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The past decade has seen phenomenal improvement in the performance of

Automatic Speech Recognition (ASR) systems. In spite of this vast improvement

in performance, the state-of-the-art still lags significantly behind human speech

recognition. Even though certain systems claim super-human performance, this

performance often is sub-par across domains and across datasets. This gap is

predominantly due to the lack of robustness against speech variability. Even

clean speech is extremely variable due to a large number of factors such as voice

characteristics, speaking style, speaking rate, accents, casualness, emotions and

more. The goal of this thesis is to investigate the variability of speech from the

perspective of speech production, put forth robust articulatory features to address

this variability, and to incorporate these features in state-of-the-art ASR systems in

the best way possible. ASR systems model speech as a sequence of distinctive phone

units like beads on a string. Although phonemes are distinctive units in the cognitive

domain, their physical realizations are extremely varied due to coarticulation and



lenition which are commonly observed in conversational speech. The traditional

approaches deal with this issue by performing di-, tri- or quin-phone based acoustic

modeling but are insufficient to model longer contextual dependencies. Articulatory

phonology analyzes speech as a constellation of coordinated articulatory gestures

performed by the articulators in the vocal tract (lips, tongue tip, tongue body,

jaw, glottis and velum). In this framework, acoustic variability is explained by

the temporal overlap of gestures and their reduction in space. In order to analyze

speech in terms of articulatory gestures, the gestures need to be estimated from

the speech signal. The first part of the thesis focuses on a speaker independent

acoustic-to-articulatory inversion system that was developed to estimate vocal

tract constriction variables (TVs) from speech. The mapping from acoustics to

TVs was learned from the multi-speaker X-ray Microbeam (XRMB) articulatory

dataset. Constriction regions from TV trajectories were defined as articulatory

gestures using articulatory kinematics. The speech inversion system combined

with the TV kinematics based gesture annotation provided a system to estimate

articulatory gestures from speech. The second part of this thesis deals with

the analysis of the articulatory trajectories under different types of variability

such as multiple speakers, speaking rate, and accents. It was observed that

speaker variation degraded the performance of the speech inversion system. A

Vocal Tract Length Normalization (VTLN) based speaker normalization technique

was therefore developed to address the speaker variability in the acoustic and

articulatory domains. The performance of speech inversion systems was analyzed

on an articulatory dataset containing speaking rate variations to assess if the model



was able to reliably predict the TVs in challenging coarticulatory scenarios. The

performance of the speech inversion system was analyzed in cross accent and cross

language scenarios through experiments on a Dutch and British English articulatory

dataset. These experiments provide a quantitative measure of the robustness of

the speech inversion systems to different speech variability. The final part of

this thesis deals with the incorporation of articulatory features in state-of-the-art

medium vocabulary ASR systems. A hybrid convolutional neural network (CNN)

architecture was developed to fuse the acoustic and articulatory feature streams in

an ASR system. ASR experiments were performed on the Wall Street Journal (WSJ)

corpus. Several articulatory feature combinations were explored to determine the

best feature combination. Cross-corpus evaluations were carried out to evaluate the

WSJ trained ASR system on the TIMIT and another dataset containing speaking

rate variability. Results showed that combining articulatory features with acoustic

features through the hybrid CNN improved the performance of the ASR system

in matched and mismatched evaluation conditions. The findings based on this

dissertation indicate that articulatory representations extracted from acoustics can

be used to address acoustic variability in speech observed due to speakers, accents,

and speaking rates and further be used to improve the performance of Automatic

Speech Recognition systems.



ARTICULATORY REPRESENTATIONS TO ADDRESS
ACOUSTIC VARIABILITY IN SPEECH

by

Ganesh Sivaraman

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor Carol Espy-Wilson, Chair/Advisor
Professor Shihab Shamma,
Professor Behtash Babadi
Professor Jonathan Z. Simon
Dr. Vikramjit Mitra
Professor William J. Idsardi



© Copyright by
Ganesh Sivaraman

2017



Dedication

करोिम यŠत् सकलम् परस्मै नारायणायेित समपर्यािम ||

Whatever work I do I offer it all to Bhagawan Narayana

To

Dear Thatha Shri V. Venkataraman - the man who planted and nurtured the seeds

of curiosity and scientific inquiry in the mind of a young boy;

& Paati Smt. V. Jayalakshmi who has a special place in her heart for me.

In fond memory of Thatha Shri T.G. Padmanabhan who could not be with us to

witness this occasion.

To Paati Smt. Seethalakshmi who always showers me with love and blessings.

ii



Acknowledgments

I would like to express my sincere gratitude to all the people who have been

part of my PhD journey and helped me realize this dissertation.

First of all, I would like to thank my advisor Prof. Carol Espy-Wilson for

believing in me since day one and motivating me to gain more knowledge and explore

new ideas for my research. I have learned a lot about speech science and signal

processing from her which will guide me for the rest of my career. Her intuition

and insights have been my guideposts throughout my dissertation. Whenever I felt

stuck or frustrated I have always found some way forward after talking to her. I

have learned a great deal from her about perfection in presentation, writing, and

attention to detail. I am thankful to her for always encouraging me to seek fellowship

opportunities, new collaborations, and teaching experiences. I have thoroughly

enjoyed research and teaching with Carol over the past six years.

Next, I would like to thank Dr. Vikramjit Mitra who has been a great mentor

throughout my thesis. Vikram was instrumental in helping me make the decision to

pursue my PhD as an extension of his dissertation work. I am thankful to him for

always encouraging me to learn the latest techniques and tools for speech recognition

and deep learning. It would have been very difficult for me to perform some of my

core experiments if not for his help. I am also deeply grateful to him for giving

me the opportunity to intern at SRI which helped me tremendously in taking my

thesis to a whole new level. I thank Vikram for being available to discuss ideas and

help me with experiments in spite of his busy schedule. I admire his creativity in

iii



research and his ability to perform thorough experimentation. I have enjoyed my

collaboration with him over the years and hope to work with him in the future.

I thank Prof. Shihab Shamma, Prof. Behtash Babadi, Prof. Jonathan Simon,

Prof. William J. Idsardi and Dr. Vikramjit Mitra for being in my dissertation

committee and providing insightful comments and suggestions to improve this thesis.

Next, I would like to express my gratitude for my collaborators Dr. Mark

Tiede and Dr. Hosung Nam for teaching me concepts of phonology and providing

tools and articulatory datasets needed for my research. I thank Dr. Martijn Wieling

for giving me the opportunity to intern with his group at University of Groningen in

the Netherlands. I thoroughly enjoyed my interactions with Dr. Wieling and look

back fondly on my time in the Netherlands. I hope to continue this collaboration

in the future.

The Speech Technology and Research Laboratory at SRI International has

been instrumental in shaping me as a researcher. I thank Dr. Horacio Franco, Dr.

Dimitra Vergyri, and Dr. Andreas Kathol for providing me with valuable insights

and support during the two times I was an intern at SRI. I thank the lab for providing

me access to their compute clusters which helped me perform my speech recognition

experiments.

As a graduate student, one realizes that funding is a very crucial aspect of

academic research. I thank the National Science Foundation for supporting this

research with the grants IIS-1162046, and BCS-1436600. I thank the Graduate

school of the University of Maryland for awarding me the International Graduate

Research Fellowship. I thank the the A. James Clark School of Engineering for

iv



awarding me the future faculty fellowship which supported my travel to conferences

to present my work. I would also like to thank Nvidia for their device grant which

enabled me to perform my research.

I thank all the staff in ECE and ISR for helping me do all the required

paperwork over these years and answering all my questions related to department

regulations.

A vibrant research group is essential to remain motivated and develop research

ideas as a PhD student. I am grateful to my wonderful lab mates Saurabh, Nadee,

Vasudha, Yi Chun, Ayanah, and Xinhui for being great colleagues over these years. I

have greatly enjoyed all the discussions with them and am thankful for their feedback

for my practice talks.

With my homeland so far away, friends have been like family to me in the

US. I have been fortunate to have made wonderful friends over these years in

Maryland. I thank Jayanand, Arun, and Kunvar for all the fun we had during

the initial years as Masters students. I thank Monika for all her help with editing

my research statements and cover letters. I thank her for all the amazing food

that she generously shared with me and my roommates. I am grateful to have

wonderful friends like Dev, Swami, Vidya, Harsha, and Subhashini who were also a

great support group through the difficult journey of doctoral research. I would like

to thank Develop Empower and Synergize India (DESI-UMD) and all the members

of the student group over these years for the wonderful memories celebrating Indian

festivals, Indian Independence day, and temple trips.

Finally, I would like to express my deepest gratitude to my parents and my

v



sister who have been very supportive and encouraging of my endeavors. I thank

them for all their sacrifices to help me accomplish this dissertation.

vi



Contents

List of Figures x

List of Abbreviations xiii

1 Introduction 1
1.1 Objectives of this study . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background: Articulatory features and their application to ASR 10
2.1 Relevance of articulatory features in today’s state-of-the-art ASR . . 10
2.2 Types of articulatory features . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Continuous articulatory features . . . . . . . . . . . . . . . . 12
2.2.1.1 Methods of measuring or synthesizing articulatory

data . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1.2 Speech inversion: Estimating articulatory features

from speech . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Discrete articulatory features . . . . . . . . . . . . . . . . . . 23

2.3 Articulatory feature based ASR systems . . . . . . . . . . . . . . . . 26

3 Acoustic to articulatory speech inversion 31
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Modes of measuring articulatory data . . . . . . . . . . . . . . . . . . 31
3.3 Tract Variables and Gestures . . . . . . . . . . . . . . . . . . . . . . 33
3.4 The X-ray microbeam (XRMB) articulatory dataset . . . . . . . . . . 37

3.4.1 Converting XRMB pellets to Tract Variables (TVs) . . . . . . 38
3.5 Deep Neural Network based approach to speech inversion . . . . . . . 39

3.5.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.3 DNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.4 Results of speaker independent speech inversion . . . . . . . . 44

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Speech inversion performance across speech variability 50
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Speaker Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Cross speaker performance of speaker dependent systems . . . 50
4.2.2 Speaker Normalization to combat acoustic variability . . . . . 51

4.2.2.1 Speaker acoustic spaces . . . . . . . . . . . . . . . . 54
4.2.2.2 Maximum Likelihood based VTLN . . . . . . . . . . 55
4.2.2.3 Speech inversion system . . . . . . . . . . . . . . . . 56
4.2.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Results of Speaker Normalization experiments . . . . . . . . . 59
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Variability due to speaking rate . . . . . . . . . . . . . . . . . . . . . 64

vii



4.3.1 The EMA-IEEE Articulatory dataset . . . . . . . . . . . . . . 65
4.3.2 Conversion of EMA sensor positions to TVs . . . . . . . . . . 65
4.3.3 Speech inversion experiments . . . . . . . . . . . . . . . . . . 67
4.3.4 Evaluation across speaking rates . . . . . . . . . . . . . . . . 70

4.4 Variability due to accent and language . . . . . . . . . . . . . . . . . 72
4.4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1.1 EMA data . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Conversion of EMA sensors to Tract Variables . . . . . . . . . 75
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3.1 Leave one speaker out tests . . . . . . . . . . . . . . 76
4.4.3.2 Cross-domain experiments . . . . . . . . . . . . . . 79

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Uncovering acoustically weak articulatory maneuvers 84
5.1 Coarticulation and lenition . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Articulatory datasets and speech inversion systems . . . . . . 87
5.1.2 Analysis of specific examples of coarticulation . . . . . . . . . 90

5.1.2.1 Analysis of ”flask stood” . . . . . . . . . . . . . . . 91
5.1.2.2 Analysis of ”workman” . . . . . . . . . . . . . . . . 92
5.1.2.3 Analysis of ”perfect memory” . . . . . . . . . . . . . 93

5.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Distinguishing acoustically similar articulatory maneuvers: The case

of American English /r/ . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Phone place of articulation classification using articulatory features 101
6.1 Datasets and systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Phonetic feature hierarchy and phone broad classes . . . . . . . . . . 102
6.3 Place of articulation classification system using acoustic and

articulatory features . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Results of phone broad classification . . . . . . . . . . . . . . . . . . 107
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Speech recognition experiments incorporating articulatory representations 110
7.1 Datasets for ASR experiments . . . . . . . . . . . . . . . . . . . . . . 112

7.1.1 Wall Street Journal . . . . . . . . . . . . . . . . . . . . . . . . 112
7.1.2 TIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.1.3 EMA-IEEE dataset . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Acoustic and articulatory features . . . . . . . . . . . . . . . . . . . . 114
7.2.1 Acoustic features - Gammatone Filterbanks energies . . . . . 114
7.2.2 Articulatory features - Estimated TVs . . . . . . . . . . . . . 114
7.2.3 Voicing probability . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.4 Articulatory gestural activations . . . . . . . . . . . . . . . . 115

7.3 ASR system architecture . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



7.4 Experiments and results on the WSJ dataset . . . . . . . . . . . . . . 120
7.5 Results of cross-corpus testing . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Summary and future work 126
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Consolidating multi-modal articulatory data for speech
inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.2 Assistive devices for pronunciation training . . . . . . . . . . 131
8.2.3 Speech Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2.4 Accent normalization for ASR . . . . . . . . . . . . . . . . . . 133

Bibliography 134

ix



List of Figures
1.1 Comparison of Word error rates for humans and a high performance

HMM based ASR on sentences from a null grammar corpus
(NullG-Eval0). (Figure taken from (Juneja, 2012)) . . . . . . . . . . 3

1.2 Acoustics and articulatory trajectories for the phrase “Pefect
memory” uttered at two different speaking rates. TB = Tongue Body
constriction, TT = Tongue Tip constriction, LA= Lip Aperture.
Blue boxes show the time windows of the constrictions for /k/, /t/,
and /m/ in “perfect memory” (Tiede et al., 2001) . . . . . . . . . . . 5

2.1 A frame of articulatory recording from different measurement
techniques - (a) Electro Palatography, (b) X-ray microbeam, (c)
Electromagnetic Articulometry (EMA), (d) Real Time Magnetic
Resonance Imaging (rt-MRI) . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Synthetic speech and articulatory information generation using
TADA and HLSyn. Figure taken from (Mitra, 2010) . . . . . . . . . 14

2.3 Schematic showing a change in a relevant acoustic parameter as
an articulatory parameter specifying some aspect of the state or
configuration of the speech production system is manipulated. The
curve can be divided into regions I, II, and III. In regions I and
III the acoustic parameter remains relatively stable when small
modifications are made in the articulation. In region II there are
large changes in acoustics for small shifts in articulation. There is a
significant acoustic contrast between regions I and III. Figure taken
from (Stevens, 1989) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Schematic of physical processes involved in speech production (Denes
and Pinson, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Schematic showing TADA model’s definition of TVs . . . . . . . . . . 36
3.3 Gestures and TVs for the utterance “miss you”. Active gestures are

marked by colored blocks and the corresponding TVs are smooth curves 36
3.4 Positions of pellets in the XRMB database (Westbury, 1994) . . . . . 38
3.5 Schematic of transformation of XRMB database from pellets to TV

trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Block diagram of the speech inversion system . . . . . . . . . . . . . 41
3.7 Results of varying DNN parameter (layers and number of nodes) on

XRMB cross-validation set . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Example plot of estimated (red) and actual (blue) TVs for a test set

utterance - “Combine all the ingredients in a large bowl” . . . . . . . 48

4.1 Training of GMM speaker acoustic spaces . . . . . . . . . . . . . . . 54
4.2 A schematic representation of the speaker acoustic spaces . . . . . . . 55
4.3 Frequency warping function implemented in HTK toolkit (Young

et al., 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Schematic of speaker transformed datasets creation . . . . . . . . . . 58

x



4.5 Visualization of the cross speaker test correlations. Correlation of 1
corresponds to white and 0 corresponds to black . . . . . . . . . . . . 63

4.6 Transformation of EMA sensor positions to TVs . . . . . . . . . . . . 67
4.7 Average (across all speakers) correlations between actual and

estimated EMA sensor positions. Error bars denote two standard
errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Average (across all speakers) correlations between actual and
estimated tract variables. Error bars denote two standard errors. . . 78

5.1 Actual (red) and estimated (blue) TVs for “flask stood” . . . . . . . . 92
5.2 Actual (red) and estimated (blue) TVs for “workman’s head” . . . . . 93
5.3 Actual (red) and estimated (blue) TVs for “perfect memory” . . . . . 94
5.4 Bunched vs Retroflex /r/ production - Top panel: Midsagittal

MR images of two tongue configurations for American English /r/.
Middle panel: Spectrograms for nonsense word “warav.” Lower panel:
Spectra of sustained /r/ utterance. The left side is for S1 and the
right side is for S2. Figure taken from (Zhou et al., 2008) . . . . . . . 96

5.5 Estimated TVs for bunched and retroflex /r/ from the subjects S1
and S2. The red boxes on the spectrograms indicate the position of
the /r/ sound in the utterance. The panels below the spectrograms
show the Tongue Body Constriction Degree (TBCD), Tongue Tip
Constriction Degree (TTCD), and the Lip Aperture (LA) estimated
using the XRMB speech inversion system . . . . . . . . . . . . . . . . 99

5.6 Estimated TVs for filtered utterances of bunched and retroflex /r/
from the subjects S1 and S2 . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Phonetic feature hierarchy for American English phonemes. Figure
taken from (Espy-Wilson and Juneja, 2010) . . . . . . . . . . . . . . 104

6.2 Block diagram of place of articulation classification . . . . . . . . . . 106
6.3 Classification accuracies of place of articulation classification . . . . . 108

7.1 Example plot of gestural activations and TVs for a TIMIT utterance
- ”the reasons for this dive seemed foolish now” . . . . . . . . . . . . 117

7.2 Block diagram showing time-frequency convolution neural nets
(TFCNN). The top block shows convolution filters working across
time, and the bottom dotted block shows convolution filters working
across frequency. The max-pooled outputs of these convolution filters
are fed to a fully connected four-layered deep neural net. (Mitra and
Franco, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Schematic of the hybrid convolutional neural network (HCNN). The
top layer represents the acoustic model, whose input is filterbank
features, and the bottom layer represents the articulatory model,
whose input is TV trajectories. (Mitra et al., 2017) . . . . . . . . . . 120

7.4 WER on the WSJ1 dev set for the HCNN model at different splicing
widths for various feature combinations . . . . . . . . . . . . . . . . . 122

xi



7.5 WER on the WSJ1 eval set for different splicing widths for various
feature combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



List of Abbreviations

ASR Automatic Speech Recognition
HSR Human Speech Recognition
HCI Human Computer Interaction
DNN Deep Neural Network
DBN Deep Belief Network
CNN Convolutional Neural Network
HCNN Hybrid Convolutional Neural Network
HMM Hidden Markov Models
DyBN Dynamic Bayesian Network
XRMB X-ray Microbeam dataset
WSJ Wall Street Journal
EMA Electromagnetic Articulaometry
MRI Magnetic Resonance Imaging
TV Tract Variable
PPMC Pearson Product Moment Correlation

xiii



Chapter 1

Introduction

Automatic Speech Recognition (ASR) is considered to be one of the major

challenges in Human Computer Interaction (HCI) that can revolutionize human

lives. ASR systems enable us to interact and operate their computers, handheld

devices like smartphones, wearable technology like smart watches, and even cars.

Enabling us to easily operate our devices in a hands free manner can make our

lives much easier. Voice based applications can also enable the physically disabled

and uneducated people to make use of the modern technology and connect with

the world. Simple tasks such as searching the web, creating a reminder or a list

of things to do, making a phone call, sending a text message etc. can be done

today through voice commands, thanks to the advancements in personal assistant

systems in smartphones and computers which have ASR as a major part of their

technology. However, these technologies make a lot of mistakes due to the errors

made by the ASR systems. Most systems are adept at handling dictated speech or

short commands or queries in American English. But if in case of conversational

or casual speech, the ASR systems perform poorly. The ASR systems are still

far behind Human Speech Recognition (HSR) both in terms of accuracy and

robustness. Shinozaki and Furui (2003) compared the performance of human speech

recognition against state-of-the-art Hidden Markov Model (HMM) (Rabiner, 1989)
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based ASR, using a corpus of spontaneous Japanese speech. They found that

the recognition error rate of humans was roughly half that of the ASR system.

Lippmann (1997) compared the performance of humans against HMM based ASR

for six modern speech corpora with vocabularies ranging from 10 to 65000 and

content ranging from isolated words to spontaneous speech. He found that the

error rates for machines were often more than an order of magnitude greater than

those for humans in quiet, wideband read speech. The paper also points out further

degradation of ASR performance for spontaneous speech. The performances of

machines have improved by leaps and bounds with the advent of Deep Neural

Network based acoustic modeling (Hinton et al., 2012). The current best ASR

performance on the Switchboard corpus is 8% Word Error Rate by “The IBM 2015

English Conversational Telephone Speech Recognition System” (Saon et al., 2015).

The most recent study comparing ASR and HSR performance was performed by

Juneja (2012). In this study, Juneja compared the performance of HSR and ASR

in a null grammar setting. He argues that the null grammar test scenario is ideal

for comparing the acoustic modeling performance of HSR and ASR without any

context awareness or grammar. He constructed a read-speech corpus of nonsensical

sentences (NullG-Eval0) containing 4 to 8 words per sentence selected randomly

from vocabularies of different sizes (1000, 2000, 3000 and 4000). The final corpus had

40 sentences from each of the vocabulary sizes. These 160 sentences were recorded

from 9 speakers (6 males and 3 females) to create the dataset containing 1440 null

grammar utterances. He created noisy versions of the dataset from the clean corpus

by adding white Gaussian noise. This created noisy datasets with 3 different SNR
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Figure 1.1: Comparison of Word error rates for humans and a high performance
HMM based ASR on sentences from a null grammar corpus (NullG-Eval0). (Figure
taken from (Juneja, 2012))

levels – 0, 10, and 20dB. He presented sentences from this null grammar corpus

to human subjects and a HMM based ASR system trained on read speech corpora

(TIMIT, WSJ0, and WSJ1). He computed the Word Error Rates (WER) for both

humans and the ASR system at different SNRs and different vocabulary sizes. He

observed that the ASR system exhibits as much as an order of magnitude more

errors than HSR. Figure 1.1 shows the plot of WERs for HSR and ASR across

different perplexities and noise conditions. This result shows that there is still a

large difference in the acoustic modeling performance of ASR and HSR.

Several efforts are being made by the research community to bridge the

gap between HSR and ASR, which when achieved for spontaneous speech, will

revolutionize the field of HCI. Speech variability is one of the major challenges
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limiting the performance of ASR systems. Shinozaki and Furui (2003) in their

work comparing human and machine speech recognition pointed out that the gap

between the error rates of HSR and ASR is due to insufficient model accuracy and

lack of robustness of the ASR system against “vague and variable pronunciations”.

There are several sources of variability in speech that severely affect ASR systems

(Benzeghiba et al., 2007). Speaker’s age, gender, speaker voice characteristics,

speaker nativity and accent are some sources of variability associated with the

identity of speakers. Speaking rate, style, loudness, emotions and pronunciation

variations are other sources of variability associated with the manner of speech.

Speaking rate and casualness in conversational speech result in coarticulation

and lenition phenomena leading to significant variation in speech. Coarticulation

is a commonly observed phenomenon in continuous speech where phonemes are

influenced by the neighboring phonemes resulting in different variants based on the

context (Hardcastle and Hewlett, 2006). Coarticulation is caused due to the overlap

of the articulator movements (articulatory gestures) from neighboring phonemes

resulting in substitution of phonemes. For example, when the phrase “did you” is

uttered casually, the final /d/ in “did” and the initial /y/ in “you” can overlap and

become /j/ thus sounding like “dijyu”. Lenition results in reduction or deletion of

phonemes. For example, Figure 1.2 shows the phrase “perfect memory” uttered at

slow and fast rates. In the fast spoken utterance, we can see that the burst for the

/t/ in “perfect” is missing in the acoustical waveform. This apparent deletion of

/t/ has occurred due to the overlap in production with the adjacent /m/ sound,

and the fact that there is undershoot in the production of the /t/ gesture. The
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Figure 1.2: Acoustics and articulatory trajectories for the phrase “Pefect memory”
uttered at two different speaking rates. TB = Tongue Body constriction, TT =
Tongue Tip constriction, LA= Lip Aperture. Blue boxes show the time windows of
the constrictions for /k/, /t/, and /m/ in “perfect memory” (Tiede et al., 2001)

plot also shows the recorded movements of the articulators. The TB plot shows the

distance between the Tongue Body and the palate, the TT plot shows the distance

between Tongue Tip and the palate. The LA plot shows the Lip Aperture i.e.,

the distance between the upper and lower lip. When we look at the articulator

movements, we realize that in reality, the tongue tip constriction for /t/ was made

but it was overlapped by the closure of the lips for /m/ thus resulting in what looks

like deletion of the /t/ sound.

A major difficulty faced by conventional state-of-the-art phone based ASR

systems is due to the fact that they have encoded such contextual variations as

independent, piecewise, stationary units such that speech is modeled as concatenated

strings of independent constant regions. To address the effect of coarticulation
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in DNN and HMM-based ASR, di-phone and tri-phone based models are used,

where models are created for each phone with all possible contexts. Unfortunately

these di-phone or tri-phone based ASR systems limit the contextual influence

to only immediately close neighbors. They require a large training data to

combinatorically generate all possible di-phone or tri-phone units. In their

investigation of the capability of tri-phones to model pronunciation variability,

Jurafsky et al., (2001) stated that the amount of training data each tri-phone receives

plays an important role in modeling pronunciation variability. They pointed out

that although tri-phones are capable of modeling variabilities like phone reduction

and substitution, they fail to model phone deletion. Current state-of-the-art DNN

based ASR systems form phonemic categories by grouping different instances of the

variations into subcategories that explicitly represent these variations (Nagamine

et al., 2015). Thus, the more the variability in the labelled training data, the better

it is for the ASR systems to become robust. This is particularly a challenge because

correct annotation of thousands of hours of training data is an infeasible task.

Considering these challenges that current ASR systems face, some fundamental

questions arise – Does the human brain require such large amounts of labelled data

in order to learn speech recognition? Is there a way to model speech in a way that

improves the capability of modeling the variability? Most of the variability that

we observe in speech is caused due to the variations and imprecision in the speech

production mechanism. Coarticulation and lenition, which are commonly observed

in conversational speech, are effects of contextual constraints in the articulatory

movements. The variations due to rate of speech (Sivaraman et al., 2015a) and
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non-native accents (Sangwan and Hansen, 2012) can also be analyzed from the

articulatory features. The acoustics of all the possible triphones for a particular

phoneme can be explained as consequences of overlap and lenition of the articulatory

gestures for that phoneme with the gestures of its neighbors. Analyzing speech in

terms of articulatory features also allows for modeling contextual effects beyond just

the neighboring phonemes as is the case with triphones. The acoustic variability

is a consequence of the variability in articulatory dynamics through a non-linear

relationship; it is possible to model the acoustic variability more directly and

parsimoniously through the articulatory parameters. Thus, articulatory feature

based approaches promise better modeling of speech variability. The theory of

Articulatory phonology (Browman and Goldstein, 1992) which analyzes speech as a

series of coordinated actions provides us a robust framework to represent speech in

terms of action units that are closely related to the physical movements in the vocal

tract. This thesis proposes to borrow ideas from Articulatory phonology to develop

ASR architectures that are robust against speech variability.

In the neuroscience literature there are two contending theories of speech

perception (Diehl et al., 2004), namely - (1) General Auditory theory and (2) Motor

theory of speech perception. The auditory theory argues that speech perception

happens solely due to representations of speech in the auditory cortical regions. The

motor theory says that speech production information is essential in recognizing

speech and contribute to the robustness of the perception. This dissertation is

inspired by the motor theory of speech perception and aims to develop a robust

architecture for ASR combining both speech production and auditory information.
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1.1 Objectives of this study

The objective of this thesis is to analyze the variability of speech using

articulatory representation and develop an ASR system on clean speech using a

combination of acoustic and articulatory features. Towards this objective, we

develop a speaker independent acoustic to articulatory speech inversion system

to estimate the articulatory features from speech. We analyze the performance

of speech inversion systems to different kinds of variability like rate of speech,

multiple speakers, accent, and language. We explore state-of-the-art convolutional

neural network (CNN) architectures to optimally combine acoustic and articulatory

features for ASR.

The specific contributions of this thesis are as follows: •Development of a

speaker independent speech inversion system on the multi-speaker X-ray Microbeam

dataset. Chapter 3 describes the design and development of the speech inversion

system.

•A speaker adaptation algorithm for speaker independent speech inversion.

Section 4.2.2 explains the speaker adaptation algorithm.

•Analysis of speech inversion across different speech variability. We consider

the speaker variabilities, speaking rate, and accent. The analyses are presented in

Chapter 4.

•Hybrid convolutional neural network architecture for acoustic and

articulatory feature based ASR. Chapter 7 presents the ASr experiments performed

on the Wall Street Journal (WSJ) dataset. We developed a hynrid CNN architecture
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to best combine the acoustic and articulatory feature streams for ASR. We present

the ASR experiments and results in chapter 7.

•Cross-corpus phone recognition. ASR systems tend to perform very well on

the domain that they are trained on. However they perform poorly across domains.

We evaluated our WSJ dataset trained ASR systems on the TIMIT dataset and

another dataset containing normal and fast rate speech that we collected. The

cross-corpus phone recognition experiments and results are presented in section 7.5.
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Chapter 2

Background: Articulatory features and their application to ASR

2.1 Relevance of articulatory features in today’s state-of-the-art ASR

Automatic Speech Recognition has been an active area of research for the past

five decades. Early attempts at ASR were rule based models that were formed

using phonetic feature theory (Lieberman, 1970) and the spectral properties of

phonemes (Halle and Stevens, 1962) (Zue and Lamel, 1986) (Espy-Wilson, 1994).

With increasing complexity of the speech corpora (going from isolated phonemes to

continuous read speech), such rule based systems became too complicated to model

the variabilities of continuous speech. It is then, that statistical generative models

such as Hidden Markov Models (HMMs) (Rabiner et al., 1985) were introduced

to ASR research. HMMs did not rely on knowledge based rules but rather

formed implicit rules based on statistics derived from the data. Homomorphic

signal processing (Oppenheim, 1969), combined with HMMs revolutionized the ASR

technology and grew to be the state-of-the-art for ASR since the late 80s through

the early 2010. The next big leap came from the introduction of Deep learning

techniques where the state-of-the-art ASR acoustic models changed from generative

GMM-HMM systems to a hybrid DNN-HMMs (Hinton et al., 2012) system that

have the power of discriminative models and the flexibility of the generative models.

After all these machine learning advancements for ASR, a recent study (Nagamine
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et al., 2015) exploring the inner learned structures of DNN acoustic models has

shown that the hidden layers of the DNN form phonemic categories by selective

tuning of the nodes to various phonetic features (manner and place of articulations

of phonemes) as outlined in the phonetic feature theory (Sim, 2016). This brings

back the attention of ASR research on phonetic features, articulatory features and

acoustic phonetics. These fields of study could play a great role in improving the

DNN acoustic models thus pushing the limits of state-of-the-art ASR. Hence, it is

essential to look back at speech analysis based on these theories and integrate them

with the new models like DNNs, and convolutional Neural Networks (CNNs) to

make improvements to the current state-of-the-art ASR.

2.2 Types of articulatory features

Articulatory features are a parametric representation of the vocal tract

configurations and movements during speech production. As gleaned from the

literature, there are mainly two forms of representation of articulatory features –

(1) Continuous articulatory features and (2) Discrete articulatory features. Several

studies have been performed in the literature by analyzing speech in the form of

both types of articulatory features. Both types of articulatory features have been

extensively applied to ASR research.
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2.2.1 Continuous articulatory features

This class of articulatory features consists of different parameterizations of

real or simulated movements of the vocal tract. The most direct way to capture

articulatory information from speech is by placing transducers on the articulators

and recording their movements while speech is produced.

2.2.1.1 Methods of measuring or synthesizing articulatory data

The earliest attempts used to measure the contact of the tongue with the

hard palate involved Electropalatography (EPG) (Hardcastle, 1972). Although EPG

provided the instances and locations when the tongue came in contact with the

palate, it provided no information of the shape of the tongue when there were no

constrictions or the constriction targets were not reached.

The X-ray microbeam (XRMB) (Westbury, 1994) technique was a method

of measuring the movement of different points along the vocal tract. The XRMB

technique recorded flesh point trajectories of gold pellets placed at different points

along the vocal tract obtained using X-ray photographs of subjects.

Electromagnetic Articulography (EMA) (Schönle et al., 1987) is a more

modern and commonly used method in speech production research. EMA tracks the

movement of electromagnetic pellets placed at different points along the vocal tract

as a subject speaks. EMA is known to have a good time resolution of tracking the

articulator movements. In both the EMA and XRMB methods, the dataset consists

of speech signals with simultaneously recorded trajectories (X-Y positions on the
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Figure 2.1: A frame of articulatory recording from different measurement techniques
- (a) Electro Palatography, (b) X-ray microbeam, (c) Electromagnetic Articulometry
(EMA), (d) Real Time Magnetic Resonance Imaging (rt-MRI)

mid-sagittal plane) of the pellets placed along the vocal tract. These trajectories

are referred to as pellet trajectories.

A more recent method using real time Magnetic Resonance Imaging (rt-MRI)

(Narayanan et al., 2004) was developed to image the complete mid-sagittal view of

the vocal tract. Rt-MRI has a high spatial resolution but a low temporal resolution.

The rt-MRI databases (Narayanan et al., 2011) consist of speech signals along with

video of MRI images recorded simultaneously with speech.

Figure 2.1 shows a frame of articulatory recording from each of the

measurement techniques discussed above - EPG, XRMB, EMA, and rt-MRI.

Articulatory data can also be generated using synthetic speech production

models. The Task Dynamics and Applications (TADA) model (Nam et al., 2004)

from Haskins Laboratories is an articulatory speech production model that includes

a task dynamic model and a vocal tract model. The task dynamic model of speech

production (Saltzman and Munhall, 1989) (Nam et al., 2004) models speech as

a constellation of gestures with dynamically specified parameters as model input
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Figure 2.2: Synthetic speech and articulatory information generation using TADA
and HLSyn. Figure taken from (Mitra, 2010)

for an utterance. The gestures and the inter-gestural co-ordinations parametrize

the constriction actions performed by the articulators and the inter articulator

coordinations. Given the orthographic transcription of an utterance, the model

computes the series of gestures and inter-gestural coordinations required to produce

the utterance. This is performed using a lookup table and predefined rules. The

gestural patterns are input to a second order dynamical system which produces time

functions of the physical trajectories for each vocal tract variable (TV). The time

functions of model articulators are input to a vocal tract model which computes the

area function and the corresponding formants. The formants and pitch information

are used to generate a synthetic speech waveform using the HLSynTM toolkit

(Hanson and Stevens, 2002). Figure 2.2 shows the schematic of the TADA system

that generates synthetic speech and articulatory trajectories.

The TADA model is a theoretically sound model of speech production.

However the model is limited in the amount of articulatory variability that it can

simulate. There is much greater variability in real speech compared to what TADA
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Figure 2.3: Schematic showing a change in a relevant acoustic parameter as an
articulatory parameter specifying some aspect of the state or configuration of the
speech production system is manipulated. The curve can be divided into regions
I, II, and III. In regions I and III the acoustic parameter remains relatively stable
when small modifications are made in the articulation. In region II there are large
changes in acoustics for small shifts in articulation. There is a significant acoustic
contrast between regions I and III. Figure taken from (Stevens, 1989)

can simulate. The synthetic speech generated by HLSyn also sounds machine like

quite different from real speech. In order to study the variability of speech real

articulatory data is more preferable.

Recording of articulatory data is an expensive and time consuming process

which involves sophisticated equipment housed in a laboratory. This makes it

impractical to create large speech databases containing articulatory data. Hence it

is essential to train models from the available articulatory data to learn a mapping

from acoustics to articulations, known as acoustic to articulatory speech inversion.

The mapping from the acoustics to articulatory space has been found to

be nonlinear and non-unique based on empirical studies (Stevens, 1989) (Qin and

Carreira-Perpiñán, 2007) (Neiberg et al., 2008).

The non-linearity of the acoustic to articulatory mapping is evident from the
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quantal nature (Stevens, 1989) of the articulatory-acoustic relation. The change in

acoustic parameters corresponding to the manipulation of articulatory structure

through a range of values is non-monotonic. There are ranges of articulatory

parameter for which there is very little change in the acoustic parameter and other

ranges where the acoustic parameter is more sensitive to changes in articulation

(Stevens, 1989). The quantal nature of the acoustic-articulatory relation is shown

in the Figure 2.3

Similar acoustic consequences can result from completely different articulatory

configurations, thus making the problem of one-to-many mapping a challenge. One

of the reasons for this non-uniqueness is the coordinated compensatory movements

of the articulators to achieve acoustic targets in different contexts (Maeda, 1990)

(Guenther et al., 1999). The existence of two distinct vocal tract configurations

(bunched and retroflexed) for the American English /r/ sound (Zhou et al., 2008)

is a perfect example of the non-unique mapping if we consider only the first three

formants of speech. 1 Several machine learning techniques have been developed by

various researchers to perform this challenging task.

2.2.1.2 Speech inversion: Estimating articulatory features from

speech

Speech inversion or acoustic-to-articulatory inversion of speech has been a

widely researched topic in the last 35 years. One of the earliest works in this
1Zhou et al. (2008) show that the higher formants do distinguish between these vocal tract

shapes.
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area was by Atal et al. (1978). Their model used four articulatory parameters:

length of the vocal tract, distance of the maximum constriction region from the

glottis, cross sectional area at the maximum constriction region and the area of

the mouth opening. For each articulatory configuration, the corresponding acoustic

space was defined by the frequency, bandwidth and the amplitudes of the first

five formants. They stored these articulatory acoustic pairs in the computer

memory as codebooks. Thus given information in acoustic space, their approach

would yield the corresponding vocal tract configuration by scanning through the

codebook. Following a similar codebook based approach, Rahim et al. (1991)

used an articulatory synthesis model to generate a database of articulatory-acoustic

vector pairs. They characterized the acoustic space using 18 FFT-derived cepstral

coefficients, and the articulatory space using 10 vocal tract areas and a nasalization

parameter. They trained Multi-Layered Perceptrons (MLP) to map from acoustic

data to the vocal tract area functions. The articulatory-acoustic data pairs

were obtained by random sampling over the manifold of reasonable vocal tract

shapes within the articulatory parameter space of Mermelstein’s articulatory model

(Mermelstein, 1973). However their random sampling approach selected many

uncommon but physiologically-plausible articulatory configurations. To address

this fact, Ouni and Laprie (2005) sampled an articulatory space such that the

inversion mapping is locally linearized. They sampled more aggressively in regions

where the inversion mapping is complex and less aggressively elsewhere. Codebook

based reconstruction of continuous articulatory data suffer from noisy estimates

of the articulator movements. However, the movements of the articulators are
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smooth and low pass signals. To ensure the smoothness, codebook based techniques

apply a low pass filter after the estimation. Some approaches have tried to impose

the smoothness criterion within the optimization problem for reconstruction such

that the estimates have smooth trajectories. One of the earliest such approaches

was introduced by Schroeter and Sondhi (1994) in which they used Dynamic

Programming to search the articulatory codebooks by imposing a penalty on fast

changes in the articulatory trajectories so that the estimated articulator trajectories

were smooth. More recently, Ghosh and Narayanan (2010) introduced a generalized

smoothness criterion to recover optimal smooth trajectories using a codebook based

technique. They incorporated the smoothness criterion in the estimation problem

by minimizing the energy of the output of high pass filters applied to the target

articulatory trajectories. The high pass filters were designed separately for each

articulator based on the frequency content of each articulatory trajectory in the

MOCHA TIMIT database (Wrench, 2000). They showed that having articulator

specific optimal smoothing filters in the smoothness criterion was better than

using a fixed smoothing filter. Artificial Neural Network (ANN) based techniques

were also widely explored to perform speech inversion. Kobayashi et al. (1991)

proposed a feed-forward MLP architecture with two hidden layers to predict the

articulatory parameters. Their approach was found to be 10 times faster than

Shirai and Kobayashi (1986) and also offered better estimation accuracy than

analysis-by-synthesis techniques. Neural network based speech inversion became

very popular after the work of Papcun et al. (1992) in which they used articulatory

information obtained from XRMB and used Multiple Layer Perceptrons (MLPs) to
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perform speech inversion to obtain three articulatory motions for six English stop

consonants. The three articulatory features used were the y-coordinates for the

lower lip, tongue tip and tongue dorsum. They used data recorded from three male

native American English speakers, who uttered six non-sense words. The words

had repeated [-Cə-] syllables, where ‘C’ belonged to one of the six English oral stop

consonants /p,b,t,d,k,g/. The MLP topology was decided based upon trial-and-error

and the optimization of the topology was based upon minimizing training time and

maximizing estimation performance. The network was trained using a standard

backpropagation algorithm. An important observation that they made in their study

was that the trajectories of articulators considered critical for the production of a

given consonant demonstrated higher correlation coefficients than for those which

were considered non-critical to the production of that consonant. This observation

was termed as the ‘Critical articulator phenomenon’. Due to this phenomenon they

observed that for a given consonant, the critical articulator dynamics were found to

be much more constrained than that of the non-critical ones. This observation

was supported by Richmond et al. (2003) who used Mixture Density Networks

(MDN) to obtain the articulator trajectories as conditional probability densities

of the input acoustic parameters. They observed that the conditional probability

density functions of the critical articulators show very small variance as compared

to the non-critical articulator trajectories. They also showed that MDNs performed

better than ANNs in estimating the articulatory trajectories. Their experiments

were based on single speaker articulatory data from the MOCHA TIMIT dataset.
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Mitra et al. (2010a) used the TADA model to generate synthetic datasets

containing spech with simultaneous Tract Variables (TVs) for the sentences in the

X-ray microbeam (XRMB) dataset (Westbury, 1994). He then used the synthetic

data to train speech inversion systems using different machine learning techniques.

He performed a comparison of different machine learning techniques (Mitra et al.,

2010b) for estimating TVs from speech and found that feed forward neural networks

performed the best for estimating the TVs. He used contextualized MFCCs as the

input acoustic features for estimating the TVs. He obtained estimation accuracies

of up to 90% correlation between estimated and actual TVs. He also showed that

the neural network models estimated TVs with greater accuracy than the pellet

trajectories. Later, Mitra et al., (2014) (Mitra et al., 2014a) developed a Deep

neural network based speech inversion system trained on synthetic data generated

from 111,929 words in the CMU dictionary using the TADA model. This inversion

system achieved correlation values of 95% on an average across the 8 TVs. Their

work also compared various acoustic features for the speech inversion system and

found MFCCs to be the best performing feature.

Deep neural networks have been used for estimating the flesh point trajectories

from real articulatory datasets. Uria et al. (2011) implemented a Deep Belief

Network based speech inversion system on a single speaker from the MOCHA TIMIT

dataset. They obtained improved results with average root mean square error of

0.95mm which was a significant error reduction from the performance obtained

using TMDNs (Richmond et al., 2003) (0.99mm mse). They observed that the

unsupervised layer wise pre-training of the deep networks using Gaussian Bernoulli
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RBMs greatly improved the performance of the ANN based approach. Recently,

Liu et al. (2015) developed deep recurrent neural networks using Bidirectional Long

Short Term Memories (BLSTM). They reported best speech inversion results with

an average root mean squared error of 0.816 beating the Deep Belief network model.

They observed that the trajectories estimated by the recurrent neural networks were

smoother than those predicted by non-recurrent networks without any smoothing.

Gaussian mixture modeling (GMM) is another popular approach to speech

inversion. Toda et al. (2004) modeled the mapping from articulatory space to

acoustic space using GMMs. They performed speaker dependent experiments on

the MOCHA TIMIT dataset. The found that the estimation accuracy improved

steadily by increasing the number of Gaussians up to a certain point. However,

they found that the estimates were noisy and had discontinuities. In order to

obtain smooth trajectories, they developed Maximum Likelihood Estimation (MLE)

technique by including articulatory dynamic feature to obtain smooth estimates of

the articulatory trajectories. They found that the MLE based inversion system gave

more accurate articulatory movements compared to the GMM based mapping with

low pass filtering. A Hidden Markov Model based speech inversion technique was

developed by Hiroya and Honda (2004). They modeled phone specific HMMs with an

articulatory-to-acoustic mapping for each hidden state. Given a test utterance, the

inverse mapping was performed by estimating the optimal state sequence followed

by a Maximum-a-posteriori (MAP) estimate of the articulatory parameters using

dynamic features to obtain smooth estimates. They performed experiments with

and without prior phonemic information. They obtained an rms error of 1.50mm
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with phone information and 1.73 without the phone labels. HMM and GMM based

modeling have the potential to develop speaker independent speech inversion and

speaker adaptation using maximum likelihood and MAP model adaptation as they

have explicit conditional probability models for the acoustic and articulatory spaces.

Efforts have also been made in implementing dynamic models for performing

speech inversion. Dusan and Deng (2000) used Extended Kalman Filter (EKF)

to perform speech inversion by imposing high-level phonological constraints on

the articulatory estimation process. In their approach Dusan and Deng (2000)

segmented the speech signal into phonological units and construct the trajectories

based on the recognized phonological units and a Kalman smoothing step is used

to perform the final estimate. Dynamic model based approaches typically work well

for vowel sounds, but have failed to show promise for consonantal sounds.

Speaker variability is a common challenge that is encountered by speech

inversion systems. Speech inversion systems trained on one particular speaker

perform very poorly when tested on another speaker. This is because of the

speaker variability in the acoustic as well as articulatory domains. There have

been few attempts in the research community to address the challenge of speaker

adaptation for speech inversion systems. Among the most recent attempts at

speaker normalization for speaker independent speech inversion is the work by

Ghosh and Narayanan (2011). In their work, they developed a Generalized Acoustic

Space (GAS) consisting of unsupervised GMM models trained on acoustic data

(MFCC features) from the TIMIT database which consists of a large number of

speakers. The GAS is a probability distribution of the acoustic features from a
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large pool of English speakers. This GAS formed the acoustic model to perform

acoustic feature matching for their codebook based speech inversion system using

the generalized smoothness criterion. They performed their experiments on the

MOCHA TIMIT corpus with male-female cross test and showed performance close to

a speaker dependent system for lip aperture, tongue tip and tongue body. Following

up on this work, Afshan and Ghosh (2015) developed various supervised and

unsupervised training techniques to refine the GAS to enhance the performance of

speaker independent speech inversion. They observed that clustering the generalized

acoustic space based on phone identities gave best speech inversion results. Hueber

et al. (2015) developed a Cascaded Gaussian Mixture Regression technique to

perform speaker adaptation for a GMM based speech inversion system. Their work

exploited the state-of-the-art speaker adaptation techniques like MAP and MLLR

to perform acoustic model adaptation before performing the inversion. They also

developed an improved technique by combining the adaptation problem with the

inversion problem to show better adaptation performance compared to MAP and

MLLR.

2.2.2 Discrete articulatory features

Discrete articulatory features are binary features related to the state of

articulators during speech production. In the literature, there are two types of

discrete articulatory features - (1) distinctive features, and (2) articulatory gestures.

The distinctive features (DF) as defined in phonological theory (Chomsky and Halle,
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1968) are a set of binary features that group phonemes into categories that are

discriminative. On the other hand, articulatory gestures are closely related to the

physiological movements of the articulators during speech production.

DFs have both articulator bound features related to place of articulation and

articulator free features related to manner of articulation (Stevens, 2002). DFs can

be obtained from acoustics by detection of acoustic landmarks from speech (Stevens,

2002). This formed the basis of landmark based speech recognition systems which

performed speech recognition by detecting acoustic landmarks from speech using

rules based on the speech spectrum (Espy-Wilson, 1994). The acoustic landmarks

were then used to infer DFs and word or phone recognition was performed based

on the decoded DFs for a given utterance. A probabilistic framework to detect DFs

from speech using an ensemble of Support Vector Machines (SVMs) was developed

by Juneja and Espy-Wilson (2008). Kirchhoff (1999) used a set of heuristically

defined articulatory features inspired by the DFs. She used rule based mappings

from phones to the articulatory features to generate the groundtruth for small and

large vocabulary speech datasets. She estimated the articulatory features using

Multiple Layer Perceptron (MLP).

As mentioned earlier, Articulatory phonology (Browman and Goldstein, 1992)

analyzes speech as a series of constriction gestures performed by the articulators in

the vocal tract. Gestures of two different articulators can overlap and influence each

other based on the coupling between the articulator movements. These gestures are

control parameters for the Task dynamical system that models the movement of the

articulators based on second order dynamics. The TADA system implemented this
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model of speech production as a Matlab toolkit (Nam et al., 2004). The TADA

model defines gestures by the following parameters: (1) gestural score, (2) the mass

parameter, which is assumed to be uniformly equal to 1 in all gestures, (3) the

stiffness parameter, which represents the elasticity of the gesture and is proportional

to gestural “speed”, (4) the damping parameter, which is typically set to “critical”

in the gestural model to signify that there is no oscillatory overshoot or undershoot

of the TVs and when the gesture moves closer to its target, this parameter gives the

TV its inherent smoothness, (5) the target parameter, which defines the constriction

location or degree for that particular TV on which that gesture is defined and (6)

the blending parameter, which defines how two overlapping gestures corresponding

to the same TV should be blended with one another. Nam et al. (2012) created a

synthetic dataset corresponding to the XRMB dataset and developed an algorithm

to annotate real speech data with gestures defined by TADA.

Mitra et al. (2011) used the TADA model to generate synthetic gestures, TVs

and synthetic speech for the Aurora2 database. They developed three different ANN

based architectures to estimate gestures from speech. They found that combining

both TVs and MFCCs as input features, performed the best for gesture recognition.

They performed word recognition experiments on the Aurora 2 dataset and observed

that the estimated gestures improved the noise robustness of the HMM based word

recognition systems.

In an effort to represent continuous real articulatory trajectories as a

combination of a fixed number of basis vectors, Ramanarayanan et al., (2015)

(Ramanarayanan et al., 2015) developed a convolutive Non-negative Matrix

25



Factorization (xNMF) algorithm to represent articulatory trajectories as gesture

like primitives. They performed an interval based phone classification task and

found that such data derived primitives retained the discriminatory information

about phone categories.

2.3 Articulatory feature based ASR systems

Articulatory feature based ASR has been an active research area for the past

two decades. Several methods have been developed to incorporate various forms of

articulatory features in ASR systems. Broadly, the approaches can be classified into

two categories. In the first category, articulatory features extracted from speech are

appended to acoustic features in a standard ASR architecture. In the second kind of

approach, the ASR architecture is modified in order to efficiently combine acoustic

and articulatory features.

In the first category, the earliest approaches were by Zlokarnik (1995)

and Wrench and Richmond (2000). Zlokarnik, (1995) performed isolated word

recognition by appending measured articulatory data with acoustic features in a

HMM based word recognition system. With actual articulatory data, he reported

a 60% relative improvement in word error rate whereas when he appended the

articulatory features estimated using a MLP model, the improvement was 18-25%.

Wrench and Richmond (2000) however did not report significant improvement to the

phone recognition performance by appending estimated articulatory features (AFs).

Kirchhoff, (2000) performed Large Vocabulary Conversational Speech Recognition
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on the German Vermobil corpus using discrete articulatory features estimated from

the acoustics using MLPs. She combined acoustic and estimated AFs in three

different ways in a HMM based LVCSR system: HMM state level combination, word

level combination and input feature level combination. Among the three methods,

the HMM state level combination gave the best WER improvement over the MFCC

baseline system. She also observed that adding articulatory features to acoustic

features improves the noise robustness of the ASR system.

Livescu et al. (2007) created a database of spontaneous speech which was

manually labeled at the articulatory feature level. They considered a small subset

of the Switchboard corpus and transcribed it with eight tiers of AFs. One of the most

important attributes of this database was that it allowed some inter-AF overlapping,

which was not used in any of the AF based systems or databases proposed before. In

a different study, Çetin et al. (2007) proposed a tandem model of MLP and HMM as

an ASR system. The MLPs were used for AF classification and the HMM outputs

used a factored observation model. Their proposed tandem model using AFs was

found to be as effective as the phone-based model. The factored observation model

used in their research was found to outperform the feature concatenation approach,

which indicated that the acoustic features and tandem features yield better results

when considered independently rather than jointly.

It was shown by Arora and Livescu (2013) that the multi-view learning based

approach of Kernel Canonical Correlation Analysis (KCCA) can be used to obtain

a feature set that learns a joint representation of both the acoustic and articulatory

spaces. They showed significant improvement in phone recognition results from
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features learned through KCCA for cross-speaker and cross corpus settings. Their

results proved that the KCCA based features learned a speaker and corpus invariant

representation of the joint acoustic and articulatory spaces.

Articulatory features derived from synthetic speech based inversion models,

have been shown to reduce the Word Error Rate (WER) of an LVCSR system on

the Aurora 4 dataset (Mitra et al., 2014a). Badino et al. (2016) developed methods

to integrate articulatory features in a DNN-HMM based phone recognition system.

They developed three different DNN architectures for acoustic to articulatory

inversion. They also performed experiments with autoencoder transformed

articulatory trajectories. They argued that the autoencoder transformed features

encode the inter-articulator coordination. They showed higher mutual information

between autoencoder features and phone labels than that between articulatory

trajectories and phones. They incorporated the articulatory features in two different

ways in the DNN-HMM phone recognition system. The first method simply

concatenated the acoustic and the reconstructed AFs to form the input vectors

for the DNN acoustic models. They obtained a 10% reduction in phone error

rates by this method for a speaker dependent system, but the system performed

poor than the baseline in the cross speaker case. In the second method, they

initialized the DNNs for the acoustic modeling with the weights of the articulatory

inversion DNN. With this method, they obtained 2% relative reduction in phone

error rate in the cross speaker case without appending the articulatory features

with acoustic features. They claim that the speech inversion based pretraining is

a promising method to use measured articulatory data for training ASR systems
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on other datasets. Dynamic Bayesian Networks (DyBN) has also been explored

for the purpose of ASR using articulatory features. The major advantage of

DyBN is its capability to model explicitly the inter-dependencies between the

AFs. DBNs can be used to perform both AF recognition and word recognition

simultaneously. One of the earlier works incorporating DBNs for the task of AF

recognition was performed by Frankel et al., (2007) (Frankel et al., 2007). It was

observed that modeling inter-feature dependencies improved the AF recognition

accuracy. In their work, they created phone-derived AFs and set that as the

standard, by modeling inter-feature dependencies; they observed an improvement

in overall frame-wise percentage feature classification from 80.8% to 81.5%. Mitra

et al., (2012) (Mitra et al., 2012) developed a neural network based architecture

for estimating articulatory gestures from speech. The gestures were based on the

TADA model. The gesture recognition system was trained on synthetic speech and

was used to test on real speech. They developed gesture based DyBN architectures

for performing word recognition on the Aurora-2 corpus. They modeled the gestures

as discrete hidden random variables and the acoustic features as the observations in

the gesture based DyBN. Word recognition results showed that incorporating gesture

information improved the ASR performance compared to acoustic only systems in

the noisy test conditions.

Thus, based on the literature survey we observe that there has been

considerable effort to perform speech inversion and articulatory feature based ASR

in the speaker dependent setting. Most speaker independent ASR experiments have

been performed with articulatory features from speech inversion systems trained
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on synthetic data. In this thesis we propose to perform a careful analysis of

the variability in the acoustic and articulatory space. We plan to explore the

speaker variability, by performing speech inversion experiments on the XRMB data

(Westbury, 1994) which consists of speech and articulatory data from 46 different

speakers of American English. We then plan to explore the variability in speech

that occurs due to varying rate of speech. We will analyze a recently recorded

EMA articulatory database consisting of utterances at fast and normal speaking

rates. Articulatory gestures have so far been defined theoretically based on phone

identities or from the TADA model. To the best of our knowledge, there has been

no effort to define gestures for real articulatory trajectories. We propose to define

articulatory gestures using the kinematics of the real articulatory data and perform

gesture recognition. Finally, we will evaluate our articulatory features by performing

phone recognition experiments on the Wall Street Journal and TIMIT datasets. �
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Chapter 3

Acoustic to articulatory speech inversion

3.1 Overview

The lungs, glottis, velum, tongue, lips, teeth etc. are the major organs that

are actively involved in the speech production process. These organs are called

articulators. The vibration of the vocal folds or the lack of it determines if the

sound is periodic or not. The vocal tract acts like an acoustic tube that modulates

the glottal source waveform leading to the resonances that are characteristic of any

phoneme. The various phonemes of any language are the outcome of the different

vocal tract shapes along with the state of the vocal folds. Thus, speech is produced

by the movement of these articulators, molding the shape of the vocal tract to

produce the series of phonemes which make up the building blocks of language.

Figure 3.1 shows a schematic of the physical processes that are involved in speech

production.

3.2 Modes of measuring articulatory data

There are different ways to measure real articulatory data. The earliest

attempts measured the contact of the tongue with the hard palate using

Electropalatography (EPG) (Hardcastle, 1972). This technique shows just an array
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Figure 3.1: Schematic of physical processes involved in speech production (Denes
and Pinson, 2015)

of points on the hard palate that are in contact with the tongue. Without tongue

constriction, we don’t get much information about the shape of the tongue or the

vocal tract. A mid-saggital view of the vocal tract gives a better picture of its shape.

X-ray Microbeam (Westbury, 1994) is a technique that gives a midsaggital view of

the vocal tract. In this technique, gold pellets are placed at various points along

the vocal tract of a subject and the motions of these pellets are tracked using X-ray

photographs as the subject is speaking. One of the earliest datasets measuring

articualtory movement at multiple points of various articulators along the vocal

tract is the University of Wisconsin X-ray microbeam (XRMB) database (Westbury,

1994).

Electromagnetic Articulography (EMA) (Schönle et al., 1987) is a more

commonly used method in speech production research. EMA tracks the movement

of electromagnetic pellets placed at different points along the vocal tract as a subject

speaks. EMA is known to have a good time resolution of tracking the articulator
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movements. EMA articulatory data is typically measured at 200Hz sampling rate

and downsampled to 100Hz for analysis. The XRMB dataset samples different

sensors at different sampling rates because of their limit of 700 samples per second

of aggregate sampling rate across all pellets. They sample the T1 (Tongue tip)

pellet with the highest sampling rate of 160Hz and the UL (Upper Lip) pellet with

the lowest sampling rate of 40Hz (Westbury, 1994). All the sampled pellet data are

resampled to 200Hz. In both the EMA and XRMB methods, the dataset consists

of speech signals with simultaneously recorded trajectories (X-Y positions on the

mid-sagittal plane) of the pellets placed along the vocal tract. These trajectories

are referred to as pellet trajectories. A more recent method using real time Magnetic

Resonance Imaging (rt-MRI) (Narayanan et al., 2004) was developed to image the

complete mid-sagittal view of the vocal tract. Rt-MRI has a high spatial resolution

but a low temporal resolution. The rt-MRI databases consist of video of MRI images

recorded simultaneously with speech. Figure 2.1 shows a frame from each of these

different methods of measuring articulatory information. Apart from these real

articulatory data, a discrete manner and place based articulatory features based on

phonetics was defined by (Kirchhoff, 1999). This thesis does not deal with discrete

articulatory representations.

3.3 Tract Variables and Gestures

Tract variables are another form of representation of articulatory data that

is derived from the TAsk Dynamics and Applications (TADA) model (Nam et al.,
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2004) of speech production. The TADA model is based on the theory of Articulatory

Phonology (Browman and Goldstein, 1992) that defines speech as a constellation

of coordinated articulatory gestures. Speech gestures can be defined as constricting

actions for distinct organs/constrictors (lips, tongue tip, tongue body, velum and

glottis) along the vocal tract. Each gesture is dynamically coordinated with a set

of appropriate articulators. A word can be defined as a constellation of distinct

gestures (gestural scores). Given the ARPABET transcription of an English word,

the TADA model computes the gestural scores along with the inter-articulatory

gestural coordination to produce the word and outputs the time functions of the

vocal tract variables (TVs: degree and location variables of the constrictors) and

model articulator variables. The Matlab implementation of TADA, interfaces

with the HLSyn (Hanson and Stevens, 2002) speech synthesis toolkit to synthesize

speech from the parameters generated by TADA. Thus, the TADA model provides

a working theoretical framework for speech production. The vocal tract time

functions or Tract Variables (TVs) are time-varying physical realizations of gestural

constellations at the distinct vocal tract sites for a given utterance. These TVs

describe geometric features of the shape of the vocal tract tube in terms of

constriction degree and location. Each TV has its corresponding gestural score

in the gestural space. There are eight TVs as defined by the TADA model. They

relate to the lips, tongue, jaw, glottis, and velum. Table 3.1 lists the different TVs

along with their associated articulators. Figure 3.2 shows the theoretical definition

of TVs plotted on a model of the vocal tract defined by TADA.

Figure 3.3 shows the gestural activations and TVs for the utterance “miss you”
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Table 3.1: Constriction organ, tract variables and their associated model articulators
Constriction organ Tract variables Articulators

Lip
Lip Aperture (LA) Upper lip, lower lip, jaw

Lip Protrusion (LP)

Tongue Body
Tongue body constriction degree (TBCD) Tongue body, jaw

Tongue body constriction location (TBCL)

Tongue Tip
Tongue tip constriction degree (TTCD) Tongue body, tip, jaw

Tongue tip constriction location (TTCL)

Velum Velum (VEL) Velum

Glottis Glottis (GLO) Glottis

obtained from TADA. A gestural score is a binary parameter which defines whether

a gesture is active or not at a given time instant. The gestural scores are shown as

shaded regions of the TVs, and the active gestures during consonants are outlined

by a green rectangle, and the active gestures during vowels are outlined by a black

rectangle in Figure 3.3. The TVs are shown as continuous curves in the background

of Figure 3.3.

Although the TADA model is a sound theoretical model for speech production,

it is currently not possible to produce the amount of variability observed in real

speech using TADA. Both the synthetic speech and TVs do not exhibit the variability

observed in real speech. As a result, the focus of this thesis is on real speech and

articulatory data collected from subjects. We have developed methods to convert the

X-Y pellet trajectories from XRMB and EMA to Tract Variables (Nam et al., 2012)

(Sivaraman et al., 2015b)(Sivaraman et al., 2017). Absolute positions of the points
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Figure 3.2: Schematic showing TADA model’s definition of TVs

Figure 3.3: Gestures and TVs for the utterance “miss you”. Active gestures are
marked by colored blocks and the corresponding TVs are smooth curves
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along the vocal tract are sensitive to the anatomy of the speaker and head pose

variations. Although head poise variations can be corrected in post processing, the

anatomical differences like tongue length and shape, vocal tract length, lip aperture

etc. persist in the pellet trajectories. TVs are relative measures that determine the

location and degree of constrictions performed by the articulators. Such relative

measures are robust to anatomical variations and are more directly related to the

targets of speech production tasks. Another advantage of converting pellet data

to TVs is that we can define articulatory gestures as described in Articulatory

Phonology (Browman and Goldstein, 1992). Although, the TVs obtained from

real articulatory data look different from synthetic TVs, we can still observe the

same phenomena of coarticulation as temporal overlap of consecutive gestures and

deletion and reduction as gestures with unfulfilled articulatory targets.

3.4 The X-ray microbeam (XRMB) articulatory dataset

The Wisconsin X-ray Microbeam (XRMB) database (Westbury, 1994) consists

of naturally spoken utterances – isolated sentences and short paragraphs. The

speech data was collected from 32 males and 25 female subjects along with X-ray

microbeam cinematography of the mid-saggital plane of the vocal tract with pellets

placed at points as shown in Figure 3.4. The trajectory data are recorded for the

individual articulators: Upper Lip, Lower Lip, Tongue Tip, Tongue Blade, Tongue

Dorsum, Tongue Root, Lower Front Tooth (Mandible Incisor), Lower Back Tooth

(Mandible Molar). We call these trajectories as pellet trajectories. A common
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Figure 3.4: Positions of pellets in the XRMB database (Westbury, 1994)

problem with articulatory recordings of this type is the mistracking of pellets or the

pellets falling off while recording. Such problems were encountered in the XRMB

recordings and were marked as mistracked segments. These segments were removed

from the database before using it for our analysis.

3.4.1 Converting XRMB pellets to Tract Variables (TVs)

The X-Y positions of the pellets are closely tied to the anatomy of the

speakers. Speech production involves the shaping of the vocal tract by producing

constrictions at different places along the vocal tract using the articulators. Hence,

the quantification of the vocal tract shape is better performed by the location and

degree of these constrictions than the X-Y positions of the pellets. The TVs are a

relatively speaker independent representation of articulations. They also provide us

a theoretical framework to analyze speech production with the theoretical framework
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Figure 3.5: Schematic of transformation of XRMB database from pellets to TV
trajectories.

of articulatory phonology. Hence, the pellet trajectories were converted to TV

trajectories using geometric transformations as outlined in (Mitra et al., 2012). Thus

the transformed XRMB database consists of 21 males and 25 females, with a total of

4 hour hours of speech data with corresponding 6 TV trajectories. The TVs obtained

from the seven pellet trajectories were – Lip Aperture (LA), Lip Protrusion (LP),

Tongue Body Constriction Location (TBCL), Tongue Body Constriction Degree

(TBCD), Tongue Tip Constriction Location (TTCL) and, Tongue Tip Constriction

Degree (TTCD). A rough schematic of the transformation is shown in Figure 3.5

3.5 Deep Neural Network based approach to speech inversion

Section outlined different approaches to acoustic-to-articulatory speech

inversion. Based on the comparison of the different machine learning algorithms
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(Mitra et al., 2010a), we chose Artificial Neural Networks (ANN) to be the best

suited approach for estimating TVs from speech. This is a function mapping

approach to speech inversion where the frame wise input acoustic features are

mapped to frame wise measurements of TVs which represent the instantaneous

configuration of the vocal tract. With the advent of Deep Neural Networks (DNN),

faster learning strategies and higher computational power, it has been shown that

deep architectures can represent certain families of functions more efficiently than

shallow ones (Bengio and Lecun, 2007). Hence we explore feedforward DNNs for

learning the mapping from acoustics to TVs.

A DNN can have M inputs and N outputs; hence, a nonlinear complex

mapping of M vectors into N different functions can be achieved. In such an

architecture, the same hidden layers are shared by all N outputs, giving the DNN

the implicit capability to exploit any correlation that the N outputs may have

amongst themselves. The feed-forward DNN used in our study to estimate the

TVs from speech were trained with back propagation using a stochastic gradient

descent algorithm.

The system shown in Figure 3.6 outlines the blocks involved in the speech

inversion system design. The details of the speech inversion system are given in the

next few subsections.
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Figure 3.6: Block diagram of the speech inversion system

3.5.1 Data preparation

The XRMB data was used to train the neural networks for the speech

inversion. The dataset used for this thesis consists of the XRMB utterances with

the time aligned TVs namely – Lip Aperture (LA), Lip Protrusion (LP), Tongue

Body Constriction Location (TBCL), Tongue Body Constriction Degree (TBCD),

Tongue Tip Constriction Location (TTCL) and the Tongue Tip Constriction Degree

(TTCD). The TVs were obtained from the pellet trajectories using the method

described (Nam et al., 2012). The Glottis (GLO) and Velum (VEL) tract variables

are not present in the dataset because the XRMB data does not contain any

measurement of the positions of vocal cords and velum. All non-speech silences were

removed from the XRMB data using the phone transcriptions obtained from phone

alignments. The XRMB data has many mistracked segments due to pellet fall and

tracking errors. All files containing mistracked segments in the middle of utterances

were removed. Files having mistracking in the beginning and/or end of utterances

were truncated to remove the mistracked segments. After all the preparation, the

usable XRMB dataset contained 4 hours of data from 46 different speakers.
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3.5.2 Feature extraction

The utterances were downsampled to 8 kHz. The input features to the

neural network were varied and compared. We experimented with different

acoustic features – MFCC, Perceptual Linear Prediction (PLP) and mel-spectrum

(MELSPECT). Single hidden layer neural networks to estimate TVs were trained

for each feature type and the best performing feature was chosen for fine tuning. For

MFCCs, 13 cepstral coefficients were extracted using a Hamming analysis window

of 20ms with a frame rate of 10ms. The TVs and MFCCs were mean and variance

normalized to have zero mean and a variance of 0.25. Two different methods of mean

and variance normalization were performed and compared. The mean and variance

normalization was performed separately for every speaker in the database. This

ensured some normalization of inter-speaker variations in measurements of acoustics

and articulations. The MFCCs were then contextualized by concatenating every

other feature frame within a 350ms window. This amounted to 8 frames of MFCCs

on either side of each frame being concatenated to form the contextualized MFCC

features. While splicing the frames, we skipped two frames, thus concatenating

every other frame within a 35 frame window centered at the current analysis frame.

The experiments with other features were performed by adding the same amount of

context as for MFCCs.
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3.5.3 DNN Training

For the ANN-based TV estimator, the input dimension was 221 for MFCC

features (= 13 MFCCs x 17 frames) and the output dimension was 6 (= 6 TVs).

The speakers in the dataset were split into train, development and test sets. 36

speakers were assigned for training, and 5 each for development and test sets. The

splitting of speakers was random such that the training set consisted of no more

than 80% of the utterances and the test and development sets contained nearly an

equal number of utterances because the number of utterances from each speaker is

not the same due to mistracked segments. A three hidden layer neural network was

trained. First, a DNN with 1024 neurons in each hidden layer was trained with

different acoustic features as inputs. The best performing feature on the XRMB

cross-validation set was selected and then the network parameters like number of

hidden layers and number of neurons in each layer were tuned. Networks with

different numbers of hidden-layer neurons (128 to 1024) were trained, and among

them the best performing network on the cross-validation set was chosen. It was

observed that the outputs of the neural network were not as smooth as the original

TVs. TVs being vocal tract movements are necessarily smooth signals. Hence,

a low-pass Kalman smoothing was performed to remove estimation noise by the

neural network. The performance of the TV estimator was measured by computing

the Pearson Product Moment Correlations (PPMC) of the estimated TVs with the

groundtruth TVs on the test set.

r =

∑n
1 (xi − x̄)(yi − ȳ)√∑n

1 (xi − x̄)2
√∑

(yi − ȳ)2
(3.1)
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The Kalman smoothed TVs showed high correlation with the original TVs and lower

mean squared error (MSE).

3.5.4 Results of speaker independent speech inversion

As described in the previous section, 3 hidden layer neural networks with

1024 neurons each were trained to estimate TVs using three different types of

acoustic features. The acoustic features we considered for our experiment were Mel

Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), and

Mel-Spectrogram (MELSPECT) features. The MFCC and PLP features were 13

dimensional cepstral coefficients per frame. The MELSPECT feature contained 40

mel-filterbank energies for every frame. For each of these features, the analysis frame

width was 20ms and the shift was 10ms. The input features were contextualized by

concatenating 8 frames on either side. The results on the XRMB cross validation

set from these experiments are presented in Table 3.2. The results are Pearson

correlations between actual and estimated TVs.

Based on the results shown in Table 3.2, the TV estimator performed best

with MFCCs. As a result, MFCCs were used for all further experimentation. We

next focused on tuning the DNN parameters for the MFCC feature based speech

inversion system. We trained DNNs with 1, 2, 3, 4, and 5 hidden layers with

128, 256, 512, 1024, and 2048 neurons in each layer. Thus we trained 25 such

DNNs for mapping contextualized MFCCs to TVs. We computed the correlation

between actual and estimated TVs for the cross-validation set and selected the best
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Table 3.2: TV estimation Correlation results for different input features

MFCC PLP MELSPECT

LA 0.799 0.790 0.748

LP 0.670 0.654 0.633

TBCL 0.874 0.866 0.826

TBCD 0.749 0.746 0.671

TTCL 0.765 0.753 0.681

TTCD 0.864 0.867 0.809

Average 0.787 0.779 0.728

performing configuration. Figure 3.7 shows the plot of the correlations for different

network configurations. Based on the plot, we can see that a 5-layer DNN with 512

nodes in each layer performed the best. The performance of the networks beyond 5

hidden layers saturated and hence we limited our DNN to 5 hidden layers.

Table 3.3 shows the correlation results for different modes of mean and variance

normalizations. In the global mean (ALLNORM) and variance normalization

scheme, all the MFCCs and TVs from the XRMB database were normalized

with the global mean and variance estimated from all the utterances. In the

speaker-specific normalization approach, the MFCCs and TVs were mean and

variance normalized separately for each speaker. The correlation results comparing

both these normalization approaches are shown in 3.3.

From Table 3.3, it can be inferred that the speaker-specific mean and variance

normalization performs better. This makes sense because each speaker’s acoustic
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Figure 3.7: Results of varying DNN parameter (layers and number of nodes) on
XRMB cross-validation set

Table 3.3: Comparison of mean-variance normalization techniques

ALLNORM SPKNORM

LA 0.639 0.799

LP 0.818 0.670

TBCL 0.731 0.874

TBCD 0.605 0.749

TTCL 0.529 0.765

TTCD 0.863 0.864

Average 0.698 0.787

cluster might be centered at a different mean value with a different variance. In the

TV domain, there might still be a significant amount of speaker variation due to

differences in mean articulatory positions, length of the tongue, range of LA, LP etc.

46



Thus, normalizing separately for each speaker suppresses the anatomical variations

in the TVs.

After performing the fine tuning of the speech inversion system the final best

performing neural network architecture was a 5 hidden layer DNN with 512 nodes

in each layer. The feature and target normalization chosen was SPKNORM. We

will call this speech inversion system as XRMB TV estimator (alternatively, as

XRMB speech inversion system) and will be used for various other experiments

in the upcoming chapters. The Pearson correlation results of the XRMB speech

inversion system are shown in Table 3.4. An example plot of the estimated and

actual TVs for an utterance from the XRMB test set has been shown in Figure 3.8

Table 3.4: Correlation results for the final XRMB speech inversion system

LA LP TBCL TBCD TTCL TTCD Average

Crossval set 0.809 0.678 0.873 0.761 0.769 0.877 0.794

Test set 0.856 0.613 0.866 0.745 0.707 0.907 0.782

3.6 Discussion

As seen in Figure 3.8, the estimated TVs agree with the actual TVs on most

places except a few regions where they are incorrect. We observed that the estimated

TVs were more accurate for the phonemes where the concerned articulator is critical

for the phoneme’s production. This is due to the critical articulator phenomenon

due to which movements of articulators that are critical for the production of a

phoneme are more precise (less variable) compared to those that are not critical for
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Figure 3.8: Example plot of estimated (red) and actual (blue) TVs for a test set
utterance - “Combine all the ingredients in a large bowl”

the production of the phoneme. This is one of the reasons that limit the performance

of the speech inversion systems. The variability in the non-critical articulators is

compounded when the articulatory data contains multiple speakers.

3.7 Summary

This section discusses the details of the development of a speaker independent

speech inversion system on the XRMB dataset. We explored several acoustic

features for the speech inversion problem and found that MFCCs are the best

acosutic features for learning the acoustic-to-articulatory mapping. We also

performed fine tuning of the DNN parameters for the speech inversion using MFCCs

as front ends. This speech inversion syhstem, trained on 36 speakers from the XRMB

dataset is the first known multi-speaker speaker independent speech inversion
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system. The network thus trained can be used to estimate the articulatory features

for any speech utterance. A user friendly tool has been developed in Python to easily

extract the TVs for any speech waveform of interest using this trained DNN. It can

be downloaded from https://github.com/ganesa90/speech-inversion-dnn. A

real-time version of the speech inversion system was also developed for a demo and

has been made available for download - https://github.com/ganesa90/speech_

inversion_rt
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Chapter 4

Speech inversion performance across speech variability

4.1 Overview

In this chapter we consider different variabilities of speech and evaluate the

performance of speech inversion under those variabilities

4.2 Speaker Variability

4.2.1 Cross speaker performance of speaker dependent systems

It was observed that the acoustic and articulatory variability across speakers

was affecting the performance of the speaker independent speech inversion. In order

to explore the speaker variability, speaker dependent systems were trained on 10

speakers (5 males and 5 females). The correlation results for the speaker dependent

systems for the 10 chosen speakers are shown in Table 4.1 Comparing the numbers

from Table 3.3 and Table 4.1, we observe that a speaker dependent speech inversion

system is more accurate compared to a speaker independent system. However,

the performance of the speaker dependent systems across speakers is mediocre.

We tested each speaker dependent system using the test sets of the remaining 9

speakers. Table 4.2 shows the average correlation across the 6 TVs for the cross

speaker tests performed on the speaker dependent systems. The cross speaker
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test correlations in Table 4.2 highlight the inter-speaker variability of the acoustic

and articulatory spaces. The cross-speaker performance of the speaker-dependent

systems also showed a clear trend of gender dependence where the female models

performed better on female test sets as opposed to the male models.

Thus, one approach to improve the performance of the speaker independent

inversion system is to take advantage of data from multiple speakers and domains

and perform speaker normalization. The upcoming sections will discuss a speaker

normalization approach for speech inversion.

Table 4.1: Correlation results for speaker dependent speech inversion systems
Spk ID Gender LA LP TBCL TBCD TTCL TTCD Average

Spkr 1 JW12 M 0.837 0.821 0.908 0.828 0.792 0.905 0.848

Spkr 2 JW14 F 0.826 0.698 0.927 0.840 0.864 0.902 0.843

Spkr 3 JW24 M 0.824 0.769 0.907 0.773 0.764 0.827 0.811

Spkr 4 JW26 F 0.814 0.825 0.908 0.785 0.804 0.900 0.839

Spkr 5 JW27 F 0.795 0.796 0.878 0.774 0.733 0.893 0.811

Spkr 6 JW31 F 0.851 0.782 0.922 0.850 0.809 0.906 0.853

Spkr 7 JW40 M 0.779 0.551 0.906 0.749 0.833 0.869 0.781

Spkr 8 JW45 M 0.834 0.785 0.896 0.804 0.845 0.866 0.838

Spkr 9 JW54 F 0.758 0.529 0.879 0.760 0.884 0.848 0.776

Spkr 10 JW59 M 0.806 0.769 0.909 0.806 0.815 0.882 0.831

4.2.2 Speaker Normalization to combat acoustic variability

The mapping from acoustics to articulations is known to be highly non-linear

and non-unique (Qin and Carreira-Perpiñán, 2007). Adding speaker variability
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Table 4.2: Cross speaker correlation results for speaker dependent speech inversion

systems
HHHHHHHHHHH
Train

Test Spkr1

(M)

Spkr 2

(F)

Spkr 3

(M)

Spkr 4

(F)

Spkr 5

(F)

Spkr 6

(F)

Spkr 7

(M)

Spkr 8

(M)

Spkr 9

(F)

Spkr10

(M)

Spkr 1 (M) 0.847 0.539 0.617 0.512 0.384 0.288 0.540 0.596 0.535 0.602

Spkr 2 (F) 0.548 0.844 0.494 0.637 0.577 0.486 0.335 0.437 0.620 0.487

Spkr 3 (M) 0.655 0.558 0.808 0.480 0.319 0.257 0.548 0.605 0.519 0.654

Spkr 4 (F) 0.539 0.593 0.457 0.837 0.585 0.576 0.314 0.409 0.602 0.412

Spkr 5 (F) 0.429 0.589 0.304 0.596 0.813 0.658 0.142 0.169 0.526 0.320

Spkr 6 (F) 0.310 0.490 0.183 0.553 0.606 0.852 0.116 0.114 0.386 0.132

Spkr 7 (M) 0.518 0.323 0.473 0.306 0.195 0.142 0.784 0.559 0.375 0.459

Spkr 8 (M) 0.600 0.487 0.626 0.378 0.197 0.050 0.586 0.838 0.522 0.633

Spkr 9 (F) 0.591 0.612 0.484 0.626 0.550 0.444 0.425 0.484 0.777 0.519

Spkr 10 (M) 0.616 0.527 0.613 0.441 0.313 0.208 0.505 0.612 0.503 0.829

to the already challenging problem makes it even more difficult. Most research

in speech inversion has been focused on developing accurate speaker dependent

systems. Approaches like codebook search (Atal et al., 1978), feedforward neural

networks (Mitra et al., 2010a), and Mixture Density Networks have been found to

work well for speaker dependent speech inversion. There have been a few attempts to

perform speaker independent speech inversion (Afshan and Ghosh, 2015) (Ji, 2014)

which have been limited to two speakers from the MOCHA TIMIT dataset (Wrench

and Richmond, 2000). Hueber et al. (Hueber et al., 2015) presents a Gaussian

mixture regression based speaker adaptation scheme for a Gaussian Mixture Model

(GMM) based speech inversion system. However, there has not to date been any

effort in performing speaker adaptation for artificial neural network based speech

inversion systems. This section presents a Vocal Tract Length Normalization
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(VTLN) based approach to speaker adaptation for speech inversion. VTLN is a

popular speaker adaptation technique in ASR which has so far not been applied to

speech inversion.

Vocal Tract Length Normalization (VTLN) (Eide and Gish, 1996) using a

piecewise linear warping function is a commonly adopted approach for speaker

adaptation in speech recognition. We applied VTLN in a maximum likelihood

framework to adapt the acoustic features of the mismatched speakers to the target

speaker. In order to perform VTLN, a speaker dependent acoustic space using

Gaussian Mixture Models (GMM) was trained for all the 10 speakers.

The experiments in this paper are performed on a set of 10 speakers from the U.

Wisconsin X-ray Microbeam (XRMB) database (Westbury, 1994). The articulatory

features are represented by six tract-variable (TV) trajectories (described below).

Using a leave-one-out methodology, separate experiments were performed for each

speaker in which the acoustic features from the other 9 speakers were transformed

using the VTLN approach. The transformed acoustic features were then used to

train a speech inversion system. The performance of the system trained on VTLN

adapted acoustic features was compared to the performance of speaker dependent

systems. The performances of the individual systems were compared using the

correlation between the estimated and the actual TVs on the target speaker’s test

set. More details of the speech inversion system training and the experiments are

provided in the upcoming sections
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Figure 4.1: Training of GMM speaker acoustic spaces

4.2.2.1 Speaker acoustic spaces

Thirteen dimensional MFCCs with slope and acceleration were used as acoustic

features for modeling the speaker acoustic spaces. Gaussian Mixture Models

(GMMs) with 64 Gaussian components were trained on the 39 dimensional MFCC

features. The diagonal covariance GMMs were trained iteratively by increasing

the number of Gaussians from 2 to 64 by doubling the number of components in

each stage. The GMM training routines were obtained from the MSR Identity

Toolbox v1.0 (Sadjadi et al., 2013). Thus, such GMMs were trained for each of

the 10 speakers chosen for the cross-speaker evaluation. Figure 4.1 shows the block

diagram of the system used to train unsupervised speaker acoustic spaces. The

training is unsupervised becausse we don’t use any kind of phone alignments for

training phone-wise GMM like in HMM based ASR. Instead we let the GMMs fit

the distribution of the acoustic features for each speaker. A visualization of the

speaker acoustic spaces is shown in Figure 4.2. Each model λi is a 64 component

GMM modeling the distribution of MFCCs for speaker Si.
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Figure 4.2: A schematic representation of the speaker acoustic spaces

4.2.2.2 Maximum Likelihood based VTLN

Vocal Tract Length Normalization (VTLN) aims to compensate the effects of

different vocal tract lengths by warping the frequency spectrum in the filterbank

analysis before the computation of the cepstral coefficients. This warping can be

implemented by a simple piecewise linear warping function as shown in Figure 4.3.

The warping factor � determines the nature of the warping function. The warping is

implemented between the lower boundary of frequency analysis (LOFREQ) and the

upper boundary of frequency analysis (HIFREQ). In order to adapt the acoustic

features of speaker Si to speaker Sj, a single warping factor αij is used for all

utterances from speaker Si. The warping factor �ij is determined by a maximum

likelihood approach as outlined below.

Let the GMM acoustic model for speaker Sj be λj, and the warped acoustic

features for the tth time frame of an utterance of speaker Si to the target speaker
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Figure 4.3: Frequency warping function implemented in HTK toolkit (Young et al.,
2009)

Sj be xij(t). Then, the most likely warping factor αij is given by-

αij = argmax
α

N∑
t=1

log(P (xij(t)|λj, α)) (4.1)

In the equation 4.1
∑N

t=1 log(P (xij(t)|λj, α)) is the log likelihood of the

transformed features of speaker Si with respect to speaker Sj’s acoustic model.

The optimal αij is obtained by sweeping the value of αij from 0.8 to 1.2 in steps of

0.025. Using the optimal αij, we compute the speaker adapted acoustic features for

speaker Si adapted to speaker Sj.

4.2.2.3 Speech inversion system

We trained speech inversion systems using a single hidden layer feed-forward

neural network. Since only small amounts of data were available for each speaker,

single hidden layer networks were chosen as the architecture. The inputs to the
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neural network were the 13 dimensional MFCCs contextualized with MFCC features

from 8 frames on either side. Thus, the input dimension was 13x17 = 221. The

outputs of the network were six dimensional TVs. We trained networks with 100,

200, 300, 400 and 500 nodes in the hidden layer and selected the best performing

network based on performance on the test set. The outputs of the trained neural

network were found to be noisy. The outputs were smoothed using a Kalman

smoothing technique to obtain smooth TV estimates. 3.6 shows the block diagram

of our speech inversion system.

4.2.2.4 Experiments

Speaker transformed datasets: Using the VTLN method described in Section

4.2.2.2, each speaker’s data was transformed to each of the other 9 speakers’

data. Thus, for each speaker, we have 10 sets of data – 1 from the speaker

and other 9 transformed to the target speaker from the other 9 speakers using

VTLN. The following figure shows the schematic of the transformation procedure

for transforming data from speakers Sb...Sj to speaker Sa’s acoustic space to create

the transformed datasets Sba...Sja. In this way, we created 90 transformed datasets

tailored to each of the 10 speakers’ acoustic spaces. 4.4 shows the schematic of the

procedure adopted to create the speaker transformed datasets.

Speech inversion systems trained on speaker transformed datasets: We trained four

types of speech inversion systems for each speaker as described in Section 4.2.2.3.

The following are the descriptions of the different inversion systems trained.
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Figure 4.4: Schematic of speaker transformed datasets creation

•SD: 10 Speaker Dependent (SD) speech inversion systems.

•Sys1: For each speaker, data from other 9 speakers were randomly chosen

to match the amount of data from the target speaker and an inversion system was

trained. In total, 10 such systems were trained. For example, for speaker ‘a’, data

from Sb...Sj was randomly sampled to match the amount of data in Sa

•Sys2: For each speaker, VTLN transformed data from other 9 speakers were

randomly chosen to match the amount of data from the target speaker and an

inversion system was trained. In total, 10 such systems were trained. For example,

for speaker ‘a’, data from Sba...Sja was randomly sampled to match the amount of

data in Sa

•Sys3: For each speaker, data from the target speaker and the VTLN

transformed data from other 9 speakers were randomly chosen to match the amount

of data from the target speaker and an inversion system was trained. In total, 10

such systems were trained. For example, for speaker ‘a’, data from Sa, Sba...Sja

58



was randomly sampled to match the amount of data in Sa. The difference between

System3 and System2 is that System3 has some of the target speaker’s data in the

training set.

In total, 40 speech inversion systems were trained. In the above described

systems, the amount of training data for each system was kept the same in order to

have a fair comparison with the SD system. However the transformed data available

for each target speaker was about 10 times more because of the other 9 speakers’ data

put together. We created versions of Systems 1, 2, and 3 using all the transformed

data. We call these systems Sys1_alldata, Sys2_alldata, and Sys3_alldata.

4.2.3 Results of Speaker Normalization experiments

For each speaker, a test set containing 10% of the speaker’s data was created

which was kept separate from all the speech inversion training and VTLN procedure.

Each of the systems SD, System1, 2, and 3 were evaluated on each speaker’s test

set. The Pearson product Moment Correlation (PPMC) was computed between the

actual and estimated TVs. Table 4.3 shows the correlation results of all the speech

inversion systems across all speakers. The numbers show correlation values averaged

across all 6 TVs. The correlation for LP tract variable is the least and that for TBCL

is the highest. The performance of Sys1 is very poor compared to SD because

the training dataset for this system consists of a small number of utterances from

multiple speakers. Transforming the data from the other 9 speakers to the target

speaker’s acoustic space using the proposed VTLN approach provides an average
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of 7% absolute improvement in correlation over Sys1. The amount of improvement

in correlation varies across all speakers. Some speakers like JW14 and JW24 show

marginal or no improvement in the performance, whereas for JW31 we see a large

13% improvement. In order to see the influence of speaker specific training data

on the performance, we created Sys3 which contained a part of the target speaker’s

training set data. The overall amount of training data for Sys3 was kept same as the

amount of training data available for each target speaker. This provided an average

of 3% improvement in correlation compared to Sys2. However, the correlations of

Sys3 were still 13% below the average correlation of the SD systems. Figure 4 shows

the plots of the estimated and actual TVs for a randomly selected test utterance

from speaker JW26’s test set. Table 4.4 shows the correlation results for the speech

inversion systems trained with all the available data from the other 9 speakers.

These are the systems Sys1_alldata, Sys2_alldata and Sys3_alldata as described

in section 4.2.2.4. We observe that the results are much better than those in Table

4.3. The performance gain obtained by performing the VTLN adaptation is around

4% on an average above the correlation results of Sys1_alldata. It is interesting to

observe that adding all the training data of the target speaker, as done in the training

of Sys3_alldata provides a system that performs as well as the speaker dependent

SD systems. This demonstrates that adding VTLN adapted data from multiple

speakers does not degrade the performance of the speaker dependent systems.

In addition to training different speaker adapted speech inversion systems,

we also evaluated the VTLN based speaker adaptation approach by applying the

adaptation to cross-speaker tests. We evaluated each speaker dependent (SD) speech
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Table 4.3: Correlation results of SD, Sys1, Sys2, and Sys3 for all speakers

Speech

inversion

system

Average

amount of

training

data (mins)

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 Spk 9 Spk 10

Average
JW12 JW14 JW24 JW26 JW27 JW31 JW40 JW45 JW54 JW59

M F M F F F M M F M

SD 5.68 0.848 0.843 0.811 0.839 0.811 0.853 0.781 0.838 0.776 0.831 0.823

Sys1 5.68 0.669 0.659 0.608 0.631 0.556 0.507 0.560 0.615 0.635 0.642 0.608

Sys2 5.68 0.714 0.656 0.630 0.708 0.627 0.635 0.648 0.668 0.656 0.697 0.664

Sys3 5.68 0.738 0.699 0.715 0.738 0.660 0.708 0.583 0.685 0.687 0.717 0.693

Table 4.4: Correlation results of SD, Sys1_alldata, Sys2_alldata, and Sys3_alldata

for all speakers

Speech

inversion

system

Average

amount of

training

data (mins)

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 Spk 9 Spk 10

Average
JW12 JW14 JW24 JW26 JW27 JW31 JW40 JW45 JW54 JW59

M F M F F F M M F M

SD 5.68 0.848 0.843 0.811 0.839 0.811 0.853 0.781 0.838 0.776 0.831 0.823

Sys1_alldata 5.68 0.712 0.731 0.703 0.716 0.676 0.611 0.652 0.706 0.691 0.718 0.692

Sys2_alldata 5.68 0.755 0.748 0.736 0.773 0.710 0.698 0.709 0.730 0.714 0.753 0.733

Sys3_alldata 5.68 0.819 0.803 0.793 0.830 0.776 0.809 0.790 0.806 0.782 0.817 0.802

inversion system on the test sets of the other 9 speakers. This experiment was

similar to the one described in section 4.2.1 but in this case we used the speaker

adapted MFCC features of the test speakers instead of their original features. We

computed the correlation between the actual and estimated TVs using the Pearson

correlation. Table 4.5 shows the average correlations for cross speaker tests after

VTLN. We refer the reader to compare and contrast Table 4.5 with Table 4.2 which

shows the performance without the VTLN based speaker adaptation.

In order to easily visualize the performance of the speech inversion systems
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Table 4.5: Average correlations for cross speaker tests after VTLN. Each row

represents correlations of one speaker dependent system on the test sets of other

speakers
HHHHHHHHHHH
Train

Test Spkr1

(M)

Spkr 2

(F)

Spkr 3

(M)

Spkr 4

(F)

Spkr 5

(F)

Spkr 6

(F)

Spkr 7

(M)

Spkr 8

(M)

Spkr 9

(F)

Spkr10

(M)

Spkr 1 (M) 0.847 0.559 0.617 0.659 0.566 0.562 0.598 0.596 0.553 0.588

Spkr 2 (F) 0.605 0.844 0.586 0.637 0.593 0.581 0.472 0.557 0.620 0.625

Spkr 3 (M) 0.655 0.604 0.808 0.647 0.509 0.590 0.567 0.611 0.592 0.654

Spkr 4 (F) 0.657 0.612 0.625 0.837 0.589 0.610 0.563 0.630 0.629 0.668

Spkr 5 (F) 0.587 0.611 0.568 0.596 0.813 0.672 0.483 0.453 0.529 0.594

Spkr 6 (F) 0.601 0.586 0.580 0.604 0.639 0.852 0.423 0.452 0.508 0.548

Spkr 7 (M) 0.553 0.323 0.468 0.569 0.422 0.424 0.784 0.560 0.454 0.483

Spkr 8 (M) 0.600 0.568 0.626 0.677 0.475 0.450 0.584 0.838 0.622 0.639

Spkr 9 (F) 0.581 0.608 0.593 0.640 0.559 0.567 0.557 0.624 0.777 0.644

Spkr 10 (M) 0.600 0.611 0.607 0.665 0.564 0.575 0.549 0.621 0.619 0.829

with and without the speaker adaptation, we have plotted the correlation values as

gray-scale colors in Figure 4.5

4.2.4 Summary

Based on the results shown in Tables 4.3 and 4.4, we can conclude that the

amount of training data plays a great role in the accuracy of the speech inversion

system. Even if the data is from multiple speakers, more data is always good. The

VTLN speaker adaptation normalizes multiple speakers’ acoustic data to match

a target speaker. VTLN provides an average of 7% absolute improvement of

correlation (Sys1 to Sys2) on the speech inversion system trained on the 9 speakers’

dataset. Adding a small amount of the target speaker’s data in the training set
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Figure 4.5: Visualization of the cross speaker test correlations. Correlation of 1
corresponds to white and 0 corresponds to black

improves the correlation further by 3% over Sys2. In spite of performing VTLN, the

correlation performance of Sys2 trained on the transformed data is 16% poorer than

the Speaker dependent system. The systems trained with all data shows that having

more training data from multiple speakers can make the speech inversion system

better. The accuracy of Sys1_alldata is 10% poorer than SD due to the mismatch

between the acoustic spaces of the training speakers and the test speakers. With

the VTLN based transformation of the training data, the accuracy improves by

4%. This means our proposed adaptation technique helps reduce the mismatch

between the acoustic spaces. Adding all of the target speakers’ training data along

with the transformed data of the other 9 speakers’ does not degrade the speaker

dependent performance. This approach of transforming the training data from

multiple speakers to create multiple speaker adapted versions can be used to create

a model selection based approach to speech inversion. In such a system we will

have multiple speaker tuned models and then select the best matching model for

a test utterance based on a maximum likelihood speaker matching approach. In
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this chapter so far, we have examined the variability of speech and articulations

across speakers and developed a speaker adaptation approach to normalize the

speaker differences. The experiments in this chapter show that data from multiple

speakers can be normalized and combined to create better speaker independent

speech inversion systems. This approach can be extended to combine data from

different articulatory datasets to create a single improved speech inversion system.

4.3 Variability due to speaking rate

Speaking rate is a very common cause of variability in speech. Conversational

speech often involves varying speaking rates which significantly affect the accuracy

of ASR systems. The variability induced in the speech due to speaking rate is

predominantly due to casual and incomplete articulatory gestures. The effects of

speaking rate on speech are not uniformly manifested across all phonemes. Hence

it is not possible to study speaking rate effects by performing uniform time-scale

modification of speech. This section focuses on the study of speaking rate variability

from the perspective of articulatory representations. We collected concurrent

acoustic and articulatory data from eight speakers of American English speaking at

normal and fast rates. We then trained acoustic -to-articulatory inversion systems

to investigate the effects of speaking rate on the performance of the speech inversion

systems. Careful cross-speaker and cross speaking rate experiments show the effects

of speaking rate on the performance of speech inversion systems and also highlight

the acoustic and articulatory variability of speech due to speaking rates.
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4.3.1 The EMA-IEEE Articulatory dataset

A 5-D electromagnetic articulometry (EMA) system (WAVE; Northern

Digital) was used to record the 720 phonetically balanced Harvard sentences

(Rothauser et al., 1969) from eight speakers (4 males, and 4 females) at normal

and fast production rates. Participants produced each sentence twice, first at their

preferred ’normal’ speaking rate followed by a ’fast’ production (for a subset of

the sentences two normal rate productions were elicited). They were instructed

to produce the ’fast’ repetition as quickly as possible without making errors.

EMA trajectories were obtained at 100 Hz from sensors placed on the tongue (tip

(TT), body (TB), root (TR)), lips (upper (UL) and lower (LL)) and mandible,

together with reference sensors on the left and right mastoids, and upper and lower

incisors (UI, LI). The data were low-pass filtered at 5 Hz for references and 20 Hz

for articulator sensors, corrected for head movement and aligned to the occlusal

plane. Synchronized audio was recorded at 22050 Hz, using a directional shotgun

microphone placed 50 cm from the speaker’s mouth. Phone and word labels were

placed using the U. Pennsylvania forced aligner (Yuan and Liberman, 2008).

4.3.2 Conversion of EMA sensor positions to TVs

The EMA sensor trajectory data was converted to TVs using geometric

transformations. The TVs that we defined are described in Table 4.6. The
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transformations were computed using the following equations:

LA[n] =
√
(LLx[n]− ULx[n])2 + (LLz[n]− UL[n])2 (4.2)

LP [n] = LLx[n]− median
m∈allutterances

{LLx[m]} (4.3)

JA[n] =
√
(LIx[n]− ULx[n])2 + (LIz[n]− ULz[n])2 (4.4)

TTCD[n] = Min
x∈(−50,0)

{Dist(TT, pal(x))} (4.5)

TTCL[n] = median
m∈allutterances

{TTx[m]} − TTx[n] (4.6)

The nine TVs were: Lip Aperture (LA), Lip Protrusion (LP), Jaw Angle

(JA), Tongue Tip Constriction Location (TTCL), Tongue Tip Constriction Degree

(TTCD), Tongue Middle Constriction Location (TMCL) and Tongue Middle

Constriction Degree (TMCD), Tongue Root Constriction Location (TMCL) and

Tongue Root Constriction Degree (TMCD). LA was defined as the Euclidean

distance between the UL and the LL sensors as shown in equation 4.2. LP was

defined as the displacement along the x-axis of the LL sensor from its median

position as shown in equation 4.3. JA was defined as the Euclidean distance between

the UL sensor and the LI sensor as shown in equation 4.4. Two TVs were computed

for each tongue sensor - constriction degree and location. Constriction degree for

a tongue sensor was defined as the minimum distance between the sensor and the
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Figure 4.6: Transformation of EMA sensor positions to TVs

palate trace as shown in equation 4.5. This way the TTCD, TMCD, and TBCD

TVs were computed from the TT, TM and TB sensor positions and the palate trace.

The constriction location for a tongue sensor was defined as the displacement of the

sensor along the x-direction from its median position as shown in equation 4.6.

Thus, TTCL, TMCL, and TBCL were computed from the TT, TM, and TB sensor

positions.

4.3.3 Speech inversion experiments

The EMA articulatory data collected from the 8 subjects; each consisted of

720 utterances produced in fast and normal speaking rates. The total dataset

contains 7.05 hours of speech and concurrent articulatory trajectories. The 720

sentences from the IEEE dataset was randomly divided into 3 subsets for training,

cross-validation and testing. The training subset contained 576 sentences while

the test and cross-validation sets contained 72 sentences each. With this split of

67



Table 4.6: Definition of TVs from EMA sensors for the EMA-IEEE dataset
Tract Variables Meaning EMA Sensors involved

LA Lip Aperture LL, UL

LP Lip Protrusion LL

JA Jaw Angle LI, UL

TTCL Tongue Tip Constriction Location TT, palate

TTCD Tongue Tip Constriction Degree TT, palate

TBCL Tongue Body Constriction Location TB, Palate

TBCD Tongue Body Constriction Degree TB, Palate

TRCL Tongue Root Constriction Location TR, Palate

TRCD Tongue Root Constriction Degree TR, Palate

sentences, we created train, cross-validation and test sets for each of the 8 speakers

and the 2 speaking rates. Thus, we created 8 pairs (Normal and Fast rates) of

subsets from the EMA-IEEE dataset. Note that the same set of sentences were

used across all speakers for their respective train, cross-validation and test sets.

We trained several DNN based acoustic-to-articulatory speech inversion

systems using different combinations of the data subsets. We used 3-hidden layer

neural networks as the architecture for all our systems. Based on the amount of

training data, we varied the number of nodes in each hidden layer from 256 to 1024.

The speech inversion system remained same as the one shown in Figure 3.6. The

different speech inversion systems trained using the dataset are described in Table

4.7.

Table 4.8 shows the correlation results of the various speech inversion systems
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Table 4.7: Description of various speech inversion systems trained on EMA-IEEE

dataset

System Name Description

SD_N Speaker dependent Normal rate

SD_F Speaker dependent Fast rate

SD_all Speaker dependent all utterances

LOO_N Leave one speaker out Normal rate

LOO_F Leave one speaker out Fast rate

LOO_all Leave one speaker out all utterances

trained on the EMA-IEEE dataset. We observe that the accuracy of estimating TVs

for fast rate speech is at least 4% lower compared to the normal rate speech. This

difference in performance is due to the higher acoustic and articulatory variability

of the fast rate speech. When subjects speak fast they tend to be quick in their

articulations in order to increase the speaking rate thereby resulting in unmet

articulatory targets leading to coarticulations.

We finally trained a speech inversion system using all the training data (both

speaking rates) from all the speakers. This system was trained in order to estimate

TVs in the future for ASR experiments. We will refer to this system as the

EMA-IEEE speech inversion system in the future. Table 4.9 shows the correlation

between actual and estimated TVs on the complete test set (test sets of all speakers

at both speaking rates) for the EMA-IEEE speech inversion system.
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Table 4.8: Average correlation results of various speech inversion systems trained on

the EMA-IEEE dataset
LA LP JA TTCL TTCD TBCL TBCD TRCL TRCD Average

SD_N 0.819 0.771 0.852 0.841 0.862 0.806 0.886 0.770 0.802 0.823

SD_F 0.745 0.704 0.809 0.777 0.793 0.742 0.815 0.716 0.714 0.757

SD_all 0.788 0.739 0.829 0.810 0.827 0.772 0.861 0.749 0.760 0.793

LOO_N 0.713 0.627 0.778 0.708 0.771 0.675 0.786 0.625 0.616 0.700

LOO_F 0.656 0.562 0.730 0.681 0.720 0.648 0.743 0.601 0.609 0.661

LOO_all 0.697 0.601 0.766 0.698 0.751 0.668 0.776 0.620 0.611 0.688

Table 4.9: Correlations between actual and estimated TVs for the EMA-IEEE speech

inversion system

LA LP JA TTCL TTCD TBCL TBCD TRCL TRCD Average

0.869 0.771 0.891 0.815 0.856 0.790 0.884 0.722 0.826 0.825

4.3.4 Evaluation across speaking rates

To study the effect of speaking rate on speech inversion performance, we

evaluated the systems trained on the EMA-IEEE datasets across speaking rates.

We performed cross speaking rate evaluations on the speaker dependent (SD) and

speaker independent (LOO) speech inversion systems. For example, we evaluated

the SD_N system for each speaker on the fast utterances from the corresponding

speaker. Similarly, we evaluated the LOO_F system for each speaker with the

normal utterances of the corresponding left out speaker. This way we performed

cross speaking rate experiments with SD_N, SD_F, LOO_N, and LOO_F systems

for all 8 speakers in the EMA-IEEE dataset. We computed the average correlation
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between the actual and estimated TVs for each evaluation. The average correlations

for the matched and mismatched speaking rate experiments are shown in table —–.

Note that the matched speaking rate numbers are the same average correlation

numbers shown in Table 4.8.

Table 4.10: Correlations between actual and estimated TVs for matched and

mismatched speaking rate evaluations for various speech inversion systems trained

on the EMA-IEEE dataset. Numbers in brackets show the standard deviations of

the correlations.

Normal rate Fast rate

SD_N 0.823 (0.037) 0.749 (0.035)

SD_F 0.756 (0.080) 0.757 (0.073)

LOO_N 0.716 (0.063) 0.621 (0.048)

LOO_F 0.672 (0.035) 0.645 (0.053)

The results shown in Table 4.10 show that the systems trained on normal

rate speech perform similar to the fast rate trained systems on Fast rate speech.

However, the performance of fast speech trained systems is much poor on normal

rate speech compared to the normal trained systems. The reason for this disparity

in performance across speaking rates is due to the higher variability in the acoustic

and articulatory spaces in the fast rate speech data.
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4.4 Variability due to accent and language

The goal of this study is to assess how appropriate normalization and

deep and shallow neural network techniques may help in creating an adequate

speaker-independent acoustic-to-articulatory speech inversion system. To reliably

assess the performance of our system, we use articulatory data of more than

40 speakers collected in a research project investigating native and non-native

pronunciation of English (Wieling et al., 2015). Specifically, we focus on two subsets

of data collected in this project. The first subset consists of English and Dutch

utterances from 21 L1 Dutch speakers (NL data), whereas the second subset consists

of English utterances from 22 British English speakers (UK data). Both sets of data

contain simultaneously recorded acoustic and electromagnetic articulograpy (EMA)

data. Besides using the actual EMA sensor trajectories, we converted the sensor

trajectories to Tract Variables (TVs) (Saltzman and Munhall, 1989) using geometric

transformations (explained in Section 4.4.2).

We trained separate speech inversion systems on both the NL data as well as

the UK data to estimate the EMA sensor positions as well as the TVs. In order

to compute the accuracy of the speaker-independent speech inversion systems, we

trained and tested them using leave-one-speaker-out cross validation. For the NL

data, we trained separate speech inversion systems on exclusively Dutch utterances,

English utterances, and both Dutch and English utterances. In the following, we

compare the performance of these speaker-independent speech inversion systems

across the two datasets.
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4.4.1 Dataset description

4.4.1.1 EMA data

The data used in this study was collected to compare the pronunciation and

articulation of English by Dutch speakers to the English pronunciation of native

Southern Standard British English speakers (see also (Wieling et al., 2015)). The

articulatory data was collected on site (in Groningen, the Netherlands for the Dutch

speakers, and in London, UK for the native English speakers) using an NDI Wave

100 Hz 16-channel articulography device. For the articulatory data collection, three

sensors were attached to the midline tongue: one at about half a cm. behind the

tongue tip (TT), one about three cm. behind the TT sensor (TB), and the other

midway between TT and TB (TM). We further attached three sensors to the lips

and two to the teeth: one at the center of the upper lip (at the vermilion border;

UL), one at the center of the lower lip (at the vermilion border; LL), and the third in

the right corner of the lips (SL). The teeth sensors were attached to the lower incisor

(LI) and to the upper incisor (UI). To correct for head movement, we attached four

sensors to the head (left and right mastoid process and two at the front of the

head), and we used a biteplate with three sensors to rotate all other sensors to a

common coordinate system relative to the occlusal plane. The articulatory data was

synchronized with the acoustic data, which was collected using a sampling rate of

22.05 kHz (using an Audio Technica AT875R microphone).

In London, we collected data for 22 speakers, whereas we collected data for 21

speakers in Groningen, the Netherlands. For the Dutch speakers, the experiment
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consisted of two parts. In the first (native Dutch) phase of the experiment,

we collected articulatory and acoustic data when the speakers pronounced one

paragraph of text (the Dutch version of the North Wind and the Sun), which was

followed by the collection of pronunciation data for about 125 words and non-words

(in random order, all repeated twice). Each word was preceded and succeeded by a

schwa to ensure a neutral articulatory context at the beginning and end of the word

pronunciation. In the second (English) phase of the experiment, the participants

first pronounced two paragraphs of text (i.e. the North Wind and the Sun, and a

paragraph of text used in the Speech Accent Archive (Weinberger, 2010)), which

was followed by about 175 English words and non-words (in random order, each

repeated twice, and preceded and followed by the schwa). Finally, if there was still

time left, participants were asked to pronounce sentences from the Mocha-TIMIT

corpus (Wrench, 2000). For the native English speakers, there was no Dutch phase of

the experiment, but the individual words were pronounced both without the schwa

context and with the schwa context. In total, this resulted in about 185 minutes of

speech for the 21 Dutch speakers (NL data) and 235 minutes of speech for the 22

native English speakers (UK data).

The raw EMA data was corrected for head movement and aligned to the

occlusal plane. Missing sensor data (due to sensors which malfunctioned, or came

off during the experiment) was estimated using the algorithm outlined in (Qin and

Carreira-Perpiñán, 2010). In short, a probability density of the sensor positions was

estimated, and the missing sensor coordinates were approximated using conditional

distributions derived from the modeled density (Qin and Carreira-Perpiñán, 2010).
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4.4.2 Conversion of EMA sensors to Tract Variables

The specific EMA data greatly depends on the anatomy of the speaker and

the points where the sensors are placed. Vocal tract constriction variables, or tract

variables (TVs), are measures of constriction position and location along the vocal

tract. Instead of actual coordinates (x: anterior-posterior axis, z: inferior-superior

axis) of the sensors, the TVs represent relative positions of the articulators. We

converted the EMA sensor trajectories to ten TVs using geometric transformations

as shown in Figure 4.6. The ten TVs were: Lip Aperture (LA), Lip Protrusion

(LP), Lip Width (LW), Jaw Aperture (JA), Tongue Tip Constriction Location

(TTCL), Tongue Tip Constriction Degree (TTCD), Tongue Middle Constriction

Location (TMCL) and Tongue Middle Constriction Degree (TMCD), Tongue Root

Constriction Location (TMCL) and Tongue Root Constriction Degree (TMCD).

LA was defined as the Euclidean distance between the UL and the LL sensors.

LP was defined as the displacement along the x-axis of the LL sensor from its

median position. Lip Width (LW) was defined as the Euclidean distance between

the SL sensor and the centroid of the UL and LL sensors. JA was defined as

the Euclidean distance between the UL sensor and the LI sensor. Two TVs were

computed for each tongue sensor - constriction degree and location. Constriction

degree for a tongue sensor was defined as the minimum distance between the sensor

and the (automatically determined, data-driven) palate trace. This way the TTCD,

TMCD, and TBCD TVs were computed from the TT, TM and TB sensor positions

and the palate trace. The constriction location for a tongue sensor was defined

75



as the displacement of the sensor along the x-direction from its median position.

Thus, TTCL, TMCL, and TBCL were computed from the TT, TM, and TB sensor

positions.

4.4.3 Results

4.4.3.1 Leave one speaker out tests

Given the large number of speakers in the UK and NL data, we used

leave-one-speaker-out cross-validation (LOCV) to evaluate the speaker-independent

speech inversion performance within each dataset. These experiments were

performed for both subsets of data separately. The NL data, which consisted of

both English and Dutch utterances, was divided into three sets: Dutch utterances

(NL_dutch), English utterances (NL_english), and all utterances (NL_all). The

UK data only consisted of English utterances (UK_english). The LOCV tests were

performed for each of these four sets. Table 4.11 provides an overview of these

systems and the corresponding subsets of data. For the UK dataset, 18 speakers were

randomly selected for neural network training, 3 speakers were randomly selected

for the validation step (to determine the stopping criterion for the neural network

training), and finally the system was tested on the single remaining speaker (i.e. in

the LOCV approach, each speaker was included in the test set exactly once). For

the Dutch data, a similar approach was used.

The neural networks for the UK_english system had three hidden layers with

300 nodes in each layer. Due to the limited amount of Dutch utterances available
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in the NL data (see Table 4.11), the NL_dutch systems were trained with a single

hidden layer (with 300 nodes). Similarly, we restricted the number of hidden layers

to two (with 300 nodes in each layer) for the NL_english systems. The NL_all

systems, which were trained with both the English and Dutch utterances, were

given three hidden layers with 300 nodes in each layer. The LOCV experiments

were performed separately for estimating EMA sensor positions as well as TVs.

For the EMA sensor positions, we estimated the x and z coordinates for all the

sensors except for the SL sensor, for which we estimated the x and y (i.e. left-right)

positions. The average correlations (on the basis of the LOCV test set results) for

the EMA sensor positions are shown in Figure 4.7, whereas Figure 4.8 shows the

same for the TVs.

Table 4.11: Speech inversion systems and their training data

System name Data Amount of

data

UK_english English utterances from 22 UK English

speakers

235 min.

NL_dutch Dutch utterances from 21 L1 Dutch

subjects

60 min.

NL_english English utterances from 21 L1 Dutch

subjects

126 min.

NL_all English and Dutch utterances from 21 L1

Dutch subjects

186 min.
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Figure 4.7: Average (across all speakers) correlations between actual and estimated

EMA sensor positions. Error bars denote two standard errors.

Figure 4.8: Average (across all speakers) correlations between actual and estimated
tract variables. Error bars denote two standard errors.
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4.4.3.2 Cross-domain experiments

The performance of the speech inversion systems illustrated above shows

how well the system has learned to estimate the articulatory patterns of that

language. In this section, we report how well our speech inversion system is able

to perform in a cross-language setting. For this purpose, we evaluated how well a

system trained on the data from the UK English speakers was able to predict the

articulatory trajectories of the Dutch speakers (in accented English, Dutch, or both)

and vice versa. Instead of training on all data to obtain a new model, we used the

best-performing model from the LOCV approach.1 We evaluated the performance

of each of the four systems on all speakers on the basis of the other three subsets

of data. For example, the UK_english system was tested on every speaker from

the NL dataset (separately for the three subsets of data: Dutch only, non-native

English only, or both). The results of these experiments are presented in Tables 4.12

and 4.13 (for the EMA sensor positions: correlations and RMSE) and in Table 4.14

(for the TVs). Note that the values on the diagonals reflect the average LOCV

performance for each subset of the data shown in Figures 4.7 and 4.8.

4.4.4 Discussion

In this study we have shown that our system is able to model

speaker-independent articulatory positions, with a correlation of about r = 0.53.

This is substantially lower than the correlation of about r = 0.62 reported in
1While it is likely that a model on the basis of all data would have been slightly better

performing, it is unlikely that this would have impacted the results substantially.
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Table 4.12: Average correlations (including standard error) for actual and estimated

EMA sensor positions based on different datasets. The left-most column indicates

the speech inversion system. The top row indicates the test set. The numbers in

the brackets indicate standard errors
HHHHHHHHHHHH
Train

Test
UK english NL dutch NL english NL all

UK_english 0.56 (0.012) 0.42 (0.015) 0.48 (0.014) 0.45 (0.015)

NL_dutch 0.42 (0.010) 0.51 (0.012) 0.46 (0.012) 0.47 (0.011)

NL_english 0.48 (0.011) 0.48 (0.013) 0.53 (0.011) 0.51 (0.011)

NL_all 0.49 (0.011) 0.51 (0.013) 0.53 (0.011) 0.52 (0.012)

Table 4.13: Average RMSE between actual and estimated EMA sensor positions

based on different datasets. The left-most column indicates the speech inversion

system. The top row indicates the test set. The RMSE values are in mean-variance

normalized sensor coordinates
HHHHHHHHHHHH
Train

Test
UK english NL dutch NL english NL all

UK_english 0.83 0.86 0.91 0.90

NL_dutch 0.91 0.81 0.91 0.88

NL_english 0.88 0.83 0.87 0.86

NL_all 0.87 0.81 0.87 0.85

(Ji et al., 2016), but our result does not depend on a specific reference group of

speakers. Furthermore, if we exclude the performance with respect to UL and SL
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Table 4.14: Average correlations (including standard error) for actual and estimated

tract variables based on different datasets. The left-most column indicates the

speech inversion system. The top row indicates the test set. The numbers in the

brackets indicate standard errors
HHHHHHHHHHHH
Train

Test
UK english NL dutch NL english NL all

UK_english 0.57 (0.012) 0.44 (0.013) 0.51 (0.012) 0.48 (0.014)

NL_dutch 0.43 (0.010) 0.52 (0.012) 0.48 (0.011) 0.49 (0.011)

NL_english 0.50 (0.011) 0.49 (0.013) 0.54 (0.010) 0.52 (0.011)

NL_all 0.51 (0.011) 0.54 (0.011) 0.56 (0.010) 0.54 (0.010)

for the EMA sensor positions, and the LW tract variable (not included by (Ji et al.,

2016)), these correlations increase to r = 0.58. The UL and SL sensors (and tract

variables) are difficult to predict as their influence on the speech signal is relatively

limited.

The objective of speaker-independent speech inversion is to accurately capture

the trend of the articulatory movements, even though there might be offsets in actual

sensor positions due to the anatomical mismatch between training speakers and the

speaker used to evaluate the model performance. The performance on the basis

of tract variables was only marginally better than the performance based on the

EMA sensor positions. As the EMA sensor positions were normalized with respect

to their mean and variance, this also (just as tract variables) abstracts away from

most anatomical variation.
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While cross-language modeling of the trajectories resulted in a lower

correlation than the within-language results, the drop in performance was only

limited, especially when more data was available (i.e. comparing NL_all

to UK_english). Tables 4.12 and 4.14 show several evaluations of the

speaker-independent speech inversion systems across different test sets. Table 4.13

shows the root mean squared error between actual and estimated (normalized) EMA

sensor coordinates across the different test sets. The results in the table highlight the

performance of the systems in different mismatch conditions. The native language

mismatch condition is highlighted comparing UK_english to NL_all. The NL_all

system performs better on the UK english set than vice versa. This might be due

to the fact that the UK data is cleaner (due to being recorded in a soundproof

booth) than the NL data. Consequently, the system trained on the clean UK data

performs poorly on the NL data. The accent mismatch is highlighted by comparing

UK_english to NL_english. We observe that the performance of the UK_english

system on the NL english set is close to the within dataset (NL_english-NL english)

performance. By contrast, the NL_english system performs much worse than the

UK_english system on the UK english dataset. On the one hand, this can be

attributed to the higher amount of training data in the UK dataset. On the other

hand, the amount of variability in the acoustics and articulatory movements is likely

higher for the L2 English speakers (leading to poorer NL_english speech inversion

models). Finally, the performance when the language is completely mismatched

is shown by the UK_english vs. NL_dutch comparison. Unsurprisingly, we see

lower correlations in these comparisons, which can be attributed to both language
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mismatch as well as a data mismatch. By contrast, the NL_english vs. NL_dutch

comparison avoids the problem of mismatched data (i.e. collected at different sites),

and their comparison highlights the effect of language mismatch in speech inversion

performance (i.e. about 0.05 reduction in the correlation coefficient).

4.4.5 Summary

The experiments performed in this study shed light on the effects of the amount

of training data, the different types of data (i.e. collected in different environments),

and different accents and languages on the performance of speech inversion systems.

Our results highlight that with appropriate normalizations of the acoustic features

and articulatory trajectories, speaker independent systems can estimate the sensor

positions and TVs reasonably well with a correlation of about 0.53 with matched

training and testing conditions. For mismatched data, the performance drops to

about 0.43. Speaker normalization techniques (Sivaraman et al., 2016; Girin et al.,

2017) may further improve the performance of these systems. This section also

highlights that data collected using the same protocol may be combined in order to

generate improved speech inversion systems, even if the languages are different.

In future work, we plan to develop methods for combining data collected with

different protocols and potentially even different modalities for the creation of speech

inversion systems.
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Chapter 5

Uncovering acoustically weak articulatory maneuvers

Speech patterns vary significantly due to speaking rate, speaking style, context

and emotions. Among all the variability observed in speech, in this chapter we

are particularly interested in the changes occurring in speech acoustics due to

speaking rate and speaking style. We split this chapter into two major sections - 5.1

Coarticulation and lenition, and 5.2 Distinguishing acoustically similar articulatory

maneuvers: The case of American English /r/

Coarticulation and lenition are common phenomena that occur in fast rate

speech, especially affecting the acoustic properties of the speech signal that relate

to manner and place of articulation. The resulting acoustic variability continues

to offer serious challenges for the development of automatic speech recognition

(ASR) systems that can perform well with minimal constraints. The phenomena

of coarticulation and lenition often manifest as deletion or substitution of phone

units when looked at from the acoustic perspective. However, articulatory

phonology explains coarticulation through spatio-temporal changes in the patterns

of underlying gestures. This chapter studies the coarticulation occurring in

certain fast spoken utterances using articulatory constriction tract-variables (TVs)

estimated from acoustic features. The objectives of this study are to study the

effects of coarticulation in fast rate speech from the articulatory perspective and
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to test whether an acoustic-to-articulatory speech inversion system can predict the

hidden articulatory gestures underlying the coarticulated syllables. The implications

of this study are significant since, if our speech inversion system is able to “uncover”

seemingly hidden gestures, then the robustness and accuracy of ASR systems will be

vastly improved. Furthermore, such results will also provide the means for improving

a variety of speech applications and leading, for example, to the strengthening of

speech pronunciation tools in the classroom and clinic, and to the development

of more natural sounding synthetic speech that will better reflect idiosyncratic

individual differences between speakers.

It has been shown using Magnetic Resonance Imaging (MRI) techniques that

the American English /r/ sound has a range of possible tongue configurations that

range from a retroflex tongue shape on one end to a bunched tongue shape on the

other. (Zhou et al., 2008). It is also known that the acoustic distinction between

the bunched and retroflex tongue shapes differ in the frequency spacing between the

formants F4 and F5 which are known to be very weak compared to F1, F2, and

F3. In this chapter, we try to answer the question whether the acoustically weak

distinction between the bunched and the retroflex configurations can be uncovered

using the articulatory trajectories estimated by a speech inversion system. We

use a speaker independent speech inversion system trained on the XRMB dataset

(Chapter 3) to estimate the TVs for two example utterances containing bunched and

retroflexed /r/s. We show that the speech inversion system is able to distinguish

between the two forms of /r/ even though the speakers from the test utterances

were never part of the training set of the speech inversion system.
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5.1 Coarticulation and lenition

Coarticulation is the overlap of articulatory movements of adjacent sounds

in speech leading to what many refer to as substitution or deletion of sounds. A

phoneme is influenced by, and becomes more like, a preceding or following phoneme

based on the context. For example, in the fast production of the phrase “perfect

memory”, the /t/ sound appears to be deleted due to the lip closure gesture for /m/

overlapping with the tongue tip constriction for /t/. Lenition occurs when a gesture

for a particular phoneme does not reach its intended target leading to a weakening

of the sound. It commonly occurs in consonants where a stop consonant becomes a

fricative.

Articulatory Phonology (AP) provides a unified framework for understanding

how spatiotemporal changes in the pattern of underlying speech gestures can lead

to corresponding changes in the extent of intergestural temporal overlap and in the

degree of gestural spatial reduction; in turn, these changes in overlap and reduction

create acoustic consequences that are typically reported as assimilations, insertions,

deletions and substitutions.

In this chapter, we focus on the capabilities of the speech inversion system

for modeling changes in temporal overlap and spatial magnitude of gestures.

Specifically, we address the following questions: (1) With proper contextualization,

can our speech inversion system uncover gestures ‘hidden’ acoustically by increases

in overlap (coarticulation) and/or decreases in magnitude (lenition)?; (2) Is

undershoot of articulatory targets accurately reflected in the output of the speech
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inversion system?; (3) Will the use of naturally-spoken data (e.g., concurrently

recorded speech acoustics and kinematics) for training the speech inversion system

result in AP gestural trajectories that accurately reflect articulatory movements

during and between gestures?; and finally (4) What is the best methodology for

training the speech inversion system with naturally-spoken speech and articulatory

data? The implications of successfully answering these questions are significant

since, if our speech inversion system is able to “uncover” seemingly hidden

gestures, then the robustness and accuracy of ASR systems will be vastly improved.

Furthermore, such results will also provide the means for improving a variety

of speech applications and leading, for example, to the strengthening of speech

pronunciation tools in the classroom and clinic, and to the development of more

natural sounding synthetic speech that will better reflect idiosyncratic individual

differences between speakers.

5.1.1 Articulatory datasets and speech inversion systems

Fast rate speech leads to significant coarticulation and reduction phenomena.

For example, in “perfect memory”, the ‘/t/’ often appears to be deleted acoustically

due to the overlap of the lip closure for ‘/m/’ with the tongue tip constriction

for ‘/t/’; examination of the TV trajectories, however, shows that the underlying

gestures persist. To obtain data to investigate such contexts we recorded speech

at normal and fast rates concurrently with Electromagnetic Articulograph (EMA)

data, using the IEEE sentences (Rothauser et al., 1969) as the corpus for this task.
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We will refer to this dataset as the EMA-IEEE database. A complete description

of the recordings of the EMA-IEEE sentences is given in Section 4.3.1. We trained

artificial neural networks (ANNs) for acoustic-to-articulatory speech inversion using

speech and articulatory data obtained from the U.W. X-ray Microbeam (XRMB)

database (Westbury, 1994). A description of the speech inversion system is given

in chapter 3 . The trained speech inversion systems were used to estimate TVs

for specific fast and normal rate utterances from the EMA-IEEE database. TVs

were estimated from the sensor positions recorded using EMA (using the method

outlined in Section 4.3.2), and were compared to the actual TVs obtained from

the Electromagnetic Articulograph (EMA) recordings of the same IEEE sentences.

A speech inversion system was also trained on the articulatory (EMA) data

recorded for this experiment. This section compares the ability of various speech

inversion systems to detect an utterance’s underlying gestures given the significant

coarticulation effects of fast speech.

Four different TV estimators were trained using the two datasets - EMA-IEEE

(Section 4.3.1) and XRMB (Section 3.4). A TV estimator was trained on the

complete XRMB database. This estimator is referred to as X_NORM. To normalize

gender specific acoustic variations, the XRMB database was divided into male and

female speaker utterances and a TV estimator was trained on each of these subsets.

The systems trained on these gender specific subsets are referred to as XF_NORM

and XM_NORM. Another TV estimator was trained using the EMA-IEEE dataset.

This system estimates only 3 TVs (LA, TBCD, and TTCD) as the other TVs were

not computed from EMA trajectories. We refer to this estimator as E_IEEE. Table
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5.1 summarizes these TV estimators. The trained TV estimators were tested on 10%

of their respective datasets held out for testing where the sentences were chosen

randomly. The performance of the TV estimator was measured by the Pearson

Product Moment Correlation (PPMC) between the estimated and ground-truth

TVs using the test set. The results for the different TV estimators are given in

Table 5.2.

Table 5.1: Description of different speech inversion systems trained

TV estimator name Training dataset

X_NORM XRMB utterances converted to TVs

XF_NORM
Female speakers’ utterances from XRMB

database converted to TVs

XM_NORM
Male speakers’ utterances from XRMB

database converted to TVs

E_IEEE Single female speaker EMA data converted to TVs

Table 5.2: Correlation results of trained TV estimators on their respective test data

sets. (NA: TVs were not estimated)

TV estimator name LA TBCD TTCD LP TBCL TTCL

X_NORM 0.66 0.59 0.76 0.56 0.78 0.65

XF_NORM 0.72 0.66 0.79 0.62 0.82 0.66

XM_NORM 0.68 0.64 0.78 0.57 0.83 0.72

E_IEEE 0.64 0.80 0.72 NA NA NA

89



5.1.2 Analysis of specific examples of coarticulation

Effects of coarticulation and reduction can be expressed in many forms in

fast rate speech including deletion, assimilation and substitution. In this paper, we

selected two utterances from the EMA-IEEE dataset and one utterance from an

earlier study (Tiede et al., 2001) illustrating coarticulation effects. Both fast rate

and normal rate utterances of these selected sentences were analyzed. Articulatory

data was converted to TV representation using the same method described in Section

4.3.2. The following are the three sentences chosen for analysis.

1. The empty flask stood on the tin tray.

2. The beam dropped down on the workman’s head.

3. She had a perfect memory for details. (from (Tiede et al., 2001))

The words in bold contain the clusters of interest. None of the above utterances

were included in any of the TV estimators trained. Each of these utterances was

analyzed using the TV estimators described in section 5.1.1. We analyzed only the

LA, TBCD, and TTCD TVs.

The average correlations of the estimated TVs with actual TVs for the three

selected utterances are shown in Table

From Table 5.3, we can see that the E_IEEE system has the highest

correlations for sentences 1 and 2 since those utterances were produced by the same

speaker (note that these utterances were not included in the training of this system).

Hence, we plotted the estimated TVs from E_IEEE system for analysis of sentences

1 and 2.
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Table 5.3: Correlations (PPMC) of estimated TVs from different TV estimators for

the selected sentences (n = normal rate, f = fast rate)

TV estimator name flask stood workman’s head perfect memory

n f n f n f

X_NORM 0.56 0.59 0.61 0.75 0.40 0.51

XF_NORM 0.56 0.59 0.55 0.72 0.28 0.55

XM_NORM 0.56 0.59 0.59 0.63 0.44 0.58

E_IEEE 0.86 0.82 0.75 0.79 0.18 0.44

5.1.2.1 Analysis of ”flask stood”

Figure 5.1 shows spectrograms and the TVs for the normal-rate and fast-rate

productions of sentence 1. In the case of the normal-rate production, the consonant

cluster /sk/ at the end of “flask” and the /st/ at the beginning of “stood” are clearly

seen in the acoustics and both the actual and estimated TVs show constrictions in

the right regions.

However, in the fast-rate production of this utterance, the acoustics suggest

that the /k/ in “flask” was not produced. Instead, it appears as if the /s/ in “flask”

and the /s/ in stood are combined (the duration of this /s/ is about 30ms longer

than the ones in the normal-rate production) and this /s/ is then followed by a the

/t/ in “stood”. This appears to be a case where the fast-rate production resulted in

no gesture being made for the /k/. Although there is lowering of the TBCD gesture

during the /t/, this lowering appears to be due to the /t/ closure and can be seen

in situations where a /s/ or /t/ is produced without an adjacent velar consonant.
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Figure 5.1: Actual (red) and estimated (blue) TVs for “flask stood”

It is possible that this apparent deletion of the /k/ gesture is due to the complexity

of these cluster sequences, which include four consecutive consonants.

5.1.2.2 Analysis of ”workman”

Figure 5.2 shows spectrograms and the TVs for the normal-rate and fast-rate

productions of sentence 2. The actual and estimated TVs are strongly correlated

across the utterance. In particular, both show the /k/ constriction when it is

produced as a stop in the normal-rate production and as a fricative in the fast-rate

production. Note that the /k/ gesture in the fast-rate production of the utterance

is weaker than it is in the normal-rate production of the same. This not surprising

given the estimated TVs are derived from the acoustics. Finally, note that both sets

of TVs show the closure of the lips for the /m/.
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Figure 5.2: Actual (red) and estimated (blue) TVs for “workman’s head”

5.1.2.3 Analysis of ”perfect memory”

From Table 5.3, it can be seen that none of the TV estimators provide a reliable

estimate of the 3 TVs that we are interested in analyzing. As a result, we trained

speaker dependent TV estimators on all 46 speakers of the XRMB database. We

then estimated TVs using each speaker’s TV estimator and then selected the system

that best correlated with the actual TVs. We observed that the TV estimator trained

on speakers JW29 provided best correlations for normal rate and that trained on

JW28 provided best correlations for fast rate. We used the estimated TVs from

these models to analyze the “perfect memory” utterance.

Figure 5.3 shows spectrograms and the actual and estimated TVs for sentence

3. As can be seen in the normal-rate production, the acoustics show a release burst

for /k/ but not /t/, followed by a period of silence and then the /m/ murmur at the
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Figure 5.3: Actual (red) and estimated (blue) TVs for “perfect memory”

beginning of “memory”. Both sets of TVs show a tongue-body gesture for the /k/

that overlaps with the tongue-tip gesture for the /t/ and the lip gesture for the /m/.

In contrast, there is no silence between the last vowel in “perfect” and the first vowel

in “memory”. Instead, this region appears acoustically as one sonorant consonant,

i.e., the /m/. However, the articulatory data tell a different story. As in the normal

rate speech, we see gestures for the /k/ and /t/, but with considerably more overlap

between the gestures. In particular, the /m/ gesture is fully overlapped with that of

the other consonants. Thus, this fast-rate production of “perfect memory” contains

what we refer to as “hidden gestures” for the /k/ and the /t/. Note that both of

these gestures are apparent in the estimated TVs, although the closure for the lip

gesture is weaker than the actual gesture.
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5.1.3 Summary

The results show that the speech inversion systems perform reasonably well

on unseen data containing challenging coarticulatory phenomena. Working with

naturally-spoken data can result in speech inversion systems that produce TVs

that closely match TVs computed directly from articulatory data. However, the

variability in the training data needs to be properly normalized or restricted. Thus,

a future goal of this work is to develop methodologies for coping with variability and

choosing which of several different speech inversion systems will work for any given

speaker, especially if that speaker’s data has not been used as part of the training

data.

5.2 Distinguishing acoustically similar articulatory maneuvers: The

case of American English /r/

It is well known that different tongue configurations are used by different

speakers to produce the rhotic /r/ sound in American English (Delattre and

Freeman, 1968), (Hagiwara, 1995), (Espy-Wilson and Boyce, 1999), (Espy-Wilson

et al., 2000), (Tiede et al., 2004). Among the myriad tongue shapes for /r/

production, the two particular shapes that exhibit the greatest amount of contrast

are the ”bunched” /r/ (produced with a lowered tongue tip and a raised tongue

dorsum) and the ”retroflex” /r/ (produced with a raised tongue tip and a lowered

tongue dorsum). Figure 5.4 shows the MRI image of the two tongue configurations

of two different subjects producing their natural sustained /r/ sound (as in ”pour”).
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In spite of the two tongue configurations for the /r/ production being significantly

different, they do not show clear acoustic (Delattre and Freeman, 1968) (Westbury

et al., 1998) or perceptual differences (Twist et al., 2007).

Figure 5.4: Bunched vs Retroflex /r/ production - Top panel: Midsagittal MR
images of two tongue configurations for American English /r/. Middle panel:
Spectrograms for nonsense word “warav.” Lower panel: Spectra of sustained /r/
utterance. The left side is for S1 and the right side is for S2. Figure taken from
(Zhou et al., 2008)

The American English /r/ is characterized by the lowered third formant

frequency (F3) and often approaching F2 (Hagiwara, 1995), (Espy-Wilson, 1987).
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This characteristic formant trajectory can be seen in the spectrogram shown Figure

5.4. Studies focused on F1-F3 formants failed to find a relationship between the

tongue shape and the formant frequencies. It has been shown that higher formants

specifically F4 and F5 may contain cues to differentiating the tongue configuration

used to produce the /r/ sound (Espy-Wilson and Boyce, 1999), (Espy-Wilson et al.,

2000). These higher formants are typically lower in amplitude in the spectrum

making them difficult to detect. In addition, human perception appears to rely

largely on the first three formants.

The /r/ sound is a difficult to produce for many children and some non-native

English speaking adults. Studies have estimated that about 2-3% of college age

people have trouble producing the /r/ sound (Reddy, 2014). Speech therapy is

often sought to help children correctly produce the American English /r/. New

methods of treatment providing visual articulatory feedback using ultrasound have

been found to improve the pronunciation of /r/ sound (Cavin, 2015)(Preston et al.,

2014). Ultrasound measurement techniques need expensive equipment in a speech

therapist clinic. If a visual articulatory feedback can be provided based on the

estimation of articulatory movements from speech acoustics, such visual feedback

based speech therapy will become cheaper and easily accessible to people from all

economic backgrounds. If an acoustic to articulatory speech inversion system can

accurately estimate the tongue and lip movements from speech, it can potentially

be used in speech therapy.

In this chapter we evaluate whether a speaker independent

acoustic-to-articulatory speech inversion system can estimate the tongue
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configurations for the two productions of /r/. We used the speaker independent

speech inversion system trained on the XRMB database developed in Chapter 3 to

estimate the TVs for the utterances by subject S1 and S2 producing the bunched

and the retroflex /r/ respectively. Both the subjects were asked to produce a

sentence containing the word ”warav” in which the /r/ sound in ”warav” is of

interest to us. The subjects S1 and S2 produce the /r/ naturally and are not

consciously biased towards either of the tongue configurations. Also note that the

two subjects S1 and S2 are not part of the XRMB database which is the training

set for our speech inversion system.

Figure 5.5 shows the estimated TVs for the bunched and the retroflex /r/

productions. These utterances are the same ones shown in Figure 5.4. The

panels below the spectrograms show the Tongue Body Constriction Degree (TBCD),

Tongue Tip Constriction Degree (TTCD), and the Lip Aperture (LA) estimated

using the XRMB speech inversion system. We have not shown the plots of

TBCL, TTCL and LP because of they are not critical in distinguishing the two

configurations of /r/. For TBCD and TTCD, a peak in the plot indicates increased

distance between the palate and the tongue (tongue body for TBCD and tongue

tip for TTCD). A dip in the plot indicates constriction made by the tongue (tongue

body for TBCD and tongue tip for TTCD) with the palate. Similarly, for the LA

plot, a dip (low value) indicates constriction at the lips and a peak (high value)

indicates wodening of the lips. For the bunched /r/ on the left panel, we see raised

tongue dorsum as a dip in TBCD and a lowered tongue tip as a high value for TTCD.

We see the constriction of the lip as a dip in the LA plot. For the retroflex /r/ on the

98



Figure 5.5: Estimated TVs for bunched and retroflex /r/ from the subjects S1 and
S2. The red boxes on the spectrograms indicate the position of the /r/ sound in the
utterance. The panels below the spectrograms show the Tongue Body Constriction
Degree (TBCD), Tongue Tip Constriction Degree (TTCD), and the Lip Aperture
(LA) estimated using the XRMB speech inversion system

right panel, we see the raised tongue tip as a dip in the TTCD plot and a lowered

tongue dorsum as a high value for TBCD. We again see the constriction of the lips

as a dip in LA. Thus, we see that the speech inversion system successfully estimates

the tongue configurations for the bunched and the retroflex /r/ productions.

In order to test the hypothesis that higher formants may contain cues to

differentiating between the two tongue configurations, we lowpass filtered the speech

waveforms at 3000Hz to get rid of all formants higher than F3 that can possibly

distingush bunched vs retroflex /r/. We then passed the filtered speech waveforms

through the XRMB speech inversion system. Figure 5.6 shows the estimated TVs

for the filtered speech waveforms from the same bunched and the retroflex examples.

In this case we can clearly see that the speech inversion system fails to estimate the
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Figure 5.6: Estimated TVs for filtered utterances of bunched and retroflex /r/ from
the subjects S1 and S2

correct tongue configurations for the bunched and the retroflex /r/, thus reinforcing

the hypothesis that the higher formants contain cues to distinguish the bunched and

the retroflex /r/.

5.2.1 Summary

The results of this experiment show that the speaker independent speech

inversion system can successfully estimate the articulatory configurations for the

bunched and retroflex productions of /r/. Thus the speech inversion system correctly

distinguishes the two productions of the /r/ sound which are acoustically and

perceptually similar. This work was presented at the Fall 2014 meeting of the

Acoustical Society of America (Sivaraman et al., 2014)
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Chapter 6

Phone place of articulation classification using articulatory features

In articulatory phonetics, a phoneme’s identity is specified by its

articulator-free (manner) and articulator-bound (place) features. Previous studies

have shown that acoustic-phonetic features (APs) can be used to segment speech

into broad classes determined by the manner of articulation of speech sounds.

The effort in this chapter is to extend previous efforts (Juneja and Espy-Wilson,

2008) to develop a landmark system by adding in components to recognize place

of articulation. Previous studies (Stevens and Blumstein, 1981) (Juneja and

Espy-Wilson, 2008) (Chen and Alwan, 2000) have shown that finding the acoustic

correlates of place of articulation is a very challenging task compared to manner of

articulation. The objective of this chapter is to test the performance of estimated

articulatory trajectories for place of articulation classification. In the first stage, the

speech signal was segmented into broad classes using ideal phonetic transcriptions

into 5 broad classes (Vowels – V, Fricatives – Fr, Sonorant Consonants – SC,

Stops – ST and Silence – SIL). A single feature vector composed of Mel Frequency

Cepstral Coefficients (MFCCs) and estimated articulatory trajectories (estTV) were

extracted from the broad class segments. Fixed length feature vectors were obtained

from variable length segments using a statistical parameterization of the MFCCs and

estTVs. The combination of MFCCs with estTVs provided an average of 2% relative
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improvement in recognition of the place features compared to MFCCs alone. This

work was presented at the Spring 2015 meeting of the Acoustic Society of America

(Sivaraman et al., 2015a)

6.1 Datasets and systems

The phonetically rich TIMIT speech dataset was used for performing the

place of articulation classification experiments. The training set consisted of 462

speakers while the test set contained 168 speakers not present in the training set.

All the sentences (si, sa, and sx) were used in the training and testing. The

articulatory features were extracted using the speaker-independent speech inversion

system trained on the XRMB dataset. This was the same speech inversion system

developed in Chapter 3. Note that there was no speaker overlap between the XRMB

dataset and the TIMIT dataset.

6.2 Phonetic feature hierarchy and phone broad classes

The phonemes of American English can be characterized by three general

descriptors - source characteristics, manner of articulation, and place of articulation

(Juneja, 2004).

1. Source characteristics: The source or excitation of speech can be periodic when

air is pushed from the lungs at a high pressure that causes the vocal folds to

vibrate, or aperiodic when either the vocal folds are spread apart or the source

is produced at a constriction in the vocal tract. The source characteristics are
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encoded by a binary voiced feature. The voiced feature is assigned a ”+” for

phonemes which involve periodic excitation by the vocal folds and a ”-” for

phonemes that do not contain a periodic excitation.

2. Manner of Articulation: Manner of articulation refers to how open or close

the vocal tract is, how strong the constriction is and whether the there is air

flow through the nasal cavity or not. Manner phonetic features are also called

articulator-free features (Stevens, 2002) which means that these features are

independent of the main articulator and are related to the manner in which

the articulators are used. The manner features are shown above the horizontal

dashed line (in capital letters) in the Figure 6.1.

3. Place of Articulation: The place of articulation phonetic feature determines

the place in the vocal tract where the constriction (or shaping) happens in

order to produce the sound. For example the /p/, /b/, and /m/ sounds

have a labial place of articulation indicating that the sounds are produced by

the labial constriction. These phonetic features are called articulator-bound

features (Stevens, 2002). The acoustic correlates of the place features are more

subtle than that of the manner features (Juneja, 2004). Articulatory features

are best suited to estimate the place of articulation features. The place of

articulation features are shown below the horizontal dashed line (in capital

letters) in the Figure 6.1.
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Figure 6.1: Phonetic feature hierarchy for American English phonemes. Figure
taken from (Espy-Wilson and Juneja, 2010)

6.3 Place of articulation classification system using acoustic and

articulatory features

We developed a broad class segment based place of articulation classification

system taking advantage of the articulatory features estimated from speaker

independent speech inversion systems. This task was designed to only highlight the

efficacy of articulatory features for place of articulation classification. We assume

perfect phone segmentation using the TIMIT phone transcriptions. The task here is

only to classify the phone segment into different place of articulation features. The

phonemes grouped according to manner of articulation are called broad classes. As

seen in 6.1, places of articulation are different for different broad classes. In this

experiment, we group the TIMIT phonemes into 4 broad classes - Vowels, Sonorant
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consonants, Stop consonants, and Fricatives. We use the phone labels to obtain

these broad class identities for each phone segment. In future this assumption can

be replaced with a phone broad classification system as developed in (Juneja and

Espy-Wilson, 2008). The task at hand is to further classify phone segments under

each of these broad classes into their place of articulation features. The Table 6.1

shows the list of place of articulation features for each broad class.

Table 6.1: Places of articulation for various broad classes
Broad class Places of articulation

Vowels (V)
Back vs Central vs Front

High vs Mid vs Low

Stops (ST) Bilabial vs Alveolar vs Velar

Fricatives (Fr) Labial vs Dental vs Alveolar vs Palatal

Sonorant

Consonants (SC)
Bilabial vs Alveolar vs Frontal vs Retroflex vs Back vs Velar vs Glottal

The vowels are classified according two sets of place features - front vs mid vs

back and high vs mid vs low. The Sonorant consonants were classified into 7 place

features - Bilabial vs Alveolar vs Frontal vs Retroflex vs Back vs Velar vs Glottal.

We developed a hierarchical classification system for this classification task.

The system used both MFCC acoustic features as well as estimated TVs (estTV)

from the XRMB speech inversion system. Figure 6.2 shows the block diagram of

the palace of articulation classification system.

As already explained earlier, the system assumes idea broad class segmentation

from phone transcriptions of the TIMIT dataset. The broad class segments of
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Figure 6.2: Block diagram of place of articulation classification

the TIMIT utterances obtained from the transcription were of different lengths.

Classification of place using SVMs required a fixed length feature vector that

accurately summarized the MFCCs and estTV features in the broad class segment.

Table 6.2 shows the functional features obtained from each component of MFCCs

and estTVs for each broad class segment. This functional feature extraction from

the frame level MFCC and estTV features provides a fixed length feature vector

for each broad class segment. The Support Vector Machine (SVM) classifiers for

place classification were trained on the corresponding broad class segments from the

TIMIT training set.
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Table 6.2: List of fixed length features extracted from segmental frame level MFCCs

and TVs

Description Expression

1 Min Min{Feati(t)} across time t

2 Max Max{Feati(t)} across t

3 Mean Mean{Feati(t)}

4 Max slope Max{dFeati
dt

}

5 Min slope Min{dFeati
dt

}

6 Min absolute slope Min{dFeati
dt

}

6.4 Results of phone broad classification

Support Vector Machines (SVM) with Radial basis function kernels were

trained to perform the sub-classification of broad class segments. We experimented

with different kernel functions and parameters to tune the classifiers. The tuning

was performed on a held out 10% subset from the training set broad class segments.

A separate SVM was trained for each broad class. We performed classification

experiments with different combinations of features namely - MFCCs, estTVs and

MFCC+estTV. The bar charts in Figure 6.3 show the classification accuracies for

each broad class.
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Figure 6.3: Classification accuracies of place of articulation classification

6.5 Summary

Augmenting acoustic features with estimated articulatory features provides

an average of 2% relative improvement in accuracy for Vowels, Stops and Sonorant

consonants. EstTVs alone do not perform as well as MFCCs. For fricatives, place

classification of strident fricatives is more accurate than the non-strident fricatives.

Adding contextual information can help in improving the classification accuracy.

The articulatory features alone do not provide superior performance compared to

acoustic features. Overall, articulatory features combined with acoustic features do

help improve the accuracy significantly for classifying the place of articulation of

phonemes.

In the future we plan to use an automatic landmark detection system (Juneja

and Espy-Wilson, 2008) to segment utterances into broad classes. Instead of using

a speech inversion system trained on complete utterances, we plan to train specific
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speech inversion systems for each broad class. Features from such tuned speech

inversion systems might be more accurate than a generic system. This kind of a place

classification system can be combined with the broad class probability estimation

system to decode phone sequences. This kind of system will be a completely acoustic

phonetic approach to phone recognition.
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Chapter 7

Speech recognition experiments incorporating articulatory

representations

This chapter deals with the evaluation of articulatory features for continuous

speech recognition tasks. Studies have shown that articulatory information can

help model speech variability and, consequently, improves speech recognition

performance. Studies have explored using DNNs (Mitra et al., 2010b)(Mitra,

2010)(Uria et al., 2011)(Canevari et al., 2013) for learning the nonlinear inverse

transform of acoustic waveforms to articulatory trajectories (a.k.a. speech-inversion

or acoustic-to-articulatory inversion of speech). Results have demonstrated that

using articulatory representations in addition to acoustic features improves phone

recognition (Badino et al., 2016)(Badino et al., 2016)(Mitra et al., 2011)(Deng et al.,

1997) and speech recognition performance (Mitra et al., 2010b)(Mitra et al., 2014a).

However most studies have focused on using articulatory features derived from

speech inversion systems trained on one or two speaker datasets, or synthetic speech.

In this work, we have trained speech inversion systems with datasets containing

multiple speakers and also converted the raw Cartesian coordinates of articulator

positions into tract variables (TVs) which are relative constriction measures as

explained in 3. In this chapter ASR experiments have been performed on the Wall

Street Journal (WSJ) corpus using state-of-the-art ASR architectures. The ASR
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systems were evaluated across corpus and domains using the TIMIT and EMA-IEEE

datasets. Articulatory features estimated from the XRMB speech inversion system

and the EMA-IEEE speech inversion system were fused together with acoustic

features represented as Gammatone filterbank energies. Apart from the estimated

TVs a voicing probability feature from the Kaldi pitch estimator (Ghahremani et al.,

2014) was appended to the TVs to account for the missing glottal articulatory

feature. In order to highlight critical regions of the TVs, a kinematics based

binary features representing articulatory gesture activations were extracted from

the estimated TVs and appended to the articulatory feature stream. Experiments

and results show the impact of these features on the ASR performance. In order to

optimally combine acoustic and articulatory feature streams, this work proposes a

hybrid convolutional neural network (HCNN), where two parallel layers are used to

jointly model the acoustic and articulatory spaces, and the decisions from the parallel

layers are fused at the output context-dependent (CD) state level. The acoustic

model performs time-frequency convolution on filterbank- energy-level features,

whereas the articulatory model performs time convolution on the articulatory

features. Previous results using synthetic TVs have demonstrated that HCNN-based

model achieves lower word error rates compared to the CNN/DNN based systems.

Results show that combining articulatory features with acoustic features through

the hybrid CNN improves the performance of the ASR system in matched and

mismatched evaluation conditions.
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7.1 Datasets for ASR experiments

7.1.1 Wall Street Journal

The DARPA WSJ1 CSR dataset was used in the experiments presented in

this chapter. For training, a set of 35,990 speech utterances (77.8 hours) from the

WSJ1 collection, having 284 speakers was used. For testing, the WSJ-eval94 dataset

composed of 424 waveforms (0.8 hours) from 20 speakers was used. Note that for

all the experiments reported here, speaker-level vocal tract length normalization

(VTLN) was not performed. We denote this dataset as WSJ1 in our experiments

described in this chapter.

7.1.2 TIMIT

TIMIT is a widely used corpus of read speech is designed to provide speech

data for acoustic-phonetic studies and for the development and evaluation of

automatic speech recognition systems. TIMIT contains broadband recordings of

630 speakers of 8 major dialects of American English, each reading 10 phonetically

rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic

and word transcriptions as well as a 16-bit, 16kHz speech waveform file for each

utterance. Out of the 630 speakers in the datset, 462 speakers’ data is usually

assigned for training and the remaining 168 speakers are used for testing. For

our experiments in this chapter, we have used the TIMIT test set for cross corpus

evaluation of the ASR systems trained on the WSJ1 train set.
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7.1.3 EMA-IEEE dataset

The EMA-IEEE dataset is the same dataset described in 4.3.1. It consists

of 720 phonetically balanced Harvard sentences (Rothauser et al., 1969) recorded

from eight speakers (4 males, and 4 females) at normal and fast production rates.

The dataset also consists of parallel EMA recordings. As described in 4.3.3, the 720

Harvard sentences were randomly divided into 3 subsets for training, cross-validation

and testing. The training subset contained 576 sentences while the test and

cross-validation sets contained 72 sentences each. With this split of sentences, we

created train, cross-validation and test sets for each of the 8 speakers and the 2

speaking rates. Thus, we created 8 pairs (Normal and Fast rates) of subsets from

the EMA-IEEE dataset. For our experiments in this chapter we used only the

test utterances from the EMA-IEEE dataset to perform cross-corpus evaluation of

the acoustic models trained on WSJ1. We split the EMA-IEEE test set into two

subsets based on speaking rates - EMA-IEEE-F consisting of fast rate utterances and

EMA-IEEE-N consisting of normal rate utterances. The evaluation of the acoustic

models were carried out separately for each of these subsets thus highlighting the

effect of mismatched speaking rate on ASR accuracy.
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7.2 Acoustic and articulatory features

7.2.1 Acoustic features - Gammatone Filterbanks energies

The Gammatone filters are a linear approximation of the auditory filterbank

of the human ear. In GFB processing, speech is analyzed by using a bank of 40

gammatone filters equally spaced on the equivalent rectangular bandwidth (ERB)

scale. For this work, the power of the bandlimited time signals within an analysis

window of 26ms was computed at a frame rate of 10ms. Subband powers were then

root compressed by using the 15th root, and the resulting 40-dimensional feature

vector was used as the GFB. It was shown (Mitra et al., 2014b) that CNNs give

lower WERs compared to DNNs when using filterbank features for the Aurora-4 ASR

task, and GFBs offered performance gain over mel-filterbank energies (MFBs). This

observation was sufficient to safely assume that GFB is a strong baseline acoustic

feature for our experiments in this chapter.

7.2.2 Articulatory features - Estimated TVs

Articulatory features in the form of TVs were estimated from acoustics using

speaker independent speech inversion systems trained in Chapter 3 and Section 4.3.3.

We used TVs estimated by two different speech inversion systems - (1) the XRMB

speech inversion system (Chapter 3) and (2) the EMA-IEEE speech inversion system

(Section 4.3.3). The XRMB system was trained on 36 speakers from the XRMB

dataset while the EMA-IEEE system was trained on both fast and normal utterances

from the EMA-IEEE training set. Note that none of the utterances in the WSJ1
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dataset or the TIMIT and EMA-IEEE test sets were included in the training of the

speech inversion systems. For the XRMB system, there was no overlap between the

speakers of the XRMB train and test sets. For the EMA-IEEE dataset all the test

speakers were in the training set but the utterances were mutually exclusive. We

will refer to the TVs estimated by the XRMB system as XTV and those estiamted

by the EMA-IEEE system as ETV

7.2.3 Voicing probability

The Kaldi Pitch tracker (Ghahremani et al., 2014) comes with the Kaldi

speech recognition toolkit (Povey et al., 2011) and provided two-dimensional output

consisting of pitch tracks and a normalized cross-correlation function that gave an

indication about voicing information. We converted the cross-correlation function

into voicing probability estimates that ranged from 0 to 1. This one dimensional

voicing probability feature was extracted for the WSJ1 dataset, XRMB test set, and

the EMA-IEEE test set. We will refer to this feature as vad.

7.2.4 Articulatory gestural activations

As motivated by Articulatory phonology, articulatory gestures are action units

of the articulators wheich actuate the movements of the articulators to produce

speech. Gestures are like movement primitives (Ramanarayanan et al., 2013) and are

precursors to TVs. Studies have shown that articulatory gestures derived from EMA

data preserve discriminatory information about phone categories (Ramanarayanan
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et al., 2015). In this work we extracted gesture linke binary activation features

from the estimated TVs to highlight the critical regions of the articulations. Since

articulatory features are less variable (and more accurately predictable) in the

critical regions, we developed binary activation gesture features that highlight the

regions where the constriction actions happen. For example, for the Tongue tip, the

critical articulation is the constriction with the palate. Hence, a Tongue tip gesture

will highlight regions where the tongue tip is performing an action of constriction by

moving towards the palate before the instant of constriction and away from it after

the constriction. The movement towards the constriction instant is called a gestural

onset whereas the movement following the constriction is called the gestural offset.

We define gestural activation as the time duration spanning the gestural onset and

offset. The lengths of the onset and offset windows are determined by defining a

threshold on the velocity of the associated TV approaching a gesture and departing

from the gesture. Table 7.1 shows the list of articualtory gestures defined from the

TVs.

Table 7.1: Articulatory Gestures and their associated articulators

Gesture name Associated TVs Articulators

Lip Aperture (LA) LA Upper & Lopwer lips

Tongue Tip (TT) TTCD, TTCL Tongue tip

Tongue Middle (TM) TMCD, TMCL Tongue middle

Tongue Back (TB) TBCD, TBCL Tongue back

Jaw Angle (JA) JA Jaw, Lower incisors, Upper lip
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Figure 7.1: Example plot of gestural activations and TVs for a TIMIT utterance -
”the reasons for this dive seemed foolish now”

Figure 7.2 shows a plot of the estimated TVs and their annotated gestures for

an example utterance from the TIMIT dataset.

We extracted 3 gestures - LA, TM, and TT from the TVs estimated by

the XRMB TV estimator and 5 gestures - LA, JA, TT, TM, and TB from the

TVs estimated by the EMA-IEEE TV estimator. We will refer to the gestures

estimated from XTV as XG and those from the ETV as EG. These articulatory

gestural activations were appended to the estimated TVs to form the complete set

of articulatory features used for ASR. In total, the articulatory features all put

together (XTV+vad+XG+ETV+EG) were 24 dimensional.

7.3 ASR system architecture

We trained different acoustic models for the WSJ1 dataset with different deep

(DNN) and convolutional neural network (CNN) architectures.
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Time Frequency Convolutional Neural Networks (TFCNN): Apart from the basic

feedforward DNN architecture, we explored Time-Frequency Convolutional Neural

Netowkrs (TFCNN) for the acoustic features used to train the acoustic models.

Figure shows a schematic of the TFCNN architecture. The TFCNN architecture

was based upon (Mitra and Franco, 2015), where two parallel convolutional layers

were used at the input, one performing convolution across time, and the other

across the frequency scale of the input filterbank features. The results of that work

showed that the TFCNNs performed better compared to their CNN counterparts.

Here, we used 75 filters to perform time convolution, and 200 filters to perform

frequency convolution. We used the optimal configuration learned from (Mitra and

Franco, 2015) for the experiments reported in this chapter. For time and frequency

convolution, eight bands were used. A max-pooling over three samples was used

for frequency convolution, while a max- pooling over five samples was used for

time convolution. The feature maps after both the convolution operations were

concatenated and then fed to a fully connected neural net, which had 1024 nodes

and four hidden layers. This architecture was used to train an acoustic feature only

ASR system using GFB as the features.

Hybrid Convolutional Neural Networks (HCNN): In order to optimally combine

the acoustic and articulatory features in an ASR architecture, we developed a

modified deep neural network architecture to jointly model the acoustic and the

articulatory space. The following description of the HCNN architecture is taken

from the paper (Mitra et al., 2017) coauthored by the author of this dissertation.
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Figure 7.2: Block diagram showing time-frequency convolution neural nets
(TFCNN). The top block shows convolution filters working across time, and the
bottom dotted block shows convolution filters working across frequency. The
max-pooled outputs of these convolution filters are fed to a fully connected
four-layered deep neural net. (Mitra and Franco, 2015)

The diagram of the network is shown in Figure 7.3, illustrating two parallel neural

networks trained simultaneously. These two parallel neural networks modeled two

things: (1) learning the acoustic space from the GFB features and (2) learning

the articulatory space from the TV trajectories. The acoustic space was learned

by using a time-frequency convolution layer, where two separate convolution filters

operate on the input GFB features. These two convolution layers had the same

parameter specification as that used in the TFCNNs. The articulatory space was

learned by using a time-convolution layer that contained 75 filters, followed by a

max-pooling over five samples. Note that the cross-TV convolution operation may

not produce any meaningful information, whereas time convolution on the TVs

can help in extracting TV modulation-level information, which was the motivation

behind selecting a time-convolution layer for learning the articulatory space. The

fully connected DNN layers were different in size; we observed that 800 neurons

was nearly optimal for learning the acoustic space, and that 256 neurons was nearly
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Figure 7.3: Schematic of the hybrid convolutional neural network (HCNN). The
top layer represents the acoustic model, whose input is filterbank features, and
the bottom layer represents the articulatory model, whose input is TV trajectories.
(Mitra et al., 2017)

optimal for learning the articulatory space. Note that the parallel networks were

jointly trained. We used this HCNN architecure for our ASR experiments with

articulatory features.

7.4 Experiments and results on the WSJ dataset

In order to generate the alignments necessary for training the CNN system,

a Gaussian mixture model (GMM)–hidden Markov model (HMM) model was used

to produce the senones’ labels. Altogether, the GMM-HMM system produced 1659

context-dependent (CD) states for WSJ1. The input features to the acoustic models

were formed by using a context window of 15-95 frames (half of the frames on either

side of the current frame). We performed experiments by varying the context window

from 15 to 95 frames in steps of 20. The acoustic models were trained by using
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cross-entropy on the alignments from the GMM-HMM system. The output layer

of the networks included as many nodes as the number of CD states for the given

dataset. The networks were trained by using an initial four iterations with a constant

learning rate of 0.008, followed by learning-rate halving based on cross-validation

error decrease. Training stopped when either no further significant reduction in

cross-validation error was noted or when cross-validation error started to increase.

Backpropagation was performed using stochastic gradient descent with a mini-batch

of 256 training examples. For the DNN systems, we used five layers with 1024

neurons in each layer, with similar learning criteria as the CNNs.

Table 7.2 shows the Word Error Rates (WER) on the WSJ1 evaluation set

for different feature combinations. We observe that the WER remains the same for

all the feature combinations. The fact that the articulatory features did not help

improve the WER indicates that the concatenation of GFB with the articulatory

features though a DNN model is not an optimal combination of the features.

Table 7.2: Word Error Rates on WSJ eval set for DNN acoustic models

Features WER

GFB 6.0

GFB+XTV+vad 6.0

GFB+XTV+vad+XG+ETV+EG 6.0

We experimented with different splicing widths of the input features to figure

out the best splicing widths for the features. The plot in figure 7.4 shows the Word

Error Rates (WER) on the development set of WSJ1 for different splicing widths and
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Figure 7.4: WER on the WSJ1 dev set for the HCNN model at different splicing
widths for various feature combinations

feature combinations. Figure 7.5 shows the WER results on the WSJ1 evaluation

set for the same set of splicings. We observed that a splicing width of 95 frames was

optimal for the GFB+XTV+vad+XG+ETV+EG feature combination. It reduced

the baseline WER of 10.3% to 10.2% on the WSJ dev set. The WER improvement

on the dev set translated to a 0.2% reduction in the evaluation set WER. The GFB

TFCNN system is already very strong with an impressive 5.6% WER on the WSJ1

eval set. Even small improvements over this highly competitive performance with

the GFB features is quite challenging. The feature combination containing GFB and

articulatory gestures alone (GFB+vad+XG+EG) did not give superior performance

compared to GFB.
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Figure 7.5: WER on the WSJ1 eval set for different splicing widths for various
feature combinations

7.5 Results of cross-corpus testing

In order to test the accuracy of the acoustic models across corpora,

we evaluated the WSJ1 trained acoustic models on the TIMIT (timit_test),

EMA-IEEE-Normal (ema_n_test) and EMA-IEEE-Fast (ema_f_test) datasets.

Since these datasets contained some words not included in the WSJ1 corpus, we

chose to evaluate the phone recognition accuracy instead of complete sentences (word

sequences). We used a trigram phone language model trained on the WSJ1 train

set to decode the hypotheses. Although the language models are biased towards the

WSJ1 corpus we are interested in the improvement of the acoustic model hypothesis

for same language models. Table 7.3 shows the Phone Error Rates (PER) for

the cross-corpus evaluations. The best PERs for each of the evaluation sets are

highlighted in bold.
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Table 7.3: Phone Error Rates on different test sets for the HCNN model for two

best performing splicing widths (75 and 95)
Splice = 75 Splice = 95

GFB GFB+XTV+vad+ETV GFB+XTV+vad+XG+ETV+EG GFB GFB+XTV+vad+ETV GFB+XTV+vad+XG+ETV+EG

WSJ_dev 13.6 13.7 14.0 14.0 13.6 14.0

WSJ_eval 14.6 14.7 14.9 14.7 14.5 14.9

timit_test 30.6 30.4 30.5 30.9 30.7 31.0

ema_n_test 36.8 36.3 36.8 37.2 36.9 37.0

ema_f_test 53.5 53.5 53.6 54.5 53.9 54.0

Average 29.8 29.7 30.0 30.3 29.9 30.2

7.6 Summary

In this chapter, we presented DNN and CNN based acoustic models for WSJ1

dataset using acoustic and articulatory features. We developed and explored a

hybrid convolutional neural network (HCNN) architecture for optimally combining

the acoustic and articulatory feature streams. Experiments on WSJ1 dataset showed

that the HCNN system combining all the articulatory features and the GFB acoustic

feature reduced the WER by 0.2% over the acoustic only (GFB) TFCNN acoustic

model, and by 0.6% over the DNN acoustic model trained on GFB acoustic feature.

Cross-corpus phone recognition with the WSJ1 acoustic models highlighted the

reduction in performance in mismatched corpus condition. Adding articulatory

features to acoustic features reduced the PER by 0.1% on an average with a splicing

width of 75 frames and by 0.4% an average for a feature splicing width of 95

frames.Thus articulatory features (TVs and gestures) can be used in state-of-the-art

ASR systems to improve the performance.

The articulatory gestures that we estimated in this experiment was using the
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TVs estimated from the acoustics. The errors in the TV estimation gets propagated

to the estimated gestures as well. This might be a reason due to which the gestures

did not help much in improving the ASR performance. Estimating the binary gesture

features directly from speech would probably help improve the ASR performance.

Further explorations into effective parametrization of the articulatory features could

further improve the performance.

The results of the cross-corpus evaluations show the sensitivity of the acoustic

models and is an important area of future ASR research.
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Chapter 8

Summary and future work

8.1 Summary

This dissertation analyzes the inherent variability of speech due to speaker

voice, speaking rates, and accents from the perspective of articulatory phonology.

It then proposes a set of articulatory representations and articulatory feature based

speech recognition architectures that can help to deal with the speech variability in

an Automatic Speech Recognition (ASR) system. Articulatory phonology provides

a unified framework to represent speech as a constellation of coordinated gestures

whose temporal overlap and spatial reduction explain coarticulation and lenition.

In order to represent speech in terms of articulatory gestures, the gestures needed

to be estimated from the speech signal. Chapter 3 of this dissertation dealt with

the development of speaker independent acoustic-to-articulatory speech models that

transformed acoustic representations to their articulatory counterparts and hence

their gestural representations, using real speech and articulatory datasets. In

contrast with the previously published work on speech inversion using synthetic or

limited real speaker datasets, this thesis deals with a much more challenging problem

of training a single speaker independent speech inversion system using articulatory

data from multiple speakers (46 speakers) from the XRMB articulatory dataset.

In order to suppress the anatomical differences between the speakers we converted
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the flesh point X-Y positions of the articulators in the XRMB dataset to relative

measures of articulatory constrictions known as Tract Variables (TV). Feed-forward

neural network architectures were explored for the acoustic to articulatory mapping.

A thorough analysis by tuning different neural network parameters was carried

out to figure out the best architecture for the speech inversion system. These

experiments led to a 5 hidden layer feedforward neural network with 512 nodes

in each layer. In order to smooth the estimates of the neural network, a low pass

filtering Kalman smoother was used. This speech inversion system which we refer

to as XRMB speech inversion system was further used for various experiments

in different parts of the thesis. The XRMB speech inversion system estimates

the TVs with correlation of 0.782 between the actual and estimated TVs on a

held out set of 5 speakers from the XRMB dataset. The performance of the

speech inversion system varied significantly across speakers. In chapter 4 we

studied and quantified this variability by analyzing cross speaker performance of

speaker dependent speech inversion systems. To address the impact of speech

inversion performance due to speaker variability, we developed a Vocal Tract Length

Normalization (VTLN) based speaker adaptation system. The speaker adaptation

approach provided a 7% absolute improvement in correlation performance of the

speech inversion systems. Speaking rate is another kind of variability that we

analyzed and addressed in this dissertation. In order to study the effects of speaking

rate on acoustics and articulations we analyzed a variable speaking rate dataset

containing Electromagentic Articulometry (EMA) data. The dataset consisted of

8 speakers producing the IEEE sentences at normal and fast rates. We performed
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extensive speech inversion experiments like cross speaking rate and cross speaker

experiments to assess the performance across speaking rates on this dataset. The

cross speaking rate correlations of the TV estimates provided a quantitative analysis

of variability in acoustic and articulatory spaces due to speaking rate. Next

we analyzed the variability due to accents by performing cross accent and even

cross language speech inversion experiments on a Dutch, Dutch accented English

and British English articulatory dataset. The cross accent results showed that

speech inversion systems trained on a particular accented speech can be used

to reliably estimate the articulaotry trajectories of a different accent with some

reduction in performance compared to matched accent conditions. Coarticulation

and lenition are commonly observed in conversational and fast rate speech. They

often manifest as deletion or substitution of phone units when looked at from

the acoustic perspective. Articulatory phonology explains coarticulation through

spatio-temporal changes and overlap in the patterns of underlying gestures. However

these spatio-temporal overlap in the articulatory gestures are weakly manifested

in the acoustics thus leading to apparent deletion or substitution. In chapter 6

we studied the coarticulation occurring in certain fast spoken utterances using

articulatory constriction tract-variables (TVs) estimated from acoustic features. The

objective of this study was to test the efficacy of the speech inversion system (XRMB

system) in estimating acoustically weak articulatory maneuvers like coarticulations.

Specifically, we studied three example utterances of fast and normal rate speech to

estimate the articulatory gestures. We showed that the speech inversion systems

which were never trained on the target utterances reliably estimated the TVs that
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matched the actual TVs from the corresponding articulatory measurements. We

also considered the special case of American English /r/ sound, the production of

which has two possible tongue configurations - the bunched and the retroflexed

(Zhou et al., 2008). It is known that the acoustic correlates of the differences in

these tongue configurations lie in the 4th and 5th formant frequencies which are

acoustically weak signatures. We showed that the XRMB speech inversion shystem

could accurately distinguish between the bunched and the retroflex configurations

even though the examples considered were not part of the XRMB dataset. The

analyses carried out in chapters 4 and 5 indicate that articulatory features are a

more invariant representation of speech compared to the acoustic features and hence

hold potential to improving the performance of ASR systems Chapter 6 considers

a proof of concept experiment of classifying place of articulations of phonemes

using estimated articulatory features. Phone place of articulation classification

experiments were carried out using the TIMIT dataset. Results showed that a

combination of acoustic features (MFCCs) and estimated TVs improve the place

of articulation classification accuracy by 2% relative to the accuracy of MFCCs

alone. Encouraged by this observation we carried out full fledged continuous speech

recognition experiments in chapter 7. In chapter 7 we carry out medium vocabulary

speech continuous recognition experiments on the Wall Street Journal 1 (WSJ1)

dataset. We experimented with various combinations of acoustic and articulatory

features. The acoustic features were characterized by Gammatone Filterbank

energies (GFB) and the articulatory features were estimated using the XRMB and

the EMA-IEEE speech inversion systems. We also developed binary articulatory
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gesture like activation features to highlight the critical regions of articulatory

constrictions from the TVs. In order to best combine the acoustic and articulatory

features we developed a hybrid convolutional neural network (HCNN) architecture

for the ASR system. The HCNN architecture performed time and frequency

convolutions on the acoustic features and time convolutions on the articulatory

features. We compared the performance of the HCNN acrhitecture with the Time

Frequency Convolutional neural network (TFCNN) and DNN architectures operatin

on acoustic only GFB features. Results showed that the HCNN system combining

all the articulatory features and the GFB acoustic feature reduced the WER by

5.2% relative to the acoustic only (GFB) TFCNN acoustic model, and by 0.6%

over the DNN acoustic model trained on GFB acoustic feature. Cross-corpus phone

recognition with the WSJ1 acoustic models highlighted the reduction in performance

in mismatched corpus condition. Adding articulatory features to acoustic features

reduced the PER by 0.1% on an average with a splicing width of 75 frames and by

0.4% an average for a feature splicing width of 95 frames.

The findings based on this dissertation indicate that articulatory

representations extracted from acoustics can be used to address acoustic variability

in speech observed due to speakers, accents, and speaking rates and further be used

to improve the performance of Automatic Speech Recognition systems.
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8.2 Future directions

There are several directions of research that could be pursued based on the

findings of this dissertation.

8.2.1 Consolidating multi-modal articulatory data for speech

inversion

Articulatory data is being collected by different groups using different

modalities like EMA, rt-MRI, ultrasound, and EMG. All these datasets

measure/image different regions of the vocal tract with different temporal and

spatial resolutions. Since each of these techniques are expensive and time consuming,

in a particular dataset only a limited amount of data is recorded from a few speakers.

Methods developed in this thesis to convert EMA trajectories to TVs and speaker

normalization offer promise for combination of articulatory data from multiple

modalities for speech inversion training. This would effectively augment the size

of the articulatory dataset as well as the diversity.

8.2.2 Assistive devices for pronunciation training

The acoustic to articulatory speech inversion systems developed in this thesis

show promise that that the articulatory movements can be accurately estimated

from speech. A real-time implementation of the XRMB speech inversion system

during the course of the thesis makes such a system suitable for practical use in

pronunciation training. The estimated TVs from a speech inversion system could be

131



used in creating a 3-D visualization of the articulatory movements by actuating a

3-D vocal track model using the estimated TVs. Such a visualization system could

potentially help second language learners to improve their pronunciations. Often

certain sounds (e.g., the liquids /r/ and /l/ in english) are difficult to produce in

a given language. Subjects speaking a non-native language may fail to reach the

target articulation or may use an incorrect articulation that results in substitution

of sounds. Given that the TVs can be estimated form the subjects’ speech signal,

providing visual comparison of what they are doing with their articulators and what

they should be doing to produce a canonical articulation of the sound or phrase.

This corrective feedback mechanism holds promise in pronunciation training.

8.2.3 Speech Synthesis

Articulatory features have been explored for synthesis of accent normalized

speech. With the advent of deep recurrent neural networks for speech synthesis

articulatory features can effectively be incorporated in a speech synthesis system.

Modeling articulatory trajectories and gestures as latent variables in a speech

synthesis system can potentially enable a speech synthesis system to produce

accented speech. A recurrent neural network based articulatory synthesizer can be

implemented to map phoneme orthographic transcriptions to TVs and gestures just

like the dynamical system implementation in the Task Dynamics and Articulations

(TADA) system. Such a system would be a robust data driven articulatory

synthesizer and further the understanding of articulatory speech synthesis
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8.2.4 Accent normalization for ASR

Variability due to speech accents pose a great challenge to ASR systems.

Current ASR systems deal with accents by creating accent specific acoustic models or

performing accent adaptation. Articulatory features are an invariant representation

of speech that offer simple and intuitive understanding of accents. Accents are

manifested due to the inaccuracy in reaching articulatory targets and changes in

timings between contending articulatory targets. With the knowledge of articulatory

variations in accented speech a system can be developed to normalize accents to

improve the recognition accuracy of ASR systems for accented speech. Future

experiments need to be performed to evaluate the cross accent ASR performance of

articulatory features and develop methods for accent normalization.
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