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1 IntroductionWhen we regard the plane as a set of points, we can de�ne various geometric properties ofsubsets of the plane|connectedness, convexity, area, diameter, etc.; for a review of geometricproperties that are of interest in image analysis and computer vision, see [1]. Most of theseproperties can be generalized to fuzzy subsets of the plane; for reviews of the literature onfuzzy geometry see [2, 3].The plane can also be regarded as a set of lines; this \dual" viewpoint plays an importantrole in projective geometry [4]. This note considers methods of de�ning sets (or fuzzy sets)of lines in the plane, and of de�ning (analogs of) \geometric properties" for such sets.A set of lines in the plane can be de�ned by specifying a set of points in a line parameterspace such as Hough space [5]. Section 2 discusses how to de�ne the line parameter space sothat the correspondence between points in the parameter space and lines in the plane is one-to-one and continuous. (A parameterization of this type was �rst introduced in [6].) It alsoshows that because of the nature of this correspondence, various basic geometric propertiesare not as \well behaved" for sets of lines as they are for sets of points, (and similarly forfuzzy sets of lines).In the axiomatic foundations of geometry [7], \incidence axioms" are used to establishrelationships between sets of points and sets of lines. Section 3 considers sets of lines thatsatisfy incidence relations with given sets of points, and de�nes their geometric propertiesin terms of properties of these sets of points. It also discusses sets of points that satisfyincidence relations with given sets of lines, and considers conditions under which \duality"holds: If S is a set of points, L(S) is its set of incident lines, and S = S(L(S)) is theset of incident points of L(S), under what circumstances is S = S (or vice versa)? Fuzzygeneralizations of incidence relations are also brie
y discussed.2 Sets of lines as subsets of Hough space2.1 Line parameter spaceThe set of lines in the plane is a two-parameter family. By choosing the parameters properly,we can de�ne a correspondence between lines in the plane and points in a two-dimensional1



parameter space. In the computer vision literature, such a parameter space is called a\Hough space" [4]. Sets of lines thus correspond to subsets of Hough space.It is desirable to choose the parameters in such a way that the correspondence betweenlines and pairs of parameters is one-to-one, i.e., every line has a well-de�ned pair of parametervalues, and distinct lines have di�erent pairs of values. This requirement strongly constrainsthe choice of the parameters. For example, a line is determined by its slope (i.e., by the anglethat it makes with the x-axis) and by its x- (or y-) intercept (i.e., the distance from the originto the point where it intersects the x- (or y-) axis); but if the slope is 0 (or �=2), the pointof intersection either does not exist (if the line is parallel to the axis) or is ambiguous (if theline coincides with the axis), so that the parameter values are not well-de�ned for every line.A parameterization which avoids this problem (and which is used in the standard \Houghtransform" as introduced by Duda and Hart) is based on the so-called \normal form" of theequation of a line; here the parameters are (�; p), where � is the slope of the normal to theline, and p is the perpendicular distance from the origin to the line. Every line now hasuniquely de�ned (�; p) values; but the correspondence between lines and (�; p) pairs is notone-to-one, because two parallel lines at the same distance from the origin, but on oppositesides of it, have the same (�; p) values. If we de�ne � modulo 2� rather than modulo � (sothat (�; p) are the polar coordinates of the foot of the perpendicular), then the two parallellines have �'s that di�er by �; but for a line through the origin (p = 0), �'s that di�er by �are indistinguishable, so that the correspondence is still not one-to-one.Another way of making the correspondence one-to-one is to allow p to have both positiveand negative signs; for example, if the perpendicular lies in the upper half-plane or on thepositive x-axis, we call p positive, and if it lies on the lower half-plane or on the negativex-axis, we call it negative. [Since 0 � � < � and �1 < p < 1, we can regard (�; p) spaceas an in�nite strip of with �. Since the range of values of � is cyclically closed (modulo �),we can regard the strip as rolled up into the surface of an in�nitely long cylinder.] However,if we do this, the mapping from lines in the plane to points in (�; p) space is not continuous.For example, consider the set of lines that are tangent to a circle of radius r centered at theorigin. All of these lines have jpj = r, but by our sign convention, the sign of p is positiveif the point of tangency is on the upper half of the circle, and negative if it is on the lower2



half. Thus the set of tangents maps into the disjoint pair of loci p = �r on the cylinder; themapping has discontinuities where the circle crosses the x-axis.We can make the mapping continuous by giving the strip a half-twist before joining itsopposite edges (so that it becomes an in�nitely wide M�obius strip rather than an in�nitelylong cylinder). On this M�obius strip, the loci p = �r are connected to each other at theirendpoints, so that the set of tangents to the circle maps into a connected closed curve on thestrip. In the rest of this section we shall assume that our Hough space is the M�obius-strip(�; p) space de�ned in this way. (For further discussion of the M�obius Hough space, see [6].)[A one-to-one continuous mapping can also be constructed by de�ning � modulo 2� forp > 0 and modulo � for p = 0, as suggested earlier in this section. The Hough space nowlooks like a half-in�nite cylinder in which we identify diametrically opposite points on thebase of the cylinder|i.e., we identify � with �+� when p = 0. In this Hough space, a familyof parallel lines, say with slope �, maps into the two half-lines � = � and � = � + � (twoelements of the cylinder) in Hough space; but this locus is not discontinuous, since we haveidenti�ed the points where the two half-lines meet the base of the cylinder.]2.2 \Connected" sets of linesWe call a set of lines \connected" if the corresponding set of points in Hough space isconnected. Evidently, by this de�nition any (single) line is connected, but a �nite set of twoor more lines cannot be connected.Proposition 2.2.1 A pencil of lines is connected.Proof: The line through (x0; y0) with slope � has Hough parameters (�; p) where � = �� �2and p = x0 sin ��y0 cos � = x0 cos �+y0 sin � (see Figure 1). Thus the pencil of lines through(x0; y0) maps into the sinusoidal curve p = x0 cos � + y0 sin � in (�; p) space. As Figure 2shows, this is a closed curve; thus it is evidently connected. 2Note that any sector of a pencil of lines is also connected, since it maps into an arc of thesinusoid. 3
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Figure 2:Proposition 2.2.2 Let � be a continuously di�erentiable, recti�able arc (\arc" for short);then the set of tangents to � is connected.Proof: Let the arc have parametric equations x = x(t); y = y(t); then the tangent to thearc at (x; y) has slope � = tan�1 _y= _x, where the dots denote derivatives with respect to t.As in the proof of Proposition 2.2.1, the Hough parameters of this tangent are � = � � �2and p = x cos � + y sin � = x sin� � y cos� = x( _y= _x)�yp1+( _y= _x)2 = x _y�y _xp _x2+ _y2 . Since x; y; _x and _y arecontinuous functions of t, so are � and p; thus the set of tangents to � maps into an arc inHough space. 24



Note that if � is a closed curve, the set of tangents to � maps into a closed curve in Houghspace. An analogous argument can be used to prove that if � is an arc in Hough space, sothat � de�nes a family of lines in the plane, then the envelope of these lines is connected;i.e., these lines are the tangents to a connected arc in the plane.2.3 \Convex" sets of linesWe call a set of lines \convex" if the corresponding set of points in Hough space is convex.Evidently, by this de�nition any line is convex, but a �nite set of two or more lines cannotbe convex.Proposition 2.3.1 The pencil of lines through the origin is convex.Proof: This pencil maps into the locus p = 0, which is evidently convex. 2Proposition 2.3.2 The set of all lines parallel to a given line is convex.Proof: This set maps into the locus � = constant, which is evidently convex. 2Convexity is de�ned in terms of collinearity (a set S is convex i� for any two points P;Qin S, any point on the line segment PQ is also in S); but in Hough space, collinearity is notan especially basic relation|for example, the locus p = a� + b in Hough space representsthe set of tangents to a spiral centered at the origin. On the other hand, the locus p = crepresents the set of tangents to a circle centered at the origin, and the locus � = c representsa family of parallel lines; thus \orthoconvexity" (� the special case of convexity in which theline segment is parallel to the p- or �-axis) is perhaps the most interesting type of convexity.Because the � coordinate in Hough space is cyclic, �-convexity (= convexity in the di-rection parallel to the �-axis) is a very strong property; if S is �-convex, and P;Q 2 S havethe same �-coordinate (say �0), the entire line � = �0 must be in S (on a cyclically closeddimension we cannot speak about the line \segment" PQ). This provesProposition 2.3.3 If a �-convex set of lines contains two or more lines at the same distancep from the origin, it contains every line at distance p|i.e., it contains all the tangents tothe circle of radius p centered at the origin. 25



If � is an arc (as in Proposition 2.2.2), since p(t) is continuous, the p values of the tangentsto � are a subinterval of the p-axis. If p(t) is nonmonotonic, it must take on some nonzerointerval I of values twice; by Proposition 2.3.3, this implies that if the set of tangents to �is �-convex, then every tangent to every circle whose radius lies in I is also a tangent to �,which is evidently impossible (since � would have to take on every slope in�nitely often).Note also that for the pencil of lines through a point at distance d from the origin, p takeson the values in a neighborhood of d twice each; hence the pencil cannot be �-convex unlessd = 0. These observations implyCorollary 2.3.4 The set of tangents to a (non-closed) arc is �-convex i� no two of thetangents are at the same distance from the origin. 2Corollary 2.3.5 The set of tangents to a closed curve is �-convex i� the curve is a circlecentered at the origin. 2Corollary 2.3.6 A pencil of lines is �-convex i� it is the pencil of lines through the origin. 2Note that the Corollary 2.3.6 and Proposition 2.3.1, �-convexity implies convexity forpencils of lines; and by Corollary 2.3.5, �-convexity implies orthoconvexity for the set oftangents to a closed curve. In Corollary 2.3.4, if the set of tangents is also p-convex, therecannot be two parallel tangents that have di�erent distances from the origin, since therewould then have to be in�nitely many parallel tangents; hence the set of tangents to an arcis orthoconvex i� no two of the tangents have the same distance from the origin, and no twoof the tangents are parallel.2.4 \Metric" properties of sets of linesWe de�ne the \measure" of a set of lines as the measure of the corresponding set of pointsin Hough space. Evidently, the sets of lines in Propositions 2.2.1{2, 2.3.1{2 and Corollar-ies 2.3.4{6 all have measure zero. On the other hand, by the remarks following Proposi-tion 2.3.3, the convex hull of a pencil of lines through a point di�erent from the origin, orthe convex hull of the set of tangents to a closed curve that is not a circle centered at theorigin, has �nite, nonzero measure. 6



We de�ne the �-extent of a set of lines as the size of the smallest angular interval in whichall its �-values lie. Evidently, a pencil of lines, and the set of tangents to a closed curve,have �-extent �. Similarly, we de�ne the p-extent of a set of lines as the smallest intervalthat contains all is (absolute) p-values; evidently, the p-extent of the pencil of lines througha point at distance d from the origin is d.2.5 Fuzzy sets of linesA fuzzy subset of Hough space de�nes a fuzzy set of lines. This allows us to de�ne fuzzyconnectedness, fuzzy convexity, etc. for fuzzy sets of lines; we recall [1] that a fuzzy set isfuzzy connected (convex) i� its level sets are all connected (convex), so that the results inSections 2.2{3 can be used to characterize fuzzy connectedness (convexity) for fuzzy sets oflines. Similarly, it allows us to de�ne \metric" properties of fuzzy sets of lines; for example,the area of a fuzzy set is the integral of its membership function.3 Sets of lines that meet sets of points3.1 Sets of lines de�ned by incidenceHilbert's incidence axioms [7] for sets of points and lines in the plane require that for anytwo points in the set of points, the line joining them is in the set of lines. Thus suggeststhat, for any given set of points S, we can de�ne its set of incident lines L(S) as the set oflines each of which contains at least two points of S. Evidently, L(S) = ; i� S = ; or is asingleton; from now on we will assume that S contains at least two points.Proposition 3.1.1 If T surrounds S and is disjoint from S, then L(S) � L(T ).Proof: Any ray emanating from a point of S must meet T ; hence any line through a pointof S must meet T twice. 2Corollary 3.1.2 If T surrounds S, then L(S [ T ) = L(T ).We call a set L of line \connected" if L = L(S) for some connected set of points S.7



Proposition 3.1.3 A (singleton) line l is connected.Proof: Any segment s of l is a connected set of points, and if s consists of more than asingle point, l is the only line that contains (any) two points of s, i.e., L(s) = flg. 2Proposition 3.1.4 A �nite set L of (two or more) lines is not connected.Proof: Suppose L = L(S) where S is connected. If S is a straight line (segment), L isa singleton; hence S must contain a non-straight connected arc �. This implies that thereexists a point P on � such that L(S) contains a nonzero sector of lines emanating from P ;thus L(S) is in�nite. 2Proposition 3.1.5 A nonzero sector of a pencil of lines is not connected.Proof: In the proof of Proposition 3.1.4, L(S) also contains a line that does not pass throughP ; thus the lines of L(S) cannot all be concurrent, i.e., L(S) cannot be a sector of a pencil. 2If S has an interior point P (so that a neighborhood of P is contained in S), every linethrough P meets S in an (open) interval, so L(S) contains the pencil of lines through P .Corollary: If S is an open set, so that every point of S is an interior point, every line thatmeets S is in L(S), and L(S) is a union of pencils.Let S be bounded and \regular", i.e., equal to the closure of its interior. (Note that anarc is not regular, because its interior is empty.) A \line of support" l of S is a line thatmeets S but has no points of S on one side of it (so that it does not meet the interior of S).It is not hard to see that if L(S) = L(T ), they must have the same set of lines of support.Moreover, the lines of support de�ne the halfplanes whose intersection is the convex hull (ofS or T ). This provesProposition 3.1.6 Let S and T be bounded and regular; then L(S) = L(T ) implies Ŝ = T̂(where^denotes the convex hull). 2Corollary 3.1.7 Let S and T be bounded, regular, and convex; then L(S) = L(T ) impliesS = T . 28



Regularity is essential to these results; in Proposition 3.1.3 we saw that any two collinearline segments S; T have L(S) = L(T ), but they obviously do not have the same convex hull.(As a more subtle example, an open disk and its closure (or its boundary) have the sameL(�), but have di�erent convex hulls.) The converse of these results is false; for example theS consisting of two touching closed disks is regular, but L(Ŝ) 6= L(S) because the commontangent of the two disks is in L(Ŝ) but not in L(S).We call a set L of lines \convex" if L = L(S) for some convex set of points S. ByCorollary 3.1.7, in the bounded, regular case, L(S) uniquely determines S. Thus it is mean-ingful to de�ne metric properties (area, extent; : : :) of a convex set of lines in terms of thecorresponding properties of the (uniquely determined) set of points. For connected sets oflines, such de�nitions would be ambiguous, since many di�erent S's can yield the same L(S).However, in the bounded, regular case, properties such as extent are uniquely de�ned sincethey depend only on the convex hull of S, which is uniquely determined by L(S). Note thatfor any S, if l is in L(S), it must intersect Ŝ in an interval, since it intersects S in (at least)two points, and the line segment joining these points must be in Ŝ.3.2 Other de�nitions of incidenceIf we rede�ne L(S) as the set of lines that meet S (not necessarily twice), evidently L(S) isthe union of the pencils of lines de�ned by the points of S. This de�nition is somewhat lesssatisfactory than the one in Section 3.1; for example, when we use this de�nition a singletonline is not a \connected" set of lines. However, we will �nd this de�nition to be useful whenwe consider the \duality" between sets of points and sets of lines in Section 3.4.3.3 Fuzzy incidenceLet � be a fuzzy set of points, i.e., a function from the set of points of the plane into theinterval [0,1]. In terms of �, we can de�ne fuzzy sets of lines in various ways. For example,we can de�ne �(l) = supP2l�(P ); note that this is a fuzzi�cation of the de�nition of incidencein Section 3.2 (if � is crisp, i.e., into f0,1g, then this de�nition reduces to �(l) = 1 i�9P 2 l : �(P ) = 1). 9



It is more complicated to fuzzify the de�nition that we used in Section 3.1. If the valuesupP2l�(P ) is not taken on by any P , evidently there are in�nitely many P 's whose � valuesare arbitrarily close to the sup, and we can still use the sup de�nition; and similarly if thesup is taken on more than once. On the other hand, if the sup is taken on exactly once, sayby the point P0, we must de�ne � to be the \second highest" � value on l, i.e., supQ2lQ6=P0�(Q).Given a de�nition of �, we can fuzzify the de�nitions in Section 3.1; e.g., we can de�ne afuzzy set of lines � as being \connected" (or \convex", etc.) if it is de�ned (using one of thesup de�nitions) by a connected fuzzy set of points. Since a set of points is fuzzy connected(or convex) i� its level sets fP j�(P ) � t for some 0 � t � 1g are connected (or convex), itis straightforward to generalize the results in Section 3.1 to the fuzzy case.3.4 DualityThe incidence axioms [7] also require that if two lines are in the set of lines, their point ofintersection (if it exists) is in the set of points. Thus given a set of lines L, we can de�ne itsset of incident points S(L) as the set of intersection points of the lines in L, or equivalently,as the set of points each of which is contained in (lies on) at least two lines of L.If we start with a set of points S and de�ne its set of incident lines L(S) as in Section 3.1or 3.2, we can then de�ne the set of incident points S � S(L(S)). This S may or may not bethe same as the original S. For example, if we use the de�nition of L(S) in Section 3.1, andS is a singleton, L(S) is empty, and so is S; if S consists of a set of collinear points, L(S)is the (singleton) line joining them, and S is empty; but if S consists of three noncollinearpoints, we evidently have S = S. In general, if S consists of n points, no three of whichare collinear, L(S) consists of n(n � 1)=2 lines, n� 1 of which meet at each point of S, butfor n > 3 these lines also have pairwise intersections that do not lie in S, so that S strictlycontains S. Note that if S contains a neighborhood of any of its points (i.e., S contains anopen disk D), then every line that meets D is in L(S), and since every point in the planeis on a sector of such lines, S contains every point in the plane. If we use the de�nition ofL(S) in Section 3.2, and S = fPg is a singleton, L(S) is a pencil of lines de�ned by P , andS = fPg = S; while if S contains two points, P and Q, L(S) contains the pencils of lines10



de�ned by P and Q, and S contains every point in the plane. Thus for either de�nition ofL(S), the above de�nition of S(L) is \too strong", i.e., S is the entire plane unless S has anempty interior (in the �rst case) or is a singleton (in the second case); and S almost alwaysproperly contains S (in the �rst case) if S is �nite.An alternative de�nition for S(L) is the set of points every line through which is in L.Here, if we use the de�nition of Section 3.1 for L(S), then S is empty when S is �nite; Scontains the interior of S (so that S contains S when S is open); and if S surrounds T , Scontains T � S. On the other hand, if we use the de�nition of Section 3.2 for L(S), thenS = S when S is �nite; S always contains S; and if S surrounds T , S also contains T .It is of interest to de�ne conditions on S under which \duality" holds, i.e., S = S,(or analogously, to de�ne conditions on L under which L � L(S(L)) = L). For the �rstde�nition, duality does not hold in many simple cases. [As we have just seen, S 6= S when Sis �nite; and when S is a closed disk, S consists of the interior of S, since if P is a border pointof S, the tangent to S at P contains only one point of S, so that not every line through Pis in L(S).] The situation is somewhat more satisfactory when we use the second de�nition.Proposition 3.4.1 S is contained in Ŝ (the convex hull of S).Proof: If P 62 Ŝ, it lies in some halfplane that does not contain S;thus the line throughP parallel to this halfplane does not meet S. It follows that not every line through P is inL(S), so that P 62 S. 2Corollary 3.4.2 If S is convex, S is contained in S (and hence S = S). 2Proposition 3.4.3 If S = S, every connected component of S is convex.Proof: Let C be a connected component of S. If C is not convex, there exists a point P inits convex hull that does not lie in S (if every point in the hull were in S, these points wouldbe connected to C and hence in C, contradiction). Since P is in Ĉ, every line l through Pmust have points of C on it or on both sides of it; but in the latter case, since C is connected,there is a path in C joining these points, and this path must cross C. Hence any line throughP meets C � S, so that P 2 C � S = S, contradiction. 211



Corollary 3.4.4 If S is connected and S is contained in S, S is convex. 2Thus duality holds if S is convex, and conversely if S is connected. If S is not connected,duality need not hold.The de�nitions of S(L) suggested in this section have straightforward fuzzy generaliza-tions. Given a fuzzy set � of lines, we fuzzify the �rst de�nition by de�ning the membership� of a point P as the sup of the membership of the lines that contain P , except that if thesup is taken on by a unique line l, we de�ne �(P ) as supl0 6=lP2l0�(l0). To fuzzify the second de�-nition, we de�ne �(P ) as infP2l�(l). The duality results presented above have straightforwardgeneralizations where we use these fuzzy de�nitions; note that in the fuzzy case, dualitymeans that if we de�ne � in terms of � as in Section 3.3, and then de�ne � in terms of � asabove, then � = �.4 Concluding remarks\Geometric properties" can be de�ned for a set of lines L in the plane by associating a setof points S with L and then computing geometric properties of S. This paper has exploredtwo types of methods of associating a set of points with a set of lines. In the �rst approach,S is the set of Hough-space parameters of the lines in L (so that S is a set of points inHough space); in the second approach, S is the set of points in the plane that are \incident"with the lines in L. Both approaches can also be used for fuzzy sets of lines, by associatingwith them fuzzy sets of points. Using both approaches, we have (partially) characterizedsets of lines whose corresponding point sets have properties such as (fuzzy) connectednessand convexity.References[1] A. Rosenfeld and A.C. Kak, Digital Picture Processing (second edition), Academic Press,New York, 1982, Chapter 11.[2] S. Iyanaga and Y. Kamada, eds., Encyclopedic Dictionary of Mathematics (second edi-tion), MIT Press, Cambridge, MA, 1980, Section 340B.12
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