].

5.2 Output under the IRM

In this section, we establish the existence and form of the limits (4.9) when the input to
the cache is the IRM with popularity pmpf. We again do so under the assumption that

the a.s. limit (5.1) exists for eachin A*(M; N'). The main result is contained in
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Theorem 5.2 Consider an eviction policy such that the limits (5.1) exist under the

IRM with popularity pmfp. For each = 1,..., N, the limit (4.9) exists and is given

by
pr(i) = lim iil[RZZﬂ
K—oo K =
B Zﬁ(%%@) p 7 (5.4)
where we have set
me(i;p) = > pi(sip). (5.5)

seAY(M;N)

A proof of Theorem 5.2 is given in next section. Note that the existence of the limits

(5.1) implies
1 t
i) = X (w3l =)
sEANF(MN) T=1
1 t
= lim-> > 1[S. =54
t=oo ¢ T=1seAX (M;N)
1 t
= lim S Y1 ¢S] as. (5.6)
o T=1
foreachi = 1,..., N, andm.,(i; p) thus represents the fraction of times that document

7 will not be in the cache. This quantity is determined by the popularity praf the
IRM input and by the eviction policy in use.

Inspection of (5.2) and (5.5) reveals that
N ~
> p(i)mx(i;p) = Mx(p). (5.7)
i=1
This leads via (5.4) to a simple connection between the miss rate of an eviction policy

and the pmf of its output in the form

pr(i) = DI R) N, (5.8)
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Thus, with the IRM input, we can view: (i) as the ratio of the miss rate of the cache

when the requested document i® the overall miss rate of the cache.

5.3 Proofs of Theorems 5.1 and 5.2

Key to the proofs of both Theorems 5.1 and 5.2 is the following observation: For each
t=0,1,...,thervsQ), andR, are independent. Hence, by independence of Rist =
0,1,...}, upon invoking Rajchman'’s version of the Strong Law of Large Numbers [22,

Thm. 5.1.2., p. 103], we find
lim = > 1[S; =s](1[R, =i —p(i)) =0 a.s. (5.9)

foreach sin A*(M;N)andi=1,..., N,
For eacht = 1,2,..., let K(t) denote the total number of misses up to time
Obviously, we have

ZIR Z S, :Ziwg&]u}a:i}. (5.10)

i=171=1

Fixi=1,..., N. We note that

K(t) t
Z_:l[RZZZ] = ;1[16257]1[&:%]
= P 1 E S (5.11)

Z lim Y L[S, = o] (1[R, =i —p(i) =0 as.  (5.12)
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Next, combining (5.6) and (5.12), we get via (5.11) that

lim % 1€ S)1[R, =4 = p(i) D, pi(ssp) as. (5.13)

T=1 sENX(M;N)

Using the basic identity (5.10) for ea¢h- 1,2, ..., we conclude from (5.13) that

tlig%zt:l[RngsT] = g:(llm 21 Rzi])
N
= > p(i) > wi(s;p) as. (5.14)
i= SEA(MN)

This last limit yields the expression (5.2) for the miss rate (4.8).
To establish (5.3), we observe for each 1,2, ... that

SilRgs) = X % 1[&:4(1[&@]—&@))

T=1seA*(M;N) i€s

> 1[sT=s1-(zp<z~>).

T=1seA*(M;N) igs

It then follows from (5.9) that

lim ! Z Z 1[S; = s (1 R, & s|] — Zp(z)) =0 a.s.

so that
1 1
lim —~ Y 1[R, ¢ S;| = (hm =y 1[S, = s]) A D op@)]  as.
oot T seA* (M) N t = ifs
and the expression (5.3) is obtained under the existence of the limits (5.1). This com-
pletes the proof of Theorem 5.1.

It is now immediate that the following limit exists a.s., and is given by

t—>oo K— z:: N limy oo 1 [R € S ]
__ p)mg(i ’p) a@.s. (5.15)

> (i) m=(j; p)
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as we note (5.13) and (5.14). The desired conclusion of Theorem 5.2 is readily obtained
from (5.15) once we observe the convergehgg .., K(t) = co a.s. monotonically so

that the sequencgK (t), t = 1,2,...} a.s. exhaust®N, and the a.s. existence of the
limitin (5.15) implies the a.s. existence of the limit (4.9) with limiting value (5.4)-(5.5).
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Chapter 6

Comparing Popularity under the Independent Reference

Model

As we have in mind to study the strength of locality of reference present in streams of
requests, we first focus on hguopularity contributes to locality of reference by con-
sidering the situation where there ax@temporal correlations in the stream of requests
as would be the case under the IRM with popularity gmfin this case, thekewness

in the pmfp does act as an indicator of the strength of locality of reference present
in the stream, under the intuition that the more “balanced” the pnthe weaker the
locality of reference. This is best appreciated by considering the limiting cases: If

is extremely unbalanced with = (1 — d,¢,...,¢) (with 6 = (N — 1)¢), a reference

to document is likely to be followed by a burst of additional references to document

1 provided(N — 1)e <« 1 — 4. The exact opposite conclusion holds if the popularity

pmf p were uniform, i.e.p(1) = --- = p(N) = for then the successive requests

%

{R;,t =0,1,...} form a truly random sequence.
We capture the skewness in the popularity vector through the concem afiza-

tionintroduced in Chapter 2. From now on, the majorization companiseng formal-

izes the notion that the IRM with popularity pmfhas less locality of reference than the
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IRM with popularity pmfq as this comparison captures the fact that the gnsfmore
skewed than the pmp. Under the IRM, the folk theorem for the miss rate associated
with a particular eviction policyr can be restated as follows: If two IRM streams have

popularity pmfsp andq satisfyingp < q, then it holds that
M (q) < M(p), (6.1)

i.e., “the more skewed the popularity pmf, the smaller the miss rate of a cache.” Simi-
larly, the folk theorem for the output of a cache under the IRM now reads as the com-
parisonp: < p in that the output popularity pnp: is indeed more balanced than the
popularity pmfp of the IRM input.

In this chapter, we first discuss some basic comparisons which are consequences of
majorization comparison between pmf vectors. We then formally establish the folk the-
orems for the miss rate and for the output of a cache under the IRM with two well-known
cache-replacement policies, namely, the random policy and the péjicResults for
more general policies are discussed in Chapter 7 for Random On-demand Replacement

Algorithms, and in Chapter 8 for the LRU and CLIMB policies.

6.1 Entropy comparison

Comparison results which are consequences of majorization ordering are essentially
statements concerning the Schur-concavity of certain functionals. We provide an easy
illustration of this idea to the entropy comparison. Recall that the entfbfp) of the

pmfp on\ is defined by

N

H(p) := =Y p(i)log, p(i) (6.2)

i=1

with the conventiort log, ¢t = 0 for ¢ = 0. It is known that the larger the entrogy(p),

the more balanced the pmf This concept has been previously used by Fonseca et al.
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[34] to capture the strength of locality of reference exhibited through the popularity pmf
of the request stream.

By a classical result of Schur [49, C.1, p. 64] the mapping: — >V | x;log, ; is
a Schur-concave function dlhf. This leads readily to the following well-known result

[49, D.1, p. 71].
Proposition 6.1 For pmfsp andq on N/, it holds that

H(q) < H(p) (6.3)
whenevep < q.

Thus, majorization provides a stronger notion for comparing the imbalance in the com-
ponents of pmfs than the entropy-based comparison (6.3) proposed by Fonseca et al.

[34].

6.2 Zipf-like distributions

It has been observed in a number of studies that the popularity distribution of objects
in request streams at Web caches is highly skewed. In [1] a good fit was provided by
the Zipf distribution according to which the popularity of ti#¢ most popular object is
inversely proportional to its rank, namely;.

In more recent studies [13, 39], “Zipf-like” distributioh&ere found more appropri-
ate; see [13] (and references therein) for an excellent summary. Such distributions form
a one-parameter family. In our set-up, tor> 0, we say that the popularity distribution

p of the N -valued rvs{R;, t = 0,1, ...} is Zipf-like with parametery if
. (A
p(i) = m7

1Such distributions are sometimes called generalized Zipf distributions.

i=1,...,N (6.4)
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with
Co(N) = Zi*“. (6.5)

Pa(l) > pa(2) > ... > pa(N). (6.6)

The casex = 1 corresponds to the standard Zipf distribution and the value whs
typically found to be in the range&64 — 0.83 [13].

Zipf-like pmfs are skewed towards the most popular objectsaAs 0, the Zipf-
like pmf approaches the uniform distributi@anwhile asa — oo, it degenerates to the
pmf(1,0,...,0). Extrapolating between these extreme cases, we expect the parameter
« of Zipf-like pmfs (6.4)-(6.5) to measure the strength of skewness, with the latger
the more skewed the pmf,. The next result shows that majorization indeed captures

this fact, and so it is warranted to callthe skewness parameter of the Zipf-like pmf.
Lemma 6.2 For0 < o < f3, it holds thatp,, < p;.

Lemma 6.2 can already be found in [49, B.2.b, p. 130] and is an easy by-product
of Lemma 2.4. Zipf-like distributions will be used in the discussion of the LRU and

CLIMB policies in Chapter 8.

6.3 Comparing input and output

In the following two sections, we establish basic comparison results which provide the
first step toward formalizing the folk theorem for the output of a cache. We begin with
a comparison between the input popularity pmf and the output popularity pmf for a

general caching policy.
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Theorem 6.3 Consider an eviction policy such that the limits (5.1) exist under the
IRM with popularity pmfp.

() If m.(i;p) < m,(j; p) whenevep(i) < p(j) for distincti,j =1,..., N, then it
holds thatp < p%;

(i) If mx(i;p) > m.(j;p) wheneverp(i)m,(i;p) < p(j)m.(j;p) for distinct
i,j=1,..., N, then it holds thap: < p providedm.(i;p) > 0 foreachi =1,..., N.

Proof. Under the enforced assumptions, both claims are simple consequences of
Lemma 2.4: For Claim (i), we use = p andy given byy, = p(i)m,(i;p), i =
1,..., N. Note thatz = p while § = pZ, and that the monotonicity assumptions hold.
For Claim (i), we takey = p andx given byx; = p(i)m,(i;p),i = 1,..., N. This
time, we haver = p. while § = p, and the requisite monotonicity assumptions hold.

Theorem 6.3 suggests the following definitions: We say that the caching algorithm
7 is bad if it has the property that the fraction of time that a document is not in cache
increases as its popularity increases, i.e., for every admissibleppmfholds that
mx(i;p) < m,(j;p) wheneverp(i) < p(j) for distincti,j = 1,..., N. For a bad
caching algorithm, Claim (i) states that the popularity pmf of the output is more skewed
than the popularity pmf of the input, or equivalently that the output stream displays
stronger locality of reference than the input stream.

The assumptions for Claim (ii) ensure that (i; p) < m,(j;p) andp(j) < p(i)
occur simultaneously for distinétj = 1, ..., N. This leads to defining a caching algo-

rithm 7 asgood if for every admissible pmp, we haven,(i;p) < m,(j; p) whenever
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p(j) < p(i) for distincti,j; = 1,..., N. Thus, a caching policy which satisfies the
assumptions of Claim (ii) is necessarily a good policy. However, as we shall see in the
case of the LRU and CLIMB policies [Chapter 8], this by itself is not sufficient to ensure

that the output popularity pmf is more balanced than the input popularity pmf.

6.4 A useful comparison

Repeatedly we will encounter output pmfs which assume the generic form used in The-

orem 6.4 below.

Theorem 6.4 Let p be an admissible pmf o', and for eachi = 1, ..., N, define the

(N — 1)-dimensional vector

p¥ = (p(1),...,p(i — 1), p(i+1),...,p(N)). (6.7)

ForeachVf =1,2,..., N — 1, the pmfp%, on N defined by

p(i) Exrn—1(p?)
>N () Evn—1(pD)’

P, (i) = i=1,...,N (6.8)

satisfies the comparis@t, < p where the elementary symmetric functibiy n_; :

RY~' — R is defined at (2.7).

Proof. Fix distincti,j = 1,..., N and define thé N — 2)-dimensional vectop("/)
obtained from the pmp by deleting the components associated with documeatsl

j. With this notation, we find

EM,N—l(p(i)) - EM7N—1(p(j))

= > opli)--opling) — Y, plia) -+ plin)

seANX (M;N) SEAT(MN)
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= Z p(ir) - pling) — Z p(ir) -+ p(in)

seANX(M;N): jes SEAS(M;N): i€s
= (p(j) — p(i)) Err—1,n—2(p'). (6.9)

On the other hand, we also have
() By n—1(0%) — p(5) Errnv-1(pY)

= p(%’)( > p(i1)~-p(iM)> — p(j)( > p(i1)~~p(iM))

seANF(MN) SEAT(MN)

= p(i)< *(Z p(i1)~--p(iM)) - p(j)( > p(il)'-m(m))

M;N): j¢s SEA}T(M;N): iZs

= (p(i) — p(j)) Exr.n—2(p'). (6.10)
As we have in mind to apply Lemma 2.4, we talte= p andx given byz; =
p(i))Exn_1(p?), i = 1,...,N, whencez = p%, andg = p. For distincti,j =
1,..., N, wefind from (6.9) and (6.10) that
==L = (p(j) = p(i) Exr-an-a(p™) < 0
whenever
v —x; = (p(i) — p(j)) Eun-2(™) > 0.

The assumptions of Lemma 2.4 are satisfied and the comparigor p follows. m

6.5 The random policy

In the last two sections, we formalize the folk theorems under the IRM for the miss rate
and the output of a cache under the random policy and the pdlicyespectively.
According to the random policy, when the cache is full, the document to be evicted

from the cache is selected randomly according to the uniform distribution. When the
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input to the cache is the IRM with popularity pmf the cache statesS;, t =0,1,...}
form a stationary ergodic Markov chain over the finite state spacé/; ') [2, Thm.

11, p. 132]. Its stationary distribution is given by

[hana(s:2) = Exn(0) " 'p(in) - - pling) (6.11)

for everys = {iy,...,in} in A*(M;N) with normalizing constank, x (p) defined at

2.7).

6.5.1 The miss rate under the random policy

Under the IRM with popularity pmp, the corresponding miss rate is obtained from

(5.3) and (6.11) (see also [2, Thm. 11, p. 132]) as

. s 1) - -n(i 1 — ZM: i
Mpana(p) = — e aaan P - Y .M) ( =t 20 . (6.12)
Z{z‘l ..... ing YEA*(MN) p(ir) -+ p(in)

That (6.1) indeed holds for the random policy is contained in
Theorem 6.5 For admissible pmfg andq on N/, it holds that

MRand(q) S MRand(p) (613)

whenevep < q.

Proof. First, we note that

> p(ir) - plinv) = En(p). (6.14)
{i1ssin JEAX(MN)

It is also a simple matter to see that
M

> p(ir) -+ pliag) (1 = plin))

{’il ..... iA{}EA*(]\/[;N) k=1
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= > p(in) - pling) - >, (i)

{’il ..... iA{}EA*(]W;N) 7,¢{11 77777 i]v[}
= (M+1) > p(i1) -~ plinr1)
{il ..... i]w+1}€A*(M+1;N)
= (M +1)Eymi(p). (6.15)

Combining (6.14) and (6.15) through (6.12), we get

v EMH(P)
Mpana(p) = (M + 1) =212 6.16
R d(p) ( ) E]V[(p) ( )
and the miss raté/g,.q (p) is Schur-concave ip by Proposition 2.6 . [ ]

Under the IRM, it is well known [2, p. 132] that the FIFO policy yields the same
miss rate as the random policy, so that Theorem 6.5 holds for the FIFO policy as well.

In the special cas&/ = 1, any demand-driven policy reduces to the policy that evicts
the only document in cache if the requested document is not in cache. Specializing the

results for the random policy, Theorem 6.5 immediately leads to
Corollary 6.6 With M = 1, for admissible pmf® andgq, it holds that

M(q) < M,(p)

whenevelp < q under any demand-driven replacement poficy

6.5.2 The output under the random policy
As we report (6.11) into (5.5), we readily conclude that

Mpand(i;0) = Eun(®)™ > plir) - plin)

Evn-1(p") .
= LunalPd) N 6.17
Eyn(p) (6.17)
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wherep(® is the (N — 1)-dimensional vector (6.7) obtained from the pmby delet-
ing the component associated with documen€Consequently, (5.4) yields the output
popularity distribution as

_ () Bun-(p?)
S p(f) Evv-1(pD)’

PRand(7) i=1,...,N (6.18)

and Theorem 6.4 immediately implies

Theorem 6.7 Under the random policy, it holds that,, 4 < p.

As in the case of miss rate, for the special case= 1, by specializing the results

for the random policy, the output pmf is given by

p(i)(1 — p(i))
Y p() (1 = p(5))’

and Theorem 6.7 readily yields

pr(i) =

i=1,...,N (6.19)

Corollary 6.8 With M = 1, under any demand-driven replacement poticyhe popu-

larity pmf p. of the output is the pmp* given at (6.19) withp* < p.

6.6 The policy A,

Let o denote a permutation dfl, ..., N} which is held fixed throughout this section.
Such a permutation can be used to induce an ordering of the documents by consider-
ing that the documents(1),0(2),...,0(N) are “ordered” in decreasing order. With
this ranking of the documents, the poligy. can be defined as in Section 4.3 with the

eviction rule (4.6).
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6.6.1 Cache steady state under the policy,,

Under (4.3), every document is eventually requested with probability one, so that for

sufficiently large time, the cache5; under the replacement policy, is of the form

Spi=%X4+Y7 (6.20)

with
Y:={o(1),0(2),...,0(M — 1)} (6.21)

and
Y e ¥ ={o(M),...,0(N)}. (6.22)

As explained earlier, there is then no loss of generality in assuming that the cache is
indeed of the form (6.20)-(6.22), in which case the cache s$tate determined com-
pletely byY,”. Under the IRM, the rvdY,”,t = 0,1,...} form a stationary ergodic
Markov chain over the finite state spacewith stationary distributioq 7, (), y € ¥}

described in the following lemma.
Lemma 6.9 The limits

fm PV =y, Ry = 2] = mo(y)p(x), (z,y) € N x X
exist with

Raly) = lim P Y7 = y] = % yEs (6.23)

The proof of Lemma 6.9 is omitted as it mimics the derivation of a similar result for
the policy Aq [24, Thm. 6.3, p. 268]. Note that (6.23) defines a prgfon X¢, which is

simply theconditional pmf induced or:© by the pmfp.
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6.6.2 The miss rate under the policyA,

Under the IRM with popularity pmp, it follows from Lemma 6.9 and the expression

(5.3) that the miss rate under the polidy is given [24, Thm. 6.4, p. 269] by

SN ()’
i=M Zi]\;M p(o(i)) .

From the expression (6.24), it is not hard to see that the folk theorem (6.1) for miss rates

(6.24)

under the policy4,, does not hold in general. However, it does hold under a well-known
instance of the policy,,, the policy Ay, defined earlier in Section 4.3. This poligy is
simply the policyA,- where the permutation* of {1, ..., N} orders the components of
the underlying pmp in decreasing order, i.ep(c*(1)) > p(c*(2)) > ... > p(c*(N)).

The analog of Theorem 6.5 for the poliey is given in
Theorem 6.10 For admissible pmfg andq on N, it holds that
Ma,(q) < Ma, (p) (6.25)

whenevep < q.

Proof. The policy Ag is known [2, 24] to minimize the miss rate for the IRM amongst
a large class of demand-driven policies, including the policies (4.6). In particular, we
have

~

Ma,(p) = min M, (p) (6.26)

1=1,..., !

where{o;,7 = 1,..., N!} is a collection of all permutations dfl, ..., N}. Further-

more, for any permutationm of {1, ..., N}, we can rewrite (6.24) as

o (ENpe) = S p(e))
MoAp) = SC0)
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N S @)

ZﬁiMp(U(i))
_ Byt o(p))
Ei(t-o(p))
= 20y(t-o(p)) (6.27)
where the elemerttof ]Rf isspecifiedby; = ... =ty =0andty;, =... =ty = 1.
The mappingh : R™ — R : y — min(y,...,yn) is clearly increasing, sym-

metric and concave, while the mappithg is concave oer by Proposition 2.6. Com-
bining these facts with (6.26) and (6.27), we conclude by Proposition 2.8 that the miss
rate functional under the policy, is indeed Schur-concave in the pmf vector and the

desired result follows. [ |

Without surprise, Corollary 6.6 also follows from Theorem 6.10 (with= 1).

6.6.3 The output under the policyA,
From the expression dfr,(y),y € ¥¢} provided in Lemma 6.9, we obtain

, 0 ifieX
my(i;p) =
1—m,(i) ifigy

and Theorem 5.2 yields the output popularity distribuggras

_ 0 ifieX
py (i) = (6.28)

pO(-mo(@) it -
oGy EE

Sincep’ (i) = 0 wheneveri belongs toX, it is more natural to seek a comparison

betweerp’ (viewed as a pmf o) and the conditional pmé,.

Theorem 6.11 Under the policyA,, it holds thatp?, < .
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Proof. We rewritep; in (6.28) as a function ofr, by dividing its numerator and

denominator by .5, p(j). This yields

py 7o () (1 — 74 (4)) :
po(t) = : —, L&
V= S em i -mG) ' F
With Lemma 2.4 in mind, we take andy to be the elements dR™~**! given by

y = 7, andx; = m,(i)(1 — 7,(7)), i ¢ X, in which case

B (1—mi)™h, ign (6.29)

X
Pick distinct; andj not in 3. From (6.29), we see th% > ";—j if and only if
7,(1) > 7,(j), and the assumptions of Lemma 2.4 will hold if we can showthat z;
wheneverr, (i) > 7,(j). The analysis proceeds along two cases:

Case (a) — Assume, (i) < 1/2. With 1/2 > 7,(i) > m,(j), we find

zi = o (i)(1 = 76(1)) 2 7o ()(1 = 7m0 (j)) = x;

by the increasing monotonicity of the mapping- p(1 — p) on the interval0, 1].
Case (b) — Assume, (i) > 1/2, in which casel/2 > 1 — n,(i) > m,(j) since
Yres To (k) = 1. We readily arrive at the conclusian > x; by applying the argument
in Case (a) td — 7, (i) and7,(j).
The assumptions of Lemma 2.4 are satisfied and we get the desired result with

T = p,andy = m,. [

Corollary 6.8 is also obtained from Theorem 6.11 (with= 1) as expected.
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Chapter 7

Random On-demand Replacement Algorithms (RORA)

We now introduce a large class of demand-driven eviction policies cRadom On-
demand Replacement Algorithms (RORA), and show that the folk theorems for the miss
rate and the output of a cache hold under this class of policies when the input to the
cache is the IRM. This class of policies generalizes many well-known caching policies,
e.g., the random and FIFO policies, as well as the optimal policy Moreover, the
Partially Preloaded Random Replacement Algorithms proposed by Gelenbe [35] form a

subclass of RORASs.

7.1 Defining RORASs

A RORA policy follows the demand-driven caching rule (4.4) (under the customary
assumption that the cache is initially full) and is characterized by an eviction/insertion
pmfron{l,..., M} x{1,..., M} which we organize as th&/ x M matrixr = (ry),

i.e., for eachk,?/ = 1,..., M, we haver,, > 0 and>+., >0, re = 1. The RORA
associated with the pmf matrix is denoted RORA(), and often referred to as the
RORA(r) policy.

We select the cache stdbe at timet to be an elemertty, . . ., i5,) of A(M; ) with

54



the understanding that documepis in cache at positiok = 1, ..., M, attimet. The
RORA(r) policy implements the following eviction rule: Introduce a sequence of i.i.d.
rvs {(X:, Y:), t = 0,1,...} taking values in{1,..., M} x {1..., M} with common

pmfr,i.e., foreachh =0,1,..., we have
Pl(X,Y:) = (kO] =rk, kt=1,...,M.

The sequences of Vg X;,Y;), t = 0,1,...} and{R;, t = 0,1,...} are assumed

mutually independent. The documéntto be evicted at timeis given by
Ut = ]. [Rt ¢ Sf] iXt'

We havel; = 0 whenever the requested document is in the cache i, ez, .S;), in line
with the convention that no replacement occurs and the cache state remains unchanged,
e, =Q.

Next, if the requested document is not in the cache (Re.¢ S;) and (X;,Y;) =
(k,?), thenU, = i, i.e., the document at positidnis evicted, and the new document is
inserted in the cache at positiénif & < ¢, the documents, .+, . . ., i, are shifted down
to positionk, k + 1...,¢ — 1 (in that order) while ifk > ¢, the documentsy, ... i;
are shifted up to position+ 1, ...,k (in that order). Whert = ¢, the new document
simply replaces the evicted document at positon

Observe that the document initially at positibm the cache willhever be replaced

alk=1,...,iandl=14,..., M
e =0 for and (71)
all=1,...,iandk =1i,..., M.
If we use row: and columni to partition the matrix- into four blocks, then condition

(7.1) expresses the fact that the entries in the northwest and southeast'avarsish

Iwith the understanding that the positionref is at the lower left corner of the matrix
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(including row: and columr). Let X,. denote the set gdositions in the cache with the
property that any document initially put there will never be evicted during the operation

of the cache, i.e.,
Yro={i=1,...,M: Eqn. (7.1) holds at}. (7.2)

Under the IRM with popularity pmp, the cache state§;,t = 0,1,...} form a
Markov chain on the state spadgM; N'). The ergodic properties of this chain are
determined by whether the S8t is empty or not. This is done in Lemmas 7.1 and 7.2
in the next two sections. These basic results are established in Appendix A.

Throughout the discussion below we always assume that the cach®/ sarel the
number of cacheable documentssatisfy M + 1 < N. We do so in order to avoid
technical cases of limited interé&stn addition, the input to the cache is assumed to be

the IRM.

7.1.1 Casel

The setX,. is empty, so thatevery document in cache is eventually replaced, i.e., for
eachi = 1,..., M, there exists a pait, ¢ (possibly depending ot) with either1l <

k<i</i{< Morl</{¢<i<k< M suchthat
e > 0.

Here are some well-known policies which fall in this case: Téamdom policy corre-
sponds to RORA() with r given byry,, = 5; for eachk = 1,..., M. TheFIFO policy
also belongs to RORA with two possibilities fer namelyr,,; = 1 orry;; = 1. The

first (resp. second) choice corresponds to the cache(state. , i),) being loaded from

2This is discussed in some details in Appendix A.
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left to right with documents ordered from the oldest to the most recent (resp. from the
most recent to the oldest).
In this case, the Markov chaif2,,t = 0,1,...} is ergodic on the state space

A(M; N); its stationary distribution exists and is given in the following lemma.

Lemma 7.1 Assume the input to be modeled according to the IRM with popularity
pmfp. For any RORA¢) policy in Case 1 with:,. empty, the cache staté$),,t =
0,1,...} form an ergodic Markov chain on the state spacé/; N') with stationary

pmfonA(M;N) given by

1
pr(s;p) = lim => 1[Q, =s] a.s.

oot T=1
= C(p)~'plir)pliz) - - plins) (7.3)
for everys = (i1, ..., in) in A(M;N') with normalizing constant
C(p) == > p(i1)p(ia) - - - plin). (7.4)

(i1-int ) EA(MN)

Note that the stationary pmf is tisame for all RORAs in Case 1.

7.1.2 Case?2

The set:,. is not empty, and some documents, once put in cache, will never be replaced
during the operation of the cache, i.e.{df = (i1,...,iy), thenforallt = 1,2,.. .,

with €, = (j1,...,Jm), We have
Je = 1y, (e X,. (75)

Here are some examples of RORA policies in that category: For a permutation

of {1,..., N}, the policy A, evicts the “smallest” document in cache with documents
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o(1),0(2),...,0(N) “ordered” in decreasing order. The documemnts),...,o(M —
1), once loaded in the cache, will remain there, and in the steady state, the cache under
the policy A, will contain the documents(1),...,0(M —1).

This behavior can be recovered through the RORAYolicy with matrixr of the
form ry, = 1 for somek = 1,..., M, in which case®,. hasM — 1 elements, namely
{1,...,k =1, k+1,...,M}. If the documents(1),...,0(M — 1) are initially put
in cache (i.e., preloaded) at the other positiéns k in X,., this RORA¢) policy will
behave like the policy, in its steady state regime. The steady state behavior of the
cache under the policy, is that of the RORA) policy above, this time, the preloaded
documents being th&/ — 1 most popular documents.

To describe the long-run behavior of the cache stéfgst = 0,1, ...}, we go back
to (7.5). First, with initial cache stat® = (i1,...,4y) in A(M;N'), we denote by

¥-(s0) the set of initial documents with positionsih, i.e.,
Yr(so) :={ig: L€ X} (7.6)
Next, we introduce the component
A7, s0) :=={(1,--,Jm) EAM;N) = jo=1iy, L € 5,}. (7.7)

In view of (7.5), once the cache state isAtir, s¢), it remains there forever. In fact
all the states in the componentr, sy) communicate with each other, and this set of
states is closed under the motion of the Markov cHam,¢ = 0,1,...}. Given that
%,| = m, there are(ﬁ:%) (M —m)! elements in\(r, s,) and there ar&éﬁi)m! distinct
components which form a partition of( M; NV).

As a result, when restricted to(r, s), this Markov chain is irreducible and aperi-

odic, and its ergodic behavior can be characterized as follows:

Lemma 7.2 Assume the input to be modeled according to the IRM with popularity pmf
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p. Forany RORA¢) policy in Case 2 withy.,.| = m and initial cache state, the cache
states{();,t = 0,1, ...} form an ergodic Markov chain on the componaift, s,). In

particular the limit
1 t
fso (S; D) = Jim i Y 1[Q, =53] as. (7.8)
o0 T=1
always exists for every = (iy, ..., in) in A(M;N') and is given by

Mr750<s;p) _ §T<p7 50)_1p<i1)p(i2) o p(ZM) , SE A(T’, SO) (79)

. s ¢ A, sg)

with normalizing constant

Cr(p, s0) == | Z p(i1)p(iz) - plinr)- (7.10)

From (7.7), we note the simplification

frso(s:P) = Cr(pyso)™ I plic) (7.11)
1eZ3r (0)
for eachs = (iy, ..., iy ) in A(7, s¢) with normalizing constant
Cr(p,s0) = D] IT »Go). (7.12)

(21,5501 )EA(T,50) 10 E X (50)

7.2 The miss rate under RORAS

7.2.1 Casel

Fix s = {i1,..., i} in AX(M;N), and letA(s|M; N') denote the subset df(M; N)
defined by

AGSIMNY == (G, ogint) € ADGNY) = Lt oo guey = {in, oo ing}y . (7.13)

59



By Lemma 7.1, the limit (5.1) exists and is given by

pr(s;p) = lim = > 1[S; =s] a.s.

= > C(p) ' p(ir)p(2) - - p(jar)
(J1s--rdnr ) EA(S|MN)

= C(p)""M! - p(ir)p(iz) - - - p(in) (7.14)

with normalizing constant’(p) given by (7.4). The last equality at (7.14) follows from
the fact thatA(s|M; N)| = M.

Using (7.14) in conjunction with Theorem 5.1, we readily conclude that under the
RORA(r) policy of Case 1 the miss rate (4.8) for the IRM exists as a constant which
is independent of the initial cache state To acknowledge this fact, we simply denote

this limiting constant bylZ,.(p). Specializing (5.3) leads to

M.(p) = C(p)"'M! > pin) ---pling) Y pli)

{i1yeeying JEAX (MN) i@ {1, ing }
= C(p) "(M +1)! > p(ir) - pling41)
{itssim1 JEA* (M+LN)
= Cp) " (M +1)! Exvan(p) (7.15)

while the normalizing constarif(p) given by (7.4) can be simplified as

Clp) = > p(i) - plin)

(41,5001 ) EA(MN)

= M! > p(ir) -+ plin)

{i1 ..... i[\/j}EA*(M;N)

Combining (7.15) and (7.16), we finally get

EM+1,N<p)

= (M + 1)®p41,n8(P) (7.17)

and a straightforward application of Proposition 2.6 yields
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Theorem 7.3 Under any RORA() policy in Case 1, for admissible pmfsandq on
N, it holds that
M.(q) < M.(p) (7.18)

whenevelp < q.

7.2.2 Case?

Consider now the RORA{ policy under Case 2 when the st is not empty, say with
|¥r| = m for somem = 1,..., M — 1, and let the cache be initially in statg in
A(M;N). By Lemma 7.2, foreach = {iy, ..., iy} in A*(M;N) the limit (5.1) exists

and is given by

N 1Y
:ur,so (Sﬂp) = tligl; ; Z 1 [ST = 5] a.s.
=1
= > 5o (55 D) (7.19)

s'=(j1,..jnr ) EA(8]7,50)

whereA(s|r, so) denotes the subset afr, sy) defined by
A(s|r,s0) == {1y, Jm) € AMryso) : {d1, -y im} = i1, im}}.  (7.20)
The setA(s|r, so) is non-empty if and only if
Yr(s0) C {i1, .. yin} (7.21)

andy;. . (s; p) = 0 whenever this inclusion (7.21) does not hold. With this in mind, we

define
AN (r,s0) :=={s={i1,...,in} € A*(M;N) : Egn. (7.21) holds at}. (7.22)

Going back to (7.11) and (7.12), we now conclude that for eaeh{iy, ..., i)/} in

A*(r, sp), it holds

Hiso(5:P) = 2 Crposo) 1T »(e)

(J1,--d ) EA(s|7r,50) Je#tZr(s0)
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= s M —m)- T pl) (7.23)
i¢E3r (s0)

where in the last equality we combine the f&gt, ..., ja} = {i1, ..., in} With (7.21),
and then made use of the identity(s|r, so)| = (M — m)!.

Now, using (7.23) in conjunction with Theorem 5.1 we see that under the REIRA(
policy of Case 2 the miss rate (4.8) for the IRM exists as a constant vdepemds on
the initial cache state,. We record this fact in the notation by denoting this limiting

constant b)M,,,(p; s0). As in Case 1, specializing (5.3) leads to

~

My(p;s0) = Cp(p,so) (M —m)! > I »pG) > @)

{i1,-sin FEAX(7,50) 1 E 2 (S0) i{i1,in }
= C’;(p, 50)71<M —m + 1)' . EM—m+1,N(t . p) (724)
where the elemerttin ]Rf is specified by; = 0 for ¢ being a document i&.,.(sy) and
t; = 1 otherwise. Moreover, by the same arguments as in Case 1, we can simplify the
normalizing constant’.(p, so) as

C':“(pa 80) = Z H p(w)

(41,5001 ) EA(7,50) 10E%r (50)

= (M —m)! > [T »()

{il ..... i]w}GA*(’r’,S()) ngEr(SO)

with the element given as above. It then follows from (7.24) and (7.25) that

y Eviem t-
) = ) S

= (M —=m+1)®y_mn(t-p) (7.26)

Clearly, the documents iB,.(so) do not contribute to the miss rate since they never
generate a miss once loaded in cache — Thiggardless of the order in which they
appear in the cache statg. This intuitively obvious fact is in agreement with the

expression (7.26) from which we see that for any two initial cache stgtaad s in
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A(M; N) with £,.(so) = Z,(s}), we have the equality/,.(p; so) = M, (p;s}). As a
result, we shall find it appropriate to denote this common valuéfbxr(so)(p).

For any pmfp on \V, let ¥*(p) denote the set of thex most popular documents
according to the pmp. Equipped with the expression (7.26), we are now ready to

establish the key result for RORA policies in Case 2.

Theorem 7.4 Under any RORAf) policy in Case 2 with.,.| = m for somem =
1,...,M — 1, for admissible pmfg andq on N, it holds that

M, 5+(q)(@) < My s (p)(P) (7.27)

whenevep < q.

Proof. The desired result will be established if we can show that the miss rate function
p — Mr,Er(so)(p) as given in (7.26) is Schur-concave wheneygis selected so that
Se(50) = 2*(p).

As we can always relabel the documents, there is no loss of generality in assuming
p(1) > p(2) > ... > p(N), whencex*(p) = {1,...,m} and the elementin (7.26)
can be specifiedas = ... = t,, = 0 andt,,,; = ... = ty = 1. By Proposition 2.6,
the mapping®,,_,.+1,v is increasing and Schur-concave BY, and by virtue of the

defining property ob*(p), we have

~

My ssp(P) = min (M —m+ 1)®ppmyi1n(t-0i(p)) (7.28)

i=1,...,N!
where{o;,i =1,..., N!} is a collection of all permutations dfi,..., N}.
The mappings : R" — R : y — min (y1,...,yn) is clearly increasing, sym-
metric and concave, while the mappidg,;_,,+1, v IS concave oriRiV by Proposition

2.6. Combining these facts with the expression (7.28)7%,@*(1,) (p), we conclude by
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Proposition 2.8 to the Schur-concavity (in the pmf vector) of the miss rate functional

(7.26) under the RORA policy whex,(s¢) = X*(p). u

7.3 The output under RORAs

We now discuss the popularity pmf of the output generated under the RORA policies

still under the assumed IRM input stream.

7.3.1 Casel
As we invoke Theorem 5.2, we can make use of the expressions (7.14) into the relation
(5.5). Foreach =1,..., N, thisyields

m.(i;p) = >, C(p) "M p(i)p(iz) - - pline)
SEAF(MN)

Eyn_1(p?)

Eain(p) (7.29)

where the last equality follows from (7.16) and by recalling the definitiop@fgiven
at (6.7). Reporting (7.29) back into (5.4), we conclude that the popularitygjinof
the output produced by the RORA(policy in Case 1 is indeed of the form (6.8), and

Theorem 6.4 gives us
Theorem 7.5 Under any RORA() policy in Case 1, it holds that;. < p.

By going back to the proof of Theorem 6.4, the reader will readily check from (7.29)

that the RORA(¢) policy in Case 1 is indeed a good policy.
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7.3.2 Case?

Assume|X,.| = m for somem = 1,..., M — 1, and let the cache be initially in state
so in A(M; N'). We define the pmfr on 3,.(so)° to be theconditional pmf induced on
Yr(s0)¢ by p; itis defined as

p(i)
ZjeEr(so)C p(j) 7

(i) =

i € Solso)C. (7.30)

For alli in X,.(so), it is clear thatn,. ,,(i; p) = 0 while for document not in X,.(so)¢,

with the expression fou;. . (s; p) givenin (7.23), we find

Myso(3P) = > Cuposo) (M —m)! - T[] pli)
sEA*(r,50): i¢s 10¢Xr(s0)
By (Y- p)
B Evmn(t? - p)

(7.31)

where the element?) andt® of RY are specified byg-l) = t§2) — ( for j being a
documentir®,.(so), t{" = 0, = 1andt!" = ¢’ = 1forall j # i being a document
in 3,.(s0)¢. In the second equality we made use of the expression (7.25).

On revisiting the proof of Theorem 6.4, we note that for distingtin ,.(s¢)¢, we
havem,. 5, (i; p) < m..s,(j; p) whenevep(j) < p(z). Consequently, since,. s, (i; p) =
0 for all 7in X,.(s0), we conclude that the RORA policy in Case 2 is a good policy if the

documents irt,.(so) are them most popular documents, i.&,.(sg) = *(p).

Combining (7.31) with (5.4), we immediately get

0 if i € X(s0)

Tr(i)E]\'f—m,N—m—l(ﬂ-“)) 1 )
ZjeZ(so)c () EM —m,N—m—1 (7)) It 4 ¢ 2(80)'

Prso (1) = (7.32)

Sincep;. ,, (i) = 0 whenever belongs td”,.(so), it is more natural to seek a comparison

betweenp;. , and the conditional pm#k-.

65



Theorem 7.6 Under any RORA) policy in Case 2, it holds that;. . < .

Proof. The arguments are essentially those given in the proof of Theorem 6.4. We
immediately obtain the desired result upon identifyingnd,.(so)¢ with p and A in

Theorem 6.4, respectively. [ |
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Chapter 8

Self-organizing Policies

In this chapter, we investigate the folk theorems under the IRM for the miss rate and
the output of a cache operated by well-known self-organizing policies, namely, the LRU
and CLIMB policies. The LRU and CLIMB policies are described in Section 4.3. From
the positive results achieved under the RORA policies, one might expect that the folk
theorems would hold under these two self-organizing policies. However, both folk the-
orems for the miss rate and the output under the LRU and CLIMB policies fail to hold
in general. Nonetheless, as we restrict ourself to the class of IRM inputs with Zipf-
like popularity pmf (6.4)-(6.5), simulation results and asymptotics suggest that the folk
theorems might hold under the IRM with this class of popularity pmfs.

We now discuss the results for the LRU and CLIMB policies, respectively.

8.1 The miss rate under the LRU policy

Under the IRM with admissible popularity prgf it is known [2, Thm. 9, p. 130] [24,
Thm. 6.5, p. 272] that the LRU cache sta{és, ¢ = 0, 1, ...} form a stationary ergodic

Markov chain over the finite state spatéM; \') with stationary distribution given by

prru(s;p) = lim = > 1[Q, =s] a.s.
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pli1) -~ - plin)
L5 (1= X p()) (8.1)

for everys = (iy,...,iy) in A(M;N). Consequently, the limit (5.1) exists for each

s={iy,...,ipy INA*(M;N) as

t—o00

* : 1
piru(s;p) = lim n Y 1S, =5 as.
T=1

B Z p(j1) - p(im) (8.2)

M—1 k .
Giseening ) EA(s| MN) LlE=1 (1 =320 p(je))

whereA(s|M; N) is defined at (7.13).
The miss rate of the LRU policy under IRM can then be evaluated from (5.3) (see

also [2, Chap. 4]) as

plin) - pliar) (1 = S0 p005))

Mn®)= e TS ) &3
If instead we use (5.2), as we note that
SEA;U\;;N) ((ﬁ ..... jM>§e:A<s|M;N> - ) - seA%\:/[;/\/) o
it is now plain that
N . .
Mino(p) = Sop(0) Y ) i) 8.4)

=1 seA;(MN) TS (1= p(ie)
8.1.1 A counterexample

Contrary to what transpired with RORA policies, the miss rate under the LRU policy is
not Schur-concave in general, and consequently the folk theorem (6.1) does not hold.
This is demonstrated through the following example developedfet 3 and N = 4:

In this case, simple algebraic manipulations transform (8.3) into the simpler expres-

sion

- 2p(1)p(2)p(3)p(4)
I _ . 8.5
Lru(P) (ihig)ez/;@w) (1 — Z?le(ij)) (8.5)
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Figure 8.1: LRU miss rate whel = 3, N =4,y = p(3) = p(4) = 0.05, p(1) = =

andp(2) = 0.9 — p(1)
We evaluated the expressions (8.5) for the family of pmfs

1
p(z,y) = (z,1 -2y — z,y,y), 0<y<y (8.6)

with z in the interval5 — y, 1 — 3y]. Under these constraints, the components of the pmf
p(z,y) are listed in decreasing order and for any giyeit holds thatp(x, y) < p(z/, )
wheneverz < 2’ in the interval[ — y,1 — 3y]. Therefore, if the miss rate under the
LRU policy were indeed a Schur-concave function in the popularity pmf, the functions
& — Mygru(p(z,y)) should be monotone decreasingion the interval; —y, 1 — 3y].
Figures 8.1 and 8.2 display the numerical valued/f.; (p(z,y)) as a function of:
with y = 0.05 andy = 0.01, respectively. In both cases, the miss rate of the LRU policy
is not monotone decreasing inon the rangé% —y, 1 — 3y, with the trend becoming
more pronounced with decreasingln short, the miss rate is not Schur-concave under

the LRU policy.
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Figure 8.2: LRU miss rate whel/ = 3, N =4,y = p(3) = p(4) = 0.01, p(1) = =
andp(2) = 0.98 — p(1)
8.1.2 LRU miss rate and IRM with Zipf-like popularity pmfs

While the miss rate isot Schur-concave under the LRU policy, the desired monotonicity
(6.1) is nevertheless true in an asymptotic sense when the popularity pmf is restricted to

the class of Zipf-like pmfs.

Theorem 8.1 Assume the IRM input to have a Zipf-like popularity pmf for some
a > 0. Then, there exists* = o*(M,N) > 0 andA > 0 such thaﬂ\ZLRU(pﬂ) <
Myru(p,) whenever* < a anda + A < 6.

This result is a byproduct of the asymptotic equivalence

. MLRU(P )
1 Mo/ _ 9 8.7
a1—>nc}o (M + 1)—@ ( )
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established in Appendix B.1. Indeed, for everyn the interval(0, 1), there exists

a*(M, N) > 0 such that forx > o*,

MLRU(p)
l—e< ———%_ 1] ) 8.8
Sy F 88)

Thus, fora* < a < 3, we conclude that

1— M, 1
IS ‘ (M—I— 1)/6—04 < ALRU(pa) < +¢€ ) (M+ 1)ﬁ—a (89)

L+e Miru(pg) — 1€

and the desired result follows wheneyer o > A with A > 0 selected such that

I+e
1—e

(M +1)2.

Of course such a selection is always possible.

We have also carried out simulations of a cache operating under the LRU policy
when the IRM input has a Zipf-like popularity pmaf,. The number of documents
is set atN = 1,000 while the cache size i8/ = 100. The miss rate of the LRU
policy is displayed in Figure 8.3 and 8.4 for smal(0 < o < 1) and largex (a > 1),
respectively. It appears that the miss rate is indeed decreasing as the skewness parameter
« increases across theatire range ofa. This suggests that the folk theorem for miss
rates probably holds under the LRU policy when the comparison is made within the

class of Zipf-like popularity pmfs, hence the following

Conjecture 8.2 For arbitrary cache sizkl and number of document$, the function

o — Miru(p,) is strictly decreasing of), co).

We choose simulations over numerical evaluation of (8.3) because this expression is not suitable for

numerical evaluation due to a combinatorial explosion, as pointed out in [33].
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8.2 The output under the LRU policy

With the expressions (8.1) for the LRU cache stationary distribution under the IRM, it

is a simple matter to check for eath- 1,..., N, that

mrru(i; p) = > wwru(s;p)
seN;(M;N)
Z p(“) o '])(Z]w) (810)

s€A;(M;N) o' (1 - Zle p(ij))
Theorem 5.2 then gives the output popularity pmf in the form

Ty p(i) p(i1) - plin)
pirull) = =———— - , (8.11)
e Myru(p) seA%w;N) 5t (1 =325 p(i;))
foreachi = 1,..., N, as we make use of (5.8).

8.2.1 LRU is a good policy

We begin with a positive result.

Lemma 8.3 The LRU policy is a good policy.

Proof. Pick distincti, j = 1,..., N with p(j) < p(i). We need to show that

mrru(i;p) < meru(J: p)- (8.12)

We begin by writingmry(i; p) as
miru(i; ) = > prru(s;p) + > prru(s; p) (8.13)
sEN;(M;N): jes sEN;(M;N): jés

with a similar expression fon gy (j; p). The fact that the sefss € A;(M;N) : j & s}
and{s € A;(M;N) : i & s} coincide leads to

mrru(t; ) — meru(J;p) = > prru(S; )
sEN;(M;N): jes

- Z pLrU(S; D). (8.14)
s€N;(M;N): i€s
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The sets{s € A;(M;N) . j € syand{s € A;(M;N) : i € s} can be put into
one-to-one correspondence with each other as follows: Each eleménthe former
set does not containbut contains;j in exactly one position, say positionfor some
k= 1,..., M, with all other positions occupied by neithenor j. Thus, with such
an element we can associate an elemérs) in A;(M; ) by substituting for j at
positionk and letting all other positions unchanged. This elenT&d now contains
but not;j anymore, and is therefore an element of the latter set. Moreover, for such an

elementl’(s) it holds that

prru(s;p) < prru(T(s); p) (8.15)

as a consequence of the assumptiof) < p(i) and of the expression (8.1). With these

observations in mind, we find that

Z prru(s;p) = Z prru(T'(s); p)
s€N;(MN): i€s sEN;(M;N): jEs
> > wru(s;p)

SEN;(M;N): jEs

and the conclusion (8.12) is now immediate via (8.14). ]

8.2.2 Counterexamples

In view of Lemma 8.3, it is tempting to expect that the majorization compap$pp <
p also holds under the LRU policy. This is not true in general as the following coun-
terexamples show: Fiy = 2,3,.... Assume that the input to the cache is the IRM

with popularity pmfp, where we set

p.=(1—(N—-1ge,...,e) (8.16)
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for some0 < ¢ < +.. Note thatp.(1) > p.(2) = --- = p.(N), and ag — +, the pmf
p. approaches the uniform distributianwhile ass — 0, it degenerates t, 0, . .., 0).
Indeed, from Lemma 2.5, we find that < p., whenevek, < <.

Under the LRU policy, it is plain from (8.10)-(8.11) that the output popularity pmf

Piru.. is of the form
pi=(1— (N —1)(e).8(e),....0(e))- (8.17)

for some mapping : (0, +] — (0, ). Because of their special structures, (8.16) and
(8.17), the comparison between andp; ;. depends only on the value 6fc); this

fact is stated in

Proposition 8.4 For each) < ¢ < % letp, andp: be the pmfs of the form (8.16) and

(8.17), respectively.

(i) If 0 < 6(e) < ¢, then the comparisgp. < p: holds;

(i) If e < 6(e) < 4=5, then the comparisop: < p. holds;

(i) If =5 < é(e) < min(1 — (N — 1), ), then neither the comparisgn < p,

nor the comparisop_ < p: holds; and

(iv) If min(1 — (N — 1), 5+5) < 6(¢) < w5, then the comparisop, < p; holds.

Proof. Fix0 < ¢ < . The discussion is separated into 2 cases, namely<{aj(e) <
~ and (b)+ < d(e) < 7
Case (a) — With) < d(¢) < +, we note thap:(1) > p%(2) = --- = pi(N). By

Lemma 2.5, the comparis@t < p, (resp.p. < p}) holds whenever

5(e) > (<) =, (8.18)



and Claim (i) is obtained.

Case (b) — Wher; < 6(¢) < w7, we haveps(1) < p(2) = --- = p5(N). In this
case, the conditions (2.1) for the majorization comparigdx p. (resp.p. < p;) are
simply

ko(e) + (N —k)e <(>) 1, k=1,...,N—1 (8.19)

Becausei(¢) > ¢ in this case, the left-hand side of (8.19) is monotone increasiig in

From this observation and (8.19), the comparipor< p, will hold if

1—¢
< :
6(e) < 57— (8.20)
while the comparisop, < p? will hold if
) >1— (N —1)e. (8.21)
However, neither the comparis@n < p’ nor the comparisop’ < p, holds if
LT @) <1 (N—1) (8.22)
N_1 £ g. .

Combining (8.18) and (8.20) yields Claim (ii). Upon recalling that) < -, we

N-1"

obtain Claim (iii) and (iv) from (8.22) and (8.21), respectively. [ |

Using Proposition 8.4, we show under the LRU policy that it is possible to find some

0 < & < & such thati(e) > 1=, and thus the desired comparispfy,; . < p. does

not hold. This resultis given in the following theorem: its proof is available in Appendix

C.1.

Theorem 8.5 Assume the IRM input to have the popularity ppiffor some0 < ¢ <

%. Under the LRU policy, whenever

(Zéﬁ;l Nl_g> -1

0<e< (Eé‘i{lj\%g) ,

(8.23)
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the comparisomp;ry . < p. does not hold provided that the number of documéits

and the cache sizel satisfy the conditioy ;" ;" -1, > 1.

For example, if we tak@_ with parametersV = 10 andes = 0.05 and set the cache
size M = 8, a simple calculation yield§¢) = 0.1111 and the assumptions of Theorem
8.5 are satisfied. Thus, the compariggh; . < p. does not hold. However, the entropy

of p. is smaller than the entropy gf ., i.€.,
0.7283 = H(p.) < H(piry,.) = 0.9554.

This suggests thaij z; . is more balanced tham. in the sense of entropy comparison.
Hence, even though the comparison in the majorization ordering does not hold, the
entropy comparison might still be valid. This should not come as a surprise since the
majorization comparison is a stronger notion than the entropy comparison.

As for the case of the LRU miss rate, we would expect that the compasisen=< p
under the LRU policy would hold within the class of IRM inputs with Zipf-like popular-
ity pmf p,. However, this is not the case as the following example demonstrates: With
M = 3 andN = 4 under the Zipf-like popularity pmf (6.4)-(6.5) with = 3, we have
computed the output popularity pmf under the LRU policy using (8.11). The numerical

values of both input and output popularity pmfs are given in Table 8.1.

Table 8.1:p, andp;gy , under the LRU policy when the IRM input has a Zipf-like

popularity pmfp,, with parametery = 3
i 1 2 3 4

P, 0.8491 0.1061 0.0314 0.0133
Piru. 0.0118 0.2031 0.3853 0.3998

By the definition of majorization (2.1)-(2.2), the comparigei; , < p, requires

. N |
i, pa(i) < min, ppgy o (1), (8.24)
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in clear contradiction with Table 8.1, and therefore does not hold. On the other hand,

the comparisop,, < piry,, is not valid either since it calls for the unmet requirement

Jnax, pa(i) < max pipya(i). (8.25)

In short,p,, andpiry; , @are not comparable in the majorization ordering. This situation
does not represent an isolated incident as the next theorem shows; its proof is available

in Appendix B.2.

Theorem 8.6 Assume the IRM input to have a Zipf-like popularity pmpf for some

a > 0. If the number of documents and the cache sizel satisfy the condition
N < M!, (8.26)

then under the LRU policy, there exists = o*(M, N) such thapi ry ,, < P, does not

hold whenever > o*.

8.2.3 A conjecture

Theorems 7.5 and 7.6 were valid fal values ofM andV, and forarbitrary admissible

pmfs. While the counterexamples discussed earlier dash our hope to get an analogous
result for the LRU policy, the possibility remains, fueled by Corollary 6.8, that the pos-
itive result is nevertheless valid in some appropriate range of the paramétansl V.

We now explore this issue still with Zipf-like popularity pmfs (6.4)-(6.5).

Conjecture 8.7 Assume the IRM input to have a Zipf-like popularity pmf for some
a > 0. ForeachN = 1,2,..., under the LRU policy, there exists an integdr =
M*(a; N) with1 < M* < N such thapi ., < P, WheneveM =1,... M*.

In support of this conjecture, we have carried out simulations of the cache operating

under the LRU policy when the IRM input has Zipf-like popularity pmf with parameter
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a = 0.8,1and 2 andV = 1,000. We find the output popularity pmfs for different
values of cache size, namely = 10, 50, 100 and500. The resulting output popularity
pmfs in the original order of documents are shown in Figure 8.5, while the results after
rearranging documents in the decreasing order of their output probabilities are displayed
in Figure 8.6.

From Figure 8.6 (a), whea = 0.8, the comparisop;yy , < p, holds forM =
10, 50. This follows from the sufficient condition for majorization comparison provided
in Proposition 2.1. Indeed, from their respective plots, we observe that thepprafsd
Piru.. When arranged in decreasing order intersect only once, naghgly, ([i]) <
pali),i=1,...,k,andpipy o([i]) > pali),i = k+1,...,N,forsomek =1,... N~
1, wherepiry o ([1]) > Pirua((2]) > ... > piru.o([N]) are the components @f ., .,
arranged in decreasing order.

However, fora = 0.8 and M = 100, 500, despite the fact that in Figure 8.6 (@),
of both cases look uniform in the range where document rank is smallerMhahe
comparisornpiry ., < P, is invalid since the necessary condition (8.24) does not hold.
from the subfigure inside Figure 8.6 (a).

Fora = 1 anda = 2, by the same arguments, we conclude from Figures 8.5 (b)-(c)
and 8.6 (b)-(c) that the comparispfy; , < p, holds forM = 10 but does not hold for
other cache size&/ = 50, 100, 500. Therefore, these experimental findings agree with
Conjecture 8.7 and suggest that the valué/dfa; N) in Conjecture 8.7 decreases@s
increases. This last observation is supported by the observation thatfdr, bothp,
andpiry o are the uniform pmi: on V, thus the comparisopi i, < P, holds for all

M=1,...,N—1,whenceM*(0; N) = N — 1.
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Figure 8.5: LRU output popularity pmf with different cache siZgswhen the IRM
input has a Zipf-like popularity pmp,, with (a) « = 0.8, (b) « = 1 and (c)a = 2.

Documents are arranged in the original order of the inputpmf
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8.3 The miss rate under the CLIMB policy

Under the IRM assumption on the input, the CLIMB cache stafest = 0,1,...}
form a stationary ergodic Markov chain on the finite state spddé; \') with station-

ary distribution [2, p. 133] given by

1
peL(s;p) = Jlim ; Y1 =5 as.
T=1
1 M—t+1
= i) 8.27
Ko Hp( 0) (8.27)

for eachs = (iy,...,75) in A(M; N'), where the normalizing constant is simply

KCL — Z Hp(%)M—Z—I—I.

(i1,-eying ) EA(MN) £=1

The limit (5.1) then exists for each= {i, ... iy} in AX(M;N) as

1
poL(ssp) = Jim n Y 1S, =53] as.
T=1
1 T \M-t1
= w2 AleG)T (8.28)

KCL (J1se-sdnr ) EA(S|MN) £=1
The miss rate of the CLIMB policy under IRM can now be obtained [2, Chap. 4]

from (5.3) as

MCL@):K%L( > et (1—Zp<z‘j>) (8.29)

,,,,, i]\,[)EA(M;N) /=1 j:1

or from (5.2) as

. N 1M
Mow(p) =>_p(0) > o [IpG)™ " (8.30)
i=1 seA; (M;N) “HCL =1

8.3.1 A counterexample

As in the case of the LRU miss rate, the miss rate for the CLIMB policy is in gen-

eralnot a Schur-concave function, and thus the folk theorem (6.1) does not hold. We
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Figure 8.7: CLIMB miss rate whef/ = 3, N =4,y = p(3) = p(4) = 0.05,p(1) =z

andp(2) = 0.9 — p(1)

demonstrate this fact through the same counterexample developed for the LRU policy

in Section 8.1.1.

In that case, we sét/ = 3 and N = 4 and the expression (8.29) can be simplified

as

L 200Lel) (S p0%( - p()
Maw(p) = D (ininsis)eA @A) P(01)3p(i2)?p(is) (831

The numerical values of the expression (8.31) are evaluated for the family of pmfs (8.6)

with z in the interval[; — y,1 — 3y]. Under these constraints, it holds that:, y) <
p(2',y) wheneverr < z’ in the interval[ — y,1 — 3y] and for the CLIMB miss rate
to be Schur-concave, the functien— Mcy,(p(z, y)) must be monotondecreasing on
the intervall} — y,1 — 3y].

Figures 8.7 and 8.8 display the numerical valueMgt(p(x, y)) as a function of:

with y = 0.05 andy = 0.01, respectively. In both cases, the miss rate of the CLIMB
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policy is not monotone decreasing inon the entire range and thus the miss rate is not

always Schur-concave under the CLIMB policy.

8.3.2 CLIMB miss rate and IRM with Zipf-like popularity pmfs

Although the CLIMB miss rate isot Schur-concave in general, the desired monotonic-
ity (6.1) holds asymptotically when the popularity pmf of the IRM input lies in the class

of Zipf-like pmfs.

Theorem 8.8 Assume the IRM input to have a Zipf-like popularity pmpf for some
a > 0. Then, there exists* = o*(M,N) > 0 andA > 0 such thatMCL(pﬁ) <

Mcy(p,) whenever* < o anda + A < 6.
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Similarly to Theorem 8.1, this theorem is a by-product of the asymptotics

MCL (pa) _

i, T 32

obtained in the Appendix B.3.

In addition, we carry out simulations of a cache operating under the CLIMB policy

when the IRM input has a Zipf-like popularity prpf,. We set the number of documents

N = 1,000 and cache sizé/ = 100. Figure 8.9 and 8.10 show the miss rate of the

CLIMB policy whena is small 0 < a < 1) and large ¢ > 1), respectively. As for the

LRU miss rate, the CLIMB miss rate appears to be decreasing as the skewness parameter

« increases across the entire rangepthereby suggesting the following

Conjecture 8.9 For arbitrary cache sizkl and number of document$, the function

o — Mcy(p,) is strictly decreasing o), o).

8.4 The output under the CLIMB policy

8.4.1 CLIMB is a good policy

From the expression (8.27), for eachk 1,..., N, we have

me(i;p) = Z pen(s;p)
SGAZ(MN)
1
= Rt ln, Hp e (8.33)

and by Theorem 5.2,

peL(i) = P Z H )M (8.34)

foreachi = 1,..., N, where we have used the expression (5.8).
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Lemma 8.10 The CLIMB policy is a good policy.

Proof. The proof is essentially that for the analogous result for the LRU policy given

in Lemma 8.3. Here the validity of (8.15) follows from the expressions (8.27). m

8.4.2 Counterexamples

Again, Corollary 6.8 and Lemma 8.10 might have created the expectation that the ma-
jorization comparisompg,;, < p also holds under the CLIMB policy for arbitrary input
pmf p. This is not the case as we show by counterexamples when the IRM input has
the popularity pmfp, defined at (8.16). Under this IRM input, it is a simple matter to
see from (8.33) and (8.34) that the output popularity gigf . is of the form (8.17).

Therefore, by Proposition 8.4, the compariggn . < p, will not hold if 6(¢) > =
This is indeed the case wheris small enough; this result is demonstrated in the next

theorem whose proof can be found in Appendix C.2.

Theorem 8.11 Assume the IRM input to have the popularity pmffor some0 < ¢ <

%. Under the CLIMB policy, whenever

O<e<

e (8.35)

the comparisopg,, . < p. does not hold provided that the number of documéhend

the cache sizél satisfy the conditiolN > M > 2.

For instance, consider, with parametersV = 10 ands = 0.05 and set the cache
size M = 4. With these parameter§(c) = 0.1110 and the assumptions of Theorem

8.11 are satisfied. Thus, the compariggn . < p. does not hold. However, as was
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found in the case of the LRU policy, the entropy comparison is valid in that the entropy

of p, is smaller than the entropy f; _, i.e.,
0.7283 = H(p.) < H(p¢y,,.) = 0.9560,

suggesting thab,, . is more balanced tham. in the sense of entropy comparison.

We next give counterexamples when the IRM input has Zipf-like popularity pmf
(6.4)-(6.5). Assumé/ = 3, N = 4 and the IRM input has Zipf-like popularity pmf
(6.4)-(6.5) witha: = 3. With these parameters, we have computed the output popularity
pmf under the CLIMB policy using (8.34). The numerical values of both input and

output popularity pmfs are presented in Table 8.2.

Table 8.2:p, andpg;, , under the CLIMB policy when the IRM input has a Zipf-like

popularity pmfp,, with parametery = 3
i 1 2 3 4

p, 0.8491 0.1061 0.0314 0.0133
DPiL. 0.0027 0.1386 0.4000 0.4587

As in the case of the LRU policy, the pmgs, andp¢;, , are not comparable in the
majorization ordering. The arguments are similar to the one given for the LRU policy,
and are therefore omitted. Moreover, a result analogous to Theorem 8.6 holds for the

CLIMB policy. It is given next, with a proof available in Appendix B.4.

Theorem 8.12 Assume the IRM input to have a Zipf-like popularity ppf for some
a > 0. Ifthe number of documents and the cache sizd satisfy the condition (8.26),
then under the CLIMB policy, there exist$ = o*(M, N) such thapy,, , < p,, does

not hold whenevet: > o*.
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8.4.3 A conjecture

Here as well, we venture that a conjecture similar to Conjecture 8.7 is also valid for the

CLIMB policy when the IRM input popularity pmf is a Zipf-like distribution (6.4)-(6.5).

Conjecture 8.13 Assume the IRM input to have a Zipf-like popularity ppf for some
a > 0. ForeachN = 1,2,..., under the CLIMB policy, there exists an integdr =
M*(a; N) with1 < M* < N such thapg,, , < p, wheneveMl =1,... M*.

A number of simulation experiments have been carried out under the CLIMB policy,
as was done for the LRU policy, to support Conjecture 8.13. The discussion of the
experimental results shown in Figure 8.11 and 8.12 is similar to that given in Section

8.2.3 for the LRU policy and shall be omitted.
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Documents are arranged in the original order of the inputpmf
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Chapter 9

Comparing Temporal Correlations

As was done for popularity, it is natural to seek an appropriate notion which can capture
the strength of temporal correlations in streams of requests. Loosely speaking, temporal
correlations are understood as the likelihood that a document will be requested in the
near future, given that it has been requested in the recent past. Indeed, it is observed
in [56] that Web traces usually exhibit short-term temporal correlations in the sense
that the probability of requesting a particular document given that the document was
recently requested is higher than what it would be if the document has not been recently
requested.

In this chapter, we develop a notion that can capture the strength of temporal corre-
lations in Web request streams using the concepts of positive dependence introduced in
Chapter 3. Specifically, relying on the notion of supermodular ordering [Definition 3.4],
we define the TC ordering [Definition 9.1] for comparing two streams of requests on the
basis of the strength of their temporal correlations.

We then apply the TC ordering to investigate the existence of temporal correlations
in several Web request models that are believed to exhibit such correlations, namely, the
higher-order Markov chain model (HOMM), the partial Markov chain model (PMM)
and the Least-Recently-Used stack model (LRUSM). Lastly, with the help of the TC
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ordering, we establish a version of the statement to the effect that “the stronger the
strength of temporal correlations, the smaller the miss rate” when the input to the cache
is modeled by the PMM. Specific results and conjectures on this folk theorem when the

input streams are modeled by the HOMM and by the LRUSM are provided.

9.1 Temporal correlations via positive dependence

Given a stream of requesB = {R;, t = 0,1, ...}, we define for each = 1,..., N,
the rvs

Vi) =1[R, =i, t=0,1,..., (9.1)

i.e., the rvl/; (i) is the indicator function of the event that the request at tilsenade to
document. If the sequence of requesi®;, ¢t = 0,1, ...} were to exhibit some form

of temporal correlations, then a request to documiembuld likely be followed by a
burst of references to documenht the near future. This corresponds to the presence of
positive dependencies in the sequekigi), ¢t = 0,1,...} and leads naturally to the

following definition of Temporal Correlations ordering (TC ordering, for short):

Definition 9.1 The request streal®' = {R}, t = 0,1,...} is said to have weaker
temporal correlations than the request stréd@m= {R?, t = 0,1,...}, a situation
denoted

R' <rc R, (9.2)
ifforeachi =1,..., N, the comparison
{VIE), t=0,1,...} <gn {VZ(i), t=0,1,...}
holds where for each= 1,2, the rvs{V/*(i), t = 0, 1, ...} denote the indicator process

associated wittR" through (9.1).
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Under this definition, wheneveR' <, R?, it follows from the equi-marginal

property (3.3) of the sm ordering that
P V(i) =1 =P[V2(@) =1, i=1...,N,
or equivalently that
PR =i| =P[R} =i], i=1,..N, (9.3)

forallt = 0,1,.... Therefore, under the assumption that for each 1,2, the limits

(4.2) exist as constants for the request stré&imwe have

PP = ELIim%il[R’j:i”

by the Bounded Convergence Theorem. Combining this last equation and (9.3) imme-
diately leads tp' = p?, i.e., the comparisolR' <;- R? requires that the request
streamsR' and R? must have the same popularity profile. In other words, the TC or-

dering captures only the contribution from temporal correlations to locality of reference.

Proposition 9.2 For a request streaiR, if each of the indicator processé€s; (i), t =

0,1,...},i=1,..., N, associated witlR is PSMD, then it holds that
R</cR
whereR is the independent version &.
When the request streaRiis a stationary sequence, the independent veBionf R is

simply the IRM whose popularity pmf is the common marginal of the request stféam

Proof. Fixi = 1,...,N. Under the enforced assumptions, the sequémtg), ¢t =
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0,1,...} associated witlR is PSMD. This amounts to
{(Vi(i), t =0,1,...} <em {Vi(i), t=0,1,...}

where the sequencg/;(i), t = 0,1,...} is the independent version of the indicator
sequencdV;(i), t = 0,1,...}. With R = {R,, t = 0,1,...} being the independent

version of the request streaR), it is plain that
(Vi(i), t=0,1,...} =, {1 [Rt:z} ,t=0,1,...}, i=1,...,N,

and the proof is completed. [ |

In what follows, we investigate whether various request models of interest display
temporal correlations in the sense of the TC ordering. These models include the higher-
order Markov chain model, the partial Markov chain model and the Least-Recently-

Used stack model.

9.2 Higher-order Markov chain models (HOMM)

Several higher-order Markov chain models have been used to characterize Web request
streams (e.g., see [19, 28, 56] and references therein) due to their ability to capture some
of the observed temporal correlations. Here we rely on a model, recently proposed by
Psounis et al. [56], which is capable of capturing both the long-term popularity and
short-term temporal correlations of Web request streams.

The model can be described as follows: [Mtvalued rvs{ Ry, ..., R, 1} be the
initial requests and lefY;,t = 0,1,...} be a sequence of i.i.dV-valued rvs with
P[Y, =i = p(i) foreachi = 1,...,N. The pmfp = (p(1),...,p(N)) is assumed to

be admissible (4.3) and as we shall see shortly, it will turn out to be the popularity pmf
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of this model. Next, with) < a;,...,a; < land¥f_, ap < 1, let{Z,,t =0,1,...}

be another sequence of i.ifl), 1, ..., h}-valued rvs with
PlZi=kl=ay, k=1,...,h and P[Z;=0] = —1—Zak>0
i.e., the rvZ, is distributed according to the praf = (3, o, . . ., ap,). The collections of

rvs{Ro,..., R, 1}, {Y,,t =0,1,...}and{Z;,t = 0,1, ...} are mutually independent.
Foreach = h,h + 1,..., the requesk, is described by the evolution

R, =1[2,=0]Y, + th 1[Z, = k] Ry (9.4)

k=1

In words, the requesk, is made to the same document requested attimé, namely
R;_, with probability oy, for somek = 1, ..., h; otherwiseR; = Y;, i.e., it is chosen
independently of the past according to the popularity pmf

The request$R;,t = 0, 1,...} form anh'-order Markov chain since the value of
R, depends onlyonthen®;_,,...,R;,_,. Infact, fort = h,h + 1,..., we have from

(9.4) that for any(i, . . ., i;_1) iIn N,
h
P[Rt —'L|R 27—7 :O,...7t— ]_] = ﬂp(z)—i—Zakl[zt_k :Z] (95)
k=1
= P[Rt:Z’RT:’ZT,T:t—h,7t—1]
With 3 > 0, this h'"-order Markov chain is irreducible and aperiodic on its finite state

space,; its stationary distribution exists and is unique. It can be shown [56] that

lim PR, =] = = lim — Z 1[R =p(i) a.s.

t—o0
for each: = 1,..., N, and it is therefore warranted to call the pgmtthe long-term
popularity pmf of this request model. Moreover, there exists a unique stationary version,
still denoted thereafter byR,,¢t = 0,1,...}. The parameters of the model are the
history window sizeh, the pmfa and the popularity pmp, and we shall refer to this

model by HOMM@., ., p).
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That the HOMM¢, o, p) exhibits temporal correlations is formalized in the next

result.

Theorem 9.3 Assume the request streafi = {R;,t = 0,1,...} to be modeled ac-
cording to the stationary HOMM{ ., p). Then, for each = 1,..., N, the indicator

sequencéV,(i),t = 0,1,...} associated with the request stredns PSMD, whence
R<ic R (9.6)

whereR is the IRM with popularity pmp.

Proof. In order to show that the sequencgg(i),t = 0,1,...},¢ = 1,..., N are
PSMD, we shall make use of another sequenck afalued rvsR = {Rt, t=0,1,...}
constructed as follows: The r\{séo, e Rh,l} are i.i.d. rvs distributed according to the
pmfp and the rvs{R,,t = h, h + 1,...} are generated through the evolution (9.4) with
the help of mutually independent sequences of i.i.d.{ﬁr@st =0,1,...} and{Zt,t =
0,1,...} distributed according to the pmfs and «, respectively. The collections of
rvs {Y;,t = 0,1,...} and{Z,,t = 0,1,...} are taken to be independent of the rvs
{Ry,...,Ry_1}. From this construction, the proce# = {R,,t = 0,1,...} is an

ht"-order Markov chain and witf¥ > 0, we get
{Risr,t=0,1,..} =, {R;,t=0,1,...}. (9.7)

Fixi = 1,...,N. Let{V,(i) = 1 [Rt:i] ,t = 0,1,...} be the indicator se-
quence associated with the sequetiRalefined earlier. We will show that this se-
quence{V,(i),t = 0,1,...} is CIS. To do so, for each = 0,1, ..., setf/t(z') =
(Vo(3), ..., Vi(i)). Because the sequen¢®,(i),t = 0,1,...} is a sequence of0, 1}-
valued rvs, itis CIS [59, 67] if for each= 0, 1, . . ., the inequality

~ ~

P (Vi () = 1V (3) = 2] <P [V () = 11V'(5) = o/ (©.8)
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holds for all vectorse! = (zg, ..., z;) andy’ = (yo,...,y;) in {0, 1} with ! < ¢
componentwise.

Fort =0,1,...,h — 2, it holds for allz’ = (g, ..., x;) in {0,1}*! that
P [Vin(i) = UV (i) =2'| =P [Via (i) = 1] =P[R =] = p(i)  (9.9)

by independence of the n&&, ..., R,_1, and the inequality (9.8) is obtained for each
t=0,1,...,h —2. Next, fort = h — 1,h,..., andz’ = (zo,...,z;) in {0, 1}*1, let
(ig, . .. ,i;) be an element it with the property that foreach= 0, ..., ¢, i, = i if

xr = 1 andig # i if 2 = 0. With such an element, we obtain from (9.5) that

P [ffm(z’) =1|(Ry,...,R) = (z’o,...,it)]

= P {Rt—ﬁ—l = 7;|(RU7"'7R75) = (i07"'7it):|

h
= Op(i) + Y arl [iy1- = 1]
s
h

= Bp(i) + > arZipr1- (9.10)
k=1

Since (9.10) holds for anf, . . ., i;) in N*™! satisfying the property above, a standard

preconditioning argument readily yields
h

- ~t :
P [‘/;tJrl(Z) =1V (i) = ‘Dt} = Bp(i) + Z QpTi41—k- (9.11)

k=1
This last expression being monotone increasingin= (xo,...,z;), we obtain the

inequality (9.8) foreach=h — 1, h, .. ..
Thus, the inequalities (9.8) hold fatl ¢t = 0, 1, .... This implies that the sequence
{Vi(i), t=0,1,...} is CIS, whence indeed PSMD by Theorem 3.10, i.e.,

(Vi) t=0,1,...} <om {Vili), t=0,1,...} (9.12)

Where{f/t(i), t =0,1,...} is the independent version é¥;(i),t = 0,1,...}. Now,

recalling (9.7), it is plain that

{‘Z/t+‘r(i)7 t= 07 17 o } == {‘A/t(z)a b= 07 17 e } (913)
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where{V,(i),t = 0,1,...} isasequence of i.i.d0, 1}-valued rvs withP [ffo(i) = 1} =
p(i) and is exactly the independent version{ ®f(i),t = 0, 1, ...}. By invoking the fact
that the sm ordering is closed under weak convergence [52, Thm. 3.9.8, p. 116], we

conclude from (9.7), (9.12) and (9.13) that
Vi), t=0,1,...} <gm {Vi(i), t=0,1,...}.

Therefore, the sequend®(:),t = 0,1,...} is PSMD for each = 1,..., N, and by
Proposition 9.2, the comparisd?) <7¢ R holds with R being the independent version

of R. [

9.3 Partial Markov chain models (PMM)

The partial Markov chain model was introduced early on in the literature as a reference
model for computer memory paging [2]. It is a subclass of higher-order Markov chain
models and corresponds to HOMM, p) with parameter, = 1. In that case, we
havea = (3, ;) wherea, = 1 — 3 and we refer to this model as PMML(p).

Under this model, with probability — 5, R, = R;_1, otherwise with probability
8, Ry =Y, i.e., R, is drawn independently of the past according to the popularity pmf
p. Therefore, it is natural to expect that when the popularity png held fixed, the
smaller the value of correlation parameteithe greater temporal correlations exhibited
by the PMM(3, p). In the extreme cases, &s! 1, the PMM(3, p) becomes the IRM
with popularity pmfp and there is no temporal correlations. On the other hand,|as,
all the requests are made to the same document, hence displaying the strongest possible
form of temporal correlations. The following result, which contains Theorem 9.3 when

h = 1, formalizes these statements with the help of the TC ordering, thereby confirming
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the intuition that the parametgrof PMM(3, p) is indeed a measure of the strength of

temporal correlations.

Theorem 9.4 Assume that for each = 1,2, the request streaiR’ = {Rf’“,t =

0,1,...} is modeled according to the stationary PMM(p). If 0 < 3, < 31, then
R <;c R™. (9.14)

The proof of this theorem relies on the following comparison of Markov chains

under the supermodular ordering due taurle [8].

Theorem 9.5 Let X = {X;,t=0,1,...} andX' = {X/,t =0,1,...} be two station-
ary Markov chains o0, 1, .. ., n} with transition matriced®> andP’, respectively. For

Y05+ Y = OWIith 0 < 3°%_v; < 1, define then + 1) x (n + 1) matrix

L—=2> 507 T Tn
Yo L=>my Tn
Q05+ -+ Vn) = _ _] _ : (9.15)
I Yo gl o L=

With P = Q(o, - - .,v,) andP’' = Q(cyo, - . ., ¢y,) for somed < ¢ < 1, it holds that

X <gn X'

Proof of Theorem 9.4. Fixi = 1,...,N. Given a sequenc®’ = {R/ t =
0,1,...} modeled according to the PMM(p), it follows from (9.11) that the sequence

{V’(i),t = 0,1,...} associated witlR” is a Markov chain or{0, 1} with

P V() = VP (i) = 21, Vi (i) = wo| = Bpli) + (1= Bz, t=0,1,...,
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for any (zo, ..., z;) in {0, 1}, Its transition matrixP” (i) is simply given by

PO = 1= pp(i)  Pp(i) |
B —p(i) 1-06(1—p@)
or equivalently, in the notation (9.15P" (i) = Q (4o, 71) Wherevy, = 3(1 — p(i)) and
Y1 = Bp(i) With0 < yo + 71 =B < 1.
For two stationary PMM request strea®S" and R* with 0 < £, < 3, we can
always writef, = ¢f; with 0 < ¢ = % < 1. Thus, the sequencé®;™ (i),t =0, 1,...}
and{V;(i),t = 0,1, ...} have transition matrices

P7(i) = Q(y0,7m) and P™(i) = Q(cyo, cn),

respectively, withy, = 51(1 — p(i)), 11 = Fip(i) ande = %. By applying Theorem

9.5, we obtain the comparison
(VP 0),t=0,1,...} < {V*(),t =0,1,...}

for eachi = 1,..., N, and the conclusion (9.14) follows upon recalling Definition 9.1

of the TC ordering. [ |

9.4 Least-Recently-Used stack models (LRUSM)

The Least-Recently-Used stack model (LRUSM) has long been known to be a good
model for generating the sequence of requests whose statistical properties match those
of observed reference streams [24, 61]. We first state the definition and basic properties
of the LRUSM, and then show that under some appropriate assumptions on the model,
the LRUSM exhibits stronger strength of temporal correlations than its independent

version in the TC ordering.
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9.4.1 LRU stack and stack distance

We begin with the notion oERU stack andstack distance. For eacht = 0,1, ..., the
stack(), = (Q(1),...,2(N)) is defined as an element i(N;N), i.e., Q, is an
ordered sequence of the documents, ..., N'}. Itis customary to assume th@t1) is
in the top position of the stack, followed % (2), ..., (N), in that order.

Given an initial stack, in A(N; ), with any stream of reques® = {R;, t =
0,1,...}, we can associate a stack sequefegt = 0,1, ...} through the following
recursive mechanism: For eack: 0,1, .. ., let D, denotes the position of the document

R;.1 in the stack?,, i.e., the rvD, is the unique element dfl, ..., N} such that
Qt(Dt) = Ry

The stack?,, is then given by
Q(Dy) ifk=1
Qi) =q Qk—-1) ifk=2,...,D, (9.16)
(k) if k=D, +1,...,N.
In words, the documert®,(D;) = R;.; is moved up to the highest position (i.e., po-
sition 1) in the stackK2,,, at timet¢ + 1 and the document8,(1),...,Q,(D; — 1) are
shifted down by one position while the documef%$D; + 1),...,Q,(N) remain un-
changed. We refertothe §®,,¢ = 0, 1, ...} so defined as the stack distance sequence
associated with the request stre&in
Conversely, given the initial sta¢k, in A(N; N'), with any sequence dfl, ..., N}-
valued rvs{D;,t = 0,1,...}, we can use the stack operation (9.16) to generate a se-
quence ofA(N; N)-valued rvs{Q),,t =0, 1,...}. A request streanR is readily gener-
ated from this stack sequence by reading off the top of the stack, i.e. Ryith Q4 (1),
we have

RtJrl - Qt(Dt) - Qt+1(1)7 t:O,l, (917)
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Note that the rv§ D;,t = 0,1, ...} constitute the stack distance sequence associated
with the request strearR defined at (9.17).

The stack and stack distance introduced above are often referred to as LRU stack
and stack distance, respectively, in reference to the popular LRU policy. The dynamics
of the LRU policy are best described through the notion of LRU stack and stack distance
as we now briefly explain: Returning to (9.16), we see that the $taek timet ranks
the documents according to their recency of reference with the most recently requested
document remaining at the highest stack position. For gaeH, ..., V, the document
(k) at positionk in the stack; is thek! most recently referenced document at time
t, hence the name, LRU stack. Consequently, the docuntg(ts, . .., Q. (M) in the
first M positions of the stack); simply yield the documents in cache under the LRU
policy with cache sizé/ when the requestB, . .., R, have already been served, i.e.,
Sir1 = {%(1),...,%(M)} whereS,,; is the LRU cache at timeé + 1. With this
observation in mind, a miss of the LRU cache of sizewill occur at time¢ + 1 if
D, > M and thus the miss rate (4.8) under the LRU policy can alternatively be given by
the limit

t—1

1
Migy(R) = lim > 3" 1[D, > M) a.s. (9.18)
7=0

e}

whenever the limit exists.

9.4.2 The LRU stack model

The duality between streams of requests and stack distances embedded in (9.16) can
be used to advantage in defining sequences of requests with temporal correlations. We
present one of the simplest ways to do just that: Teast-Recently-Used stack model
(LRUSM) with pmfa on N is defined as the request stre®ft = {R?,t = 0,1,...}

whose stack distance sequerde,,t = 0,1, ...} is a collection ofi.i.d. rvs distributed
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according to the pmé, i.e.,
PD,=kl=ay, k=1,...,N;t=0,1,...,

given some arbitrary initial stadR, in A(N; \). Throughout we assume that the(ty
is independent of the stack distandd%,,t = 0,1, ...}. In fact, providediy > 0, when
the initial stack rvQ), is uniformly distributed over\(N; N), the stack rvg(,, t =
0,1,...} form a stationary sequence, and so do the requedtiRfst = 0,1,...}. This
fact is established in the process of proving Proposition 9.6 in Appendix D.1. We shall
denote this request model by LRUS)(
From (9.18), the miss rate of the LRUS¥)(under the LRU policy with cache size
M is simply
Migy(R*) =P [Dy > M| = i ag (9.19)

k=M+1

by the Strong Law of Large Number. The LRU policy is known to be an optimal policy
for the LRUSMf@) in the sense that the LRU policy minimizes the miss rate of the
request streanR® over the class of replacement policies (4.5) if the stack distance pmf
a satisfies the LRU optimality condition [58]
N
(N=kK)a,> > a;, k=1,...,N. (9.20)
j=k+1
The popularity pmf of the LRUSM is discussed first in Proposition 9.6; its proof can

be found in Appendix D.1.

Proposition 9.6 Assume the request streaRf = {R®,t = 0,1,...} to be modeled
according to the LRUSMY). If ax > 0, then foreach = 1, ..., N, it holds that

1< 1
pa(i) = lim =Y 1[R2=1i] = — as. (9.21)
£ 2 N

t—o00
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Thus, under LRUSM, as every document is equally popular, locality of reference is
expressed solely through temporal correlations with no contribution from the popularity
of documents. This was found to be a drawback of the LRUSM for characterizing Web
request streams and several variants of this model have been proposed to accommodate

this shortcoming [4, 14, 18].

9.4.3 Temporal correlations in LRUSM

As was done with the HOMM, we show that the TC ordering also captures the strength
of temporal correlations exhibited by the LRUSM. Recall the sequence of indicator func-
tions{V*(i) = 1[R* =1i|,t = 0,1,...},7 = 1,..., N, associated with the LRUSM

request streariR?, ¢ = 0, 1,...}. The main result is contained in

Theorem 9.7 Assume the request streaRf* = {R* t = 0,1,...} to be modeled

according to the LRUSMY) with stack distance pmi satisfying
ap > ay > ... >ay > 0. (9.22)

Then, for eachi = 1,..., N, the indicator sequendé/*(i),t = 0,1, ...} associated

with the request strealR® is CIS, whence
R* <;c R® (9.23)
whereR® is the independent version 8.

A proof of Theorem 9.7 can be found in Appendix D.2. In view of Proposition 9.6,

when the LRUSM request streaRf is stationary, its independent versif is simply

1 1

the IRM with uniform popularity pmis = (5, ..., &

). In fact, it is not hard to see that
the stationary LRUSMy) indeed coincides with the IRM with uniform popularity pmf

u. Notice that the condition (9.22) for the LRUSW)(to exhibit temporal correlations
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in the sense of the TC ordering (9.23) does imply the LRU optimality condition (9.20).
This confirms the intuition that the LRU policy is designed to work best with the stream

that exhibits temporal correlations amongst its requests.

9.5 Folk theorem on miss rates

With the help of the TC ordering, we can now use the results of Theorems 9.3, 9.4 and
9.7 to explore the folk theorem to the effect that the stronger the strength of temporal
correlations, the smaller the miss rate under the PMM, the HOMM and the LRUSM, re-
spectively. Specific results and conjectures are provided next for the PMM, the HOMM

and the LRUSM, respectively.

9.5.1 PMM

The miss rates of PMM under demand-driven cache replacement policies have been
previously considered in [2]. For particular caching policies such as LRU and FIFO, the
miss rate under PMMY{, p) is shown to be proportional to the miss rate of the IRM with
the same popularity pmp. We first demonstrate this fact in some generality and then
use it to compare the miss rates of two PMM streams with different strength of temporal
correlations.

As we seek to evaluate the limit (4.8) for the PMBAp) under the cache replace-

ment policyr, we shall need the following definitions: For edEh= 1,2, ..., define

)\(T):il[tho]

as the number of times from time 1 up to tirfigthat the requests are chosen indepen-

dently of the past according to the popularity pmf Also, for eachk = 1,2,.. ., let
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v(k) = inf{t = 1,2,...: A(t) = k}. Under demand-driven caching with the PMM in-
put, a miss can only occur at the time epogtik) (k = 1,2, ...) at which point we have

Rf(k) = Y, x). Therefore, it follows from the definition of the nfsy(k), k = 1,2,...}

that
T NT)
2.1 Rl ¢S] = 2 1|Ry ¢ Sy
A(T

= 21[ ¢S,€)} T=12,...,
and the miss rate under PMW\(p) is given by

M.(R?) = lim —21 (R ¢ St}

T—oo T’
_ (T A(T)
By the Strong Law of Large Numbers, we see that the limit of the first term in (9.24)
is simply
o oMD) 1 o

The limit of the second term in (9.24) in general does not necessarily have a closed-
form expression. However, It does admit a simple expression in the special case when

the cache replacement poligysatisfies the following condition:

(x) Forallt =1,2,...,if R, = R;_1, then the cache state and eviction rule at time
t + 1 is the same as those at tima.e., ), = Q;, andU;,, = Us.

Under this condition, we can write the second limit as

K

T—>oo )\ Z 1 [ W) ¢ SW“)} - ]}1_1’)1100 % Z 1 [Yv(k) ¢ S"/(k)}

k=1

— V(p) (9.26)

whereMﬂ(p) is the miss rate of the IRM with popularity pmpf under the policyr.

The last equality follows from the fact that the {5,k = 1,2,...} form an IRM
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with popularity pmfp and that by Conditionx), the cache set§S, ),k = 1,2,...}
are similar to the cache sets under the policwhen the input is the IRM sequence
{Yy), k = 1,2,...}. Combining (9.24), (9.25) and (9.26) yields the expression for the
miss rate of PMMg, p) as

M(R") = 3 - My(p). (9.27)

Condition () is satisfied by many cache replacement policies of interest, e.g., the policy
Ayp, the LRU, FIFO and random policies but not by the CLIMB policy. Equipped with

the expression (9.27), we can now conclude to the following monotonicity result.

Theorem 9.8 Assume that the cache replacement poficgatisfies Condition<) and
that for each: = 1,2, the request streaiR’* is modeled according to PMM(, p*). If

p! = p? and0 < 3, < 3, then it holds that
M. (R™) < M.(R™). (9.28)

Moreover, if the mapping — M, (p) is Schur-concave, then wheneyer < p* and

0 < By < (4, the comparison (9.28) also holds.

In view of Theorem 9.4, we conclude that the folk theorem on the miss rate indeed

holds for the PMM under any cache replacement policy which satisfies Condijion (

9.5.2 HOMM

Consider the following situation: Ld® be HOMM(h, a, p) for some pmf vectorg on
N anda on{0,...,h}. Forsomé < ¢ < 1, let R° denote HOMM¢, o, p) wherea®
is obtained fromx by takinga, = coy, foreachk = 1,... h,andp =1—c(1—p3) =
B+ (1—c¢)(1—p). Obviously,5 > g while of, < oy, for eachk = 1,..., k. In other

words, under HOMMk, ., p), there is a smaller probability to generate a new request
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independently of past requests than under HOMM(, p). Therefore, in an attempt to
generalize Theorem 9.3, itis reasonable to think that HOMM(, p) has less temporal
correlations than HOMM({, «, p) according to the TC ordering, i.eR° <rc R. Tak-

ing our cue from Theorem 9.8, we would then expect the inequalityR) < M, (R°)

to hold for some good caching policies. We summarize these expectations as the fol-

lowing conjecture:

Conjecture 9.9 Assume the request streaR = {R;,t = 0,1,...} to be modeled
according to HOMME, o, p). For somed < ¢ < 1, if the request streaniR® =
{R{,t = 0,1,...} is modeled according to HOMM(a*, p) with a® = (1 — ¢(1 —
B),caq, ..., cap), then the comparisoR® <r- R holds. Furthermore, under some

appropriate cache replacement policyit holds thatVl.(R) < M, (R°).

Establishing this conjecture appears to be much more difficult than for the PMM,
and requires further investigation. However, in support of this conjecture, we have
carried out several experiments under the LRU policy when the input to the cache is
modeled according to the HOMM. Throughout, we fix = 100 and let the input
popularity pmfp be the Zipf-like distributiorp,, (6.4)-(6.5) with parameter = 0.8.

We consider five different classes of HOMM, each with different history window size
h = 1,...,5. In each class, the input streaR’ (with 0 < 3 < 1), is generated
according to HOMMG, v, (3), p,) with i, (8) = (8,52, ..., 52). The validity of
Conjecture 9.9 would require that the mappihg- M ry(R”) be increasing.

From Figure 9.1, the miss rate is indeed found to be increasing as the par@meter
increases for all cases and for all cache sizes. Whenl, HOMM reduces to PMM
and the results here confirm the validity of the expression (9.27) and of Theorem 9.8. It

is interesting to note that for a given cache siZe the miss rates of all HOMM input

streams withh, < M are the same as the miss rate of the PMM. This suggests some
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form of insensitivity of the LRU miss rate under the HOMM to the history window size
h and to the pmix. Lastly, for all cases and for all cache sizes, the miss rate always
goes ta0 asf goes to0. This is due to the fact thaim, .., P [RQ = RQ_l] = 1 where

R’ denotes the HOMM{, a,(0), p,,).

9.5.3 LRUSM

According to Theorem 9.7, the stationary LRUSWI{vith stack distance pmi satis-

fying condition (9.22) has stronger strength of temporal correlations than the stationary
LRUSM(u). In the vein of Theorem 9.4, it is then natural to wonder when does the
LRUSM(b) have weaker temporal correlations than the LRUMOr pmf b not nec-
essarily uniform. Theorem 9.7 suggests that this could happen when the igmfore
skewed toward the smaller values of stack distance than thé.pnofcapture the skew-
ness in the pmf vectors, we recall the notion of majorization introduced in Chapter 2 and
note that for any pmé& on V, it holds thatu < a. With majorization, we can now state

the following conjecture.

Conjecture 9.10 Consider request streanf?® and R® which are modeled according
to the stationary LRUSMY) and LRUSMb), respectively. If both pmfa andb satisfy
(9.22) withb < a, then the comparisoR® < R® holds.

When both pmfs: andb satisfy (9.22), the conditions (2.1)-(2.2) for the majorization

comparisorb < a to hold reduce to

lindeed, if R is modeled according to the HOMNM(«, p,,) with 3 = 0, then it can be shown that
limy .o, P[R; = R;_1] = 1 provided that thé:'"-order Markov chaif R;,t = 0, 1,...} is aperiodic.
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This condition is a possible formalization of the statement that thegpsimore skewed
toward the smaller values of stack distance than thetpf

To glean evidence in favor of Conjecture 9.10, we consider the LRU policy and
recall that the miss rate under the LRU policy with cache sizéor the LRUSM@)
is given by (9.19). Combining (9.19) and (9.29), we conclude that for two LRUSM
request streamR® and R" satisfying the conditions of Conjecture 9.10, it holds that
Miry(R®) < MLRU(R”). This is of course the desired inequality expressing the folk
theorem for miss rates under the LRU policy which would be expected if Conjecture

9.10 were to hold.

2The condition (9.29) is equivalent to the usual stochastic ordering between the stack distdnfe rvs

and D? associated with the request streaRf and R?, respectively, wher®® <, Db.
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Chapter 10

The Working Set Model

In the last two chapters, we show how comparisons in the majorization ordering of popu-
larity and in the TC ordering of temporal correlations can be translated into comparisons
of some well-known metrics, namely, the working set size, the inter-reference time and
the stack distance. In this chapter, we discuss results for the working set model and some
folk theorems under its companion memory management policy, the so-called Working

Set algorithm.

10.1 Definition

The working set model was introduced by Denning [26] and some of its properties are
discussed in [27]. It can be defined as follows: Consider a request sReaniR;, t =
0,1,...}. Fixt =0,1,.... Foreachr = 1,2, ..., we define the working séV (¢, 7; R)

of length 7 at timet to be the set oflistinct documents occurring amongst the past

T consecutive reques;_, 1)+, ..., R.! The size of the working st/ (¢, 7; R) is
denoted byS(t, 7; R). Under some appropriate conditions on the request stiain

holds thatS(¢, 7; R) =, S(7; R) whereS(7; R) is the steady state working set size

For anyr € R, we set(x)" = max(0, z).
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of lengthr. The rvS(7; R) can be viewed as the number of distinct documents in
consecutive requests in the steady state.
A basic quantity of interest associated with the working set size is its long-run aver-

age defined by

T-1

A 1
S(r;R) = lim — > S(t,;R) a.s. (10.1)
T—oo T' =5
for eachr = 1,2,.... In the next lemma, we identify conditions on the request stream

R for the existence of these limits (10.1), in the process making a connection between

the limits (10.1) and the steady state working set sizes.

Lemma 10.1 Assume the request streaR = {R;,t = 0,1,...} to couple with a
stationary sequence of -valued rvsR = {Rt,t = 0,1,...}. Then, the a.s. limits

(10.1) exist and it holds that
S(t,7;R) = S(T; R), 7=1,2,.... (10.2)
If, in addition, the sequencR is ergodic, then

A

S(r;R)=E[S(1;R)], 7=1,2,.... (10.3)

A proof of Lemma 10.1 can be found in Appendix E.1. A special case of Lemma
10.1 occurs when the request stre&hitself is stationary. In that case, the distribution

of S(¢,7; R) does not depend arwhent > 7 — 1, i.e., foreachr = 1,2, ..., we have
St,7;R) =4 S(t—1,7;R), t=7,7+1,.... (10.4)

Therefore, (10.2) automatically holds. Furthermore, if the request stiemmstationary

and ergodic, then (10.3) is also obtained.

2In fact, (10.2) holds under the weaker assumption that the request sRean{ R;,t = 0,1,...}
is asymptotically stationary in thatR, s, t = 0,1,...} =4 {R;,t = 0,1,...} with R = {R,,t =

0,1,...} being a stationary sequence/gtvalued rvs.
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10.2 The effect of popularity

Assume the request stredi= {R;,t = 0, 1, ...} to be the IRM with popularity pmp.
Under these enforced i.i.d. assumption, the request stieasrstationary and ergodic,

and from (10.4), we obtain
S(t;R) =4 S(t—1,7;R) = |[{Ro, ..., R, _1}|. (10.5)

Since the IRM request streaiR is characterized solely by its popularity pmf the
pmf of S(7; R) clearly depends only on the pmpf and we shall recognize this fact
by denoting the working set size of lengthof the IRM by S(7;p). Similarly, we
let S(r;p) denote the average working set size (10.1) of lengti the IRM request
stream.

For positive integer. = 1,2,... and pmf@ = (4(1),...,0(N)) on{1,..., N},
imagine the following experimental setup: An experiment Rhaslistinct outcomes,
outcomei occurring with probabilityd(i) (: = 1,..., N). We carry out this experiment
n times under independent and statistically identical conditions. X;ét, 6) denote
the number of times that outcomeccurs amongst thesetrials ¢ = 1,..., N). These
N rvs are organized into aiv’¥-valued rvX (n, @) known as thenultinomial rv with

parameters and@. Its distribution is given by

n N
P[X(n,0) = x| = JTo6"
T1y..., TN i=1
whenever the integer componelfis, . .., zy) of « satisfyx; > 0( = 1,...,N) and

Zf\il T; = n.
With X (n, @), we can associate the #/(n, ) given by
N

K(n,0) :=> 1[X;(n,0) > 0];

i=1
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this rv records the number dfstinct outcomes that occur amongst thérials. The fol-
lowing result was established by Wong and Yue [72] and deals with the Schur-concavity

of the tails probabilities
m(n,0) :=P[K(n,0)>{, (=1,2,...,min(N,n).

Theorem 10.2 For eachn = 1,2,... and eac = 1,2,... ,min(N,n), the mapping

0 — my(n,0) is Schur-concave.

From (10.5), the working set sizg7; p) of the IRM request stream with popularity
pmf p is simply the number of distinct outcomés(, p) for the multinomial rv with
parameters andp. Thus, by combining Theorem 10.2 with the basic fact (3.2) on the

usual stochastic ordering, we get the following corollary.
Corollary 10.3 For admissible pmfp andq on\/, it holds that

S(t;q) <4 S(t;p), T=1,2,..., (10.6)
whenevep < q.

In words, the more skewed the popularity pmf, the stronger the locality of reference in
the IRM, and the smaller (in the strong stochastic sense) the working set size, in line
with one’s intuition!

A simple consequence of Corollary 10.3 is the comparisons of the average working
set sizes, namely

N

S(t;q) SS(T;p), T=12,...,

providedp < q. This is due to the facts that the comparisons (10.6) imply
E[S(r;q)] <E[S(m;p)], 7=12,...,

and that under the IRM, Lemma 10.1 yielflér; p) = E[S(r;p)] forall 7 = 1,2, .. .,
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10.3 The effect of temporal correlations

As for popularity, it is expected that the stronger the strength of temporal correlations
in the stream of requests, the smaller the working set size. We wish to formalize this
statement as was done for popularity in Corollary 10.3. However, with the help of the

TC ordering, we obtain only the comparison of the expectations of the working set sizes.

Theorem 10.4 For two request strean®' = {R},t = 0,1,...} andR* = {R? t =

0,1,...},if R* <;¢ R?, then foreach = 0,1, ..., it holds that
E[St 7 R)| <E[SEtn R, 7=12.. . (10.7)

A proof of this theorem relies on the fact that theS¢, 7; R) can be expressed as a
combination of supermodular functions of the indicator sequeficgs), ¢t = 0,1, ...},
1 =1,..., N, associated with the request stre&nBefore giving a proof, we note the

following lemma [7, Lemma 2.1].
Lemma 10.5 If the mapping) : R™ — R is given by

P(x) = Hw*(xi), = (x1,...,2,) €ER" (10.8)

for some monotone mapping : R — R, them) is supermodular.

Proof of Theorem 10.4. Fixt =0,1,...andr = 1,...,t 4+ 1. The working set size
S(t,; R) of lengthr at timet for the request strear® can be expressed in terms of
the corresponding indicator sequengé%(:),t = 0,1,...},7 = 1,..., N, as follows:
From the definition of5(¢, 7; R), we can write

N

S(t7 T3 R) = Z 1 [Z € {R(t_7+1)+, . 7Rt}:|

i=1
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where the mapping : R™ — IR is of the form (10.8) with mapping* : R — R given
by
v (r)=1—2z, z€R. (10.10)

By Lemma 10.5, the mapping is supermodular since* defined at (10.10) is mono-
tone.

Equipped with the expressions (10.8)-(10.10), we are now ready to prove Theorem
10.4. Recall that for any two request streaRisand R such thatR' <, R?, we have
the comparisodV,'(i),t = 0,1, ...} <,. {V}*(9),t =0,1,...} foreachi = 1,..., N.

From the supermodularity af and the definition of the sm ordering, it then follows that

E [0V (). - V)] B2 00). . VE0)] (10.11)

foralli =1,..., N. Combining inequalities (10.11) with (10.9) yields the comparison

(10.7) foreachr = 1,...,t + 1. Upon noting that for al- > ¢ + 1,
St, 7, R*)=S(t,t+1;R*), k=12,

we get the desired comparisons (10.7) forra: 1,2, .. .. [ |
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Corollary 10.6 Assume that for each = 1,2, the request strealR* = {RF t =
0,1,...} couples with a stationary sequence\6fvalued rvsik' — {Rf t=0,1,...}.
If R' <, R?, then it holds that

E[S(riR)| <E[S(rRY)], 7=12,., (10.12)

where for eact = 1,2, S(r; R") is the steady state working set size of the request

streamR”. In addition, ifR andR’ are stationary and ergodic, then it holds that
S(r;R) < S(m;RY, 7=1,2,..., (10.13)

where for eactt = 1,2, S (7; R") is the average working set size of the request stream

R".

Proof. Fix T = 1,2,... andk = 1,2. Under the assumptions above, Lemma 10.1

already yields the convergence
S(t,7; R*) =, S(1; R"). (10.14)

Next, becausé(t,7; R¥) < N for everyt = 0,1, ..., the sequencéS(t, 7; R*),t =
0,1,...} is uniformly integrable. Combining this fact with (10.14), it follows from [11,
Thm. 5.4, p. 32] that

lim B [S(t,7; R")| = E[S(; RY)|. (10.15)

t—o00
Invoking (10.7) and (10.15), we obtain the steady state comparisons (10.12). The
comparisons (10.13) for the average working set sizes follow from (10.12) under the
additional ergodicity assumption of the coupling processes associated®wihd R>.
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Corollary 10.6 demonstrates that for a request stré&apxhibiting temporal corre-
lations, the independent versid® of R can be used to provide various performance
bounds, which in turn can be used for cache dimensioning associated with the request
streamR. We illustrate this argument with three request models, namely the HOMM,
PMM and LRUSM request streams, with the help of Theorems 9.3, 9.4 and 9.7, respec-
tively. Upon noting that the stationary HOMM and PMM are ergodic Markov chains,

we obtain

Corollary 10.7 Assume the request streaR) = {R;,t = 0,1,...} to be modeled
according to the stationary HOMM(c, p) with admissible popularity pmp. Then, it
holds that

S(r;R) < S(r;R), 7=1,2,...,

whereR is the IRM with popularity pmp.

Corollary 10.8 Assume that for each = 1,2, the request streaR’ = {Rf’“,t =
0,1,...} is modeled according to the stationary PM(p) with admissible popularity
pmfp. If 0 < By < 31, then it holds that

S(T;RBQ) < g(r; R, 7=1,2,....
Lastly, we note the comparison of the working set sizes under the LRUSM.

Corollary 10.9 Assume the request stredRf = {R?,t = 0,1,...} to be modeled ac-
cording to the stationary LRUSM) with stack distance pni satisfying (9.22). Then,
it holds that

E[S(r;R*) <E[S(r;R%)|, =12,

whereR® is the IRM with uniform popularity pm.
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10.4 The Working Set algorithm

Fix 7 = 1,2,.... The Working Set (WS) algorithm with length is the algorithm
that maintains the previousconsecutive requested documeRig )+, ..., R,_; inthe
cachesS; at timet. In other words, the cach is simply the working setV (¢t — 1, 7; R)

with the conventionV(—1,7; R) = ¢. This algorithm differs from other demand-

driven caching policies in that the number of documents in the cache may change over

time while demand-driven caching policies have a fixed cache/difas soon as each

document has been called at least once). The number of documents in the cache at time

under the WS algorithm is basically the number of distinct documerits(in- 1, 7; R)
which is the working set siz8(t — 1, 7; R).
The operation of the WS algorithm can be described as follows: For £atch

0,1,...,letQ); be the state of the cache at timdefined by
Qt - (R(t_T)Jr, . e ,Rtfl).

It is easy to see from this definition that the cache sthtg is completely determined
by the previous cache stdte and the current reques;,. Furthermore, the cache s&t

can be recovered frof, by taking
S;={i=1,.... N:ieQ}=Wit-1,1,R), t=0,1,....

Fort > 7, regardless of a cache miss, the WS algorithm will evict the docuientif
R._, ¢ W(t,7; R) and does not evict any document, otherwise.
The miss rate of the WS algorithm with lengtican be defined in the same way as

in the case of demand-driven caching; it is given by the a.s. limit

R
MWS(R) = jlgl’()lo f Z 1 [Rt ¢ St] a.S.
t=1
1 T
= lim =Y 1R ¢W({—-1,7;R)] aus. (10.16)
T—o0 T —1
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We next explore the folk theorems for miss rates and for output streams under the WS
algorithm. We do so for both the IRM input stream and general input stream exhibiting

temporal correlations, respectively.

10.4.1 Under the IRM

We first assume the input to the cache to be modeled according the IRM with popularity
pmf p. Under this assumption, we show that the folk theorems for the miss rate and
the output of a cache under the WS algorithm do not hold in general. This comes as
no surprise since the WS algorithm is a close cousin of the LRU policy in that the LRU
policy of cache sizél/ can be obtained from the WS algorithm that keeps/thenost

recent distinct documents in the cache by varying its lemgth

Miss rate of WS algorithm

It is known [2, 27] that the miss ratiéfws(p) of the WS algorithm with length under
the IRM with popularity pmfp is given by
R N
Mws(p) = ;p(i)(l —p(i))" (10.17)
Unfortunately, the miss rate functid\ﬁws(p) is not Schur-concave ipforr =23, .. ..
However, it is Schur-concave only when= 1 in which case the WS algorithm coin-

cides with any demand-driven caching policy of cache dize= 1. These results are

contained in

Theorem 10.10 Assume the input to be modeled according to the IRM with popularity
pmfp. The miss rate functiohlys (p) under the WS algorithm with lengthis Schur-
concave in the pmp whent = 1 and is not Schur-concave in the pmfwhenrt =

2,3,....
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Proof. Foreachr =1,2,..., the miss rate functioMWS(p) in (10.17) is of the form

Mys(p) = ;QT(P@)

where the mapping. : [0, 1] — [0,0.25] is given byx — x(1 — x)". As we note from

[49, 3.C.1, p. 64 and 3.C.1.c, p. 67], the functildfmvs(p) is Schur-concave if and only
if the mappingg. is concave. It is now a simple matter to check that the mapping
is concave only whem = 1 andnot concave whernr = 2,3, ..., whence the desired

result. [ |

Output of WS algorithm

By restricting the input streams to be in the class of IRM, the output of the WS algorithm
with length7 can be analyzed along the same lines as Theorem 5.2 for demand-driven
caching policies. Indeed, for the IRM with popularity pmfthe output popularity pmf

DPiys under the WS algorithm with lengthis given by

p()(1 = p(@))”

= 1=1.,....N. 10.18
S G —pG)y T (10-18)

Pivs(7)

As for the case of miss rate, the folk theorem for the outputghiat < p does not
hold whenr = 2,3, ..., but does hold only for = 1 in which case the WS algorithm
reduces to any demand-driven caching policy with cache/dize 1. The counterexam-
ples whenr = 2,3,..., are given below where the IRM input has a Zipf-like popularity

pmf with largea.

Theorem 10.11 Assume the input to be modeled according to the IRM with Zipf-like

popularity pmfp,, for somea > 0. If the number of documentS and the length of
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the WS algorithm satisfy the condition
N<2' with 7>1, (10.19)

then under the WS algorithm, there exists= o*(r, N) such thaipys, < p, does

not hold fora. > o*.

A proof of this theorem is given in Appendix B.5.

10.4.2 Miss rate under input with temporal correlations

Given an input streani® = {R;,t = 0,1,...}, let{V,(:),t =0,1,...},i =1,..., N,
be the indicator sequences (9.1) associated with it. Recall from (10.16) that a miss
occurs at time when the documeng, is not in the working setV (¢t — 1, 7; R). Thus,

the indicator function for the miss event at time + can be written as

1R ¢W(t—-1,7,R)] = 1R ¢{Rt—r,...,Ri1}]

= Zl [Ry=i1[i ¢ {Ri_r,...,Ri1}] (10.20)

=

N

= Zl[Rt:iJHuRt_z#i]
=1
N T

= ZVt H (1 —Vip(i
=1 =1
N

= > g(Vier (i), ..., Vi) (10.21)
=1

where we have set
7—1
9o, vxr) =2, [[(L—20), (20,...,2,) € RTTL (10.22)
=0

Combining (10.16), (10.21) and (10.22) yields the miss rate under the WS algorithm as

the limit

Mws(R) = lim lZl R ¢gW(t—1,7;,R)]

T—oo T
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T—74+1
b
= hm— Z ZgV} A0),...,Vi(1)) a.s. (10.23)

and if the request streafd admits some form of ergodicity, then the limit (10.23) exists.
A condition for the existence of the limit (10.23) is given in the next lemma whose proof

is available in Appendix E.2.

Lemma 10.12 Fix T = 1,2, .... Assume the request stred®t—= {R;,t = 0,1,...} to
couple with a stationary and ergodic sequenck/evalued rvsR = {fit, t=0,1,...}.

Then, the a.s. limit (10.23) exists and is given by

Mws(R) = lim ZE (Vier(9), ..., Vi(4))] a.s. (10.24)

t—o00

In particular, ifR is stationary and ergodic, then
N

Mws(R) = > P[R, =i, R #i,0=0,...,7—1]. (10.25)

i=1

To establish the folk theorem to the effect that the stronger the temporal correlations,

the smaller the miss rate, we need to show that
Myws(R?) < Mws(R') whenever R' <;¢ R* (10.26)

Therefore, upon recalling the definitions of the TC and sm orderings, we see that estab-
lishing (10.26) amounts to showing that the mappjraiven in (10.22) is submodular.
Unfortunately, the mapping is not submodular in general; only in the special case

7 = 1is g a submodular function. We shall discuss these issues by first showing the

3A functiony : R™ — R is said to be submodular i ¢ is supermodular.
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positive result when = 1 and then providing counterexamples using the PMM when

7> 1.

[ = 1] — Whent = 1, we note thatS(t — 1,7;R) = 1 forallt = 1,2,..., and
the WS algorithm coincides witany demand-driven caching policy having cache size
M = 1. In that case, the only document in the cache at tinrsethe documentz;_,
and a miss occurs whel, # R, ;. The folk theorem holds in this special case for all

demand-driven caching policies.

Theorem 10.13 Consider an arbitrary demand-driven replacement pailieyith M =

1. If the request streanB' andR* satisfy the relatioR' <,c R?, then it holds that

PR} ¢ S} <P|R ¢S], t=12.. . (10.27)

Proof. Foreacht =1,2,..., we have from (10.21)-(10.22) that

1R, ¢S] = 1[R # R,_1]
— Z g(%_l(i), V;(Z))

i=1

with the mapping; : R* — IR being given by
g(zo,x1) = 21 — moz1, (20,21) € R%.

Because the mapping,, z1) — zoz; iS supermodular, the mappitgo, z1) — —zoz1
is submodular. The mapping,, z;) — x; being submodular, the mappings there-
fore submodular since the sum of two submodular functions is still a submodular func-
tion.
Given two request streanf®' and R? such thatR' <;~ R?, we recall the compar-

isons{V,'(i),t = 0,1,...} <gn {V2(0),t =0,1,...} foreachi = 1,..., N. Thus by
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the definition of the sm ordering, we obtain for edch 1,2, .. .,

Plr2¢ sy = zE[ (V210 V2(0)]

< ZE[ \ANORAG)]
= P[Rtlgéstl].

Corollary 10.14 Consider an arbitrary demand-driven replacement palieyth M =
1. If the request streamR' and R* couple with stationary and ergodic sequences of
N -valued rvsR' andRQ, respectively, and satisfy the relatid' <o R?, then it
holds that

Myws(R?) < Mws(R').

Proof. Under the assumptions above, the miss rate of the request sR&dar each

k = 1,2, can be obtained using Lemma 10.12 and is given by
Myws(R") = lim P |R} ¢ S| a.s.

The desired result is now immediate from (10.27). ]

[t > 1] — The folk theorem (10.26) does not necessarily hold when 1 as we now
demonstrate via counterexamples when the PMM is taken to be the input to the cache.

The miss rate of the WS algorithm with lengthor PMM(5, p) [2] is given by

Mws(f ﬁzp i))(1 = Bp(i))™ (10.28)
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From Section 9.3, we would expect that as the strength of temporal correlations in-
creases, i.e., the value of the parametatecreases, the miss ratéys(3, p) should
be decreasing. To put it differently, the mappifig- Mws(5, p) should be increasing
when the popularity pmp is held fixed.

However, this is not always the case as we show in the counterexamples where the

PMM stream is assumed to have the uniform popularity pmaf (%, ce %).

Theorem 10.15Fix 7 = 2,3,..., and assume the input to be modeled according to
PMM(3,w). Under the WS algorithm with length the miss rate functiotlws (3, u)

given in (10.28) is increasing in when( < % and decreasing ii wheng > %

Thus, the folk theorem always holds when the lengthf the WS algorithm is smaller

than the number of documenié but may fail to hold otherwise.

Proof. When the PMM has the uniform popularity praf the expression (10.28) for

the miss rate under the WS algorithm becomes

Miys(B,w) = 3 (1 _ %) (1 _ %)H .

Differentiating this expression with respectiyields

%Mws(ﬁ,u) - (1- %) (1 - %)H (1 - %) |

Thus, the miss rate functialws (3, w) is increasing when — % > 0, or equivalently,

3 < X, andis decreasing whan- 22 < 0, or equivalently3 > . m
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Chapter 11

Inter-reference Time and Stack Distance

In this chapter, we continue the program announced in Chapter 10 as we seek the appro-
priate comparisons for the inter-reference times and the stack distances when the request

streams are comparable in either the majorization or the TC orderings.

11.1 Inter-reference time

The notion of inter-reference time in the stream of requests has recently received some
attention as a way of characterizing temporal correlations [34, 40, 53].
First a definition. Given a request stredth= {R,,t = 0,1,...}, for eacht =

0,1,..., we define the inter-reference tiri§t; R) as the rv given by
Tt;R) :=inf{r=1,2,...;t: Ry = R;_,} (11.1)

with the convention that'(t; R) = t + 1if R,_, # R, forall 7 = 1,...,t. As

for the working set size, under some appropriate conditions on the request d&eam
T(t; R) = T(R) where the steady state inter-reference tifii&) describes the time
between two consecutive requests for the same document. One such condition is given

in
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Lemma 11.1 Assume the request streaR = {R;,t = 0,1,...} to be asymptoti-
cally stationary, i.e.{Ry ¢,t = 0,1,...} =, {R;,t = 0,1,...} with R = {R,,t =

0,1,...} being a stationary sequence/dfvalued rvs. Then, it holds that

T(t;R) = T(R). (11.2)

A proof of Lemma 11.1 is given in Appendix E.3. Lastly, we note that if the request
streamR is stationary and ergodic, then the pmf of the steady state inter-reference time

T(R) is given by the limits

P[T(R) = k| jlgrOlOT21 (t;R)=k|] as., k=12,....

11.1.1 The effect of popularity

We first study the effect of popularity on the inter-reference time by assuming the request
streamR to be the IRM with popularity pmp. Under the IRM, the request strediis

stationary and ergodic in which case (11.2) holds. In fACR) can be represented by
T(R) =y inf{t =1,2,...: R, = Ry} (11.3)

since the i.i.d. proces§R;,t = 0,1,...} is reversible. The main comparison for the

steady state inter-reference times is given in terms of the convex ordering.

Theorem 11.2 Assume that request streaiRs andR* are modeled according to the

IRM with admissible popularity pmfp' andp?, respectively. Then, it holds that
T(R') <.. T(R?) (11.4)

whenevep' < p?.
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Thus, the more skewed the popularity pmf, the stronger the locality of reference in the
IRM, and the more variable the inter-reference time in that (11.4) imﬁ]iFE(Rl)} =

E [T(RQ)} andVar(T(R")) < Var(T(R?)). This can be explained by observing that

a document with high probability of request is likely to be requested again in the near
future, leading to smaller values féi R) and correspondingly larger deviation from its

mean.

Proof. Itis well known [59, Thm. 2.A.1, p. 57] that the comparison (11.4) between the
{1,2,...}-valued rvsT(R") andT'(R?) is equivalent to

ZP[ T(RY) >T}<ZP[ (R*) > 7| (11.5)

foralln =1,2,..., with
E|T(R)| =E[T(R?). (11.6)
Consider an IRM request streaRwith popularity pmfp and fixi = 1,..., N. By

using the representation (11.3), we note that
P[I(R)=7|Ry =i =p(i)(L—p(i)"", 7=12...,

i.e., conditional onR, = i, the inter-reference tim&(R) is geometrically distributed

with parametep(i). Consequently, for each= 0, 1,.. ., we find
P[I'(p) >n|Ry=1i = »  P[I(p)=r|Ry=1
T=n+1

= (1=p@)",

whence

Next, we obtain

Yn(p) = i P[T(p) >r7] = ;(1 —p()", n=0,1,....
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In particular, withn. = 0, this last calculation yields
E[T(R)] =) P[T(R)>r7]=N,
7=0

and this independently gif! In other words, (11.6) holds.

It is a simple matter to see that for each= 1,2, ..., the mapping — (1 — )"
is convex onlR,. By a classical result of Schur [49, C.1, p. 64], the mapping-
>, (1 — a;)™ is a Schur-convex function oRY. To put it differently, the mapping

p — ¥, (p) is Schur-convex, and (11.5) indeed holds wipén< p?. n

11.1.2 The effect of temporal correlations

We now turn to the comparison (11.4) for the steady state inter-reference times when

the request strean®®' and R* are comparable in the TC ordering.

Theorem 11.3 Assume that for each = 1,2, the request streaiR* is asymptotically
stationary, i.e.{R¥,,.t = 0,1,...} =, {RF.t = 0,1,...} whereR" = {R} t =
0,1,...} is a stationary sequence &f-valued rvs, and has admissible popularity pmf

p*. If R <;¢ R?, then the comparison (11.4) holds.

Theorem 11.3 states that the stronger the temporal correlations, the more variable the
inter-reference time! To establish Theorem 11.3, we shall rely on the following lemma

whose proof is available in Appendix E.4.

Lemma 11.4 Assume that the request stredtn= {R;,t = 0,1,...} is asymptotically
stationary, i.e.{R, st = 0,1,...} =, {R;,t = 0,1,...} whereR = {R,,t =

0,1,...} is a stationary sequence &f-valued rvs, and has admissible popularity pmf
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p. Then, it holds that

iP[T(R) >r]:ip[m#z’,é:o,...,n—q, n=12,..., (11.7)
and
E[T(R)| = iP [T(R) > 7] = N. (11.8)
7=0

Proof of Theorem 11.3. The proof of this theorem proceeds along lines similar to ones
found in the proof of Theorem 11.2. The comparison (11.4) is established by showing
that (11.5) and (11.6) hold whenevB' <;~ R>.

Fix k = 1,2. Foreachi = 1,...,N, let{V/*(i),t = 0,1,...} and {V}(i),t =
0,1,...} be the indicator sequences (9.1) associatedRﬁlande, respectively. From

Lemma 11.4, the expression (11.7) for each 1,2, ..., can be rewritten as
00 N
S P|IT(RY>7] = Y E[1[Rf#i,(=0,...,n—1]|
T=n i=1

- y5|Tla-70)]

=0

-

= 2 B[S0, Vi () (11.9)

where the mapping : R" — IR is of the form (10.8) and (10.10). By Lemma 10.5, the
mappingy is supermodular.
For eachk = 1,2, the assumptiof R, ,,t = 0,1,...} =, {RF,t = 0,1,...}

yields
{(VE (), t =0,1,...} =, {VF(i),t =0,1,...}, i=1,...,N. (11.10)

But R' <;c R? implies the comparisodV;'(i),t = 0,1,...} <.n {V2(i),t =

0,1,...} foreachi = 1,..., N, and the sm comparison being closed under weak con-
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vergence [52, Thm. 3.9.8, p. 116], it is now plain from (11.10) that
{(Vi@),t=0,1,...} <gu {V2(i),t=0,1,...}, i=1,...,N. (11.11)

In short, R <« R’ and the required condition (11.5) follows upon combining (11.11)
with (11.9).
Lastly, under the assumptions of the theorem, we recall from Lemma 11.4 that

E|T(R")| = E|T(R*)| = N, and (11.6) holds. m

The following results are obtained upon combining Theorem 11.3 with Theorems

9.3, 9.4 and 9.7, respectively.

Corollary 11.5 Assume the request streaR) = {R;,t = 0,1,...} to be modeled
according to the stationary HOMM(c, p) with admissible popularity pmp. Then, it
holds that

A~

T(R) < T(R)

whereR is the IRM with popularity pmp.

Corollary 11.6 Assume that for each = 1,2, the request strealR’ = {Rf’@,t =
0,1,...} is modeled according to the stationary PMMj(p) with admissible popularity
pmfp. If 0 < B, < 3y, then it holds that

T(R") <. T(R™).

Corollary 11.7 Assume the request stredRf = { Rt =0, 1, ...} to be modeled ac-
cording to the stationary LRUSM( with stack distance pnd satisfying (9.22). Then,
it holds that

T(R*) <.. T(R®)

whereR® is the IRM with uniform popularity pmt.
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11.2 Stack distance

The notion of stack distance has been widely used as a metric for temporal correlations
[1, 3, 50]: For eacht = 1,2,. .., the stack distance of the request streBm- {R;,t =
0,1,...} attimet is the rvD(¢; R) defined by

D(t, R) = |{Rt—T(t;R)+l7 g ee ey Rt}| (1112)
whereT'(¢; R) is the inter-reference time (11.1). It is not hard to see that the relation
D(t;R) = S(t,T(t; R); R) (11.13)

holds. In wordsD(t; R) can be interpreted as the working set size where the length of
the working set is taken to be the inter-reference tifie R). Hence,D(¢; R) records
the number ofdistinct documents requested from the time the docunieénivas last
requested before time

Under some appropriate conditions on the request stigam = 0,1,...}, the
weak convergenc®(t; R) =—>; D(R) holds with the steady state stack distanygR)
being the rv representing the number of distinct documents requested between two con-
secutive requests for the same document. This fact is given in the next lemma whose

proof can be found in Appendix E.5.

Lemma 11.8 Assume the request streaR = {R;,t = 0,1,...} to be asymptoti-
cally stationary, i.e.{Ry ¢,t = 0,1,...} =, {R,,t = 0,1,...} with R = {R,,t =

0,1,...} being a stationary sequence/dfvalued rvs. Then, it holds that

D(t; R) =, D(R). (11.14)
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It is known [33, 37] that the stack distance is related to the miss rate of the LRU
replacement policy. Specifically, given a request strdamauch that the steady state
stack distancé(R) exists, the miss raté/; gy (R) of LRU with cache sizel/ can be

expressed in terms of the tail distribution ©f R) through

Miru(R) = P[D(R) > M]. (11.15)

11.2.1 The effect of popularity

To see the effect of popularity, we restrict the request streams to be in the class of IRMs,
in which case the steady state stack distances exist by Lemma 11.8. From (11.13), in
view of the results obtained in Corollary 10.3, we might expect that for two IRM request

streamsR' and R* with popularity pmfsp' andp?, respectively, the comparison
D(R?) <, D(R") (11.16)

should hold ifp* < p®. However, the comparison (11.16) can not be established as we
explain below: Recall the relation (11.15) between the miss rate of the LRU policy and
the tail distribution of the stack distance. In Section 8.1, we have seen that it is possible
to find pmfsp' andp? on \V such thatp' < p? and yetMgru(p') < Miru(p?), or
equivalently,P [D(R') > M| < P |[D(R’) > M|. As we recall (3.2), we conclude
that the comparison (11.16) does not hold in general.

Although somewhat annoying from the point of view of intuition, this state of affairs
is perhaps not too surprising (in view of (11.13)) given the opposite direction of the
comparison of inter-reference times in Theorem 11.2. It is possible that some compari-
son other than (11.16) might hold, say in the increasing concave ordering, i.e., for two

IRM request stream®B' and R? with popularity pmfsp' andp?, respectively, it holds

D(R?) <., D(R") (11.17)
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wheneverp! < p?. This comparison is compatible with theeaker result of Yue and

Wong [73] that the comparisdi [D(RQ)} <E [D(Rl)} holds whenevep' < p*.

11.2.2 The effect of temporal correlations

Inspired by the results obtained for the working set size in Corollary 10.6, we would
expect that the stronger the strength of temporal correlations, the smaller the stack dis-
tance. Unfortunately, we have not yet been able to formalize this statement and will

pose this problem in the following conjecture.

Conjecture 11.9 Assume that for each = 1,2, the request streaR" is asymptoti-
cally stationary, i.e{RF ,,t =0,1,...} =, {RF,t =0,1,...} whereR" = {R¥,t =

0,1,...} is a stationary sequence &f-valued rvs. IfR' < R?, then it holds that
E[D(R’)| <E[D(R")].

A support for this conjecture is given under the class of PMM request streams: For
this class of request streams, we have from Theorem 9.8 tR4t ind R* are modeled
according to the PMM{;, p) and PMM(3,, p), respectively, with) < g, < g (i.e.,

R" <;¢ R™), thenMgy(R™) < Mygy(R™) for all cache sized/ = 1,..., N —1.
It then follows from the relation (11.15) tha [D(Rﬁz) > M} <P [D(Rﬁl) > M}

foreachM =1,2,..., N — 1, or equivalently, that
D(R™) <, D(R™) (11.18)

by the property (3.2) of the usual stochastic ordering. Conjecture 11.9 holds under the
class of PMM request streams since (11.18) imﬂEe{sD(RﬂQ)} <E [D(Rﬁl)}.
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Appendix A

A Discussion of Lemmas 7.1 and 7.2

Consider the RORA() policy for some eviction/insertion pmf. As pointed out in
Sections 7.1.1 and 7.1.2, under the IRM input, the cache st@tes=0, 1, ..., } form
a Markov chain with state spade(M; N') whose ergodic properties are determined
through the set,..

Fix the cache state = (iy,...,iy) in A(M;N), and for eachk, ¢ = 1,..., M,
define the sef, ,(s) as the collection of states which can readh one step when the

eviction and insertion are occurring at positignand/, respectively. Thus,

{8 = (in, ooy, by ik, oyt dep, oo ying) 0 i g sy iF R <A
Dre(s) = {5 = (i1, ooy o1 psts - ooy ks by sty ying) s G € s} k>0
LG (TS VRS TY % FER U 575 A -2 ) if k=1¢.

LemmaA.l Fixt = 0,1,.... For each cache state= (iy,...,iy) in A(M;N), we

have

Piui=d = (To0)Pi=d

€S

+Zp(i)2¥rkg< > P[Qt:s’]). (A.1)

i¢s k=1 s'€le(s)
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Proof. Fixt =0,1,.... Obviously, we have

P [Qt+1 = S] = P [Qt—l-l = S,Rt c St] + P [Qt—l-l == S,Rt g St]

= P =5R €S]+P[Q1 =15 R &5 (A.2)

because the cache state remains unchanged if the requested document is in cache.
Next, by independence,

N
P[Qt:S7Rt GSt] = ZP[QtZS,Rt:i,iESt]

=1

<Z p(i)) P, = s (A.3)

€S
sinces; is determined by),. Similarly,

N
P[QtH = s, Ry ¢St] = ZP[QtH :S7Rt:i7i¢5t]

i=1

= ZP[QtJrl =s, Ry = Z]
i€s

= ZZZ Z P[Q =5, Q1 =5, R = i

i€s k=1/¢=1 s/EFkZ(S)

_ VY Y Pl =]

igs k=14=1 s'€Tyy(s)

= > p(i) %%r ( > PQt_s). (A.4)

iZs k=1¢=1 s'€lke(s)

We obtain (A.1) by collecting (A.3) and (A.4) into (A.2). [ |

Case 1 —The setX,. being empty, the Markov chain has exactly one irreducible

component, namel(r, sg) = A(M; N') regardless of the initial conditios, with

pr(s;p) = Jim Y 1[Q, =5 = ImP[Q,=5] as.

t—o0
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for eachs in A(M;N). Lettingt go to infinity in (A.1), we conclude by the standard
theory of Markov chains th&tu..(s; p), s € A(M;N)} given in (7.3)-(7.4) of Lemma
7.1 isindeed the stationary pmf of this Markov chain since it satisfies the Global Balance
Equations

M M

pr(s3p) = (Zp )urSp +> (i ZZ ( Do Hels ,p> (A.5)

i€s i¢s k=1/¢=1 s'€lke(s)

We now discuss the technical issues which arise wkiea M + 1. In this case, the
analysis that we have done so far holds for all RORA(licies in Case 1 but the FIFO
policy with eitherr;,; = 1 orry;; = 1. Under this particular case, 4 = (i1, ..., iy),
then only M + 1 states can be reached from, i.e., A(r, so) contains the elements
(11, -y inr)y (s e oo ying, tare1)s (83, -« oy Gnag1s91)s -« o5 (G401, %1, - - -, Ga7—1). This state
space\(r, sy) is equivalent to the set*(A/; V') and it can be verified using the Global
Balance Equations (A.5) that the stationary pmf is given by

p(i1) - plin)
St sinryer sy PUL) - p(Gnr)

pir(s1P) = (A.6)

with s = (i1,...,17y7) arbitrary inA(r, sq). Finally, with the stationary pmf (A.6) and
N = M +1, itis plain that the miss rat&/,.(p) and the output popularity pmf: in this
case are still given by (7.17) and (6.8), respectively, independently of the initial cache
states.

Case 2 —-The set.,. is non-empty with|%,.| = m for somem = 1,..., M — 1. As
discussed in Section 7.1.2, if the Markov chain starts in the initial state A (M; N),
it will always stay within the component(r, s,) defined at (7.7). On this component
A(r, s9), the Markov chain is irreducible and aperiodic; its stationary pmf exists for each
sin A(r, sg). Itis a simple matter to check that the pfaf, ., (s),s € A(r, so)} given
in (7.9)-(7.10) of Lemma 7.2 satisfies the Global Balance Equations (A.5) and hence it

is a stationary pmf for this Markov chain.
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In the case whev = M + 1, the analysis still holds for all RORA(] policies in
Case 2 with the exception of FIFO-like policies, i.e., the RORAfolicy with ry, = 1
for somek,¢ =1,..., M and|X,.| = m, forsomem = 1,..., M — 1. For this special
case, under the same reasons as in Case 1, the state\$pagg has onlyM —m + 1
elements and coincides with the 8&{r, s,) defined at (7.22). We again use the Global

Balance Equations (A.5) to show that the stationary pmf is given by

[Lisgs, (s0) P(ie)
> i ters(mso) LLogs, (so) P(Je)

firs0 (8 P) = (A.7)

wheres = (iy, ...,y ) arbitrary inA(r, so). It is easy to check in this case that with
the stationary pmf given in (A.7), the miss rak&.(p; s,) and the output popularity pmf

Dy, also admit the expressions (7.26) and (7.32), respectively.

141



Appendix B

Proofs of Theorems 8.1, 8.6, 8.8, 8.12 and 10.11

Throughout, the notion of asymptotic equivalence is defined as follows: For mappings
£, : Ry — R, we write f(a) ~ g(a) (@ — 00) if limg_o0 % = 1. We shall have
repeated use for the next two elementary lemmas.

Lemma B.1 Consider a finite family.,, . . . , ax of positive scalars. We have

-----

'''''

Lemma B.2 Consider K mappingsfi, g1, - .., fx, 9k : Ry — R, such that for each

k=1,..., K, we havef,(a) ~ gr(a) asa — oo. Then, it holds that

2_: Je(a) ~ z_: gr(a) (v — o).

From now on, without further mention, all asymptotics are understood in the regime
whereq is large, and the qualifiex — oo is dropped from the notation. In particular,

by recalling the normalizing consta@t, (V) of Zipf-like distributions defined at (6.5),

we note that

Co(N) ~ 1. (B.1)
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B.1 A proof of Theorem 8.1

Fix a > 0. Upon substituting (6.4)-(6.5) into the expression (8.4), we find
MLRU(pa - 2 Z v (i (BZ)
with

va(i) = > —— ez i —, i=1,...,N, (B.3)
sentrn TG (Sigtin, i 570

where for each element = (iy,...,4y) of A;(M;N), we have denoted by ¢
{i1,...,ix} the set of elementsin A/ which are not in the setiy, . . ., i\ }.

Fixi =1,2,...,N. For each element = (iy,...,%y) in A;(M; N), we invoke
Lemma B.1 to claim that

e n y 5 k:l,...,M—l’
]€{1§:,zk}j <J¢{11 ..... Zk}]>

whence
M-1
[I{ X i)~
k=1 \jg{i1,ir}

where we have set

M-1

H( min )

i1 \JE{i ik}
Lemmas B.1 and B.2 together yield

H%1i€>_a~ci ~v(i)™ B.4
seAi(M;N)< p(s) () v (@) (B.4)

Va(i) ~

where

v(i) =

M .
min (HZ_I Z€> (B.5)
seN;(M;N) p(S)

andc(7) is the number of elementsin A;(M; N') which achieve the minimum in (B.5).

To proceed we note the obvious inequality

mmseA (M;N) (Hz 128)

maXseA,; (M;N) P( )

(i) > (B.6)
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We shall show the existence of element(&) A;(M; ') which simultaneously achieve

the minimum in

min (H u) (B.7)

seN;(M;N)

and the maximum in

. B.8
e p(s) (B.8)

This will imply that (B.6) holds as an equality, and in the process both the minimal value
of v(7) and the integet(:) will be determined.

Fori = M +1,...,N, itis plain thats = (1,..., M) is the only element in
A;(M; N') achieving both the minimum (B.7) with minimal valdé! and the maximum
(B.8) with maximal valueM!. This last claim can be established by easy interchange

arguments. Thusgy(i) = 1 and
v(i)=— =1. (B.9)

Similarly, wheni = 2,... M, theelement = (1,...,i — 1,i+1,...,M, M + 1)
of A;(M;N) yields the minimum (B.7) with minimal valugl,_; ¢ - T[;"f!, ¢ and the
maximum (B.8) with maximal valug[,_} ¢ - i*~*!, whencer(i) = 1 and

(i) = Iy 0TIt ¢ (M +1)!
Hz 1g JM—it1 gl M =il

(B.10)

Fori = 1, p(s) = 1 for any elements in A;(M; N') so that the maximum (B.8) has value
1. On the other hand, the minimum (B.7) is achievedhhy of the M! permutations of

(2,3,..., M, M + 1), yielding the minimal valu¢ M + 1)!. Hence¢(1) = M! and
v(l)=(M+1)! (B.11)

which is simply (B.10) at = 1.

Invoking Lemmas B.1 and B.2 again, we find

Zi’al/a(i) ~C- ( minN z'y(i))_a (B.12)

.....
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for some integer to be determined. It follows from (B.9) that

iv(i) = min Ni =M+1 (B.13)

_min_ iv(i) = (M +1) _min o(i). (B.14)

with

It is a simple matter to check that
Ml=p(1)>p2)>...>¢o(M)=1 (B.16)

so that the minimum in (B.14) is achievediat M with minimal valueM + 1. It then

follows from this fact and (B.13) that
r{linN iv(i) =M +1 (B.17)
andc = 2. Finally, combining (B.1) (B.2), (B.12) and (B.17) readily leads to
Miru(py) ~ 2(M + 1)~ (B.18)

and the desired conclusion (8.7) is obtained. [ |

B.2 A proof of Theorem 8.6

First, in order to lighten up the notation, Ig}, denotepiy . The proof of Theorem
8.6 relies on the following observation: By the definition of majorization (2.1)-(2.2), the

comparisorp;, < p, requires the condition

_min p,(i) < minp (i) (B.19)
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to hold. Thus, as we recall (6.6), this comparison will not hold if we can show that
Co(N)N® - minN o) < 1. (B.20)

We show under the appropriate conditions @hand N that (B.20) indeed holds for
large enough values of.
Fix a > 0 and substitute (6.4)-(6.5) into the expression (8.11) for the gmfFor

eachi = 1,..., N, we find

ey (i)
Phi) = S ) (B.21)

with v,(i),7 = 1,..., N, given at (B.3). By virtue of (B.4), (B.12), (B.17) and (B.21),

we can now write

iv(i)
Consequently,
: . . (M +1\"
Jpin pali) ~ 9 (C(l) <W> ) (B.22)
By recalling (B.9), we get
_ (M +1\" M+ 1\
=ML N (C(Z) ( iv (1) ) > N ( N ) (B-23)

where the minimum is achieved at= N. Next, by using (B.10), we get with the help

of (B.15) and (B.16) that

, WM+ M-I\
i (0 (50 ) )= () 529
where the minimum is achievediat 2. Finally, »(1) = (M +1)! ande(1) = M! yield
M+1\° 1
— M!
c(1) ( 6 ) M.(M!)a. (B.25)
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Combining (B.1), (B.23), (B.24) and (B.25), we conclude from (B.22) that

1 NA\® [2M-IN\“
. i *(7) ~ = mi I — @
Z:r{unN (i) 5 min (M (M') , ( A ) (M +1) ) )

Under (8.26), as grows large, the first term in the minimum above will have the small-

Co(N)N®

est value, so
o .. M!'/N\®
Co(N)N - dnin Pali) ~ = (M) ,
and the condition (B.20) indeed holds for large enough values of [ |

B.3 A proof of Theorem 8.8

Fix a > 0. By substituting (6.4)-(6.5) into the expression (8.30), we find

. 1 N
M, = 1 (1 B.26
CL (pa) Ca(N)KCL,a P ? Ui (Z) ( )
with
M
s€A; (MN) =1
and
M M—¢+1
Kono= . [ ™. (B.28)
sEA(M;N) £=1

Fix:=1,..., N. By Lemma B.1 we immediately get

Mo (i) ~ ¢ (i)n (i)~ (B.29)
with
M
0= g, (1) (530
R /=1

andc (i) is the number of elementsin A;(M; N) that achieve the minimum in (B.30).

Elementary interchange arguments show that the minimal value in (B.30) is achieved at
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some unique element= (iy,...,iy) of A;(M; N) with the propertyi; < i, < ... <
inr, SO that? (i) = 1.

Using this observation, we first conclude that

M
n(M+1)=...=n(N)=J[M " (B.31)
(=1
On the other hand, whenevet 1, ..., M, direct inspection shows that

n(i) = (M+1) T M1 I M2

1<t<i i<t<M
: l
_ Hl<£§]\/f . (M + 1)77(M + 1)

Z'Mfi+1
= (M+1)n(M + 1)@51) (B.32)

where the quantitieg(i),7 = 1,..., M, are defined at (B.15).

Next, upon making use of Lemmas B.1 and B.2, we see that

N

> i e (1) ~ ( min m(z)) B (B.33)

=1 i=1,...,N

with ¢ denoting the number of indices achieving the minimumuim,—; 5 (7).

Obviously, by virtue of (B.31), we find
min _in(i) = (M + 1)n(M + 1) (B.34)

where the minimum is achievedat M + 1. On the other hand, as we rely on (B.32),

we get

min_in(i) = (M + 1)n(M + 1) minM (1) (B.35)

i=1,..M i=1

77777

and by (B.16), the minimum in (B.35) is achievediat M with minimal value(M +
1)n(M + 1). Combining this fact with (B.34), we obtaith= 2 and

' minN in(t) = (M + 1)n(M +1). (B.36)

.....
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Lastly, invoking Lemma B.1 with (B.28) leads to

—Q
Kcra ~ ( min H@M g“)

seAN(M;N)

_ (ﬁgﬂﬂﬂ) = (M +1)". (B.37)

(=1
It is now plain to see from (B.1), (B.26), (B.33), (B.36) and (B.37) that

Mcw(p,) ~ 2(M +1)~° (B.38)

and the conclusion (8.32) follows. [ |

B.4 A proof of Theorem 8.12

To simplify the notation, we shall writg?, to denotepg,, . The proof of this theorem
proceeds along the same line as the proof of Theorem 8.6. We need to show under the
appropriate conditions o/ and NV that (B.20) holds for large enough valuescof

Fix a > 0. Substitute (6.4)-(6.5) into the expression (8.34) yields

i (1) i —
pa(i) = SN on()’ =1,...,N, (B.39)

with 7, (), i = 1,..., N, given at (B.27). With the help of (B.29), (B.33), (B.36) and

(B.39), we can now write

ORS %<<M+mg‘4“>> Ci=1....N (B.40)

Therefore, we obtain

((M + 1)n(M + D)a. (B.41)
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Upon noting (B.31), it is a simple matter to check that
~max (i) = N-n(M +1) (B.42)
and from (B.32), it follows from the fact (B.16) that
_max in(i) = (M +1)!-n(M+1). (B.43)
As a result of (B.42) and (B.43), we find
max in(i) = max (M + 1), N) -n(M +1). (B.44)

To conclude the proof, we note from (B.1), (B.41) and (B.44) that

L 1 M+ 1)N “
Ca(N)N sl N Pali) ~ 2 (max(((]\/[ —1—)1)!,N))

with max (M + 1)!, N) = (M + 1)! under (8.26). Consequently, the last asymptotics

takes the simplified form

o : * [ 1 NA\“
Co(N)N ' nin pa (i) ~ 3 (M)

and the validity of (B.20) for large enough valuescofollows. [ |

B.5 A proof of Theorem 10.11

To simplify the notation, the output pnpfys , Will be denoted byp?,. As in the proof
of Theorem 8.6, we try to establish (B.20) under the appropriate conditionamial N
for large enough value af.
Fix « > 0 and7T > 1. By substituting (6.4)-(6.5) into the expression (10.18), we

have

, N, B.45
ey k(e )7 (B.45)

pa(i) =
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where we have denoted by i the set of elementgin A" which are different from.

As a direct application of Lemma B.1, it follows that

._ ._ . .o 277, =1
Q) i (min )T =
J#i ! i, i=2,...,N
and therefore by Lemma B.2, we find
N N
Z i—a(Zj—a)T ~ 9ot + Z o
i=1 j#i i=2
~ 27
Combining (B.45), (B.46) and (B.47) yields
2—r=h =1
pat)~§
(g) : i=2 ... N.

From the expressions (B.48), it is a simple matter to check that

. KO . —a(r-1) . t -
‘_mlana(z) min(2 ,_mmN( ) )

— min (270D <E>_a )
"\ 2

Finally, we note from (B.1) and (B.49) that

and by the enforced condition (10.19), this asymptotics reduces to

N : . N \“
Col NN in () ~ (55 -

Hence, the condition (B.20) is satisfied for large enough values of
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Appendix C

Proofs of Theorems 8.5 and 8.11

C.1 A proof of Theorem 8.5

To lighten up the notation, we shall writg to denotep; sy, .. From Proposition 8.4, the

comparisorp! < p. does not hold whenevélz or equivalently, whenever
p e e

N 1’
pi(1) < . (C.1)

Under the pmf (8.16), we find from (8.10) that
(N=2)! (1—(N—=1)e)eM

pe()m(i;p.) = (N M1 (- ke) - a(7) (C.2)
with
N -1 if i=1
a(i) = M L (C.3)
N —ke . .
1+((17+Z£1 {cwﬂl((N,k))g |f 222,...,]\[.
Reporting (C.2)-(C.3) into (5.4), we get
[ (N—M—1)e MM (k)T
) = [2+1 ey
=N =-1e) = i (N—k)e
g MoLIM—1 (] e ]—1
— LT i (N—k)e
rM—1 -1
(1 —le) ]
< (C.4)
= (N —{)e
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where the last inequality follows from the fact that for each 1,..., M —1, ((]{,*_’jf))g >
H 1
1 sincees < 5

Consequently, the condition (C.1) will hold if

M= (1 —te)
1< e:21 &0

or equivalently, if
(2 ) -1
(=i )

Hence, provided thaV and M satisfy the conditiory~;”;' -1 > 1, there exists in

e<

the range (8.23) for which the comparisph~< p. does not hold. [ |

C.2 A proof of Theorem 8.11

First, to simplify the notation, the output popularity ppf; . will be denoted byp;.
The proof of this theorem proceeds along the same lines as in the proof of Theorem 8.5.
We seele such that the condition (C.1) holds.

For the input pmf (8.16), we have from (8.33) that

M(M+1)

(N=2)! (1—=(N—=1))e z

p()m(i;p.) = N M 1) jon - b(1) (C.5)
with
) = —(N-1e /-1 . . .
1]\7[(7]\][\/[771)15_’_2[]\11(1(]\[%) if 222’...,N-

Combining (C.5)-(C.6) with (5.4), we find

M B _ c /-1
) = [+ 2 () ]
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IA
[]=
/N
—_
I
=
I
—_
o
N———
|

. :M_—l (1 - (J\i— 1)&)1

or equivalently, if

e<(1—(N-1))

(C.7)

(C.8)

This last inequality indeed holds whenis in the range (8.35) and the desired result

follows.
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Appendix D

Proofs of Proposition 9.6 and Theorem 9.7

D.1 A proof of Proposition 9.6

To facilitate the proof, we shall need the following notion of stack position: iFx
1,...,N. For eacht = 0,1,..., let the rv X?*(i) denote the position of documeit
in the LRU stack(2; at timet associated with the request streq®?®, ¢t = 0,1,...}.
From the stack operation (9.16), the sequeh&€(:), ¢t = 0,1,...} is seen to evolve

according to the recursion

1 if D, = X2(i)
X (@) =19 X2() if D, < X2(3) (D.1)
X))+ 1 if Dy > X2(4)
forallt = 0,1, ... with the initial positionX§(:) given and assumed independent of the
i.i.d. stack distance§D,,t =0,1,...}.
By independence of the nfsD;,t = 0,1,...}, it follows from (D.1) that the se-
quence{X/(i),t = 0,1,...} is a Markov chain on the state spafg ..., N} with

one-step transition probability matriR* = (P, j,k =1,..., N) given by

pe = p[Xgl(i):j\Xf(i):k}
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= 00, V)P [Dy = k] +6(j, k)P [Dy < k] +6(j, k + 1)P [Dy > K

)
k—1 N
= 5(]7 ak+5]7 ( Clg>+5]7kf+ ) (Z CL()

(=1 {=k+1
forj,k=1,..., N, where we sei(z,y) = 1[z = y| for anyz,y € R. This transition
matrix P* is a doubly stochastic matrix, .6, P = Y00, P& = 1forall j, k =
1,...,N. An invariant distribution forP* then exists, is unique and is given by the
uniform pmfu on{1,..., N}.
The conditiona > 0 is necessary and sufficient for the Markov chf®(i), ¢ =

1,...} to be irreducible on its finite state spafk ..., N}, hence to be positive re-
current. For) < ay < 1, the Markov chain{ X?(i),t = 0,1,...} is aperiodic while
foray = 1, it is periodic with periodV. Regardless of its periodicity [36, Thm. 6.4.3,
p. 227], whem > 0, the fraction of time thaf X2(i),t = 0,1, ...} spends in a given

statek will a.s. converge to the corresponding entry of invariant distribution. The latter

being the uniform pmf o1, ..., N}, we conclude that
li 1th“'—k—l k=1 N D.2
tigloig [ T(Z)_ ]_N a.s., T byt ( )

Moreover, in the stationary regime, wheg > 0, we have

1

PX2(i) =k =5 k=1...N

forall: = 1,..., N. This implies that in stationarity, the stack i{Q;,¢ = 0,1,...}
are uniformly distributed ovek(N; N).

With the fact (D.2), we are now ready to prove Proposition 9.6:iFx 1,..., N.
Recall thatk = i if and only if X(i) = 1 since this corresponds to documeieing
in position 1 of the LRU stack), associated with the request stredfi. Under the

assumptiory > 0, we can combine this observation with the convergence (D.2) to get

1 t
pa(i) = lim = > 1[R? =]
T=1

t—o00
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1 t
= lim " Y 1[X26) =1] as.
T=1

t—oo

and the desired result is obtained. [ |

D.2 A proof of Theorem 9.7

Throughout, for each=1,..., N, we set
Ve@i@)=1[R =1, t=0,1,..., (D.3)

and for eacht = 0, 1, ..., write V*'(i) = (V2(i), ..., V,2(i)).
Fixi =1,...,N. In order to establish the CIS property of the sequei¢®(i), t =

0,1,...}, it suffices to show that for each= 0, 1, . . ., the inequality
P VS, () = 1|V (i) =a'| <P [V2,(5) = 1IV*'(i) =y  (D4)

holds forany pair of vectorse! = (xy, ..., z;) andy’ = (yo,...,y;) in {0, 1}’ satis-
fying ' < y' componentwise.
Our first task is to provide a simpler expression for the probabilities of interest. To

that end, fog = 1,..., N, we introduce the quantities’,(£), t = 0,1,...} given by
P(€) =P [X2, (i) = 1[X§(i) = & XP() #1,..., Xf() #1]  (D.5)
forallt =1,2,... with
Ro(€) == P[X2(0) = 1|1X3(i) = €].
Moreover, for eachh = 0, 1, ..., and any non-zero elemeat in {0, 1}'*!, we set

7(x") = max(s=0,...,t: z,=1).
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Proposition D.1 Foreach = 0,1, ..., and any non-zero vectaf in{0,1}'*!, it holds
that
P [V2,() = V(i) = '] = Pisan(1). (D.6)

Proof. Fixt = 0,1,... and consider a non-zero vectet = (x,...,z;) in {0, 1}

Writing 7 = 7(x") to simplify the notation, we see from the definitions that
V() = a'
Ve i) = 27 VEG) = 1LV, () =0, V2(0) = 0]
= [V i) =" RE =i, R, #i,..., RE £
(Vi) =2 X2(0) = L, X2 () £ 1, X £ 1) (D7)
where we have set™ ! = (zo,...,z,_1) and that
Vg (1) = 1] = [XE.(0) = 1. (D.8)
Assume first that < t. Now observe that the evefit ™' (i) = 71, X2(i) = 1]
is determined by the rv&§(i), ..., X%(i¢). Thus, by preconditioning with respect to
these rvs, we readily conclude from (D.7) that
P [V*(i) = a']
= P[Ver i) = X2(0) = 1,X%, (i) # 1., X2() # 1]
= P[Verl(i) =a™ ! X2(i) = 1]
P X2 (0) # 1, XP) # 1X2(0) = 1] (D.9)
where in the last step we used the fact that the stack position seq{&if¢e), t =

0,1,...} is a Markov chain. Similarly, this time making use of (D.7) and (D.8), we get

P V(i) = 2!, V3, (i) = 1]

158



= PV i) = a7 X20) = L, XA, () # 1., XPG) # 1L, XE (1) = 1]
= PV (i) =2, X2() = 1]

P X2 (0) # 1, XP() # 1, X8, (1) = 1X26) = 1] (D.10)
It is now plain that

P [V, (i) = 1V (i) = @]
P [V*(i) = !, V2, (i) = 1]
P [V*(i) = a!]

L OPXEL) AL XP6) A LX) = 1X26) = 1]
P A L. KR A XED = 1
| P[XE) = LX8, ) £ Lo XP) £ LX) 1
) PX2() = LXR() A L. Xp() £ 1]

= PXE.(0) = 1X20) = 1LXZ0 () A1, X2() # 1]

and the desired conclusion follows by the homogeneity of the Markov €§fiii), t =
0,1,...}.

The case =t is straightforward. [ |

D.2.1 Some preliminary calculations

Since the expressions for the probabilities of interest involve the stack position se-
quences{ X2(i),t = 0,1,...}, ¢ = 1,..., N, associated with the LRUSM request
streamR®, we shall need some basic facts concerning them in order to show the desired
CIS property. Throughout the discussion of the results in this and the next sections, we
fix the indexi = 1, ..., N and the pmfa, and lighten up the notation by writing; to
denote the stack positioki? (i) of the document at timet¢. For eacht = 0,1, ..., let

A; denote the eventX,; # Dy, ..., Xy # Dy).
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Recall that the stack distance ry$),,t = 0,1,...} associated with{ R?, ¢t =

0,1,...} are i.i.d. rvs distributed according to the generidrwith pmfa. We set
aly)=P[D <yl and B(y)=P[D>y], y=01,...,N.
and define the quantities

Qt(yag) ::P[Xt:yw’élt—laXO:g]v y7£:1a"'7N7
foreacht =1,2,....

Proposition D.2 Foreach =1,2,...and¢ = 1,..., N, it holds that

Qir1(y; &) = a(y)Q:(y; &) + By — 1)Q(y — 15€) (D.11)

forally =1,...,N.

Proof. Fixt=1,2,...and{ =1,...,N. The case = 1 requires a separate analysis:
The evolution (D.1) precludeX, ; = 1 under the conditionX; # D,. Therefore, we
must haveP [ X, = 1, A;, Xy = £] = 0 and the expression (D.11) holds as we observe
thata(1) = 0andP [X; = 0,4,_1, Xy =&] = 0.

Next we turn to the casg = 2,...,N. The evolution (D.1) implies the relation
X1 = Xy if Dy < Xpand X,y = X+ 11if X; < Dy. Thus, the eventX,; =y, X; #
D] is the union of the two disjoint event&; = y—1, X, < D,] and[X; = y, D; < X,].

This leads naturally to

P [Xt+1 = yaAt>XU = 5] = P [Xt+1 =1y, Xy 3’é Dy, Ay, Xo = 5]
- P[Xt:y_]-JXt<Dt7At—17X0:§}

+P [Xt =y,Dy < Xy, A1, Xo = 5]
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= P[Xt:y_lﬂy_l<Dt7At—17X0:§]
—I—P[Xt:y?Dt <y7At—1aX0:€]
= P[y—]_<Dt}P[Xt:y—1,At_1,X0:§]

+P[D, <ylP[X; =y, A1, Xo =¢]

as we make use of the fact that the By is independent of the rv§X;, D, s =

0,1,....,t—1,X;}. n

The case¢ = 0 in (D.11) is somewhat different but by essentially the same argu-

ments, we get that

Q1(y; ) = (6(y,)a(€) +6(y, £ + 1)B(E)) - P [Xo = ] (D.12)

for arbitraryy, £ = 1,..., N. This follows from the fact that constraints exist between

the stack positionXy and X; on the event,.

D.2.2 Monotonicity under the likelihood ratio ordering

We also make use of the so-callekelihood ratio ordering, which is now defined.

Definition D.3 ForIN-valued rvsX andY’, we say thaiX is smaller thary” according

to the likelihood ratio (Ir) ordering, writteX <;. Y, if
P[X =y|P[Y =2] <P[X =z]|P[V =y (D.13)
for all x andy in IN with x < y.

The likelihood ratio ordering is stronger than the usual stochastic ordering [59, Thm.

1.C.2, p. 29], i.e., if thdN-valued rvsX andY satisfy X <;. Y, thenX <, Y.
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In what follows, we shall find it convenient to use the following notationXlfis
anN-valued rv andA is an event, thefX|.4] denotes any rv whose distribution is the

conditional distribution ofX given.A. The comparison
[X|A] <ir [X]B]
for some other everit then amounts to
PX =y[A]P[X = z2(B] <P [X = 2|A] P [X = y[B] (D.14)
whenever: < y in IN, or equivalently
PX=yAPX=B<PX=zAP[X=y,Db| (D.15)

providedP [A] > 0 andP [B] > 0. With the likelihood ratio ordering, we can now state

the following
Theorem D.4 For§, ( =1,..., N with& < ¢, it holds that

[Xt‘At—laXO - f] <ir [Xt|At—17XO - C]y = 1727 SR (D-16)

Before giving a proof we observe that the comparison (D.16) holds for some

1,2,...if

P [Xt = y;At*17X0 = g] P [Xt = x7At717X0 = C]

< PXy=a0,A41,X0=¢P[Xy =y, A1, X0 = (] (D.17)

forz,y=1,..., N withx < y.

Proof. The proof proceeds by induction en= 1,2, .... Throughout we fix arbitrary

§,(=1,...,N suchthat <.
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The basis step:Fort = 1 the comparison (D.16) (when interpreted through (D.17))

requires that

Q1(y;€)Q1(x;¢) < Qi(x;€)Q1(y; Q) (D.18)

forallz,y=1,..., N withz < v.

In view of (D.12), the inequality (D.18) is certainly implied by
(0(y, &)al§) +6(y, € +1)5(8)) (6(x, Q)ex(C) + 6(z, ¢ +1)5(¢))
< (0(z,&)a(€) + 6z, & + 1)B(E)) (6(y, Q)a(C) + 6y, ¢ + 1)B(C))
an inequality we can rewrite as
6(y,£)8(z, Q)a(§)a(C) + 6(y, £)d(x, ¢ + 1)a(§)B(C)
+0(y,§ +1)d(x, Q)B(&)(C) + 6(y, € + 1)d(x, ¢ + 1)B(E)B(C)

< 0(x,8)0(y, Qa(§)a(C) +d(x, §)(y, ¢ + 1)a(§)B(C)
+0(x, £+ 1)0(y, Q)B(E)(¢) + 6(x, €+ 1)d(y, ¢ + 1)B(£)5(C). (D.19)

Comparing like terms in (D.19), we see that (D.18) will hold since the four inequalities

0(y,£)d(x,¢) < 6(x,£)d(y, C),

8(y,)0(x, (+1) < 6(x,&)0(y, ¢+ 1),
6(y, &+ 1)d(x, ) < d(x, &+ 1)0(y, C)

and

6(y,§ +1)o(z, ¢ +1) < o(x,§ +1)0(y, ¢ + 1)

all hold under the constraints< y and¢ < (.

The induction step: Now assuming that (D.16) holds for some: 1,2, .. ., namely

(X A1, Xo = €] <ip [Xi A1, Xo = (], (D.20)
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we seek to show that
(X1 As, Xo = €] <pp [Xepa]Ar, Xo = (] (D.21)

As discussed earlier, the comparison (D.20) is equivalent to

Qt(y/§§)Qt(x/; () < Qt($/§f)Qt(y,;C) (D.22)
forall ',y =1,..., N with 2’ < ¢/, while the desired comparison (D.21) is equivalent
to

Qui1(Y; §)Qu1(; C) < Q1 (w56) Qi1 (y; €) (D.23)

forallz,y=1,..., Nwithz < v.
To establish (D.23), we fix,y = 1,..., N with x < y. From Proposition D.2, we

have the expressions

Qrr1(Y;§) Qi1 (7;¢) = a(y)a(w)Qu(y; §)Qu(w; () (D.24)
+ a(y)B(r — 1)Q+(y; §)Q:i(z — 1;¢) (D.25)
+ By — Da(2)Q:(y — 1;€)Qs(7; C) (D.26)

+ By — 1)B(z — DQuly — L;§)Q(z — 1;¢) (D.27)

and
Qui1(7;8)Qui1(y; Q) = a@)a(y)Qu(z; §)Q:i(y; ¢) (D.28)
+a(z)B(y — 1)Q:(7; §)Qi(y — 1;¢) (D.29)
+ Bz — Da(y)Qi(z — 1;£)Q:(y; ) (D.30)

+ 8z = 1By = DQ:(x — 1;6)Q:(y — 1;¢). (D.31)

Comparing the last two expressions term by term, namely (D.24) with (D.28), (D.25)
with (D.30), (D.26) with (D.29), and (D.27) with (D.31), we conclude from (D.22) that
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(D.23) holds. This completes the proof of the induction step. [ |

Before we can state the main results of this section, we pause for an easy technical

lemma.

LemmaD.5 Let X andY be{l,..., N}-valued rvs withX <, Y, and letD be an-
other{1, ..., N}-valued rv independent of andY with pmfa = (ay,...,ay), i.€.,
P[D=Fkl=ak=1,...,N. Ifthe pmfa satisfies the condition (9.22), then it holds
that

P[Y =D|<P[X = D]. (D.32)

Proof. Setby =a;, —ap1foré=1,...,N —1andby = ay, SO thata;, = Zév:k b, for

eachk = 1,..., N. The independence of the r'§and D leads to

PIX =D ji::lP[X:j]P[Dzﬂ
- jf:lP[X:j]aj
- ibgip[xzj]
_ ébgp X < (] (D.33)
and we similarly find _ )
PlY=D] = Y bP[Y <. (D.34)

/=1
Under the assumptioR <,; Y, we have from (3.2) th@P [Y < /] < P [X < /] for all

¢=1,...,N. Itis plain from (D.33) and (D.34) that (D.32) holds once it is noted that
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b, > 0foreach/ =1,..., N, under the monotonicity condition (9.22). ]

Proposition D.6 Assume the stack distance paifo satisfy the condition (9.22). Then,

for¢,( =1,..., N with& < (, it holds that

Proof. First, consider the cage= 0. Forany{ =1,..., N, we find
(&) =P[Xy =1|Xo =] = ac.
Hence, forany,( =1,..., N with £ < ¢, it holds that

P(¢) < Ro(§)

under the condition (9.22).

Fixt=1,2,.... Recall from (D.1) that
[Xl 7£ 17 s 7Xt 7£ 1] = [XO 7é DU7 s 7Xt—1 7& Dt—l] (D36)

and that
[(Xep1 = 1] = [Xy = Dy (D.37)

Using (D.36) and (D.37), forany=1, ..., N, we can rewrite (D.5) as

Pt(f) = P [Xt = Dt|X0 =&, Xo 7"é Dg, ..., X1 7é Dt—l]

=P [Xt = Dt|-’4t—1a Xo = f] . (D.38)
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Now, fix§, ¢ =1,..., N with £ < (. Because the Ir ordering implies the st ordering,
Theorem D.4 readily yields
[(Xe| A1, Xo = §] <o [Xi|Aimr, Xo = (. (D.39)
Under the monotonicity condition (9.22), combining (D.39) with Lemma D.5 leads to
P [X; = Di|Ai-1, Xo = (] S P[X; = DAy, Xo = ],

and the desired conclusion (D.35) is obtained upon noting (D.38). [ |

Proposition D.7 Assume the stack distance pafo satisfy the condition (9.22). Then,
it holds that
Pt+1(1) S Pt(1)7 t:(],l, (D40)

Proof. The inequalities (D.40) are simple consequences of Proposition D.G. Fix
1,2,.... Under the observation thaX, = 1, Xy, # D] = [X; = 2], we find via (D.38)
that
Ppa(l) = P[Xppr = Dy Ap, Xo = 1]

= P[X,1=Dy|Xo=1,X0# Dy, ..., X, # Dy

= P[Xy1=Di|X1=2,X1# Dy ..., X, # D]

= P[X; =Dy A1, Xo = 2]

= P2 (D.41)
where the forth equality follows from the homogeneity of the Markov cHaliip, t =

0,1,...} and by the independence of the &B;,t = 0,1, ...}. Invoking Proposition
D.6 with (D.41), we get the inequality (D.40).
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The caseé = 0 uses essentially the same argument. We write
Pi(1) = P[X;=D|Xo=1,Xq # Dy
- P [XO — DO‘XO — 2]
= Fy(2) (D.42)

and the inequality”; (1) < Py(1) simply follows from Proposition D.6 and (D.42).m

D.2.3 Main proof

We now return to proving Theorem 9.7 by showing that the sequeficés:),t =
0,1,...},¢ =1,...,N,are CIS: Fixi = 1,...,N. Givent = 0,1,..., we need to
show that (D.4) holds foany pair of vectorse’ = (xy,...,z;) andy’ = (yo,...,y;) In
{0, 1}t satisfyingz! < y' componentwise.
The case = 0 is rather straightforward as (D.4) then reduces to establishing
P V() = 1V§* (@) = 0] < P [V*(d) = L[V (i) = 1]
or equivalently,
P[XT() = 1X30) # 1] < P [X7(0) = 1[Xg(@) = 1]. (D.43)
Conditioning onX§(7), the condition (D.43) becomes
N
> R(OP[XG(0) = £|XG(0) # 1] < Po(1)
£=2
which indeed holds by Proposition D.6.
From now on, as we assume- 1, 2, .. ., two basic cases need to be considered:

Case 1: Assumez’ to be a non-zero element if®, 1}, in which casey! is also a

non-zero element if0, 1}'*!. By Proposition D.1, we get that (D.4) holds provided

Pt—T(:Bt)<1) S Pt—T(yt)(l)v (D44)
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an inequality which is automatically satisfied by virtue of Proposition D.7 given that
7(x') < 7(y") wheneverz! < y'.

Case 2:Assume that! is the zero elemer’ = (0,...,0) in {0, 1}'"! and note that
P [Vi$,() = V(i) = 0] = P [X3,() = 1X§() # 1. . X7(0) # 1]

Invoking again Proposition D.1 for any non-zero elemgit {0, 1}, we see that the

desired inequality (D.4) reduces to
P [X7(0) = UX§(0) # L. XP(0) # 1 < Prggn(), (D45)
and by Proposition D.7, it then clearly suffices to establish the inequality
PXEL () = 1X§G) # 1, X26) # 1] < (1), (D.46)
Conditioning onX§(7), we find
PXEL () = 1X§G) # 1, XP() # 1
- L ROP X0 = EX50) £ LXF0) £1, X2 £1

< R(1)X_P[Xg() = EIX5(0) # 1, XT(0) # 1,..., X7(i) # 1]
£=2

= P(1)

where the inequality follows from Proposition D.6. Thus, the required condition (D.46)
holds. This completes the proof of the CIS property of the sequéhdi), ¢ =
0,1,...}.

Finally, since the sequendé,*(:),t = 0,1,...} is CIS foreach = 1,..., N and
CIS implies PSMD, the desired comparison betwd&hand its independent version

R follows from Proposition 9.2. ]
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Appendix E

Proofs of Lemmas 10.1, 10.12, 11.1, 11.4 and 11.8

E.1 A proof of Lemma 10.1

First, consider the case when the request strBam { R,,t = 0,1, ...} is stationary. In

this case, we have for each= 1,2, ... and for allt > 7 — 1 that

S(tv T; R) - |{R(t_7—+1)+7 ey Rt}|
= HBiri1,--os Ri}
—st ’{Ro,...,RT,1}|

= S(r—-1,7;R).

By letting ¢ go to infinity, we obtain (10.2) witl$(7; R) =5 S(7 — 1, 7; R).
Next, we show that the limit (10.1) exists for each= 1,2, . ... From the definition

of the working set size, far> 7 — 1, we can write

N

Sit,R) = > (1—1[Ry#1,0=0,...,7—1]). (E.1)

=1

Consequently, the limit (10.1) can be rewritten as
—2

S(t;R) = limiZS(t,T;R)

T—oo T =0
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T—7+1 1 =1
li :
+T£I§o< T )T—r+1t;15(t’T’R>

T+1T—2

= lim — S(t,m; R
T=oe T tgl )
N 1T+T2

= > l—hm— > 1R ¢#i,0=0,....,7—1]|. (E2)
i=1 tTl

Because the limits on the right-hand side of (E.2) are guaranteed to exist a.s. by the
stationarity assumption of the request strerf62, Chap. 5], the limit (10.1) exists a.s.
foreachr =1,2,....

In addition, if the request streaf?;,t = 0,1,...} is stationary and ergodic, then

[62, Chap. 5] foreach=1,... N,

T+1T—2
711m— > 1R ¢#i,l=0,....,7T—1]=P[R #i,4=0,....,7—1] a.s,
—° t=7—1

and it follows from (E.1) and (E.2) that

S(:R) = Z PR, #i,0=0,...,7—1])
= E[S(t—1,7;R)]
= E[S(;R)], 7=1,2,

We now assume that the request streBm= {R,,t = 0,1,...} couples with a
stationary sequence df-valued rvsR = {Rt,t = 0,1,...}. By coupling, we mean
that there exists a coupling tinff& such that?, = R, for all t > T*, with the{0,1,...}-
valued rvI™* being finite a.s. (see e.qg., [45, 64]). Under this assumption, it holds for each
r=1,2,...that

S, R)=S(t,m;R), t>T"+717—-1, (E.3)

or equivalently, the sequendes(t,; R),t = 0,1,...} couples with the sequence

{S(t,7;R),t = 0,1,...} where the coupling time is given B§* + = — 1. By the
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first part of the proofS(t, ; R) =, S(r; R) for eachr = 1,2, ..., and from (E.3),

we getS(t, 7; R) =, S(r; R) with S(1; R) = S(7; R).

By a similar argument, we find

1T+T—2
Tlgrgoft:gzl1[Rt_g7éz,€:0,...,7'—1]
T*+7—-2
= zll—rgof t:;l 1Ry #i,0=0,...,7 —1]
T — T* 1 T+1T-2 B
—I—lim( ) - > 1R #il=0,...,7—1
Toe T T-T" i { ]
T4+T -2 5
= jlgréoft;ll{l%tg#Z,KzO,...,T—l}.

By virtue of (E.2), the limit (10.1) exists for each = 1,2,..., and coincides with

S(T; R). Lastly, if the sequence® is stationary and ergodic, the argument above yields

S(r;R) = S(r; R) = B [S(r; R)| = E[S(7; R)]

foreachr =1,2,.... [ |

E.2 A proof of Lemma 10.12

Fix 7 = 1,2,.... We first consider the case when the request str&am {R;,t =
0,1,...} is stationary and ergodic. Fix = 1,..., N. Recalling from (10.20) and
(10.21) that

gV (3),...,.Vi(4)) =1[Ry =i, Ryv # 1,0 =1,...,7], (E.4)
we can write
T+71-1
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T+71—1

:TLEEO—X;IRt—ZRtg#ZE -
= PR, =4,R/#i,0=0,...,7—1] a.s. (E.5)

where the last equality is due to stationarity and ergodicity of the request sRdé)

Chap. 5]. Consequently, the limit (10.23) exists and is given by

T+T 1 N

N
jll—rgof Z Zg‘/;f T 7%(2)):ZP[RT:ZaR€7é7’7£:Oa77-_1]a

t=7 =1 =1

whence the conclusion (10.25).

Next, we assume that the request strdar {R;,t = 0, 1, ...} couples with a sta-
tionary and ergodic sequencedtvalued rvsR = {Rt,t =0,1,...}. Let{0,1,...}-
valued rvT* be the coupling time wher&* is finite a.s. and?, = R, for all ¢t > T*.
Fixi=1,...,N and let{V;(i),t = 0,1,...} be the indicator sequence associated with

R through (9.1). Under this assumption, it is plain from (E.4) that

9Vier (i), V(@) = g(Vier (0), ... Vi(0)), £ =T 47, (E.6)

hence,

T+7—1

hm — Z g(Vier(3), ..., Vi(3))

—
1 T*-i—T 1

= hm— Z g(Vier (i), ..., Vi(3))

T —T* 1 T4+7-1 _
1‘ o .. )
+T£I;o( T )T T*t;-s--rgv;T() aW(Z))
T+7-1 B
- TIEI;O_ Z g(Vt—T(Z)a 7‘4(2))
t=71
- P{RT:i’Rf#i7€:07---,T—1} a.s. (E.7)

where the last equality follows from (E.5).

As a result, the limit (10.23) exists and is given by
T+7- 1 N

lim — Z ZthT L. V(@)

T—oo T
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N
S PR =i, Ry #i,t=0,.. 7-1]. (E.8)
=1

Upon noting that

N
hmZE (Vi (0), ..., Vi(9))] = tli)r?OZP[Rt:i,Rt,g#i,ﬁz1,...,7]
i=1

- iP[RT:z’,}?,g;éi,ezo,...,r—q,

i=1

the desired result (10.24) is immediate from (E.8). [ |

E.3 A proof of Lemma 11.1

As in the proof of Lemma 10.1, we first assume that the request stfeam{ R;,t =
0,1,...} is stationary. From the definition of the inter-reference time, we have for each

T=12,...andt =7,7+1,..., that

PT(tR)>7] = PR # R, l=1,...,7]

_ iPRt_iRtg#i,ézl,...,T] (E.9)
le

— ZP =i R #1,0=0,...,7—1]

= P[T(r;R) > 1], (E.10)

where the third equality follows from the stationarity of the request str&anBy let-
ting ¢ go to infinity in (E.10), we obtaiY'(t; R) =, T'(R) with P [T'(R) > 7] =
P[T(r;R) > 7| foreachr =1,2,....

Next, assume that the request streRis asymptotically stationary, i.e{ R, t =
0,1,...} =, {R,t =0,1,...} whereR = {R,,t = 0,1,...} is a stationary sequence

of A-valued rvs. Under this assumption, we note for eaehl, ..., N that

tlimP[Rt:i,Rt_g;éi,E:1,...,7']:P[RT:i,fig#i,Kzo,...,T—l
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and invoking (E.9), thus yields
Jim PITtR)>71]=P [T(R) > T} ., T=1,2,....

As aresult, the weak convergerif€; R) —>; T'(R) holds withT'(R) =, T(R), i.e.,
T(R) is characterized by settifg[T'(R) > 7] = P [T(R) > 7'} foreachr = 1,2,.. ..

E.4 A proof of Lemma1l.4

Under the assumptions of the lemma, we note from Appendix E.3 that

P[T(R)>7] = P[T(R)>1|
— ﬁv:P[RT:@',RHAi,ﬂzo,...,T—l}.

=1

Consequently, for each= 0, 1, .. ., we find

iP[T(R)>T]:iiP{szi,ég#i,ﬁzo,...,T—l}. (E.11)

i=1T7=n
First, we consider the expression (E.11) for= 0 in which case E [T(R)| =
2 P[T(R) > 7]. Foreachk = 0,1, ..., we observe that

iP[RT:z',RHAi,e:o,...,T—q
=0
- 1—P[R07Az}+ip[1§z:z’,m;Az',ezo,...,r—q
T=1
= 1—P[RO¢¢,R1¢Z}+§3P[RT:¢,RZ;Az,e:o,...,r—q

T=2
= 1-P[R#£i (=0, .. k| (E.12)
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By letting £ go to infinity, we obtain

;)P[RT:z,RHAi,z:o,...,r—q = 1—kli_>n(r>10P[Rg7éz',£:O,...,k]
= 1 (E.13)
under the assumptions (4.2) and (4.3) that the popularitygpoff R (which coincides
with that of R) exists and is admissible. It is now immediate from (E.11) and (E.13)

that
N o
E[T(R)] =YY P[R- =i, R #i(=0,...,7—1] =N

i=17=0

From (E.12) and (E.13), it is plain that the expression (E.11) for the gase

1,2,..., can be rewritten as

iP[T(R}>7‘] = i(1—1§P[RT:i,Rg%i,EZO,...,T—1]>

_ ip[m#i,é:o,...,n—q,
i=1

whence the desired result.

E.5 A proofof Lemma1l.8

To establish Lemma 11.8, we shall make use of the following

Lemma E.1 For a request strealR = {R;,t = 0,1,...} with admissible popularity

pmfp, it holds foreach = 1,..., N and for each: =1, ..., N that

Jim P [R, =i, Ry #4,0=0,....t = L,|{Ro,..., Ri}| = k] = 0. (E.14)
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Proof. Foreachi =1,...,Nandk =1,..., NN, it holds that

P[Rt:ing?éiuezov"'at_17|{R07"'7Rt}’:k]

< P[R=i,Ri#i,0=0,....t—1], t=1,2,..., (E.15)
and that
Im PR =i, Ry #i,(=0,....t—1]=0 (E.16)

under the assumptions (4.2) and (4.3) that the popularitygpwif R exists and is ad-
missible. Combining (E.15) and (E.16) simply yields (E.14). [ |

Proof of Lemma 11.8.  First, we assume that the request streBm= {R;,t =
1,...} is stationary. Fixc = 1,..., N. For eacht = 0,1, ..., the definition of the

stack distance gives

P[D(t; R) = k|
= P[{Rirwry, - R} = K|

t+1

= ZP (t;R) =7, [{Ri—r41, ..., R }| = K]

= ZZP[Rt:Rt—T:i7Rt—€#i7€: 17"‘a7—_1"{Rt—T+17"'aRt}| :k]

T7=11=1
N

+> PRy =i,Re#i,0=0,....,t —1,|{Ro, ..., Re}| = K] (E.17)
=1

N t

= Y Y PR =Ry=i,Re#i,0=1,...., 71— 1,{Ry,..., R }| = k]

i=171=1
N

+Y PR =i,R#i,0=0,...,t —1,|{Ro,..., R}| = K] (E.18)
=1

where the last equality follows from the stationarity of the request sttBam

177



We now verify the existence of the limit of (E.18) agoes to infinity. For each

1=1,...,Nandt =1,2,..., we have

t
Ure(i) == Y PR, =Ry=4,R #i,0=1,....,71—1|{R1,..., R, }| = k]
=1
t
< Y PR, =Ry=4,R#i,l=1,....,7—1]
T=1
< Y PR, =Ry=i,R #i,{=1,...,7—1]

=1
= PR, =1].

Consequently, for each= 1,..., N, the monotone sequen¢ey.;(i),t = 1,2,...} is

bounded above b [R, = ], thus its limit exists, is finite and is given by

Ur(i) = lim (i)

= S PR =Ry=i,Ri#il=1,...,7—1|{Ry,... R} =K.

T=1

Combining this fact with (E.18) and Lemma E.1 yields
N
Jim PID(tB) =k =3 0(0), k=1, N,

whenceD(t; R) = D(R) with D(R) characterized by setting [D(R) = k| =
SN (i) foreachk = 1,..., N.

Now, assume that the request streBnis asymptotically stationary, i.e{ R; s, t =
0,1,...} =, {R,t =0,1,...} whereR = {R,,t = 0,1,...} is a stationary sequence

of M-valued rvs. Fixt = 1, ..., N. Under this assumption, we note that

thm P[Rt = Rt—’r = i,Rt_g 7£ Zjé: 1,.. T — 1, |{Rt—7'+1a'--7Rt}| = k']

= PR =Ro=i,Ri#il=1,...,7=1|{R,. .., R} =k|. (E.19)

foreachu =1,...,Nandr =1,2,...
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We shall establish the existence of the limitl®d{D(¢; R) = k] ast goes to infinity
by using the expression (E.17). As in the first part of the proof, for each,... N,

it is plain that
Vit (1)
t
= ZP[Rt = Rt—T - Z.)Rt—é 7é Z,E = 17"'77-_ 17 |{Rt—’r+1)"'7Rt}| = k]
T=1
t
< MY PR=R_.=i,R_#il=1,...,7—1]
T=1
< PR =i, t=1,2,...,
and the monotone sequengé,,(i),t = 1,2,...} is bounded above by 1. Conse-
quently, foreach =1,..., N, lim; ., zzkyt(i) exists, is finite and is given by
Jim (i)
t
= tll)IgOZP[Rt = Rt_7- = i,Rt_g # Z,£ = 1,...,7_— 1, |{Rt—‘r+17"'7Rt}| = k]
T=1

= Y PR =Ro=i,Re#i0=1,...7=1|{Ry,.... R} = k] (E.20)
T=1

as we make use of (E.19).

By virtue of Lemma E.1 and (E.20), it now follows from (E.17) that

}hnﬁP[[)@;I{)::k]

N oo
= Y PR =Ry=i,Re#il=1...7=L|{Ry,..., R} =k

i=17=1

= P[D@R)=k|, k=1,... N,

andD(t; R) = D(R) with D(R) =, D(R), i.e., P [D(R) = k] = P [D(R) = k|

foreachk =1,..., N. [ |
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