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ABSTRACT

Title of dissertation: COMPARING STRENGTH OF LOCALITY
OF REFERENCE: POPULARITY, TEMPORAL
CORRELATIONS, AND SOME FOLK THEOREMS
FOR THE MISS RATES AND OUTPUTS OF CACHES

Sarut Vanichpun, Doctor of Philosophy, 2005

Dissertation directed by: Professor Armand M. Makowski
Department of Electrical and Computer Engineering and
Institute for Systems Research

The performance of demand-driven caching is known to depend on the locality of

reference exhibited by the stream of requests made to the cache. In spite of numerous

efforts, no consensus has been reached on how to formalize this notion, let alone on

how to compare streams of requests on the basis of their locality of reference. We take

on this issue with an eye towards validating operational expectations associated with the

notion of locality of reference. We focus on two “folk theorems,” that is, (i) The stronger

the locality of reference, the smaller the miss rate of the cache; and (ii) Good caching

is expected to produce an output stream of requests exhibiting less locality of reference

than the input stream of requests. These two folk theorems are explored in the context

of demand-driven caching for the two main contributors of locality of reference, namely

popularity and temporal correlations.

We first focus exclusively on popularity by considering the situation where there

are no temporal correlations in the stream of requests, as would be the case under the



Independent Reference Model (IRM). As we propose to measure strength of locality

of reference in a stream of requests through the skewness of its popularity distribution,

we introduce the notion of majorization as a means for capturing this degree of skew-

ness. We show that these folk theorems hold for caches operating under a large class

of replacement policies, the so-called Random On-demand Replacement Algorithms

(RORA), which includes the optimal policyA0 and the random policy. However, coun-

terexamples prove that this is not always the case under the (popular) Least-Recently-

Used (LRU) and CLIMB policies. In such cases, conjectures are offered (and supported

by simulations) as to when the folk theorems would hold under the LRU or CLIMB

caching, given that the IRM input has a Zipf-like popularity pmf.

To compare the strength of temporal correlations in streams of requests, we define

the notion of Temporal Correlations (TC) ordering based on the so-called supermodular

ordering, a concept of positive dependence which has been successfully used for com-

paring dependence structures in sequences of random variables. We explore how the TC

ordering captures the strength of temporal correlations in several Web request models,

namely the higher-order Markov chain model (HOMM), the partial Markov chain model

(PMM) and the Least-Recently-Used stack model (LRUSM). We establish the folk the-

orem to the effect that the stronger the strength of temporal correlations, the smaller the

miss rate for the PMM under certain assumptions on the caching policy. Conjectures

and simulations are offered as to when this folk theorem would hold under the HOMM

and under the LRUSM. In addition, the validity of this folk theorem for general request

streams under the Working Set algorithm is studied.

Lastly, we investigate how the majorization and TC orderings can be translated into

comparisons of three well-known locality of reference metrics, namely the working set

size, the inter-reference time and the stack distance.
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Chapter 1

Introduction

1.1 Web caching

Web caching aims to reduce network traffic, server load and user-perceived retrieval

latency by replicating “popular” content on (proxy) caches that are strategically placed

within the network. This approach is a natural outgrowth of caching techniques which

were originally developed for computer memory and distributed file sharing systems,

e.g., [2, 24] (and references therein).

Since its inception, the World Wide Web has seen an exponential increase in the

number of its users and in the volume of objects to be accessed. This trend, which

is not likely to abate anytime soon, is challenging current cache architectures to meet

the complementary mandates ofspeed, scalability andreliability which are central to

delivering a satisfactory user experience.

Generally speaking, scalability requires some form ofhierarchical organization. In

the context of Web caching, this notion has led naturally to the deployment ofmulti-

layered systems ofinterconnected caches which may be organized in a tree-like hierar-

chy or in more complicated meshes [12, 16, 29] (and references therein).

Even a cursory review of the literature [5, 54, 69] already reveals the large number

1



of difficult and challenging issues that need to be addressed in order to ensure proper

operations of these distributed multi-level caching systems. Examples of these issues

include (i) cache replacement strategies [15, 39, 54, 55]; (ii) prefetching algorithms [25]

(and references therein); (iii) cache location [43, 44]; (iv) content placement [23, 57, 68];

and (v) cache cooperation techniques [16, 17, 30].

1.2 Locality of reference

Although these challenges have renewed interest in caching in general, some basic is-

sues are still not well understood. Indeed, the performance of any form of caching is

determined by a number of factors, chief amongst them the statistical properties of the

streams of requests made to the cache. One important such property is thelocality of

reference present in a stream of requests whereby “bursts of references are made in the

near future to objects referenced in the recent past.”

The notion of locality and its importance for caching were first recognized by Belady

[10] in the context of computer memory, and attempts at characterization were made

early on by Denning through the working set model [26, 27]. Subsequently, a number

of studies have shown that request streams for Web objects exhibit strong locality of

reference1 [40, 41, 46] and various metrics have been proposed for characterizing the

locality of reference in Web request streams [1, 34, 40].

Although several competing definitions for locality of reference are available, it is by

now widely accepted that the two main contributors to locality of reference aretemporal

correlations in the streams of requests and thepopularity distribution of requested ob-

jects. To describe these two sources of locality, and to frame the subsequent discussion,

1At least in the short timescales.

2



we assume the following generic setup: We consider a universe ofN cacheable items

or documents, labeledi = 1, . . . , N , and we writeN = {1, . . . , N}. The successive

requests arriving at the cache are modeled by a sequenceR = {Rt, t = 0, 1, . . .} of

N -valued rvs.

1. The popularity of the sequence of requests{Rt, t = 0, 1, . . .} is defined as the

pmf p = (p(i), . . . , p(N)) onN given by

p(i) := lim
t→∞

1

t

t∑
τ=1

1 [Rτ = i] a.s., i = 1, . . . , N

whenever these limits exist (and they do in most models treated in the literature). Popu-

larity is usually viewed as a long-term expression of locality which captures the likeli-

hood that a document will be requested in the future relative to other documents.

2. Temporal correlations are more delicate to define due to the “categorical” nature

of the requests{Rt, t = 0, 1, . . .}. Indeed, it is somewhat meaningless to use the

covariance function

γ(s, t) := Cov[Rs, Rt], s, t = 0, 1, . . . .

as a way to capture these temporal correlations as is traditionally done in other contexts.

This is because of thecategorical nature of the rvs{Rt, t = 0, 1, . . .} which take values

in a discrete set – We took{1, . . . , N} but could have selected{1, 1
2
, . . . , 1

N
} instead;

in fact any set ofN distinct points in an arbitrary space would do the job. Thus, the

actual values of the rvs{Rt, t = 0, 1, . . .} are of no consequence, and the focus should

instead be on therecurrence patterns exhibited by requests for particular documents

over time. The literature contains several metrics for doing this, e.g., the inter-reference

time [34, 40, 53], the working set size [26, 27] and the stack distance [1, 3, 50].

3



1.3 Folk theorems

Like the notion of burstiness used in traffic modeling, locality of reference, while en-

dowed with a clear intuitive content, admits no simple definition. Not surprisingly, in

spite of numerous efforts, no consensus has been reached on how to formalize the no-

tion, let alone on how tocompare streams of requests on the basis of their locality of

reference.2 In addition, lacking in most of the work done thus far, is a clear recognition

of the system-wide nature of Web caching, whereby localtransformative actions shape

the streams of requests as they pass through successive caches.3 These problems have

precluded a formal study of the following “folk theorems”:

1. Folk theorem on miss rates –The stronger the locality of reference in the stream

of requests, the smaller the miss rate, since the cache ends up being populated

by objects with a higher likelihood of access in the near future. Such a property,

if true, would confirm the central role played by locality of reference in shaping

cache performance. In fact, the very presence of locality of reference in the stream

of requests is what makes caching at all possible; and

2. Folk theorem on output streams –Good cache replacement strategies “absorb”

locality of reference to a certain extent by producing a stream of misses from

the cache – its so-called output – which exhibitsless locality of reference than

the input stream of requests. In the context of multi-level caching, this reduction

property is often perceived as one of the main reasons for why caching looses its

effectiveness after some level in a hierarchy of caches.

2Exceptions can be found in [34, 65].

3Recent works on this issue can be found in [17, 30, 32] for cache management and in [47, 70, 71] for

Web traffic analysis.
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Such folk theorems are expected to hold for demand-driven caching that exploits

recency of reference. Interest in establishing them underspecific definitions of locality

of reference stems from a desire to validate theiroperational significance on caching

systems. Counterexamples would cast some doubts as to whether a particular definition

indeed captures the intuitive meaning of locality of reference and to whether a particular

caching algorithm is indeed a well-behaved policy.

1.4 Contributions

In this dissertation, we identify notions of locality of reference which are capable of

comparing the strength of locality of reference between streams of requests. Such no-

tions allow a comparison statement of the form

R1 ≤LR R2 (1.1)

to the effect that “a request streamR1 has less locality of reference than a request stream

R2” under some appropriate notion of locality of reference. With the comparison (1.1),

we are able to formally investigate the folk theorems mentioned above, albeit in a simple

framework under demand-driven cache replacement policies. Indeed, the folk theorem

for miss rates can be formalized as

Mπ(R2) ≤Mπ(R1) whenever (1.1) holds (1.2)

whereMπ(R1) andMπ(R2) denote the miss rates of the request streamsR1 andR2

under the cache replacement policyπ, respectively, while the folk theorem for output

streams simply states that

R�
π ≤LR R (1.3)

whereR�
π is the output stream of the cache operating under the policyπ when the input

stream isR.
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The tasks above have been carried out separately for the two main sources of local-

ity of reference, namely popularity and temporal correlations. We now summarize the

corresponding results in some details.

1.4.1 Majorization and popularity

We first focus exclusively on popularity as a way to formalize (1.1). To isolate its contri-

butions, we consider the situation where there areno temporal correlations in the stream

of requests as would be the case under the standardIndependence Reference Model

(IRM). More precisely, under the IRM with popularity pmfp = (p(1), . . . , p(N)), the

requests{Rt, t = 0, 1, . . .} form a sequence of i.i.d.N -valued rvs, each distributed ac-

cording to the pmfp. Even in the absence of temporal correlations, locality of reference

is present, in that theskewness of p acts as an indicator of the strength of locality of

reference under the intuition that the more “balanced” the pmfp, the weaker the locality

of reference.

In a recent paper, Fonseca et. al [34] introduced a notion of comparison based on the

entropy of the popularity pmfs, i.e., the pmfp is considered to be less skewed (or more

balanced) than the pmfq whenever the entropy ofp is greater than the entropy ofq.

Unfortunately, this notion is not strong enough to allow for results of the forms (1.2) and

(1.3) to be established. Here, the degree of skewness in the popularity pmf is captured

formally through the notion ofmajorization (ordering) [Chapter 2]. This concept has

been used previously in the context of caching by van den Berg and Towsley [65]. With

this notion, the comparison (1.2) can be recast as saying that the miss rate (as a function

of popularity) belongs to the rich and structured class of monotone functions associated

with majorization, the so-called Schur-convex/concave functions. Moreover, basic facts

regarding majorization enable us to develop generic comparison results between the
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popularity pmfs of the input and output streams [Chapter 6].

Equipped with the notion of majorization ordering, the folk theorems for the miss

rates and output streams can be established for a number of policies, namely the optimal

policyA0, the random policy and the FIFO (First-In/First-Out) policy [Chapter 6]. These

positive results are then extended to a very large class of replacement policies, the so-

called Random On-demand Replacement Algorithms (RORA) [Chapter 7].

However, these folk theorems donot always hold under two self-organizing policies,

namely the LRU (Least-Recently-Used) and CLIMB replacement policies [Chapter 8].

We first exhibit situations where under these policies, the IRM stream with more skewed

popularity pmf may have a smaller miss rate than the IRM stream with less skewed

popularity pmf. Yet, when the popularity pmfs are Zipf-like [Section 6.2], simulations

show that the comparison (1.2) under these policies does hold. We formally establish

this fact only in the limiting regime where the skewness parameter of the Zipf-like pmf

is large, i.e., highly skewed.

It also happens that the LRU and CLIMB policies fail to reduce locality of refer-

ence in that under these policies, the input popularity pmfp (of R) is not necessarily

more skewed than the output popularity pmfp� (of R�
π). We explore the issue through

counterexamples which are developed within some classes of input popularity pmfs. In

particular, when the input popularity pmf lies in the class of Zipf-like pmfs, we iden-

tify a condition involving the cache size and the number of cacheable documents under

which reduction fails to occur at large enough values of the skewness parameter of the

input Zipf-like pmf. Under this condition, which we expect to be satisfied in practice,

we show that the output pmfp� may not exhibit less locality of reference than the input

pmf p when the latter has too much of it to begin with. Additional simulations were

carried out and suggest conjectures as to when LRU and CLIMB policies indeed reduce
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locality of reference with Zipf-like input pmfs. All indications point to the possibility

that for small enough cache sizes, the desired folk theorem will hold.

1.4.2 Positive dependence and temporal correlations

As mentioned earlier, the catagorical nature of the requests{Rt, t = 0, 1, . . .} makes

it difficult to define appropriate notions of temporal correlations. Even though several

metrics have been proposed, e.g., the inter-reference time, the working set size and the

stack distance, none has been found appropriate for formalizing these folk theorems.

We take on this issue by applying the concepts of positive dependence [Chapter 3]

to capture the strength of temporal correlations exhibited by streams of requests. Posi-

tive dependence has been used previously in a number of contexts, e.g., network traffic

and queueing theory [8, 9, 66], and reliability theory [6, 60]. Specifically, relying on

the notion of supermodular ordering [Definition 3.4] which has been used to compare

dependence structures in sequences of rvs, we define theTemporal Correlations (TC)

ordering [Definition 9.1] as a way to compare streams of requests on the basis of the

strength of their temporal correlations. This new ordering is well suited for comparing

the relative strength of temporal correlations as we note that request streams compara-

ble in the TC ordering must have the same popularity profiles (under the assumption

that they exist); in other words, the TC ordering cannot capture any contribution from

popularity toward locality of reference.

We apply the TC ordering to capture the strength of temporal correlations present

in several Web request models that are believed to exhibit such correlations, namely the

higher-order Markov chain model (HOMM), the partial Markov chain model (PMM)

and the Least-Recently-Used stack model (LRUSM). Indeed, we demonstrate that the

HOMM exhibits temporal correlations in the sense that it has stronger strength of tempo-
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ral correlations than the IRM with the same popularity pmf in the TC ordering [Section

9.2]. This property is shown to hold also for the LRUSM under a reasonable condition

on its stack distance pmf [Section 9.4]. Lastly, for PMM, we show that the strength

of temporal correlations is indeed captured by the correlation parameter as expected

[Section 9.3].

With the TC ordering, we establish the folk theorem for miss rates when the input

to the cache is modeled according to the PMM under certain assumptions on the cache

replacement policies [Section 9.5.1]. Conjectures and simulations are offered as to when

this folk theorem would hold under the HOMM [Section 9.5.2] and under the LRUSM

[Section 9.5.2]. We also investigate this folk theorem with general input streams under

the so-called Working Set (WS) algorithm [Section 10.4] which is a cache management

policy associated with the working set model. The result indicates that (1.2) does hold

when the cache holds only one document in which case the WS algorithm is identified

with any demand-driven caching with unit cache size. However, the folk theorem may

not hold in some other situations, as shown by counterexamples in the class of PMM

request streams.

It is also desirable to establish the folk theorem for output streams via the TC or-

dering. However, there are only limited cases of interests as we recall that the output

popularity pmfp� is not necessarily the same as the input popularity pmfp and that

the comparison in the TC ordering between the input stream and the output stream re-

quires that both popularity pmfs be identical. This shortcoming calls for further study

to develop orderings that can compare the strength of locality of reference contributed

by both components, namely popularity and temporal correlations.
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1.4.3 Locality of reference metrics

Lastly, we investigate whether the comparison in the majorization ordering of two IRM

streams and the comparison in the TC ordering of two request streams translate into the

expected comparisons for three well-established locality of reference metrics, namely,

the working set size, the inter-reference time, and the stack distance.

For the working set size, the majorization ordering of two IRM streams implies the

(strong) stochastic ordering between their working set sizes, while the TC ordering of

two request streams only gives a comparison between their average working set sizes.

In addition, both the majorization ordering and the TC ordering allow a comparison

of the steady state inter-reference times in the convex ordering. However, implications

of these orderings on the stack distances are not fully understood and require further

investigation.

These locality of reference metrics are sometimes used for cache dimensioning and

cache performance evaluation. Thus, the aforementioned relations naturally lead to var-

ious bounds on these performance metrics. For instance, because the IRM with uniform

popularity pmf acts as a lower bound (in the sense of majorization ordering) for any IRM

stream, its corresponding locality of reference metrics are bounds for those of other IRM

streams. Furthermore, if the request streamR exhibits temporal correlations stronger

than that of the IRM with similar popularity pmf in the sense of the TC ordering, then

the performance metrics associated with this IRM, which are usually known or easier to

be computed, can provide bounds for those of the request streamR.
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1.5 Organization

The dissertation is organized as follows: The theory of majorization and its compan-

ion notion, Schur-convexity, are summarized in Chapter 2. Basic definitions and facts

regarding positive dependence and stochastic orderings are collected in Chapter 3.

In Chapter 4, we introduce a simple framework of demand-driven caching and give

the definitions of miss rate and output of a cache. We then use the concept of ma-

jorization ordering for comparing popularity pmfs of IRM request streams in Chapter 6.

With the majorization ordering, we establish the folk theorems for miss rates and out-

put streams under the random policy and the policyAσ. These results are extended in

Chapter 7 to a large class of demand-driven replacement policies, the so-called Random

On-demand Replacement Algorithm (RORA). In Chapter 8, we show that the folk the-

orems do not hold in general for two well-known self-organizing policies, the LRU and

CLIMB policies, where counterexamples are established. Asymptotics and conjectures

under the class of IRM streams with Zipf-like popularity pmf are investigated.

In Chapter 9, we use the concepts of positive dependence and supermodular ordering

to define the TC ordering as a means to compare strength of temporal correlations.

This ordering is then used to capture the temporal correlations present in three request

models, namely HOMM, PMM and LRUSM. The folk theorem for miss rates of the

PMM is established under certain assumptions on the caching policy. Specific results

and conjectures on this folk theorem under the HOMM and the LRUSM are provided.

The working set model is considered in Chapter 10 where we demonstrate how

the majorization ordering between IRM streams and the TC ordering between request

streams can be translated into comparisons of the working set sizes. Next, under the

Working Set algorithm, we find that the folk theorems for miss rates and output streams

do not always hold for IRM input streams. For general input models, the folk theorem
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for miss rates holds when the cache holds only one document, but fails otherwise.

Lastly, in Chapter 11, we show that the majorization ordering and the TC ordering

imply the comparison in the convex ordering of the steady state inter-reference times.

We also investigate whether these orderings would lead to some appropriate compar-

isons of the stack distances.
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Chapter 2

Majorization and Schur-convexity

2.1 Majorization – A primer

The concept ofmajorization [49] provides a powerful tool to formalize statements con-

cerning the relative skewness in the components of two vectors, viz., the components

(x1, . . . , xN) of the vectorx are “more spread out” or “more balanced” than the com-

ponents(y1, . . . , yN) of the vectory: For vectorsx andy in IRN , we say thatx is

majorized by y, and writex ≺ y, whenever the conditions

n∑
i=1

x[i] ≤
n∑

i=1

y[i], n = 1, 2, . . . , N − 1 (2.1)

and
N∑

i=1

xi =
N∑

i=1

yi (2.2)

hold withx[1] ≥ x[2] ≥ . . . ≥ x[N ] andy[1] ≥ y[2] ≥ . . . ≥ y[N ] denoting the components

of x andy arranged in decreasing order, respectively.

As elegantly demonstrated in the monograph of Marshall and Olkin [49], this notion

has found widespread use in many diverse branches of mathematics and their applica-

tions, viz. in computer databases [20] and storage [73].
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We begin with a sufficient condition for majorization which is extracted from the

discussion in [49, B.1, p. 129].

Proposition 2.1 Let x andy be distinct elements ofIRN such that

N∑
i=1

xi =
N∑

i=1

yi. (2.3)

Whenever,x1 ≥ x2 ≥ . . . ≥ xN , if there exists somek = 1, . . . , N − 1 such that

xi ≤ yi, i = 1, . . . , k andxi ≥ yi, i = k + 1, . . . , N , then the comparisonx ≺ y holds.

The following sufficient condition for majorization will be useful in the sequel; it

was already announced in [49, B.1.b, p. 129] without proof.

Theorem 2.2 Let x andy be distinct elements ofIRN such that (2.3) holds. Whenever

x1 ≥ x2 ≥ . . . ≥ xN > 0, and the ratiosyi

xi
, i = 1, . . . , N , are decreasing ini, we have

the comparisonx ≺ y.

Proof. Under the conditionxi > 0, i = 1, . . . , N , we find that (2.3) can be rewritten as

N∑
i=1

xi

(
yi

xi

− 1
)

= 0. (2.4)

If the ratiosyi

xi
, i = 1, . . . , N , are decreasing ini, then by virtue of (2.4) there must exist

somek with 1 ≤ k < N such that

yi

xi

− 1 ≥ 0, i = 1, . . . , k

and
yi

xi

− 1 ≤ 0, i = k + 1, . . . , N.
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In other words,xi ≤ yi for i = 1, . . . , k andyi ≤ xi for i = k + 1, . . . , N , and we

readily obtain the comparisonx ≺ y by applying Proposition 2.1.

With any element ofIRN such that
∑N

i=1 xi �= 0, we associate thenormalized vector

x̄ as the element ofIRN defined by

x̄ := (
N∑

i=1

xi)
−1(x1, . . . , xN). (2.5)

With this notation, we can now present a useful corollary to Theorem 2.2.

Corollary 2.3 Letx andy be distinct elements ofIRN such that
∑N

i=1 yi > 0. Whenever

x1 ≥ x2 ≥ . . . ≥ xN > 0, and the ratiosyi

xi
, i = 1, . . . , N , are decreasing ini, we have

the comparison̄x ≺ ȳ.

Proof. Under the enforced assumptions, we note the inequalities
∑N

i=1 xi > 0 and

x̄1 ≥ x̄2 ≥ . . . ≥ x̄N > 0 with the ratiosȳi

x̄i
, i = 1, . . . , N , decreasing ini. Obviously,

∑N
i=1 x̄i =

∑N
i=1 ȳi = 1 and we get the desired result by applying Theorem 2.2 tox̄ and

ȳ.

The following reformulation of Corollary 2.3 is used in the sequel.

Lemma 2.4 Let x andy be distinct elements ofIRN such thatxi > 0, i = 1, . . . , N

and
∑N

i=1 yi > 0. If
yi

xi

≥ yj

xj

(2.6)

wheneverxi ≥ xj for distincti, j = 1, . . . , N , then the comparison̄x ≺ ȳ holds.

Before giving a proof, we introduce the following notation: Letσ denote a permuta-

tion of {1, . . . , N}. With any elementx in IRN , we associate thepermuted vectorσ(x)
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in IRN through the relation

σ(x) = (xσ(1), . . . , xσ(N)).

It is plain from the definition of majorization that for vectorsx andy in IRN , we have

x ≺ y if and only if σ(x) ≺ y for any permutationσ of {1, . . . , N}.

Proof. Letσ denote a permutation of{1, . . . , N} such thatxσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(N).

The enforced monotonicity assumptions can be restated as

yσ(1)

xσ(1)

≥ yσ(2)

xσ(2)

≥ . . . ≥ yσ(N)

xσ(N)

,

and the desired result follows by an easy application of Corollary 2.3 to the elements

σ(x) andσ(y).

One such application of Lemma 2.4 is given in

Lemma 2.5 For anyε > 0, define theN -dimensional vectorpε by

pε = (1 − (N − 1)ε, ε, . . . , ε).

If ε andη satisfy the relation0 < η ≤ ε ≤ 1
N

, then it holds thatpε ≺ pη.

Proof. As we have in mind to apply Lemma 2.4, we takex̄ = x = pε andȳ = y = pη.

It is plain that the requisite monotonicity assumptions of Lemma 2.4 hold whenε andη

satisfy the relation0 < η ≤ ε ≤ 1
N

.
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2.2 Schur-convexity

Key to the power of majorization is the companion notion of monotonicity associated

with it: An IR-valued functionϕ defined on a setA of IRN is said to be Schur-convex

(resp. Schur-concave) onA if

ϕ(x) ≤ ϕ(y) (resp.ϕ(x) ≥ ϕ(y))

wheneverx andy are elements inA satisfyingx ≺ y. If A = IRN , thenϕ is sim-

ply said to be Schur-convex (resp. Schur-concave). In other words, Schur-convexity

(resp. Schur-concavity) corresponds to monotone increasingness (resp. decreasingness)

for majorization (viewed as a pre-order on subsets ofIRN ).

Let {σi, i = 1, . . . , N !} be a given enumeration of all theN ! permutations of

{1, . . . , N}; this enumeration will be held fixed throughout this section. A subsetA

of IRN is said to besymmetric if for any x in A, the elementσi(x) also belongs toA for

each i = 1, . . . , N !. Moreover, for any subsetA of IRN , a mappingϕ : A → IR is said

to besymmetric if A is symmetric and for anyx in A, we haveϕ(σi(x)) = ϕ(x) for

each i = 1, . . . , N !. If the mappingϕ : A → IR is Schur-convex (resp. Schur-concave)

with symmetricA, thenϕ is necessarily symmetric sinceσi(x) ≺ x ≺ σi(x) implies

ϕ(σi(x)) = ϕ(x) for eachi = 1, . . . , N !.

In the following, we have collected some useful technical results concerning Schur-

concave functions. As in [49, p. 78], for eachM = 1, . . . , N , theelementary symmetric

functionEM,N : IRN → IR is defined by

EM,N(x) :=
∑

{i1,...,iM}∈Λ�(M ;N )

xi1 · · ·xiM , x ∈ IRN (2.7)

with Λ�(M ;N ) denoting the collection of allunordered subsets of sizeM of N =

{1, . . . , N}. By convention we writeE0,N(x) = 1 for all x in IRN . It is well known
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[49, Prop. F.1., p. 78] that the functionEM,N is Schur-concave onIRN
+ for eachM =

0, 1, . . . , N .

We note from [49, Prop. C.2, p. 67] that any mappingϕ : A→ IR which is symmet-

ric and convex (resp. concave) on some convex symmetric subsetA of IRN is necessarily

Schur-convex (resp. Schur-concave). The following result is due to Schur [49, F.3, p.

80] and will be key to a number of proofs.

Proposition 2.6 For eachM = 1, . . . , N , the mappingΦM,N : IRN
+ → IR given by1

ΦM,N(x) :=
EM,N(x)

EM−1,N(x)
, x ∈ IRN

+

is increasing,2 symmetric and concave, hence increasing and Schur-concave.

Proposition 2.7 Let A be a convex symmetric subset ofIRN . Assume the mapping

ϕ : A → IR to be concave and the mappingh : IRN ! → IR to be increasing, symmetric

and concave. Then, the mappingϕh : A→ IR given by

ϕh(x) = h(ϕ(σ1(x)), . . . , ϕ(σN !(x))), x ∈ A

is symmetric and concave, thus Schur-concave onA.

Proof. The mappingϕh is symmetric by virtue of the symmetry ofh. The concavity of

ϕh can be shown as follows: First, fori = 1, . . . , N !, we setϕi(x) = ϕ(σi(x)) (x ∈ A);

this definition is well posed sinceA is symmetric. The concavity ofϕ implies that of

ϕi. For arbitraryx andy in A, andα in [0, 1] (with ᾱ = 1− α), we see thatαx + ᾱy is

1Forx in IRN
+ such thatEM−1,N (x) = 0, we haveEM,N (x) = 0 and setΦM,N (x) = 0 by continuity.

2Here, increasing means increasing in each argument.
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also an element ofA, and we obtain

ϕh(αx + ᾱy) = h(ϕ1(αx + ᾱy), . . . , ϕN !(αx + ᾱy))

≥ h(αϕ1(x) + ᾱϕ1(y), . . . , αϕN !(x) + ᾱϕN !(y))

≥ αh(ϕ1(x), . . . , ϕN !(x)) + ᾱh(ϕ1(y), . . . , ϕN !(y))

= αϕh(x) + ᾱϕh(y).

The first inequality follows from the concavity of each of the mappingsϕi, i = 1, . . . , N !

and the increasingness ofh, while the second inequality is implied by the concavity of

h.

With vectorst andx in IRN , we associate the elementt · x of IRN defined by

t · x := (t1x1, . . . , tNxN).

With this notation, we can state an important consequence of Proposition 2.7.

Proposition 2.8 Assume the mappingψ : IRN
+ → IR to be concave and the mapping

h : IRN ! → IR to be increasing, symmetric and concave. For any non-zero vectort in

IRN
+ , the mappingψt : IRN

+ → IR defined by

ψt(x) = h(ψ(t · σ1(x)), . . . , ψ(t · σN !(x))), x ∈ IRN
+

is symmetric and concave, thus Schur-concave.

Proof. If the mappingψ is concave, then the mapping̃ψt : IRN
+ → IR given by

ψ̃t(x) := ψ(t · x), x ∈ IRN
+

is also concave. We obtain the desired result by applying Proposition 2.7 withA = IRN
+

andϕ = ψ̃t.
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Chapter 3

Stochastic Orderings and Positive Dependence

3.1 Integral stochastic orderings

In this section, we summarize some important definitions and facts concerning the

stochastic orderings of random vectors. Additional information can be found in the

monographs by M̈uller and Stoyan [52] and by Shaked and Shanthikumar [59]. The

basic definition of integral stochastic orderings can be stated as follows:

Definition 3.1 Let F be a class of Borel measurable functionsϕ : IRn → IR. We say

that the twoIRn-valued rvsX andY satisfy the order relationX ≤F Y if

E [ϕ(X)] ≤ E [ϕ(Y )] (3.1)

for all functionsϕ in F whenever the expectations exist.

This generic definition has been specialized in the literature. Here are some impor-

tant examples.

Definition 3.2 For IRn-valued rvsX andY , the rvX is said to be smaller than the rv

Y according to
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• the usual stochastic ordering, writtenX ≤st Y , if (3.1) holds for all increasing

functionsϕ : IRn → IR whenever the expectations exist;

• the convex ordering, writtenX ≤cx Y , if (3.1) holds for all convex functions

ϕ : IRn → IR whenever the expectations exist;

• the concave ordering, writtenX ≤cv Y , if (3.1) holds for all concave functions

ϕ : IRn → IR whenever the expectations exist;

• the increasing convex ordering, writtenX ≤icx Y , if (3.1) holds for all increasing

convex functionsϕ : IRn → IR whenever the expectations exist; and

• the increasing concave ordering, writtenX ≤icv Y , if (3.1) holds for all increas-

ing concave functionsϕ : IRn → IR whenever the expectations exist.

LetX andY beIR-valued rvs. We note from [59, p. 3] that the comparisonX ≤st Y

is equivalent to

P [X > t] ≤ P [Y > t] , t ∈ IR. (3.2)

It is also known [59] that ifX ≤cx Y , we haveE [X] = E [Y ] andV ar(X) ≤ V ar(Y ).

In other words,X has the same mean asY but less variability thanY . WhenX ≤icx Y ,

there exists anIR-valued rvZ such thatX ≤st Z ≤cx Y [48, Thm. 1], whenceE [X] ≤
E [Y ] and we can interpretY as being greater thanX in both “size and variability.”

Consequently, the orderings cx and icx are appropriate for comparing the variability of

rvs. However, in the case of random vectors, it is also desirable to compare their degree

of “dependence.” In the next section, we describe a stochastic ordering which is well

suited for comparing the dependence structures of random vectors and sequences.

A few words on the notation in use: TwoIRn-valued rvsX andY are said to be

equal in law if they have the same distribution, a fact we denote byX =st Y . For two
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sequences of rvsX = {Xn, n = 1, 2, . . .} andY = {Yn, n = 1, 2, . . .}, the notation

X =st Y indicates thatX andY have the same finite dimensional distributions, i.e.,

(X1, . . . , Xn) =st (Y1, . . . , Yn) for all n = 1, 2, . . .. Lastly, convergence in law or in

distribution (witht going to infinity) is denoted by=⇒t.

3.2 Supermodular ordering

Several stochastic orderings have been found well suited for comparing the dependence

structures of random vectors. Here we rely on thesupermodular ordering which has

been used recently in several queueing and reliability applications [7, 8, 9, 60, 66]. We

begin by introducing the class of functions associated with this ordering.

Definition 3.3 A functionϕ : IRn → IR is said to be supermodular (sm) if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y), x,y ∈ IRn

where we setx ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) andx ∧ y = (x1 ∧ y1, . . . , xn ∧ yn).

The supermodular ordering is the integral ordering associated with the class of su-

permodular functions.

Definition 3.4 For IRn-valued rvsX andY , the rvX is said to be smaller than the

rv Y according to the supermodular ordering, writtenX ≤sm Y , if (3.1) holds for

all supermodular Borel measurable functionsϕ : IRn → IR whenever the expectations

exist.

It is a simple matter to check [8] that for anyIRn-valued rvsX andY , the compari-

sonX ≤sm Y necessarily implies the stochastic equalities

Xi =st Yi, i = 1, . . . , n, (3.3)
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as well as the covariance comparisons

Cov[Xi, Xj] ≤ Cov[Yi, Yj], i, j = 1, 2, . . . , n. (3.4)

Thus, the comparisonX ≤sm Y represents a possible formalization of the statement to

the effect that “Y is more positively dependent thanX.”

The definition of the supermodular ordering can be extended to sequences of rvs in

a natural way.

Definition 3.5 We say that the twoIR-valued sequencesX = {Xn, n = 1, 2, . . .}
and Y = {Yn, n = 1, 2, . . .} satisfy the relationX ≤sm Y if (X1, . . . , Xn) ≤sm

(Y1, . . . , Yn) for all n = 1, 2, . . ..

In what follows, we introduce several concepts of positive dependence.

3.3 Positive dependence

Positive dependence in a collection of rvs can be captured in several ways. The as-

sociation of rvs is one of the most useful such characterizations; it was introduced by

Esary, Proschan and Walkup [31] and has proved useful in various settings [6, 42] (and

references therein).

Definition 3.6 The IRn-valued rvX = (X1, . . . , Xn) is said to be associated1 if the

inequality

E [f(X)g(X)] ≥ E [f(X)]E [g(X)]

holds for all increasing functionsf, g : IRn → IR for which the expectations exist.

A stronger notion of positive dependence is given by

1Sometimes, we say that theIR-valued rvsX1, . . . , Xn are associated.
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Definition 3.7 TheIRn-valued rvX = (X1, . . . , Xn) is said to be conditionally increas-

ing in sequence (CIS) if for eachk = 1, 2, . . . , n− 1, the family of conditional distribu-

tions{[Xk+1|X1 = x1, . . . , Xk = xk]} is stochastically increasing inx = (x1, . . . , xk).

More precisely, this definition states that for eachk = 1, 2, . . . , n − 1, for x andy

in IRk with x ≤ y componentwise, it holds that

[Xk+1|(X1, . . . , Xk) = x] ≤st [Xk+1|(X1, . . . , Xk) = y]

where [Xk+1|(X1, . . . , Xk) = x] denotes any rv distributed according to the condi-

tional distribution ofXk+1 given (X1, . . . , Xk) = x (with a similar interpretation for

[Xk+1|(X1, . . . , Xk) = y]).

We next show how the supermodular ordering induces a notion of positive depen-

dence but first, a definition:

Definition 3.8 For IRn-valued rvsX and X̂, we say thatX̂ = (X̂1, . . . , X̂n) is an

independent version ofX = (X1, . . . , Xn) if the rvs X̂1, X̂2, . . . , X̂n are mutually in-

dependent witĥXk =st Xk, for eachk = 1, . . . , n.

From the concept of supermodular ordering, the positive dependence between the

componentsX1, . . . , Xn of theIRn-valued rvX can be formalized by requiring that the

rv X be larger in the supermodular ordering than its independent versionX̂. This gives

rise to the following notion of positive dependence [52]:

Definition 3.9 TheIRn-valued rvX = (X1, . . . , Xn) is said to be positive supermodu-

lar dependent (PSMD) if

X̂ ≤sm X (3.5)

whereX̂ is the independent version ofX.

24



The next proposition explores the relationships between the various notions of posi-

tive dependence introduced thus far.

Theorem 3.10 Consider anIRn-valued rvX = (X1, . . . , Xn).

(a) If X is CIS, thenX is associated; and

(b) If X is associated, thenX is PSMD.

Part (a) can be found in the monograph by Barlow and Proschan [6, Thm. 4.7, p.

146] while Part (b) has been established recently by Christofides and Vaggelatou [21,

Thm. 1]. Earlier, Meester and Shanthikumar [51, Thm. 3.8] have shown that CIS implies

PSMD.

Lastly, we naturally extend these definitions to sequences of rvs along the lines of

Definition 3.5.

Definition 3.11 For sequences ofIR-valued rvsX = {Xn, n = 1, 2, . . .} andX̂ =

{X̂n, n = 1, 2, . . .}, we say thatX̂ is an independent version ofX if the rvs{X̂n, n =

1, 2, . . .} are mutually independent witĥXn =st Xn for all n = 1, 2, . . ..

Definition 3.12 We say that theIR-valued sequenceX = {Xn, n = 1, 2, . . .} is asso-

ciated (resp. CIS, PSMD) if for eachn = 1, 2, . . ., the IRn-valued rv(X1, . . . , Xn) is

associated (resp. CIS, PSMD).
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Chapter 4

Demand-driven Caching

Consider a universeN of N cacheable documents, sayN := {1, . . . , N}. The system

is composed of a server where a copy of each of theseN documents is available, and

of a cache of sizeM (1 ≤M < N ). Documents are first requested at the cache: If the

requested document has a copy already in cache (i.e., a hit), this copy is downloaded

from the cache by the user. If the requested document is not in cache (i.e., a miss), a

copy is requested instead from the server to be put in the cache. If the cache is already

full, then a document already in cache is evicted to make place for the copy of the

document just requested. The document selected for eviction is determined through a

cache replacement or eviction policy.1

We now develop below a mathematical framework to address some of the issues

discussed in this dissertation. Additional details are available in the monographs by

Aven, Coffman and Kogan [2] and by Coffman and Denning [24]. We begin with some

notation that will be used repeatedly: LetΛ�(M ;N ) be the collection of allunordered

subsets of sizeM of N = {1, . . . , N}, and letΛ(M ;N ) be the collection of allordered

sequences ofM distinct elements fromN . We write{i1, . . . , iM} (resp.(i1, . . . , iM)) to

denote an element inΛ�(M ;N ) (resp.Λ(M ;N )). For eachi = 1, . . . , N , letΛ�
i (M ;N )

1We use the terms interchangeably.
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(resp.Λi(M ;N )) denote the set of elements inΛ�(M ;N ) (resp.Λ(M ;N )) which do

not containi, i.e.,

Λ�
i (M ;N ) := {s = {i1, . . . iM} ∈ Λ�(M ;N ) : i �∈ s}

and

Λi(M ;N ) := {s = (i1, . . . iM) ∈ Λ(M ;N ) : i �∈ s}.

4.1 A simple framework

Consecutive user requests are modeled by a sequence ofN -valued rvsR = {Rt, t =

0, 1, . . .}. For simplicity we say that requestRt occurs at timet = 0, 1, . . .. LetSt denote

the cache just before timet so thatSt is a subset ofN with at mostM elements. Also,

the decision to be performed according to the eviction policy in force is the identityUt

of the document inSt which needs to be evicted in order to make room for the request

Rt (if the cache is already full).

Demand-driven caching considered here is characterized by the dynamics

St+1 =




St if Rt ∈ St

St +Rt if Rt �∈ St, |St| < M

St − Ut +Rt if Rt �∈ St, |St| = M

(4.1)

for all t = 0, 1, . . ., where|St| denotes the cardinality of the setSt, andSt − Ut + Rt

denotes the subset of{1, . . . , N} obtained fromSt by removingUt and then addingRt

to it, in that order. These dynamics reflect the following operational assumptions: (i)

Actions are taken only at the time requests are made, hence the terminology demand-

driven caching; (ii) a requested document not in cache isalways added to the cache if

the cache is not full at the time of request; and (iii) eviction ismandatory if the request

Rt is not in cacheSt and the cacheSt is full, i.e., |St| = M .
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4.2 Web request models and reduced dynamics

Throughout we assume the following for the request streamR = {Rt, t = 0, 1, . . .}:

The popularity pmfp = (p(1), . . . , p(N)) of R exists and is defined as thenon-random

limits

p(i) = lim
t→∞

1

t

t∑
τ=1

1 [Rτ = i] a.s., i = 1, . . . , N. (4.2)

To avoid uninteresting situations, it isalways the case that

p(i) > 0, i = 1, . . . , N. (4.3)

A pmf p on{1, . . . , N} satisfying (4.3) is said to beadmissible.2

Under this non-triviality condition (4.3), every document will eventually be re-

quested as we note that

lim
t→∞

1

t

t∑
τ=1

1 [Rτ = i] = p(i) > 0 a.s.

under the assumption (4.2). Thus, as we have in mind to study long term characteristics

under demand-driven replacement policies, there is no loss of generality in assuming (as

we do from now on) that the cache is full, i.e., for allt = 0, 1, . . ., we have|St| = M

and (4.1) simplifies to

St+1 =



St if Rt ∈ St

St − Ut +Rt if Rt �∈ St.
(4.4)

A number of request models will be considered here, the best known one being the

Independent Reference Model (IRM). The IRM will serve as the first model for which

we attempt to formalize the folk theorems introduced in this dissertation. It is a basic

model which is often used for checking various properties of caching systems [13].

2Additional assumptions on the request streams, e.g., stationarity and ergodicity, will be required in

some parts of the dissertation and will be stated when appropriate.
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Moreover, recent results by Jelenkovic and Radovanovic [38] and by Sugimoto and

Miyoshi [63] suggest some form of insensitivity of caching systems to the statistics of

requests. However, the IRM does not possess any of the correlations which have been

observed in Web reference streams, thus making it less suitable for modeling streams

of requests with strong temporal correlations. Some examples of models displaying

temporal correlations will be discussed later in Chapter 9.

4.3 Cache states and eviction policies

The decisions{Ut, t = 0, 1, . . .} are determined through an eviction policy; several ex-

amples will be presented shortly. For most eviction policies considered in the literature,

as well as here, the dynamics of the cache can be characterized through the evolution

of suitably defined variables{Ωt, t = 0, 1, . . .} whereΩt is known as thestate of the

cache at timet.

Consider an eviction policyπ. The cache state is specific to the eviction policy

and is selected with the following in mind: (i) The setSt of documents in the cache at

time t can be recovered fromΩt; (ii) the cache stateΩt+1 is fully determined through

the knowledge of the triple(Ωt, Rt, Ut) in a way that is compatible with the dynam-

ics (4.4); and (iii) the eviction decisionUt at timet can be expressed as a function of

the past(Ω0, R0, U0, . . . ,Ωt−1, Rt−1, Ut−1,Ωt, Rt) (possibly through suitable random-

ization), i.e., for eacht = 0, 1, . . ., there exists a mappingπt such that

Ut = πt(Ω0, R0, U0, . . . ,Ωt−1, Rt−1, Ut−1,Ωt, Rt; Ξt) (4.5)

whereΞt is a rv taken independent of the past(Ω0, R0, U0, . . . ,Ωt−1, Rt−1, Ut−1,Ωt, Rt).

Collectively, the mappings{πt, t = 0, 1, . . .} define the eviction policyπ.

We close this section with some examples of eviction policies which have been dis-
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cussed in the literature (see e.g., [2, 24]):

According to therandom policy, when the cache is full, the document to be evicted

from the cache is selected randomly according to the uniform distribution.

Any permutationσ of {1, . . . , N} induces an ordering of the documents by consider-

ing the documentsσ(1), σ(2), . . . , σ(N) as “ordered” in decreasing order. This ranking

of the documents allows us to define the evictionpolicy Aσ as follows: When at time

t = 0, 1, . . ., the cacheSt is full and the requested documentRt is not in the cache, the

policyAσ prescribes the eviction of the documentUt given by

Ut = arg max
(
σ−1(j) : j ∈ St

)
. (4.6)

The documentsσ(1), . . . , σ(M − 1), once loaded in the cache, will never be evicted,

and in the steady state, the cache under the policyAσ will contain the documents

σ(1), . . . , σ(M − 1).

The so-calledpolicy A0 is associated with the underlying popularity pmfp of the

request stream, and evicts the least popular document in the cache, i.e., when the re-

placement is required at timet = 0, 1, . . ., selectUt to be

Ut = arg min (p(j) : j ∈ St) . (4.7)

This policyA0 coincides with the policyAσ� associated with the permutationσ� of

{1, . . . , N} which orders the components of the underlying pmfp in decreasing order,

namelyp(σ�(1)) ≥ p(σ�(2)) ≥ . . . ≥ p(σ�(N)).

Under the random policy and the policiesAσ, we can take the cache state to be

the (unordered) set of documents in the cache, i.e., the cache state is an element of

Λ�(M ;N ) andΩt = St for all t = 0, 1, . . ..

TheFirst-in/First-out (FIFO) policy replaces the document which has been in cache

for the longest time, while theLeast-Recently-Used (LRU) policy evicts the least re-

cently requested document already in cache.
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TheCLIMB policy is a close relative of the LRU policy. It ranks documents in cache

according to their recency of access: If the request document is not in the cache, the

document at the last position (positionM ) is evicted and replaced by the new document.

If the requested document is in the cache at positioni, i = 2, . . . ,M , it exchanges

position with the document at positioni − 1. The cache remains unchanged if the

requested document is in the cache at position1.

The definition of the FIFO, LRU and CLIMB policies necessitates that the cache

state be an element ofΛ(M ;N ) with Ωt being a permutation of the elements inSt for

all t = 0, 1, . . ..

4.4 Miss rate

A standard performance metric to evaluate and compare various caching policies is the

miss rate of a cache. This quantity has the interpretation of being the long-term fre-

quency of the event that the requested document is not in the cache, and therefore deter-

mines the effectiveness of a caching policy.

For a given request streamR = {Rt, t = 0, 1 . . .}, the miss rateMπ(R) under a

cache replacement policyπ is defined as the a.s. limit

Mπ(R) = lim
t→∞

1

t

t∑
τ=1

1 [Rτ /∈ Sτ ] a.s. (4.8)

(whenever the limit exists) whereSτ denotes the set of documents in cache operating

under the replacement policyπ at timeτ when the input to the cache is the request stream

R. Almost sure convergence in (4.8) (and elsewhere) is taken under the probability

measure on the sequence of rvs{Ωt, Rt, Ut, t = 0, 1, . . .} induced by the request stream

{Rt, t = 0, 1, . . .} through the eviction policyπ.

The existence of the limit (4.8) depends on the request streamR and on the cache
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replacement policyπ. Even in the case where the limit (4.8) exists, its expression is not

known for general classes of request streams. However, when the request streamR is

the IRM, the limit (4.8) exists under most cache replacement policies of interest. This

special case will be treated in Chapter 5.

4.5 Output

Under the demand-driven caching operation (4.4), the output of the cache is the se-

quence of requests that incur a miss, i.e., when the incoming request cannot find the

desired document in the cache. More precisely, a miss occurs at timet if Rt is not in St.

Thus, we define recursively the time indices{νk, k = 0, 1, . . .} by

ν0 = 0; νk+1 := νk + ηk+1, k = 0, 1, . . .

and

ηk+1 := inf {� = 1, 2, . . . : Rνk+
 �∈ Sνk+
}

with the conventionηk+1 = ∞ if either νk = ∞ or if νk is finite but the set of indices

entering the definition ofηk+1 is empty. Withδ denoting an elementnot in N , we define

the output processR� = {R�
k, k = 1, 2, . . .} simply as

R�
k :=



Rνk

if νk <∞
δ if νk = ∞

for eachk = 1, 2, . . .. The requests{R�
k, k = 1, 2, . . .} are those requests among

{Rt, t = 0, 1, . . .} which incur a miss and which get forwarded to the server (or to

the higher level cache in a hierarchical caching system).

The statistics of the output stream{R�
k, k = 1, 2, . . .} are determined by the statistics

of the input stream{Rt, t = 0, 1, . . .} and by the cache replacement policyπ in use. We
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are interested in evaluating the popularity pmfp�
π = (p�

π(1), . . . , p�
π(N)) defined by

p�
π(i) := lim

K→∞
1

K

K∑
k=1

1 [R�
k = i] a.s. (4.9)

for eachi = 1, . . . , N , whenever these limits exist.

As with the limit (4.8) of the miss rate, the existence and form of the limits (4.9)

are not known for general classes of input models. However, as we shall see in the next

chapter, when the input stream is modeled according to the IRM, the limits (4.9) exist

and admit simple expressions for most cache replacement policies of interest.
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Chapter 5

The Independent Reference Model (IRM)

TheIndependent Reference Model (IRM) is a basic model for Web reference streams; it

is commonly used to evaluate various properties of caching policies [13]. We say that

the request streamR = {Rt, t = 0, 1, . . .} is an IRM with popularity pmfp if the rvs

{Rt, t = 0, 1, . . .} are i.i.d. rvs distributed according to the pmfp. In this chapter, we

show that under the IRM with popularity pmfp and under a particular cache replacement

policy π, the limit (4.8) for the miss rate and the limits (4.9) for the output popularity

pmf p�
π exist and admit simple expressions whenever the a.s. limit

µ�
π(s; p) = lim

t→∞
1

t

t∑
τ=1

1 [Sτ = s] a.s. (5.1)

exists for each elements in Λ�(M ;N ) with Sτ being the set of documents in cache at

timeτ . We now discuss these results for the miss rate and for the output popularity pmf,

respectively.

5.1 Miss rate under the IRM

Before stating the main result, we note from the definition of the IRM that the requests

{Rt, t = 0, 1, . . .} are characterized solely by the popularity pmfp and thus all IRM
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streams with the same popularity pmfp must produce the same miss rate (4.8) under a

given replacement policyπ. Therefore, it is more appropriate to view the miss rate under

the IRM as a function of the popularity pmfp and denote the limit (4.8) bŷMπ(p) to

reflect this fact.

Theorem 5.1 Consider an eviction policyπ such that the limits (5.1) exist under the

IRM with popularity pmfp. Then, the limit (4.8) exists and is given by

M̂π(p) =
N∑

i=1

p(i)
∑

s∈Λ�
i (M ;N )

µ�
π(s; p) (5.2)

=
∑

s∈Λ�(M ;N )

µ�
π(s; p)

∑
i/∈s

p(i). (5.3)

Theorem 5.1 is established in the process of proving Theorem 5.2 in Section 5.3.

The existence of the limits (5.1) is a mild assumption which is satisfied under all eviction

policies of interest considered here (and in the literature). Indeed, under the IRM with

popularity pmfp, the sequence of cache states{Ωt, t = 0, 1, . . .} usually form a Markov

chain over a finite state space, and standard ergodic results for finite state Markov chains

readily yield the existence of the limits (5.1). This issue will be briefly discussed in each

situation at the appropriate time. Note also that the limits (4.8) and (5.1) under the IRM

are often constants which are independent of the initial cache stateΩ0. However this is

not always the case as we shall see in the discussion of RORA policies [Chapter 7].

5.2 Output under the IRM

In this section, we establish the existence and form of the limits (4.9) when the input to

the cache is the IRM with popularity pmfp. We again do so under the assumption that

the a.s. limit (5.1) exists for eachs in Λ�(M ;N ). The main result is contained in
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Theorem 5.2 Consider an eviction policyπ such that the limits (5.1) exist under the

IRM with popularity pmfp. For eachi = 1, . . . , N , the limit (4.9) exists and is given

by

p�
π(i) = lim

K→∞
1

K

K∑
k=1

1 [R�
k = i]

=
p(i)mπ(i; p)∑N

j=1 p(j)mπ(j; p)
a.s. (5.4)

where we have set

mπ(i; p) :=
∑

s∈Λ�
i (M ;N )

µ�
π(s; p). (5.5)

A proof of Theorem 5.2 is given in next section. Note that the existence of the limits

(5.1) implies

mπ(i; p) =
∑

s∈Λ�
i (M ;N )

(
lim
t→∞

1

t

t∑
τ=1

1 [Sτ = s]

)

= lim
t→∞

1

t

t∑
τ=1

∑
s∈Λ�

i (M ;N )

1 [Sτ = s]

= lim
t→∞

1

t

t∑
τ=1

1 [i �∈ Sτ ] a.s. (5.6)

for eachi = 1, . . . , N , andmπ(i; p) thus represents the fraction of times that document

i will not be in the cache. This quantity is determined by the popularity pmfp of the

IRM input and by the eviction policyπ in use.

Inspection of (5.2) and (5.5) reveals that

N∑
i=1

p(i)mπ(i; p) = M̂π(p). (5.7)

This leads via (5.4) to a simple connection between the miss rate of an eviction policy

and the pmf of its output in the form

p�
π(i) =

p(i)mπ(i; p)

M̂π(p)
, i = 1, . . . , N. (5.8)
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Thus, with the IRM input, we can viewp�
π(i) as the ratio of the miss rate of the cache

when the requested document isi to the overall miss rate of the cache.

5.3 Proofs of Theorems 5.1 and 5.2

Key to the proofs of both Theorems 5.1 and 5.2 is the following observation: For each

t = 0, 1, . . ., the rvsΩt andRt are independent. Hence, by independence of rvs{Rt, t =

0, 1, . . .}, upon invoking Rajchman’s version of the Strong Law of Large Numbers [22,

Thm. 5.1.2., p. 103], we find

lim
t→∞

1

t

t∑
τ=1

1 [Sτ = s] (1 [Rτ = i] − p(i)) = 0 a.s. (5.9)

for each s in Λ�(M ;N ) andi = 1, . . . , N .

For eacht = 1, 2, . . ., let K(t) denote the total number of misses up to timet.

Obviously, we have

K(t) :=
t∑

τ=1

1 [Rτ �∈ Sτ ] =
N∑

i=1

t∑
τ=1

1 [i �∈ Sτ ]1 [Rτ = i] . (5.10)

Fix i = 1, . . . , N . We note that

K(t)∑
k=1

1 [R�
k = i] =

t∑
τ=1

1 [i �∈ Sτ ]1 [Rτ = i]

= p(i)
t∑

τ=1

1 [i �∈ Sτ ] (5.11)

+
t∑

τ=1

1 [i �∈ Sτ ] (1 [Rτ = i] − p(i)) .

It is now plain from (5.9) that

lim
t→∞

1

t

t∑
τ=1

1 [i �∈ Sτ ] (1 [Rτ = i] − p(i))

=
∑

s∈Λ�
i (M ;N )

lim
t→∞

1

t

t∑
τ=1

1 [Sτ = s] (1 [Rτ = i] − p(i)) = 0 a.s. (5.12)
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Next, combining (5.6) and (5.12), we get via (5.11) that

lim
t→∞

1

t

t∑
τ=1

1 [i �∈ Sτ ]1 [Rτ = i] = p(i)
∑

s∈Λ�
i (M ;N )

µ�
π(s; p) a.s. (5.13)

Using the basic identity (5.10) for eacht = 1, 2, . . ., we conclude from (5.13) that

lim
t→∞

1

t

t∑
τ=1

1 [Rτ �∈ Sτ ] =
N∑

i=1

(
lim
t→∞

1

t

t∑
τ=1

1 [i �∈ Sτ ]1 [Rτ = i]

)

=
N∑

i=1

p(i)
∑

s∈Λ�
i (M ;N )

µ�
π(s; p) a.s. (5.14)

This last limit yields the expression (5.2) for the miss rate (4.8).

To establish (5.3), we observe for eacht = 1, 2, . . . that

t∑
τ=1

1 [Rτ �∈ Sτ ] =
t∑

τ=1

∑
s∈Λ�(M ;N )

1 [Sτ = s]


1 [Rτ �∈ s] −∑

i�∈s

p(i)




+
t∑

τ=1

∑
s∈Λ�(M ;N )

1 [Sτ = s] ·

∑

i�∈s

p(i)


 .

It then follows from (5.9) that

lim
t→∞

1

t

t∑
τ=1

∑
s∈Λ�(M ;N )

1 [Sτ = s]


1 [Rτ �∈ s] −∑

i�∈s

p(i)


 = 0 a.s.

so that

lim
t→∞

1

t

t∑
τ=1

1 [Rτ �∈ Sτ ] =
∑

s∈Λ�(M ;N )

(
lim
t→∞

1

t

t∑
τ=1

1 [Sτ = s]

)
·

∑

i�∈s

p(i)


 a.s.

and the expression (5.3) is obtained under the existence of the limits (5.1). This com-

pletes the proof of Theorem 5.1.

It is now immediate that the following limit exists a.s., and is given by

lim
t→∞

1

K(t)

K(t)∑
k=1

1 [R�
k = i] =

limt→∞ 1
t

∑t
τ=1 1 [i �∈ Sτ ]1 [Rτ = i]

limt→∞ 1
t

∑t
τ=1 1 [Rτ �∈ Sτ ]

=
p(i)mπ(i; p)∑N

j=1 p(j)mπ(j; p)
a.s. (5.15)

38



as we note (5.13) and (5.14). The desired conclusion of Theorem 5.2 is readily obtained

from (5.15) once we observe the convergencelimt→∞K(t) = ∞ a.s. monotonically so

that the sequence{K(t), t = 1, 2, . . .} a.s. exhaustsIN, and the a.s. existence of the

limit in (5.15) implies the a.s. existence of the limit (4.9) with limiting value (5.4)-(5.5).
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Chapter 6

Comparing Popularity under the Independent Reference

Model

As we have in mind to study the strength of locality of reference present in streams of

requests, we first focus on howpopularity contributes to locality of reference by con-

sidering the situation where there areno temporal correlations in the stream of requests

as would be the case under the IRM with popularity pmfp. In this case, theskewness

in the pmfp does act as an indicator of the strength of locality of reference present

in the stream, under the intuition that the more “balanced” the pmfp, the weaker the

locality of reference. This is best appreciated by considering the limiting cases: Ifp

is extremely unbalanced withp = (1 − δ, ε, . . . , ε) (with δ = (N − 1)ε), a reference

to document1 is likely to be followed by a burst of additional references to document

1 provided(N − 1)ε � 1 − δ. The exact opposite conclusion holds if the popularity

pmf p were uniform, i.e.,p(1) = · · · = p(N) = 1
N

, for then the successive requests

{Rt, t = 0, 1, . . .} form a truly random sequence.

We capture the skewness in the popularity vector through the concept ofmajoriza-

tion introduced in Chapter 2. From now on, the majorization comparisonp ≺ q formal-

izes the notion that the IRM with popularity pmfp has less locality of reference than the
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IRM with popularity pmfq as this comparison captures the fact that the pmfq is more

skewed than the pmfp. Under the IRM, the folk theorem for the miss rate associated

with a particular eviction policyπ can be restated as follows: If two IRM streams have

popularity pmfsp andq satisfyingp ≺ q, then it holds that

M̂π(q) ≤ M̂π(p), (6.1)

i.e., “the more skewed the popularity pmf, the smaller the miss rate of a cache.” Simi-

larly, the folk theorem for the output of a cache under the IRM now reads as the com-

parisonp�
π ≺ p in that the output popularity pmfp�

π is indeed more balanced than the

popularity pmfp of the IRM input.

In this chapter, we first discuss some basic comparisons which are consequences of

majorization comparison between pmf vectors. We then formally establish the folk the-

orems for the miss rate and for the output of a cache under the IRM with two well-known

cache-replacement policies, namely, the random policy and the policyA0. Results for

more general policies are discussed in Chapter 7 for Random On-demand Replacement

Algorithms, and in Chapter 8 for the LRU and CLIMB policies.

6.1 Entropy comparison

Comparison results which are consequences of majorization ordering are essentially

statements concerning the Schur-concavity of certain functionals. We provide an easy

illustration of this idea to the entropy comparison. Recall that the entropyH(p) of the

pmf p onN is defined by

H(p) := −
N∑

i=1

p(i) log2 p(i) (6.2)

with the conventiont log2 t = 0 for t = 0. It is known that the larger the entropyH(p),

the more balanced the pmfp. This concept has been previously used by Fonseca et al.
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[34] to capture the strength of locality of reference exhibited through the popularity pmf

of the request stream.

By a classical result of Schur [49, C.1, p. 64] the mappingx → −∑N
i=1 xi log2 xi is

a Schur-concave function onIRN
+ . This leads readily to the following well-known result

[49, D.1, p. 71].

Proposition 6.1 For pmfsp andq onN , it holds that

H(q) ≤ H(p) (6.3)

wheneverp ≺ q.

Thus, majorization provides a stronger notion for comparing the imbalance in the com-

ponents of pmfs than the entropy-based comparison (6.3) proposed by Fonseca et al.

[34].

6.2 Zipf-like distributions

It has been observed in a number of studies that the popularity distribution of objects

in request streams at Web caches is highly skewed. In [1] a good fit was provided by

theZipf distribution according to which the popularity of theith most popular object is

inversely proportional to its rank, namely1/i.

In more recent studies [13, 39], “Zipf-like” distributions1 were found more appropri-

ate; see [13] (and references therein) for an excellent summary. Such distributions form

a one-parameter family. In our set-up, forα ≥ 0, we say that the popularity distribution

p of theN -valued rvs{Rt, t = 0, 1, . . .} is Zipf-like with parameterα if

p(i) =
i−α

Cα(N)
, i = 1, . . . , N (6.4)

1Such distributions are sometimes called generalized Zipf distributions.
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with

Cα(N) :=
N∑

i=1

i−α. (6.5)

The pmf (6.4) will be denoted bypα. It is always the case that

pα(1) ≥ pα(2) ≥ . . . ≥ pα(N). (6.6)

The caseα = 1 corresponds to the standard Zipf distribution and the value ofα was

typically found to be in the range0.64 − 0.83 [13].

Zipf-like pmfs are skewed towards the most popular objects. Asα → 0, the Zipf-

like pmf approaches the uniform distributionu while asα → ∞, it degenerates to the

pmf (1, 0, . . . , 0). Extrapolating between these extreme cases, we expect the parameter

α of Zipf-like pmfs (6.4)-(6.5) to measure the strength of skewness, with the largerα,

the more skewed the pmfpα. The next result shows that majorization indeed captures

this fact, and so it is warranted to callα theskewness parameter of the Zipf-like pmf.

Lemma 6.2 For0 ≤ α < β, it holds thatpα ≺ pβ.

Lemma 6.2 can already be found in [49, B.2.b, p. 130] and is an easy by-product

of Lemma 2.4. Zipf-like distributions will be used in the discussion of the LRU and

CLIMB policies in Chapter 8.

6.3 Comparing input and output

In the following two sections, we establish basic comparison results which provide the

first step toward formalizing the folk theorem for the output of a cache. We begin with

a comparison between the input popularity pmf and the output popularity pmf for a

general caching policy.
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Theorem 6.3 Consider an eviction policyπ such that the limits (5.1) exist under the

IRM with popularity pmfp.

(i) If mπ(i; p) ≤ mπ(j; p) wheneverp(i) ≤ p(j) for distincti, j = 1, . . . , N , then it

holds thatp ≺ p�
π;

(ii) If mπ(i; p) ≥ mπ(j; p) wheneverp(i)mπ(i; p) ≤ p(j)mπ(j; p) for distinct

i, j = 1, . . . , N , then it holds thatp�
π ≺ p providedmπ(i; p) > 0 for eachi = 1, . . . , N .

Proof. Under the enforced assumptions, both claims are simple consequences of

Lemma 2.4: For Claim (i), we usex = p andy given by yi = p(i)mπ(i; p), i =

1, . . . , N . Note thatx̄ = p while ȳ = p�
π, and that the monotonicity assumptions hold.

For Claim (ii), we takey = p andx given byxi = p(i)mπ(i; p), i = 1, . . . , N . This

time, we havēx = p�
π while ȳ = p, and the requisite monotonicity assumptions hold.

Theorem 6.3 suggests the following definitions: We say that the caching algorithm

π is bad if it has the property that the fraction of time that a document is not in cache

increases as its popularity increases, i.e., for every admissible pmfp, it holds that

mπ(i; p) ≤ mπ(j; p) wheneverp(i) ≤ p(j) for distinct i, j = 1, . . . , N . For a bad

caching algorithm, Claim (i) states that the popularity pmf of the output is more skewed

than the popularity pmf of the input, or equivalently that the output stream displays

stronger locality of reference than the input stream.

The assumptions for Claim (ii) ensure thatmπ(i; p) ≤ mπ(j; p) andp(j) ≤ p(i)

occur simultaneously for distincti, j = 1, . . . , N . This leads to defining a caching algo-

rithm π asgood if for every admissible pmfp, we havemπ(i; p) ≤ mπ(j; p) whenever
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p(j) ≤ p(i) for distinct i, j = 1, . . . , N . Thus, a caching policy which satisfies the

assumptions of Claim (ii) is necessarily a good policy. However, as we shall see in the

case of the LRU and CLIMB policies [Chapter 8], this by itself is not sufficient to ensure

that the output popularity pmf is more balanced than the input popularity pmf.

6.4 A useful comparison

Repeatedly we will encounter output pmfs which assume the generic form used in The-

orem 6.4 below.

Theorem 6.4 Let p be an admissible pmf onN , and for eachi = 1, . . . , N , define the

(N − 1)-dimensional vector

p(i) := (p(1), . . . , p(i− 1), p(i+ 1), . . . , p(N)). (6.7)

For eachM = 1, 2, . . . , N − 1, the pmfp�
M onN defined by

p�
M(i) =

p(i)EM,N−1(p
(i))∑N

j=1 p(j)EM,N−1(p(j))
, i = 1, . . . , N (6.8)

satisfies the comparisonp�
M ≺ p where the elementary symmetric functionEM,N−1 :

IRN−1 → IR is defined at (2.7).

Proof. Fix distinct i, j = 1, . . . , N and define the(N − 2)-dimensional vectorp(ij)

obtained from the pmfp by deleting the components associated with documentsi and

j. With this notation, we find

EM,N−1(p
(i)) − EM,N−1(p

(j))

=
∑

s∈Λ�
i (M ;N )

p(i1) · · · p(iM) − ∑
s∈Λ�

j (M ;N )

p(i1) · · · p(iM)
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=
∑

s∈Λ�
i (M ;N ): j∈s

p(i1) · · · p(iM) − ∑
s∈Λ�

j (M ;N ): i∈s

p(i1) · · · p(iM)

= (p(j) − p(i))EM−1,N−2(p
(ij)). (6.9)

On the other hand, we also have

p(i)EM,N−1(p
(i)) − p(j)EM,N−1(p

(j))

= p(i)


 ∑

s∈Λ�
i (M ;N )

p(i1) · · · p(iM)


− p(j)


 ∑

s∈Λ�
j (M ;N )

p(i1) · · · p(iM)




= p(i)


 ∑

s∈Λ�
i (M ;N): j �∈s

p(i1) · · · p(iM)


− p(j)


 ∑

s∈Λ�
j (M ;N): i�∈s

p(i1) · · · p(iM)




= (p(i) − p(j))EM,N−2(p
(ij)). (6.10)

As we have in mind to apply Lemma 2.4, we takey = p andx given byxi =

p(i)EM,N−1(p
(i)), i = 1, . . . , N , whencex̄ = p�

M and ȳ = p. For distincti, j =

1, . . . , N , we find from (6.9) and (6.10) that

xi

yi

− xj

yj

= (p(j) − p(i))EM−1,N−2(p
(ij)) ≤ 0

whenever

xi − xj = (p(i) − p(j))EM,N−2(p
(ij)) ≥ 0.

The assumptions of Lemma 2.4 are satisfied and the comparisonp�
M ≺ p follows.

6.5 The random policy

In the last two sections, we formalize the folk theorems under the IRM for the miss rate

and the output of a cache under the random policy and the policyAσ, respectively.

According to the random policy, when the cache is full, the document to be evicted

from the cache is selected randomly according to the uniform distribution. When the
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input to the cache is the IRM with popularity pmfp, the cache states{St, t = 0, 1, . . .}
form a stationary ergodic Markov chain over the finite state spaceΛ�(M ;N ) [2, Thm.

11, p. 132]. Its stationary distribution is given by

µ�
Rand(s; p) = EM,N(p)−1p(i1) · · · p(iM) (6.11)

for everys = {i1, . . . , iM} in Λ�(M ;N ) with normalizing constantEM,N(p) defined at

(2.7).

6.5.1 The miss rate under the random policy

Under the IRM with popularity pmfp, the corresponding miss rate is obtained from

(5.3) and (6.11) (see also [2, Thm. 11, p. 132]) as

M̂Rand(p) =

∑
{i1,...,iM}∈Λ�(M ;N ) p(i1) · · · p(iM)

(
1 −∑M

k=1 p(ik)
)

∑
{i1,...,iM}∈Λ�(M ;N ) p(i1) · · · p(iM)

. (6.12)

That (6.1) indeed holds for the random policy is contained in

Theorem 6.5 For admissible pmfsp andq onN , it holds that

M̂Rand(q) ≤ M̂Rand(p) (6.13)

wheneverp ≺ q.

Proof. First, we note that

∑
{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM) = EM(p). (6.14)

It is also a simple matter to see that

∑
{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM)(1 −
M∑

k=1

p(ik))
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=
∑

{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM) · ∑
i/∈{i1,...,iM}

p(i)

= (M + 1)
∑

{i1,...,iM+1}∈Λ�(M+1;N )

p(i1) · · · p(iM+1)

= (M + 1)EM+1(p). (6.15)

Combining (6.14) and (6.15) through (6.12), we get

M̂Rand(p) = (M + 1)
EM+1(p)

EM(p)
, (6.16)

and the miss ratêMRand(p) is Schur-concave inp by Proposition 2.6 .

Under the IRM, it is well known [2, p. 132] that the FIFO policy yields the same

miss rate as the random policy, so that Theorem 6.5 holds for the FIFO policy as well.

In the special caseM = 1, any demand-driven policy reduces to the policy that evicts

the only document in cache if the requested document is not in cache. Specializing the

results for the random policy, Theorem 6.5 immediately leads to

Corollary 6.6 With M = 1, for admissible pmfsp andq, it holds that

M̂π(q) ≤ M̂π(p)

wheneverp ≺ q under any demand-driven replacement policyπ.

6.5.2 The output under the random policy

As we report (6.11) into (5.5), we readily conclude that

mRand(i; p) = EM,N(p)−1
∑

s∈Λ�
i (M ;N )

p(i1) · · · p(iM)

=
EM,N−1(p

(i))

EM,N(p)
, i = 1, . . . , N (6.17)
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wherep(i) is the(N − 1)-dimensional vector (6.7) obtained from the pmfp by delet-

ing the component associated with documenti. Consequently, (5.4) yields the output

popularity distribution as

p�
Rand(i) =

p(i)EM,N−1(p
(i))∑N

j=1 p(j)EM,N−1(p(j))
, i = 1, . . . , N (6.18)

and Theorem 6.4 immediately implies

Theorem 6.7 Under the random policy, it holds thatp�
Rand ≺ p.

As in the case of miss rate, for the special caseM = 1, by specializing the results

for the random policy, the output pmf is given by

p�(i) =
p(i)(1 − p(i))∑N

j=1 p(j)(1 − p(j))
, i = 1, . . . , N (6.19)

and Theorem 6.7 readily yields

Corollary 6.8 With M = 1, under any demand-driven replacement policyπ, the popu-

larity pmf p�
π of the output is the pmfp� given at (6.19) withp� ≺ p.

6.6 The policyAσ

Let σ denote a permutation of{1, . . . , N} which is held fixed throughout this section.

Such a permutation can be used to induce an ordering of the documents by consider-

ing that the documentsσ(1), σ(2), . . . , σ(N) are “ordered” in decreasing order. With

this ranking of the documents, the policyAσ can be defined as in Section 4.3 with the

eviction rule (4.6).
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6.6.1 Cache steady state under the policyAσ

Under (4.3), every document is eventually requested with probability one, so that for

sufficiently large timet, the cacheSt under the replacement policyAσ is of the form

St := Σ + Y σ
t (6.20)

with

Σ := {σ(1), σ(2), . . . , σ(M − 1)} (6.21)

and

Y σ
t ∈ Σc = {σ(M), . . . , σ(N)}. (6.22)

As explained earlier, there is then no loss of generality in assuming that the cache is

indeed of the form (6.20)-(6.22), in which case the cache stateSt is determined com-

pletely byY σ
t . Under the IRM, the rvs{Y σ

t , t = 0, 1, . . .} form a stationary ergodic

Markov chain over the finite state spaceΣc with stationary distribution{πσ(y), y ∈ Σc}
described in the following lemma.

Lemma 6.9 The limits

lim
t→∞P [Y σ

t = y,Rt = x] = πσ(y)p(x), (x, y) ∈ N × Σc

exist with

πσ(y) = lim
t→∞P [Y σ

t = y] =
p(y)∑

x �∈Σ p(x)
, y �∈ Σ. (6.23)

The proof of Lemma 6.9 is omitted as it mimics the derivation of a similar result for

the policyA0 [24, Thm. 6.3, p. 268]. Note that (6.23) defines a pmfπσ onΣc, which is

simply theconditional pmf induced onΣc by the pmfp.
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6.6.2 The miss rate under the policyAσ

Under the IRM with popularity pmfp, it follows from Lemma 6.9 and the expression

(5.3) that the miss rate under the policyAσ is given [24, Thm. 6.4, p. 269] by

M̂σ(p) =
N∑

i=M

p(σ(i)) −
∑N

i=M p(σ(i))2∑N
i=M p(σ(i))

. (6.24)

From the expression (6.24), it is not hard to see that the folk theorem (6.1) for miss rates

under the policyAσ does not hold in general. However, it does hold under a well-known

instance of the policyAσ, the policyA0, defined earlier in Section 4.3. This policyA0 is

simply the policyAσ� where the permutationσ� of {1, . . . , N} orders the components of

the underlying pmfp in decreasing order, i.e.,p(σ�(1)) ≥ p(σ�(2)) ≥ . . . ≥ p(σ�(N)).

The analog of Theorem 6.5 for the policyA0 is given in

Theorem 6.10 For admissible pmfsp andq onN , it holds that

M̂A0(q) ≤ M̂A0(p) (6.25)

wheneverp ≺ q.

Proof. The policyA0 is known [2, 24] to minimize the miss rate for the IRM amongst

a large class of demand-driven policies, including the policies (4.6). In particular, we

have

M̂A0(p) = min
i=1,...,N !

M̂σi
(p) (6.26)

where{σi, i = 1, . . . , N !} is a collection of all permutations of{1, . . . , N}. Further-

more, for any permutationσ of {1, . . . , N}, we can rewrite (6.24) as

M̂σ(p) =

(∑N
i=M p(σ(i))

)2 −∑N
i=M p(σ(i))2

∑N
i=M p(σ(i))
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= 2

∑N
i=M

∑i−1
j=M p(σ(i))p(σ(j))∑N
i=M p(σ(i))

= 2
E2(t · σ(p))

E1(t · σ(p))

= 2Φ2(t · σ(p)) (6.27)

where the elementt of IRN
+ is specified byt1 = . . . = tM−1 = 0 andtM = . . . = tN = 1.

The mappingh : IRN ! → IR : y → min (y1, . . . , yN !) is clearly increasing, sym-

metric and concave, while the mappingΦ2 is concave onIRN
+ by Proposition 2.6. Com-

bining these facts with (6.26) and (6.27), we conclude by Proposition 2.8 that the miss

rate functional under the policyA0 is indeed Schur-concave in the pmf vector and the

desired result follows.

Without surprise, Corollary 6.6 also follows from Theorem 6.10 (withM = 1).

6.6.3 The output under the policyAσ

From the expression of{πσ(y), y ∈ Σc} provided in Lemma 6.9, we obtain

mσ(i; p) =




0 if i ∈ Σ

1 − πσ(i) if i �∈ Σ

and Theorem 5.2 yields the output popularity distributionp�
σ as

p�
σ(i) =




0 if i ∈ Σ

p(i)(1−πσ(i))∑
j /∈Σ

p(j)(1−πσ(j))
if i �∈ Σ.

(6.28)

Sincep�
σ(i) = 0 wheneveri belongs toΣ, it is more natural to seek a comparison

betweenp�
σ (viewed as a pmf onΣc) and the conditional pmfπσ.

Theorem 6.11 Under the policyAσ, it holds thatp�
σ ≺ πσ.
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Proof. We rewritep�
σ in (6.28) as a function ofπσ by dividing its numerator and

denominator by
∑

j /∈Σ p(j). This yields

p�
σ(i) =

πσ(i)(1 − πσ(i))∑
j /∈Σ πσ(j)(1 − πσ(j))

, i /∈ Σ.

With Lemma 2.4 in mind, we takex andy to be the elements ofIRN−M+1 given by

y = πσ andxi = πσ(i)(1 − πσ(i)), i /∈ Σ, in which case

yi

xi

= (1 − πσ(i))−1 , i /∈ Σ. (6.29)

Pick distincti and j not in Σ. From (6.29), we see thatyi

xi
≥ yj

xj
if and only if

πσ(i) ≥ πσ(j), and the assumptions of Lemma 2.4 will hold if we can show thatxi ≥ xj

wheneverπσ(i) ≥ πσ(j). The analysis proceeds along two cases:

Case (a) – Assumeπσ(i) ≤ 1/2. With 1/2 ≥ πσ(i) ≥ πσ(j), we find

xi = πσ(i)(1 − πσ(i)) ≥ πσ(j)(1 − πσ(j)) = xj

by the increasing monotonicity of the mappingp→ p(1 − p) on the interval[0, 1
2
].

Case (b) – Assumeπσ(i) > 1/2, in which case1/2 > 1 − πσ(i) ≥ πσ(j) since
∑

k/∈Σ πσ(k) = 1. We readily arrive at the conclusionxi ≥ xj by applying the argument

in Case (a) to1 − πσ(i) andπσ(j).

The assumptions of Lemma 2.4 are satisfied and we get the desired result with

x̄ = p�
σ andȳ = πσ.

Corollary 6.8 is also obtained from Theorem 6.11 (withM = 1) as expected.
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Chapter 7

Random On-demand Replacement Algorithms (RORA)

We now introduce a large class of demand-driven eviction policies calledRandom On-

demand Replacement Algorithms (RORA), and show that the folk theorems for the miss

rate and the output of a cache hold under this class of policies when the input to the

cache is the IRM. This class of policies generalizes many well-known caching policies,

e.g., the random and FIFO policies, as well as the optimal policyA0. Moreover, the

Partially Preloaded Random Replacement Algorithms proposed by Gelenbe [35] form a

subclass of RORAs.

7.1 Defining RORAs

A RORA policy follows the demand-driven caching rule (4.4) (under the customary

assumption that the cache is initially full) and is characterized by an eviction/insertion

pmf r on{1, . . . ,M}×{1, . . . ,M} which we organize as theM×M matrixr = (rk
),

i.e., for eachk, � = 1, . . . ,M , we haverk
 ≥ 0 and
∑M

k=1

∑M

=1 rk
 = 1. The RORA

associated with the pmf matrixr is denoted RORA(r), and often referred to as the

RORA(r) policy.

We select the cache stateΩt at timet to be an element(i1, . . . , iM) of Λ(M ;N ) with
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the understanding that documentik is in cache at positionk = 1, . . . ,M , at timet. The

RORA(r) policy implements the following eviction rule: Introduce a sequence of i.i.d.

rvs {(Xt, Yt), t = 0, 1, . . .} taking values in{1, . . . ,M} × {1 . . . ,M} with common

pmf r, i.e., for eacht = 0, 1, . . ., we have

P [(Xt, Yt) = (k, �)] = rk
, k, � = 1, . . . ,M.

The sequences of rvs{(Xt, Yt), t = 0, 1, . . .} and {Rt, t = 0, 1, . . .} are assumed

mutually independent. The documentUt to be evicted at timet is given by

Ut = 1 [Rt /∈ St] iXt .

We haveUt = 0 whenever the requested document is in the cache (i.e.,Rt ∈ St), in line

with the convention that no replacement occurs and the cache state remains unchanged,

i.e.,Ωt+1 = Ωt.

Next, if the requested document is not in the cache (i.e.,Rt /∈ St) and(Xt, Yt) =

(k, �), thenUt = ik, i.e., the document at positionk is evicted, and the new document is

inserted in the cache at position�. If k < �, the documentsik+1, . . . , i
 are shifted down

to positionk, k + 1 . . . , � − 1 (in that order) while ifk > �, the documentsi
, . . . , ik−1

are shifted up to position� + 1, . . . , k (in that order). Whenk = �, the new document

simply replaces the evicted document at positionk.

Observe that the document initially at positioni in the cache willnever be replaced

if

rk
 = 0 for




all k = 1, . . . , i and� = i, . . . ,M

and

all � = 1, . . . , i andk = i, . . . ,M.

(7.1)

If we use rowi and columni to partition the matrixr into four blocks, then condition

(7.1) expresses the fact that the entries in the northwest and southeast corners1 all vanish

1With the understanding that the position ofr11 is at the lower left corner of the matrixr.
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(including rowi and columni). Let Σr denote the set ofpositions in the cache with the

property that any document initially put there will never be evicted during the operation

of the cache, i.e.,

Σr := {i = 1, . . . ,M : Eqn. (7.1) holds ati}. (7.2)

Under the IRM with popularity pmfp, the cache states{Ωt, t = 0, 1, . . .} form a

Markov chain on the state spaceΛ(M ;N ). The ergodic properties of this chain are

determined by whether the setΣr is empty or not. This is done in Lemmas 7.1 and 7.2

in the next two sections. These basic results are established in Appendix A.

Throughout the discussion below we always assume that the cache sizeM and the

number of cacheable documentsN satisfyM + 1 < N . We do so in order to avoid

technical cases of limited interest.2 In addition, the input to the cache is assumed to be

the IRM.

7.1.1 Case 1

The setΣr is empty, so thatevery document in cache is eventually replaced, i.e., for

eachi = 1, . . . ,M , there exists a pairk, � (possibly depending oni) with either1 ≤
k ≤ i ≤ � ≤M or 1 ≤ � ≤ i ≤ k ≤M such that

rk
 > 0.

Here are some well-known policies which fall in this case: Therandom policy corre-

sponds to RORA(r) with r given byrkk = 1
M

for eachk = 1, . . . ,M . TheFIFO policy

also belongs to RORA with two possibilities forr, namelyr1M = 1 or rM1 = 1. The

first (resp. second) choice corresponds to the cache state(i1, . . . , iM) being loaded from

2This is discussed in some details in Appendix A.
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left to right with documents ordered from the oldest to the most recent (resp. from the

most recent to the oldest).

In this case, the Markov chain{Ωt, t = 0, 1, . . .} is ergodic on the state space

Λ(M ;N ); its stationary distribution exists and is given in the following lemma.

Lemma 7.1 Assume the input to be modeled according to the IRM with popularity

pmf p. For any RORA(r) policy in Case 1 withΣr empty, the cache states{Ωt, t =

0, 1, . . .} form an ergodic Markov chain on the state spaceΛ(M ;N ) with stationary

pmf onΛ(M ;N ) given by

µr(s; p) = lim
t→∞

1

t

t∑
τ=1

1 [Ωτ = s] a.s.

= C(p)−1p(i1)p(i2) · · · p(iM) (7.3)

for everys = (i1, . . . , iM) in Λ(M ;N ) with normalizing constant

C(p) :=
∑

(i1,...,iM )∈Λ(M ;N )

p(i1)p(i2) · · · p(iM). (7.4)

Note that the stationary pmf is thesame for all RORAs in Case 1.

7.1.2 Case 2

The setΣr is not empty, and some documents, once put in cache, will never be replaced

during the operation of the cache, i.e., ifΩ0 = (i1, . . . , iM), then for allt = 1, 2, . . .,

with Ωt = (j1, . . . , jM), we have

j
 = i
, � ∈ Σr. (7.5)

Here are some examples of RORA policies in that category: For a permutationσ

of {1, . . . , N}, the policyAσ evicts the “smallest” document in cache with documents
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σ(1), σ(2), . . . , σ(N) “ordered” in decreasing order. The documentsσ(1), . . . , σ(M −
1), once loaded in the cache, will remain there, and in the steady state, the cache under

the policyAσ will contain the documentsσ(1), . . . , σ(M − 1).

This behavior can be recovered through the RORA(r) policy with matrix r of the

form rkk = 1 for somek = 1, . . . ,M , in which caseΣr hasM − 1 elements, namely

{1, . . . , k − 1, k + 1, . . . ,M}. If the documentsσ(1), . . . , σ(M − 1) are initially put

in cache (i.e., preloaded) at the other positions� �= k in Σr, this RORA(r) policy will

behave like the policyAσ in its steady state regime. The steady state behavior of the

cache under the policyA0 is that of the RORA(r) policy above, this time, the preloaded

documents being theM − 1 most popular documents.

To describe the long-run behavior of the cache states{Ωt, t = 0, 1, . . .}, we go back

to (7.5). First, with initial cache states0 = (i1, . . . , iM) in Λ(M ;N ), we denote by

Σr(s0) the set of initial documents with positions inΣr, i.e.,

Σr(s0) := {i
 : � ∈ Σr}. (7.6)

Next, we introduce the component

Λ(r, s0) := {(j1, . . . , jM) ∈ Λ(M ;N ) : j
 = i
, � ∈ Σr}. (7.7)

In view of (7.5), once the cache state is inΛ(r, s0), it remains there forever. In fact

all the states in the componentΛ(r, s0) communicate with each other, and this set of

states is closed under the motion of the Markov chain{Ωt, t = 0, 1, . . .}. Given that

|Σr| = m, there are
(

N−m
M−m

)
(M −m)! elements inΛ(r, s0) and there are

(
N
m

)
m! distinct

components which form a partition ofΛ(M ;N ).

As a result, when restricted toΛ(r, s0), this Markov chain is irreducible and aperi-

odic, and its ergodic behavior can be characterized as follows:

Lemma 7.2 Assume the input to be modeled according to the IRM with popularity pmf
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p. For any RORA(r) policy in Case 2 with|Σr| = m and initial cache states0, the cache

states{Ωt, t = 0, 1, . . .} form an ergodic Markov chain on the componentΛ(r, s0). In

particular the limit

µr,s0(s; p) = lim
t→∞

1

t

t∑
τ=1

1 [Ωτ = s] a.s. (7.8)

always exists for everys = (i1, . . . , iM) in Λ(M ;N ) and is given by

µr,s0(s; p) =



Cr(p, s0)

−1p(i1)p(i2) · · · p(iM) , s ∈ Λ(r, s0)

0 , s /∈ Λ(r, s0)
(7.9)

with normalizing constant

Cr(p, s0) :=
∑

(i1,...,iM )∈Λ(r,s0)

p(i1)p(i2) · · · p(iM). (7.10)

From (7.7), we note the simplification

µr,s0(s; p) = C ′
r(p, s0)

−1
∏

i� �∈Σr (s0)

p(i
) (7.11)

for eachs = (i1, . . . , iM) in Λ(r, s0) with normalizing constant

C ′
r(p, s0) :=

∑
(i1,...,iM )∈Λ(r,s0)

∏
i� �∈Σr (s0)

p(i
). (7.12)

7.2 The miss rate under RORAs

7.2.1 Case 1

Fix s = {i1, . . . , iM} in Λ�(M ;N ), and letΛ(s|M ;N ) denote the subset ofΛ(M ;N )

defined by

Λ(s|M ;N ) := {(j1, . . . , jM) ∈ Λ(M ;N ) : {j1, . . . , jM} = {i1, . . . , iM}} . (7.13)
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By Lemma 7.1, the limit (5.1) exists and is given by

µ�
r(s; p) = lim

t→∞
1

t

t∑
τ=1

1 [Sτ = s] a.s.

=
∑

(j1,...,jM )∈Λ(s|M ;N )

C(p)−1p(j1)p(j2) · · · p(jM)

= C(p)−1M ! · p(i1)p(i2) · · · p(iM) (7.14)

with normalizing constantC(p) given by (7.4). The last equality at (7.14) follows from

the fact that|Λ(s|M ;N )| = M !.

Using (7.14) in conjunction with Theorem 5.1, we readily conclude that under the

RORA(r) policy of Case 1 the miss rate (4.8) for the IRM exists as a constant which

is independent of the initial cache states0. To acknowledge this fact, we simply denote

this limiting constant byM̂r(p). Specializing (5.3) leads to

M̂r(p) = C(p)−1M !
∑

{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM)
∑

i/∈{i1,...,iM}
p(i)

= C(p)−1(M + 1)!
∑

{i1,...,iM+1}∈Λ�(M+1;N )

p(i1) · · · p(iM+1)

= C(p)−1(M + 1)! · EM+1,N(p) (7.15)

while the normalizing constantC(p) given by (7.4) can be simplified as

C(p) =
∑

(i1,...,iM )∈Λ(M ;N )

p(i1) · · · p(iM)

= M !
∑

{i1,...,iM}∈Λ�(M ;N )

p(i1) · · · p(iM)

= M ! · EM,N(p). (7.16)

Combining (7.15) and (7.16), we finally get

M̂r(p) = (M + 1) · EM+1,N(p)

EM,N(p)
= (M + 1)ΦM+1,N(p) (7.17)

and a straightforward application of Proposition 2.6 yields
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Theorem 7.3 Under any RORA(r) policy in Case 1, for admissible pmfsp andq on

N , it holds that

M̂r(q) ≤ M̂r(p) (7.18)

wheneverp ≺ q.

7.2.2 Case 2

Consider now the RORA(r) policy under Case 2 when the setΣr is not empty, say with

|Σr| = m for somem = 1, . . . ,M − 1, and let the cache be initially in states0 in

Λ(M ;N ). By Lemma 7.2, for eachs = {i1, . . . , iM} in Λ�(M ;N ) the limit (5.1) exists

and is given by

µ�
r,s0

(s; p) = lim
t→∞

1

t

t∑
τ=1

1 [Sτ = s] a.s.

=
∑

s′=(j1,...,jM )∈Λ(s|r,s0)

µr,s0(s
′; p) (7.19)

whereΛ(s|r, s0) denotes the subset ofΛ(r, s0) defined by

Λ(s|r, s0) := {(j1, . . . , jM) ∈ Λ(r, s0) : {j1, . . . , jM} = {i1, . . . , iM}} . (7.20)

The setΛ(s|r, s0) is non-empty if and only if

Σr(s0) ⊆ {i1, . . . , iM} (7.21)

andµ�
r,s0

(s; p) = 0 whenever this inclusion (7.21) does not hold. With this in mind, we

define

Λ�(r, s0) := {s = {i1, . . . , iM} ∈ Λ�(M ;N ) : Eqn. (7.21) holds ats}. (7.22)

Going back to (7.11) and (7.12), we now conclude that for eachs = {i1, . . . , iM} in

Λ�(r, s0), it holds

µ�
r,s0

(s; p) =
∑

(j1,...,jM )∈Λ(s|r,s0)

C ′
r(p, s0)

−1
∏

j� /∈Σr (s0)

p(j
)
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= C ′
r(p, s0)

−1(M −m)! · ∏
i� /∈Σr (s0)

p(i
) (7.23)

where in the last equality we combine the fact{j1, . . . , jM} = {i1, . . . , iM} with (7.21),

and then made use of the identity|Λ(s|r, s0)| = (M −m)!.

Now, using (7.23) in conjunction with Theorem 5.1 we see that under the RORA(r)

policy of Case 2 the miss rate (4.8) for the IRM exists as a constant whichdepends on

the initial cache states0. We record this fact in the notation by denoting this limiting

constant byM̂r(p; s0). As in Case 1, specializing (5.3) leads to

M̂r(p; s0) = C ′
r(p, s0)

−1(M −m)!
∑

{i1,...,iM}∈Λ�(r,s0)

∏
i� /∈Σr (s0)

p(i
)
∑

i�∈{i1,...,iM}
p(i)

= C ′
r(p, s0)

−1(M −m+ 1)! · EM−m+1,N(t · p) (7.24)

where the elementt in IRN
+ is specified byti = 0 for i being a document inΣr(s0) and

ti = 1 otherwise. Moreover, by the same arguments as in Case 1, we can simplify the

normalizing constantC ′
r(p, s0) as

C ′
r(p, s0) =

∑
(i1,...,iM )∈Λ(r,s0)

∏
i� �∈Σr (s0)

p(i
)

= (M −m)!
∑

{i1,...,iM}∈Λ�(r,s0)

∏
i� �∈Σr (s0)

p(i
)

= (M −m)! · EM−m,N(t · p) (7.25)

with the elementt given as above. It then follows from (7.24) and (7.25) that

M̂r(p; s0) = (M −m+ 1) · EM−m+1,N(t · p)

EM−m,N(t · p)

= (M −m+ 1)ΦM−m+1,N(t · p). (7.26)

Clearly, the documents inΣr(s0) do not contribute to the miss rate since they never

generate a miss once loaded in cache – This isregardless of the order in which they

appear in the cache states0. This intuitively obvious fact is in agreement with the

expression (7.26) from which we see that for any two initial cache statess0 ands′0 in
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Λ(M ;N ) with Σr(s0) = Σr(s
′
0), we have the equalitŷMr(p; s0) = M̂r(p; s′0). As a

result, we shall find it appropriate to denote this common value byM̂r,Σr (s0)(p).

For any pmfp on N , let Σ�(p) denote the set of them most popular documents

according to the pmfp. Equipped with the expression (7.26), we are now ready to

establish the key result for RORA policies in Case 2.

Theorem 7.4 Under any RORA(r) policy in Case 2 with|Σr| = m for somem =

1, . . . ,M − 1, for admissible pmfsp andq onN , it holds that

M̂r,Σ�(q)(q) ≤ M̂r,Σ�(p)(p) (7.27)

wheneverp ≺ q.

Proof. The desired result will be established if we can show that the miss rate function

p → M̂r,Σr (s0)(p) as given in (7.26) is Schur-concave whenevers0 is selected so that

Σr(s0) = Σ�(p).

As we can always relabel the documents, there is no loss of generality in assuming

p(1) ≥ p(2) ≥ . . . ≥ p(N), whenceΣ�(p) = {1, . . . ,m} and the elementt in (7.26)

can be specified ast1 = . . . = tm = 0 andtm+1 = . . . = tN = 1. By Proposition 2.6,

the mappingΦM−m+1,N is increasing and Schur-concave onIRN
+ , and by virtue of the

defining property ofΣ�(p), we have

M̂r,Σ�(p)(p) = min
i=1,...,N !

(M −m+ 1)ΦM−m+1,N(t · σi(p)) (7.28)

where{σi, i = 1, . . . , N !} is a collection of all permutations of{1, . . . , N}.

The mappingh : IRN ! → IR : y → min (y1, . . . , yN !) is clearly increasing, sym-

metric and concave, while the mappingΦM−m+1,N is concave onIRN
+ by Proposition

2.6. Combining these facts with the expression (7.28) forM̂r,Σ�(p)(p), we conclude by
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Proposition 2.8 to the Schur-concavity (in the pmf vector) of the miss rate functional

(7.26) under the RORA policy whenΣr(s0) = Σ�(p).

7.3 The output under RORAs

We now discuss the popularity pmf of the output generated under the RORA policies

still under the assumed IRM input stream.

7.3.1 Case 1

As we invoke Theorem 5.2, we can make use of the expressions (7.14) into the relation

(5.5). For eachi = 1, . . . , N , this yields

mr(i; p) =
∑

s∈Λ�
i (M ;N )

C(p)−1M ! · p(i1)p(i2) · · · p(iM)

=
EM,N−1(p

(i))

EM,N(p)
(7.29)

where the last equality follows from (7.16) and by recalling the definition ofp(i) given

at (6.7). Reporting (7.29) back into (5.4), we conclude that the popularity pmfp�
r of

the output produced by the RORA(r) policy in Case 1 is indeed of the form (6.8), and

Theorem 6.4 gives us

Theorem 7.5 Under any RORA(r) policy in Case 1, it holds thatp�
r ≺ p.

By going back to the proof of Theorem 6.4, the reader will readily check from (7.29)

that the RORA(r) policy in Case 1 is indeed a good policy.
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7.3.2 Case 2

Assume|Σr| = m for somem = 1, . . . ,M − 1, and let the cache be initially in state

s0 in Λ(M ;N ). We define the pmfπ on Σr(s0)
c to be theconditional pmf induced on

Σr(s0)
c by p; it is defined as

π(i) =
p(i)∑

j∈Σr (s0)c p(j)
, i ∈ Σr(s0)

c. (7.30)

For all i in Σr(s0), it is clear thatmr,s0(i; p) = 0 while for documenti not in Σr(s0)
c,

with the expression forµ�
r,s0

(s; p) given in (7.23), we find

mr,s0(i; p) =
∑

s∈Λ�(r,s0): i/∈s

C ′
r(p, s0)

−1(M −m)! · ∏
i� /∈Σr (s0)

p(i
)

=
EM−m,N(t(1) · p)

EM−m,N(t(2) · p)

=
EM−m,N−m−1(π

(i))

EM−m,N−m(π)
(7.31)

where the elementt(1) andt(2) of IRN
+ are specified byt(1)j = t

(2)
j = 0 for j being a

document inΣr(s0), t
(1)
i = 0, t(2)i = 1 andt(1)j = t

(2)
j = 1 for all j �= i being a document

in Σr(s0)
c. In the second equality we made use of the expression (7.25).

On revisiting the proof of Theorem 6.4, we note that for distincti, j in Σr(s0)
c, we

havemr,s0(i; p) ≤ mr,s0(j; p) wheneverp(j) ≤ p(i). Consequently, sincemr,s0(i; p) =

0 for all i in Σr(s0), we conclude that the RORA policy in Case 2 is a good policy if the

documents inΣr(s0) are them most popular documents, i.e.,Σr(s0) = Σ�(p).

Combining (7.31) with (5.4), we immediately get

p�
r,s0

(i) =




0 if i ∈ Σ(s0)

π(i)EM−m,N−m−1(π
(i))∑

j∈Σ(s0)c
π(j)EM−m,N−m−1(π(j))

if i �∈ Σ(s0).
(7.32)

Sincep�
r,s0

(i) = 0 wheneveri belongs toΣr(s0), it is more natural to seek a comparison

betweenp�
r,s0

and the conditional pmfπ.
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Theorem 7.6 Under any RORA(r) policy in Case 2, it holds thatp�
r,s0

≺ π.

Proof. The arguments are essentially those given in the proof of Theorem 6.4. We

immediately obtain the desired result upon identifyingπ andΣr(s0)
c with p andN in

Theorem 6.4, respectively.
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Chapter 8

Self-organizing Policies

In this chapter, we investigate the folk theorems under the IRM for the miss rate and

the output of a cache operated by well-known self-organizing policies, namely, the LRU

and CLIMB policies. The LRU and CLIMB policies are described in Section 4.3. From

the positive results achieved under the RORA policies, one might expect that the folk

theorems would hold under these two self-organizing policies. However, both folk the-

orems for the miss rate and the output under the LRU and CLIMB policies fail to hold

in general. Nonetheless, as we restrict ourself to the class of IRM inputs with Zipf-

like popularity pmf (6.4)-(6.5), simulation results and asymptotics suggest that the folk

theorems might hold under the IRM with this class of popularity pmfs.

We now discuss the results for the LRU and CLIMB policies, respectively.

8.1 The miss rate under the LRU policy

Under the IRM with admissible popularity pmfp, it is known [2, Thm. 9, p. 130] [24,

Thm. 6.5, p. 272] that the LRU cache states{Ωt, t = 0, 1, . . .} form a stationary ergodic

Markov chain over the finite state spaceΛ(M ;N ) with stationary distribution given by

µLRU(s; p) = lim
t→∞

1

t

t∑
τ=1

1 [Ωτ = s] a.s.
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=
p(i1) · · · p(iM)∏M−1

k=1 (1 −∑k
j=1 p(ij))

(8.1)

for everys = (i1, . . . , iM) in Λ(M ;N ). Consequently, the limit (5.1) exists for each

s = {i1, . . . , iM} in Λ�(M ;N ) as

µ�
LRU(s; p) = lim

t→∞
1

t

t∑
τ=1

1 [Sτ = s] a.s.

=
∑

(j1,...,jM )∈Λ(s|M ;N )

p(j1) · · · p(jM)∏M−1
k=1 (1 −∑k


=1 p(j
))
(8.2)

whereΛ(s|M ;N ) is defined at (7.13).

The miss rate of the LRU policy under IRM can then be evaluated from (5.3) (see

also [2, Chap. 4]) as

M̂LRU(p) =
∑

(i1,...,iM )∈Λ(M ;N )

p(i1) · · · p(iM)
(
1 −∑M

j=1 p(ij)
)

∏M−1
k=1 (1 −∑k

j=1 p(ij))
. (8.3)

If instead we use (5.2), as we note that

∑
s∈Λ�

i (M ;N )


 ∑

(j1,...,jM )∈Λ(s|M ;N )

. . .


 =

∑
s∈Λi(M ;N )

. . . ,

it is now plain that

M̂LRU(p) =
N∑

i=1

p(i)
∑

s∈Λi(M ;N )

p(i1) · · · p(iM)∏M−1
k=1 (1 −∑k


=1 p(i
))
. (8.4)

8.1.1 A counterexample

Contrary to what transpired with RORA policies, the miss rate under the LRU policy is

not Schur-concave in general, and consequently the folk theorem (6.1) does not hold.

This is demonstrated through the following example developed forM = 3 andN = 4:

In this case, simple algebraic manipulations transform (8.3) into the simpler expres-

sion

M̂LRU(p) =
∑

(i1,i2)∈Λ(2;N )

2p(1)p(2)p(3)p(4)∏2
k=1(1 −∑k

j=1 p(ij))
. (8.5)
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Figure 8.1: LRU miss rate whenM = 3, N = 4, y = p(3) = p(4) = 0.05, p(1) = x

andp(2) = 0.9 − p(1)

We evaluated the expressions (8.5) for the family of pmfs

p(x, y) = (x, 1 − 2y − x, y, y), 0 < y <
1

4
(8.6)

with x in the interval[1
2
−y, 1−3y]. Under these constraints, the components of the pmf

p(x, y) are listed in decreasing order and for any giveny, it holds thatp(x, y) ≺ p(x′, y)

wheneverx < x′ in the interval[1
2
− y, 1 − 3y]. Therefore, if the miss rate under the

LRU policy were indeed a Schur-concave function in the popularity pmf, the functions

x→ M̂LRU(p(x, y)) should be monotone decreasing inx on the interval[1
2
− y, 1− 3y].

Figures 8.1 and 8.2 display the numerical values ofM̂LRU(p(x, y)) as a function ofx

with y = 0.05 andy = 0.01, respectively. In both cases, the miss rate of the LRU policy

is not monotone decreasing inx on the range[1
2
− y, 1 − 3y], with the trend becoming

more pronounced with decreasingy. In short, the miss rate is not Schur-concave under

the LRU policy.
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Figure 8.2: LRU miss rate whenM = 3, N = 4, y = p(3) = p(4) = 0.01, p(1) = x

andp(2) = 0.98 − p(1)

8.1.2 LRU miss rate and IRM with Zipf-like popularity pmfs

While the miss rate isnot Schur-concave under the LRU policy, the desired monotonicity

(6.1) is nevertheless true in an asymptotic sense when the popularity pmf is restricted to

the class of Zipf-like pmfs.

Theorem 8.1 Assume the IRM input to have a Zipf-like popularity pmfpα for some

α ≥ 0. Then, there existsα� = α�(M,N) > 0 and∆ > 0 such thatM̂LRU(pβ) <

M̂LRU(pα) wheneverα� < α andα+ ∆ < β.

This result is a byproduct of the asymptotic equivalence

lim
α→∞

M̂LRU(pα)

(M + 1)−α
= 2 (8.7)
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established in Appendix B.1. Indeed, for everyε in the interval(0, 1), there exists

α�(M,N) > 0 such that forα > α�,

1 − ε ≤ M̂LRU(pα)

2(M + 1)−α
≤ 1 + ε. (8.8)

Thus, forα� < α < β, we conclude that

1 − ε

1 + ε
· (M + 1)β−α ≤ M̂LRU(pα)

M̂LRU(pβ)
≤ 1 + ε

1 − ε
· (M + 1)β−α (8.9)

and the desired result follows wheneverβ − α > ∆ with ∆ > 0 selected such that

1 + ε

1 − ε
= (M + 1)∆.

Of course such a selection is always possible.

We have also carried out simulations of a cache operating under the LRU policy

when the IRM input has a Zipf-like popularity pmfpα.1 The number of documents

is set atN = 1, 000 while the cache size isM = 100. The miss rate of the LRU

policy is displayed in Figure 8.3 and 8.4 for smallα (0 ≤ α ≤ 1) and largeα (α > 1),

respectively. It appears that the miss rate is indeed decreasing as the skewness parameter

α increases across theentire range ofα. This suggests that the folk theorem for miss

rates probably holds under the LRU policy when the comparison is made within the

class of Zipf-like popularity pmfs, hence the following

Conjecture 8.2 For arbitrary cache sizeM and number of documentsN , the function

α → M̂LRU(pα) is strictly decreasing on[0,∞).

1We choose simulations over numerical evaluation of (8.3) because this expression is not suitable for

numerical evaluation due to a combinatorial explosion, as pointed out in [33].
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Figure 8.3: LRU miss rate when the IRM input has a Zipf-like popularity pmfpα for α

small (0 ≤ α ≤ 1)
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8.2 The output under the LRU policy

With the expressions (8.1) for the LRU cache stationary distribution under the IRM, it

is a simple matter to check for eachi = 1, . . . , N , that

mLRU(i; p) =
∑

s∈Λi(M ;N )

µLRU(s; p)

=
∑

s∈Λi(M ;N )

p(i1) · · · p(iM)∏M−1
k=1 (1 −∑k

j=1 p(ij))
. (8.10)

Theorem 5.2 then gives the output popularity pmf in the form

p�
LRU(i) =

p(i)

M̂LRU(p)

∑
s∈Λi(M ;N )

p(i1) · · · p(iM)∏M−1
k=1 (1 −∑k

j=1 p(ij))
(8.11)

for eachi = 1, . . . , N , as we make use of (5.8).

8.2.1 LRU is a good policy

We begin with a positive result.

Lemma 8.3 The LRU policy is a good policy.

Proof. Pick distincti, j = 1, . . . , N with p(j) ≤ p(i). We need to show that

mLRU(i; p) ≤ mLRU(j; p). (8.12)

We begin by writingmLRU(i; p) as

mLRU(i; p) =
∑

s∈Λi(M ;N ): j∈s

µLRU(s; p) +
∑

s∈Λi(M ;N ): j �∈s

µLRU(s; p) (8.13)

with a similar expression formLRU(j; p). The fact that the sets{s ∈ Λi(M ;N ) : j �∈ s}
and{s ∈ Λj(M ;N ) : i �∈ s} coincide leads to

mLRU(i; p) −mLRU(j; p) =
∑

s∈Λi(M ;N ): j∈s

µLRU(s; p)

− ∑
s∈Λj(M ;N ): i∈s

µLRU(s; p). (8.14)
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The sets{s ∈ Λi(M ;N ) : j ∈ s} and{s ∈ Λj(M ;N ) : i ∈ s} can be put into

one-to-one correspondence with each other as follows: Each elements in the former

set does not containi but containsj in exactly one position, say positionk for some

k = 1, . . . ,M , with all other positions occupied by neitheri nor j. Thus, with such

an elements we can associate an elementT (s) in Λj(M ;N ) by substitutingi for j at

positionk and letting all other positions unchanged. This elementT (s) now containsi

but notj anymore, and is therefore an element of the latter set. Moreover, for such an

elementT (s) it holds that

µLRU(s; p) ≤ µLRU(T (s); p) (8.15)

as a consequence of the assumptionp(j) ≤ p(i) and of the expression (8.1). With these

observations in mind, we find that

∑
s∈Λj(M ;N ): i∈s

µLRU(s; p) =
∑

s∈Λi(M ;N ): j∈s

µLRU(T (s); p)

≥ ∑
s∈Λi(M ;N ): j∈s

µLRU(s; p)

and the conclusion (8.12) is now immediate via (8.14).

8.2.2 Counterexamples

In view of Lemma 8.3, it is tempting to expect that the majorization comparisonp�
LRU ≺

p also holds under the LRU policy. This is not true in general as the following coun-

terexamples show: FixN = 2, 3, . . .. Assume that the input to the cache is the IRM

with popularity pmfpε where we set

pε = (1 − (N − 1)ε, ε, . . . , ε) (8.16)
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for some0 < ε ≤ 1
N

. Note thatpε(1) ≥ pε(2) = · · · = pε(N), and asε → 1
N

, the pmf

pε approaches the uniform distributionu while asε→ 0, it degenerates to(1, 0, . . . , 0).

Indeed, from Lemma 2.5, we find thatpε1
≺ pε2

wheneverε2 ≤ ε1.

Under the LRU policy, it is plain from (8.10)-(8.11) that the output popularity pmf

p�
LRU,ε is of the form

p�
ε = (1 − (N − 1)δ(ε), δ(ε), . . . , δ(ε)). (8.17)

for some mappingδ : (0, 1
N

] → (0, 1
N−1

). Because of their special structures, (8.16) and

(8.17), the comparison betweenpε andp�
LRU,ε depends only on the value ofδ(ε); this

fact is stated in

Proposition 8.4 For each0 < ε ≤ 1
N

, let pε andp�
ε be the pmfs of the form (8.16) and

(8.17), respectively.

(i) If 0 < δ(ε) ≤ ε, then the comparisonpε ≺ p�
ε holds;

(ii) If ε ≤ δ(ε) ≤ 1−ε
N−1

, then the comparisonp�
ε ≺ pε holds;

(iii) If 1−ε
N−1

< δ(ε) < min(1 − (N − 1)ε, 1
N−1

), then neither the comparisonp�
ε ≺ pε

nor the comparisonpε ≺ p�
ε holds; and

(iv) If min(1 − (N − 1)ε, 1
N−1

) ≤ δ(ε) < 1
N−1

, then the comparisonpε ≺ p�
ε holds.

Proof. Fix 0 < ε ≤ 1
N

. The discussion is separated into 2 cases, namely (a)0 < δ(ε) ≤
1
N

and (b) 1
N
< δ(ε) < 1

N−1
.

Case (a) – With0 < δ(ε) ≤ 1
N

, we note thatp�
ε(1) ≥ p�

ε(2) = · · · = p�
ε(N). By

Lemma 2.5, the comparisonp�
ε ≺ pε (resp.pε ≺ p�

ε) holds whenever

δ(ε) ≥ (≤) ε, (8.18)
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and Claim (i) is obtained.

Case (b) – When1
N
< δ(ε) < 1

N−1
, we havep�

ε(1) < p�
ε(2) = · · · = p�

ε(N). In this

case, the conditions (2.1) for the majorization comparisonp�
ε ≺ pε (resp.pε ≺ p�

ε) are

simply

kδ(ε) + (N − k)ε ≤ (≥) 1, k = 1, . . . , N − 1. (8.19)

Becauseδ(ε) > ε in this case, the left-hand side of (8.19) is monotone increasing ink.

From this observation and (8.19), the comparisonp�
ε ≺ pε will hold if

δ(ε) ≤ 1 − ε

N − 1
, (8.20)

while the comparisonpε ≺ p�
ε will hold if

δ(ε) ≥ 1 − (N − 1)ε. (8.21)

However, neither the comparisonpε ≺ p�
ε nor the comparisonp�

ε ≺ pε holds if

1 − ε

N − 1
< δ(ε) < 1 − (N − 1)ε. (8.22)

Combining (8.18) and (8.20) yields Claim (ii). Upon recalling thatδ(ε) < 1
N−1

, we

obtain Claim (iii) and (iv) from (8.22) and (8.21), respectively.

Using Proposition 8.4, we show under the LRU policy that it is possible to find some

0 < ε < 1
N

such thatδ(ε) > 1−ε
N−1

, and thus the desired comparisonp�
LRU,ε ≺ pε does

not hold. This result is given in the following theorem: its proof is available in Appendix

C.1.

Theorem 8.5 Assume the IRM input to have the popularity pmfpε for some0 < ε ≤
1
N

. Under the LRU policy, whenever

0 < ε <

(∑M−1

=1

1
N−


)
− 1(∑M−1


=1



N−


) , (8.23)

76



the comparisonp�
LRU,ε ≺ pε does not hold provided that the number of documentsN

and the cache sizeM satisfy the condition
∑M−1


=1
1

N−

> 1.

For example, if we takepε with parametersN = 10 andε = 0.05 and set the cache

sizeM = 8, a simple calculation yieldsδ(ε) = 0.1111 and the assumptions of Theorem

8.5 are satisfied. Thus, the comparisonp�
LRU,ε ≺ pε does not hold. However, the entropy

of pε is smaller than the entropy ofp�
LRU,ε, i.e.,

0.7283 = H(pε) ≤ H(p�
LRU,ε) = 0.9554.

This suggests thatp�
LRU,ε is more balanced thanpε in the sense of entropy comparison.

Hence, even though the comparison in the majorization ordering does not hold, the

entropy comparison might still be valid. This should not come as a surprise since the

majorization comparison is a stronger notion than the entropy comparison.

As for the case of the LRU miss rate, we would expect that the comparisonp�
LRU ≺ p

under the LRU policy would hold within the class of IRM inputs with Zipf-like popular-

ity pmf pα. However, this is not the case as the following example demonstrates: With

M = 3 andN = 4 under the Zipf-like popularity pmf (6.4)-(6.5) withα = 3, we have

computed the output popularity pmf under the LRU policy using (8.11). The numerical

values of both input and output popularity pmfs are given in Table 8.1.

Table 8.1:pα andp�
LRU,α under the LRU policy when the IRM input has a Zipf-like

popularity pmfpα with parameterα = 3

i 1 2 3 4

pα 0.8491 0.1061 0.0314 0.0133

p�
LRU,α 0.0118 0.2031 0.3853 0.3998

By the definition of majorization (2.1)-(2.2), the comparisonp�
LRU,α ≺ pα requires

min
i=1,...,N

pα(i) ≤ min
i=1,...,N

p�
LRU,α(i), (8.24)
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in clear contradiction with Table 8.1, and therefore does not hold. On the other hand,

the comparisonpα ≺ p�
LRU,α is not valid either since it calls for the unmet requirement

max
i=1,...,N

pα(i) ≤ max
i=1,...,N

p�
LRU,α(i). (8.25)

In short,pα andp�
LRU,α are not comparable in the majorization ordering. This situation

does not represent an isolated incident as the next theorem shows; its proof is available

in Appendix B.2.

Theorem 8.6 Assume the IRM input to have a Zipf-like popularity pmfpα for some

α ≥ 0. If the number of documentsN and the cache sizeM satisfy the condition

N < M !, (8.26)

then under the LRU policy, there existsα� = α�(M,N) such thatp�
LRU,α ≺ pα does not

hold wheneverα > α�.

8.2.3 A conjecture

Theorems 7.5 and 7.6 were valid forall values ofM andN , and forarbitrary admissible

pmfs. While the counterexamples discussed earlier dash our hope to get an analogous

result for the LRU policy, the possibility remains, fueled by Corollary 6.8, that the pos-

itive result is nevertheless valid in some appropriate range of the parametersM andN .

We now explore this issue still with Zipf-like popularity pmfs (6.4)-(6.5).

Conjecture 8.7 Assume the IRM input to have a Zipf-like popularity pmfpα for some

α ≥ 0. For eachN = 1, 2, . . ., under the LRU policy, there exists an integerM� =

M�(α;N) with 1 ≤M� < N such thatp�
LRU,α ≺ pα wheneverM = 1, . . . ,M�.

In support of this conjecture, we have carried out simulations of the cache operating

under the LRU policy when the IRM input has Zipf-like popularity pmf with parameter
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α = 0.8, 1 and 2 andN = 1, 000. We find the output popularity pmfs for different

values of cache size, namelyM = 10, 50, 100 and500. The resulting output popularity

pmfs in the original order of documents are shown in Figure 8.5, while the results after

rearranging documents in the decreasing order of their output probabilities are displayed

in Figure 8.6.

From Figure 8.6 (a), whenα = 0.8, the comparisonp�
LRU,α ≺ pα holds forM =

10, 50. This follows from the sufficient condition for majorization comparison provided

in Proposition 2.1. Indeed, from their respective plots, we observe that the pmfspα and

p�
LRU,α when arranged in decreasing order intersect only once, namelyp�

LRU,α([i]) ≤
pα(i), i = 1, . . . , k, andp�

LRU,α([i]) ≥ pα(i), i = k+1, . . . , N , for somek = 1, . . . , N−
1, wherep�

LRU,α([1]) ≥ p�
LRU,α([2]) ≥ . . . ≥ p�

LRU,α([N ]) are the components ofp�
LRU,α

arranged in decreasing order.

However, forα = 0.8 andM = 100, 500, despite the fact that in Figure 8.6 (a),p�
α

of both cases look uniform in the range where document rank is smaller thanM , the

comparisonp�
LRU,α ≺ pα is invalid since the necessary condition (8.24) does not hold.

This violation,mini=1,...,N p
�
LRU,α(i) < pα(N), can be easily seen from Figure 8.5 (a) or

from the subfigure inside Figure 8.6 (a).

Forα = 1 andα = 2, by the same arguments, we conclude from Figures 8.5 (b)-(c)

and 8.6 (b)-(c) that the comparisonp�
LRU,α ≺ pα holds forM = 10 but does not hold for

other cache sizesM = 50, 100, 500. Therefore, these experimental findings agree with

Conjecture 8.7 and suggest that the value ofM�(α;N) in Conjecture 8.7 decreases asα

increases. This last observation is supported by the observation that forα = 0, bothp0

andp�
LRU,0 are the uniform pmfu onN , thus the comparisonp�

LRU,0 ≺ p0 holds for all

M = 1, . . . , N − 1, whenceM�(0;N) = N − 1.
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Figure 8.5: LRU output popularity pmf with different cache sizesM when the IRM

input has a Zipf-like popularity pmfpα with (a) α = 0.8, (b) α = 1 and (c)α = 2.

Documents are arranged in the original order of the input pmfpα.
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Figure 8.6: LRU output popularity pmf with different cache sizesM when the IRM

input has a Zipf-like popularity pmfpα with (a) α = 0.8, (b) α = 1 and (c)α = 2.

Documents are ranked according to their probabilities.
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8.3 The miss rate under the CLIMB policy

Under the IRM assumption on the input, the CLIMB cache states{Ωt, t = 0, 1, . . .}
form a stationary ergodic Markov chain on the finite state spaceΛ(M ;N ) with station-

ary distribution [2, p. 133] given by

µCL(s; p) = lim
t→∞

1

t

t∑
τ=1

1 [Ωτ = s] a.s.

=
1

KCL

M∏

=1

p(i
)
M−
+1 (8.27)

for eachs = (i1, . . . , iM) in Λ(M ;N ), where the normalizing constant is simply

KCL :=
∑

(i1,...,iM )∈Λ(M ;N )

M∏

=1

p(i
)
M−
+1.

The limit (5.1) then exists for eachs = {i1, . . . , iM} in Λ�(M ;N ) as

µ�
CL(s; p) = lim

t→∞
1

t

t∑
τ=1

1 [Sτ = s] a.s.

=
1

KCL

∑
(j1,...,jM )∈Λ(s|M ;N )

M∏

=1

p(j
)
M−
+1. (8.28)

The miss rate of the CLIMB policy under IRM can now be obtained [2, Chap. 4]

from (5.3) as

M̂CL(p) =
1

KCL

∑
(i1,...,iM )∈Λ(M ;N )

M∏

=1

p(i
)
M−
+1


1 −

M∑
j=1

p(ij)


 (8.29)

or from (5.2) as

M̂CL(p) =
N∑

i=1

p(i)
∑

s∈Λi(M ;N )

1

KCL

M∏

=1

p(i
)
M−
+1. (8.30)

8.3.1 A counterexample

As in the case of the LRU miss rate, the miss rate for the CLIMB policy is in gen-

eral not a Schur-concave function, and thus the folk theorem (6.1) does not hold. We
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Figure 8.7: CLIMB miss rate whenM = 3, N = 4, y = p(3) = p(4) = 0.05, p(1) = x

andp(2) = 0.9 − p(1)

demonstrate this fact through the same counterexample developed for the LRU policy

in Section 8.1.1.

In that case, we setM = 3 andN = 4 and the expression (8.29) can be simplified

as

M̂CL(p) =
2
∏4

j=1 p(j)
(∑4

i=1 p(i)
2(1 − p(i))

)
∑

(i1,i2,i3)∈Λ(3;N ) p(i1)3p(i2)2p(i3)
. (8.31)

The numerical values of the expression (8.31) are evaluated for the family of pmfs (8.6)

with x in the interval[1
2
− y, 1 − 3y]. Under these constraints, it holds thatp(x, y) ≺

p(x′, y) wheneverx < x′ in the interval[1
2
− y, 1 − 3y] and for the CLIMB miss rate

to be Schur-concave, the functionx → M̂CL(p(x, y)) must be monotonedecreasing on

the interval[1
2
− y, 1 − 3y].

Figures 8.7 and 8.8 display the numerical values ofM̂CL(p(x, y)) as a function ofx

with y = 0.05 andy = 0.01, respectively. In both cases, the miss rate of the CLIMB
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Figure 8.8: CLIMB miss rate whenM = 3, N = 4, y = p(3) = p(4) = 0.01, p(1) = x

andp(2) = 0.98 − p(1)

policy is not monotone decreasing inx on the entire range and thus the miss rate is not

always Schur-concave under the CLIMB policy.

8.3.2 CLIMB miss rate and IRM with Zipf-like popularity pmfs

Although the CLIMB miss rate isnot Schur-concave in general, the desired monotonic-

ity (6.1) holds asymptotically when the popularity pmf of the IRM input lies in the class

of Zipf-like pmfs.

Theorem 8.8 Assume the IRM input to have a Zipf-like popularity pmfpα for some

α ≥ 0. Then, there existsα� = α�(M,N) > 0 and∆ > 0 such thatM̂CL(pβ) <

M̂CL(pα) wheneverα� < α andα+ ∆ < β.
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Similarly to Theorem 8.1, this theorem is a by-product of the asymptotics

lim
α→∞

M̂CL(pα)

(M + 1)−α
= 2 (8.32)

obtained in the Appendix B.3.

In addition, we carry out simulations of a cache operating under the CLIMB policy

when the IRM input has a Zipf-like popularity pmfpα. We set the number of documents

N = 1, 000 and cache sizeM = 100. Figure 8.9 and 8.10 show the miss rate of the

CLIMB policy whenα is small (0 ≤ α ≤ 1) and large (α > 1), respectively. As for the

LRU miss rate, the CLIMB miss rate appears to be decreasing as the skewness parameter

α increases across the entire range ofα, thereby suggesting the following

Conjecture 8.9 For arbitrary cache sizeM and number of documentsN , the function

α → M̂CL(pα) is strictly decreasing on[0,∞).

8.4 The output under the CLIMB policy

8.4.1 CLIMB is a good policy

From the expression (8.27), for eachi = 1, . . . , N , we have

mCL(i; p) =
∑

s∈Λi(M ;N )

µCL(s; p)

=
1

KCL

∑
s∈Λi(M ;N )

M∏

=1

p(i
)
M−
+1 (8.33)

and by Theorem 5.2,

p�
CL(i) =

p(i)

M̂CL(p)KCL

∑
s∈Λi(M ;N )

M∏

=1

p(i
)
M−
+1 (8.34)

for eachi = 1, . . . , N , where we have used the expression (5.8).
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Figure 8.9: CLIMB miss rate when the IRM input has a Zipf-like popularity pmfpα for

α small (0 ≤ α ≤ 1)
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Figure 8.10: CLIMB miss rate when the IRM input has a Zipf-like popularity pmfpα

for α large (α > 1)

86



Lemma 8.10 The CLIMB policy is a good policy.

Proof. The proof is essentially that for the analogous result for the LRU policy given

in Lemma 8.3. Here the validity of (8.15) follows from the expressions (8.27).

8.4.2 Counterexamples

Again, Corollary 6.8 and Lemma 8.10 might have created the expectation that the ma-

jorization comparisonp�
CL ≺ p also holds under the CLIMB policy for arbitrary input

pmf p. This is not the case as we show by counterexamples when the IRM input has

the popularity pmfpε defined at (8.16). Under this IRM input, it is a simple matter to

see from (8.33) and (8.34) that the output popularity pmfp�
CL,ε is of the form (8.17).

Therefore, by Proposition 8.4, the comparisonp�
CL,ε ≺ pε will not hold if δ(ε) > 1−ε

N−1
.

This is indeed the case whenε is small enough; this result is demonstrated in the next

theorem whose proof can be found in Appendix C.2.

Theorem 8.11 Assume the IRM input to have the popularity pmfpε for some0 < ε ≤
1
N

. Under the CLIMB policy, whenever

0 < ε <
1

2N − 1
(8.35)

the comparisonp�
CL,ε ≺ pε does not hold provided that the number of documentsN and

the cache sizeM satisfy the conditionN > M > 2.

For instance, considerpε with parametersN = 10 andε = 0.05 and set the cache

sizeM = 4. With these parameters,δ(ε) = 0.1110 and the assumptions of Theorem

8.11 are satisfied. Thus, the comparisonp�
CL,ε ≺ pε does not hold. However, as was
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found in the case of the LRU policy, the entropy comparison is valid in that the entropy

of pε is smaller than the entropy ofp�
CL,ε, i.e.,

0.7283 = H(pε) ≤ H(p�
CL,ε) = 0.9560,

suggesting thatp�
CL,ε is more balanced thanpε in the sense of entropy comparison.

We next give counterexamples when the IRM input has Zipf-like popularity pmf

(6.4)-(6.5). AssumeM = 3, N = 4 and the IRM input has Zipf-like popularity pmf

(6.4)-(6.5) withα = 3. With these parameters, we have computed the output popularity

pmf under the CLIMB policy using (8.34). The numerical values of both input and

output popularity pmfs are presented in Table 8.2.

Table 8.2:pα andp�
CL,α under the CLIMB policy when the IRM input has a Zipf-like

popularity pmfpα with parameterα = 3

i 1 2 3 4

pα 0.8491 0.1061 0.0314 0.0133

p�
CL,α 0.0027 0.1386 0.4000 0.4587

As in the case of the LRU policy, the pmfspα andp�
CL,α are not comparable in the

majorization ordering. The arguments are similar to the one given for the LRU policy,

and are therefore omitted. Moreover, a result analogous to Theorem 8.6 holds for the

CLIMB policy. It is given next, with a proof available in Appendix B.4.

Theorem 8.12 Assume the IRM input to have a Zipf-like popularity pmfpα for some

α ≥ 0. If the number of documentsN and the cache sizeM satisfy the condition (8.26),

then under the CLIMB policy, there existsα� = α�(M,N) such thatp�
CL,α ≺ pα does

not hold wheneverα > α�.
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8.4.3 A conjecture

Here as well, we venture that a conjecture similar to Conjecture 8.7 is also valid for the

CLIMB policy when the IRM input popularity pmf is a Zipf-like distribution (6.4)-(6.5).

Conjecture 8.13 Assume the IRM input to have a Zipf-like popularity pmfpα for some

α ≥ 0. For eachN = 1, 2, . . ., under the CLIMB policy, there exists an integerM� =

M�(α;N) with 1 ≤M� < N such thatp�
CL,α ≺ pα wheneverM = 1, . . . ,M�.

A number of simulation experiments have been carried out under the CLIMB policy,

as was done for the LRU policy, to support Conjecture 8.13. The discussion of the

experimental results shown in Figure 8.11 and 8.12 is similar to that given in Section

8.2.3 for the LRU policy and shall be omitted.
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Figure 8.11: CLIMB output popularity pmf with different cache sizesM when the IRM

input has a Zipf-like popularity pmfpα with (a) α = 0.8, (b) α = 1 and (c)α = 2.

Documents are arranged in the original order of the input pmfpα.
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input has a Zipf-like popularity pmfpα with (a) α = 0.8, (b) α = 1 and (c)α = 2.

Documents are ranked according to their probabilities.
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Chapter 9

Comparing Temporal Correlations

As was done for popularity, it is natural to seek an appropriate notion which can capture

the strength of temporal correlations in streams of requests. Loosely speaking, temporal

correlations are understood as the likelihood that a document will be requested in the

near future, given that it has been requested in the recent past. Indeed, it is observed

in [56] that Web traces usually exhibit short-term temporal correlations in the sense

that the probability of requesting a particular document given that the document was

recently requested is higher than what it would be if the document has not been recently

requested.

In this chapter, we develop a notion that can capture the strength of temporal corre-

lations in Web request streams using the concepts of positive dependence introduced in

Chapter 3. Specifically, relying on the notion of supermodular ordering [Definition 3.4],

we define the TC ordering [Definition 9.1] for comparing two streams of requests on the

basis of the strength of their temporal correlations.

We then apply the TC ordering to investigate the existence of temporal correlations

in several Web request models that are believed to exhibit such correlations, namely, the

higher-order Markov chain model (HOMM), the partial Markov chain model (PMM)

and the Least-Recently-Used stack model (LRUSM). Lastly, with the help of the TC
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ordering, we establish a version of the statement to the effect that “the stronger the

strength of temporal correlations, the smaller the miss rate” when the input to the cache

is modeled by the PMM. Specific results and conjectures on this folk theorem when the

input streams are modeled by the HOMM and by the LRUSM are provided.

9.1 Temporal correlations via positive dependence

Given a stream of requestsR = {Rt, t = 0, 1, . . .}, we define for eachi = 1, . . . , N ,

the rvs

Vt(i) = 1 [Rt = i] , t = 0, 1, . . . , (9.1)

i.e., the rvVt(i) is the indicator function of the event that the request at timet is made to

documenti. If the sequence of requests{Rt, t = 0, 1, . . .} were to exhibit some form

of temporal correlations, then a request to documenti would likely be followed by a

burst of references to documenti in the near future. This corresponds to the presence of

positive dependencies in the sequence{Vt(i), t = 0, 1, . . .} and leads naturally to the

following definition ofTemporal Correlations ordering (TC ordering, for short):

Definition 9.1 The request streamR1 = {R1
t , t = 0, 1, . . .} is said to have weaker

temporal correlations than the request streamR2 = {R2
t , t = 0, 1, . . .}, a situation

denoted

R1 ≤TC R2, (9.2)

if for eachi = 1, . . . , N , the comparison

{V 1
t (i), t = 0, 1, . . .} ≤sm {V 2

t (i), t = 0, 1, . . .}

holds where for eachk = 1, 2, the rvs{V k
t (i), t = 0, 1, . . .} denote the indicator process

associated withRk through (9.1).
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Under this definition, wheneverR1 ≤TC R2, it follows from the equi-marginal

property (3.3) of the sm ordering that

P
[
V 1

t (i) = 1
]

= P
[
V 2

t (i) = 1
]
, i = 1, . . . , N,

or equivalently that

P
[
R1

t = i
]

= P
[
R2

t = i
]
, i = 1, . . . , N, (9.3)

for all t = 0, 1, . . .. Therefore, under the assumption that for eachk = 1, 2, the limits

(4.2) exist as constants for the request streamRk, we have

pk(i) = E

[
lim
t→∞

1

t

t∑
τ=1

1
[
Rk

τ = i
]]

= lim
t→∞

1

t

t∑
τ=1

P
[
Rk

τ = i
]
, i = 1, . . . , N,

by the Bounded Convergence Theorem. Combining this last equation and (9.3) imme-

diately leads top1 = p2, i.e., the comparisonR1 ≤TC R2 requires that the request

streamsR1 andR2 must have the same popularity profile. In other words, the TC or-

dering captures only the contribution from temporal correlations to locality of reference.

Proposition 9.2 For a request streamR, if each of the indicator processes{Vt(i), t =

0, 1, . . .}, i = 1, . . . , N , associated withR is PSMD, then it holds that

R̂ ≤TC R

whereR̂ is the independent version ofR.

When the request streamR is a stationary sequence, the independent versionR̂ of R is

simply the IRM whose popularity pmf is the common marginal of the request streamR.

Proof. Fix i = 1, . . . , N . Under the enforced assumptions, the sequence{Vt(i), t =
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0, 1, . . .} associated withR is PSMD. This amounts to

{V̂t(i), t = 0, 1, . . .} ≤sm {Vt(i), t = 0, 1, . . .}

where the sequence{V̂t(i), t = 0, 1, . . .} is the independent version of the indicator

sequence{Vt(i), t = 0, 1, . . .}. With R̂ = {R̂t, t = 0, 1, . . .} being the independent

version of the request streamR, it is plain that

{V̂t(i), t = 0, 1, . . .} =st {1
[
R̂t = i

]
, t = 0, 1, . . .}, i = 1, . . . , N,

and the proof is completed.

In what follows, we investigate whether various request models of interest display

temporal correlations in the sense of the TC ordering. These models include the higher-

order Markov chain model, the partial Markov chain model and the Least-Recently-

Used stack model.

9.2 Higher-order Markov chain models (HOMM)

Several higher-order Markov chain models have been used to characterize Web request

streams (e.g., see [19, 28, 56] and references therein) due to their ability to capture some

of the observed temporal correlations. Here we rely on a model, recently proposed by

Psounis et al. [56], which is capable of capturing both the long-term popularity and

short-term temporal correlations of Web request streams.

The model can be described as follows: LetN -valued rvs{R0, . . . , Rh−1} be the

initial requests and let{Yt, t = 0, 1, . . .} be a sequence of i.i.d.N -valued rvs with

P [Yt = i] = p(i) for eachi = 1, . . . , N . The pmfp = (p(1), . . . , p(N)) is assumed to

be admissible (4.3) and as we shall see shortly, it will turn out to be the popularity pmf
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of this model. Next, with0 ≤ α1, . . . , αh < 1 and
∑h

k=1 αk < 1, let {Zt, t = 0, 1, . . .}
be another sequence of i.i.d.{0, 1, . . . , h}-valued rvs with

P [Zt = k] = αk, k = 1, . . . , h and P [Zt = 0] = β = 1 −
h∑

k=1

αk > 0,

i.e., the rvZt is distributed according to the pmfα = (β, α1, . . . , αh). The collections of

rvs{R0, . . . , Rh−1}, {Yt, t = 0, 1, . . .} and{Zt, t = 0, 1, . . .} are mutually independent.

For eacht = h, h+ 1, . . ., the requestRt is described by the evolution

Rt = 1 [Zt = 0]Yt +
h∑

k=1

1 [Zt = k]Rt−k. (9.4)

In words, the requestRt is made to the same document requested at timet− k, namely

Rt−k, with probabilityαk, for somek = 1, . . . , h; otherwiseRt = Yt, i.e., it is chosen

independently of the past according to the popularity pmfp.

The requests{Rt, t = 0, 1, . . .} form anhth-order Markov chain since the value of

Rt depends only on the rvsRt−1, . . . , Rt−h. In fact, fort = h, h + 1, . . ., we have from

(9.4) that for any(i0, . . . , it−1) in N t,

P [Rt = i|Rτ = iτ , τ = 0, . . . , t− 1] = βp(i) +
h∑

k=1

αk1 [it−k = i] (9.5)

= P [Rt = i|Rτ = iτ , τ = t− h, . . . , t− 1] .

With β > 0, thishth-order Markov chain is irreducible and aperiodic on its finite state

space; its stationary distribution exists and is unique. It can be shown [56] that

lim
t→∞P [Rt = i] = lim

t→∞
1

t

t∑
τ=1

1 [Rτ = i] = p(i) a.s.

for eachi = 1, . . . , N , and it is therefore warranted to call the pmfp the long-term

popularity pmf of this request model. Moreover, there exists a unique stationary version,

still denoted thereafter by{Rt, t = 0, 1, . . .}. The parameters of the model are the

history window sizeh, the pmfα and the popularity pmfp, and we shall refer to this

model by HOMM(h,α,p).
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That the HOMM(h,α,p) exhibits temporal correlations is formalized in the next

result.

Theorem 9.3 Assume the request streamR = {Rt, t = 0, 1, . . .} to be modeled ac-

cording to the stationary HOMM(h,α,p). Then, for eachi = 1, . . . , N , the indicator

sequence{Vt(i), t = 0, 1, . . .} associated with the request streamR is PSMD, whence

R̂ ≤TC R (9.6)

whereR̂ is the IRM with popularity pmfp.

Proof. In order to show that the sequences{Vt(i), t = 0, 1, . . .}, i = 1, . . . , N are

PSMD, we shall make use of another sequence ofN -valued rvsR̃ = {R̃t, t = 0, 1, . . .}
constructed as follows: The rvs{R̃0, . . . , R̃h−1} are i.i.d. rvs distributed according to the

pmf p and the rvs{R̃t, t = h, h+ 1, . . .} are generated through the evolution (9.4) with

the help of mutually independent sequences of i.i.d. rvs{Ỹt, t = 0, 1, . . .} and{Z̃t, t =

0, 1, . . .} distributed according to the pmfsp andα, respectively. The collections of

rvs {Ỹt, t = 0, 1, . . .} and{Z̃t, t = 0, 1, . . .} are taken to be independent of the rvs

{R̃0, . . . , R̃h−1}. From this construction, the process̃R = {R̃t, t = 0, 1, . . .} is an

hth-order Markov chain and withβ > 0, we get

{R̃t+τ , t = 0, 1, . . .} =⇒τ {Rt, t = 0, 1, . . .}. (9.7)

Fix i = 1, . . . , N . Let {Ṽt(i) = 1
[
R̃t = i

]
, t = 0, 1, . . .} be the indicator se-

quence associated with the sequenceR̃ defined earlier. We will show that this se-

quence{Ṽt(i), t = 0, 1, . . .} is CIS. To do so, for eacht = 0, 1, . . ., set Ṽ
t
(i) =

(Ṽ0(i), . . . , Ṽt(i)). Because the sequence{Ṽt(i), t = 0, 1, . . .} is a sequence of{0, 1}-

valued rvs, it is CIS [59, 67] if for eacht = 0, 1, . . ., the inequality

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]
≤ P

[
Ṽt+1(i) = 1|Ṽ t

(i) = yt
]

(9.8)
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holds for all vectorsxt = (x0, . . . , xt) andyt = (y0, . . . , yt) in {0, 1}t+1 with xt ≤ yt

componentwise.

For t = 0, 1, . . . , h− 2, it holds for allxt = (x0, . . . , xt) in {0, 1}t+1 that

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

= P
[
Ṽt+1(i) = 1

]
= P

[
R̃t+1 = i

]
= p(i) (9.9)

by independence of the rvs̃R0, . . . , R̃h−1, and the inequality (9.8) is obtained for each

t = 0, 1, . . . , h − 2. Next, for t = h − 1, h, . . ., andxt = (x0, . . . , xt) in {0, 1}t+1, let

(i0, . . . , it) be an element inN t+1 with the property that for eachk = 0, . . . , t, ik = i if

xk = 1 andik �= i if xk = 0. With such an element, we obtain from (9.5) that

P
[
Ṽt+1(i) = 1|(R̃0, . . . , R̃t) = (i0, . . . , it)

]

= P
[
R̃t+1 = i|(R̃0, . . . , R̃t) = (i0, . . . , it)

]

= βp(i) +
h∑

k=1

αk1 [it+1−k = i]

= βp(i) +
h∑

k=1

αkxt+1−k. (9.10)

Since (9.10) holds for any(i0, . . . , it) in N t+1 satisfying the property above, a standard

preconditioning argument readily yields

P
[
Ṽt+1(i) = 1|Ṽ t

(i) = xt
]

= βp(i) +
h∑

k=1

αkxt+1−k. (9.11)

This last expression being monotone increasing inxt = (x0, . . . , xt), we obtain the

inequality (9.8) for eacht = h− 1, h, . . ..

Thus, the inequalities (9.8) hold forall t = 0, 1, . . .. This implies that the sequence

{Ṽt(i), t = 0, 1, . . .} is CIS, whence indeed PSMD by Theorem 3.10, i.e.,

{ ˆ̃V t(i), t = 0, 1, . . .} ≤sm {Ṽt(i), t = 0, 1, . . .} (9.12)

where{ ˆ̃V t(i), t = 0, 1, . . .} is the independent version of{Ṽt(i), t = 0, 1, . . .}. Now,

recalling (9.7), it is plain that

{ ˆ̃V t+τ (i), t = 0, 1, . . .} =⇒τ {V̂t(i), t = 0, 1, . . .} (9.13)
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where{V̂t(i), t = 0, 1, . . .} is a sequence of i.i.d.{0, 1}-valued rvs withP
[
V̂0(i) = 1

]
=

p(i) and is exactly the independent version of{Vt(i), t = 0, 1, . . .}. By invoking the fact

that the sm ordering is closed under weak convergence [52, Thm. 3.9.8, p. 116], we

conclude from (9.7), (9.12) and (9.13) that

{V̂t(i), t = 0, 1, . . .} ≤sm {Vt(i), t = 0, 1, . . .}.

Therefore, the sequence{Vt(i), t = 0, 1, . . .} is PSMD for eachi = 1, . . . , N , and by

Proposition 9.2, the comparison̂R ≤TC R holds withR̂ being the independent version

of R.

9.3 Partial Markov chain models (PMM)

The partial Markov chain model was introduced early on in the literature as a reference

model for computer memory paging [2]. It is a subclass of higher-order Markov chain

models and corresponds to HOMM(h,α,p) with parameterh = 1. In that case, we

haveα = (β, α1) whereα1 = 1 − β and we refer to this model as PMM(β,p).

Under this model, with probability1 − β, Rt = Rt−1, otherwise with probability

β, Rt = Yt, i.e.,Rt is drawn independently of the past according to the popularity pmf

p. Therefore, it is natural to expect that when the popularity pmfp is held fixed, the

smaller the value of correlation parameterβ, the greater temporal correlations exhibited

by the PMM(β,p). In the extreme cases, asβ ↑ 1, the PMM(β,p) becomes the IRM

with popularity pmfp and there is no temporal correlations. On the other hand, asβ ↓ 0,

all the requests are made to the same document, hence displaying the strongest possible

form of temporal correlations. The following result, which contains Theorem 9.3 when

h = 1, formalizes these statements with the help of the TC ordering, thereby confirming
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the intuition that the parameterβ of PMM(β,p) is indeed a measure of the strength of

temporal correlations.

Theorem 9.4 Assume that for eachk = 1, 2, the request streamRβk = {Rβk
t , t =

0, 1, . . .} is modeled according to the stationary PMM(βk,p). If 0 < β2 ≤ β1, then

Rβ1 ≤TC Rβ2 . (9.14)

The proof of this theorem relies on the following comparison of Markov chains

under the supermodular ordering due to Bäuerle [8].

Theorem 9.5 Let X = {Xt, t = 0, 1, . . .} andX ′ = {X ′
t, t = 0, 1, . . .} be two station-

ary Markov chains on{0, 1, . . . , n} with transition matricesP andP ′, respectively. For

γ0, . . . , γn ≥ 0 with 0 <
∑n

j=0 γj ≤ 1, define the(n+ 1) × (n+ 1) matrix

Q(γ0, . . . , γn) =




1 −∑
j �=0 γj γ1 · · · γn

γ0 1 −∑
j �=1 γj · · · γn

...
...

...

γ0 γ1 · · · 1 −∑
j �=n γj



. (9.15)

With P = Q(γ0, . . . , γn) andP ′ = Q(cγ0, . . . , cγn) for some0 ≤ c ≤ 1, it holds that

X ≤sm X ′.

Proof of Theorem 9.4. Fix i = 1, . . . , N . Given a sequenceRβ = {Rβ
t , t =

0, 1, . . .} modeled according to the PMM(β,p), it follows from (9.11) that the sequence

{V β
t (i), t = 0, 1, . . .} associated withRβ is a Markov chain on{0, 1} with

P
[
V β

t+1(i) = 1|V β
t (i) = xt, . . . , V

β
0 (i) = x0

]
= βp(i) + (1 − β)xt, t = 0, 1, . . . ,
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for any(x0, . . . , xt) in {0, 1}t+1. Its transition matrixP β(i) is simply given by

P β(i) =


 1 − βp(i) βp(i)

β(1 − p(i)) 1 − β(1 − p(i))


 ,

or equivalently, in the notation (9.15),P β(i) = Q(γ0, γ1) whereγ0 = β(1 − p(i)) and

γ1 = βp(i) with 0 < γ0 + γ1 = β ≤ 1.

For two stationary PMM request streamsRβ1 andRβ2 with 0 < β2 ≤ β1, we can

always writeβ2 = cβ1 with 0 < c = β2

β1
≤ 1. Thus, the sequences{V β1

t (i), t = 0, 1, . . .}
and{V β2

t (i), t = 0, 1, . . .} have transition matrices

P β1(i) = Q(γ0, γ1) and P β2(i) = Q(cγ0, cγ1),

respectively, withγ0 = β1(1 − p(i)), γ1 = β1p(i) andc = β2

β1
. By applying Theorem

9.5, we obtain the comparison

{V β1
t (i), t = 0, 1, . . .} ≤sm {V β2

t (i), t = 0, 1, . . .}

for eachi = 1, . . . , N , and the conclusion (9.14) follows upon recalling Definition 9.1

of the TC ordering.

9.4 Least-Recently-Used stack models (LRUSM)

The Least-Recently-Used stack model (LRUSM) has long been known to be a good

model for generating the sequence of requests whose statistical properties match those

of observed reference streams [24, 61]. We first state the definition and basic properties

of the LRUSM, and then show that under some appropriate assumptions on the model,

the LRUSM exhibits stronger strength of temporal correlations than its independent

version in the TC ordering.
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9.4.1 LRU stack and stack distance

We begin with the notion ofLRU stack andstack distance. For eacht = 0, 1, . . ., the

stackΩt = (Ωt(1), . . . ,Ωt(N)) is defined as an element inΛ(N ;N ), i.e., Ωt is an

ordered sequence of the documents{1, . . . , N}. It is customary to assume thatΩ(1) is

in the top position of the stack, followed byΩt(2), . . . ,Ωt(N), in that order.

Given an initial stackΩ0 in Λ(N ;N ), with any stream of requestsR = {Rt, t =

0, 1, . . .}, we can associate a stack sequence{Ωt, t = 0, 1, . . .} through the following

recursive mechanism: For eacht = 0, 1, . . ., letDt denotes the position of the document

Rt+1 in the stackΩt, i.e., the rvDt is the unique element of{1, . . . , N} such that

Ωt(Dt) = Rt+1.

The stackΩt+1 is then given by

Ωt+1(k) =




Ωt(Dt) if k = 1

Ωt(k − 1) if k = 2, . . . , Dt

Ωt(k) if k = Dt + 1, . . . , N.

(9.16)

In words, the documentΩt(Dt) = Rt+1 is moved up to the highest position (i.e., po-

sition 1) in the stackΩt+1 at timet + 1 and the documentsΩt(1), . . . ,Ωt(Dt − 1) are

shifted down by one position while the documentsΩt(Dt + 1), . . . ,Ωt(N) remain un-

changed. We refer to the rvs{Dt, t = 0, 1, . . .} so defined as the stack distance sequence

associated with the request streamR.

Conversely, given the initial stackΩ0 in Λ(N ;N ), with any sequence of{1, . . . , N}-

valued rvs{Dt, t = 0, 1, . . .}, we can use the stack operation (9.16) to generate a se-

quence ofΛ(N ;N )-valued rvs{Ωt, t = 0, 1, . . .}. A request streamR is readily gener-

ated from this stack sequence by reading off the top of the stack, i.e., withR0 = Ω0(1),

we have

Rt+1 = Ωt(Dt) = Ωt+1(1), t = 0, 1, . . . . (9.17)
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Note that the rvs{Dt, t = 0, 1, . . .} constitute the stack distance sequence associated

with the request streamR defined at (9.17).

The stack and stack distance introduced above are often referred to as LRU stack

and stack distance, respectively, in reference to the popular LRU policy. The dynamics

of the LRU policy are best described through the notion of LRU stack and stack distance

as we now briefly explain: Returning to (9.16), we see that the stackΩt at timet ranks

the documents according to their recency of reference with the most recently requested

document remaining at the highest stack position. For eachk = 1, . . . , N , the document

Ωt(k) at positionk in the stackΩt is thekth most recently referenced document at time

t, hence the name, LRU stack. Consequently, the documentsΩt(1), . . . ,Ωt(M) in the

first M positions of the stackΩt simply yield the documents in cache under the LRU

policy with cache sizeM when the requestsR0, . . . , Rt have already been served, i.e.,

St+1 = {Ωt(1), . . . ,Ωt(M)} whereSt+1 is the LRU cache at timet + 1. With this

observation in mind, a miss of the LRU cache of sizeM will occur at timet + 1 if

Dt > M and thus the miss rate (4.8) under the LRU policy can alternatively be given by

the limit

MLRU(R) = lim
t→∞

1

t

t−1∑
τ=0

1 [Dτ > M ] a.s. (9.18)

whenever the limit exists.

9.4.2 The LRU stack model

The duality between streams of requests and stack distances embedded in (9.16) can

be used to advantage in defining sequences of requests with temporal correlations. We

present one of the simplest ways to do just that: TheLeast-Recently-Used stack model

(LRUSM) with pmf a onN is defined as the request streamRa = {Ra
t , t = 0, 1, . . .}

whose stack distance sequence{Dt, t = 0, 1, . . .} is a collection ofi.i.d. rvs distributed
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according to the pmfa, i.e.,

P [Dt = k] = ak, k = 1, . . . , N ; t = 0, 1, . . . ,

given some arbitrary initial stackΩ0 in Λ(N ;N ). Throughout we assume that the rvΩ0

is independent of the stack distances{Dt, t = 0, 1, . . .}. In fact, providedaN > 0, when

the initial stack rvΩ0 is uniformly distributed overΛ(N ;N ), the stack rvs{Ωt, t =

0, 1, . . .} form a stationary sequence, and so do the request rvs{Ra
t , t = 0, 1, . . .}. This

fact is established in the process of proving Proposition 9.6 in Appendix D.1. We shall

denote this request model by LRUSM(a).

From (9.18), the miss rate of the LRUSM(a) under the LRU policy with cache size

M is simply

MLRU(Ra) = P [Dt > M ] =
N∑

k=M+1

ak (9.19)

by the Strong Law of Large Number. The LRU policy is known to be an optimal policy

for the LRUSM(a) in the sense that the LRU policy minimizes the miss rate of the

request streamRa over the class of replacement policies (4.5) if the stack distance pmf

a satisfies the LRU optimality condition [58]

(N − k)ak ≥
N∑

j=k+1

aj, k = 1, . . . , N. (9.20)

The popularity pmf of the LRUSM is discussed first in Proposition 9.6; its proof can

be found in Appendix D.1.

Proposition 9.6 Assume the request streamRa = {Ra
t , t = 0, 1, . . .} to be modeled

according to the LRUSM(a). If aN > 0, then for eachi = 1, . . . , N , it holds that

pa(i) = lim
t→∞

1

t

t∑
τ=1

1 [Ra
τ = i] =

1

N
a.s. (9.21)
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Thus, under LRUSM, as every document is equally popular, locality of reference is

expressed solely through temporal correlations with no contribution from the popularity

of documents. This was found to be a drawback of the LRUSM for characterizing Web

request streams and several variants of this model have been proposed to accommodate

this shortcoming [4, 14, 18].

9.4.3 Temporal correlations in LRUSM

As was done with the HOMM, we show that the TC ordering also captures the strength

of temporal correlations exhibited by the LRUSM. Recall the sequence of indicator func-

tions{V a
t (i) = 1 [Ra

t = i] , t = 0, 1, . . .}, i = 1, . . . , N , associated with the LRUSM

request stream{Ra
t , t = 0, 1, . . .}. The main result is contained in

Theorem 9.7 Assume the request streamRa = {Ra
t , t = 0, 1, . . .} to be modeled

according to the LRUSM(a) with stack distance pmfa satisfying

a1 ≥ a2 ≥ . . . ≥ aN > 0. (9.22)

Then, for eachi = 1, . . . , N , the indicator sequence{V a
t (i), t = 0, 1, . . .} associated

with the request streamRa is CIS, whence

R̂a ≤TC Ra (9.23)

whereR̂a is the independent version ofRa.

A proof of Theorem 9.7 can be found in Appendix D.2. In view of Proposition 9.6,

when the LRUSM request streamRa is stationary, its independent version̂Ra is simply

the IRM with uniform popularity pmfu = ( 1
N
, . . . , 1

N
). In fact, it is not hard to see that

the stationary LRUSM(u) indeed coincides with the IRM with uniform popularity pmf

u. Notice that the condition (9.22) for the LRUSM(a) to exhibit temporal correlations
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in the sense of the TC ordering (9.23) does imply the LRU optimality condition (9.20).

This confirms the intuition that the LRU policy is designed to work best with the stream

that exhibits temporal correlations amongst its requests.

9.5 Folk theorem on miss rates

With the help of the TC ordering, we can now use the results of Theorems 9.3, 9.4 and

9.7 to explore the folk theorem to the effect that the stronger the strength of temporal

correlations, the smaller the miss rate under the PMM, the HOMM and the LRUSM, re-

spectively. Specific results and conjectures are provided next for the PMM, the HOMM

and the LRUSM, respectively.

9.5.1 PMM

The miss rates of PMM under demand-driven cache replacement policies have been

previously considered in [2]. For particular caching policies such as LRU and FIFO, the

miss rate under PMM(β,p) is shown to be proportional to the miss rate of the IRM with

the same popularity pmfp. We first demonstrate this fact in some generality and then

use it to compare the miss rates of two PMM streams with different strength of temporal

correlations.

As we seek to evaluate the limit (4.8) for the PMM(β,p) under the cache replace-

ment policyπ, we shall need the following definitions: For eachT = 1, 2, . . ., define

λ(T ) =
T∑

t=1

1 [Zt = 0]

as the number of times from time 1 up to timeT that the requests are chosen indepen-

dently of the past according to the popularity pmfp. Also, for eachk = 1, 2, . . ., let
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γ(k) = inf{t = 1, 2, . . . : λ(t) = k}. Under demand-driven caching with the PMM in-

put, a miss can only occur at the time epochsγ(k) (k = 1, 2, . . .) at which point we have

Rβ
γ(k) = Yγ(k). Therefore, it follows from the definition of the rvs{γ(k), k = 1, 2, . . .}

that

T∑
t=1

1
[
Rβ

t /∈ St

]
=

λ(T )∑
k=1

1
[
Rβ

γ(k) /∈ Sγ(k)

]

=
λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
, T = 1, 2, . . . ,

and the miss rate under PMM(β,p) is given by

Mπ(Rβ) = lim
T→∞

1

T

T∑
t=1

1
[
Rβ

t /∈ St

]

= lim
T→∞

(
λ(T )

T

) 1

λ(T )

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

] . (9.24)

By the Strong Law of Large Numbers, we see that the limit of the first term in (9.24)

is simply

lim
T→∞

λ(T )

T
= lim

T→∞
1

T

T∑
t=1

1 [Zt = 0] = β a.s. (9.25)

The limit of the second term in (9.24) in general does not necessarily have a closed-

form expression. However, It does admit a simple expression in the special case when

the cache replacement policyπ satisfies the following condition:

(�) For all t = 1, 2, . . ., if Rt = Rt−1, then the cache state and eviction rule at time

t+ 1 is the same as those at timet, i.e.,Ωt+1 = Ωt andUt+1 = Ut.

Under this condition, we can write the second limit as

lim
T→∞

1

λ(T )

λ(T )∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]
= lim

K→∞
1

K

K∑
k=1

1
[
Yγ(k) /∈ Sγ(k)

]

= M̂π(p) (9.26)

whereM̂π(p) is the miss rate of the IRM with popularity pmfp under the policyπ.

The last equality follows from the fact that the rvs{Yγ(k), k = 1, 2, . . .} form an IRM
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with popularity pmfp and that by Condition (�), the cache sets{Sγ(k), k = 1, 2, . . .}
are similar to the cache sets under the policyπ when the input is the IRM sequence

{Yγ(k), k = 1, 2, . . .}. Combining (9.24), (9.25) and (9.26) yields the expression for the

miss rate of PMM(β,p) as

Mπ(Rβ) = β · M̂π(p). (9.27)

Condition (�) is satisfied by many cache replacement policies of interest, e.g., the policy

A0, the LRU, FIFO and random policies but not by the CLIMB policy. Equipped with

the expression (9.27), we can now conclude to the following monotonicity result.

Theorem 9.8 Assume that the cache replacement policyπ satisfies Condition (�) and

that for eachk = 1, 2, the request streamRβk is modeled according to PMM(βk,p
k). If

p1 = p2 and0 < β2 ≤ β1, then it holds that

Mπ(Rβ2) ≤Mπ(Rβ1). (9.28)

Moreover, if the mappingp → M̂π(p) is Schur-concave, then wheneverp1 ≺ p2 and

0 < β2 ≤ β1, the comparison (9.28) also holds.

In view of Theorem 9.4, we conclude that the folk theorem on the miss rate indeed

holds for the PMM under any cache replacement policy which satisfies Condition (�).

9.5.2 HOMM

Consider the following situation: LetR be HOMM(h,α,p) for some pmf vectorsp on

N andα on{0, . . . , h}. For some0 < c < 1, letRc denote HOMM(h,αc,p) whereαc

is obtained fromα by takingαc
k = cαk for eachk = 1, . . . , h, andβc = 1− c(1− β) =

β + (1 − c)(1 − β). Obviously,βc ≥ β while αc
k ≤ αk for eachk = 1, . . . , h. In other

words, under HOMM(h,α,p), there is a smaller probability to generate a new request
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independently of past requests than under HOMM(h,αc,p). Therefore, in an attempt to

generalize Theorem 9.3, it is reasonable to think that HOMM(h,αc,p) has less temporal

correlations than HOMM(h,α,p) according to the TC ordering, i.e.,Rc ≤TC R. Tak-

ing our cue from Theorem 9.8, we would then expect the inequalityMπ(R) ≤Mπ(Rc)

to hold for some good caching policies. We summarize these expectations as the fol-

lowing conjecture:

Conjecture 9.9 Assume the request streamR = {Rt, t = 0, 1, . . .} to be modeled

according to HOMM(h,α,p). For some0 < c < 1, if the request streamRc =

{Rc
t , t = 0, 1, . . .} is modeled according to HOMM(h,αc,p) with αc = (1 − c(1 −

β), cα1, . . . , cαh), then the comparisonRc ≤TC R holds. Furthermore, under some

appropriate cache replacement policyπ, it holds thatMπ(R) ≤Mπ(Rc).

Establishing this conjecture appears to be much more difficult than for the PMM,

and requires further investigation. However, in support of this conjecture, we have

carried out several experiments under the LRU policy when the input to the cache is

modeled according to the HOMM. Throughout, we fixN = 100 and let the input

popularity pmfp be the Zipf-like distributionpα (6.4)-(6.5) with parameterα = 0.8.

We consider five different classes of HOMM, each with different history window size

h = 1, . . . , 5. In each class, the input streamRβ (with 0 ≤ β ≤ 1), is generated

according to HOMM(h,αh(β),pα) with αh(β) = (β, 1−β
h
, . . . , 1−β

h
). The validity of

Conjecture 9.9 would require that the mappingβ →MLRU(Rβ) be increasing.

From Figure 9.1, the miss rate is indeed found to be increasing as the parameterβ

increases for all cases and for all cache sizes. Whenh = 1, HOMM reduces to PMM

and the results here confirm the validity of the expression (9.27) and of Theorem 9.8. It

is interesting to note that for a given cache sizeM , the miss rates of all HOMM input

streams withh ≤ M are the same as the miss rate of the PMM. This suggests some
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Figure 9.1: LRU miss rates for various cache sizesM when the input to the cache is the

HOMM(h,αh(β),p0.8) with αh(β) = (β, 1−β
h
, . . . , 1−β

h
)
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form of insensitivity of the LRU miss rate under the HOMM to the history window size

h and to the pmfα. Lastly, for all cases and for all cache sizes, the miss rate always

goes to0 asβ goes to0. This is due to the fact thatlimt→∞ P
[
R0

t = R0
t−1

]
= 1 where

R0 denotes the HOMM(h,αh(0),pα).1

9.5.3 LRUSM

According to Theorem 9.7, the stationary LRUSM(a) with stack distance pmfa satis-

fying condition (9.22) has stronger strength of temporal correlations than the stationary

LRUSM(u). In the vein of Theorem 9.4, it is then natural to wonder when does the

LRUSM(b) have weaker temporal correlations than the LRUSM(a) for pmf b not nec-

essarily uniform. Theorem 9.7 suggests that this could happen when the pmfa is more

skewed toward the smaller values of stack distance than the pmfb. To capture the skew-

ness in the pmf vectors, we recall the notion of majorization introduced in Chapter 2 and

note that for any pmfa onN , it holds thatu ≺ a. With majorization, we can now state

the following conjecture.

Conjecture 9.10 Consider request streamsRa andRb which are modeled according

to the stationary LRUSM(a) and LRUSM(b), respectively. If both pmfsa andb satisfy

(9.22) withb ≺ a, then the comparisonRb ≤TC Ra holds.

When both pmfsa andb satisfy (9.22), the conditions (2.1)-(2.2) for the majorization

comparisonb ≺ a to hold reduce to

n∑
i=1

bi ≤
n∑

i=1

ai, n = 1, . . . , N − 1. (9.29)

1Indeed, ifR is modeled according to the HOMM(h,α,pα) with β = 0, then it can be shown that

limt→∞ P [Rt = Rt−1] = 1 provided that thehth-order Markov chain{Rt, t = 0, 1, . . .} is aperiodic.
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This condition is a possible formalization of the statement that the pmfa is more skewed

toward the smaller values of stack distance than the pmfb.2

To glean evidence in favor of Conjecture 9.10, we consider the LRU policy and

recall that the miss rate under the LRU policy with cache sizeM for the LRUSM(a)

is given by (9.19). Combining (9.19) and (9.29), we conclude that for two LRUSM

request streamsRa andRb satisfying the conditions of Conjecture 9.10, it holds that

MLRU(Ra) ≤ MLRU(Rb). This is of course the desired inequality expressing the folk

theorem for miss rates under the LRU policy which would be expected if Conjecture

9.10 were to hold.

2The condition (9.29) is equivalent to the usual stochastic ordering between the stack distance rvsDa
t

andDb
t associated with the request streamsRa andRb, respectively, whereDa

t ≤st Db
t .
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Chapter 10

The Working Set Model

In the last two chapters, we show how comparisons in the majorization ordering of popu-

larity and in the TC ordering of temporal correlations can be translated into comparisons

of some well-known metrics, namely, the working set size, the inter-reference time and

the stack distance. In this chapter, we discuss results for the working set model and some

folk theorems under its companion memory management policy, the so-called Working

Set algorithm.

10.1 Definition

The working set model was introduced by Denning [26] and some of its properties are

discussed in [27]. It can be defined as follows: Consider a request streamR = {Rt, t =

0, 1, . . .}. Fix t = 0, 1, . . .. For eachτ = 1, 2, . . ., we define the working setW (t, τ ; R)

of length τ at time t to be the set ofdistinct documents occurring amongst the past

τ consecutive requestsR(t−τ+1)+ , . . . , Rt.1 The size of the working setW (t, τ ; R) is

denoted byS(t, τ ; R). Under some appropriate conditions on the request streamR, it

holds thatS(t, τ ; R) =⇒t S(τ ; R) whereS(τ ; R) is the steady state working set size

1For anyx ∈ IR, we set(x)+ = max(0, x).
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of lengthτ . The rvS(τ ; R) can be viewed as the number of distinct documents inτ

consecutive requests in the steady state.

A basic quantity of interest associated with the working set size is its long-run aver-

age defined by

Ŝ(τ ; R) = lim
T→∞

1

T

T−1∑
t=0

S(t, τ ; R) a.s. (10.1)

for eachτ = 1, 2, . . .. In the next lemma, we identify conditions on the request stream

R for the existence of these limits (10.1), in the process making a connection between

the limits (10.1) and the steady state working set sizes.

Lemma 10.1 Assume the request streamR = {Rt, t = 0, 1, . . .} to couple with a

stationary sequence ofN -valued rvsR̃ = {R̃t, t = 0, 1, . . .}. Then, the a.s. limits

(10.1) exist and it holds that2

S(t, τ ; R) =⇒t S(τ ; R), τ = 1, 2, . . . . (10.2)

If, in addition, the sequencẽR is ergodic, then

Ŝ(τ ; R) = E [S(τ ; R)] , τ = 1, 2, . . . . (10.3)

A proof of Lemma 10.1 can be found in Appendix E.1. A special case of Lemma

10.1 occurs when the request streamR itself is stationary. In that case, the distribution

of S(t, τ ; R) does not depend ont whent ≥ τ − 1, i.e., for eachτ = 1, 2, . . ., we have

S(t, τ ; R) =st S(τ − 1, τ ; R), t = τ, τ + 1, . . . . (10.4)

Therefore, (10.2) automatically holds. Furthermore, if the request streamR is stationary

and ergodic, then (10.3) is also obtained.

2In fact, (10.2) holds under the weaker assumption that the request streamR = {Rt, t = 0, 1, . . .}
is asymptotically stationary in that{Rt+�, t = 0, 1, . . .} =⇒� {R̃t, t = 0, 1, . . .} with R̃ = {R̃t, t =

0, 1, . . .} being a stationary sequence ofN -valued rvs.
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10.2 The effect of popularity

Assume the request streamR = {Rt, t = 0, 1, . . .} to be the IRM with popularity pmfp.

Under these enforced i.i.d. assumption, the request streamR is stationary and ergodic,

and from (10.4), we obtain

S(τ ; R) =st S(τ − 1, τ ; R) = |{R0, . . . , Rτ−1}|. (10.5)

Since the IRM request streamR is characterized solely by its popularity pmfp, the

pmf of S(τ ; R) clearly depends only on the pmfp and we shall recognize this fact

by denoting the working set size of lengthτ of the IRM by S(τ ; p). Similarly, we

let Ŝ(τ ; p) denote the average working set size (10.1) of lengthτ of the IRM request

stream.

For positive integern = 1, 2, . . . and pmfθ = (θ(1), . . . , θ(N)) on {1, . . . , N},

imagine the following experimental setup: An experiment hasN distinct outcomes,

outcomei occurring with probabilityθ(i) (i = 1, . . . , N ). We carry out this experiment

n times under independent and statistically identical conditions. LetXi(n,θ) denote

the number of times that outcomei occurs amongst thesen trials (i = 1, . . . , N ). These

N rvs are organized into anINN -valued rvX(n,θ) known as themultinomial rv with

parametersn andθ. Its distribution is given by

P [X(n,θ) = x] =


 n

x1, . . . , xN


 ·

N∏
i=1

θ(i)xi

whenever the integer components(x1, . . . , xN) of x satisfyxi ≥ 0 (i = 1, . . . , N ) and
∑N

i=1 xi = n.

With X(n,θ), we can associate the rvK(n,θ) given by

K(n,θ) :=
N∑

i=1

1 [Xi(n,θ) > 0] ;

115



this rv records the number ofdistinct outcomes that occur amongst then trials. The fol-

lowing result was established by Wong and Yue [72] and deals with the Schur-concavity

of the tails probabilities

π
(n,θ) := P [K(n,θ) > �] , � = 1, 2, . . . ,min(N,n).

Theorem 10.2 For eachn = 1, 2, . . . and each� = 1, 2, . . . ,min(N,n), the mapping

θ → π
(n,θ) is Schur-concave.

From (10.5), the working set sizeS(τ ; p) of the IRM request stream with popularity

pmf p is simply the number of distinct outcomesK(τ,p) for the multinomial rv with

parametersτ andp. Thus, by combining Theorem 10.2 with the basic fact (3.2) on the

usual stochastic ordering, we get the following corollary.

Corollary 10.3 For admissible pmfsp andq onN , it holds that

S(τ ; q) ≤st S(τ ; p), τ = 1, 2, . . . , (10.6)

wheneverp ≺ q.

In words, the more skewed the popularity pmf, the stronger the locality of reference in

the IRM, and the smaller (in the strong stochastic sense) the working set size, in line

with one’s intuition!

A simple consequence of Corollary 10.3 is the comparisons of the average working

set sizes, namely

Ŝ(τ ; q) ≤ Ŝ(τ ; p), τ = 1, 2, . . . ,

providedp ≺ q. This is due to the facts that the comparisons (10.6) imply

E [S(τ ; q)] ≤ E [S(τ ; p)] , τ = 1, 2, . . . ,

and that under the IRM, Lemma 10.1 yieldsŜ(τ ; p) = E [S(τ ; p)] for all τ = 1, 2, . . ..
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10.3 The effect of temporal correlations

As for popularity, it is expected that the stronger the strength of temporal correlations

in the stream of requests, the smaller the working set size. We wish to formalize this

statement as was done for popularity in Corollary 10.3. However, with the help of the

TC ordering, we obtain only the comparison of the expectations of the working set sizes.

Theorem 10.4 For two request streamsR1 = {R1
t , t = 0, 1, . . .} andR2 = {R2

t , t =

0, 1, . . .}, if R1 ≤TC R2, then for eacht = 0, 1, . . ., it holds that

E
[
S(t, τ ; R2)

]
≤ E

[
S(t, τ ; R1)

]
, τ = 1, 2, . . . . (10.7)

A proof of this theorem relies on the fact that the rvS(t, τ ; R) can be expressed as a

combination of supermodular functions of the indicator sequences{Vt(i), t = 0, 1, . . .},

i = 1, . . . , N , associated with the request streamR. Before giving a proof, we note the

following lemma [7, Lemma 2.1].

Lemma 10.5 If the mappingψ : IRτ → IR is given by

ψ(x) =
τ∏

i=1

ψ�(xi), x = (x1, . . . , xτ ) ∈ IRτ (10.8)

for some monotone mappingψ� : IR → IR, thenψ is supermodular.

Proof of Theorem 10.4. Fix t = 0, 1, . . . andτ = 1, . . . , t + 1. The working set size

S(t, τ ; R) of lengthτ at timet for the request streamR can be expressed in terms of

the corresponding indicator sequences{Vt(i), t = 0, 1, . . .}, i = 1, . . . , N , as follows:

From the definition ofS(t, τ ; R), we can write

S(t, τ ; R) =
N∑

i=1

1
[
i ∈ {R(t−τ+1)+ , . . . , Rt}

]
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=
N∑

i=1

1 [i ∈ {Rt−τ+1, . . . , Rt}]

=
N∑

i=1

(1 − 1 [i /∈ {Rt−τ+1, . . . , Rt}])

=
N∑

i=1

(1 −
τ−1∏

=0

1 [Rt−
 �= i])

=
N∑

i=1

(1 −
τ−1∏

=0

(1 − 1 [Rt−
 = i]))

=
N∑

i=1

(1 −
τ−1∏

=0

(1 − Vt−
(i))).

=
N∑

i=1

(1 − ψ(Vt−τ+1(i), . . . , Vt(i))) (10.9)

where the mappingψ : IRτ → IR is of the form (10.8) with mappingψ� : IR → IR given

by

ψ�(x) = 1 − x, x ∈ IR. (10.10)

By Lemma 10.5, the mappingψ is supermodular sinceψ� defined at (10.10) is mono-

tone.

Equipped with the expressions (10.8)-(10.10), we are now ready to prove Theorem

10.4. Recall that for any two request streamsR1 andR2 such thatR1 ≤TC R2, we have

the comparison{V 1
t (i), t = 0, 1, . . .} ≤sm {V 2

t (i), t = 0, 1, . . .} for eachi = 1, . . . , N .

From the supermodularity ofψ and the definition of the sm ordering, it then follows that

E
[
ψ(V 1

t−τ+1(i), . . . , V
1
t (i))

]
≤ E

[
ψ(V 2

t−τ+1(i), . . . , V
2
t (i))

]
(10.11)

for all i = 1, . . . , N . Combining inequalities (10.11) with (10.9) yields the comparison

(10.7) for eachτ = 1, . . . , t+ 1. Upon noting that for allτ > t+ 1,

S(t, τ ; Rk) = S(t, t+ 1; Rk), k = 1, 2,

we get the desired comparisons (10.7) for allτ = 1, 2, . . ..
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Corollary 10.6 Assume that for eachk = 1, 2, the request streamRk = {Rk
t , t =

0, 1, . . .} couples with a stationary sequence ofN -valued rvsR̃
k

= {R̃k
t , t = 0, 1, . . .}.

If R1 ≤TC R2, then it holds that

E
[
S(τ ; R2)

]
≤ E

[
S(τ ; R1)

]
, τ = 1, 2, . . . , (10.12)

where for eachk = 1, 2, S(τ ; Rk) is the steady state working set size of the request

streamRk. In addition, ifR̃
1

andR̃
2

are stationary and ergodic, then it holds that

Ŝ(τ ; R2) ≤ Ŝ(τ ; R1), τ = 1, 2, . . . , (10.13)

where for eachk = 1, 2, Ŝ(τ ; Rk) is the average working set size of the request stream

Rk.

Proof. Fix τ = 1, 2, . . . andk = 1, 2. Under the assumptions above, Lemma 10.1

already yields the convergence

S(t, τ ; Rk) =⇒t S(τ ; Rk). (10.14)

Next, becauseS(t, τ ; Rk) ≤ N for everyt = 0, 1, . . ., the sequence{S(t, τ ; Rk), t =

0, 1, . . .} is uniformly integrable. Combining this fact with (10.14), it follows from [11,

Thm. 5.4, p. 32] that

lim
t→∞E

[
S(t, τ ; Rk)

]
= E

[
S(τ ; Rk)

]
. (10.15)

Invoking (10.7) and (10.15), we obtain the steady state comparisons (10.12). The

comparisons (10.13) for the average working set sizes follow from (10.12) under the

additional ergodicity assumption of the coupling processes associated withR1 andR2.
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Corollary 10.6 demonstrates that for a request streamR exhibiting temporal corre-

lations, the independent version̂R of R can be used to provide various performance

bounds, which in turn can be used for cache dimensioning associated with the request

streamR. We illustrate this argument with three request models, namely the HOMM,

PMM and LRUSM request streams, with the help of Theorems 9.3, 9.4 and 9.7, respec-

tively. Upon noting that the stationary HOMM and PMM are ergodic Markov chains,

we obtain

Corollary 10.7 Assume the request streamR = {Rt, t = 0, 1, . . .} to be modeled

according to the stationary HOMM(h,α,p) with admissible popularity pmfp. Then, it

holds that

Ŝ(τ ; R) ≤ Ŝ(τ ; R̂), τ = 1, 2, . . . ,

whereR̂ is the IRM with popularity pmfp.

Corollary 10.8 Assume that for eachk = 1, 2, the request streamRβk = {Rβk
t , t =

0, 1, . . .} is modeled according to the stationary PMM(βk,p) with admissible popularity

pmf p. If 0 < β2 ≤ β1, then it holds that

Ŝ(τ ; Rβ2) ≤ Ŝ(τ ; Rβ1), τ = 1, 2, . . . .

Lastly, we note the comparison of the working set sizes under the LRUSM.

Corollary 10.9 Assume the request streamRa = {Ra
t , t = 0, 1, . . .} to be modeled ac-

cording to the stationary LRUSM(a) with stack distance pmfa satisfying (9.22). Then,

it holds that

E [S(τ ; Ra)] ≤ E
[
S(τ ; R̂a)

]
, τ = 1, 2, . . . ,

whereR̂a is the IRM with uniform popularity pmfu.
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10.4 The Working Set algorithm

Fix τ = 1, 2, . . .. The Working Set (WS) algorithm with lengthτ is the algorithm

that maintains the previousτ consecutive requested documentsR(t−τ)+ , . . . , Rt−1 in the

cacheSt at timet. In other words, the cacheSt is simply the working setW (t−1, τ ; R)

with the conventionW (−1, τ ; R) = φ. This algorithm differs from other demand-

driven caching policies in that the number of documents in the cache may change over

time while demand-driven caching policies have a fixed cache sizeM (as soon as each

document has been called at least once). The number of documents in the cache at timet

under the WS algorithm is basically the number of distinct documents inW (t−1, τ ; R)

which is the working set sizeS(t− 1, τ ; R).

The operation of the WS algorithm can be described as follows: For eacht =

0, 1, . . ., let Ωt be the state of the cache at timet defined by

Ωt = (R(t−τ)+ , . . . , Rt−1).

It is easy to see from this definition that the cache stateΩt+1 is completely determined

by the previous cache stateΩt and the current requestRt. Furthermore, the cache setSt

can be recovered fromΩt by taking

St = {i = 1, . . . , N : i ∈ Ωt} = W (t− 1, τ ; R), t = 0, 1, . . . .

For t ≥ τ , regardless of a cache miss, the WS algorithm will evict the documentRt−τ if

Rt−τ /∈W (t, τ ; R) and does not evict any document, otherwise.

The miss rate of the WS algorithm with lengthτ can be defined in the same way as

in the case of demand-driven caching; it is given by the a.s. limit

MWS(R) = lim
T→∞

1

T

T∑
t=1

1 [Rt /∈ St] a.s.

= lim
T→∞

1

T

T∑
t=1

1 [Rt /∈ W (t− 1, τ ; R)] a.s. (10.16)
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We next explore the folk theorems for miss rates and for output streams under the WS

algorithm. We do so for both the IRM input stream and general input stream exhibiting

temporal correlations, respectively.

10.4.1 Under the IRM

We first assume the input to the cache to be modeled according the IRM with popularity

pmf p. Under this assumption, we show that the folk theorems for the miss rate and

the output of a cache under the WS algorithm do not hold in general. This comes as

no surprise since the WS algorithm is a close cousin of the LRU policy in that the LRU

policy of cache sizeM can be obtained from the WS algorithm that keeps theM most

recent distinct documents in the cache by varying its lengthτ .

Miss rate of WS algorithm

It is known [2, 27] that the miss ratêMWS(p) of the WS algorithm with lengthτ under

the IRM with popularity pmfp is given by

M̂WS(p) =
N∑

i=1

p(i)(1 − p(i))τ . (10.17)

Unfortunately, the miss rate function̂MWS(p) is not Schur-concave inp for τ = 2, 3, . . ..

However, it is Schur-concave only whenτ = 1 in which case the WS algorithm coin-

cides with any demand-driven caching policy of cache sizeM = 1. These results are

contained in

Theorem 10.10Assume the input to be modeled according to the IRM with popularity

pmf p. The miss rate function̂MWS(p) under the WS algorithm with lengthτ is Schur-

concave in the pmfp whenτ = 1 and is not Schur-concave in the pmfp whenτ =

2, 3, . . ..
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Proof. For eachτ = 1, 2, . . ., the miss rate function̂MWS(p) in (10.17) is of the form

M̂WS(p) =
N∑

i=1

gτ (p(i))

where the mappinggτ : [0, 1] → [0, 0.25] is given byx → x(1 − x)τ . As we note from

[49, 3.C.1, p. 64 and 3.C.1.c, p. 67], the functionM̂WS(p) is Schur-concave if and only

if the mappinggτ is concave. It is now a simple matter to check that the mappinggτ

is concave only whenτ = 1 andnot concave whenτ = 2, 3, . . ., whence the desired

result.

Output of WS algorithm

By restricting the input streams to be in the class of IRM, the output of the WS algorithm

with lengthτ can be analyzed along the same lines as Theorem 5.2 for demand-driven

caching policies. Indeed, for the IRM with popularity pmfp, the output popularity pmf

p�
WS under the WS algorithm with lengthτ is given by

p�
WS(i) =

p(i)(1 − p(i))τ∑N
j=1 p(j)(1 − p(j))τ

, i = 1, . . . , N. (10.18)

As for the case of miss rate, the folk theorem for the output thatp�
WS ≺ p does not

hold whenτ = 2, 3, . . ., but does hold only forτ = 1 in which case the WS algorithm

reduces to any demand-driven caching policy with cache sizeM = 1. The counterexam-

ples whenτ = 2, 3, . . . , are given below where the IRM input has a Zipf-like popularity

pmf with largeα.

Theorem 10.11Assume the input to be modeled according to the IRM with Zipf-like

popularity pmfpα for someα ≥ 0. If the number of documentsN and the lengthτ of
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the WS algorithm satisfy the condition

N < 2τ−1 with τ > 1, (10.19)

then under the WS algorithm, there existsα� = α�(τ,N) such thatp�
WS,α ≺ pα does

not hold forα > α�.

A proof of this theorem is given in Appendix B.5.

10.4.2 Miss rate under input with temporal correlations

Given an input streamR = {Rt, t = 0, 1, . . .}, let {Vt(i), t = 0, 1, . . .}, i = 1, . . . , N ,

be the indicator sequences (9.1) associated with it. Recall from (10.16) that a miss

occurs at timet when the documentRt is not in the working setW (t− 1, τ ; R). Thus,

the indicator function for the miss event at timet ≥ τ can be written as

1 [Rt /∈ W (t− 1, τ ; R)] = 1 [Rt /∈ {Rt−τ , . . . , Rt−1}]

=
N∑

i=1

1 [Rt = i]1 [i /∈ {Rt−τ , . . . , Rt−1}] (10.20)

=
N∑

i=1

1 [Rt = i]
τ∏


=1

1 [Rt−
 �= i]

=
N∑

i=1

Vt(i)
τ∏


=1

(1 − Vt−
(i))

=
N∑

i=1

g(Vt−τ (i), . . . , Vt(i)) (10.21)

where we have set

g(x0, . . . , xτ ) = xτ

τ−1∏

=0

(1 − x
), (x0, . . . , xτ ) ∈ IRτ+1. (10.22)

Combining (10.16), (10.21) and (10.22) yields the miss rate under the WS algorithm as

the limit

MWS(R) = lim
T→∞

1

T

τ−1∑
t=1

1 [Rt /∈ W (t− 1, τ ; R)]
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+ lim
T→∞

(
T − τ + 1

T

)
1

T − τ + 1

T∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i))

= lim
T→∞

1

T

T+τ−1∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i)) a.s. (10.23)

and if the request streamR admits some form of ergodicity, then the limit (10.23) exists.

A condition for the existence of the limit (10.23) is given in the next lemma whose proof

is available in Appendix E.2.

Lemma 10.12 Fix τ = 1, 2, . . .. Assume the request streamR = {Rt, t = 0, 1, . . .} to

couple with a stationary and ergodic sequence ofN -valued rvsR̃ = {R̃t, t = 0, 1, . . .}.

Then, the a.s. limit (10.23) exists and is given by

MWS(R) = lim
t→∞

N∑
i=1

E [g(Vt−τ (i), . . . , Vt(i))] a.s. (10.24)

In particular, ifR is stationary and ergodic, then

MWS(R) =
N∑

i=1

P [Rτ = i, R
 �= i, � = 0, . . . , τ − 1] . (10.25)

To establish the folk theorem to the effect that the stronger the temporal correlations,

the smaller the miss rate, we need to show that

MWS(R
2) ≤MWS(R

1) whenever R1 ≤TC R2. (10.26)

Therefore, upon recalling the definitions of the TC and sm orderings, we see that estab-

lishing (10.26) amounts to showing that the mappingg given in (10.22) is submodular.3

Unfortunately, the mappingg is not submodular in general; only in the special case

τ = 1 is g a submodular function. We shall discuss these issues by first showing the

3A functionϕ : IRn → IR is said to be submodular if−ϕ is supermodular.
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positive result whenτ = 1 and then providing counterexamples using the PMM when

τ > 1.

[τ = 1] – When τ = 1, we note thatS(t − 1, τ ; R) = 1 for all t = 1, 2, . . ., and

the WS algorithm coincides withany demand-driven caching policy having cache size

M = 1. In that case, the only document in the cache at timet is the documentRt−1

and a miss occurs whenRt �= Rt−1. The folk theorem holds in this special case for all

demand-driven caching policies.

Theorem 10.13Consider an arbitrary demand-driven replacement policyπ with M =

1. If the request streamsR1 andR2 satisfy the relationR1 ≤TC R2, then it holds that

P
[
R2

t /∈ S2
t

]
≤ P

[
R1

t /∈ S1
t

]
, t = 1, 2, . . . . (10.27)

Proof. For eacht = 1, 2, . . ., we have from (10.21)-(10.22) that

1 [Rt /∈ St] = 1 [Rt �= Rt−1]

=
N∑

i=1

g(Vt−1(i), Vt(i))

with the mappingg : IR2 → IR being given by

g(x0, x1) = x1 − x0x1, (x0, x1) ∈ IR2.

Because the mapping(x0, x1) → x0x1 is supermodular, the mapping(x0, x1) → −x0x1

is submodular. The mapping(x0, x1) → x1 being submodular, the mappingg is there-

fore submodular since the sum of two submodular functions is still a submodular func-

tion.

Given two request streamsR1 andR2 such thatR1 ≤TC R2, we recall the compar-

isons{V 1
t (i), t = 0, 1, . . .} ≤sm {V 2

t (i), t = 0, 1, . . .} for eachi = 1, . . . , N . Thus by
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the definition of the sm ordering, we obtain for eacht = 1, 2, . . .,

P
[
R2

t /∈ S2
t

]
=

N∑
i=1

E
[
g(V 2

t−1(i), V
2
t (i))

]

≤
N∑

i=1

E
[
g(V 1

t−1(i), V
1
t (i))

]

= P
[
R1

t /∈ S1
t

]
.

Corollary 10.14 Consider an arbitrary demand-driven replacement policyπ with M =

1. If the request streamsR1 andR2 couple with stationary and ergodic sequences of

N -valued rvsR̃
1

andR̃
2
, respectively, and satisfy the relationR1 ≤TC R2, then it

holds that

MWS(R
2) ≤MWS(R

1).

Proof. Under the assumptions above, the miss rate of the request streamRk for each

k = 1, 2, can be obtained using Lemma 10.12 and is given by

MWS(R
k) = lim

t→∞P
[
Rk

t /∈ Sk
t

]
a.s.

The desired result is now immediate from (10.27).

[τ > 1] – The folk theorem (10.26) does not necessarily hold whenτ > 1 as we now

demonstrate via counterexamples when the PMM is taken to be the input to the cache.

The miss rate of the WS algorithm with lengthτ for PMM(β,p) [2] is given by

MWS(β,p) = β
N∑

i=1

p(i)(1 − p(i))(1 − βp(i))τ−1. (10.28)
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From Section 9.3, we would expect that as the strength of temporal correlations in-

creases, i.e., the value of the parameterβ decreases, the miss rateMWS(β,p) should

be decreasing. To put it differently, the mappingβ → MWS(β,p) should be increasing

when the popularity pmfp is held fixed.

However, this is not always the case as we show in the counterexamples where the

PMM stream is assumed to have the uniform popularity pmfu = ( 1
N
, . . . , 1

N
).

Theorem 10.15Fix τ = 2, 3, . . ., and assume the input to be modeled according to

PMM(β,u). Under the WS algorithm with lengthτ , the miss rate functionMWS(β,u)

given in (10.28) is increasing inβ whenβ ≤ N
τ

and decreasing inβ whenβ > N
τ

.

Thus, the folk theorem always holds when the lengthτ of the WS algorithm is smaller

than the number of documentsN but may fail to hold otherwise.

Proof. When the PMM has the uniform popularity pmfu, the expression (10.28) for

the miss rate under the WS algorithm becomes

MWS(β,u) = β
(
1 − 1

N

)(
1 − β

N

)τ−1

.

Differentiating this expression with respect toβ yields

d

dβ
MWS(β,u) =

(
1 − 1

N

)(
1 − β

N

)τ−2 (
1 − τβ

N

)
.

Thus, the miss rate functionMWS(β,u) is increasing when1− τβ
N

≥ 0, or equivalently,

β ≤ N
τ

, and is decreasing when1 − τβ
N
< 0, or equivalently,β > N

τ
.
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Chapter 11

Inter-reference Time and Stack Distance

In this chapter, we continue the program announced in Chapter 10 as we seek the appro-

priate comparisons for the inter-reference times and the stack distances when the request

streams are comparable in either the majorization or the TC orderings.

11.1 Inter-reference time

The notion of inter-reference time in the stream of requests has recently received some

attention as a way of characterizing temporal correlations [34, 40, 53].

First a definition. Given a request streamR = {Rt, t = 0, 1, . . .}, for eacht =

0, 1, . . ., we define the inter-reference timeT (t; R) as the rv given by

T (t; R) := inf{τ = 1, 2, . . . , t : Rt = Rt−τ} (11.1)

with the convention thatT (t; R) = t + 1 if Rt−τ �= Rt for all τ = 1, . . . , t. As

for the working set size, under some appropriate conditions on the request streamR,

T (t; R) =⇒t T (R) where the steady state inter-reference timeT (R) describes the time

between two consecutive requests for the same document. One such condition is given

in
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Lemma 11.1 Assume the request streamR = {Rt, t = 0, 1, . . .} to be asymptoti-

cally stationary, i.e.,{Rt+
, t = 0, 1, . . .} =⇒
 {R̃t, t = 0, 1, . . .} with R̃ = {R̃t, t =

0, 1, . . .} being a stationary sequence ofN -valued rvs. Then, it holds that

T (t; R) =⇒t T (R). (11.2)

A proof of Lemma 11.1 is given in Appendix E.3. Lastly, we note that if the request

streamR is stationary and ergodic, then the pmf of the steady state inter-reference time

T (R) is given by the limits

P [T (R) = k] = lim
T→∞

1

T

T∑
t=1

1 [T (t; R) = k] a.s., k = 1, 2, . . . .

11.1.1 The effect of popularity

We first study the effect of popularity on the inter-reference time by assuming the request

streamR to be the IRM with popularity pmfp. Under the IRM, the request streamR is

stationary and ergodic in which case (11.2) holds. In fact,T (R) can be represented by

T (R) =st inf{t = 1, 2, . . . : Rt = R0} (11.3)

since the i.i.d. process{Rt, t = 0, 1, . . .} is reversible. The main comparison for the

steady state inter-reference times is given in terms of the convex ordering.

Theorem 11.2 Assume that request streamsR1 andR2 are modeled according to the

IRM with admissible popularity pmfsp1 andp2, respectively. Then, it holds that

T (R1) ≤cx T (R2) (11.4)

wheneverp1 ≺ p2.
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Thus, the more skewed the popularity pmf, the stronger the locality of reference in the

IRM, and the more variable the inter-reference time in that (11.4) impliesE
[
T (R1)

]
=

E
[
T (R2)

]
andV ar(T (R1)) ≤ V ar(T (R2)). This can be explained by observing that

a document with high probability of request is likely to be requested again in the near

future, leading to smaller values forT (R) and correspondingly larger deviation from its

mean.

Proof. It is well known [59, Thm. 2.A.1, p. 57] that the comparison (11.4) between the

{1, 2, . . .}-valued rvsT (R1) andT (R2) is equivalent to

∞∑
τ=n

P
[
T (R1) > τ

]
≤

∞∑
τ=n

P
[
T (R2) > τ

]
(11.5)

for all n = 1, 2, . . ., with

E
[
T (R1)

]
= E

[
T (R2)

]
. (11.6)

Consider an IRM request streamR with popularity pmfp and fixi = 1, . . . , N . By

using the representation (11.3), we note that

P [T (R) = τ |R0 = i] = p(i)(1 − p(i))τ−1, τ = 1, 2, . . . ,

i.e., conditional onR0 = i, the inter-reference timeT (R) is geometrically distributed

with parameterp(i). Consequently, for eachn = 0, 1, . . ., we find

P [T (p) > n|R0 = i] =
∞∑

τ=n+1

P [T (p) = τ |R0 = i]

= (1 − p(i))n,

whence

P [T (p) > n] =
N∑

i=1

p(i)(1 − p(i))n.

Next, we obtain

ψn(p) :=
∞∑

τ=n

P [T (p) > τ ] =
N∑

i=1

(1 − p(i))n, n = 0, 1, . . . .
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In particular, withn = 0, this last calculation yields

E [T (R)] =
∞∑

τ=0

P [T (R) > τ ] = N,

and this independently ofp! In other words, (11.6) holds.

It is a simple matter to see that for eachn = 1, 2, . . ., the mappingt → (1 − t)n

is convex onIR+. By a classical result of Schur [49, C.1, p. 64], the mappingx →
∑N

i=1(1 − xi)
n is a Schur-convex function onIRN

+ . To put it differently, the mapping

p → ψn(p) is Schur-convex, and (11.5) indeed holds whenp1 ≺ p2.

11.1.2 The effect of temporal correlations

We now turn to the comparison (11.4) for the steady state inter-reference times when

the request streamsR1 andR2 are comparable in the TC ordering.

Theorem 11.3 Assume that for eachk = 1, 2, the request streamRk is asymptotically

stationary, i.e.,{Rk
t+
, t = 0, 1, . . .} =⇒
 {R̃k

t , t = 0, 1, . . .} whereR̃
k

= {R̃k
t , t =

0, 1, . . .} is a stationary sequence ofN -valued rvs, and has admissible popularity pmf

pk. If R1 ≤TC R2, then the comparison (11.4) holds.

Theorem 11.3 states that the stronger the temporal correlations, the more variable the

inter-reference time! To establish Theorem 11.3, we shall rely on the following lemma

whose proof is available in Appendix E.4.

Lemma 11.4 Assume that the request streamR = {Rt, t = 0, 1, . . .} is asymptotically

stationary, i.e.,{Rt+
, t = 0, 1, . . .} =⇒
 {R̃t, t = 0, 1, . . .} whereR̃ = {R̃t, t =

0, 1, . . .} is a stationary sequence ofN -valued rvs, and has admissible popularity pmf
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p. Then, it holds that

∞∑
τ=n

P [T (R) > τ ] =
N∑

i=1

P
[
R̃
 �= i, � = 0, . . . , n− 1

]
, n = 1, 2, . . . , (11.7)

and

E [T (R)] =
∞∑

τ=0

P [T (R) > τ ] = N. (11.8)

Proof of Theorem 11.3. The proof of this theorem proceeds along lines similar to ones

found in the proof of Theorem 11.2. The comparison (11.4) is established by showing

that (11.5) and (11.6) hold wheneverR1 ≤TC R2.

Fix k = 1, 2. For eachi = 1, . . . , N , let {V k
t (i), t = 0, 1, . . .} and{Ṽ k

t (i), t =

0, 1, . . .} be the indicator sequences (9.1) associated withRk andR̃
k
, respectively. From

Lemma 11.4, the expression (11.7) for eachn = 1, 2, . . ., can be rewritten as

∞∑
τ=n

P
[
T (Rk) > τ

]
=

N∑
i=1

E
[
1
[
R̃k


 �= i, � = 0, . . . , n− 1
]]

=
N∑

i=1

E

[
n−1∏

=0

(1 − Ṽ k

 (i))

]

=
N∑

i=1

E
[
ψ(Ṽ k

0 (i), . . . , Ṽ k
n−1(i))

]
(11.9)

where the mappingψ : IRn → IR is of the form (10.8) and (10.10). By Lemma 10.5, the

mappingψ is supermodular.

For eachk = 1, 2, the assumption{Rk
t+
, t = 0, 1, . . .} =⇒
 {R̃k

t , t = 0, 1, . . .}
yields

{V k
t+
(i), t = 0, 1, . . .} =⇒
 {Ṽ k

t (i), t = 0, 1, . . .}, i = 1, . . . , N. (11.10)

But R1 ≤TC R2 implies the comparison{V 1
t (i), t = 0, 1, . . .} ≤sm {V 2

t (i), t =

0, 1, . . .} for eachi = 1, . . . , N, and the sm comparison being closed under weak con-
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vergence [52, Thm. 3.9.8, p. 116], it is now plain from (11.10) that

{Ṽ 1
t (i), t = 0, 1, . . .} ≤sm {Ṽ 2

t (i), t = 0, 1, . . .}, i = 1, . . . , N. (11.11)

In short,R̃
1 ≤TC R̃

2
and the required condition (11.5) follows upon combining (11.11)

with (11.9).

Lastly, under the assumptions of the theorem, we recall from Lemma 11.4 that

E
[
T (R1)

]
= E

[
T (R2)

]
= N , and (11.6) holds.

The following results are obtained upon combining Theorem 11.3 with Theorems

9.3, 9.4 and 9.7, respectively.

Corollary 11.5 Assume the request streamR = {Rt, t = 0, 1, . . .} to be modeled

according to the stationary HOMM(h,α,p) with admissible popularity pmfp. Then, it

holds that

T (R̂) ≤cx T (R)

whereR̂ is the IRM with popularity pmfp.

Corollary 11.6 Assume that for eachk = 1, 2, the request streamRβk = {Rβk
t , t =

0, 1, . . .} is modeled according to the stationary PMM(βk,p) with admissible popularity

pmf p. If 0 < β2 ≤ β1, then it holds that

T (Rβ1) ≤cx T (Rβ2).

Corollary 11.7 Assume the request streamRa = {Ra
t , t = 0, 1, . . .} to be modeled ac-

cording to the stationary LRUSM(a) with stack distance pmfa satisfying (9.22). Then,

it holds that

T (R̂a) ≤cx T (Ra)

whereR̂a is the IRM with uniform popularity pmfu.
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11.2 Stack distance

The notion of stack distance has been widely used as a metric for temporal correlations

[1, 3, 50]: For eacht = 1, 2, . . ., the stack distance of the request streamR = {Rt, t =

0, 1, . . .} at timet is the rvD(t; R) defined by

D(t; R) = |{Rt−T (t;R)+1, , . . . , Rt}| (11.12)

whereT (t; R) is the inter-reference time (11.1). It is not hard to see that the relation

D(t; R) = S(t, T (t; R); R) (11.13)

holds. In words,D(t; R) can be interpreted as the working set size where the length of

the working set is taken to be the inter-reference timeT (t; R). Hence,D(t; R) records

the number ofdistinct documents requested from the time the documentRt was last

requested before timet.

Under some appropriate conditions on the request stream{Rt, t = 0, 1, . . .}, the

weak convergenceD(t; R) =⇒t D(R) holds with the steady state stack distanceD(R)

being the rv representing the number of distinct documents requested between two con-

secutive requests for the same document. This fact is given in the next lemma whose

proof can be found in Appendix E.5.

Lemma 11.8 Assume the request streamR = {Rt, t = 0, 1, . . .} to be asymptoti-

cally stationary, i.e.,{Rt+
, t = 0, 1, . . .} =⇒
 {R̃t, t = 0, 1, . . .} with R̃ = {R̃t, t =

0, 1, . . .} being a stationary sequence ofN -valued rvs. Then, it holds that

D(t; R) =⇒t D(R). (11.14)
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It is known [33, 37] that the stack distance is related to the miss rate of the LRU

replacement policy. Specifically, given a request streamR such that the steady state

stack distanceD(R) exists, the miss rateMLRU(R) of LRU with cache sizeM can be

expressed in terms of the tail distribution ofD(R) through

MLRU(R) = P [D(R) > M ] . (11.15)

11.2.1 The effect of popularity

To see the effect of popularity, we restrict the request streams to be in the class of IRMs,

in which case the steady state stack distances exist by Lemma 11.8. From (11.13), in

view of the results obtained in Corollary 10.3, we might expect that for two IRM request

streamsR1 andR2 with popularity pmfsp1 andp2, respectively, the comparison

D(R2) ≤st D(R1) (11.16)

should hold ifp1 ≺ p2. However, the comparison (11.16) can not be established as we

explain below: Recall the relation (11.15) between the miss rate of the LRU policy and

the tail distribution of the stack distance. In Section 8.1, we have seen that it is possible

to find pmfsp1 andp2 on N such thatp1 ≺ p2 and yetM̂LRU(p1) < M̂LRU(p2), or

equivalently,P
[
D(R1) > M

]
< P

[
D(R2) > M

]
. As we recall (3.2), we conclude

that the comparison (11.16) does not hold in general.

Although somewhat annoying from the point of view of intuition, this state of affairs

is perhaps not too surprising (in view of (11.13)) given the opposite direction of the

comparison of inter-reference times in Theorem 11.2. It is possible that some compari-

son other than (11.16) might hold, say in the increasing concave ordering, i.e., for two

IRM request streamsR1 andR2 with popularity pmfsp1 andp2, respectively, it holds

D(R2) ≤icv D(R1) (11.17)
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wheneverp1 ≺ p2. This comparison is compatible with theweaker result of Yue and

Wong [73] that the comparisonE
[
D(R2)

]
< E

[
D(R1)

]
holds wheneverp1 ≺ p2.

11.2.2 The effect of temporal correlations

Inspired by the results obtained for the working set size in Corollary 10.6, we would

expect that the stronger the strength of temporal correlations, the smaller the stack dis-

tance. Unfortunately, we have not yet been able to formalize this statement and will

pose this problem in the following conjecture.

Conjecture 11.9 Assume that for eachk = 1, 2, the request streamRk is asymptoti-

cally stationary, i.e.,{Rk
t+
, t = 0, 1, . . .} =⇒
 {R̃k

t , t = 0, 1, . . .} whereR̃
k

= {R̃k
t , t =

0, 1, . . .} is a stationary sequence ofN -valued rvs. IfR1 ≤TC R2, then it holds that

E
[
D(R2)

]
≤ E

[
D(R1)

]
.

A support for this conjecture is given under the class of PMM request streams: For

this class of request streams, we have from Theorem 9.8 that ifRβ1 andRβ2 are modeled

according to the PMM(β1,p) and PMM(β2,p), respectively, with0 < β2 ≤ β1 (i.e.,

Rβ1 ≤TC Rβ2), thenMLRU(Rβ2) ≤MLRU(Rβ1) for all cache sizesM = 1, . . . , N − 1.

It then follows from the relation (11.15) thatP
[
D(Rβ2) > M

]
≤ P

[
D(Rβ1) > M

]
for eachM = 1, 2, . . . , N − 1, or equivalently, that

D(Rβ2) ≤st D(Rβ1) (11.18)

by the property (3.2) of the usual stochastic ordering. Conjecture 11.9 holds under the

class of PMM request streams since (11.18) impliesE
[
D(Rβ2)

]
≤ E

[
D(Rβ1)

]
.
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Appendix A

A Discussion of Lemmas 7.1 and 7.2

Consider the RORA(r) policy for some eviction/insertion pmfr. As pointed out in

Sections 7.1.1 and 7.1.2, under the IRM input, the cache states{Ωt, t = 0, 1, . . . , } form

a Markov chain with state spaceΛ(M ;N ) whose ergodic properties are determined

through the setΣr.

Fix the cache states = (i1, . . . , iM) in Λ(M ;N ), and for eachk, � = 1, . . . ,M ,

define the setΓk,
(s) as the collection of states which can reachs in one step when the

eviction and insertion are occurring at positionsk and�, respectively. Thus,

Γk,
(s) =




{s′ = (i1, . . . , ik−1, i, ik, . . . , i
−1, i
+1, . . . , iM) : i /∈ s} if k < �

{s′ = (i1, . . . , i
−1, i
+1, . . . , ik, i, ik+1, . . . , iM) : i /∈ s} if k > �

{s′ = (i1, . . . , i
−1, i, i
+1, . . . , iM) : i /∈ s} if k = �.

Lemma A.1 Fix t = 0, 1, . . .. For each cache states = (i1, . . . , iM) in Λ(M ;N ), we

have

P [Ωt+1 = s] =

(∑
i∈s

p(i)

)
P [Ωt = s]

+
∑
i�∈s

p(i)
M∑

k=1

M∑

=1

rk



 ∑

s′∈Γk�(s)

P [Ωt = s′]


 . (A.1)
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Proof. Fix t = 0, 1, . . .. Obviously, we have

P [Ωt+1 = s] = P [Ωt+1 = s,Rt ∈ St] + P [Ωt+1 = s,Rt �∈ St]

= P [Ωt = s,Rt ∈ St] + P [Ωt+1 = s,Rt �∈ St] (A.2)

because the cache state remains unchanged if the requested document is in cache.

Next, by independence,

P [Ωt = s,Rt ∈ St] =
N∑

i=1

P [Ωt = s,Rt = i, i ∈ St]

=

(∑
i∈s

p(i)

)
P [Ωt = s] (A.3)

sinceSt is determined byΩt. Similarly,

P [Ωt+1 = s,Rt �∈ St] =
N∑

i=1

P [Ωt+1 = s,Rt = i, i �∈ St]

=
∑
i�∈s

P [Ωt+1 = s,Rt = i]

=
∑
i�∈s

M∑
k=1

M∑

=1

∑
s′∈Γk�(s)

P [Ωt = s′,Ωt+1 = s,Rt = i]

=
∑
i�∈s

M∑
k=1

M∑

=1

∑
s′∈Γk�(s)

p(i)rk
P [Ωt = s′]

=
∑
i�∈s

p(i)
M∑

k=1

M∑

=1

rk



 ∑

s′∈Γk�(s)

P [Ωt = s′]


 . (A.4)

We obtain (A.1) by collecting (A.3) and (A.4) into (A.2).

Case 1 –The setΣr being empty, the Markov chain has exactly one irreducible

component, namelyΛ(r, s0) = Λ(M ;N ) regardless of the initial conditions0, with

µr(s; p) = lim
t→∞

1

t

t∑
τ=1

1 [Ωτ = s] = lim
t→∞P [Ωt = s] a.s.
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for eachs in Λ(M ;N ). Letting t go to infinity in (A.1), we conclude by the standard

theory of Markov chains that{µr(s; p), s ∈ Λ(M ;N )} given in (7.3)-(7.4) of Lemma

7.1 is indeed the stationary pmf of this Markov chain since it satisfies the Global Balance

Equations

µr(s; p) =

(∑
i∈s

p(i)

)
µr(s; p) +

∑
i�∈s

p(i)
M∑

k=1

M∑

=1

rk



 ∑

s′∈Γk�(s)

µr(s
′; p)


 . (A.5)

We now discuss the technical issues which arise whenN = M + 1. In this case, the

analysis that we have done so far holds for all RORA(r) policies in Case 1 but the FIFO

policy with eitherr1M = 1 or rM1 = 1. Under this particular case, ifs0 = (i1, . . . , iM),

then onlyM + 1 states can be reached froms0, i.e., Λ(r, s0) contains the elements

(i1, . . . , iM), (i2, . . . , iM , iM+1), (i3, . . . , iM+1, i1), . . . , (iM+1, i1, . . . , iM−1). This state

spaceΛ(r, s0) is equivalent to the setΛ�(M ;N ) and it can be verified using the Global

Balance Equations (A.5) that the stationary pmf is given by

µr(s; p) =
p(i1) · · · p(iM)∑

{j1,...,jM}∈Λ�(M ;N ) p(j1) · · · p(jM)
(A.6)

with s = (i1, . . . , iM) arbitrary inΛ(r, s0). Finally, with the stationary pmf (A.6) and

N = M +1, it is plain that the miss ratêMr(p) and the output popularity pmfp�
r in this

case are still given by (7.17) and (6.8), respectively, independently of the initial cache

states0.

Case 2 –The setΣr is non-empty with|Σr| = m for somem = 1, . . . ,M − 1. As

discussed in Section 7.1.2, if the Markov chain starts in the initial states0 in Λ(M ;N ),

it will always stay within the componentΛ(r, s0) defined at (7.7). On this component

Λ(r, s0), the Markov chain is irreducible and aperiodic; its stationary pmf exists for each

s in Λ(r, s0). It is a simple matter to check that the pmf{µr,s0(s), s ∈ Λ(r, s0)} given

in (7.9)-(7.10) of Lemma 7.2 satisfies the Global Balance Equations (A.5) and hence it

is a stationary pmf for this Markov chain.
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In the case whenN = M + 1, the analysis still holds for all RORA(r) policies in

Case 2 with the exception of FIFO-like policies, i.e., the RORA(r) policy with rk
 = 1

for somek, � = 1, . . . ,M and|Σr| = m, for somem = 1, . . . ,M − 1. For this special

case, under the same reasons as in Case 1, the state spaceΛ(r, s0) has onlyM −m+ 1

elements and coincides with the setΛ�(r, s0) defined at (7.22). We again use the Global

Balance Equations (A.5) to show that the stationary pmf is given by

µr,s0(s; p) =

∏
i� �∈Σr (s0) p(i
)∑

{j1,...,jM}∈Λ�(r,s0)

∏
j� �∈Σr (s0) p(j
)

(A.7)

wheres = (i1, . . . , iM) arbitrary inΛ(r, s0). It is easy to check in this case that with

the stationary pmf given in (A.7), the miss ratêMr(p; s0) and the output popularity pmf

p�
r,s0

also admit the expressions (7.26) and (7.32), respectively.

141



Appendix B

Proofs of Theorems 8.1, 8.6, 8.8, 8.12 and 10.11

Throughout, the notion of asymptotic equivalence is defined as follows: For mappings

f, g : IR+ → IR, we writef(α) ∼ g(α) (α → ∞) if limα→∞
f(α)
g(α)

= 1. We shall have

repeated use for the next two elementary lemmas.

Lemma B.1 Consider a finite familya1, . . . , aK of positive scalars. We have

K∑
k=1

a−α
k ∼ c ·

(
min

k=1,...,K
ak

)−α

(α → ∞)

wherec denotes the number of indices� for which it holdsa
 = mink=1,...,K ak.

Lemma B.2 Consider2K mappingsf1, g1, . . . , fK , gK : IR+ → IR+ such that for each

k = 1, . . . , K, we havefk(α) ∼ gk(α) asα → ∞. Then, it holds that

K∑
k=1

fk(α) ∼
K∑

k=1

gk(α) (α → ∞).

From now on, without further mention, all asymptotics are understood in the regime

whereα is large, and the qualifierα → ∞ is dropped from the notation. In particular,

by recalling the normalizing constantCα(N) of Zipf-like distributions defined at (6.5),

we note that

Cα(N) ∼ 1. (B.1)

142



B.1 A proof of Theorem 8.1

Fix α ≥ 0. Upon substituting (6.4)-(6.5) into the expression (8.4), we find

M̂LRU(pα) =
1

Cα(N)2

N∑
i=1

i−ανα(i) (B.2)

with

να(i) =
∑

s∈Λi(M ;N )

∏M

=1 i

−α

∏M−1

k=1

(∑
j �∈{i1,...,ik} j

−α
) , i = 1, . . . , N, (B.3)

where for each elements = (i1, . . . , iM) of Λi(M ;N ), we have denoted byj /∈
{i1, . . . , ik} the set of elementsj in N which are not in the set{i1, . . . , ik}.

Fix i = 1, 2, . . . , N . For each elements = (i1, . . . , iM) in Λi(M ;N ), we invoke

Lemma B.1 to claim that

∑
j �∈{i1,...,ik}

j−α ∼
(

min
j �∈{i1,...,ik}

j

)−α

, k = 1, . . . ,M − 1,

whence
M−1∏
k=1


 ∑

j �∈{i1,...,ik}
j−α


 ∼ ρ(s)−α

where we have set

ρ(s) :=
M−1∏
k=1

(
min

j �∈{i1,...,ik}
j

)
.

Lemmas B.1 and B.2 together yield

να(i) ∼ ∑
s∈Λi(M ;N )

(∏M

=1 i

ρ(s)

)−α

∼ c(i) · ν(i)−α (B.4)

where

ν(i) := min
s∈Λi(M ;N )

(∏M

=1 i

ρ(s)

)
(B.5)

andc(i) is the number of elementss in Λi(M ;N ) which achieve the minimum in (B.5).

To proceed we note the obvious inequality

ν(i) ≥ mins∈Λi(M ;N )

(∏M

=1 i


)
maxs∈Λi(M ;N ) ρ(s)

. (B.6)
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We shall show the existence of element(s)s in Λi(M ;N ) which simultaneously achieve

the minimum in

min
s∈Λi(M ;N )

(
M∏

=1

i


)
(B.7)

and the maximum in

max
s∈Λi(M ;N )

ρ(s). (B.8)

This will imply that (B.6) holds as an equality, and in the process both the minimal value

of ν(i) and the integerc(i) will be determined.

For i = M + 1, . . . , N , it is plain thats = (1, . . . ,M) is the only element in

Λi(M ;N ) achieving both the minimum (B.7) with minimal valueM ! and the maximum

(B.8) with maximal valueM !. This last claim can be established by easy interchange

arguments. Thus,c(i) = 1 and

ν(i) =
M !

M !
= 1. (B.9)

Similarly, wheni = 2, . . . ,M , the elements = (1, . . . , i− 1, i+ 1, . . . ,M,M + 1)

of Λi(M ;N ) yields the minimum (B.7) with minimal value
∏i−1


=1 � ·
∏M+1


=i+1 � and the

maximum (B.8) with maximal value
∏i−1


=2 � · iM−i+1, whencec(i) = 1 and

ν(i) =

∏i−1

=1 � ·

∏M+1

=i+1 �∏i−1


=2 � · iM−i+1
=

(M + 1)!

i!iM−i+1
. (B.10)

Fori = 1, ρ(s) = 1 for any elements in Λ1(M ;N ) so that the maximum (B.8) has value

1. On the other hand, the minimum (B.7) is achieved byany of theM ! permutations of

(2, 3, . . . ,M,M + 1), yielding the minimal value(M + 1)!. Hence,c(1) = M ! and

ν(1) = (M + 1)! (B.11)

which is simply (B.10) ati = 1.

Invoking Lemmas B.1 and B.2 again, we find

N∑
i=1

i−ανα(i) ∼ c ·
(

min
i=1,...,N

iν(i)
)−α

(B.12)
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for some integerc to be determined. It follows from (B.9) that

min
i=M+1,...,N

iν(i) = min
i=M+1,...,N

i = M + 1 (B.13)

and (B.10) allows us to write

min
i=1,...,M

iν(i) = (M + 1) min
i=1,...,M

ϕ(i). (B.14)

with

ϕ(i) :=
M !

i!iM−i
, i = 1, . . . ,M. (B.15)

It is a simple matter to check that

M ! = ϕ(1) > ϕ(2) > . . . > ϕ(M) = 1 (B.16)

so that the minimum in (B.14) is achieved ati = M with minimal valueM + 1. It then

follows from this fact and (B.13) that

min
i=1,...,N

iν(i) = M + 1 (B.17)

andc = 2. Finally, combining (B.1) (B.2), (B.12) and (B.17) readily leads to

M̂LRU(pα) ∼ 2(M + 1)−α (B.18)

and the desired conclusion (8.7) is obtained.

B.2 A proof of Theorem 8.6

First, in order to lighten up the notation, letp�
α denotep�

LRU,α. The proof of Theorem

8.6 relies on the following observation: By the definition of majorization (2.1)-(2.2), the

comparisonp�
α ≺ pα requires the condition

min
i=1,...,N

pα(i) ≤ min
i=1,...,N

p�
α(i) (B.19)
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to hold. Thus, as we recall (6.6), this comparison will not hold if we can show that

Cα(N)Nα · min
i=1,...,N

p�
α(i) < 1. (B.20)

We show under the appropriate conditions onM andN that (B.20) indeed holds for

large enough values ofα.

Fix α ≥ 0 and substitute (6.4)-(6.5) into the expression (8.11) for the pmfp�
α. For

eachi = 1, . . . , N , we find

p�
α(i) =

i−ανα(i)∑N
j=1 j

−ανα(j)
(B.21)

with να(i), i = 1, . . . , N , given at (B.3). By virtue of (B.4), (B.12), (B.17) and (B.21),

we can now write

p�
α(i) ∼ c(i)

2

(
M + 1

iν(i)

)α

, i = 1, . . . , N.

Consequently,

min
i=1,...,N

p�
α(i) ∼ 1

2
min

i=1,...,N

(
c(i)

(
M + 1

iν(i)

)α)
. (B.22)

By recalling (B.9), we get

min
i=M+1,...,N

(
c(i)

(
M + 1

iν(i)

)α)
=
(
M + 1

N

)α

(B.23)

where the minimum is achieved ati = N . Next, by using (B.10), we get with the help

of (B.15) and (B.16) that

min
i=2,...,N

(
c(i)

(
M + 1

iν(i)

)α)
=

(
2M−1

M !

)α

(B.24)

where the minimum is achieved ati = 2. Finally,ν(1) = (M +1)! andc(1) = M ! yield

c(1)

(
M + 1

ν(1)

)α

= M !
1

(M !)α
. (B.25)
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Combining (B.1), (B.23), (B.24) and (B.25), we conclude from (B.22) that

Cα(N)Nα · min
i=1,...,N

p�
α(i) ∼ 1

2
min

(
M !

(
N

M !

)α

,

(
2M−1N

M !

)α

, (M + 1)α

)
.

Under (8.26), asα grows large, the first term in the minimum above will have the small-

est value, so

Cα(N)Nα · min
i=1,...,N

p�
α(i) ∼ M !

2

(
N

M !

)α

,

and the condition (B.20) indeed holds for large enough values ofα.

B.3 A proof of Theorem 8.8

Fix α ≥ 0. By substituting (6.4)-(6.5) into the expression (8.30), we find

M̂CL(pα) =
1

Cα(N)KCL,α

N∑
i=1

i−αηα(i) (B.26)

with

ηα(i) =
∑

s∈Λi(M ;N )

M∏

=1

i
−α(M−
+1)

 , i = 1, . . . , N, (B.27)

and

KCL,α =
∑

s∈Λ(M ;N )

M∏

=1

i
−α(M−
+1)

 . (B.28)

Fix i = 1, . . . , N . By Lemma B.1 we immediately get

ηα(i) ∼ c′(i)η(i)−α (B.29)

with

η(i) := min
s∈Λi(M ;N )

(
M∏


=1

iM−
+1



)
(B.30)

andc′(i) is the number of elementss in Λi(M ;N ) that achieve the minimum in (B.30).

Elementary interchange arguments show that the minimal value in (B.30) is achieved at
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some unique elements = (i1, . . . , iM) of Λi(M ;N ) with the propertyi1 < i2 < . . . <

iM , so thatc′(i) = 1.

Using this observation, we first conclude that

η(M + 1) = . . . = η(N) =
M∏


=1

�M−
+1. (B.31)

On the other hand, wheneveri = 1, . . . ,M , direct inspection shows that

η(i) = (M + 1)
∏

1≤
<i

�M−
+1 · ∏
i<
≤M

�M−
+2

=

∏
i<
≤M �

iM−i+1
· (M + 1)η(M + 1)

= (M + 1)η(M + 1)
ϕ(i)

i
(B.32)

where the quantitiesϕ(i), i = 1, . . . ,M , are defined at (B.15).

Next, upon making use of Lemmas B.1 and B.2, we see that

N∑
i=1

i−αηα(i) ∼ c′ ·
(

min
i=1,...,N

iη(i)
)−α

(B.33)

with c′ denoting the number of indices achieving the minimum inmini=1,...,N iη(i).

Obviously, by virtue of (B.31), we find

min
i=M+1,...,N

iη(i) = (M + 1)η(M + 1) (B.34)

where the minimum is achieved ati = M + 1. On the other hand, as we rely on (B.32),

we get

min
i=1,...,M

iη(i) = (M + 1)η(M + 1) min
i=1,...,M

ϕ(i) (B.35)

and by (B.16), the minimum in (B.35) is achieved ati = M with minimal value(M +

1)η(M + 1). Combining this fact with (B.34), we obtainc′ = 2 and

min
i=1,...,N

iη(i) = (M + 1)η(M + 1). (B.36)
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Lastly, invoking Lemma B.1 with (B.28) leads to

KCL,α ∼
(

min
s∈Λ(M ;N )

M∏

=1

iM−
+1



)−α

=

(
M∏

=1

�M−
+1

)−α

= η(M + 1)−α. (B.37)

It is now plain to see from (B.1), (B.26), (B.33), (B.36) and (B.37) that

M̂CL(pα) ∼ 2(M + 1)−α (B.38)

and the conclusion (8.32) follows.

B.4 A proof of Theorem 8.12

To simplify the notation, we shall writep�
α to denotep�

CL,α. The proof of this theorem

proceeds along the same line as the proof of Theorem 8.6. We need to show under the

appropriate conditions onM andN that (B.20) holds for large enough values ofα.

Fix α ≥ 0. Substitute (6.4)-(6.5) into the expression (8.34) yields

p�
α(i) =

i−αηα(i)∑N
j=1 j

−αηα(j)
, i = 1, . . . , N, (B.39)

with ηα(i), i = 1, . . . , N , given at (B.27). With the help of (B.29), (B.33), (B.36) and

(B.39), we can now write

p�
α(i) ∼ 1

2

(
(M + 1)η(M + 1)

iη(i)

)α

, i = 1, . . . , N. (B.40)

Therefore, we obtain

min
i=1,...,N

p�
α(i) ∼ 1

2

(
(M + 1)η(M + 1)

maxi=1,...,N iη(i)

)α

. (B.41)
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Upon noting (B.31), it is a simple matter to check that

max
i=M+1,...,N

iη(i) = N · η(M + 1) (B.42)

and from (B.32), it follows from the fact (B.16) that

max
i=1,...,M

iη(i) = (M + 1)! · η(M + 1). (B.43)

As a result of (B.42) and (B.43), we find

max
i=1,...,N

iη(i) = max ((M + 1)!, N) · η(M + 1). (B.44)

To conclude the proof, we note from (B.1), (B.41) and (B.44) that

Cα(N)Nα · min
i=1,...,N

p�
α(i) ∼ 1

2

(
(M + 1)N

max ((M + 1)!, N)

)α

with max ((M + 1)!, N) = (M + 1)! under (8.26). Consequently, the last asymptotics

takes the simplified form

Cα(N)Nα · min
i=1,...,N

p�
α(i) ∼ 1

2

(
N

M !

)α

and the validity of (B.20) for large enough values ofα follows.

B.5 A proof of Theorem 10.11

To simplify the notation, the output pmfp�
WS,α will be denoted byp�

α. As in the proof

of Theorem 8.6, we try to establish (B.20) under the appropriate condition onτ andN

for large enough value ofα.

Fix α ≥ 0 andτ > 1. By substituting (6.4)-(6.5) into the expression (10.18), we

have

p�
α(i) =

i−α(
∑

j �=i j
−α)τ∑N

k=1 k
−α(

∑

�=k �−α)τ

, i = 1, . . . , N, (B.45)
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where we have denoted byj �= i the set of elementsj in N which are different fromi.

As a direct application of Lemma B.1, it follows that

i−α(
∑
j �=i

j−α)τ ∼ i−α(min
j �=i

j)−ατ =




2−ατ , i = 1

i−α, i = 2, . . . , N
(B.46)

and therefore by Lemma B.2, we find

N∑
i=1

i−α(
∑
j �=i

j−α)τ ∼ 2−ατ +
N∑

i=2

i−α

∼ 2−α. (B.47)

Combining (B.45), (B.46) and (B.47) yields

p�
α(i) ∼




2−α(τ−1), i = 1(
i
2

)−α
, i = 2, . . . , N.

(B.48)

From the expressions (B.48), it is a simple matter to check that

min
i=1,...,N

p�
α(i) ∼ min(2−α(τ−1), min

i=2,...,N

(
i

2

)−α

)

= min

(
2−α(τ−1),

(
N

2

)−α
)
. (B.49)

Finally, we note from (B.1) and (B.49) that

Cα(N)Nα · min
i=1,...,N

p�
α(i) ∼ min

((
N

2τ−1

)α

, 2α

)

and by the enforced condition (10.19), this asymptotics reduces to

Cα(N)Nα · min
i=1,...,N

p�
α(i) ∼

(
N

2τ−1

)α

.

Hence, the condition (B.20) is satisfied for large enough values ofα.
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Appendix C

Proofs of Theorems 8.5 and 8.11

C.1 A proof of Theorem 8.5

To lighten up the notation, we shall writep�
ε to denotep�

LRU,ε. From Proposition 8.4, the

comparisonp�
ε ≺ pε does not hold wheneverδ(ε) > 1−ε

N−1
, or equivalently, whenever

p�
ε(1) < ε. (C.1)

Under the pmf (8.16), we find from (8.10) that

pε(i)m(i; pε) =
(N − 2)!

(N −M − 1)!

(1 − (N − 1)ε)εM∏M−1
k=1 (1 − kε)

· a(i) (C.2)

with

a(i) =



N − 1 if i = 1

1 + (N−M−1)ε
(1−(N−1)ε)

+
∑M−1


=1

∏M−1
k=


(1−kε)
(N−k)ε

if i = 2, . . . , N .
(C.3)

Reporting (C.2)-(C.3) into (5.4), we get

p�
ε(1) =

[
2 +

(N −M − 1)ε

(1 − (N − 1)ε)
+

M−1∑

=1

M−1∏
k=


(1 − kε)

(N − k)ε

]−1

≤
[

M−1∑

=1

M−1∏
k=


(1 − kε)

(N − k)ε

]−1

≤
[

M−1∑

=1

(1 − �ε)

(N − �)ε

]−1

(C.4)
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where the last inequality follows from the fact that for eachk = 1, . . . ,M−1, (1−kε)
(N−k)ε

≥
1 sinceε ≤ 1

N
.

Consequently, the condition (C.1) will hold if

1 <
M−1∑

=1

(1 − �ε)

(N − �)

or equivalently, if

ε <

(∑M−1

=1

1
N−


)
− 1(∑M−1


=1



N−


) .

Hence, provided thatN andM satisfy the condition
∑M−1


=1
1

N−

> 1, there existsε in

the range (8.23) for which the comparisonp�
ε ≺ pε does not hold.

C.2 A proof of Theorem 8.11

First, to simplify the notation, the output popularity pmfp�
CL,ε will be denoted byp�

ε.

The proof of this theorem proceeds along the same lines as in the proof of Theorem 8.5.

We seekε such that the condition (C.1) holds.

For the input pmf (8.16), we have from (8.33) that

pε(i)m(i; pε) =
(N − 2)!

(N −M − 1)!

(1 − (N − 1)ε)ε
M(M+1)

2

KCL

· b(i) (C.5)

with

b(i) =



N − 1 if i = 1

N−M−1
1−(N−1)ε

+
∑M


=1

(
1−(N−1)ε

ε

)
−1
if i = 2, . . . , N .

(C.6)

Combining (C.5)-(C.6) with (5.4), we find

p�
ε(1) =


1 +

N −M − 1

1 − (N − 1)ε
+

M∑

=1

(
1 − (N − 1)ε

ε

)
−1


−1
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≤

 M∑


=1

(
1 − (N − 1)ε

ε

)
−1


−1

=


1 +

M−1∑

=1

(
1 − (N − 1)ε

ε

)



−1

≤

M−1∑


=1

(
1 − (N − 1)ε

ε

)



−1

. (C.7)

ProvidedM > 2, we obtain

p�
ε(1) ≤

[
ε

1 − (N − 1)ε

]2

. (C.8)

Thus, the condition (C.1) holds if

[
ε

1 − (N − 1)ε

]2

< ε,

or equivalently, if

ε < (1 − (N − 1)ε)2.

This last inequality indeed holds whenε is in the range (8.35) and the desired result

follows.
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Appendix D

Proofs of Proposition 9.6 and Theorem 9.7

D.1 A proof of Proposition 9.6

To facilitate the proof, we shall need the following notion of stack position: Fixi =

1, . . . , N . For eacht = 0, 1, . . ., let the rvXa
t (i) denote the position of documenti

in the LRU stackΩt at timet associated with the request stream{Ra
t , t = 0, 1, . . .}.

From the stack operation (9.16), the sequence{Xa
t (i), t = 0, 1, . . .} is seen to evolve

according to the recursion

Xa
t+1(i) =




1 if Dt = Xa
t (i)

Xa
t (i) if Dt < Xa

t (i)

Xa
t (i) + 1 if Dt > Xa

t (i)

(D.1)

for all t = 0, 1, . . . with the initial positionXa
0 (i) given and assumed independent of the

i.i.d. stack distances{Dt, t = 0, 1, . . .}.

By independence of the rvs{Dt, t = 0, 1, . . .}, it follows from (D.1) that the se-

quence{Xa
t (i), t = 0, 1, . . .} is a Markov chain on the state space{1, . . . , N} with

one-step transition probability matrixP a = (Pa
kj, j, k = 1, . . . , N) given by

Pa
kj = P

[
Xa

t+1(i) = j|Xa
t (i) = k

]

155



= δ(j, 1)P [Dt = k] + δ(j, k)P [Dt < k] + δ(j, k + 1)P [Dt > k]

= δ(j, 1)ak + δ(j, k) ·
(

k−1∑

=1

a


)
+ δ(j, k + 1) ·


 N∑


=k+1

a





for j, k = 1, . . . , N , where we setδ(x, y) = 1 [x = y] for anyx, y ∈ IR. This transition

matrix P a is a doubly stochastic matrix, i.e.,
∑N

j=1 P
a
kj =

∑N
k=1 P

a
kj = 1 for all j, k =

1, . . . , N . An invariant distribution forP a then exists, is unique and is given by the

uniform pmfu on{1, . . . , N}.

The conditionaN > 0 is necessary and sufficient for the Markov chain{Xa
t (i), t =

0, 1, . . .} to be irreducible on its finite state space{1, . . . , N}, hence to be positive re-

current. For0 < aN < 1, the Markov chain{Xa
t (i), t = 0, 1, . . .} is aperiodic while

for aN = 1, it is periodic with periodN . Regardless of its periodicity [36, Thm. 6.4.3,

p. 227], whenaN > 0, the fraction of time that{Xa
t (i), t = 0, 1, . . .} spends in a given

statek will a.s. converge to the corresponding entry of invariant distribution. The latter

being the uniform pmf on{1, . . . , N}, we conclude that

lim
t→∞

1

t

t∑
τ=1

1 [Xa
τ (i) = k] =

1

N
a.s., k = 1, . . . , N. (D.2)

Moreover, in the stationary regime, whenaN > 0, we have

P [Xa
τ (i) = k] =

1

N
, k = 1, . . . , N,

for all i = 1, . . . , N . This implies that in stationarity, the stack rvs{Ωt, t = 0, 1, . . .}
are uniformly distributed overΛ(N ;N ).

With the fact (D.2), we are now ready to prove Proposition 9.6: Fixi = 1, . . . , N .

Recall thatRa
t = i if and only ifXa

t (i) = 1 since this corresponds to documenti being

in position 1 of the LRU stackΩt associated with the request streamRa. Under the

assumptionaN > 0, we can combine this observation with the convergence (D.2) to get

pa(i) = lim
t→∞

1

t

t∑
τ=1

1 [Ra
τ = i]

156



= lim
t→∞

1

t

t∑
τ=1

1 [Xa
τ (i) = 1] a.s.

and the desired result is obtained.

D.2 A proof of Theorem 9.7

Throughout, for eachi = 1, . . . , N , we set

V a
t (i) = 1 [Ra

t = i] , t = 0, 1, . . . , (D.3)

and for eacht = 0, 1, . . ., write V a,t(i) = (V a
0 (i), . . . , V a

t (i)).

Fix i = 1, . . . , N . In order to establish the CIS property of the sequence{V a
t (i), t =

0, 1, . . .}, it suffices to show that for eacht = 0, 1, . . ., the inequality

P
[
V a

t+1(i) = 1|V a,t(i) = xt
]
≤ P

[
V a

t+1(i) = 1|V a,t(i) = yt
]

(D.4)

holds forany pair of vectorsxt = (x0, . . . , xt) andyt = (y0, . . . , yt) in {0, 1}t+1 satis-

fying xt ≤ yt componentwise.

Our first task is to provide a simpler expression for the probabilities of interest. To

that end, forξ = 1, . . . , N , we introduce the quantities{Pt(ξ), t = 0, 1, . . .} given by

Pt(ξ) := P
[
Xa

t+1(i) = 1|Xa
0 (i) = ξ,Xa

1 (i) �= 1, . . . , Xa
t (i) �= 1

]
(D.5)

for all t = 1, 2, . . . with

P0(ξ) := P [Xa
1 (i) = 1|Xa

0 (i) = ξ] .

Moreover, for eacht = 0, 1, . . ., and any non-zero elementxt in {0, 1}t+1, we set

τ(xt) := max (s = 0, . . . , t : xs = 1) .
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Proposition D.1 For eacht = 0, 1, . . ., and any non-zero vectorxt in {0, 1}t+1, it holds

that

P
[
V a

t+1(i) = 1|V a,t(i) = xt
]

= Pt−τ(xt)(1). (D.6)

Proof. Fix t = 0, 1, . . . and consider a non-zero vectorxt = (x0, . . . , xt) in {0, 1}t+1.

Writing τ = τ(xt) to simplify the notation, we see from the definitions that

[V a,t(i) = xt]

=
[
V a,τ−1(i) = xτ−1, V a

τ (i) = 1, V a
τ+1(i) = 0, . . . , V a

t (i) = 0
]

=
[
V a,τ−1(i) = xτ−1, Ra

τ = i, Ra
τ+1 �= i, . . . , Ra

t �= i
]

=
[
V a,τ−1(i) = xτ−1, Xa

τ (i) = 1, Xa
τ+1(i) �= 1, . . . , Xa

t (i) �= 1
]

(D.7)

where we have setxτ−1 = (x0, . . . , xτ−1) and that

[V a
t+1(i) = 1] = [Xa

t+1(i) = 1]. (D.8)

Assume first thatτ < t. Now observe that the event[V a,τ−1(i) = xτ−1, Xa
τ (i) = 1]

is determined by the rvsXa
0 (i), . . . , Xa

τ (i). Thus, by preconditioning with respect to

these rvs, we readily conclude from (D.7) that

P
[
V a,t(i) = xt

]

= P
[
V a,τ−1(i) = xτ−1, Xa

τ (i) = 1, Xa
τ+1(i) �= 1, . . . , Xa

t (i) �= 1
]

= P
[
V a,τ−1(i) = xτ−1, Xa

τ (i) = 1
]

·P
[
Xa

τ+1(i) �= 1, . . . , Xa
t (i) �= 1|Xa

τ (i) = 1
]

(D.9)

where in the last step we used the fact that the stack position sequence{Xa
t (i), t =

0, 1, . . .} is a Markov chain. Similarly, this time making use of (D.7) and (D.8), we get

P
[
V a,t(i) = xt, V a

t+1(i) = 1
]
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= P
[
V a,τ−1(i) = xτ−1, Xa

τ (i) = 1, Xa
τ+1(i) �= 1, . . . , Xa

t (i) �= 1, Xa
t+1(i) = 1

]

= P
[
V a,τ−1(i) = xτ−1, Xa

τ (i) = 1
]

·P
[
Xa

τ+1(i) �= 1, . . . , Xa
t (i) �= 1, Xa

t+1(i) = 1|Xa
τ (i) = 1

]
. (D.10)

It is now plain that

P
[
V a

t+1(i) = 1|V a,t(i) = xt
]

=
P
[
V a,t(i) = xt, V a

t+1(i) = 1
]

P
[
V a,t(i) = xt

]

=
P
[
Xa

τ+1(i) �= 1, . . . , Xa
t (i) �= 1, Xa

t+1(i) = 1|Xa
τ (i) = 1

]
P [Xa

τ+1(i) �= 1, . . . , Xa
t (i) �= 1|Xa

τ (i) = 1]

=
P
[
Xa

τ (i) = 1, Xa
τ+1(i) �= 1, . . . , Xa

t (i) �= 1, Xa
t+1(i) = 1

]
P [Xa

τ (i) = 1, Xa
τ+1(i) �= 1, . . . , Xa

t (i) �= 1]

= P
[
Xa

t+1(i) = 1|Xa
τ (i) = 1, Xa

τ+1(i) �= 1, . . . , Xa
t (i) �= 1

]

and the desired conclusion follows by the homogeneity of the Markov chain{Xa
t (i), t =

0, 1, . . .}.

The caseτ = t is straightforward.

D.2.1 Some preliminary calculations

Since the expressions for the probabilities of interest involve the stack position se-

quences{Xa
t (i), t = 0, 1, . . .}, i = 1, . . . , N , associated with the LRUSM request

streamRa, we shall need some basic facts concerning them in order to show the desired

CIS property. Throughout the discussion of the results in this and the next sections, we

fix the indexi = 1, . . . , N and the pmfa, and lighten up the notation by writingXt to

denote the stack positionXa
t (i) of the documenti at timet. For eacht = 0, 1, . . ., let

At denote the event[Xt �= Dt, . . . , X0 �= D0].
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Recall that the stack distance rvs{Dt, t = 0, 1, . . .} associated with{Ra
t , t =

0, 1, . . .} are i.i.d. rvs distributed according to the generic rvD with pmf a. We set

α(y) = P [D < y] and β(y) = P [D > y] , y = 0, 1, . . . , N.

and define the quantities

Qt(y; ξ) := P [Xt = y,At−1, X0 = ξ] , y, ξ = 1, . . . , N,

for eacht = 1, 2, . . ..

Proposition D.2 For eacht = 1, 2, . . . andξ = 1, . . . , N , it holds that

Qt+1(y; ξ) = α(y)Qt(y; ξ) + β(y − 1)Qt(y − 1; ξ) (D.11)

for all y = 1, . . . , N .

Proof. Fix t = 1, 2, . . . andξ = 1, . . . , N . The casey = 1 requires a separate analysis:

The evolution (D.1) precludesXt+1 = 1 under the conditionXt �= Dt. Therefore, we

must haveP [Xt+1 = 1,At, X0 = ξ] = 0 and the expression (D.11) holds as we observe

thatα(1) = 0 andP [Xt = 0,At−1, X0 = ξ] = 0.

Next we turn to the casey = 2, . . . , N . The evolution (D.1) implies the relation

Xt+1 = Xt if Dt < Xt andXt+1 = Xt +1 if Xt < Dt. Thus, the event[Xt+1 = y,Xt �=
Dt] is the union of the two disjoint events[Xt = y−1, Xt < Dt] and[Xt = y,Dt < Xt].

This leads naturally to

P [Xt+1 = y,At, X0 = ξ] = P [Xt+1 = y,Xt �= Dt,At−1, X0 = ξ]

= P [Xt = y − 1, Xt < Dt,At−1, X0 = ξ]

+ P [Xt = y,Dt < Xt,At−1, X0 = ξ]
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= P [Xt = y − 1, y − 1 < Dt,At−1, X0 = ξ]

+ P [Xt = y,Dt < y,At−1, X0 = ξ]

= P [y − 1 < Dt]P [Xt = y − 1,At−1, X0 = ξ]

+ P [Dt < y]P [Xt = y,At−1, X0 = ξ]

as we make use of the fact that the rvDt is independent of the rvs{Xs, Ds, s =

0, 1, . . . , t− 1, Xt}.

The caset = 0 in (D.11) is somewhat different but by essentially the same argu-

ments, we get that

Q1(y; ξ) = (δ(y, ξ)α(ξ) + δ(y, ξ + 1)β(ξ)) · P [X0 = ξ] (D.12)

for arbitraryy, ξ = 1, . . . , N . This follows from the fact that constraints exist between

the stack positionsX0 andX1 on the eventA0.

D.2.2 Monotonicity under the likelihood ratio ordering

We also make use of the so-calledlikelihood ratio ordering, which is now defined.

Definition D.3 For IN-valued rvsX andY , we say thatX is smaller thanY according

to the likelihood ratio (lr) ordering, writtenX ≤lr Y , if

P [X = y]P [Y = x] ≤ P [X = x]P [Y = y] (D.13)

for all x andy in IN with x < y.

The likelihood ratio ordering is stronger than the usual stochastic ordering [59, Thm.

1.C.2, p. 29], i.e., if theIN-valued rvsX andY satisfyX ≤lr Y , thenX ≤st Y .
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In what follows, we shall find it convenient to use the following notation: IfX is

an IN-valued rv andA is an event, then[X|A] denotes any rv whose distribution is the

conditional distribution ofX givenA. The comparison

[X|A] ≤lr [X|B]

for some other eventB then amounts to

P [X = y|A]P [X = x|B] ≤ P [X = x|A]P [X = y|B] (D.14)

wheneverx < y in IN, or equivalently

P [X = y,A]P [X = x,B] ≤ P [X = x,A]P [X = y,B] (D.15)

providedP [A] > 0 andP [B] > 0. With the likelihood ratio ordering, we can now state

the following

Theorem D.4 For ξ, ζ = 1, . . . , N with ξ ≤ ζ, it holds that

[Xt|At−1, X0 = ξ] ≤lr [Xt|At−1, X0 = ζ], t = 1, 2, . . . . (D.16)

Before giving a proof we observe that the comparison (D.16) holds for somet =

1, 2, . . . if

P [Xt = y,At−1, X0 = ξ]P [Xt = x,At−1, X0 = ζ]

≤ P [Xt = x,At−1, X0 = ξ]P [Xt = y,At−1, X0 = ζ] (D.17)

for x, y = 1, . . . , N with x < y.

Proof. The proof proceeds by induction ont = 1, 2, . . .. Throughout we fix arbitrary

ξ, ζ = 1, . . . , N such thatξ ≤ ζ.
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The basis step:For t = 1 the comparison (D.16) (when interpreted through (D.17))

requires that

Q1(y; ξ)Q1(x; ζ) ≤ Q1(x; ξ)Q1(y; ζ) (D.18)

for all x, y = 1, . . . , N with x < y.

In view of (D.12), the inequality (D.18) is certainly implied by

(δ(y, ξ)α(ξ) + δ(y, ξ + 1)β(ξ)) (δ(x, ζ)α(ζ) + δ(x, ζ + 1)β(ζ))

≤ (δ(x, ξ)α(ξ) + δ(x, ξ + 1)β(ξ)) (δ(y, ζ)α(ζ) + δ(y, ζ + 1)β(ζ)) ,

an inequality we can rewrite as

δ(y, ξ)δ(x, ζ)α(ξ)α(ζ) + δ(y, ξ)δ(x, ζ + 1)α(ξ)β(ζ)

+ δ(y, ξ + 1)δ(x, ζ)β(ξ)α(ζ) + δ(y, ξ + 1)δ(x, ζ + 1)β(ξ)β(ζ)

≤ δ(x, ξ)δ(y, ζ)α(ξ)α(ζ) + δ(x, ξ)δ(y, ζ + 1)α(ξ)β(ζ)

+ δ(x, ξ + 1)δ(y, ζ)β(ξ)α(ζ) + δ(x, ξ + 1)δ(y, ζ + 1)β(ξ)β(ζ). (D.19)

Comparing like terms in (D.19), we see that (D.18) will hold since the four inequalities

δ(y, ξ)δ(x, ζ) ≤ δ(x, ξ)δ(y, ζ),

δ(y, ξ)δ(x, ζ + 1) ≤ δ(x, ξ)δ(y, ζ + 1),

δ(y, ξ + 1)δ(x, ζ) ≤ δ(x, ξ + 1)δ(y, ζ)

and

δ(y, ξ + 1)δ(x, ζ + 1) ≤ δ(x, ξ + 1)δ(y, ζ + 1)

all hold under the constraintsx < y andξ ≤ ζ.

The induction step: Now assuming that (D.16) holds for somet = 1, 2, . . ., namely

[Xt|At−1, X0 = ξ] ≤lr [Xt|At−1, X0 = ζ], (D.20)
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we seek to show that

[Xt+1|At, X0 = ξ] ≤lr [Xt+1|At, X0 = ζ]. (D.21)

As discussed earlier, the comparison (D.20) is equivalent to

Qt(y
′; ξ)Qt(x

′; ζ) ≤ Qt(x
′; ξ)Qt(y

′; ζ) (D.22)

for all x′, y′ = 1, . . . , N with x′ < y′, while the desired comparison (D.21) is equivalent

to

Qt+1(y; ξ)Qt+1(x; ζ) ≤ Qt+1(x; ξ)Qt+1(y; ζ) (D.23)

for all x, y = 1, . . . , N with x < y.

To establish (D.23), we fixx, y = 1, . . . , N with x < y. From Proposition D.2, we

have the expressions

Qt+1(y; ξ)Qt+1(x; ζ) = α(y)α(x)Qt(y; ξ)Qt(x; ζ) (D.24)

+ α(y)β(x− 1)Qt(y; ξ)Qt(x− 1; ζ) (D.25)

+ β(y − 1)α(x)Qt(y − 1; ξ)Qt(x; ζ) (D.26)

+ β(y − 1)β(x− 1)Qt(y − 1; ξ)Qt(x− 1; ζ) (D.27)

and

Qt+1(x; ξ)Qt+1(y; ζ) = α(x)α(y)Qt(x; ξ)Qt(y; ζ) (D.28)

+ α(x)β(y − 1)Qt(x; ξ)Qt(y − 1; ζ) (D.29)

+ β(x− 1)α(y)Qt(x− 1; ξ)Qt(y; ζ) (D.30)

+ β(x− 1)β(y − 1)Qt(x− 1; ξ)Qt(y − 1; ζ). (D.31)

Comparing the last two expressions term by term, namely (D.24) with (D.28), (D.25)

with (D.30), (D.26) with (D.29), and (D.27) with (D.31), we conclude from (D.22) that
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(D.23) holds. This completes the proof of the induction step.

Before we can state the main results of this section, we pause for an easy technical

lemma.

Lemma D.5 Let X andY be{1, . . . , N}-valued rvs withX ≤st Y , and letD be an-

other{1, . . . , N}-valued rv independent ofX andY with pmf a = (a1, . . . , aN), i.e.,

P [D = k] = ak, k = 1, . . . , N . If the pmfa satisfies the condition (9.22), then it holds

that

P [Y = D] ≤ P [X = D] . (D.32)

Proof. Setb
 = a
 − a
+1 for � = 1, . . . , N − 1 andbN = aN , so thatak =
∑N


=k b
 for

eachk = 1, . . . , N . The independence of the rvsX andD leads to

P [X = D] =
N∑

j=1

P [X = j]P [D = j]

=
N∑

j=1

P [X = j] aj

=
N∑

j=1


 N∑


=j

b



P [X = j]

=
N∑


=1

b


∑

j=1

P [X = j]

=
N∑


=1

b
P [X ≤ �] (D.33)

and we similarly find

P [Y = D] =
N∑


=1

b
P [Y ≤ �] . (D.34)

Under the assumptionX ≤st Y , we have from (3.2) thatP [Y ≤ �] ≤ P [X ≤ �] for all

� = 1, . . . , N . It is plain from (D.33) and (D.34) that (D.32) holds once it is noted that
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b
 ≥ 0 for each� = 1, . . . , N , under the monotonicity condition (9.22).

Proposition D.6 Assume the stack distance pmfa to satisfy the condition (9.22). Then,

for ξ, ζ = 1, . . . , N with ξ ≤ ζ, it holds that

Pt(ζ) ≤ Pt(ξ), t = 0, 1, . . . . (D.35)

Proof. First, consider the caset = 0. For anyξ = 1, . . . , N , we find

P0(ξ) = P [X1 = 1|X0 = ξ] = aξ.

Hence, for anyξ, ζ = 1, . . . , N with ξ ≤ ζ, it holds that

P0(ζ) ≤ P0(ξ)

under the condition (9.22).

Fix t = 1, 2, . . .. Recall from (D.1) that

[X1 �= 1, . . . , Xt �= 1] = [X0 �= D0, . . . , Xt−1 �= Dt−1] (D.36)

and that

[Xt+1 = 1] = [Xt = Dt]. (D.37)

Using (D.36) and (D.37), for anyξ = 1, . . . , N , we can rewrite (D.5) as

Pt(ξ) = P [Xt = Dt|X0 = ξ,X0 �= D0, . . . , Xt−1 �= Dt−1]

= P [Xt = Dt|At−1, X0 = ξ] . (D.38)
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Now, fix ξ, ζ = 1, . . . , N with ξ ≤ ζ. Because the lr ordering implies the st ordering,

Theorem D.4 readily yields

[Xt|At−1, X0 = ξ] ≤st [Xt|At−1, X0 = ζ]. (D.39)

Under the monotonicity condition (9.22), combining (D.39) with Lemma D.5 leads to

P [Xt = Dt|At−1, X0 = ζ] ≤ P [Xt = Dt|At−1, X0 = ξ] ,

and the desired conclusion (D.35) is obtained upon noting (D.38).

Proposition D.7 Assume the stack distance pmfa to satisfy the condition (9.22). Then,

it holds that

Pt+1(1) ≤ Pt(1), t = 0, 1, . . . . (D.40)

Proof. The inequalities (D.40) are simple consequences of Proposition D.6. Fixt =

1, 2, . . .. Under the observation that[X0 = 1, X0 �= D0] = [X1 = 2], we find via (D.38)

that

Pt+1(1) = P [Xt+1 = Dt+1|At, X0 = 1]

= P [Xt+1 = Dt+1|X0 = 1, X0 �= D0, . . . , Xt �= Dt]

= P [Xt+1 = Dt+1|X1 = 2, X1 �= D1 . . . , Xt �= Dt]

= P [Xt = Dt|At−1, X0 = 2]

= Pt(2) (D.41)

where the forth equality follows from the homogeneity of the Markov chain{Xt, t =

0, 1, . . .} and by the independence of the rvs{Dt, t = 0, 1, . . .}. Invoking Proposition

D.6 with (D.41), we get the inequality (D.40).
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The caset = 0 uses essentially the same argument. We write

P1(1) = P [X1 = D1|X0 = 1, X0 �= D0]

= P [X0 = D0|X0 = 2]

= P0(2) (D.42)

and the inequalityP1(1) ≤ P0(1) simply follows from Proposition D.6 and (D.42).

D.2.3 Main proof

We now return to proving Theorem 9.7 by showing that the sequences{V a
t (i), t =

0, 1, . . .}, i = 1, . . . , N , are CIS: Fixi = 1, . . . , N . Given t = 0, 1, . . ., we need to

show that (D.4) holds forany pair of vectorsxt = (x0, . . . , xt) andyt = (y0, . . . , yt) in

{0, 1}t+1 satisfyingxt ≤ yt componentwise.

The caset = 0 is rather straightforward as (D.4) then reduces to establishing

P [V a
1 (i) = 1|V a

0 (i) = 0] ≤ P [V a
1 (i) = 1|V a

0 (i) = 1]

or equivalently,

P [Xa
1 (i) = 1|Xa

0 (i) �= 1] ≤ P [Xa
1 (i) = 1|Xa

0 (i) = 1] . (D.43)

Conditioning onXa
0 (i), the condition (D.43) becomes

N∑
ξ=2

P0(ξ)P [Xa
0 (i) = ξ|Xa

0 (i) �= 1] ≤ P0(1)

which indeed holds by Proposition D.6.

From now on, as we assumet = 1, 2, . . ., two basic cases need to be considered:

Case 1: Assumext to be a non-zero element in{0, 1}t+1, in which caseyt is also a

non-zero element in{0, 1}t+1. By Proposition D.1, we get that (D.4) holds provided

Pt−τ(xt)(1) ≤ Pt−τ(yt)(1), (D.44)
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an inequality which is automatically satisfied by virtue of Proposition D.7 given that

τ(xt) ≤ τ(yt) wheneverxt ≤ yt.

Case 2:Assume thatxt is the zero element0t = (0, . . . , 0) in {0, 1}t+1 and note that

P
[
V a

t+1(i) = 1|V a,t(i) = 0t
]

= P
[
Xa

t+1(i) = 1|Xa
0 (i) �= 1, . . . , Xa

t (i) �= 1
]
.

Invoking again Proposition D.1 for any non-zero elementyt in {0, 1}t+1, we see that the

desired inequality (D.4) reduces to

P
[
Xa

t+1(i) = 1|Xa
0 (i) �= 1, . . . , Xa

t (i) �= 1
]
≤ Pt−τ(yt)(1), (D.45)

and by Proposition D.7, it then clearly suffices to establish the inequality

P
[
Xa

t+1(i) = 1|Xa
0 (i) �= 1, . . . , Xa

t (i) �= 1
]
≤ Pt(1). (D.46)

Conditioning onXa
0 (i), we find

P
[
Xa

t+1(i) = 1|Xa
0 (i) �= 1, . . . , Xa

t (i) �= 1
]

=
N∑

ξ=2

Pt(ξ)P [Xa
0 (i) = ξ|Xa

0 (i) �= 1, Xa
1 (i) �= 1, . . . , Xa

t (i) �= 1]

≤ Pt(1)
N∑

ξ=2

P [Xa
0 (i) = ξ|Xa

0 (i) �= 1, Xa
1 (i) �= 1, . . . , Xa

t (i) �= 1]

= Pt(1)

where the inequality follows from Proposition D.6. Thus, the required condition (D.46)

holds. This completes the proof of the CIS property of the sequence{V a
t (i), t =

0, 1, . . .}.

Finally, since the sequence{V a
t (i), t = 0, 1, . . .} is CIS for eachi = 1, . . . , N and

CIS implies PSMD, the desired comparison betweenRa and its independent version

R̂a follows from Proposition 9.2.
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Appendix E

Proofs of Lemmas 10.1, 10.12, 11.1, 11.4 and 11.8

E.1 A proof of Lemma 10.1

First, consider the case when the request streamR = {Rt, t = 0, 1, . . .} is stationary. In

this case, we have for eachτ = 1, 2, . . . and for allt ≥ τ − 1 that

S(t, τ ; R) = |{R(t−τ+1)+ , . . . , Rt}|

= |{Rt−τ+1, . . . , Rt}|

=st |{R0, . . . , Rτ−1}|

= S(τ − 1, τ ; R).

By letting t go to infinity, we obtain (10.2) withS(τ ; R) =st S(τ − 1, τ ; R).

Next, we show that the limit (10.1) exists for eachτ = 1, 2, . . .. From the definition

of the working set size, fort ≥ τ − 1, we can write

S(t, τ ; R) =
N∑

i=1

(1 − 1 [Rt−
 �= i, � = 0, . . . , τ − 1]). (E.1)

Consequently, the limit (10.1) can be rewritten as

Ŝ(τ ; R) = lim
T→∞

1

T

τ−2∑
t=0

S(t, τ ; R)
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+ lim
T→∞

(
T − τ + 1

T

)
1

T − τ + 1

T−1∑
t=τ−1

S(t, τ ; R)

= lim
T→∞

1

T

τ+T−2∑
t=τ−1

S(t, τ ; R)

=
N∑

i=1


1 − lim

T→∞
1

T

τ+T−2∑
t=τ−1

1 [Rt−
 �= i, � = 0, . . . , τ − 1]


 . (E.2)

Because the limits on the right-hand side of (E.2) are guaranteed to exist a.s. by the

stationarity assumption of the request streamR [62, Chap. 5], the limit (10.1) exists a.s.

for eachτ = 1, 2, . . ..

In addition, if the request stream{Rt, t = 0, 1, . . .} is stationary and ergodic, then

[62, Chap. 5] for eachi = 1, . . . , N ,

lim
T→∞

1

T

τ+T−2∑
t=τ−1

1 [Rt−
 �= i, � = 0, . . . , τ − 1] = P [R
 �= i, � = 0, . . . , τ − 1] a.s.,

and it follows from (E.1) and (E.2) that

Ŝ(τ ; R) =
N∑

i=1

(1 − P [R
 �= i, � = 0, . . . , τ − 1])

= E [S(τ − 1, τ ; R)]

= E [S(τ ; R)] , τ = 1, 2, . . . .

We now assume that the request streamR = {Rt, t = 0, 1, . . .} couples with a

stationary sequence ofN -valued rvsR̃ = {R̃t, t = 0, 1, . . .}. By coupling, we mean

that there exists a coupling timeT � such thatRt = R̃t for all t ≥ T �, with the{0, 1, . . .}-

valued rvT � being finite a.s. (see e.g., [45, 64]). Under this assumption, it holds for each

τ = 1, 2, . . . that

S(t, τ ; R) = S(t, τ ; R̃), t ≥ T � + τ − 1, (E.3)

or equivalently, the sequence{S(t, τ ; R), t = 0, 1, . . .} couples with the sequence

{S(t, τ ; R̃), t = 0, 1, . . .} where the coupling time is given byT � + τ − 1. By the
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first part of the proof,S(t, τ ; R̃) =⇒t S(τ ; R̃) for eachτ = 1, 2, . . ., and from (E.3),

we getS(t, τ ; R) =⇒t S(τ ; R) with S(τ ; R) = S(τ ; R̃).

By a similar argument, we find

lim
T→∞

1

T

τ+T−2∑
t=τ−1

1 [Rt−
 �= i, � = 0, . . . , τ − 1]

= lim
T→∞

1

T

T �+τ−2∑
t=τ−1

1 [Rt−
 �= i, � = 0, . . . , τ − 1]

+ lim
T→∞

(
T − T �

T

)
1

T − T �

τ+T−2∑
t=T �+τ−1

1
[
R̃t−
 �= i, � = 0, . . . , τ − 1

]

= lim
T→∞

1

T

τ+T−2∑
t=τ−1

1
[
R̃t−
 �= i, � = 0, . . . , τ − 1

]
.

By virtue of (E.2), the limit (10.1) exists for eachτ = 1, 2, . . ., and coincides with

Ŝ(τ ; R̃). Lastly, if the sequencẽR is stationary and ergodic, the argument above yields

Ŝ(τ ; R) = Ŝ(τ ; R̃) = E
[
S(τ ; R̃)

]
= E [S(τ ; R)]

for eachτ = 1, 2, . . ..

E.2 A proof of Lemma 10.12

Fix τ = 1, 2, . . .. We first consider the case when the request streamR = {Rt, t =

0, 1, . . .} is stationary and ergodic. Fixi = 1, . . . , N . Recalling from (10.20) and

(10.21) that

g(Vt−τ (i), . . . , Vt(i)) = 1 [Rt = i, Rt−
 �= i, � = 1, . . . , τ ] , (E.4)

we can write

lim
T→∞

1

T

T+τ−1∑
t=τ

g(Vt−τ (i), . . . , Vt(i))
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= lim
T→∞

1

T

T+τ−1∑
t=τ

1 [Rt = i, Rt−
 �= i, � = 1, . . . , τ ]

= P [Rτ = i, R
 �= i, � = 0, . . . , τ − 1] a.s. (E.5)

where the last equality is due to stationarity and ergodicity of the request streamR [62,

Chap. 5]. Consequently, the limit (10.23) exists and is given by

lim
T→∞

1

T

T+τ−1∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i)) =
N∑

i=1

P [Rτ = i, R
 �= i, � = 0, . . . , τ − 1] ,

whence the conclusion (10.25).

Next, we assume that the request streamR = {Rt, t = 0, 1, . . .} couples with a sta-

tionary and ergodic sequence ofN -valued rvsR̃ = {R̃t, t = 0, 1, . . .}. Let {0, 1, . . .}-

valued rvT � be the coupling time whereT � is finite a.s. andRt = R̃t for all t ≥ T �.

Fix i = 1, . . . , N and let{Ṽt(i), t = 0, 1, . . .} be the indicator sequence associated with

R̃ through (9.1). Under this assumption, it is plain from (E.4) that

g(Vt−τ (i), . . . , Vt(i)) = g(Ṽt−τ (i), . . . , Ṽt(i)), t ≥ T � + τ, (E.6)

hence,

lim
T→∞

1

T

T+τ−1∑
t=τ

g(Vt−τ (i), . . . , Vt(i))

= lim
T→∞

1

T

T �+τ−1∑
t=τ

g(Vt−τ (i), . . . , Vt(i))

+ lim
T→∞

(
T − T �

T

)
1

T − T �

T+τ−1∑
t=T �+τ

g(Ṽt−τ (i), . . . , Ṽt(i))

= lim
T→∞

1

T

T+τ−1∑
t=τ

g(Ṽt−τ (i), . . . , Ṽt(i))

= P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
a.s. (E.7)

where the last equality follows from (E.5).

As a result, the limit (10.23) exists and is given by

lim
T→∞

1

T

T+τ−1∑
t=τ

N∑
i=1

g(Vt−τ (i), . . . , Vt(i))
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=
N∑

i=1

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
. (E.8)

Upon noting that

lim
t→∞

N∑
i=1

E [g(Vt−τ (i), . . . , Vt(i))] = lim
t→∞

N∑
i=1

P [Rt = i, Rt−
 �= i, � = 1, . . . , τ ]

=
N∑

i=1

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
,

the desired result (10.24) is immediate from (E.8).

E.3 A proof of Lemma 11.1

As in the proof of Lemma 10.1, we first assume that the request streamR = {Rt, t =

0, 1, . . .} is stationary. From the definition of the inter-reference time, we have for each

τ = 1, 2, . . . andt = τ, τ + 1, . . ., that

P [T (t; R) > τ ] = P [Rt−
 �= Rt, � = 1, . . . , τ ]

=
N∑

i=1

P [Rt = i, Rt−
 �= i, � = 1, . . . , τ ] (E.9)

=
N∑

i=1

P [Rτ = i, R
 �= i, � = 0, . . . , τ − 1]

= P [T (τ ; R) > τ ] , (E.10)

where the third equality follows from the stationarity of the request streamR. By let-

ting t go to infinity in (E.10), we obtainT (t; R) =⇒t T (R) with P [T (R) > τ ] =

P [T (τ ; R) > τ ] for eachτ = 1, 2, . . ..

Next, assume that the request streamR is asymptotically stationary, i.e.,{Rt+
, t =

0, 1, . . .} =⇒
 {R̃t, t = 0, 1, . . .} whereR̃ = {R̃t, t = 0, 1, . . .} is a stationary sequence

of N -valued rvs. Under this assumption, we note for eachi = 1, . . . , N that

lim
t→∞P [Rt = i, Rt−
 �= i, � = 1, . . . , τ ] = P

[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
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and invoking (E.9), thus yields

lim
t→∞P [T (t; R) > τ ] = P

[
T (R̃) > τ

]
, τ = 1, 2, . . . .

As a result, the weak convergenceT (t; R) =⇒t T (R) holds withT (R) =st T (R̃), i.e.,

T (R) is characterized by settingP [T (R) > τ ] = P
[
T (R̃) > τ

]
for eachτ = 1, 2, . . ..

E.4 A proof of Lemma 11.4

Under the assumptions of the lemma, we note from Appendix E.3 that

P [T (R) > τ ] = P
[
T (R̃) > τ

]

=
N∑

i=1

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
.

Consequently, for eachn = 0, 1, . . ., we find

∞∑
τ=n

P [T (R) > τ ] =
N∑

i=1

∞∑
τ=n

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
. (E.11)

First, we consider the expression (E.11) forn = 0 in which case E [T (R)] =

∑∞
τ=0 P [T (R) > τ ]. For eachk = 0, 1, . . ., we observe that

k∑
τ=0

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]

= 1 − P
[
R̃0 �= i

]
+

k∑
τ=1

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]

= 1 − P
[
R̃0 �= i, R̃1 �= i

]
+

k∑
τ=2

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
...

= 1 − P
[
R̃
 �= i, � = 0, . . . , k

]
. (E.12)
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By lettingk go to infinity, we obtain

∞∑
τ=0

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
= 1 − lim

k→∞
P
[
R̃
 �= i, � = 0, . . . , k

]

= 1 (E.13)

under the assumptions (4.2) and (4.3) that the popularity pmfp of R (which coincides

with that of R̃) exists and is admissible. It is now immediate from (E.11) and (E.13)

that

E [T (R)] =
N∑

i=1

∞∑
τ=0

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

]
= N.

From (E.12) and (E.13), it is plain that the expression (E.11) for the casen =

1, 2, . . ., can be rewritten as

∞∑
τ=n

P [T (R) > τ ] =
N∑

i=1

(
1 −

n−1∑
τ=0

P
[
R̃τ = i, R̃
 �= i, � = 0, . . . , τ − 1

])

=
N∑

i=1

P
[
R̃
 �= i, � = 0, . . . , n− 1

]
,

whence the desired result.

E.5 A proof of Lemma 11.8

To establish Lemma 11.8, we shall make use of the following

Lemma E.1 For a request streamR = {Rt, t = 0, 1, . . .} with admissible popularity

pmf p, it holds for eachi = 1, . . . , N and for eachk = 1, . . . , N that

lim
t→∞P [Rt = i, R
 �= i, � = 0, . . . , t− 1, |{R0, . . . , Rt}| = k] = 0. (E.14)
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Proof. For eachi = 1, . . . , N andk = 1, . . . , N , it holds that

P [Rt = i, R
 �= i, � = 0, . . . , t− 1, |{R0, . . . , Rt}| = k]

≤ P [Rt = i, R
 �= i, � = 0, . . . , t− 1] , t = 1, 2, . . . , (E.15)

and that

lim
t→∞P [Rt = i, R
 �= i, � = 0, . . . , t− 1] = 0 (E.16)

under the assumptions (4.2) and (4.3) that the popularity pmfp of R exists and is ad-

missible. Combining (E.15) and (E.16) simply yields (E.14).

Proof of Lemma 11.8. First, we assume that the request streamR = {Rt, t =

0, 1, . . .} is stationary. Fixk = 1, . . . , N . For eacht = 0, 1, . . ., the definition of the

stack distance gives

P [D(t; R) = k]

= P
[
|{Rt−T (t;R)+1, . . . , Rt}| = k

]

=
t+1∑
τ=1

P [T (t; R) = τ, |{Rt−τ+1, . . . , Rt}| = k]

=
t∑

τ=1

N∑
i=1

P [Rt = Rt−τ = i, Rt−
 �= i, � = 1, . . . , τ − 1, |{Rt−τ+1, . . . , Rt}| = k]

+
N∑

i=1

P [Rt = i, R
 �= i, � = 0, . . . , t− 1, |{R0, . . . , Rt}| = k] (E.17)

=
N∑

i=1

t∑
τ=1

P [Rτ = R0 = i, R
 �= i, � = 1, . . . , τ − 1, |{R1, . . . , Rτ}| = k]

+
N∑

i=1

P [Rt = i, R
 �= i, � = 0, . . . , t− 1, |{R0, . . . , Rt}| = k] (E.18)

where the last equality follows from the stationarity of the request streamR.
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We now verify the existence of the limit of (E.18) ast goes to infinity. For each

i = 1, . . . , N andt = 1, 2, . . ., we have

ψk,t(i) :=
t∑

τ=1

P [Rτ = R0 = i, R
 �= i, � = 1, . . . , τ − 1, |{R1, . . . , Rτ}| = k]

≤
t∑

τ=1

P [Rτ = R0 = i, R
 �= i, � = 1, . . . , τ − 1]

≤
∞∑

τ=1

P [Rτ = R0 = i, R
 �= i, � = 1, . . . , τ − 1]

= P [R0 = i] .

Consequently, for eachi = 1, . . . , N , the monotone sequence{ψk,t(i), t = 1, 2, . . .} is

bounded above byP [R0 = i], thus its limit exists, is finite and is given by

ψk(i) := lim
t→∞ψk,t(i)

=
∞∑

τ=1

P [Rτ = R0 = i, R
 �= i, � = 1, . . . , τ − 1, |{R1, . . . , Rτ}| = k] .

Combining this fact with (E.18) and Lemma E.1 yields

lim
t→∞P [D(t; R) = k] =

N∑
i=1

ψk(i), k = 1, . . . , N,

whenceD(t; R) =⇒t D(R) with D(R) characterized by settingP [D(R) = k] =

∑N
i=1 ψk(i) for eachk = 1, . . . , N .

Now, assume that the request streamR is asymptotically stationary, i.e.,{Rt+
, t =

0, 1, . . .} =⇒
 {R̃t, t = 0, 1, . . .} whereR̃ = {R̃t, t = 0, 1, . . .} is a stationary sequence

of N -valued rvs. Fixk = 1, . . . , N . Under this assumption, we note that

lim
t→∞P [Rt = Rt−τ = i, Rt−
 �= i, � = 1, . . . , τ − 1, |{Rt−τ+1, . . . , Rt}| = k]

= P
[
R̃τ = R̃0 = i, R̃
 �= i, � = 1, . . . , τ − 1, |{R̃1, . . . , R̃τ}| = k

]
. (E.19)

for eachi = 1, . . . , N andτ = 1, 2, . . .

178



We shall establish the existence of the limit ofP [D(t; R) = k] ast goes to infinity

by using the expression (E.17). As in the first part of the proof, for eachi = 1, . . . , N ,

it is plain that

ψ̃k,t(i)

:=
t∑

τ=1

P [Rt = Rt−τ = i, Rt−
 �= i, � = 1, . . . , τ − 1, |{Rt−τ+1, . . . , Rt}| = k]

≤
t∑

τ=1

P [Rt = Rt−τ = i, Rt−
 �= i, � = 1, . . . , τ − 1]

≤ P [Rt = i] , t = 1, 2, . . . ,

and the monotone sequence{ψ̃k,t(i), t = 1, 2, . . .} is bounded above by 1. Conse-

quently, for eachi = 1, . . . , N , limt→∞ ψ̃k,t(i) exists, is finite and is given by

lim
t→∞ ψ̃k,t(i)

= lim
t→∞

t∑
τ=1

P [Rt = Rt−τ = i, Rt−
 �= i, � = 1, . . . , τ − 1, |{Rt−τ+1, . . . , Rt}| = k]

=
∞∑

τ=1

P
[
R̃τ = R̃0 = i, R̃
 �= i, � = 1, . . . , τ − 1, |{R̃1, . . . , R̃τ}| = k

]
(E.20)

as we make use of (E.19).

By virtue of Lemma E.1 and (E.20), it now follows from (E.17) that

lim
t→∞P [D(t; R) = k]

=
N∑

i=1

∞∑
τ=1

P
[
R̃τ = R̃0 = i, R̃
 �= i, � = 1, . . . , τ − 1, |{R̃1, . . . , R̃τ}| = k

]

= P
[
D(R̃) = k

]
, k = 1, . . . , N,

andD(t; R) =⇒ D(R) with D(R) =st D(R̃), i.e.,P [D(R) = k] = P
[
D(R̃) = k

]
for eachk = 1, . . . , N .
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