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Upper limb prosthetic devices with advanced capabilities are currently in development. With 

these advancements brings to light the importance of objectively and quantitatively measuring 

effectiveness and benefit of these devices.  Recently, the application of motion capture (i.e., 

digital tracking of upper body movements in space) to performance-based outcome measures has 

gained traction as a possible tool for human movement assessment that could facilitate optimal 

device selection, track rehabilitative progress, and inform device regulation and review.  

While motion capture shows promise, the clinical, regulatory, and industry communities would 

benefit from access to large clinical and normative datasets from different motion capture 

systems and a better understanding of advantages and limitations of different motion capture 

approaches.  The first objective of this dissertation is to establish kinematic datasets of normative 

and upper-limb prosthesis user motion.  The normative kinematic distributions of many 

performance-based outcome measures are not established, and it is difficult to determine 



  

departures from normative patterns without relevant clinical expertise. In Specific Aim 1, 

normative and clinically relevant datasets were created using a gold standard motion capture 

system to record participants performing standardized tasks from outcome measures.  

Without kinematic data, it is also difficult to identify informative kinematic features and tasks 

that exhibit characteristic differences from normative motion. The second objective is to identify 

salient kinematic characteristics associated with departures from normative motion. In Specific 

Aim 2, an unsupervised K-means machine learning algorithm was applied to the previously 

collected data to determine motions and tasks that distinguish between normative and prosthesis 

user movement.  

The third objective is to compare three commonly used motion capture systems that vary in 

motion tracking mechanisms.  The most informative tasks and kinematic characteristics 

previously identified will be used to evaluate the detection of these differences for several 

motion capture systems with varying tracking methods in Specific Aim 3. 
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Chapter 1: Introduction 
 

According to Zeigler-Graham (2008), roughly 500,000 Americans were 

estimated to suffer some degree of upper limb (UL) loss in 2005, of which 41,000 

were major losses beyond fingers. By 2050, the number of yearly cases is expected to 

increase in proportion to the increasing population[1]. Major UL amputations can be 

perceived as devastating damage that reduces autonomy by disrupting the ability to 

perform activities of daily living during work and socialization[2]. The needs of UL 

amputees vary depending on the levels of limb loss, with unilateral amputees 

depending on UL prostheses as an aid to the sound limb and bilateral amputees using 

the prostheses as the main way to interact with the environment[2]. However, the 

state of prosthesis technology has yet to fully meet the needs of amputees: over 85% 

of bilateral amputees do not return to work[2] and the rates of prosthesis rejections 

rates may be greater than 1 in 5[3]. Factors that have been cited for prosthesis 

rejection include: lack of comfort, lack of functional gain, awkwardness of use, fine 

control difficulties, and limited usability[2-4]. Additionally, UL amputees suffer from 

disproportionate rates of overuse related musculoskeletal pain and injury[5-11]. 

Performance-based outcome measures become a critical component of the 

evidence necessary to show effectiveness of the technology and the benefits to the 

prosthesis user.  These types of outcome measures are typically used to assess 

function during the performance of actions relevant to activities of daily living 

(ADLs) and have the potential to provide unbiased and reproducible assessment of 

function. However, very few of these measures consider quality of motion (QoM) 

during functional tasks[12].  Quality of motion can be defined as the normality of task 
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performance, the smoothness and independence of motion, or as the correctness of a 

motion[12].  It is important to take quality of motion into account because of the 

propensity of individuals with UL amputations to employ compensatory movement 

patterns, which concentrates the workload on the remaining limb and alters the 

kinematics of the rest of the body[13-15]. These alterations in body kinematics may 

contribute to the overuse-related musculoskeletal pain and injuries prevalent in the 

UL amputee population[5-11]. 

One potential method to quantitatively assess QoM uses motion capture 

technology, which involves the recording and analysis of motion to produce 

kinematic information such as body trajectories and joint angles. There are various 

mechanisms of action for the motion capture systems on the market: 3D optoelectric, 

markerless, and inertial measurements. 3D optoelectric motion capture systems use 

multiple cameras to track the position of markers placed on a moving body to relate 

the position of orientation of body segments[16-23]. Markerless systems depend on 

image processing algorithms to track the frame-to-frame changes indicative of motion 

[24-31]. Inertial measurement systems track the linear acceleration and rotational 

velocity in three directions and use processing algorithms to interpret the changes 

measured as movements over time[32-38]. All the systems are capable of producing 

the quantitative kinematic data needed for motion-capture based outcome measures, 

but accuracy assessments of motion tracking in the upper limb across all systems and 

insight regarding feasibility of clinical implementation for each of these systems are 

lacking in the literature. 
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Motion capture-based outcome measures have the potential to fill the gaps 

identified in the evaluation of functional capabilities and quality of motion[6, 39-41].  

There have been several studies utilizing quantitative motion capture to examine 

QoM for the upper limb prosthesis user population[7, 13-15, 42, 43]. However, these 

studies have had narrow scopes of analyses and vary greatly in the kinematic features 

analyzed. Several issues obstruct the clinical, regulatory, and industry adoption of 

motion capture. The normative kinematic ranges of many commonly used 

performance-based outcome measures have yet to be established. The deviations from 

normative motion and the kinematic characteristics useful for the measurement of 

QoM is thus unclear. To address the paucity of normative clinical data for common 

outcome measures and the lack of coordinated datasets from which to examine 

deviations from normative motion in a clinical population of interest, the first 

Specific Aim of this dissertation focuses on the development of such kinematic 

databases. With the kinematic data from both healthy controls and individuals 

representing a clinical population of interest, it is possible to apply advanced 

mathematical methods (e.g., machine learning) to discern differences between these 

populations. With the differences identified, it would then allow for targeted 

developments in rehabilitation and device design. The goal of Specific Aim 2 is to 

apply machine learning to datasets of normative and simulated disability motion for 

the identification of kinematic features associated with compensatory motion. Once 

the kinematic features have been identified, the ability to detect the features of 

interest becomes vital as the accessibility and technical specifications of the motion 

capture systems available influences the adoption and utilization of motion capture. 
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By examining available systems for the ability to detect the kinematic characteristics 

of interest, it will be possible to encourage the greater adoption of motion capture into 

research and rehabilitation. The goal of Specific Aim 3 is to examine the performance 

of three motion capture systems with varying mechanisms of action using motions 

and features identified by Specific aim 2. A detailed description of each specific aim 

and the corresponding chapter in this dissertation follows. 

1.1 Specific Aim 1: Development of Kinematic Databases 

Those few performance-based outcome measures that incorporate subjective 

evaluation of quality of movement assess this metric by asking the administrator to 

compare the movements of the prosthesis user to those of a person with a sound, 

intact hand [44, 45]. Although these scoring approaches provide more insight into the 

functional abilities of individuals using upper limb prosthesis technology, the broad 

definition of “normal movement” and the subjective nature of the scoring can make it 

difficult to know which areas of the body to focus on evaluating, and the magnitude 

of the deviation from the normative movement ranges given the lack of quantitative 

normative baselines. 

As mentioned above, previous motion studies of QoM have isolated single 

features of motion and made narrowly defined comparisons to healthy, able-bodied 

individuals. Additionally, those studies vary greatly in the kinematic parameters 

analyzed – from joint angles and range of motion[13-15, 43, 46] to velocity 

changes[7, 47], rendering trend interpretations and cross study conclusions 

challenging. Overall, there has yet to be a kinematic database of performance-based 

outcome measure motions, normative and otherwise, much less a publicly available 
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database. Publicly available kinematic databases will speed the development of new 

motion capture outcome measures and the clinical adoption of objective performance-

based outcome measures by increasing access to data and reducing duplicative 

efforts. 

Thus, the first aim of this dissertation was to generate coordinated kinematic 

databases of normative and UL prosthesis user movements to allow the establishment 

of normative baselines, the evaluation of factors relevant to quality of motion, and 

eventually allow the quantification of QoM. In Chapter 2, we generate a standardized 

normative motion database by recording able-bodied participants as they performed 

standard tasks from performance-based outcome measures. We then generate a 

standardized database of simulated disability motion data by recording able-bodied 

participants performing tasks with a prosthesis simulator meant to simulate the loss of 

distal degrees of freedom (DOFs) in the UL. To ensure skillful use of the UL 

prosthesis simulator devices, in Chapter 2 we also describe the training protocol used 

for training the able-bodied participants on the use of the UL prosthetic devices. 

1.2 Specific Aim 2: Application of Machine Learning to Identify Salient Kinematic 

Characteristics 

After the generation of coordinated kinematic databases, it is necessary to 

analyze and interpret the data collected to identify kinematic features of interest that 

can be used to direct future avenues of investigation. In Chapter 3, we apply the k-

means clustering machine learning algorithm to the Chapter 2 kinematic data 

previously gathered to examine the departures from a normative baseline. By 
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examining those DOFs, it will be possible to identify tasks with distinctive 

differences for use in the motion capture system comparison performed in Chapter 4. 

Previous motion capture evaluations of movement in UL prosthesis users were 

typically completed for a single terminal device at a time, making the device related 

influences of varying prosthesis technologies on motion unclear. Consider two 

available technologies for this clinical population: the voluntary open body-powered 

hook controlled through body movements and the DEKA arm controlled with inertial 

measurement units attached to the feet [48-51]. With different prosthetic components 

and technology that provide different DOFs of control, one might anticipate 

kinematic differences in response to the available DOFs and control mechanism[52]. 

However, it is not yet clear where in the body and during what types of tasks these 

kinematic differences occur relative to “normal” movement and whether 

administrators should focus on certain areas of the body based on the type of 

prosthetic technology being used. 

The identification of upper body movements as normal or not normal can be 

characterized as a binary classification problem.  If upper body movements are 

quantified into discrete features that describe the kinematic trajectories for a given 

DOF, clustering analysis can be used to systematically determine differences between 

two groups.  The application of clustering analysis to identify movement differences 

between groups is not novel.  Some studies have used input from inertial 

measurement units and accelerometers to classify different upper limb 

movements[53, 54]  or different gait patterns[55].  Other studies have applied 

clustering analysis and other machine learning techniques to motion capture data to 
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classify different full body actions in healthy individuals[56] or severity of crouch 

gait in children with cerebral palsy[57]. Electromyography data of the abdominal and 

erector spinae muscles has also been used as input to clustering algorithms to classify 

patterns of muscle activity during gait in healthy controls[58].  While a few clustering 

studies have focused on the upper limb prosthesis user population, the application of 

clustering analysis to compare movement of individuals using multiple prosthetic 

devices to the movements of healthy individuals has not been done. 

The second aim of this dissertation was to identify DOFs that inform 

abnormal movement for several tasks using unsupervised machine learning 

(clustering methods). In Chapter 3, we applied the K-means clustering machine 

learning algorithm to the Chapter 2 kinematic data previously gathered to examine the 

departures from a normative baseline. By examining those DOFs, it will be possible 

to elucidate the variations in movement approach across several upper-limb prosthesis 

devices with varying DOFs as compared to healthy controls and identify standard 

tasks with distinctive kinematic features that would be useful for the comparison of 

the motion capture systems performed in Chapter 4. 

1.3 Specific Aim 3: Comparison of Motion Capture Systems 

Even when kinematic databases have been established and informative DOFs 

and tasks have been identified, the clinical implementation of motion capture in 

rehabilitation may be challenging due the technical requirements for most commercial 

gold standard motion capture systems. A large proportion of studies investigating 

human motion use 3D optoelectric motion capture systems that track the position of 

markers placed on anatomical landmarks of the body to relate the position and 
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orientation of body segments.  These systems are advantageous given their high 

resolution and accuracy, as well as their length of use in research[16-23] compared to 

more recently developed mechanisms of motion capture[26, 31, 59-62]. However, 

these 3D optoelectric systems are too bulky for use outside of the clinic, have 

restrictive operating environment requirements, and require high levels of training to 

collect and analyze data[26, 31]. As such, there has been interest in other systems, 

such as the Microsoft Kinect or inertial measurement unit-based systems, that have 

less restrictive operating environment requirements[25, 29]. 

There have been several previous studies comparing motion capture systems 

that have focused on one-to-one comparisons of a single test system and a gold 

standard system[33, 36, 63-69],  the lower limbs[28, 34, 68, 70-73], or have relied on 

mechanical testing devices to ensure the greatest replicability of the ground truth[64, 

74-76]. However, these approaches lack applicability and generalizability to the 

tracking of motion in the upper limbs, specifically upper limb prosthesis users. 

To better understand the performance of various motion capture systems in 

quantifying upper limb movement in the prosthesis user population, Chapter 4 of this 

dissertation compares kinematics of users trained on the use of an UL prosthesis 

simulator simultaneously recorded from three systems that vary in motion capture 

mechanisms: a marker-based system, a markerless system, and an IMU system. The 

trained participants performed standardized tasks selected through the results from 

Chapter 3. The kinematic data generated from three systems was compared with 

RMSE and Bias values using the marker-based system as the standard. This 

simultaneously acquired dataset will clarify the technical capabilities of the selected 
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motion capture systems and provide insight into the ability of those systems to 

identify the differences from normative motion previously elucidated in the second 

aim of this project. 
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Chapter 2: Establishment of Kinematic Databases 

2.1 Introduction 

Motion capture is a promising method for measuring performance in an 

objective and quantitative manner due to its mechanism of action, the description of 

object movements with mathematical expressions of changes over time. However, 

one limitation that has slowed the adoption of motion capture for use in clinical 

evaluation, rehabilitation, or device evaluation is the unknown range of normative 

kinematic variation, especially in in the upper limb (UL). Without an established 

range, it is unclear what is typical vs. atypical performance. Previous studies 

attempting to examine movement quality in the UL prosthesis population with motion 

capture have varied greatly in prosthesis devices studied, the tasks and motions 

selected, the comparisons made to able bodied motion, and the kinematic parameters 

analyzed, ranging from joint angles to velocity changes[13-15, 43, 46] [7, 47], which 

renders cross study trends and conclusions challenging. Other studies have focused on 

well-defined movements such as reach-to-target tasks for ease of analysis and 

processing[77-81]. These well-defined approaches are not necessarily representative 

of the strategies or motions present during the performance of ADLs. 

The establishment of publicly accessible standardized database of normative 

UL motion during performance-based outcome measure tasks is necessary for the 

establishment of quantitative normative performance kinematic baselines. Currently, 

there is limited consensus on how to quantitatively measure differences from 

normative performance to assess quality of motion within existing performance-based 

outcome measures[12]. Performance-based outcome measures have previously 
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assessed quality of motion subjectively through comparisons of the movements to 

those of a person with a sound, intact hand[44, 45], or consider factors such as 

“normality”, “smoothness”, or “independence” of performance[12]. All these 

subjective approaches require expertise for consistent judgement, and do not provide 

quantitative descriptions of normal motion, much less the magnitude of the kinematic 

deviations from normal motion. 

A publicly accessible database reduces the duplication of efforts within the 

field and lowers the technological burdens associated with the collection of motion 

data for kinematic research. (I.e., the pre-requisites of needing access to a motion 

capture lab and human subjects research experience to collect data for a research 

question.) Lowering the barriers to entry for upper limb kinematic research will 

stimulate research activity within the field. With the establishment of kinematic 

baselines, it becomes possible to quantitatively assess variations in motion and 

examine the factors that influence quality of motion.  

To examine the differences between a normative baseline, movement patterns 

elicited during use of an assistive device, and movement patterns results from limited 

degrees of freedom, it is also necessary to establish databases of motion under those 

conditions. The solution proposed for this quandary is the use of able-bodied 

participants performing under conditions of simulated disability. The use of able-

bodied participants allows for an increase in sample sizes as compared to the samples 

sizes possible with UL amputee participants, a controlled level of device exposure 

and training as compared to UL amputees which may vary widely in these factors, 

and allows the isolation of device related influences on motion[82]. To simulate the 
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loss of distal DOF found in UL amputees, wrist braces and adaptive bypass devices 

can be used. Wrist braces restrict the DOFs available for use, while adaptive bypass 

devices allow able-bodied participants to use UL prosthesis terminal devices. In order 

to ensure consistent skillful use of the UL prosthesis device, the implementation of a 

common training protocol is necessary. 

With the normal and device use motion databases, it will be possible to 

investigate the most informative UL DOFs and outcome measure tasks with machine 

learning – which will be presented in the following chapter for Significant Aim 2. 

The analysis of the data performed in chapter 3 for Significant Aim 2 will then be 

used to select tasks and motions that are useful for characterizing the technological 

capabilities of motion capture systems of varying mechanisms in chapter 4 for 

Significant Aim 3. The details of the data collection for the normative and simulated 

disability databases are presented in this chapter, as well as the prosthesis training 

approach taken to ensure skillful device use 

2.2 Methods 

2.2.1 Functional Tasks 

Participants performed a subset of tasks from the following outcome 

measures: the Jebsen-Taylor Hand Function test (JHFT)[83], the targeted Box and 

Blocks Test (tBBT)[83, 84], the Capacity Assessment of Prosthetic Performance for 

Upper Limb (CAPPFUL)[44], and the Activities Measure for Upper Limb Amputees 

(AMULA) [85, 86].  The outcome measures tasks were chosen either due to previous 

use in kinematic studies[83, 84, 87] or due to validation in the upper limb prosthesis 
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user population[44, 45].  Tasks selected from these outcome measures were chosen as 

ones that would elicit a wide range of movements representative of those performed 

during activities of daily living. A standard template was used to place each object for 

a given task in the same location for each participant. At least two trials of each 

selected task were performed 

Table 2.1: Description of tBBT and tasks from the JHFT, AMULA, and CAPPFUL 

Task name Description 

JHFT 1 – Writing Write the standard sentence, 24 letters long, presented in 
cursive. Performed seated. 

JHFT 2 – Page Turn 
Flip over five 3x5 cm notecards arranged in a row with any 
technique, starting with the leftmost card and moving across. 
Performed seated. 

JHFT 3 – Small 
Objects 

Pick up six small objects (2 paperclips, 2 bottle caps, & 2 
pennies) arranged two inches apart on the dominant side of the 
subject, and place in an empty can individually, starting with the 
right most object. Performed seated. 

JHFT 4 – Simulated 
Feeding 

Scoop with a spoon five kidney beans arranged two inches apart 
on the dominant side of the subject, and place in an empty can 
individually, starting with the right most bean. Performed 
seated. 

JHFT 5 – Stacking 
Checkers 

Stack one on top of another, four standard wooden checkers 
centered in front of the subject. Performed seated. 

JHFT 6 – Light Objects Lift 5 empty cans individually about 1” onto a board, starting 
with the rightmost can. Performed seated 

JHFT 7 – Heavy 
Objects 

Lift 5 filled cans individually about 1” onto a board, starting 
with the rightmost can. Performed seated 

AMULA 10 – Fork Grasp fork and bring to mouth, move fork back to table and 
release fork. Performed seated 

AMULA 16 – 
Doorknob 

Reach, grasp, and turn door knob. Release doorknob. Performed 
seated. 

AMULA 24 – Reach Lift arm overhead to grasp empty cup on shelf and bring down 
arm with cup in hand. Performed seated. 

CAPPFUL 4 – Dice Pick up three dice from a plate, touch to chin, and return to 
plate. Performed standing 

CAPPFUL 8 – Bottle Empty a squeeze bottle of water into a cup. Performed seated. 

CAPPFUL 11 – Picture 

Modified task – Reach overhead to grasp two rings suspended in 
the air on a pulley system, bring rings down to waist, then 
control the placement of rings back in their suspended position. 
Performed seated. 

tBBT  

Transport 16 blocks, one at a time, over a partition using only 
the dominant hand, starting with the innermost left block and 
moving across each row placing the block in its mirrored 
position. Performed either seated or standing. 
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2.2.2 General Participant Information 

Able-bodied participants with no upper limb disability or impairment and no 

prior prosthesis experience were included in this study. The study was approved by 

the FDA IRB (Protocol 16-071. All participants provided written informed consent 

prior to participating in the study. 

Each participant performed a set of standardized tasks under several possible 

conditions: Normative (Norm), Brace (BC), Body Powered Bypass (BP Bypass), 

DEKA Bypass (DK Bypass), or Myoelectric Bypass (MY Bypass). Some participants 

performed the set of standardized tasks under multiple conditions.  As an example, 

some participants performed under the Norm, Brace, and BP Bypass conditions while 

other participants only performed under the MY Bypass condition. Other participants 

performed under the DK Bypass and Norm conditions. 

In the brace condition (Figure 2.1), a motion restriction that reproduced some 

of the DOF limitations found in conventional prosthetic devices was induced on able-

bodied participants[13, 88]. In the bypass conditions, adaptive bypass devices 

allowed trained able-bodied participants to use upper limb prosthesis terminal devices 

(Figure 2.2A, B, C). Bypass devices are a well-accepted approach to assess skill 

acquisition, training efficacy, and device use performance[8, 89-92]. Participants 

were trained until a learning curve performance plateau set to 90% of peak 

performance was reached, in accordance with the protocol of Bloomer et al 2018[82]. 

Further details on the training, the participants, and the devices within each of these 

condition groups are provided below. 



 

 

15 
 

 

Figure 2.1. Brace Condition. Induces limitations on wrist and hand DOFs through 
a cock-up splint, Coban wrap, and paper tape. 
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Figure 2.2. Upper limb prosthesis bypass devices. A) Body Powered Bypass 
device, right side configuration with body-powered voluntary open Hosmer 5x 
split hook terminal device (Arm Dynamics, Dallas, TX). B) DEKA Bypass device, 
right-hand radial configuration with powered wrist (Next Step Bionics, 
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Manchester, NH). C) Myoelectric Bypass device, right-hand radial configuration 
TouchBionic i-limb Ultra with manual wrist (OSSUR, NJ, USA). (Figure modified 
from Figure 1 of Wang et al., 2021[93]) 

2.2.3 Bypass Training and Condition Descriptions 

The original bypass training protocol was designed by Bloomer et al 

(2018)[82] to facilitate a controlled presentation of the bypass prosthesis devices to 

able-bodied participants and enable efficient acquisition of prosthesis use skills. 

Participants completed ten two-hour training sessions with either the Body Powered 

(BP) bypass or the DEKA (DK) bypass. Each training session included tasks for three 

standardized training categories, 1) Object manipulation, 2) Free training, and 3) 

Activities of Daily Living. The task presentation order was randomized within each 

training category during each session. Participant performance during each session 

was scored with a modified Southampton Hand Assessment Procedure (mSHAP) 

outcome measure and the Box and Blocks Test (BBT) outcome measure. A learning 

curve was fitted to the session scores, which allowed for the identification of learning 

rates and learning plateau values. Motion capture sessions were performed at the 

midpoint (after five training sessions) and endpoint (after the tenth session) of the 

training sessions. The data from the endpoint motion capture sessions were used in 

this chapter. 

Based on the results from the original training protocol, a modified 

accelerated protocol was used to train the Myoelectric (MY) bypass users. The 

training endpoint was set as either the achievement of a learning plateau set at 90% of 

the predicted peak performance, or the completion of ten two-hour training sessions. 

The termination of training was based on whichever endpoint was achieved first. Due 
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to the nature of a leaning plateau, it was not expected for participants to exhibit 

significant changes in performance with additional training sessions after reaching the 

plateau performance point. Participant performance during each session was scored 

for the SHAP and the mSHAP, as well as the BBT. The learning curve was fitted to 

the mSHAP scores for comparability with the previous training program results from 

Bloomer et al (2018). Due to the instability of the predicted plateau session over time 

and the difficulty of fitting a curve to less than 3 points of data, participants 

completed at least one training session post plateau achievement to ensure that the 

performance plateau was adequately captured. The motion capture session was 

performed after the training endpoint was achieved. 

2.3.2.1 Normative (Norm) Condition 

No devices were used in the Norm condition, and no training was provided. A 

convenience sample of 34 participants performed under the Norm condition (9 

females, 23 males; mean age 27.41 ± 9.89 years). 27 of the 34 participants were right 

hand dominant and all participants performed the standard tasks with the right hand.  

2.3.2.2 Brace (BC) Condition 

For the Brace condition (Figure 2.1), able bodied participants had wrist and 

hand function restricted through use of a cock up split and Coban wrap. This resulted 

in limited wrist flexion/extension and ulnar/radial deviation. All fingers were 

restrained except for the index and middle fingers. The index and middle fingers were 

further wrapped with paper tape to reduce possible flexion, sensitivity, and dexterity. 

A convenience sample of 22 participants performed under the Brace condition (7 
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females, 15 males; mean age 26.45 ± 8.63 years). 19 of the 22 participants were right 

hand dominant, and all participants performed the standard tasks with the right hand.  

2.3.2.3 Body-Powered (BP) Bypass Condition 

In the BP Bypass condition (Figure 2.2A), a forearm brace adaptor with a 

perpendicular handlebar allowed the use of a body-powered voluntary open Hosmer 

5x split hook terminal device, with manual locking wrist rotation, set in-line with the 

length of the forearm.  On average, the length of the bypass prosthesis was 9.25 cm 

longer than the intact limb. The body-powered bypass device was provided by Arm 

Dynamics (Dallas, TX). The in-line terminal device configuration was chosen due to 

the mechanical and kinematic requirements of the cable actuation with the figure 

eight harness.  

A convenience sample of 6 participants (3 females, 3 males; mean age 28.67 ± 

2.67 years) were trained with the BP Bypass device. All participants self-reported as 

right hand dominant. During standard task performance, the BP Bypass was set to a 

right-side configuration for all participants. 

2.3.2.4  DEKA (DK) Bypass Condition 

For the DK Bypass condition (Figure 2.2B), a forearm brace adaptor provided 

by Next Step Bionics (Manchester, NH) with a perpendicular handlebar allowed the 

use the right-hand radial configuration motorized DEKA device with powered wrist 

(DEKA Inc.). Just as the device is controlled by upper limb amputees, able-bodied 

participants used inertial measurement units attached to the dorsum of the foot to 

control grip changes, opening and closing of the device, and wrist rotation. This 
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terminal device was mounted to the forearm adaptor with a medial offset of 10° from 

the subject’s forearm.  

A convenience sample of eight participants (3 females, 5 males; mean age 

31.13 ± 14.49 years) were trained with the DK Bypass device. Six participants self-

reported as right hand dominant, one participant self-reported as indeterminant in 

hand dominance, and one participant self-reported left hand dominant. All 

participants performed standard tasks with the right-hand radial configuration DK 

Bypass. 

 
2.3.2.5  Myoelectric (MY) Bypass Condition 

 
A forearm brace adaptor with a perpendicular handlebar provided by Next 

Step Bionics allowed the use of a right-hand TouchBionic i-limb Ultra (OSSUR, NJ, 

USA) myoelectric terminal device with manual wrist adjustment. The device was 

mounted to the brace with a medial offset of 15° from the subject’s forearm (Figure 

2.2C). In accordance with upper-limb amputee control configurations, myoelectric 

sensors were placed on antagonist pairs of radial and ulnar muscles on the forearm to 

control the opening and closing of the device. Grip changes were controlled with the 

TouchBionic my i-limbTM app on an iPod TouchTM 
 (Figure 2.3). This adaptive bypass 

device (MY Bypass) allowed trained able-bodied participants to use a commercial 

upper limb prosthesis terminal device. 

10 able bodied participants with no upper limb disability or impairment were 

included. The participants were selected through convenience sampling (5 females, 5 

males; mean age 29.6 ± 7.1 years). 9 of the 10 participants were right hand dominant 
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(92.53 ±10.62 laterality), one was left hand dominant (-100 laterality) per the 

Edinburgh handedness survey[94]. 

 

Figure 2.3 My i-limb grip selection screenshot (Touch Bionics, Apple App Store, 
2020) (Figure modified from Figure 1 of Wang et al., 2022[95]) 

2.2.4 Motion Analysis 

The state-of-the-art motion capture system selected for the creation of the 

kinematic databases was the ViconTM passive marker optoelectric system with 10 

infrared cameras and 1 digital video camera (VICON, Oxford, UK). This system was 

used to acquire and pre-process motion data. 
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The Bonita B10 and Vero infrared cameras were set to a sampling rate of 

100Hz. Prior to each data collection session, the motion analysis system was 

calibrated according to manufacturer guidelines. Twenty-seven retro-reflective 

markers were placed on the upper body of each participant at the bony anatomical 

landmarks of the upper body in accordance to the Vicon Upper-Body Plug-In-Gait 

body model documentation (“Upper body modeling with Plug-in Gait,” 2019) (Figure 

2.4A). Briefly, head markers were placed on the right/left temple and right/left back 

of the head; torso markers were placed on the spinous process of C7 and T10 

vertebrae, right scapula, xiphoid process, and sternal notch; arm markers were placed 

on the acromio-clavicular joint, lateral surface of upper arm, lateral epicondyle of the 

elbow joint, lateral surface of lower arm, medial and lateral sides of the wrist joint, 

and on the third metacarpal; hip markers were placed on the right/left anterior 

superior iliac torso and right/left posterior superior iliac torso.  The Plug-In-Gait 

upper body model was then calibrated to the dimensions of the participant to create 

the wrist, forearm, upper arm, head, neck, torso, and pelvic model segments. For the 

BP Bypass, the medial and lateral wrist joint markers were placed in line with the grip 

bar on the shell of the device at the locations of the red circles on Figure 2A, and the 

third metacarpal marker was placed on the portion of the split hook below the rubber 

band. For the DK and MY Bypasses, the medial and lateral wrist joint markers were 

placed on the wrist of the device with the base of the device thumb acting as the 

location reference. The third metacarpal market was placed on the corresponding 

location on the devices with the index finger acting as the location reference. 
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2.2.5 Data Cleaning and Processing 

Joint angles were calculated from the Vicon upper body model using YXZ 

Euler angles derived from relative orientation comparisons of two segments (VICON 

Plug-In-Gait, Oxford, UK). The DOFs processed in this aim of the dissertation 

include right and left elbow flexion/extension; right and left shoulder 

flexion/extension, abduction/adduction, and internal/external rotation; torso flexion, 

lateral flexion, and rotation; and neck flexion, lateral flexion, and rotation. 

The angle data were then filtered using a 4th order, zero lag, low pass 

Butterworth filter at 6 Hz. Data from each trial were further segmented into segments, 

with the number of segments depending on the number of objects manipulated in a 

given task (Figure 2.4B).  For example, the JHFT Task 2 -Page turning required the 

participant to turn over five notecards, which resulted in five segments.  In general, 

segment start was defined as the moment just before an object was touched and 

segment end defined as the moment following object release.  A standard template 

was used to place each object for a given task in the same location for each subject, 

but the objects themselves may be distributed across the front of the participant or to 

the side of the participant depending on the task. To adequately compare kinematic 

trajectories across participants within a given condition, the analysis was limited to 

the last segment within each trial.     
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Figure 2.4 A) Vicon Nexus Upper Body Plug-In-Gait locations of the 27 markers. 
B) Object interaction segmentation: an example of the object approach and 
completion of object interaction points in JHFT Task 4 – Simulated Feeding. 

2.3 Results 

For the MY bypass training protocol, the average number of training sessions 

required to achieve the performance plateau was 3.38 sessions. No participant used 

the ten-session endpoint, all participants achieved the learning plateau endpoint. The 

mean weighted Liner Index of Function (wLIF) mSHAP score at the plateau was 

62.82, out of a maximum possible score of 100.  

Both normative and device use data were collected for tasks from the JHFT, 

tBBT, CAPPFUL, and AMULA. Please see Chapters 3 and 4 for the additional 

analyses performed upon the collected data to address Significant Aims 2 and 3. 
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2.4 Discussion 

During the bypass training, several factors appeared to influence the rate of 

task completion. One factor was the visibility of the object being manipulated. 

Participants generally completed tasks more quickly when the object was highly 

visible, either due to the bypass terminal device design (i.e. BP Bypass) or the 

training task parameters, This could be attributed to the lack of alternative feedback 

mechanisms for fine tuning device control and object position manipulation. Another 

factor was the mass of the bypass. As the training tasks were completed multiple 

times, the DK bypass participants, who were using a bypass with greater mass, tended 

to tire more quickly compared to the BP Bypass participants. A support frame was 

implemented for the DK bypass participants in an effort to counterbalance the greater 

mass. However, the inertia from the greater mass may still have influenced the task 

performance strategies chosen by the participants. In addition, perceived fatigue and 

the effects of fatigue on skill acquisition and retention were not factors that were 

specifically monitored and could be avenues of future investigation. 

During the data collection, several unexpected factors influenced the rate of 

data collection and processing. One factor was that only a single machine had a Vicon 

Nexus license key. This resulted in data processing becoming a rate limiting 

bottleneck. Data collection sessions averaged about two hours in length; the data 

collected in a single session could take up to 4 hours of cleaning and annotation. 

Although the time required for cleaning and annotation could be substantially reduced 

with additional experience and additional efforts made during recording sessions to 

ensure high quality data, the time ratio of collection to processing never dropped 
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below 1:1. This factor was aggravated when several motion capture research projects 

were concurrently collecting and processing data and multiple lab members needed 

the same machine. 

Other factors that influenced data processing rates were the environmental 

conditions of the capture environment and the efforts taken to ensure that the 

participant assumed a clean clear starting pose for each task. Regarding the 

environmental conditions, although the infrared cameras used to track the passive 

markers were not sensitive to the ambient light levels per se – high level levels from 

the incandescent lab lights resulted in transient background reflections that masking 

and threshold adjustments only partially alleviated. Transient background reflections 

occasionally resulted in undesirable merging of markers with different markers and 

reflections with markers. These errors needed manual detection and manual 

adjustments to address. Low light levels alleviated the transient background 

reflections but rendered the output of the system’s video camera difficult to interpret. 

As the video was used to determine the placement of interaction annotations for each 

task, low light videos occasionally required multiple replays to determine consistent 

frames for the annotations. 

Regarding the clean clear starting poses, initially there were several issues 

with marker labeling and spurious outputs from the Vicon joint angle calculation 

algorithms when markers were missing in the initial frames of a task recording. This 

was partially alleviated after a Vicon software version update which allowed for 

virtual placeholder markers that could substitute for the missing markers. However, 

the issue was most ideally addressed by ensuring all markers were visible prior to 
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recording initiation by coordinating body position adjustments with the participant. 

The most frequently problematic markers were as follows: the anterior hip markers, 

which were frequently obscured from the cameras by the task table and by body 

anatomy; the right wrist markers, which were frequently obscured by other portions 

of the bypass; the sternal notch and C7 markers, which were obscured by head 

position or hair. The use of a backless stool avoided obscuration issues for the 

remaining posterior body markers. However, the trade-off from prioritizing marker 

visibility through body position adjustments was that each task for each participant 

had a slightly different starting pose and consistent joint angles could not be assumed. 

Lastly, available hard drive storage was another unexpected factor that 

affected data collection. Although the text files that stored the reflective marker 

positions in space were not especially large, the associated video files were still quite 

large even when set to half the frame rate of the infrared cameras. When the dedicated 

hard drive partition in the recording machine filled to capacity during a task 

recording, the Vicon Nexus program would either freeze or crash. This factor ended 

up limiting both the maximum number of trials per recording session, as well as the 

ability to perform back-to-back recording sessions. 

The standard training protocol developed by Bloomer et al (2018)[82] 

successfully allowed the controlled and efficient implementation of able-bodied 

bypass users in the research setting. This in turn allowed the collection of kinematic 

data for multiple bypass devices, leading to the creation of kinematic databases for 

normative and device use motion data. The kinematic databases have been used in 

other studies to establish normative kinematic ranges for performance-based outcome 
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measure tasks and has allowed kinematic comparisons of various methods to simulate 

the loss in distal DOF found in upper limb amputees[52, 83, 84, 87, 88, 96]. The data 

collected will be used with machine learning clustering methods in the next chapter to 

identify the features and tasks that are most informative of the differences between 

normative and characteristic motions elicited during use of an upper limb prosthesis 

device. A comparison of the various methods to simulate upper limb disability will be 

performed to examine the influences of available distal DOFs upon body kinematics. 
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Chapter 3: Application of Machine Learning to Identify Salient 
Kinematic Characteristics 

3.1 Introduction 

In the previous chapter, databases of motion data for normative and simulated 

losses of DOF were generated under a standardized protocol, enabling a robust 

analysis of kinematic data across conditions. This analysis is focused on the 

determination of consistent kinematic characteristics for compensatory motions that 

result from the loss of distal degrees of freedom in the upper extremity. The 

interpretation of motion capture results can be simplified through the identification of 

kinematic features and multi-condition trends. This in turn can reduce the knowledge 

barriers involved in the adoption of motion capture as a method for assessing 

rehabilitative progress.  

This chapter examines the degrees of freedom associated with compensatory 

movements in the upper limb prosthesis user population through the application of 

unsupervised machine learning. The machine learning algorithm selected for the 

evaluation of multiple features of movement for each individual and each prosthetic 

device type is the K-means clustering algorithm. The K-means algorithm is a robust 

and interpretable unsupervised algorithm for which the details of the features 

selected, and a more detailed explanation of the implementation is described below in 

Methods: Data Analysis. In brief, a binary classification between device and non-

device motion was performed on six features calculated from the kinematic data 

collected in the previous chapter. The results from the clustering were analyzed per 
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joint DOF per standardized task with a novel metric called the Deviation from 

Chance to assess the accuracy of the clustering.  

Previous machine learning studies with this clustering approach have focused 

on motion classification to aid in the recognition of representative kinematic 

patterns[53, 55-58], and the application of the results towards the assessment of upper 

limb rehabilitative progress through the frequency of characteristic motion 

performance[53] rather than focusing on the kinematic characteristics. By 

comparison, the results of this work will elucidate the variations in movement 

approaches and distinctive differences in motion across several UL prosthesis devices 

with varying available DOFs compared to participants with non-limited DOFs. In 

addition, the results of this work can provide cross device guidance for the evaluation 

of joints and movements typically involved in device-use motion and may aid 

rehabilitative efficacy by providing guidance on task selection and directed focus on 

the differences identified. 

The goals of this chapter are to 1) utilize unsupervised machine learning to 

create an approach to identify informative features and tasks, and 2) elucidate the 

variations in motion quality and compensatory motions across several upper-limb 

prosthetic devices with varying DOFs. The information gathered about the most 

predictive characteristics and motions will inform the evaluation of the motion 

capture systems in the next chapter by reducing the analytical load required to 

examine multiple systems. 
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3.2 Methods 

3.2.1 Participants Selected 

A total of 24 non-disabled participants with no upper limb disability or 

impairment and no prior prosthesis experience were included in this portion of the 

study. All participants included were selected from the previously described dataset in 

Chapter 2. The study was approved by the FDA IRB (Protocol 16-071). All 

participants provided written informed consent prior to participating.  Each 

participant performed a set of standardized tasks under one of several conditions: 

Normative (Norm), Body Powered Bypass (BP Bypass), or DEKA Bypass (DK 

Bypass).  To avoid confounding effects of the same individual being trained on two 

different prosthetic devices each participant selected only participated in one 

condition. This served to increase the rigor of the comparison performed by limiting 

the participants’ task familiarity. Limiting the participant selection in this manner also 

increased the variation within the motion envelope across the participant population 

by increasing the number of unique participants. 

As described in the previous chapter, in the bypass conditions, adaptive 

bypass devices allowed trained non-disabled participants to use upper limb prosthesis 

terminal devices (Figure 3.1A, B). Bypass devices are a well-accepted approach to 

assess skill acquisition, training efficacy, and device use performance[8, 89-92]. The 

use of bypass devices was chosen in this study to isolate the influence of the upper 

limb terminal device on motion[82, 96], as prosthesis users vary in terms of favored 

terminal devices, device training, and usage experience.  Recruitment of individuals 

using the DEKA arm is also difficult since very few individuals throughout the 
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country are trained on and using this device.  In accordance with the protocol of 

Bloomer et al.  [82] described in the previous chapter, participants were trained for 20 

hours on each bypass prosthetic device.  Recommendations on training length for 

actual upper limb prosthesis users vary from 5 hours to several months [97, 98], thus 

20 hours of training is a reasonable approximation to training that would be received 

in a clinic. Further details on the participants and the devices within each of these 

condition groups are provided below. 

 

Figure 3.1 Upper limb prosthesis bypass devices. A) Body Powered Bypass 
device, right side configuration with body-powered voluntary open Hosmer 5x 
split hook terminal device. B) DEKA Bypass device, right-hand radial 
configuration with powered wrist. (Figure 1 of Wang et al., 2021[93]) 
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3.1.2.1 Normative (Norm) Condition  

No devices were used in the Norm condition, and no training was provided. A 

convenience sample of 12 participants performed each task under the Norm condition 

(four females, eight males; mean age 26.91 ± 9.84 years). 11 of the 12 participants 

self-reported right-hand dominance, and all participants performed the standard tasks 

with the right hand. It was determined through examination of data distributions that 

left-hand and right-hand dominant individuals did not consistently differ in joint 

movement during tasks.  Therefore, to maintain a higher sample size, left-handed 

individuals were included in the analysis.   

The 12 participants were randomly assigned to two separate groups of six to 

serve as controls for the 6 BP Bypass and the 6 DK Bypass participants. The 

randomization was performed ten times to examine the effects of the variance in the 

normative condition. Further details of the randomization will be provided in the K-

means clustering section below.  None of the participants included in the Norm 

condition participated in any of the bypass conditions. 

3.1.2.2 Body-Powered (BP) Bypass Condition 

A convenience sample of 6 participants (3 females, 3 males; mean age 28.16 ± 

2.67 years) were trained with the BP Bypass device. All participants self-reported 

right-hand dominance. During standard task performance, the BP Bypass was set to a 

right-side configuration for all participants. 

3.1.2.3 DEKA (DK) Bypass Condition 

A convenience sample of 6 participants (2 females, 4 males; mean age 27.67 ± 

7.13 years) were trained with the DK Bypass device. 5 participants self-reported 
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right-hand dominance, 1 participant self-reported left-hand dominance. All 

participants performed standard tasks with the right-hand radial configuration DK 

Bypass.  It was determined through examination of data distributions that left-hand 

and right-hand dominant individuals did not consistently differ in joint movement 

during tasks.  Therefore, to maintain a higher sample size, left-handed individuals 

were included in the analysis.   

3.2.2 Functional Tasks 

Data for two outcome measures were chosen: the Jebsen-Taylor Hand 

Function test (JHFT) and the targeted Box and Blocks Test (tBBT)[83, 84]. These 

tasks were chosen as ones that would elicit a wide range of movements representative 

of those performed during activities of daily living, and also have established 

normative ranges of movement[83, 84, 88]. As previously described, the JHFT 

consists of seven activities of daily living (ADL) tasks performed in a seated position: 

1) Writing, 2) Page Turning, 3) Picking Up Small Objects, 4) Simulated Feeding, 5) 

Stacking Checkers, 6) Moving Large Light Objects and 7) Moving Large Heavy 

Objects[83].  The tBBT involves the controlled transport of 16 blocks arranged in a 4 

by 4 array from one side of a divided box to the other side[84].  This task was 

performed in both a standing position and a seated position[84].  Participants 

performed two trials of each task. Standard templates were used to place each object 

for a given task in the same location for each participant.   
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3.2.3 Data Analysis 

The YXZ Euler angle data was generated and pre-processed for specific 

joints/DOFs in the previous chapter. The joint angles/DOFs analyzed in this chapter 

include right and left elbow flexion/extension; right and left shoulder 

flexion/extension, abduction/adduction, and internal/external rotation; torso flexion, 

lateral flexion, and rotation; and neck flexion, lateral flexion, and rotation. 

Although a standard template was used to place each object for a given task in 

the same location for each subject, the objects themselves may be distributed across 

the front of the participant or to the side of the participant depending on the task. To 

adequately compare kinematic trajectories across participants within a given 

condition, the analysis was limited to the last segment within each trial.     

K-means clustering was selected as the unsupervised machined learning 

method for this study due to the binary nature of the classification problem (i.e., 

Norm vs a Bypass), and the simplicity of the algorithm’s decision-making approach. 

Specific features, of the joint angle trajectories were calculated to characterize the 

movement and serve as input into the K-means clustering algorithm. Given the 

current lack of consensus on the definition of movement quality as it pertains to 

evaluation of upper limb prosthesis users [99], several features describing different 

aspects of movement were selected for this analysis: peak angle, range of motion 

(RoM), joint trajectory path distance (PDist), mean joint angle, peak angle velocity, 

and number of zero crossings. The peak angle was calculated as the maximum 

measured joint angle value. The RoM was calculated as the difference between the 

maximum angle and the minimum angle value.  The PDist was calculated according 
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to Equation 3.1, wherein the absolute difference between each joint angle component 

sample point was calculated and summed across all samples taken (1 to n points) for a 

given DOF.  All trajectories were interpolated to be the same array length n, so no 

additional normalization to PDist was done. 

Pdist = �|(xn+1 − xn)|
n

1

 

Equation 3.1 

Mean angle was calculated as the average of the joint angle over the task 

segment.  The maximum value of the derivative of each joint angle served as the peak 

angle velocity.  Smoothness was measured from zero crossing, where zero crossing is 

defined as the number of times angle velocity crossed zero[100, 101]. The peak angle 

and RoM were selected as clinically accepted, accessible, and interpretable features 

of movement[7, 15, 30, 37, 77, 83, 84, 88, 102, 103] and represent the movement 

envelope within which an individual performs a given task. PDist was selected as an 

additional summary metric to characterize movements as it has been previously used 

in the literature to examine compensatory motions in individuals with upper limb 

loss[7] , and has been used as a method to examine motion efficiency [104, 105].  

Max normalization was applied for each feature. 

Understanding one of the limitations of K-means clustering to be the 

dependence of the output on cluster center initialization, cluster center initialization 

used the K-means++ algorithm (Statistics and Machine Learning Toolbox, 

MATLAB) with the squared Euclidean as the distance metric. To further improve 

consistency in results by avoiding local minima, the clustering process was 
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implemented with five replicates, with the algorithm returning the solution with the 

lowest total sum of distances for all five replicate processes.  

K-means clustering analyses were performed between the normative condition 

data and each bypass condition data (i.e.  Norm vs. BP Bypass and Norm vs. DK 

Bypass), for each task and DOF, resulting in a total of 126 K-means analyses for one 

bypass condition (9 tasks x 14 DOFs per condition). For each analysis, ten iterations 

were performed, with randomized Norm controls assigned for each iteration. That is, 

each k-means iteration for a given task and DOF had the twelve normative 

participants randomly assigned into either the BP Bypass control group or the DK 

Bypass control group.  This approach was implemented to account for variation in 

normal movement patterns, and to provide an estimate of the classification accuracy 

range.  A flowchart of the data collection, processing, and analysis is shown in Figure 

3.2. In total, 2,520 K-means were performed (9 tasks x 14 DOFs x 10 iterations x 2 

conditions). 
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Figure 3.2 Flowchart of data collection and processing and the calculation of 
deviation from chance (DfC) metric. (Figure 2 of Wang et al., 2021[93]) 
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3.2.4 Evaluation of algorithm performance – Deviation from Chance (DfC) 

metric  

Although the true category of each data point was known (i.e., Norm or 

Bypass), the unsupervised approach employed in this study assigns an arbitrary 

category to every “cluster” that is formed.  Thus, when determining accuracy of the 

classification, a new accuracy metric was used that provides the accuracy of 

clustering regardless of the actual labeling of any cluster, if the data points of any 

given cluster are maintained as a single cluster.  The new metric utilized in this paper 

measured the absolute difference of the accuracy from random chance, which is 50% 

for a binary classification. We refer to this metric as the deviation from chance or 

DfC (Equation 3.2). The DfC ranges from 0 to 50, with a result of 0 indicating that a 

particular DOF was not informative in distinguishing the Norm and Bypass 

conditions (i.e., classification accuracy matches that of random chance) and a result 

of 50 indicating a particular DOF was highly informative in distinguishing the Norm 

and Bypass conditions. A threshold for this DfC metric was selected to be 25, half of 

the maximum possible value, as an initial value.  More or less strict requirements can 

be placed on the identification of DOFs that distinguish the Norm and Bypass 

conditions by increasing or decreasing this DfC threshold, respectively.  

DfC= �Kmeans labeling accuracy %- �
100

# Labeling Categories
�� 

Equation 3.2 
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3.2.5 Statistical Analysis 

To determine the DfC values for a given DOF/task that are significantly 

higher than the DfC threshold of 25, a one-sided Wilcoxon ranksum test was 

performed between the DfC values resulting from the 10 iterations for a given 

task/DOF and the threshold (α = 0.05). Since the goal of this work is to identify the 

individual DOFs and tasks that elicit significantly different movement from 

normative movement during use of a bypass prosthesis, an adjustment for multiple 

comparisons was not done.  However, a table of p-values for this analysis is included 

in supplementary material (Supplemental Table 1). 

The distributions of all features used in the k-means analyses are also plotted 

for each DOF and task (Supplemental Figure 1 – 14). For informational purposes, a 

Wilcoxon ranksum test between each bypass condition and the norm condition was 

done with a significance level set at α = 0.05.  While a comparison of clustering 

approaches to conventional statistical approaches is beyond the scope of this chapter, 

these data are provided for transparency purposes. 

3.3 Results 

The average DfC metric from the K-means analyses are plotted for each 

individual joint and task, with error bars on the bar plots indicating the standard 

deviation of the 10 k-means iterations (Figure 3.3). Asterisks in the bar plots indicate 

that a given DOF/task for a condition resulted in a significantly higher DfC values 

than the threshold.  This figure allows for identification of tasks that separate 

normative movement from bypass device movement as a function of each analyzed 

DOF.  The threshold for DfC was denoted through the red dotted line at 25 (Figure 
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3.3).  In general, the tasks that exceeded the threshold varied across the bypass 

conditions and the DOFs within each joint. The results were consistent with previous 

studies in showing that tasks and joint DOF involved in abnormal movement are 

device specific.  However, certain patterns did emerge and will be discussed in the 

Discussion section. 
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Figure 3.3 Average and standard deviation from chance (DfC) for all tasks, DOFs, 
and bypass condition comparisons: A-F) Body Powered Bypass v. Norm Joint 
results, G-L) DK Bypass v. Norm Joint Results.  Tasks JHFT1 - Writing, JHFT2 - 
Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - Simulated Feeding, 
JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light Objects and JHFT7 - 
Moving Large Heavy Objects Distributions significantly greater than the 
threshold at DfC = 25 (red dotted line) denoted by a * (p < 0.05). (Figure 3 of 
Wang et al., 2021[93])  

To get a better sense of which tasks and DOFs were associated with the 

greatest distinguishability between normative movement and bypass condition 

movement, the K-means results that were significantly greater than the DfC threshold 

were summarized for each bypass condition.  Out of the 126 k-means analyses for the 

BP bypass condition (9 tasks x 14 DOFs) performed, 62 significantly exceeded the 

threshold.  For those 62 analyses, the frequency of appearance of a particular task 

(Table 3.1A) or DOF (Table 3.1B) was determined and presented as a percentage.    

The same summary was done for the DK bypass condition, with 64 out of 126 

analyses significantly exceeding the threshold, and the frequency of a particular task 

(Table 3.1A) or DOF (Table 3.1B) was determined.   

Table 3.1 Percentage of times a (A) task and (B) DOF were associated with 
deviations from chance distributions significantly greater than the threshold.  
(Table modified from Table 1. of Wang et al., 2021[93]) 

(A) Task Frequency (%) 

Task BP Bypass DK Bypass 

tBBT 16.1 3.1 

JHFT1 - write 4.8 7.8 

JHFT2 - page turn 14.5 17.2 

JHFT3 - small objects 11.3 9.4 

JHFT4 – simulated feeding 8.1 12.5 

JHFT5 – stacking checkers 12.9 14.1 
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JHFT6 - light cans 9.7 12.5 

JHFT7 - heavy cans 8.1 4.7 

Sit-tBBT 14.5 18.8 

 
(B) DOF Frequency (%) 

DOF BP Bypass DK Bypass 

R Elbow - Flex/Ext 8.1 9.4 

L Elbow - Flex/Ext 11.3 7.8 

R Sho - Flex/Ext 9.7 6.3 

R Sho - Ab/Ad 6.5 7.8 

R Sho - Rot 11.3 6.3 

L Sho - Flex/Ext 4.8 4.7 

L Sho - Ab/Ad 9.7 12.5 

L Sho - Rot 4.8 4.7 

Neck - Flex/Ext 3.2 9.4 

Neck - Lat Flex 0.0 4.7 

Neck - Rot 4.8 6.3 

Torso - Flex/Ext 8.1 6.3 

Torso - Lat Flex 9.7 7.8 

Torso - Rot 8.1 6.3 

 
The most frequent tasks with high DfC values for both the BP bypass and DK 

bypass conditions were JHFT2 – Page Turning, occurring in 14.5% and 17.2% of the 

significant results, respectively (Table 3.1A). Some tasks were found to elicit more 

significant DfC values for one bypass condition, but not the other.  For example, 

16.1% of the significant results were elicited by tBBT in the BP bypass condition 

compared to only 3.1% for this same task in the DK bypass condition.  
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When all DOFs are combined, the right shoulder and torso appear more often 

in the significant results across both bypass conditions, indicating these joints are 

most informative for distinguishing movement between the Norm and Bypass 

conditions (Table 1B). Interestingly, left shoulder abduction/adduction appears often 

in the significant results for both the BP (9.7%) and DK (12.5%) bypass conditions. 

While each DOF tends to be equally represented in the significant results across 

bypass conditions, there is a large discrepancy in the neck DOFs, with these DOFs 

appearing more often when distinguishing movement between the Norm condition 

and DK bypass condition.  

3.4 Discussion 

The goals of this work were to utilize unsupervised machine learning to 

identify features that will inform abnormal movement for several tasks and elucidate 

the variations in movement approach across two different upper-limb prosthesis 

devices with varying DOFs as compared to non-disabled controls.  To achieve those 

goals, specific features of movement derived from motion capture data from 

individuals with no upper limb impairment or disability under normative conditions 

and individuals using two upper limb bypass prosthesis devices (body-powered hook 

and DEKA arm) were used as input into a K-means clustering algorithm. While a few 

studies have focused on the application of clustering algorithms to the upper limb 

prosthesis user population, the use of these clustering methods to compare movement 

of individuals using these two prosthetic devices to the movements of non-disabled 

individuals has not been done.  Although patterns emerged, there was no single DOF 

that was universally distinctive across tasks and Bypass conditions (Figure 3.3) and 
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no single task that consistently elicited distinctive movements between the Norm and 

Bypass conditions (Figure 3.3). This result is not unexpected, however, based on 

previous studies that have indicated compensation patterns for this clinical population 

are both task and device dependent[13, 52]. The BP Bypass results, with highly 

distinct torso and shoulder angles, were consistent with the results from Metzger et al. 

2012 which had 7 of the 10 participants using a body powered device[7]. 

Additionally, the compensatory motions of the head and torso found by Hussaini et 

al. 2017 in prosthesis users equipped with single DOF electric hand terminal 

devices[14] also corresponded well with the distinct joint angles identified in the BP 

Bypass condition. With a more robust approach to characterizing movement that 

simultaneously incorporates multiple features of movement into advanced clustering 

algorithms to identify differences, the results presented here still build on existing 

knowledge and can be used to inform the development of scoring methodology for 

upper limb performance-based outcome measures.  A discussion of the clinical 

implications of the results as well as limitations and future work follows.   

According to Table 3.1B, the right shoulder and torso are more frequently 

associated with high DfC values, meaning differences in normative and bypass 

prosthesis user movement are greater for these body regions.  Figure 3.3B and H 

indicate that tasks requiring a lot of wrist motion, such as JHFT2 - page turning and 

JHFT6 – moving large, light objects, will challenge shoulder abduction and internal 

rotation for both BP and DK Bypass prosthesis users, but not so much shoulder 

flexion.  This information could be used to devise more targeted approaches for the 

assessment of “normal” movement for tasks typically requiring wrist manipulation.  
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Instead of simply asking an observer to make a subjective assessment of the normalcy 

of movement, instructions could be provided to closely observe how far the upper 

arm goes out to the side or how much rotation is required of the upper arm to 

complete a task.   Similarly, instructions could be provided to focus more on torso 

rotation as opposed to torso forward flexion or lateral flexion for tasks that require 

small object manipulation.  Figure 3.3C and I indicate for tasks such as JHFT3 – 

small objects and JHFT5 - stacking checkers, torso rotation is the DOF that differs 

most consistently between non-disabled controls and bypass prosthesis users.   

As mentioned previously, the type of device being used may also be an 

important factor to consider when assessing normalcy of movement and the impact of 

the device on compensatory movement.  Figure 3.3B, for example, shows that right 

shoulder flexion/extension during JHFT4 – simulated feeding is significantly 

different between non-disabled control movement and BP Bypass prosthesis user 

movement. However, Figure 3.3H shows that right shoulder abduction/adduction and 

rotation are the DOFs that distinguish non-disabled control movement from DK 

Bypass prosthesis user movement for this same task.  Another interesting observation 

showing the potential impact of device on movement can be seen in the neck DOFs in 

Table 3.1B and DfC plots in Figure 3.3D and J.  Of all the DOFs that appeared in the 

results significantly higher than the DfC threshold of 25 for the BP bypass condition, 

only 8.1% included neck DOFs.  Conversely, 20.3% of the significant results for the 

DK bypass included neck DOFs.  This implies neck movements of individuals using 

the DK bypass prosthesis are more often different from the non-disabled control 

group.  The result can be explained by considering the visibility of objects being 
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manipulated by the terminal device of these two prosthetic systems, with body-

powered hooks more typically known for good visibility of objects [3].   

Understanding how the device impacts the movement of the user is important to 

assessing the normalcy of the observed movement, and the results presented here 

serve as a preliminary source for elucidating such an impact for two types of upper 

limb prosthetic devices.   

Due to the binary nature of the classification problem (i.e., Norm vs a 

Bypass), and the simplicity of the algorithm’s decision-making approach, K-means 

clustering was selected for this study. K-means clustering is a partitioning algorithm 

that divides data into groups of at least one value with each data value assigned to 

exactly one group, by minimizing the mean distance of the data value from an 

assigned cluster center value in repeated rounds of reassignment as necessary[106, 

107]. Alternate partitioning algorithms, model-based algorithms, or density-based 

clustering algorithms may provide greater separation between conditions. The 

features selected (peak angle, range of motion, path distance, mean angle, peak angle 

velocity, and zero crossings) were selected for their ease in translation to actual 

motion and understandability. This study aimed to use a minimally burdensome easily 

understandable machine learning approach to examine motion data for useful 

differences, so no dimensionality reduction approaches were applied.  The 

identification of features most informative to the difference between normative and 

bypass prosthesis user movement was out of scope for this paper, but such an analysis 

may help contribute to consensus on the definition of movement quality. 
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Even with only six features characterizing movement, the K-means clustering 

approach was able to identify distinctive joint DOFs for several ADL tasks over two 

methods of simulated upper limb prosthesis use.  With the development of more 

compact, easily implementable motion analysis systems such as 3D optical marker-

based motion capture, inertial measurements units, or markerless motion capture that 

can be used in the home or clinic, the widespread collection of quantitative movement 

data is becoming more of a reality.  Although limited in generalizability to actual 

prosthesis users, this dataset can be used to inform the development of larger, more 

applicable datasets to be incorporated into a supervised machine learning algorithm 

for the real-time identification of abnormal or compensatory movement based on 

movement data input.   

Key limitations of this study include the limited sample size due to the high 

training requirements for skillful bypass device use, the use of non-disabled 

participants, the unilateral nature of the tasks selected, as well as the limited 

interaction zones required for task performance. While the use of uniformly trained 

non-disabled participants limits the sources of kinematic variation to those of the 

device and potentially allows for a larger participant pool, the generalizability of 

these results to individuals with upper limb loss remains to be seen. Furthermore, the 

unilateral nature of the tasks selected allowed the examination of device induced 

changes in kinematics but may not be fully representative of device use patterns 

outside of the lab environment. Lastly, all tasks were performed in a frontal central 

interaction zone, which reflects the task space of performance-based outcome 
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measure tasks in common use[99]. However, device induced kinematic changes 

outside of this interaction zone were not captured.  

For the purposes of simultaneous motion capture in SA3, the following tasks 

were chosen: 1) JHFT Task 2 – Page Turn, 2) JHFT Task 3 – Pick up objects, 3) 

JHFT7 – Heavy Cans, and 4) Standing tBBT. These tasks were chosen based on the 

distinctiveness across conditions, the variance in required object manipulations, and 

the variance in task performance space. Additional tasks were chosen from the upper 

limb prosthesis population validated performance-based outcome measures of 

AMULA and CAPPFUL to increase the task performance zones involved and to 

include bilateral tasks. The AMULA tasks chosen were AMULA Task 10 – Fork, 

AMULA Task 16 – Doorknob, AMULA Task 24 – Overhead Reach. The CAPPFUL 

tasks chosen were CAPPFUL Task 4 – Dice, CAPPFUL Task 8 – Bottle Squeeze, and 

CAPPFUL Task 11 – Picture Hang / Ring Pull. Based on the analysis results from 

this section, the joints of interest for analysis in these tasks are right elbow, right 

shoulder, neck, and torso. 
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Chapter 4: Comparisons of Motion Capture Systems 

4.1 Introduction 

Motion analysis is a useful method to quantitatively and objectively assess 

human motion by providing kinematic information (e.g., joint angles, body 

trajectories, hand velocity, etc.) during task performance. A large proportion of 

studies investigating human motion use 3D optoelectric motion capture systems.  

These systems track the position of markers placed on anatomical landmarks of the 

body to relate the position and orientation of body segments.  These systems are 

advantageous given their high resolution and accuracy, as well as their long history of 

use in research[16-23] compared to more recently developed mechanisms of motion 

capture[26, 31, 59-62]. While useful in many clinical populations, assessment of 

motion in the upper limb prosthesis user population is beneficial as the output of such 

analyses can aid in rehabilitation by providing more specific details about how a 

standard task is performed, as well as providing insights into the influence of upper 

limb prosthesis devices on motion.  This is relevant given the upper limb prosthesis 

user population is known to employ compensatory movements during the 

performance of everyday tasks to work around lost degrees of freedom (DOF). Given 

recent technical developments in upper limb prosthesis devices with greater numbers 

of controllable DOFs [46, 48, 52], many research groups have investigated user 

movement with these devices using 3D optoelectric motion capture systems[7, 46, 49, 

52, 96, 108]. However, the adoption of 3D optoelectric motion capture into the clinic 

has been slow due to the restrictive operating environment required, high costs, and 
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longer set-up times required to collect data from optoelectric motion capture systems 

[26, 31].  

Barriers to the use of optoelectric motion capture systems have prompted 

interest in other systems that have less restrictive operating environment 

requirements[25, 29]. The Microsoft Kinect is a markerless motion capture sensor 

system that has been of great interest in research due to the low cost[24, 25] and 

robustness of the sensors[26-31].  Due to the markerless motion capture mechanism, 

the set-up time is reduced and the potential for erroneous subject preparation is lower 

compared to marker-based motion capture systems that are dependent on accurate and 

consistent identification of anatomical landmarks. Alongside marker and markerless 

systems, battery and gyroscopic sensor miniaturization and the rapid decrease in 

technology costs has rendered inertial measurements a new avenue for motion capture 

research[32-38]. Due to the non-optical mechanism of inertial measurement unit 

(IMU) motion capture, the operating environment requirements are less restrictive 

compared to those required for optoelectric systems.  

There have been several previous studies comparing motion capture systems 

that have focused on one-to-one comparisons of a single test system and a gold 

standard system[33, 36, 63-69],  studied the lower limbs[28, 34, 68, 70-73], or relied 

on mechanical testing devices to ensure the greatest replicability of the ground 

truth[64, 74-76]. For the one-to-one system comparisons, the parameters examined, 

motions selected, and populations tested varied greatly, rendering cross system 

conclusions impractical. Regarding studies in the lower limb, the analyses lack 

applicability and generalizability to the tracking of motion in the upper limbs, 
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specifically upper limb prosthesis users.  Compared to the lower limbs, the acyclic 

motions and the multiple redundant DOFs in the upper limb make upper limb motion 

analysis more challenging. Furthermore, the few studies assessing upper limb 

function have focused on a limited task space to simplify capture and analysis[12]. 

Lastly, while the use of a mechanical testing device provides a highly consistent 

ground truth, it is not fully representative of system performance during human 

motion given the avoidance of soft tissue artifacts, sensor motion artifacts, and self-

occlusion induced errors. 

To better understand the performance of various motion capture systems in 

quantifying upper limb movement in the prosthesis user population, this study 

compares kinematics (i.e., joint angles) derived from three systems that vary in cost 

and motion capture mechanisms: a marker-based systems, an IMU system, and a 

markerless system.  Able-bodied individuals using a bypass prosthesis device 

performed several tasks as movement of the upper body was tracked simultaneously 

across all three systems.  The results of this study can be used to identify 

consistencies and limitations of various motion capture systems in tracking 

movements similar to those performed by the upper limb prosthesis user population, 

which could facilitate the wider adoption of motion capture into rehabilitation. 

4.2 Methods 

The data for the MY Bypass users was selected for analysis because the 

myoelectric terminal device was considered a device with characteristics that were 

intermediate compared to the body powered hook and the DEKA arm. Like the body 

powered hook, the myoelectric terminal device has a manual wrist DOF. Like the 
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DEKA arm, the myoelectric terminal device has powered fingers with pre-

programmed grips. As such, this device was considered a useful starting point for 

generalizing the application of the salient features identified in Chapter 3. 

4.2.1 Participants Selected 

As previously detailed in Chapter 2, 10 able bodied participants with no upper 

limb disability or impairment were included in this section of the study. The 

demographics of the participants for this chapter was previously specified in Chapter 

2 and will be repeated here for convenience of reference. There were 5 females and 5 

males with a mean age of 29.6 ± 7.1 years. 9 of the 10 participants were right hand 

dominant (92.53 ±10.62 laterality), one was left hand dominant (-100 laterality) per 

the Edinburgh handedness survey[94].  

A bypass prosthetic device was used by able-bodied individuals to elicit 

similar movement patterns as an upper limb prosthesis user [8, 89-92, 96]. A forearm 

brace adaptor with a perpendicular handlebar provided by Next Step Bionics allowed 

the use of a right-hand OSSUR (previously TouchBionics) i-limb Ultra (OSSUR, 

Foothill Ranch, CA, USA) myoelectric terminal device with manual wrist adjustment. 

The device was mounted to the brace with a medial offset of 15° from the subject’s 

forearm (Figure 4.1A). In accordance with upper-limb amputee control 

configurations, myoelectric sensors were placed on antagonist pairs of extensor and 

flexor muscles on the forearm to control the opening and closing of the device. Grip 

changes were controlled with the TouchBionic my i-limbTM on an iPod TouchTM 

(Apple Inc., Cupertino, CA, USA) (Figure 4.1B). This adaptive bypass device (MY 
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Bypass) allowed trained able-bodied participants to use a commercial upper limb 

prosthesis terminal device. 

Following the training protocol previously specified in Chapter 2, all 

participants were trained with the right-hand MY Bypass until a learning plateau of 

90% peak performance had been achieved [56].  

 
Figure 4.1 A) Right-hand Ossur (TouchBionics) i-limb Ultra myoelectric terminal 
device. Medial offset = 15°; B) my i-limb grip selection screenshot (Touch 
Bionics, Apple App Store, 2020). (Figure 1 of Wang et al., 2022[95]) 
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4.2.2 Functional Tasks 

When fully trained, participants performed the Targeted Box and Blocks Test 

(tBBT)[84] as well as tasks selected from the Jebsen-Taylor Hand Function Test 

(JHFT) [83, 109], Activities Measure for Upper Limb Amputees (AMULA)[85, 86], 

and Capacity Assessment of Prosthetic Performance for Upper Limb (CAPPFUL)[44] 

outcome measures while simultaneously recorded by three motion analysis systems. 

With the motivation to determine the limitations of the motion analysis systems, tasks 

were selected from the outcome measures that would elicit a wide range of 

movements representative of those performed during activities of daily living.  These 

outcome measures have also been used in previous kinematic studies[83, 84, 87] and 

most are validated in the upper limb prosthesis user population[44, 45].   

A brief description of each task used in this chapter can be found in Table 4.1.  

Tasks 2, 3, and 7 from the JHFT were performed in a seated position and are 

referenced in this manuscript as JHFT – Page Turn, JHFT – Small Objects, and JHFT 

– Heavy Objects, respectively. Tasks 10, 16, and 24 from the AMULA were 

performed in the seated position and are referenced as AMULA – Fork, AMULA – 

Doorknob, and AMULA –Reach, respectively [85, 86]. Tasks 4, 8, and 11 from the 

CAPPFUL were also performed and are referenced as standing task CAPPFUL– 

Dice, and seated tasks CAPPFUL– Bottle and CAPPFUL–Picture [44]. A standard 

template was used to place each object for a given task in the same location for each 

participant. The tBBT was performed in the standing position[84]. Participants 

performed three trials of each task. 
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Table 4.1 Description of tBBT and subtasks from the JHFT, AMULA, and 
CAPPFUL performed in the current chapter (Table modified from Table 1 of 
Wang et al., 2022[95]) 

Task name Description 
JHFT – Page Turn Flip over five 3x5 cm notecards arranged in a row with any 

technique, starting with the leftmost card and moving across. 
Performed seated 

JHFT – Small Objects Pick up six small objects (2 paperclips, 2 bottle caps, & 2 pennies) 
arranged two inches apart on the dominant side of the subject, and 
place in an empty can individually, starting with the right most 
object. Performed seated 

JHFT – Heavy Objects Lift 5 filled cans individually about 1” onto a board, starting with 
the rightmost can. Performed seated 

AMULA – Fork Grasp fork and bring to mouth, move fork back to table and release 
fork. Performed seated. 

AMULA – Doorknob Reach, grasp, and turn door knob. Release doorknob. Performed 
Seated 

AMULA – Reach  Lift arm overhead to grasp empty cup on shelf and bring down arm 
with cup in hand. Performed standing 

CAPPFUL – Dice Pick up three dice from a plate, touch to chin, and return to plate. 
Performed standing. 

CAPPFUL – Bottle Empty a squeeze bottle of water into a cup. Performed seated. 
CAPPFUL – Picture Modified task – Reach overhead to grasp two rings suspended in 

the air on a pulley system, bring rings down to waist, then control 
the placement of rings back in their suspended position. Performed 
seated 

tBBT Transport 16 blocks, one at a time, over a partition using only the 
dominant hand, starting with the innermost left block and moving 
across each row placing the block in its mirrored position. 
Performed standing 

4.2.3 Motion Analysis Systems 

Motion analysis involved the simultaneous recording of motion data from 

three systems: optical marker-based system (VICON, Oxford, UK), an inertial 

measurement unit (IMU)-based system (Xsens Awinda MTw, El Segundo, CA, 

USA), and a markerless system (dual Microsoft Kinect V1s with iPi Recorder). The 

Vicon optical marker-based system was selected as the reference system based on its 

popularity and usage in the literature[30, 64-66, 72, 73, 76, 102, 110-112]. The IMU-

based [32-36, 67-71, 113-115] and markerless systems [24, 25, 27, 29-31, 66, 72-75, 
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116, 117] were selected due to popularity in the literature and due to their differing 

mechanisms of motion capture.  

The sensors of the three systems were not expected to mutually interfere due 

to the independent locations of the sensor placements and the differences in the 

recording mechanisms. Excepting the sternum location alone, all other IMUs and 

retroreflective markets were mounted directly on the body (Figure 4.2). The sternum 

location required the sternum reflective marker to be mounted on the sternum IMU 

sensor for the tracking accuracy of the Vicon software. 

 
Figure 4.2 Illustration of sensor locations with the anterior view on the left and 
posterior view on the right. Orange boxes represent IMU sensors. Blue dots 
represent retroreflective markers. The black box represents the bypass device 
and the location relative to the forearm of the participant. The grey boxes 
represent the myoelectric terminal device. (Figure A1. of Wang et al., 2022[95]) 
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During the data cleaning and processing phase, review of the exported data 

showed that the markerless system’s software and background subtraction mechanism 

detected neither the retroreflective markers used by the optical system-based system 

nor the IMU sensors. The IMU sensors were not retroreflective and were not detected 

by the optical marker-based system.  

4.3.2.1 Optical Marker-Based System – Vicon Nexus 

A ten-camera passive marker ViconTM motion analysis system consisting of 

eight Bonita B10 and two Vero v1.3 cameras was used to acquire and pre-process 

motion data (VICON, Oxford, UK). The motion capture cameras were set to a 

sampling rate of 100Hz. Prior to each data collection session, the system was 

calibrated according to manufacturer guidelines. Twenty-seven retro-reflective 

markers were placed on the upper body of each participant at the bony anatomical 

landmarks of the upper body in accordance with the Vicon Upper-Body Plug-In-Gait 

body model documentation. The Plug-In-Gait upper body model was then calibrated 

to the dimensions of the participant to create the wrist, forearm, upper arm, head, 

neck, thorax, and pelvic model segments. The Vicon was set as the primary recording 

system and controlled the initiation and termination of recordings with a voltage 

duration sync pulse output.  

 
4.3.2.2 IMU System - Xsens Awinda 

Five (IMUs) for the Xsens Awinda were placed either at bony anatomical 

landmarks or the midpoints of moving body segments on the head, right arm, and 

torso (Figure 2).  The head sensor was placed in the center of the subject’s forehead. 

The torso sensor was on the xiphoid process of the sternum. The pelvis sensor was 
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placed at the midpoint between the left and right posterior superior iliac spine. The 

upper arm sensor was place on the midpoint of the upper arm. The forearm sensor 

was placed on the anterior midpoint of the bypass. The system was set to a sampling 

rate of 100Hz.  Prior to each data collection session, all sensors were set to zero at the 

origin of the recording volume on the floor, as defined by the Vicon calibration to 

ensure consistent initial sensor outputs. The Xsens was set as the secondary recording 

system with initiation and termination of recordings automatically controlled through 

a voltage duration sync pulse from the Vicon system, leading to the synchronization 

of the two data streams from these systems.  

 
4.3.2.3 Markerless system – Kinect V1 iPiSoft 

Two Kinect V1 cameras (Microsoft, Seattle WA, USA) were used with the iPi 

Soft markerless motion capture software (iPi Soft, Moscow, RU) to acquire and pre-

process motion data. The Kinect V1 was selected due the limitations of the native 

Microsoft SDK which did not allow for multiple Kinect V2 data streams into a single 

computer. This limitation did not apply to the Kinect V1, which allowed for larger 

capture volumes and improved capture results when multiple Kinect V1 sensors were 

used[118]. Additionally, the Azure Kinect was both not commercially available and 

not supported by the iPi software at time of experiment. The Kinect cameras were 

positioned approximately +/- 45° from the midline of the subject at a distance of 

approximately 6 feet.  The camera tripods were placed in the same position for each 

subject.  The point of aim for the Kinect cameras was determined through the 

calibration procedures for the Kinect system and may vary depending on the 

experimental conditions. 
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The system was set to 30 Hz, the maximum sampling rate of the cameras. 

Prior to each data collection session, the system was calibrated according to the 

software manufacturer’s guidelines. Initiation and termination of recordings were 

manually controlled by the operator of the motion analysis systems. Data 

synchronization and resampling to 100Hz with the built-in MATLAB function 

resample was achieved through a post-processing automated MATLAB script. This 

was done to create time series data that was sampled at the same rate to compare each 

distinct time point across systems. 

4.2.4 Data Analysis 

Joint angles over time were generated for all three systems. The joint angle 

data from the Vicon system was set as the reference system given its high resolution 

and accuracy[16-23], as well as previous history of use as reference systems in 

research[30, 64-66, 72, 73, 76, 102, 110-112]. Root mean square error (RMSE) 

(Equation 4.1) and bias (Equation 4.2) were calculated for the IMU and markerless 

datasets. In equations 1 and 2, i is the index for each frame in a given joint movement 

trajectory.  

RMSE= ��
1
n

� � (testSystemi-Viconi)2
n

i=1
 

Equation 4.1 

Bias= �
1
n

� � (testSystemi-Viconi)2
n

i=1
 

Equation 4.2 
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A description of the joint angle calculations from each system used in the 

above equations is provided below. 

To assess consistency of measurements from each system, the intraclass 

correlation coefficient (ICC) was calculated using a two-way mixed effects model 

(ICC(3,1)).  Each participant performed three trials of the same task.  These three 

trials were used to determine the ICC of a discrete kinematic parameters derived from 

the joint trajectory (range of motion) for each task/DoF combination and for each 

motion system evaluated in our study.  The use of discrete kinematic parameters, such 

as RoM, was used to avoid artificially low ICC values due to slight misalignments in 

the trajectories across trials within a subject. 

 
4.4.2.1 Optical Marker-Based System 

Joint angles were calculated in accordance with the methods previously 

described in Chapter 2. YXZ Euler angles were derived from relative orientation 

comparisons of two segments (VICON Plug-In-Gait, Oxford, UK). Joint angles 

analyzed in this chapter include right elbow flexion/extension; right shoulder 

flexion/extension, abduction/adduction, and internal/external rotation; torso flexion, 

lateral flexion, and rotation; and neck flexion, lateral flexion, and rotation.  

As previously described in Chapter 2, the recorded data from each task was 

processed and manually segmented in Vicon Nexus into object interactions with the 

beginning of a segment defined as when the terminal device approached the object, 

and the end of a segment when the terminal device released the object. For tasks with 

multiple objects, such as the six objects in JHFT – Small Objects, this resulted in 

multiple segments. Although the locations of the task objects are standardized with 
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placement templates, the individual objects may be distributed in the task space. 

Therefore, to reduce variability introduced in joint kinematics due to object 

distribution, the analysis was limited to the last segment, or last object interaction, 

within each trial. 

 
4.4.2.2 IMU System 

The joint angles for the IMU-based system were calculated based on relative 

sensor orientation.  The parent sensor is the sensor used to define a local coordinate 

system for a given body segment, which will be called the parent body segment. The 

child sensor is the sensor that measures the motion of a different body segment, 

which will be called the child segment. The method described below defines the 

motion of the child body segment relative to the local coordinate system defined by 

the parent sensor as measured through Euler decomposition. 

Table 4.2. Definitions of Parent and Child Segments for each joint of Interest. 
(Modified from Table A1. Of Wang et al., 2022[95]) 

Joint Parent Child 

Elbow Upper Arm Forearm 

Shoulder Torso Upper Arm 

Neck Torso Head 

Torso Torso Pelvis 

 
First, the quaternion outputs of the parent and child sensors are transformed 

into standardized local coordinate systems. The known locations of each sensor upon 

the body are used to define three element vectors which correspond to the Superior-

Inferior (SI), Medial-Lateral (ML), and Anterior-Posterior (AP) axes of the sensor 

that align with the body. These vectors can be called SICalVec, MLCalVec, 
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APCalVec, respectively. These three element vectors are used to transform the 

coordinate systems of the sensors from sensor-based local coordinates to body-based 

local coordinates through quaternion conjugations.  

The first step to determining the Euler angles is taking the standardized SI, 

ML, and AP axes of the child sensor. These axes are defined relative to the body of 

the participant, so the SI axis of the sensor corresponds to the SI axis of the 

participant’s body. The ML axis of the sensor corresponds to the ML axis of the 

body, and the AP axis corresponds to the AP axis of the body. These axes are used to 

produce the three vectors ProjectedVectorSI, ProjectedVectorML, ProjectedVectorAP, 

which are defined by projecting the SI, ML, and AP axes of the child sensor onto the 

standardized local coordinate system defined by the parent sensor, X-Y-Z. 

The first rotation of the Euler decomposition, labeled RotationY, as it rotates 

the child sensor’s projected SI axis in the local coordinate system’s original Z-X 

plane, which is described as follows in Equation 4.3. This rotation also results in a 

new interim coordinate system with axes labeled X’, Y’, Z’. 

RotationY= tan-1 �
ProjectedVectorSIComponent3 

ProjectedVectorSIComponent1 
� 

Equation 4.3 

The second rotation of the Euler decomposition is performed about the new 

X’ axis that results from Equation 4.3. This can be found in the Z’-Y plane, which is 

identical to the Z’-Y’ plane as Equation 4.3 did not involve the local coordinate 

system’s y-axis. The ProjectedVectorSI component along the z’ axis can be found 

from the components of the original z-x plane using the Pythagorean theorem. This is 

used to define ProjectedVectorsSIComponentZ’ in Equation 4.4. 
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ProjectedVectorsSIComponentZ’ is then used to find the second rotation Euler rotation 

about the new X’ axis with Equation 4.5. This also results in a new coordinate system 

with axes labeled X’’,Y’’,Z’’. 

ProjectedVectorSIComponentZ'= 

√�ProjectedVectorSIComponent1 
2 +ProjectedVectorSIComponent3 

2 � 

Equation 4.4 

RotationX'= tan-1 �
ProjectedVectorSI Component 2

ProjectedVectorSIComponentZ'
� 

Equation 4.5 

To determine the third Euler Angle about Z’’, first a quaternion is defined 

(Equation 4.6) to describe rotation about axis Y from the X,Y,Z coordinate system, 

also known as the ML axis. MLCalVec is a three-element vector describing the ML 

axis of the parent sensor, which was pre-defined by the known orientations of the 

individual IMU sensors on the body. This vector is the same vector previously used to 

transform the individual sensor coordinate systems into uniform body-based 

coordinate systems. 

QuaternionrotationY=[ cos �
Rotationy

2
 � ; sin �

Rotationy

2
� *MLCalVeccomponent1; 

sin �
Rotationy

2
� *MLCalVeccomponent2; sin �

Rotationy

2
� *MLCalVeccomponent3  ] 

Equation 4.6 

QuaternionrotationY is then used to rotate the X axis from the X,Y,Z coordinate 

system to find the X’ axis through quaternion conjugation as described in (Equation 

4.7). The X’ Axis vector is then projected onto the coordinate system defined by 

ProjectedVectorSI, ProjectedVectorML, and ProjectedVectorAP to produce 
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ProjectedX’Axis. The third Euler Angle about Z’’ is found with the components of 

ProjectedX’Axis as described in (Equation 4.8). 

X'Axis=(QuaternionrotationY*QuaternionXAxis)*QuaternionrotationY
-1  

Equation 4.7 

RotationZ''= tan-1 (ProjectedX'AxisComponent2/ProjectedX' Axiscomponent3 

Equation 4.8 

To reiterate in brief, the right elbow flexion/extension was calculated between 

the forearm and upper arm sensors. Right shoulder angles were calculated between 

the sternum and upper arm sensors. Neck angles were calculated from the head and 

sternum sensors. Torso angles were calculated between the sternum and pelvis 

sensors.  

The IMU sensor orientations were output as quaternions and decomposed into 

axial vector components that corresponded to the three axes of the sensor units in unit 

quaternions. Then, the axial vector components were used to generate the individual 

Euler joint angle components through decomposition. The decomposition used the 

known initial orientations of the sensor unit locations on the body to define a 

superior-inferior axis for each sensor, with the other two axes defined through 

orthogonality. The angles defined through the pairs of sensors sought to mimic the 

output of the Vicon YXZ Euler angle outputs. However, the shoulder angles suffered 

from computational errors and the XYZ rotation order was used instead to best match 

the Vicon outputs. This approach matched what was found in a recent study [36]. The 

planar surface sensor calibrations and known body placement locations were used for 

the alignment of sensor axes to body segment axes. The initial values of the Vicon 



 

 

67 
 

outputs were used to initialize the values of the derived Xsens angles to limit the 

variance from the calibration approach. In some instances, joint angles from the 

Xsens IMU system were inverted to match the conventions of the Vicon reference 

system angle values. The resultant angles were then visually examined for 

computational anomalies that violated anatomical angle limits due to gimble lock. 

Trajectories with computational anomalies were manually removed from the analysis. 

Since the data from the optical marker-based and IMU systems were 

synchronized, the IMU data was segmented for analysis using the segmentation event 

markers from the optical marker-based system. As previously mentioned, analysis 

was limited to the last segment of each task. 

 
4.4.2.3 Markerless System 

The joint angles for the dual Kinects were calculated with the Biomech add-on 

toolbox for iPi studio using YXZ Euler angles derived from the relative orientation 

comparisons of two skeletal rig segments (iPi Soft, Moscow, RU). To derive joint 

angles comparable to those generated from the optical marker-based system, re-

zeroing operations were performed on the outputs of the Biomech toolbox. In some 

instances, joint angles from the Kinect system were inverted to match the conventions 

of the Vicon reference system angle values. For the right elbow angles, due to the 

obscuration of the MY Bypass device caused by the actual right arm, the Kinect 

prioritized arm tracking over bypass tracking. An offset of 15°, equal to the medial 

offset of the device, was applied to these elbow angles to provide a more accurate 

estimate.   
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The data from the markerless system were synced with the optical marker-

based and IMU systems post-capture with an automated MATLAB script. To aid in 

this synchronization, all subjects started each trial with their hands at their side and 

subsequently moved their arms into a “motor-bike” pose. The MATLAB script 

detected time points in each system where the joint angle rate of change, or joint 

angle derivative, in the right shoulder exceeded a preset threshold (determined 

through pilot experiments).  The data from each system were aligned to this detected 

time point.  As previously mentioned, analysis was limited to the last segment of each 

task. 

4.3 Results 

The distributions of RMSE and bias values across all trials and subjects for 

the two comparison systems relative to the reference system are shown as boxplots 

for each joint in Figure 4.3 - Figure 4.6.  In each figure, the values for the IMU 

system are shown in red; values for the markerless system are show in blue.  Within 

each distribution, white circles with a black dot indicate the median of the 

distribution.   

The markerless system tended to slightly overestimate the right elbow angle 

while the IMU system was inconsistent and greater in magnitude in the bias 

measurement (Figure 4.3B).  Larger errors were seen with the IMU system for right 

elbow flexion: the median RMSE values for the markerless system were between 

14.4° and 31.2° while the median RMSE values for the IMU system were between 

23.8° and 62.6°. The AMULA - Reach task had the highest median RMSE values 

across both systems (Figure 4.3A). This task resulted in a relatively low bias value 
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across the tasks for the markerless system at 8.4°, and the most positive bias value for 

the IMU system at 59.1°.   

Conversely, with the right shoulder, the IMU system had lower median RMSE 

values and tended to have lower variance for RMSE and bias compared to the 

markerless system (Figure 4.4A and B). The median RMSE values across tasks and 

DOFs for the IMU system were all under 30° while median RMSE values at the 

shoulder for the markerless system were above 30°. The markerless system tended to 

underestimate shoulder flexion/extension and shoulder rotation while overestimating 

shoulder adduction/abduction.  In contrast, the IMU system tended to overestimate 

shoulder rotation and underestimate shoulder abduction/adduction across tasks.  

Compared to the markerless system, the median bias values for the IMU system 

tended to be closer to zero across all tasks and DOFs (Figure 4.4B). The tasks with 

the lowest RMSE values and the bias values closest to zero varied depending on the 

joint angle component. For the IMU system, JHFT – Page Turn had the lowest 

median RMSE for shoulder flexion/extension at 5.1° and the task’s median bias was 

the closest to zero for all tasks in the shoulder flexion/extension component at 0.02°. 

The AMULA – Reach task had the lowest median IMU RMSE for shoulder 

abduction/adduction at 7.2°, and the corresponding median bias was 1.3°. CAPPFUL 

– Bottle had the lowest median IMU RMSE for shoulder rotation at 9.2°.  For the 

markerless system: the lowest median shoulder flexion/extension RMSE value was in 

the AMULA - Fork task (18.5°), the lowest median shoulder abduction/adduction 

RMSE value was in the JHFT – Page task (30.8°), and the smallest median shoulder 

rotation RMSE value was in the CAPPFUL – Picture task (28.2°). The bias values 
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closest to zero for all tasks in the markerless system were in: AMULA - Fork for 

shoulder flexion/extension (-7.0°), CAPPFUL – Bottle for shoulder 

abduction/adduction (-3.1°), and CAPPFUL - Bottle for shoulder rotation (-2.6°). 

With the neck angle measurements (Figure 4.5A and B), the IMU system 

tended to have slightly lower RMSE values and comparable variance compared to the 

markerless system. For the IMU system, neck rotation in the AMULA – Reach was a 

notable outlier in the variance even though the median RMSE value of 13.9° was in 

line with the magnitude of the neck rotation values found in other tasks. Similarly, the 

markerless system had the largest median RMSE value in AMULA – Reach neck 

rotation at 29.04°. The IMU system was more closely clustered around zero for the 

bias values compared to the markerless system. The median RMSE and bias values 

that were closest to zero were distributed across the JHFT – Heavy Objects, 

CAPPFUL – Bottle, and CAPPFUL - Dice tasks for the three components of the neck 

across the two systems. In the IMU system, the median RMSE values ranged from 

6.6° to 14.7° while bias values ranged from -13.7° to 4.9°; for the markerless system 

the median RMSE values ranged from 4.2° to 28.3° and the median bias values 

ranged from -25.6° to 23.6°. 

With the torso angle measurements (Figure 4.6A and B), the IMU system 

tended to have slightly lower median RMSE values compared to the markerless 

system. However, the IMU system had much greater variance in torso rotation RMSE 

values in the CAPPFUL - Dice and tBBT tasks. The markerless system had the 

greatest median RMSE values and greatest RMSE variance in torso flexion for the 

JHFT – Page Turn and JHFT – Small Objects tasks. For both systems, the task with 
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the lowest median RMSE values for all torso components was CAPPFUL – Bottle. 

For the IMU, the torso flexion/extension was 5.30°, the torso lateral flexion was 2.9°, 

and the torso rotation was 3.2°. For the markerless system, the torso flexion/extension 

was 6.9°, the torso lateral flexion was 2.3°, and the torso rotation was 2.6°. With the 

IMU system, the median RMSE values ranged from 3.2° to 15.8° and the bias values 

ranged from -10.7° to 10.3°; with the markerless system, the median RMSE values 

ranged from 2.3° to 24.1° and the bias values ranged from -22.5° to 14.0°. 
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Figure 4.3 Distributions of (a) right elbow flexion RMSE and (b) right elbow 
flexion bias across subjects for the IMU system (Xsens) and markerless system 
(Kinect) compared to the Vicon reference system. X-axis identifies the task and 
associated joint angle.  F/E = flexion/extension, Ab/Ad = abduction/adduction, 
LaF = lateral flexion, Rot = rotation. Black dots indicate medians, empty circles 
indicate outliers, bold line indicates quartiles, and whiskers indicate non-outlier 
maximums and minimums. (Figure 2 of Wang et al., 2022[95]) 
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Figure 4.4 Distributions of (a) right shoulder joint angle RMSE and (b) right 
shoulder joint angle bias across subjects for the IMU system (Xsens) and 
markerless system (Kinect) compared to the Vicon reference system. X-axis 
identifies the task and associated joint angle.  F/E = flexion/extension, Ab/Ad = 
abduction/adduction, LaF = lateral flexion, Rot = rotation. Black dots indicate 
medians, empty circles indicate outliers, bold line indicates quartiles, and 
whiskers indicate non-outlier maximums and minimums. (Figure 3 of Wang et 
al., 2022[95]) 
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Figure 4.5 Distributions of (a) neck joint angle RMSE and (b) neck joint angle 
bias across subjects for the IMU system (Xsens) and markerless system (Kinect) 
compared to the Vicon reference system. X-axis identifies the task and associated 
joint angle.  F/E = flexion/extension, Ab/Ad = abduction/adduction, LaF = 
lateral flexion, Rot = rotation. Black dots indicate medians, empty circles 
indicate outliers, bold line indicates quartiles, and whiskers indicate non-outlier 
maximums and minimums. (Figure 4 of Wang et al., 2022[95]) 
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Figure 4.6 Distributions of (a) torso angle RMSE and (b) torso angle bias across 
subjects for the IMU system (Xsens) and markerless system (Kinect) compared 
to the Vicon reference system. X-axis identifies the task and associated joint 
angle.  F/E = flexion/extension, Ab/Ad = abduction/adduction, LaF = lateral 
flexion, Rot = rotation. Black dots indicate medians, empty circles indicate 
outliers, bold line indicates quartiles, and whiskers indicate non-outlier 
maximums and minimums. (Figure 5 of Wang et al., 2022[95]) 
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Table 4.3 shows the ICC(3,1) along with the 95% confidence interval for each 
system, DOF, and task combination.  ICC values less than 0.4 were considered weak 
correlation; values between 0.4 and 0.74 were considered moderate, and values 
greater than 0.75 were considered strong[119]. To facilitate the qualitatively 
comparison of ICC across systems, the table is color coded according to the weak, 
moderate, and strong definitions.  In general, the Vicon and IMU systems have 
moderate to strong correlations across trials for all subjects.  There does not appear to 
be any trend based on the task or DoF.  The Kinect system generally has poor 
reliability with weaker ICC values.  
 
Table 4.3 ICC values with 95% confidence intervals for each DoF, task, and 
motion system comparison.  Red cells indicate a weak correlation (ICC < 0.4).  
Yellow cells indicate a moderate correlation (0.4 ≤ ICC<0.75).  Green cells 
indicate a strong correlation (ICC ≥ 0.75) (Table modified from Table 2 of Wang 
et al., 2022[95]) 

Joint/DoF Tasks 
ICC 
(Kinect) 

95% 
CI 

ICC 
(Vicon) 

95% 
CI 

ICC 
(Xsens) 

95% 
CI 

R
ig

ht
 E

lb
ow

 F
/E

 

CAPPFUL4 0.73 
[0.42 
0.92] 0.88 

[0.6 
0.98] 0.88 

[0.59 
0.98] 

tBBT 0.21 
[-0.15 
0.66] 0.76 

[0.32 
0.96] 0.66 

[0.17 
0.94] 

AMULA10 0.31 
[-0.071 
0.72] 0.72 

[0.34 
0.93] 0.91 

[0.75 
0.98] 

AMULA16 0.19 
[-0.18 
0.66] 0.47 

[0.025 
0.84] 0.85 

[0.59 
0.96] 

AMULA24 0.86 
[0.64 
0.96] 0.68 

[0.2 
0.94] 0.80 

[0.42 
0.97] 

CAPPFUL11 0.69 
[0.35 
0.9] 0.36 

[-0.073 
0.79] 0.79 

[0.46 
0.95] 

CAPPFUL8 0.47 
[0.077 
0.81] 0.95 

[0.85 
0.99] 0.82 

[0.53 
0.96] 

JHFT2 0.33 
[-0.05 
0.73] -0.16 

[-0.38 
0.36] 0.18 

[-0.21 
0.69] 

JHFT3 0.19 
[-0.16 
0.64] 0.54 

[0.096 
0.87] 0.41 

[-0.029 
0.81] 

JHFT7 0.40 
[-0.014 
0.79] 0.63 

[0.21 
0.9] 0.69 

[0.3 
0.92] 

R
ig

ht
 S

ho
ul

de
r 

F/
E

 

CAPPFUL4 0.66 
[0.31 
0.89] 0.92 

[0.75 
0.98] 0.91 

[0.73 
0.98] 

tBBT 0.22 
[-0.14 
0.66] 0.56 

[0.12 
0.87] 0.57 

[0.14 
0.88] 

AMULA10 0.50 
[0.1 
0.82] 0.65 

[0.24 
0.91] 0.69 

[0.3 
0.92] 

AMULA16 0.33 
[-0.077 
0.75] 0.73 

[0.4 
0.92] 0.58 

[0.18 
0.87] 

AMULA24 0.73 
[0.4 
0.92] 0.88 

[0.7 
0.97] 0.92 

[0.79 
0.98] 

CAPPFUL11 0.42 
[0.024 
0.78] 0.87 

[0.68 
0.96] 0.80 

[0.54 
0.94] 
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CAPPFUL8 0.16 
[-0.19 
0.61] 0.98 

[0.93 
0.99] 0.78 

[0.49 
0.93] 

JHFT2 -0.12 
[-0.34 
0.33] 0.67 

[0.3 
0.9] 0.66 

[0.29 
0.9] 

JHFT3 0.66 
[0.31 
0.89] 0.78 

[0.48 
0.94] 0.75 

[0.43 
0.93] 

JHFT7 0.23 
[-0.15 
0.69] 0.80 

[0.5 
0.95] 0.81 

[0.52 
0.96] 

R
ig

ht
 S

ho
ul

de
r 

A
b/

A
d 

CAPPFUL4 0.47 
[0.072 
0.8] 0.66 

[0.25 
0.91] 0.63 

[0.21 
0.9] 

tBBT 0.10 
[-0.22 
0.57] 0.42 

[-0.02 
0.82] 0.64 

[0.22 
0.9] 

AMULA10 0.38 
[-0.014 
0.76] 0.71 

[0.33 
0.93] 0.90 

[0.7 
0.98] 

AMULA16 0.50 
[0.081 
0.83] 0.76 

[0.44 
0.93] 0.51 

[0.094 
0.84] 

AMULA24 0.83 
[0.57 
0.95] 0.90 

[0.74 
0.97] 0.91 

[0.77 
0.97] 

CAPPFUL11 0.46 
[0.065 
0.8] 0.85 

[0.63 
0.96] 0.89 

[0.72 
0.97] 

CAPPFUL8 0.51 
[0.11 
0.82] 0.91 

[0.76 
0.97] 0.90 

[0.75 
0.97] 

JHFT2 0.37 
[-0.021 
0.75] 0.69 

[0.33 
0.91] 0.79 

[0.49 
0.94] 

JHFT3 0.39 
[0.0016 
0.77] 0.79 

[0.49 
0.94] 0.86 

[0.64 
0.96] 

JHFT7 -0.01 
[-0.3 
0.5] 0.50 

[0.062 
0.85] 0.42 

[-0.017 
0.82] 

R
ig

ht
 S

ho
ul

de
r 

R
ot

 

CAPPFUL4 0.78 
[0.49 
0.93] 0.92 

[0.75 
0.98] 0.79 

[0.47 
0.95] 

tBBT 0.11 
[-0.21 
0.58] 0.61 

[0.18 
0.89] 0.60 

[0.17 
0.89] 

AMULA10 0.44 
[0.048 
0.79] 0.84 

[0.56 
0.96] 0.97 

[0.91 
0.99] 

AMULA16 0.15 
[-0.2 
0.64] 0.77 

[0.46 
0.94] 0.51 

[0.099 
0.84] 

AMULA24 0.44 
[0.022 
0.81] 0.92 

[0.78 
0.98] 0.89 

[0.71 
0.97] 

CAPPFUL11 0.49 
[0.096 
0.82] 0.73 

[0.42 
0.92] 0.79 

[0.52 
0.94] 

CAPPFUL8 0.84 
[0.61 
0.95] 0.56 

[0.17 
0.85] 0.70 

[0.36 
0.9] 

JHFT2 0.78 
[0.49 
0.93] 0.18 

[-0.19 
0.65] 0.56 

[0.15 
0.86] 

JHFT3 0.35 
[-0.033 
0.75] 0.66 

[0.28 
0.9] 0.78 

[0.48 
0.94] 

JHFT7 -0.11 
[-0.35 
0.38] 0.53 

[0.089 
0.86] 0.45 

[0.0077 
0.83] 

N
ec

k 
F/

E
 

CAPPFUL4 0.54 
[0.15 
0.84] 0.52 

[0.0014 
0.9] -0.10 

[-0.38 
0.56] 

tBBT -0.03 
[-0.3 
0.45] 0.17 

[-0.26 
0.76] 0.05 

[-0.32 
0.69] 
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AMULA10 0.30 
[-0.082 
0.71] 0.60 

[0.14 
0.91] 0.60 

[0.14 
0.91] 

AMULA16 0.55 
[0.14 
0.86] 0.28 

[-0.14 
0.75] 0.42 

[-0.019 
0.82] 

AMULA24 0.52 
[0.11 
0.84] 0.96 

[0.9 
0.99] 0.97 

[0.91 
0.99] 

CAPPFUL11 0.31 
[-0.075 
0.72] 0.54 

[0.13 
0.85] 0.86 

[0.63 
0.96] 

CAPPFUL8 0.72 
[0.4 
0.91] 0.76 

[0.38 
0.95] 0.58 

[0.11 
0.9] 

JHFT2 0.31 
[-0.089 
0.74] 0.69 

[0.31 
0.92] 0.20 

[-0.19 
0.7] 

JHFT3 0.29 
[-0.084 
0.71] 0.68 

[0.19 
0.94] 0.36 

[-0.14 
0.85] 

JHFT7 -0.02 
[-0.3 
0.49] 0.76 

[0.41 
0.94] 0.86 

[0.62 
0.97] 

N
ec

k 
L

aF
 

CAPPFUL4 -0.23 
[-0.39 
0.17] 0.75 

[0.3 
0.96] 0.86 

[0.54 
0.98] 

tBBT 0.23 
[-0.13 
0.67] 0.49 

[-0.029 
0.89] 0.37 

[-0.13 
0.85] 

AMULA10 0.59 
[0.22 
0.86] 0.64 

[0.18 
0.92] 0.79 

[0.43 
0.96] 

AMULA16 0.26 
[-0.13 
0.71] 0.23 

[-0.17 
0.72] -0.12 

[-0.36 
0.41] 

AMULA24 0.69 
[0.33 
0.91] 0.93 

[0.81 
0.98] 0.93 

[0.79 
0.98] 

CAPPFUL11 0.44 
[0.048 
0.79] 0.85 

[0.62 
0.96] 0.90 

[0.74 
0.98] 

CAPPFUL8 0.62 
[0.25 
0.87] 0.74 

[0.34 
0.94] 0.67 

[0.23 
0.92] 

JHFT2 0.11 
[-0.23 
0.61] 0.66 

[0.25 
0.91] 0.63 

[0.21 
0.9] 

JHFT3 0.48 
[0.087 
0.81] 0.85 

[0.53 
0.98] 0.92 

[0.71 
0.99] 

JHFT7 0.09 
[-0.24 
0.58] 0.39 

[-0.048 
0.81] 0.48 

[0.034 
0.84] 

N
ec

k 
R

ot
 

CAPPFUL4 -0.05 
[-0.31 
0.42] 0.91 

[0.69 
0.99] 0.13 

[-0.28 
0.74] 

tBBT 0.13 
[-0.2 
0.59] 0.71 

[0.25 
0.95] 0.47 

[-0.051 
0.88] 

AMULA10 0.60 
[0.23 
0.87] 0.89 

[0.66 
0.98] 0.56 

[0.09 
0.89] 

AMULA16 0.25 
[-0.13 
0.71] 0.31 

[-0.12 
0.76] 0.38 

[-0.057 
0.8] 

AMULA24 0.59 
[0.19 
0.87] 0.93 

[0.8 
0.98] 0.99 

[0.98 
1] 

CAPPFUL11 0.54 
[0.16 
0.84] 0.89 

[0.7 
0.97] 0.80 

[0.52 
0.95] 

CAPPFUL8 0.51 
[0.12 
0.82] 0.60 

[0.14 
0.9] 0.71 

[0.29 
0.94] 

JHFT2 0.27 
[-0.12 
0.71] 0.60 

[0.18 
0.89] 0.15 

[-0.22 
0.67] 
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JHFT3 0.36 
[-0.028 
0.75] 0.91 

[0.68 
0.99] 0.69 

[0.21 
0.94] 

JHFT7 0.09 
[-0.24 
0.59] 0.74 

[0.37 
0.93] 0.68 

[0.28 
0.92] 

T
or

so
 F

/E
 

CAPPFUL4 0.82 
[0.58 
0.95] 0.98 

[0.93 
1] 0.90 

[0.65 
0.98] 

tBBT -0.07 
[-0.32 
0.4] 0.52 

[0.043 
0.88] 0.58 

[0.12 
0.9] 

AMULA10 0.50 
[0.11 
0.82] 0.70 

[0.27 
0.93] 0.69 

[0.26 
0.93] 

AMULA16 0.06 
[-0.26 
0.56] 0.59 

[0.22 
0.86] 0.42 

[0.032 
0.78] 

AMULA24 0.07 
[-0.25 
0.57] 0.96 

[0.87 
0.99] 0.93 

[0.79 
0.98] 

CAPPFUL11 0.46 
[0.066 
0.8] 0.90 

[0.74 
0.97] 0.60 

[0.23 
0.87] 

CAPPFUL8 0.62 
[0.25 
0.87] 0.83 

[0.57 
0.95] 0.68 

[0.31 
0.91] 

JHFT2 0.40 
[0.0059 
0.77] 0.48 

[0.083 
0.81] 0.72 

[0.4 
0.91] 

JHFT3 0.34 
[-0.044 
0.74] 0.89 

[0.73 
0.97] 0.90 

[0.73 
0.97] 

JHFT7 0.70 
[0.35 
0.91] 0.57 

[0.16 
0.86] 0.39 

[-0.023 
0.78] 

T
or

so
 L

aF
 

CAPPFUL4 0.67 
[0.32 
0.89] 0.66 

[0.17 
0.94] 0.78 

[0.36 
0.96] 

tBBT 0.27 
[-0.1 
0.7] 0.71 

[0.29 
0.94] 0.66 

[0.22 
0.92] 

AMULA10 0.72 
[0.4 
0.91] 0.82 

[0.49 
0.96] 0.35 

[-0.11 
0.81] 

AMULA16 0.19 
[-0.18 
0.67] 0.90 

[0.74 
0.97] 0.72 

[0.4 
0.91] 

AMULA24 0.11 
[-0.23 
0.6] 0.90 

[0.73 
0.97] 0.89 

[0.7 
0.97] 

CAPPFUL11 0.55 
[0.16 
0.84] 0.88 

[0.7 
0.97] 0.95 

[0.87 
0.99] 

CAPPFUL8 0.25 
[-0.11 
0.68] 0.90 

[0.73 
0.97] 0.94 

[0.82 
0.98] 

JHFT2 0.28 
[-0.093 
0.7] 0.61 

[0.23 
0.87] 0.88 

[0.69 
0.96] 

JHFT3 0.40 
[0.01 
0.77] 0.57 

[0.19 
0.85] 0.88 

[0.69 
0.96] 

JHFT7 0.38 
[-0.028 
0.78] 0.70 

[0.34 
0.91] 0.33 

[-0.076 
0.75] 

T
or

so
 R

ot
 

CAPPFUL4 0.46 
[0.063 
0.8] 0.40 

[-0.11 
0.86] 0.50 

[-0.023 
0.89] 

tBBT 0.27 
[-0.1 
0.69] 0.73 

[0.32 
0.94] 0.62 

[0.17 
0.91] 

AMULA10 0.69 
[0.35 
0.9] 0.80 

[0.45 
0.96] 0.85 

[0.57 
0.97] 

AMULA16 0.36 
[-0.046 
0.77] 0.63 

[0.27 
0.88] 0.54 

[0.15 
0.84] 
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AMULA24 -0.08 
[-0.34 
0.42] 0.89 

[0.7 
0.97] 0.96 

[0.89 
0.99] 

CAPPFUL11 0.62 
[0.26 
0.88] 0.62 

[0.25 
0.87] 0.67 

[0.33 
0.9] 

CAPPFUL8 0.49 
[0.094 
0.82] 0.93 

[0.81 
0.98] 0.89 

[0.7 
0.97] 

JHFT2 0.06 
[-0.25 
0.53] 0.68 

[0.33 
0.9] 0.53 

[0.14 
0.83] 

JHFT3 0.16 
[-0.18 
0.61] 0.85 

[0.63 
0.96] 0.63 

[0.27 
0.88] 

JHFT7 0.49 
[0.075 
0.83] 0.23 

[-0.15 
0.69] 0.39 

[-0.02 
0.79] 

 

4.4 Discussion 

In this study, joint kinematics derived from three motion capture systems of 

varying costs and mechanisms were compared through simultaneous motion capture 

of able-bodied participants using an upper limb myoelectric bypass device. By 

evaluating the ability of each system to capture kinematic changes of simulated upper 

limb prosthesis users during a variety of standardized tasks, this study provides 

insight into the advantages and limitations of using different motion capture 

technology for upper limb functional assessment. Two established metrics of 

precision and accuracy (RMSE and bias) were calculated as a function of ten different 

joint degrees of freedom and ten different upper-limb tasks for every time point to 

assess inter-subject variability and inter-system agreement. Because differences are 

calculated for every time point, the RMSE values would reflect unstable system 

related influences given the simultaneous capture setup. Similarly, the bias values 

would indicate systematic influences on differences over time – allowing for an 

assessment of joint angle stability. In addition, ICC values were calculated for each 

system and each task/DoF combination using a two-way mixed effects model 

(ICC(3,1) to further assess consistency of measurements from each system. A 
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discussion of advantages and limitations of each system is presented along with 

considerations for clinical implementation.  

Based on the results presented in this study, the IMU system yields more 

accurate kinematics for shoulder, neck, and torso angles over all DOFS (Figure 4.3 - 

Figure 4.5) compared to the Kinect (markerless) system’s performance over all 

DOFs. Due to the current level of accuracy and variability, the IMU system is not 

recommended in the elbow DOF (Figure 4.3). The markerless system is not 

recommended for use in measuring the elbow or the shoulder DOFs due to high 

variability and bias (Figure 4.3, Figure 4.4), which are in line with the results from 

the literature[25, 30, 63], but may provide accurate results for neck and torso DOFs 

(Figure 4.5, Figure 4.6) when individuals perform the specific tasks analyzed in this 

study.  

For both systems, the tasks requiring the greatest amount of movement (i.e., 

CAPPFUL - Dice, CAPPFUL - Picture, and tBBT) resulted in the largest RMSE and 

variability values over the DOFs examined.  This implies that both systems struggled 

with precision during large gross movements, a result in line with previous literature 

that suggests the markerless system overestimates large motions and underestimates 

small motions[30]. 

For DOFs parallel to the recording plane of the cameras (e.g., neck/torso 

lateral flexion and shoulder abduction/adduction), the markerless system had the best 

results. Given the mechanism of movement capture for the Kinect V1, which 

measures infrared reflectivity and subtracts changes from a predefined static 

background[24, 74, 117], this result is expected [66, 73, 117]. The elbow bias values 
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(Figure 4.3B) for the markerless system were inconsistent overestimates, which was 

likely influenced by how the system struggled to detect the bypass device. The 

markerless shoulder bias values (Figure 4.4B) measured in this study were also 

notably different from those found in the literature (current study measured 

approximately -25° compared to an average around +10°) [28, 30].  Although this 

difference is large, it may be a more accurate representation of the expected 

performance of these motion capture systems given the use of complex tasks[120] 

and human subjects in this study compared to simple ROM measurements[28, 30] 

and testing machines[75] found in the literature.  

The precision of the IMU system was best in the shoulder (Figure 4.4), which 

is consistent with previous results in the literature[32, 36]. The variability across 

subjects in the elbow DOF (Figure 4.3) for the IMU system was likely influenced by 

variations in sensor placement and movement artifacts from the sensor attachment 

method, which are known factors in the literature[67]. The variability across subjects 

in the neck and torso angles (Figure 4.5, Figure 4.6) appeared to be heavily task-

influenced and the capture accuracy of the systems was likely affected by the varying 

motions used by the participants to achieve the task. The magnitude of the differences 

between the IMU-generated angles and the Vicon reference system angles found in 

the DOFs examined in this study were similar to the magnitude of the differences 

previously found in the literature for the commercial Xsens software[120] in the 

shoulder, neck, and back. However, the magnitude of the differences in the elbow are 

much greater in this study compared to those previously found in the literature. The 
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source of the errors within the elbow is currently still unclear and warrant further 

investigation given the results seen in the other angles measured. 

In terms of the system stability as measured by the ICC values, the IMU and 

marker-based systems showed comparable moderate to strong correlations across 

trials for all subjects. The markerless system generally showed weaker correlations 

compared to the IMU system and marker-based reference system. Due to the lack of 

any trends based on the task or DoF, these results can be considered to support the 

general performance of the three systems. However, it should be noted that the 

participants were free to choose their own approaches to achieve the tasks and often 

used different approaches between trials. As such, it is difficult to draw more specific 

conclusions based on the ICC values due to the inherent variability of the base data. 

Overall, the marker-based reference system and IMU system showed the greatest 

stability per the ICC metric. 

In terms of capture environment restrictions and operating stability, the IMU 

system proved more robust and less demanding compared to the markerless system. 

The IMU system did not require the consideration of issues such as the color and 

reflectivity of the capture background, the participant clothing, or the participant skin 

tone, and was not vulnerable to loss of tracking issues due to obscuration from task 

objects or body parts. The IMU system had comparable costs for the number of 

sensors used, and less strenuous requirements for data processing, data storage, and 

data export procedures compared to the markerless system. The markerless system 

incorporated established calibration procedures, while there exist many approaches 

for effective calibration of the IMU system.  The impact of IMU calibration 
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procedure on derived joint angles was not the subject of this study but may need 

further investigation regarding the most effective calibration approach. However, 

both systems proved lacking in data annotation abilities – with the markerless system 

holding a slight advantage due to the visual review allowed by the video-based 

capture data. In this experiment, the availability of reference video and data from the 

gold standard system served to ameliorate the lack of review and annotation abilities 

for the IMU system – but for independent use of the IMU system this factor needs 

additional consideration. Overall, the IMU system may be best for clinical and remote 

monitoring purposes. 

The generalizability of the joint kinematics observed here with able-bodied 

individuals to those of upper limb prosthesis users is uncertain. However, the 

movements elicited by able-bodied individuals using a bypass prosthesis are close 

approximations to the movements of interest, making the results obtained in this 

study relevant to understanding the utility of different motion capture systems for 

tracking upper limb prosthesis user movement. The focus on unilateral tasks 

performed with the MY Bypass device may not be fully representative of device use 

patterns in daily living and may also be considered a limitation of the current study. 

While a bilateral task was included, (i.e. CAPPFUL Task 11 – Picture), the task 

required symmetrical use of the two upper limbs. Motion analysis of tasks with 

independent use of both upper limbs has yet to be performed under these 

simultaneous capture conditions and is a future avenue of investigation. Given the 

current results with unilateral tasks, and other results in the literature[69], it is likely 

that asymmetrical bilateral tasks may further elucidate the performance capabilities of 
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the IMU and the markerless motion analysis systems. The limitations and advantages 

discovered about each system in this study can be used to inform clinical 

implementation of motion analysis for research and rehabilitation. 

 



 

 

86 
 

Chapter 5: Conclusions and Future Work 

5.1 Conclusions 

In this dissertation, we have examined several factors to fill the gaps 

previously identified in Chapter 1 related to the evaluation of functional capabilities 

and quality of motion[6, 39-41]. Namely, this dissertation addresses factors that have 

influenced the adoption of motion capture into clinical use in rehabilitation such as: 

the lack of normative kinematic ranges for commonly used performance-based 

outcome measure, the lack of coordinated datasets of normative and device use 

kinematic data, the lack of analyses that identify informative tasks and motions, as 

well as the lack of comparisons examining whether selected motion capture systems 

are able to detect the most informative tasks and motions.  Without normative 

kinematic ranges, it is difficult to establish departures from normative ranges of 

motion. Without coordinated datasets, it is difficult to perform comparisons of device 

use motion against normative motion. Without the identification of informative tasks 

and motion, and without comparisons of motion capture systems to clarify technical 

capabilities, it is difficult to implement motion capture into clinical or rehabilitative 

programs. 

To address these gaps, this dissertation has established new kinematic 

databases of normative and device use motion in Chapter 2. In Chapter 3, to identify 

informative motions and tasks with a novel metric developed for the purpose, the K-

means machine learning algorithm was applied to the new kinematic data previously 

collected in Chapter 2. In Chapter 4, the tasks and motions identified were used to 
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compare the technical characteristics of three motion capture systems with three 

different mechanisms of action. 

In Chapter 2: Specific Aim 1 – Development of Kinematic Databases, 

standardized databases of kinematic data for standardized tasks from several 

performance- based outcome measures were developed. Both normative baselines and 

simulated disability motion data have now been published in the literature and are 

available through the Food and Drug Administration Office of Science and 

Engineering Labs Division of Biomedical Physics GitHub repository[82-84, 96].In 

Chapter 3: Specific Aim 2 – Application of Machine Learning to Identify Salient 

Kinematic Characteristics, the unsupervised K-means clustering algorithm was 

applied to the previously collected kinematic data and DOFs that inform abnormal 

movement were identified. With the features selected to characterize movement 

(RoM, peak angle, path length, mean joint angle, peak angle velocity, and number of 

zero crossings), the K-means clustering approach was able to identify distinctive joint 

DOFs for several ADL tasks over three methods of simulated upper limb prosthesis 

use. The most frequent tasks with high DfC values for both the BP bypass and DK 

bypass conditions were JHFT2 – Page Turning and the sitting targeted Box and 

Blocks Test. Some tasks (e.g., standing targeted Box and Blocks) were found to elicit 

more significant DfC values for one bypass condition, but not the other. When all 

DOFs are combined, the right shoulder and torso appear more often in the significant 

results across both bypass conditions, indicating these joints are most informative for 

distinguishing movement between the Norm and Bypass conditions. Although limited 

in generalizability to actual prosthesis users, the results of this analysis can be used to 
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inform the development of larger, more applicable datasets to be incorporated into a 

supervised machine learning algorithm for the real-time identification of abnormal or 

compensatory movement based on movement data input.  

In Specific Aim 3 – Comparison of Motion Capture Systems,  using the tasks 

and motions identified in Specific Aim 2, the performance of three motion analysis 

systems with varying mechanisms of action were compared through simultaneous 

data acquisition. An analysis of the factors that influenced the relative accessibility of 

the three systems in terms of capture environment requirements, data processing 

pipelines, and annotation capabilities was also produced. This chapter can serve as a 

starting point for minimum technical requirements in motion capture systems for use 

in clinical rehabilitation and highlights the current state of commercially available 

technology in terms of technical and capture environment requirements that may be 

barriers to the clinical adoption of motion capture.  The results can also be used to 

guide improvements in the design and algorithms of low-cost, portable motion 

capture systems to facilitate the wider adoption of these tools in clinical practice.  

5.2 Future Work 

Future work for this database development effort involves the expansion of 

these databases by 1) collecting additional data for the current selection of 

performance-based outcome measure tasks, 2) collecting kinematic data for additional 

performance-based outcome measures, and 3) collecting data for additional 

participant populations (i.e., amputee data or additional terminal device data). 

Future avenues of investigation for the application of machine learning 

algorithms to UL kinematic data include increasing the selectivity of the clustering 
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approach used in this chapter by increasing the threshold value, comparing the results 

from this chapter with the actual upper limb amputee motion capture data, performing 

further experiments with larger and more varied interaction zone requirements, and 

utilizing the distinct tasks identified for further motion capture or rehabilitation 

experiments. 

Future work on the examination of motion capture system performance may 

focus on investigating the effects of additional Kinect V1 cameras, examining the 

performance results from more modern Kinect cameras models such as the Azure 

Kinect, and further refinement of the IMU system joint angle calculations and sensor 

placements to allow for more reliable capture of challenging task performance zones 

such as the portion of the lower central zone by the feet and the far left and far right 

of the lateral zones[12]. Other avenues of future work may also include remote 

monitoring and additional capture mechanisms such as those employed in visual-

inertial systems or single-view pose estimation systems. 

With the development of more compact, easily implementable motion analysis 

systems such as 3D optical marker-based motion capture, inertial measurements units, 

or markerless motion capture that can be used in the home or clinic, the widespread 

collection, analysis, and application of quantitative movement data is becoming more 

of a reality. The work performed in this dissertation serves to aid the adoption of 

motion capture into clinical use and rehabilitation. The kinematic data collected in 

this dissertation establishes useful ranges of variation for normative and device use 

motion. The machine learning applied to the collected kinematic data has aided the 

identification of informative DOFs and tasks for the comparison of motion capture 
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systems. The motion capture system comparisons performed clarify factors beyond 

precision and accuracy that may be useful for system selection. 
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Appendices 
 

Supplemental Table 1 P-values for the statistical test comparing the Deviation 
from Chance (DfC) distributions for a given task/DOF to the threshold value (DfC 
= 25). (From Wang et al., 2021[93]) 

Task DOF 
BP Bypass 
(p-value) 

DK Bypass 
(p-value) 

tB
B

T 

R Elbow - 
Flex/Ext 7.97E-06 0.219 
L Elbow - 
Flex/Ext 1.64E-05 1.000 
R Sho - Flex/Ext 1.64E-05 1.000 
R Sho - Ab/Ad 2.65E-05 1.000 
R Sho  - Rot 3.08E-05 1.000 
L Sho - Flex/Ext 1.000 0.519 
L Sho - Ab/Ad 2.42E-05 2.37E-05 
L Sho - Rot 1.21E-05 0.803 
Neck - Flex/Ext 0.994 1.000 
Neck - Lat Flex 0.999 0.001 
Neck - Rot 0.220 0.355 
Torso - Flex/Ext 2.02E-05 0.987 
Torso - Lat Flex 2.86E-05 1.000 
Torso - Rot 1.21E-05 1.000 

JH
FT

1 
- w

ri
tin

g 

R Elbow - 
Flex/Ext 2.67E-05 2.86E-05 
L Elbow - 
Flex/Ext 1.000 2.55E-05 
R Sho - Flex/Ext 2.44E-05 2.86E-05 
R Sho - Ab/Ad 0.999 1.000 
R Sho  - Rot 1.000 0.960 
L Sho - Flex/Ext 0.983 0.901 
L Sho - Ab/Ad 0.983 0.999 
L Sho - Rot 0.221 2.67E-05 
Neck - Flex/Ext 1.000 0.687 
Neck - Lat Flex 1.000 1.000 
Neck - Rot 1.000 1.000 
Torso - Flex/Ext 0.001 0.001 
Torso - Lat Flex 1.000 0.998 
Torso - Rot 1.000 1.000 
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JH
FT

2 
- p

ag
e 

tu
rn

in
g 

R Elbow - 
Flex/Ext 0.099 0.002 
L Elbow - 
Flex/Ext 1.64E-05 0.000 
R Sho - Flex/Ext 0.836 1.21E-05 
R Sho - Ab/Ad 2.38E-05 2.73E-05 
R Sho  - Rot 7.97E-06 7.97E-06 
L Sho - Flex/Ext 1.000 0.008 
L Sho - Ab/Ad 2.37E-05 7.97E-06 
L Sho - Rot 0.999 1.000 
Neck - Flex/Ext 2.02E-05 7.97E-06 
Neck - Lat Flex 1.000 1.000 
Neck - Rot 2.55E-05 7.97E-06 
Torso - Flex/Ext 1.64E-05 0.989 
Torso - Lat Flex 1.21E-05 0.001 
Torso - Rot 2.28E-05 3.03E-05 

JH
FT

3 
- s

m
al

l o
bj

ec
ts

 

R Elbow - 
Flex/Ext 1.000 1.000 
L Elbow - 
Flex/Ext 2.02E-05 1.64E-05 
R Sho - Flex/Ext 2.73E-05 1.000 
R Sho - Ab/Ad 1.000 1.000 
R Sho  - Rot 0.015 0.806 
L Sho - Flex/Ext 0.998 0.804 
L Sho - Ab/Ad 2.07E-05 2.28E-05 
L Sho - Rot 0.960 0.960 
Neck - Flex/Ext 1.66E-05 2.55E-05 
Neck - Lat Flex 1.000 0.034 
Neck - Rot 0.014 1.66E-05 
Torso - Flex/Ext 0.184 0.084 
Torso - Lat Flex 1.000 1.000 
Torso - Rot 2.28E-05 0.021 

JH
FT

4 
- s

im
ul

at
ed

 fe
ed

in
g R Elbow - 

Flex/Ext 1.000 1.000 
L Elbow - 
Flex/Ext 1.64E-05 2.37E-05 
R Sho - Flex/Ext 7.97E-06 1.000 
R Sho - Ab/Ad 0.994 0.000 
R Sho  - Rot 0.009 2.65E-05 
L Sho - Flex/Ext 1.000 0.355 
L Sho - Ab/Ad 2.09E-05 3.06E-05 
L Sho - Rot 0.221 0.099 
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Neck - Flex/Ext 1.000 3.08E-05 
Neck - Lat Flex 0.999 0.517 
Neck - Rot 0.993 0.114 
Torso - Flex/Ext 0.994 0.001 
Torso - Lat Flex 3.03E-05 2.55E-05 
Torso - Rot 1.000 2.73E-05 

JH
FT

5 
- s

ta
ck

in
g 

ch
ec

ke
rs

 

R Elbow - 
Flex/Ext 0.001 0.005 
L Elbow - 
Flex/Ext 1.000 1.000 
R Sho - Flex/Ext 0.000 2.88E-05 
R Sho - Ab/Ad 1.000 1.000 
R Sho  - Rot 0.047 2.73E-05 
L Sho - Flex/Ext 0.000 0.001 
L Sho - Ab/Ad 7.97E-06 2.28E-05 
L Sho - Rot 1.66E-05 2.37E-05 
Neck - Flex/Ext 0.987 2.28E-05 
Neck - Lat Flex 0.221 0.988 
Neck - Rot 0.001 2.92E-05 
Torso - Flex/Ext 1.000 0.057 
Torso - Lat Flex 0.994 2.86E-05 
Torso - Rot 1.21E-05 0.522 

JH
FT

6 
- l

ig
ht

 c
an

s 

R Elbow - 
Flex/Ext 0.021 2.67E-05 
L Elbow - 
Flex/Ext 1.21E-05 2.07E-05 
R Sho - Flex/Ext 0.996 0.676 
R Sho - Ab/Ad 2.38E-05 2.92E-05 
R Sho  - Rot 3.10E-05 1.21E-05 
L Sho - Flex/Ext 2.55E-05 1.000 
L Sho - Ab/Ad 1.000 7.97E-06 
L Sho - Rot 0.345 0.951 
Neck - Flex/Ext 1.000 0.000 
Neck - Lat Flex 0.355 1.000 
Neck - Rot 0.999 0.815 
Torso - Flex/Ext 0.951 0.006 
Torso - Lat Flex 2.86E-05 2.09E-05 
Torso - Rot 0.184 0.519 

JH
FT

7 
- 

he
av

y 
ca

ns
 

R Elbow - 
Flex/Ext 0.115 0.001 
L Elbow - 
Flex/Ext 2.02E-05 1.000 
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R Sho - Flex/Ext 1.000 0.901 
R Sho - Ab/Ad 0.000 0.001 
R Sho  - Rot 0.000 1.000 
L Sho - Flex/Ext 0.994 1.000 
L Sho - Ab/Ad 1.000 0.007 
L Sho - Rot 1.000 0.952 
Neck - Flex/Ext 1.000 0.221 
Neck - Lat Flex 1.000 0.998 
Neck - Rot 1.000 0.987 
Torso - Flex/Ext 0.002 1.000 
Torso - Lat Flex 2.97E-05 1.000 
Torso - Rot 1.000 1.000 

Si
t t

B
B

T 

R Elbow - 
Flex/Ext 2.67E-05 3.08E-05 
L Elbow - 
Flex/Ext 2.55E-05 1.000 
R Sho - Flex/Ext 7.97E-06 2.09E-05 
R Sho - Ab/Ad 1.000 2.88E-05 
R Sho  - Rot 1.000 0.998 
L Sho - Flex/Ext 0.015 2.28E-05 
L Sho - Ab/Ad 2.07E-05 2.37E-05 
L Sho - Rot 0.048 2.92E-05 
Neck - Flex/Ext 1.000 0.002 
Neck - Lat Flex 0.993 3.06E-05 
Neck - Rot 0.988 7.82E-05 
Torso - Flex/Ext 7.97E-06 2.55E-05 
Torso - Lat Flex 2.99E-05 2.65E-05 
Torso - Rot 0.001 2.71E-05 
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Supplemental Figure 1 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for right elbow flexion/extension. 
Tasks  JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, 
JHFT4 - Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large 
Light Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical 
significance of Wilcoxon ranksum test between each bypass condition data and 
the Norm condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 
2021[93]) 
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Supplemental Figure 2 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for right shoulder flexion/extension. 
Tasks  JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, 
JHFT4 - Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large 
Light Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical 
significance of Wilcoxon ranksum test between each bypass condition data and 
the Norm condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 
2021[93]) 
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Supplemental Figure 3 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for right shoulder 
abduction/adduction. Tasks  JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - 
Picking Up Small Objects, JHFT4 - Simulated Feeding, JHFT5 - Stacking Checkers, 
JHFT6 - Moving Large Light Objects and JHFT7 - Moving Large Heavy.  Stars 
denote statistical significance of Wilcoxon ranksum test between each bypass 
condition data and the Norm condition data. *p< 0.05, **p<0.01, ***p<0.001. 
(From Wang et al., 2021[93]) 
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Supplemental Figure 4 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for right shoulder rotation. Tasks  
JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 
- Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 5 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for torso flexion. Tasks  JHFT1 -  
Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - 
Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 6 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for torso lateral flexion. Tasks  JHFT1 
-  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - 
Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 7 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for torso rotation. Tasks  JHFT1 -  
Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - 
Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 8 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for neck flexion. Tasks  JHFT1 -  
Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - 
Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 9 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for neck lateral flexion. Tasks  JHFT1 
-  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - 
Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 10 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for neck rotation. Tasks  JHFT1 -  
Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 - 
Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 11 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for left shoulder flexion/extension. 
Tasks  JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, 
JHFT4 - Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large 
Light Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical 
significance of Wilcoxon ranksum test between each bypass condition data and 
the Norm condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 
2021[93]) 
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Supplemental Figure 12 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for left shoulder 
abduction/adduction. Tasks  JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - 
Picking Up Small Objects, JHFT4 - Simulated Feeding, JHFT5 - Stacking Checkers, 
JHFT6 - Moving Large Light Objects and JHFT7 - Moving Large Heavy.  Stars 
denote statistical significance of Wilcoxon ranksum test between each bypass 
condition data and the Norm condition data. *p< 0.05, **p<0.01, ***p<0.001. 
(From Wang et al., 2021[93]) 
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Supplemental Figure 13 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for left shoulder rotation. Tasks  
JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, JHFT4 
- Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large Light 
Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical significance of 
Wilcoxon ranksum test between each bypass condition data and the Norm 
condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 2021[93]) 
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Supplemental Figure 14 Distributions of features for DEKA Bypass (blue), BP 
Bypass (red), and Norm (black) conditions for left elbow flexion/extension. 
Tasks  JHFT1 -  Writing, JHFT2 - Page Turning, JHFT3 - Picking Up Small Objects, 
JHFT4 - Simulated Feeding, JHFT5 - Stacking Checkers, JHFT6 - Moving Large 
Light Objects and JHFT7 - Moving Large Heavy.  Stars denote statistical 
significance of Wilcoxon ranksum test between each bypass condition data and 
the Norm condition data. *p< 0.05, **p<0.01, ***p<0.001. (From Wang et al., 
2021[93])  
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