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The erythrocytes are the primary carriers of oxygen and carbon dioxide to

and from the systemic tissue. The ability of these cells to deform and navigate

through the capillary beds is of fundamental importance for proper functioning

of the cardiovascular transport system. The erythrocyte is essentially a capsule,

and flow-induced erythrocyte deformation involves the interfacial dynamics of a

membrane-enclosed fluid volume stressed in a viscous flow. Elastic capsule dynamics

is a complicated problem involving the coupling of fluid and membrane forces; it

is also found in a variety of scientific and engineering applications. In this work,

we investigate the dynamics of elastic capsules and erythrocytes using the Spectral

Boundary Element (SBE) method, a high-order / high-accuracy method for capsule

and cellular dynamics.

For strain-hardening Skalak elastic capsules in an extensional flow, our investi-

gations demonstrate a shape transition in accordance with experimental observations

[6] to a cusped conformation at high flow rates, which allows the capsule to with-

stand the increased hydrodynamic forces. Our computational methodology reveals

a region of bifurcation, in which both spindled and cusped steady-state geometries



coexist for a single flow rate. The method is also used to investigate the dynamics of

strain-softening Neohookean capsules in the same flow pattern. The strain-softening

capsules become highly extended at weaker flow rates than strain-hardening cap-

sules, and do not form steady-state cusped shapes.

The SBE method has been extended to model the erythrocyte by using a bicon-

cave disc reference geometry and adaptive prestress to enforce area incompressibility.

The method accurately reproduces experimental data from erythrocyte ektacytom-

etry, but allows examination of the erythrocyte dynamics beyond the geometric

constraints inherent in ektacytometry and other experimental techniques, including

observation of the three-dimensional oscillatory behavior over a range of capillary

numbers and viscosity ratios. Our results support a prediction by Fischer, Skalak,

and coworkers [32] that the erythrocyte shear modulus decreases at small shear de-

formations. Our work also suggests that cellular deformation is largely independent

of the flow pattern, consistent with the findings of experimental investigators [78].
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Chapter 1

Erythrocyte and Microcapsule Rheology

In 1969, Schmid-Schönbein and Wells [74] were studying the shear-thinning

properties of human blood. Focusing on the micro-rheological properties of red blood

cells, or erythrocytes, they observed that the erythrocyte membrane rotates around

the body of the cell when subjected to shear flow. Comparing this motion to the

treads of a tank, they hypothesized that the tank-treading motion transmits shear

stresses from the ambient fluid to the interior fluid of the cell. Thus, like a viscous

droplet, the erythrocyte can participate in the flow, instead of impeding it like a

solid particle. Along with the formation and breakup of rouleaux, this mechanism

contributes to the shear-thinning behavior of blood [9, 13]. Understanding the

fluid dynamic properties of blood therefore requires investigation into flow-induced

deformation at the cellular level.

In an ambient flow, an erythrocyte deforms as a capsule, defined as an ob-

ject consisting of a liquid core enclosed by an elastic or viscoelastic shell [56]. The

dynamic behavior of such an object is a fluid mechanics problem coupled to an elas-

tic solid mechanics problem [66]. This necessitates an interdisciplinary approach,

wherein a traditional methodology in microfluid dynamics is used in conjunction

with an elastic solids framework. Ubiquitous in biological systems, the capsule de-
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formation problem is also found in scientific and engineering applications including

pharmaceuticals, adhesives, cosmetics, and pesticides [17, 21, 45, 61, 87]. Like an

emulsion or a suspension of solid particles, a capsule suspension can exhibit complex

viscoelastic flow behavior as a result of the capsule micro-rheology [72]. Therefore,

understanding or designing fluid-flow systems with these capsule suspensions re-

quires a comprehension of the behavior of fluid-filled capsules in ambient flow, and

the response of these capsules to various flow conditions.

The purpose of this work is to investigate the flow-induced deformation dy-

namics of elastic capsules and erythrocytes using the Spectral Boundary Element

(SBE) method, which we have developed for interfacial dynamics of elastic shells in

Stokes flow. This numerical method, originally developed for fixed boundary Stokes

flow computations [57, 59], and later for interfacial dynamics and the deformation of

viscous droplets [88], has excellent geometric versatility, and it preserves the expo-

nential convergence in accuracy characteristic of spectral methods. The method is

more robust than previous methods, and thus it reveals new phenomena, including

shape bifurcation at high capillary numbers for strain-hardening elastic capsules.

Regarding erythrocytes, the SBE method, as far as we are aware, is the first nu-

merical method to reproduce quantitatively experimental results from erythrocyte

ektacytometry at moderate flow rates.
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1.1 Erythrocyte Physiology

The erythrocytes are the primary carriers of oxygen and carbon dioxide to and

from the systemic tissue. The ability of these cells to navigate through the capil-

lary beds is of fundamental importance for proper functioning of the cardiovascular

transport system. The lack of a three-dimensional cytoskeleton, coupled with a large

surface area to volume ratio, allows erythrocytes to undergo large changes in shape.

This is necessary in order for the cells to pass through narrow constrictions in the

capillaries, passages often of smaller diameter than the undeformed cells themselves.

An erythrocyte is essentially a capsule, consisting of an outer shell composed

of proteins and phospholipids, and a liquid interior. The cytoplasm, although it is a

concentrated hemoglobin solution, behaves as a Newtonian fluid, with viscosity 5-6

cP [56, 68]. In healthy blood and in the absence of flow, the erythrocyte assumes

a biconcave discoid shape, with a diameter of 7-8 µm, and 2 µm in thickness [9].

The average human erythrocyte has a surface area of 135 µm2, and a volume of

94 µm3 at physiological osmolarity [30]. For purposes of comparison, a sphere of the

same volume would have a surface area of only 100 µm2, and a radius of 2.8 µm.

The surface area to volume ratio allows the cells to assume flattened and extended

conformations impossible for more spherical cells.

In the capillary beds of the microcirculation, the vessels reach a minimum

diameter which is on the order of, and can actually become less than, the major

diameter of an erythrocyte. The purpose of these small vessels is to maximize the

surface area available for mass transfer. Often the diameter of capillaries is irregular

3



[77], and the concentration of capillaries in tissue can be high, with a distance of only

34 µm between vessels [35]. Moving through this micro-vasculature, erythrocytes

form parachute-like shapes, due to the fluid flow and hydrodynamic interactions

with the vessel walls [79]. These shapes are in general non-axisymmetric. Other

more complicated three-dimensional shapes have also been observed. To estimate

a Reynolds number for the flow induced movement of an erythrocyte through a

capillary, we will use the erythrocyte diameter and the average viscosity of plasma,

1.1-1.3 cP [77]. The density is approximately that of water, e.g. 1 g/cm3. For the

characteristic velocity, we use the results of Vink and Duling [86], regarding ery-

throcyte movement in hamster capillaries; they observed average red cell velocities

in microvessels ranging from 18 to 220 µm/s. Using the larger observed velocity,

one can estimate the upper bound for capillary Reynolds number,

Re ≈
8µm× 1g/cm3 × 220µm/s

1.1cP
= 0.0016 ≪ 1 (1)

The Reynolds number shows that the flow is in the Stokes flow regime. Values

for the Reynolds number characterizing microcirculatory fluid flow given in the liter-

ature are 0.002 for capillaries, 0.01 for venules, and 0.7 for arterioles [10]. Thus, the

Stokes flow assumption may still hold on the length scale of the isolated erythrocyte

for some vessels slightly larger than the capillaries themselves.

In addition to erythrocytes, white blood cells and platelets are also suspended

in the blood, and must navigate through the microcirculation. White blood cells

possess an interior three-dimensional cytoskeleton, and thus the dynamics of their

deformation is more complex, but they are much less numerous than erythrocytes.
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Platelets generally behave as microcapsules, and are discoids approximately half

the diameter of erythrocytes. The plasma itself contains dissolved salts, proteins,

and miscellaneous organic molecules, which explains why the viscosity is slightly

elevated compared to pure water [9].

The capillary walls are composed of endothelial cells, which are specialized for

flow control and mass transfer. Thus, the flow does not exhibit the steady, periodic

flow behavior of larger vessels. Instead, local muscles embedded in capillary beds

constrict and relax in response to a wide variety of stimuli, including exercise, drugs,

and metabolic conditions. This causes an irregular local flow pattern, in which local

pressure gradients, flow velocities, and even flow directions change frequently in

individual vessels. Another characteristic of the capillary vessels is a thick (0.4 −

0.5 µm) layer of macromolecules bound or adsorbed to the endothelial cells lining

the capillary [75]. This compressive layer, called the glycocalyx, excludes cells and

large molecules from the area proximate to the vessel wall, and retards the plasma

flow [71]. Also, past modeling investigations suggest that an additional effect of the

glycocalyx is to attenuate the size of the transient deformations that an erythrocyte

experiences due to capillary irregularities [77]. In this way, the glycocalyx may

actually help minimize the mechanical wear on the cells.

Several diagnostic processes have been developed which attempt to quantify

the deformability of individual erythrocytes or populations. Here, we describe the

basic experimental setup for two devices. Greater analysis of the flow pattern and

cellular geometric orientation for these systems appears in Chapter 6.

Historically, the most common device used to assess erythrocyte deformability
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is the light-diffraction ektacytometer [11, 12, 40]. A suspension of erythrocytes in

a high-viscosity medium is placed into a Couette viscometer. A laser beam is shot

radially from inside the inner cylinder. It passes through the medium and produces

a diffraction pattern, which is either circular for undeformed cells, or ellipsoidal

for elongated, tank-treading cells [11]. The dimensions of the diffraction pattern

are inversely proportional to the dimensions of the actual deformed cells, viewed in

the plane perpendicular to the direction of the laser. The diffraction pattern can

therefore be used to calculate the average dimensions of the deformed cell population

(viewed in that plane), either by measuring light intensities across the diffraction

pattern [12], or, as in the modern systems, by using a computer to fit an ellipsoid

to the diffraction pattern [40]. The data is usually reported as a deformation index,

similar to the Taylor parameter, which ranges between 0 (no deformation) and 1

(infinite deformation).

A second device used to evaluate erythrocyte deformability is a counter-rotating

parallel plate system, as in Dobbe et al. [27, 28]. Here, a suspension of erythrocytes

is inserted between two circular, parallel plates, which shear the cells by rotating

in opposite directions. An inverted microscope and automated photography sys-

tem captures images of the deformed cells. While the average results are consistent

with ektacytometry, this experimental system was designed to study deformability

distributions within a population of erythrocytes. Note that although this system

produces images of individual deformed cells, it does not follow individual cells over

time.

Microchannel devices have also been developed, in which the cells are passed

6
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x
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Figure 1.1: A capsule with internal viscosity λµ suspended in an ambient fluid with

viscosity µ undergoing linear shear flow extends and tank-treads as a result of the

shearing forces. The undisturbed fluid velocity field is shown superimposed over the

deformed capsule.

through a narrow channel or tube. Unlike traditional ektacytometry or parallel

plate systems, microchannel devices have no counter-rotating parts and require no

precise motors or control systems, but merely a constant pressure gradient. There-

fore, designs based upon these devices are thought to hold greater promise for the

development of cheap, disposable systems that can be used in a clinical setting [15].

The flow pattern for these new systems is not a simple shear flow, as it was for

previous experimental setups. However, when cellular deformation is considered as

a function of wall shear stress, microchannel devices produce comparable results to

light-scattering techniques [78].
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1.2 Stokes Flow and the Boundary Integral Equations

When a capsule, such as an erythrocyte, deforms in response to an ambient

flow, resistive elastic forces in the membrane couple to the hydrodynamic forces.

For both experimental and numerical investigations, the two most commonly stud-

ied basic flow patterns are linear shear flow, illustrated in Figure 1.1, and planar

hyperbolic flow (which can be seen in Figure 4.1). Chang and Olbricht [18, 19], for

instance, extensively characterized the deformation of an oil droplet covered in a

thin polymeric membrane in both shear flow and planar hyperbolic flow (also called

two-dimensional extensional flow). They generated the planar hyperbolic flow with

a four-roll mill, and the shear flow with a Couette viscometer, as in erythrocyte

ektacytometry. These experiments are delicate. One challenge in controlling these

flow systems is that while both flow patterns contain a central stagnation point, this

is not a stable position for a particle, because the slightest perturbation will cause it

to be carried away. Especially in the case of planar hyperbolic flow, the rollers must

be carefully readjusted throughout the experiment to keep the capsule centered on

the stagnation point. Walter et al. [87] also used a Couette viscometer to observe

capsule deformation in shear flow; they focused on shape oscillations from steady-

state and capsule wrinkling. A third device commonly used to deform capsules in

ambient flow is the spinning drop tensometer [44, 61]. In this technique, a capsule

is placed in a narrow cylindrical tube. A motor spins the tube, creating concentric

circular streamlines inside (i.e. a Couette flow). The centrifugal force elongates the

capsule; this results in an axisymmetric deformed geometry. More complex fluid
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flows, including those found in blood vessels, have both shear and extensional com-

ponents; the basic flow patterns discussed here are useful to illustrate the effects of

these components on the capsule or cellular deformation.

The physical system in which a capsule deforms as the result of an ambient

flow is illustrated in Figure 1.1. Under shearing forces, an initially spherical capsule

extends and then tank treads. The figure shows the case in which the undisturbed

velocity field u∞ is a linear shear flow, but the formulation discussed here is equally

valid for any u∞. The ambient fluid has viscosity µ, and the interior fluid viscosity

λµ. For systems involving individual erythrocytes and microcapsules, the conditions

hold for Stokes flow (Re ≪ 1). Therefore the Navier-Stokes equation simplifies to

the Stokes equation. We also have the continuity equation. For the ambient fluid,

with pressure p and fluid velocity u, these equations will be written as follows, and

for the internal fluid the appropriate viscosity λµ substituted for µ.

−∇p+ µ∇2u = 0 (2)

∇ · u = 0 (3)

Taken together, these equations describe the behavior of a viscous, incom-

pressible fluid at low Reynolds numbers, when inertia is negligible. Because these

equations are time invariant, force equilibrium is assumed to hold at every instant.

As with a viscous droplet, the Boundary Integral Equations (BIE) can be derived

in the standard manner from the Stokeslet singularity solutions [62]. For a droplet

suspended in an unbounded ambient fluid, the appropriate form of the BIE is the
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combined form,

(1 + λ)u(x0)− 2u∞(x0) =

−1

4πµ

∮

S
[∆f (x) · S(x,x0)− µ(1− λ)n(x) · T (x,x0) · u(x)]dS (4)

In this expression, u(x) is the actual velocity at point x defined only on the

interface. ∆f (x) corresponds to the hydrodynamic traction across the interface at

point x. This is equal to the load on the membrane at that point. It can also be

defined from the three-dimensional stress tensor σ in the inner and outer fluids, and

the unit normal n(x).

∆f = n · (σexteriorfluid − σinteriorfluid) (5)

Tensors S(x,x0) and T (x, x0) are the Stokeslet solutions for velocity and

stress at x0 that would be produced by a point disturbance located at x. Note

that in the case where the viscosity ratio is unity (λ = 1), the second term of the

integrand vanishes.

If either the velocity distribution or the force vector ∆f is known along the

capsule surface, Eq. (4) can be evaluated to solve for the unknown quantity. The

BIE, which describes the fluid dynamics, couples to a solid mechanics description

of the interface via boundary conditions. The first condition is that velocity must

be continuous across the interface,

uinteriorfluid = umembrane = uexteriorfluid (6)

With a capsule, the surface representation is Lagrangian, in which the math-

ematical interface represents material points directly [72] (Note that this differs
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from methods for viscous droplet deformation in Stokes flow, i.e. Wang and Dimi-

trakopoulos [88]). The interface x then convects with the whole fluid velocity,

∂x

∂t
= u (7)

The second boundary condition is that the load on the membrane, ∆f , must

correspond to the load computed from an elastic solid mechanics description. An

appropriate framework is discussed in Chapter 2.

1.3 Outline

Chapter 2 discusses the mechanics of thin elastic shells, and presents a com-

plete system for membrane mechanics which we employ in our numerical method.

Topics include membrane statics, appropriate membrane elastic constitutive laws,

and dimensionless groups. Chapter 3, after a brief review of past elastic capsule

models, then presents the Spectral Boundary Element (SBE) numerical method,

validates it by showing agreement with previous low-order numerical methods, and

evaluates its properties, including exponential convergence in numerical accuracy.

Further, the method is shown to produce numerical solutions for regions of capillary

numbers where previous, low-order methods fail.

Chapter 4 employs the SBE method for elastic capsules to study the physical

problem of a strain-hardening Skalak capsule deforming in strong planar extensional

flows. In contrast to previous methodologies, which fail to converge to a steady-state

[48], the SBE method reveals a process of cusp formation at high flow rates, in which

capsule edges form spindles and then steady-state cusps due to compressive tensions
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at capsule tips. This behavior matches experimental phenomena previously observed

[6]. Further, the method reveals a range of high capillary numbers characterized by

shape bifurcation, in which both cusped and concave equilibrium configurations

exist. Following, Chapter 5 examines the same problem involving a Neohookean

capsule. In contrast to the Skalak capsules, these capsules are strain-softening, and

at high flow rates produce lamellar shapes with concave edges.

In Chapter 6, the method is extended to model the erythrocyte. The area

incompressibility characteristic of the erythrocyte membrane is enforced via a novel

implementation of membrane prestress. The extended SBE method produces results

in excellent quantitative agreement with experimental observations for erythrocytes

in shear flow. It is also used to examine the effects of flow rate and viscosity ratio

on capsule geometry, and to examine the transition from tank-treading to tumbling

motion. In Chapter 7, the erythrocyte model is used for further investigations,

specifically erythrocyte deformation in extensional flow, and the shear-induced de-

formation of swollen erythrocytes.

Finally, in Chapter 8, we draw some broad conclusions from our results.

12



Chapter 2

Membrane Mechanics

A membrane is a three-dimensional object in which the aspect ratio in one

direction is much smaller than in the other two. Membranes can have complex

molecular substructure; many membranes are cross-linked polymers, while biologi-

cal membranes are lipid bilayers. The mechanical properties of a membrane depend

on molecular interactions. Many attempts have been made to start with a molecular

description of the membrane, and use statistics or molecular modeling to extrap-

olate a macroscopic account of mechanical phenomena [31, 34, 37, 53]. Li, Lim,

and Suresh [51] have even created a whole-cell statistics-based model of erythro-

cyte deformation. However, this approach is too complicated, if the intention is to

couple the mechanical description to the behavior of an ambient fluid; a continuum

mechanics approach is more appropriate.

Méléard [54] categorizes possible finite membrane deformations into three basic

types. First, the membrane can be sheared in-plane, without changing the surface

area. Second, the membrane can be extended in-plane such that the surface area

increases. Finally, the membrane can be bent such that the curvature changes. More

complex deformations can be expressed as a combination of these basic types. Each

basic deformation can be characterized by a modulus of resistance. Ignoring surface
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viscosity, a complete description of the mechanical properties of a membrane can

therefore consist of a shear modulus, an area dilatation modulus, and a bending

modulus.

Because of the aspect ratio, an additional simplification beyond the continuum

assumption is possible; the membrane can be considered as a two-dimensional sur-

face in three-dimensional space. This approach, which we use in the SBE method,

is called a theory of thin shells.

2.1 Membrane Statics

The thin shell description presented below is the general tensorial form, using

arbitrary curvilinear surface parameters. Geometric constraints such as axisymme-

try simplify the equations. These simplified forms have been used in past studies,

but will not be used here. The membrane is treated as a two-dimensional contin-

uum called the middle surface, with arbitrary curvilinear coordinates θα (α = 1, 2).

By convention, Greek indices are curvilinear and range over 1,2, while Roman in-

dices are Cartesian and range over 1,2,3. Repeated indices are summed. Define the

surface tangents tα by differentiation of surface geometry.

tα ≡
∂x

∂θα
(1)

The unit normal will be n. The complete basis system consisting of tα and

n is called the natural basis. A set of reciprocal tangents tα can be defined such

that tα · tβ = δ β
α (n is its own reciprocal). Tensors can then be expressed in either

covariant or contravariant components with respect to the base in the standard
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manner [60]. The metric tensor aαβ and surface curvature tensor bαβ are also both

defined in the standard manner [60].

Tensors defined in R3 must then be transformed into R2. Define the tan-

gential projection operator P ≡ (I − nn). Then the 2nd-order stress tensor σ is

transformed into the 2nd-order tensor τ , which contains in-plane forces, and into

the 1st-order tensor (vector) q, which contains transverse shearing forces [36, 69]

τ ≡
∫ h/2

−h/2
P · σ · P dn (2)

q ≡
∫ h/2

−h/2
P · σ · n dn (3)

In this expression, h is the membrane thickness, and dn is a differential element

in the normal direction, with origin on the middle surface. The only forces not

transformed into either τ or q are those forces with the middle surface as a plane

of action. This surface is the hydrodynamic interface; these forces will be recovered

in the force balance. One additional transformation, that of the bending moments,

is required,

m ≡
∫ h/2

−h/2
z × (P · σ ·P )dn (4)

Here z is a vector to the integration point from the origin on the middle

surface. A force balance over an arbitrary differential area of membrane results in

expressions for the contravariant components of the hydrostatic traction ∆f across

the membrane [67, 69, 89]

∆fβ = −ταβ |α + bβαq
α (5)

∆fn = −bαβτ
αβ − qβ|β (6)
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The qα|β notation denotes covariant differentiation. (See Papastavridis [60]

for further explication of the calculus of differential surface geometry.) A subse-

quent torque balance using the bending moment tensor m yields expressions for the

transverse shear vector q and the antisymmetric component of the in-plane stress

resultant.

qβ = mαβ |α (7)

τ [αβ] =
1

2
(bαγm

γβ − bβγm
γα) (8)

Of the three types of elementary membrane deformations discussed previously,

shear and area dilatation are called elastic membrane behavior, and are discussed in

the next section. They involve formation only of symmetric in-plane stress τ (S) and

not of transverse shear q or moment tensor m. Bending contributions are described

in Section 2.3.

2.2 Membrane Elastic Behavior

The in-plane stress resultant tensor τ is the two-dimensional analog of the

three-dimensional stress, but to describe elastic behavior, it is also necessary to

have an analog of strain. This is accomplished by projection of the three-dimensional

deformation gradient F , which is defined as a linear transformation from a differen-

tial element in a reference three-dimensional object to a deformed state. Denoting

dx the deformed element, and dX the reference element, dx = F · dX [52] (For

vectors, capital letters will denote the reference shape, and lower-case letters the

deformed shape, e.g. the reference tangents and normal will be denoted T α and N ,
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Membrane
Material

Characteristics Elastic Behavior

Ultra-thin oil-
water interface
membrane [61]

• Forms at oil-water interface by rad-
ical polymerization and cross-linking
of aminomethacrylates
• Amphiphilic
• Can be used to encapsulate an oil
droplet in an aqueous environment
• Extremely small thickness means
no appreciable membrane thinning
can occur

Neohookean

Cross-linked
polymer [87]

• Polymer disentanglement causes
strain softening
• Example: Polyamide or polysilox-
ane

Mooney-Rivlin

Biocompatible
serum albumin
alginate [17]

• Relaxation of membrane exhibits
little hysteresis, indicating almost
purely elastic activity

Skalak

Red blood cell
membrane [8]

• Large area dilatation modulus Skalak

Table 2.1: Common membrane material compositions, and appropriate two-

dimensional elastic constitutive laws.

respectively). To produce the surface equivalent, called the surface strain tensor, we

project [7, 69]

A ≡ (I − nn) · F · (I −NN) (9)

The effect of the projection is that the linear operator A only transforms ele-

ments from the plane of the reference surface, and it only transforms those elements

into the plane of the deformed surface. The strain tensor A is most easily calcu-

lated by A = tαT
α [84]. The left Cauchy-Green strain tensor is calculated in the
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standard manner (V 2 = A · AT ) to eliminate rotational transformation. The left

Cauchy-Green tensor has two nonzero eigenvalues, corresponding to the squares of

the principal stretch ratios λα. The corresponding unit eigenvectors b̂α are the di-

rections of principal stretch. The symmetric portion of the in-plane stress τ is given

by a dyadic product [52].

τ (S) =
∑

α

τPα b̂αb̂α (10)

The values τPα are called the principal elastic tensions; they are calculated

from the stretch ratios via a constitutive law, where the appropriate constitutive

law depends on the material composition of the membrane. These constitutive

laws and their origins are discussed further in Section 2.2.1. Some representative

membrane materials and the appropriate constitutive laws are listed in Table 2.1.

The principal tensions are also important as an indicator of membrane buckling [48].

Recall that the basic assumption of thin-shell theory is that the characteristic length

scale must be much smaller in the normal direction than in any in-plane direction.

One way in which this assumption can fail is when an elastic membrane, devoid of

flexural resistance, wrinkles in response to compression. In this situation, the length

scale in some direction on the membrane surface can become of approximately the

same magnitude as the membrane thickness. Then the equations of thin-shell theory

will no longer hold. For numerical solutions, this usually results in breakdown of the

numerical method. A necessary but not sufficient condition for membrane wrinkling

is that at least one of the principal tensions becomes negative. Wrinkling in ambient

flow has been observed experimentally [87].
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2.2.1 Membrane Elastic Types

The stretch ratios λα can be used to form two-dimensional surface strain invari-

ants I1 and I2. The first represents elongation, and the second local area dilatation.

I1 = tr(V 2)− 2 = λ2
1 + λ2

2 − 2 (11)

I2 = λ2
1λ

2
2 − 1 (12)

The strain energy function W, which represents the change in local energy in

response to deformation, is classically given in terms of the strain invariants [7, 63].

The exact form of W depends on the material composition of the membrane. W

can either be derived from known three-dimensional elasticity laws, or developed de

novo for the two-dimensional case. The symmetric tension tensor τ (S), which was

given in Eq. (10) as a dyadic product of the left Cauchy-Green eigenvectors, can

also be written in terms of the invariant derivatives of the strain energy W. Here

Js = λ1λ2.

τ (S) =
2

Js

∂W

∂I1
V 2 +

∂W

∂I2
J2
s (I − nn) (13)

If the form of W is known, Eq. (13) can be evaluated algebraically to derive an

expression for the principal tensions τPα induced by elastic stretching as a function

of the stretch ratios λα. The constitutive expressions produced are convenient for

numerical evaluation of τPα , which can then be used to produce the tensor τ (S).

Barthès-Biesel and coworkers [7, 8] list several expressions for τP1 , derived from

strain energy functions. These are summarized in Table 2.2. To calculate τP2 ,

merely reverse the λα subscripts.

19



Material Law Equation and Description

Mooney-Rivlin τP1 = Gs

λ1λ2
(λ2

1 −
1

λ2

1
λ2

2

)[Ψ + λ2
2(1−Ψ)]

Ψ : Mooney-Rivlin parameter (0 ≤ Ψ ≤ 1)

• Assumes thin, isotropic, volume incompressible
rubber-like sheet.

• Ψ → 1 ⇒ Material behavior approaches Neo-
hookean

• Ψ → 0 ⇒ Strain softening (rubber) behavior oc-
curs

Neohookean τP1 = Gs

λ1λ2
(λ2

1 −
1

λ2

1
λ2

2

)

• Special case of Mooney-Rivlin in which Ψ = 1

Skalak τP1 = Gsλ1

λ2
(λ2

1 − 1 + Cλ2
2[(λ1λ2)

2 − 1])

K : Modulus of resistance to area dilatation

C : Moduli ratio (C ≡ K/Gs)

• Originally derived by Skalak to describe the me-
chanics of red blood cell membranes.

• Exhibits strain stiffening behavior

Table 2.2: Two-dimensional elastic laws derived from strain energy functions for use

in thin-shell membrane mechanics. In every law, Gs stands for the shear modulus.
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Any of the laws in Table 2.2 can be modified with the addition of a viscoelas-

tic element in series. Denoting µs the surface viscosity and Dλ1/Dt the material

derivative of λ1, the viscoelastic contribution can be expressed:

τ v1 =
2µs

λ1

(

Dλ1

Dt

)

(14)

Additional forms of elastic constitutive laws examined in previous numerical

studies include a material model based on a network of interconnected springs [58],

and a zero-thickness incompressible elastic shell formulation [72]. Note that the

latter case is the two-dimensional limit of a three-dimensional material description,

and as such the strain invariants are different.

Each of the expressions for τP1 involves two moduli, one for shearing and one

for area dilatation, corresponding to two of the three basic membrane deformations

discussed previously. In each case, the parameter that stands for area dilatation,

as used in the expression, is already dimensionless. This is the Mooney-Rivlin

parameter Ψ, for a Mooney-Rivlin membrane, and the moduli ratio C in the Skalak

expression. The shearing modulus Gs can also be used to form a dimensionless group

when the membrane is in contact with ambient flow. This dimensionless group is

the capsule analog of the capillary number for viscous droplets. It is often called

the elastic capillary number.

Ca =
µGa

Gs
(15)

Here µ is the viscosity of the ambient fluid, G is the shear rate, and a is a

characteristic length scale, often the radius of a sphere with the same volume as the

capsule. Ca shows the ratio of viscous forces in the fluid to resistive elastic forces

21



in the membrane. Slightly different dimensionless groups have been used by some

studies in the past [58, 72]. Both membrane shearing and area dilatation elastic

response are associated with a characteristic time scale, determined by the dimen-

sionless form. Understanding the time scales associated with deformation is vital for

selecting an appropriate time step for numerical implementation of capsule deforma-

tion. The time scale for membrane shear response increases with the elastic capillary

number (tshear/tflow ∼ Ca), while the time scale for area dilatation decreases with

the moduli ratio (tarea/tshear ∼ C−1). Throughout this work, all reported values are

non-dimensional. Time t has been scaled by shear rate G, lengths by capsule radius

R, and tensions by shear modulus Gs

2.3 Resistance to Bending

Bending moments occur when the curvature at a point on the membrane is

different in the deformed than in the reference state. The curvature of a two-

dimensional surface defined in R3 is a second-order tensor, which can either be

expressed in surface component form (bαβ), or in a general tensorial form. In tenso-

rial form, it is defined by differentiation of the normal vector

B ≡ (I − nn) · ∇n ≡ ∇Sn (16)

The relationship between a change in curvature and the induced bending mo-

ments is quite complicated. Consequently, most past numerical implementations

that incorporated bending assumed axisymmetry [7, 22, 23, 24, 47, 77]. One sim-

plification, to make the general case more approachable, is to assume a linear de-
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pendence of bending moments on curvature deviation in any given direction. If in

addition the reference curvature is uniform in all directions, a reference mean cur-

vature κR
m can be projected onto the deformed surface. By subtracting this from

the actual curvature, we obtain the difference in curvature in every direction on the

surface [69]

m = EB[B − κR
m(I − nn)] (17)

Here EB is the bending modulus, the third characteristic value of membrane

mechanical response. This is the expression used in past non-axisymmetric numer-

ical studies of capsule deformation that included resistance to bending [47, 67]. A

theoretical framework for incorporating non-uniform reference curvature was devel-

oped by Steigmann and Ogden [84]. As far as we are aware, this sort of bending

description has not been incorporated into a numerical model. Using the shear mod-

ulus from the elastic expressions, and scaling with a characteristic length a, we can

use EB to form a third dimensionless parameter for membrane deformation, called

the dimensionless bending modulus κ

κ ≡
EB

a2Gs
(18)

The associated time scale for bending decreases with increasing κ (tbend/tshear ∼

κ−1). Alternatively, one could combine EB with the shear rate G to produce a bend-

ing analog of the capillary number.

Many techniques have been developed for experimental determination of the

membrane mechanical properties discussed here. Often, a technique can be designed

such that one of the three basic types of deformation discussed is dominant, and thus
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the associated modulus can be studied in isolation. Osmotic swelling [82], for in-

stance, produces only area dilatation, while on the other hand, thermal fluctuations

of the membrane result primarily in localized bending deformation [54]. Analyzing

these deformations, one can measure either area dilatation modulus or bending mod-

ulus, respectively. Other experimental techniques, including compression between

parallel plates [17] and micropipette aspiration [43], produce an axisymmetric de-

formed geometry. The simplified geometries in these experimental systems also allow

easier analytical or numerical analysis.

2.4 Erythrocyte Membrane Parameters

The spectrin network is the primary determinant of membrane shear response,

because, in comparison, the plasma membrane exhibits negligible shear resistance.

The ability of spectrin to extend and refold allows the erythrocyte membrane to un-

dergo large shearing deformations as it moves through the capillaries. The reported

elastic shear modulus Gs for a red blood cell is 6 × 10−3 mN/m [56, 73, 77]. The

delay in unfolding individual repeat domains in the spectrin peptide also gives rise

to a shear viscosity µs of approximately 10−3 mN · s/m [77].

One might expect that the spectrin network could easily change its surface

area. However, unlike in the case of shear deformation, the plasma membrane, not

the spectrin network, dictates the resistance to area dilatation. The plasma mem-

brane is volume incompressible under physiological conditions, and resists thinning.

The effective area modulus K for a red blood cell membrane is therefore fairly large.
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Reported values are all close to 450 mN/m [39, 56]. The effective moduli ratio C for

a red blood cell membrane is therefore on the order of 104-105. This indicates that

only small changes in surface area will be observed under physiological conditions.

Indeed, an area increase of more than 2-4 % causes cell lysis [39].

The bending resistance of an erythrocyte membrane can be thought of as

arising from preferred bond angles of the protein network, or from the symmetry

of the hexagonal spectrin distribution [67], as well as from the bending resistance

inherent in the lipid bilayer [56]. The reported value for the bending modulus EB

is 1.8 × 10−16 mJ [73, 77]. Combining the bending modulus with values given

previously, we estimate the reduced bending modulus κ to be only 3.8× 10−3. The

dynamics of deformation for the geometry is therefore determined by shear and area

dilatation resistance, with little if any bending influence. Bending resistance will not

have an effect on the overall shape [56], but may act on the geometry at a local level,

ameliorating small-scale severe curvature gradients, i.e. preventing local buckling.
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Chapter 3

Spectral Boundary Element Method For

Elastic Capsules

To solve the system described in Chapters 1 and 2, we have implemented the

Spectral Boundary Element (SBE) numerical method for the case of an interfacial

dynamics problem with an elastic interface, in the absence of flexural resistance. The

SBE method is a high-order method developed for fixed boundary Stokes flow com-

putations [57, 59], and later for interfacial dynamics and the deformation of viscous

droplets [88]. Because it is a Boundary Element method, the SBE method avoids

the primary disadvantage of spectral methods for volume discretization, specifically

that the resulting linear system is large and dense. The reduction in dimension-

ality associated with the Boundary Integral formulation results in a linear system

that, while still dense, is much smaller than would result from volume discretization.

This approach combines the benefits of the spectral methods, including exponen-

tial convergence and numerical stability, with the geometric versatility and parallel

scalability associated with finite element and boundary element models. The SBE

is the only available high-order/high-accuracy method for droplet deformation, and

now for capsule deformation, in viscous Stokes flow.
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In this chapter, we will first review past solutions and methods for the elastic

capsule deformation problem. Following, we will present the SBE numerical method,

validate it through comparison with previous numerical methods, and evaluate its

properties, including robustness and accuracy.

3.1 Past Solutions to the Capsule Deformation Problem

It is apparent that the membrane mechanics description discussed in Chapter 2

coupled to the Stokes condition results in a nonlinear system. As such, the only

analytic solutions to the transient problem have been developed for simplified cases.

The seminal paper in this field is the 1981 work by Barthès-Biesel and Rallison [4],

in which they develop a transient, small-deformation solution for initially spherical

capsules with general two-dimensional Lagrangian elastic boundaries. By ignoring

flexural resistance, they rewrite the membrane statics formulation in the simplified

form ∆f = −∇S ·τ . Because they assume that all deformations are small, they can

consider the deformation tensor F as a perturbation of the identity matrix, and n

as a perturbation of the reference normal N , i.e.

F = I + εD (1)

n = N +O(ε) (2)

Here D is an arbitrary deformation, and they assume ε ≪ 1. They substitute

into the expression for ∆f to solve for ∆f as a function of D and ε, and perform a

series expansion around ε = 0. Because ε is assumed small, they disregard all O(ε2)

27



terms to produce a function linear with respect to ε

∆f = g(n) + εh(n,D, λα) (3)

Functions g and h incorporate the three-dimensional Young’s Modulus as a

material parameter. Obviously this linearization is valid only for small deformations.

The deformation will be sufficiently small for weak flows, or for capsules with highly

viscous interiors. Using the linear model, and considering only initially spherical

capsules, Barthès-Biesel and Rallison [4] were able to produce equilibrium solutions,

and transient solutions for further simplified cases. Although this model was later

extended to incorporate a kinematic membrane viscosity [5], general solutions to the

transient capsule deformation problem are too complicated to approach analytically,

and thus are best approached numerically.

3.1.1 Numerical Methods

As far as we are aware, all previously implemented numerical methods have

been low-order methods. Secomb et al. [75, 76, 77], for instance, implemented a

finite differences method to model axisymmetric erythrocyte deformation in a capil-

lary. They investigated the effects of flow velocity, nonuniform vessel diameter, and

the presence of a flow-resistive layer on the vessel wall. Eggleton and Popel [29],

on the other hand, used the Immersed Boundary Method (IBM) to study the fully

three-dimensional problem of capsule deformation in linear shear flow. They studied

capsules with initially spheroidal, oblate spheroidal, and biconcave discoid shapes,

and were able to reproduce numerically the tank-treading behavior. One disadvan-
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tage of the IBM is that it is necessary to discretize the entire three-dimensional

domain in addition to the membrane surface of the capsule.

Unlike the IBM, a method based on the Boundary Integral Equation formu-

lation discussed in Section 1.2 requires discretizing only the two-dimensional inter-

face that represents the surface of the capsule. The application of BIE methods

to analyze the deformation of viscous liquid droplets in ambient flow is a classical

problem, with extensive examples in the literature. Pozrikidis [66] has written an

review article on this subject. The primary difference between liquid droplet versus

capsule deformation is the boundary condition at the interface. In the case of a liq-

uid droplet, the interfacial hydrostatic traction ∆f arises from the surface tension.

For a capsule, as previously discussed, it arises from elastic interactions with the

membrane.

The simplest BIE methods assume axisymmetry. This allows one to discretize

the surface only in the direction of the meridian (one dimension). During evaluation

of the surface integral, each point can be weighted by integrating in the azimuthal

direction, thus preserving the three-dimensional nature of the problem. The formu-

lation is further simplified by using the axisymmetric form of the membrane statics

equations. Diaz et al. [22] employed an axisymmetric BIE method to study the

transient response of a capsule in ambient flow. They examined the effects of the

viscosity ratio and the membrane elasticity. The simplified membrane statics equa-

tions made it easier to extend the model to examine the behavior of a viscoelastic

membrane [23] and a membrane with bending resistance. They further extended

the BIE formulation to model a capsule entering a small pore [24], and to examine
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the effects of different elastic constitutive laws [7]. Kwak and Pozrikidis [47] also

implemented an axisymmetric BIE method, in order to study the effect of bending

stiffness on capsule elongation. Pozrikidis [70] extended this method to model a

file of biconcave discoid capsules, representing red blood cells, flowing through a

cylindrical tube.

In 1995, Pozrikidis [63] implemented a fully three-dimensional BIE method

to study transient capsule deformation in linear shear flow. The membrane is as-

sumed elastic, with a constitutive law derived from a zero-thickness formulation of

an incompressible elastic shell. For computational simplicity, he assumes a viscosity

ratio of unity, and limits the analysis to spheroid capsules, or slightly oblate spheroid

capsules. The surface of the capsule is discretized using curvilinear parameters cor-

responding to the initial meridian and azimuthal directions. This introduces one

singular discretization point at either pole. Evaluating the hydrostatic traction for

the BIE formulation, Eq. (4), requires taking the surface divergence of the stress re-

sultant, which normally involves high-order differentiation. Because of the uniform

discretization, high-order differentiation would significantly worsen the numerical

accuracy. Consequently, Pozrikidis is forced to employ an approximation, in which

he replaces the single-layer integral in Eq. (4) with a product of two integrals on

each surface element, which are then summed over all elements. The quadrature

is a low-order three point Gauss method, which is applied to each surface element.

Recall that the Stokeslet solution S(x0,x) is singular around the point x0. There-

fore, in the surface integration, he attempts to compensate for the singularity by

integrating the elements proximate to x0 using local polar coordinates.
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He examines the shear-induced deformation of elastic capsules over a range

of capillary numbers, and identifies a critical shear rate above which the method

does not converge to a steady state. For lower capillary numbers, his method is

also characterized by sawtooth-type instabilities that manifest near steady state.

These instabilities can be minimized either by severely reducing the time step, or by

employing a 5-point smoothing formula in the azimuthal direction. However, there

are certain simulations, including relaxation modeling, in which the instabilities

overwhelm the model, and a stable steady state cannot be produced. Further, the

trajectory of the overall shape with smoothing applied deviates slightly from the

unsmoothed shape, even when the sawtooth instabilities are not an issue. This

effect is especially pronounced for coarse grids.

Ramanujan and Pozrikidis [72] reexamined the general three-dimensional prob-

lem by implementing an unstructured mesh discretization of the capsule surface.

Certainly an improvement over the previous method of Pozrikidis, this discretiza-

tion involves subdividing the surface of a regular polyhedron into triangles, and

projecting these triangular elements radially onto the capsule surface. The result is

a nearly isotropic distribution of triangular surface elements. Unlike the structured

mesh method, this discretization introduces no singularities. Each triangle consists

of 6 nodes, which are mapped onto a parametric right triangle for interpolation and

quadrature. Geometric interpolation is then given by a two-dimensional quadratic

form. Interpolation of the stress field, however, must be done with a linear form, be-

cause the quadratic form appears to cause disparities in tension at non-vertex nodes

across surface elements. Again, they desire to avoid high-order numerical differenti-

31



ation because of the low-order surface discretization, so they employ an estimate of

the surface force instead of directly calculating it at each node. The estimate used

is to integrate the stresses over a contour around each surface element. Because

the forces must be balanced, this can be used to calculate an average hydrostatic

traction acting on the entire element, which is used as representative for the element

in the surface quadrature. They then use this average force in conjunction with the

same form used in the previous method to approximate the single-layer quadrature.

Because in this unstructured mesh description surface elements are not con-

nected, and because the interpolation scheme is low-order, local errors can build

between adjacent surface elements. To combat this, quantities like surface strain

tensor must be averaged at each node over adjacent elements. They use a 2nd or

3rd order Runge-Kutta-Fehlberg scheme to advance the nodal points in time. Their

results reverse the previous findings of Pozrikidis with the structured mesh descrip-

tion regarding the existence of a critical capillary number. Instead, they find that,

as shear rate increases, the shape elongates further, with no clear upper limit. They

also examine the effects of different viscosity ratios, and non-spherical initial shapes,

and they are able to observe tank-treading behavior in shear flow. Pozrikidis [67]

later extended this method to study the effects of bending resistance. Navot [58]

implemented a similar surface discretization method to study the behavior of an

elastic spring-style membrane in shear flow.

The most recent three-dimensional BIE implementation for capsule deforma-

tion is that of Lac et al. [48]. Like Pozrikidis [63] in 1995, they use a structured

mesh description, with azimuthal and meridian curvilinear parameters for the ini-
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tial shape. Surface position is represented using bi-cubic B-spline functions. This

assures surface continuity up to second order along the interface, but eliminates

all high-order surface derivatives. They assume a viscosity ratio λ of unity to sim-

plify the BIE formulation, ignore flexural resistance, and use a 4th-order Runge-

Kutta scheme to apply the Lagrange material point condition. They account for

the Stokeslet singularities by integrating nodes proximate to x0 with parametric

polar coordinates.

Of course, this surface representation introduces heterogeneity in surface ele-

ment size and type, with quadrilateral elements throughout most of the shape, but

triangular elements adjacent to the poles, as well as polar discretization singulari-

ties. They find that the stability of the method depends upon the initial position

of the poles; in shear flow, the method is not stable when the poles are out of the

plane of shear. They examine capsule deformation both in shear flow and in planar

hyperbolic flow, with several different elastic material constraints. For each material

constraint, they identify regions of stability, capillaries numbers where the numerical

method converges to a steady state. Outside these regions, instability causes the

method to diverge. They further demonstrate that for capillary numbers below the

lower stability limit, one of the principal tensions becomes negative, indicating that

the capsule is under compression, and buckling can be expected to occur. When

the capillary number is above the upper stability limit, they observe the formation

of high-curvature tips, and the method is unstable. The method is able to repro-

duce tank-treading behavior, and produces results in reasonable agreement with the

previous study of Ramanujan and Pozrikidis [72].
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(a) (b)

Figure 3.1: The SBE discretization uses a spectral, block-structured mesh. A sphere

discretized using (a) NE = 6, or (b) NE = 10 spectral elements. NB = 12 and the

spectral points are of type Gauss-Lobatto Legendre.

3.2 SBE Discretization and Time Advancement

The Spectral Boundary Element method, previously applied for fixed bound-

ary computations [57, 59], and later for viscous droplet deformation [88], is based

on a high-order polynomial interpolation for surface quantities. The discretization

used for the SBE is a block-structured mesh, shown for a spherical capsule in Fig-

ure 3.1. First, we divide the capsule surface into NE quadrilateral surface elements.

The number of surface elements commonly ranges from 6 to 14. Additional ele-

ments can be formed by splitting existing elements. For instance, the 6-element

discretization shown in Figure 3.1(a) can be split into the 10-element configuration

in Figure 3.1(b). Each surface element is then mapped onto a square parametric

domain. Dividing the surface in this way makes calculations involving interpolation

more efficient, since the interpolation is only over the element, and not the entire

surface. Thus the parameters of the domain become curvilinear coordinates for the
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surface. The nodes used to discretize the parametric domain are zeros of orthogonal

Jacobi polynomials, such as Legendre or Chebyshev, on the interval [-1,1]. This

obtains the exponential convergence properties characteristic of spectral methods.

Letting NB represent the number of points to use in each direction for the paramet-

ric domain, we then represent the geometric position, and all functions of geometry

like ∆f and u, at each point using Lagrange polynomials.

x(ξ, η) =
NB
∑

i=1

NB
∑

j=1

x(ξi, ηj)hi(ξ)hj(η) (4)

Here hi(θ
α) represents the (NB−1)-order Lagrange interpolant polynomial for

node i with respect to curvilinear direction θα. The derivative in either direction

can be computed by simple differentiation of this expression. Second derivatives can

easily be calculated through continued differentiation. By adjusting the distribution

of surface elements, and the density of spectral points within those elements, we can

maximize stability, accuracy, and efficiency.

This discretization results in a total of NEN
2
B nodes. Nodes at the edges of

elements overlap. We will call these nodes coincident points. Because the problem is

three-dimensional, there are a total of 3NEN
2
B unknown quantities in the Boundary

Integral Equation (4). The result is a linear system of dimension 3NEN
2
B.

u− cu∞ = A ·∆f +B · u (5)

The BIE equation incorporates the geometry both as the points where the

BIE holds x0, which we call collocation points, and at the points involved in the

integration where u and ∆f are defined. The latter class we call basis points. The

collocation points are of type Gauss-Legendre, which are entirely interior, and the
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basis points are of type Gauss-Lobatto, which include the exterior endpoints. The

matrices A and B are calculated by Gauss-Legendre quadrature from the Stokes

flow singularity solutions using variable transformations as described by Muldowney

and Higdon [57]. Eq. 5 can be solved for either u or ∆f . The kinematic condition

(Eq. 7) can be evaluated using any explicit or implicit time solution method, which

is applied at the basis points. We have chosen to use a 4th-order Runge-Kutta

method. The time step should be small enough to satisfy the stability condition.

∆t < O(Ca∆xmin) (6)

Here ∆xmin is the smallest length scale in the problem, e.g. the minimum grid

spacing [88, 67].

Implementing the Spectral Boundary Element method for capsules has re-

quired the following additions to the droplet deformation method: 1) building a

differential geometry toolkit for tensor manipulation, covariant derivatives, etc., 2)

creating a stored reference geometry, which must map each node to the current

shape at every point in time, 3) replacing the surface tension interfacial boundary

condition, ∆f = γ(∇ ·n)n, with one based on membrane statics from Section 2.1,

and 4) implementing a smoothing scheme that preserves continuous correspondence

with the reference shape.

3.3 A Smoothing Algorithm for Elastic Interfaces

Applying the algorithm described in Section 3.2, even when requiring 0-order

continuity between adjacent elements, the resulting method is unstable. This insta-
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Figure 3.2: Interfacial shape of an initially spherical Skalak capsule with C = 1 in a

planar extensional flow with Ca = 0.35 at time t = 0.123. Zero-order continuity at

the edges of adjacent elements was enforced. For this specific case, the disparities in

the derivatives of the geometry near the elements corners cause interfacial breaking

at the next time step. Attempting to use the first-order smoothing of Wang and

Dimitrakopoulos [88] produces similar instability. (NE = 6, NB = 12 and ∆t =

10−3)

37



bility first manifests as high-curvature tips located at element corners, as illustrated

for an initially spherical capsule in moderate planar extensional flow by Figure 3.2.

It quickly causes failure of the numerical method. The source of the instability is

derivative discontinuities along element edges. Because the surface elements used

in the SBE are unconnected, there will be a small discrepancy in the derivatives

at coincident points after each time advancement step. Wang and Dimitrakopoulos

[88] observed a similar instability with their SBE method for viscous droplets. The

error associated with each time step is several orders of magnitude smaller than

the accuracy of the numerical method. Therefore, as long as they are not allowed

to build over time, these errors do not affect the overall accuracy of the numerical

method, or the exponential convergence properties (see Section 3.4.2).

Wang and Dimitrakopoulos [88] developed a 1st-order geometric smoothing

algorithm to control this instability. However, when we attempt to use the droplet

smoothing method with an elastic interface, instabilities similar to those shown in

Figure 3.2 still occur. The droplet method of smoothing is insufficient for capsules

because, as discussed in Section 1.2, the points for a droplet are only marker points,

while the points for a capsule represent real material points, and therefore convect

with the entire fluid velocity, not only the normal component [72]. Further, the forces

in the case of the droplet derive solely from the current deformed geometry, while

the capsule forces derive from a correspondence between the current and the elastic

reference geometries. Consequently, we have developed a new 1st-order smoothing

algorithm specifically for the SBE with elastic interfaces, which generates a smooth

geometry by maintaining continuous correspondence with the reference shape. Our
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smoothing algorithm consists of geometric smoothing after each time advancement,

and also smoothing of the surface force vectors during assembly of the BIE system.

The first step is to average the position x of coincident nodes for all sets of

coincident points. The result is a geometry continuous at element edges. Let x[1] and

x[2] be the non-smoothed geometric position for two coincident nodes, determined

through explicit time integration at the Gauss-Lobatto basis points for time t+∆t.

Then the new geometry can be calculated

x[1]
new = x[2]

new =
1

2
(x[1] + x[2]) (7)

This produces 0-order continuity at this pair of coincident points. We then

use xnew to calculate new geometric derivative values. Note that this also results

in high-order continuity between elements in the direction along the edge, which

coincides with one of the curvilinear directions. The only remaining task to produce

complete 1st-order continuity is to smooth in the other curvilinear direction. Unlike

Wang and Dimitrakopoulos, we use as the basis for our 1st-order smoothing a tensor

quantity, the surface strain tensor A (see Section 2.1), which relates the deformed

to the reference shape. We average this tensor over coincident nodes (The [1] and

[2] indices now refer to the 0-order continuous geometry).

(A)new ≡
1

2
((tαT

α)[1] + (tαT
α)[2]) (8)

Note that, because the reference shape is time invariant, the reference tangents

T α have high-order continuity across elements. We then use (A)new to obtain new

tangent vectors.
(

∂x

∂θα

)

new

= (tα)new ≡ (A)new · T α (9)

39



It is then necessary to generate a new geometry that preserves 0-order conti-

nuity, but incorporates the new derivative values we desire at the coincident points.

This is accomplished by a two-dimensional Hermite-like interpolation, as in Wang

and Dimitrakopoulos [88]. In practice, the two-dimensional interpolation consists of

two one-dimensional interpolations, and it is easiest to evaluate each one-dimensional

interpolation (each curvilinear direction) separately. In each direction θα then, the

problem can be stated thus: generate a new set of geometric Lobatto points sat-

isfying the new endpoint conditions but with the same overall geometry as the

unsmoothed shape. Obviously, we cannot generate a new set of NB points satisfy-

ing the new derivative conditions, 0-order continuity at the endpoints, and the NB

point conditions; the system is over-defined. Therefore, we interpolate to NB − 4

interior Jacobi points. Combined with the position and derivative constraints at the

two endpoints, we have NB degrees of freedom, enough to generate a new set of NB

geometric Lobatto points. Letting NJ be the number of Jacobi points (NB −4), the

following interpolation expression is used in each direction.

x(ξ) = (ξ2 − 1)2
NJ
∑

i=1

1

(ξ2i − 1)2

NJ
∏

j 6=i

(

ξ − ξj
ξi − ξj

)

x(ξi) +

NJ
∏

j=1

(

ξ − ξj
−1− ξj

)

(ξ − 1)2

4
(ξ + 1)

∂x

∂ξ

∣

∣

∣

∣

∣

ξ=−1

NJ
∏

j=1

(

ξ − ξj
1− ξj

)

(ξ + 1)2

4
(ξ − 1)

∂x

∂ξ

∣

∣

∣

∣

∣

ξ=+1

NJ
∏

j=1

(

ξ − ξj
−1− ξj

)

(ξ − 1)2

4
[1 + b(−1)(ξ + 1)]x(−1) +

NJ
∏

j=1

(

ξ − ξj
1− ξj

)

(ξ + 1)2

4
[1− b(+1)(ξ − 1)]x(+1) (10)
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(a) (b)

Figure 3.3: Interfacial shape of a capsule with the same parameters as in Figure 3.2

at (a) t = 0.123, and (b) t = 10 (i.e. well past equilibrium), using our first-order

capsule interfacial smoothing. The capsule interface is continuous and smooth across

the spectral elements at all times.

In this expression, ξi are the Jacobi points. The values ±1 applied to x and

its first derivative are the endpoint values from the domain [−1, 1]. In the context

of the discretization, they represent the edges of surface elements, which are the

coincident nodes. b(±1) are coefficients chosen such that the terms containing b(±1)

make no contribution to the endpoint derivative.

b(±1) =
NJ
∑

j=1

(

1

1∓ xj

)

+ 1 (11)

Applying this smoothing scheme after each time step suppresses the numerical

instabilities resulting from the disconnect between surface elements.

We have discovered that smoothing the calculated force vector ∆f in addition

to geometry confers additional stability, allowing us to employ a slightly larger time

step in the simulation. This 1st-order force-smoothing algorithm is applied just

before entering the force vector into the BIE system. The smoothing mirrors the
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geometric smoothing, except the interpolated function is ∆f instead of x, and the

tensor used for the 1st-order smoothing is the surface gradient ∇S∆f .

∇S(∆f ) = tα
∂(∆f )

∂θα
(12)

We average ∇S(∆f) at coincident points. The updated derivatives of ∆f can

easily be recovered from the new surface gradient.

(tβ)new · (∇S(∆f ))new = δ α
β

∂(∆f )

∂θα
≡

(

∂(∆f )

∂θβ

)

new

(13)

The same formula previously used for Hermite interpolation of geometry can

then be used to generate a new distribution of force vectors across the capsule surface

that is 1st-order continuous across elements. This updated set of force vectors is

then used to construct the BIE system.

The membrane smoothing algorithm presented here generates a smooth geo-

metric for the interfacial dynamics problem of an elastic interface, and suppresses

the instability observed in Figure 3.2. Figure 3.3(a) shows that the simulation,

using the same parameters as in Figure 3.2 and displayed at the time when the

numerical methods fails without smoothing, displays no instability when smoothing

is employed. Further, the simulation is stable over long (past equilibrium) times,

as shown in Figure 3.3(b). This methodology is an efficient technique to preserve

the continuity of the interfacial spectral geometry. The entire process, including the

relevant two-dimensional Hermitian interpolation, requires a computational cost of

only O(NE NB), i.e. O(NB) on each spectral element, owing to the fact that it is

implemented through products of one-dimensional rules.
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It is also important to note that the smoothing methodology introduces neg-

ligible error since the discrepancies at the edges of the spectral elements are several

orders of magnitude smaller than the accuracy of the numerical method when treated

at the end of each time step. In addition, owing to the fact that in these interpola-

tions we employ high-order orthogonal polynomials, the loss of accuracy from one to

the other discretization is negligible. By implementing the smoothing scheme after

we determine the (temporary) interfacial shape at the desired time t+∆t, we have

the advantage of avoiding incorporating a smoothing technique inside the spectral

element algorithm for the solution of the corresponding boundary integral equation.

Most importantly, our smoothing methodology preserves the main characteristic of

the spectral methods, i.e. the exponential convergence in the interfacial accuracy

with increasing number of spectral points as discussed in section 3.4.2 below.

3.4 Properties of the SBE Methodology

In this chapter, we investigate the deformation of initially spherical capsules in

moderate ambient flow, in order to validate the SBE method and evaluate its proper-

ties. The flows we have examined include linear shear flow, in which u∞ = G(z, 0, 0)

(see Figure 1.1), and planar extensional flow, in which u∞ = G(x,−y, 0) (see Fig-

ure 4.1). We have conducted numerous tests to verify the correctness, accuracy

and robustness of our interfacial algorithm for capsules with elastic tensions. We

have also considered all material laws mentioned in Section 2.2.1. While we have

examined the behavior of capsules with different viscosity ratios, in this chapter, we
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present results only for λ = 1, so that we can compare our findings with those from

earlier studies [29, 48]. The accuracy of our results was verified by employing dif-

ferent space discretizations (i.e. NE = 6, 10, 14 spectral elements with NB = 8− 14

basis points) and several times steps in the range ∆t = 10−4 − 10−3.

To quantify the interfacial deformation over time we monitor the capsule semi-

axis lengths, in order of ascending magnitude S, W , and L. These capsule dimen-

sions are calculated from the inertia tensor [48, 72]. For deformations resulting in

an ellipsoidal geometry, the lengths calculated from the inertia tensor are equal to

the real semi-axis lengths. We also calculate Taylor’s deformation parameter

D =
L− S

L+ S
(14)

3.4.1 Validation by Comparison with Previous Methods

Figure 3.4(a) shows the deformation of an initially spherical Neohookean cap-

sule in a shear flow for Ca = 0.6, a moderate capillary number. L, S, W , and D, are

shown as a function of time. After the initiation of the flow, the capsule’s length L

increases with time while its width S decreases. W increases marginally. The cross-

section undergoes continuous transformation from circular to ellipsoidal, as seen in

Figure 3.4(b). Figure 3.4(c) shows a three-dimensional image of the equilibrium

geometry, and it appears as a flat ellipsoidal shape.

We note that our results for the evolution of the capsule’s deformation D

shown in Figure 3.4(a) are in excellent agreement with results from the Immersed

Boundary Method of Eggleton and Popel [29] reported in their Figure 2, and with
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those from Lac et al. [48] reported in their Figure 3.

The tank-treading behavior discussed in Chapter 1 that capsules undergo in

shear flow is reproduced with the SBE method, and can be observed in Figure 3.5,

for the evolution of the shape of a Neohookean capsule for the same parameters as

the ones used in Figure 3.4. The material points of the membrane rotate around

the capsule shape. Note that, for the initial capsule shape, we use the geometry

shown in Figure 3.1(b) where the two rows of four spectral elements are defined

along the flow direction. The capsule shape is presented in the time interval [0, 20]

and plotted row-wise every 2 time units. As this figure reveals, in this time interval

the membrane has completed one full circumvolution.

As discussed later in Section 3.5, our results for a Skalak capsule in a planar

extensional flow at moderate capillary numbers Ca are also in excellent agreement

with earlier computations [48].

3.4.2 Spectral Convergence

Having established the validity and robustness of our interfacial algorithm

with the representative examples mentioned above, we proceed now to discuss its

spectral performance. In particular, a major property of our interfacial algorithm is

its exponential convergence in the numerical accuracy with increasing the number

of discretization points which results from the spectral nature of our algorithm. Our

methodology preserves the exponential convergence both for the geometric proper-

ties of a given shape, such as the interfacial curvature, and for the dynamic evolution
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Figure 3.4: The evolution of a Neohookean capsule with λ = 1 in a shear flow

for Ca = 0.6. (a) The Taylor deformation D, length L, width S and depth W ,

shown as a function of time. (b) The cross section with the plane y = 0 at times

t = 0, 0.5, 1, 2, 20. (c) Capsule shape at equilibrium (t = 10). The transient evolution

of the capsule’s deformation D is in excellent agreement with the numerical results

of Eggleton and Popel [29] reported in their Figure 2, and with those by Lac et al.

[48] reported in their Figure 3.
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Figure 3.5: A Neohookean capsule in a simple shear flow. The capsule’s shape is

presented in the time interval [0, 20] and plotted row-wise every 2 time units. The

membrane tank-treads around the interior. (λ = 1, Ca = 0.6)
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of the capsule’s shape. (Note that due to the explicit time integration, the required

small time step makes the error associated with the time discretization much smaller

than the error associated with the space discretization.)

Figure 3.6 shows the maximum absolute error in the computed curvature as

the number of spectral points N increases from 150 to 3750 for a spherical capsule

and two representative lamellar capsules. The exponential convergence of our spec-

tral algorithm is in direct contrast to the common linear or quadratic convergence

associated with low-order algorithms.

To illustrate the spectral convergence in determining the interfacial shape, we

calculated the transient evolution of an initially spherical capsule for a moderate

and a large capillary number, i.e. Ca = 0.35, 1.5. In both cases, we kept the num-

ber of elements NE fixed and increased the number of basis points in the range

NB = 6 − 15. Our results for NB = 15 were regarded as a close approximation for

the exact answer. Figure 3.7 shows the exponential convergence in determining the

capsule’s deformation D as the number of spectral points N = NE N2
B increases.

We note that our results for Ca = 0.35 represent the time t = 0.15 where D ≈ 0.14

to illustrate the spectral convergence at small deformations. For Ca = 1.50, our

results represent the time t = 0.60 where D ≈ 0.49, i.e. they demonstrate the spec-

tral convergence for large deformations. (In both cases, the capsule has not reached

a steady-state.) The observed spectral convergence in determining the interfacial

shape with our present membrane algorithm is similar to that found for drop dy-

namics in Wang and Dimitrakopoulos [88]. This spectral convergence shows the

success of our smoothing scheme which as discussed in Section 3.3 causes negligible
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Figure 3.6: Maximum absolute error on the surface for curvature computed by SBE

as a function of the number of spectral points N = NE N2
B for a sphere (——) and

different lamellar ellipsoids: - - - -, a = 2, b = 1, c = 0.5; – · –, a = 4, b = 1, c = 0.25

(where a, b and c are the semi-axes of the ellipsoids). The exponential convergence

shown in this figure was generated by employing NE = 6 spectral elements and

varying the number of basis points NB from 5 to 25. The analytic curvature was

used to determine the numerical error.
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Figure 3.7: Relative error in the computed deformation D versus the number of

spectral points N = NE N2
B for a Skalak capsule (C = 1 and λ = 1) in a planar

extensional flow for Ca = 0.35 and Ca = 1.5. For Ca = 0.35, our results represent

the time t = 0.15 where D ≈ 0.14. Here the capsule length has increased by

15% and its width has been decreased by 13%, so this case is representative of small

deformations. For Ca = 1.5, our results represent the time t = 0.60 where D ≈ 0.49.

Here the capsule length has been increased by 71% and its width has been decreased

by 41%, representative of large deformations. The exponential convergence shown

was generated by employing NE = 6 spectral elements for Ca = 0.35 and NE = 10

elements for Ca = 1.5, and varying the number of basis points NB from 6 to 15. In

both cases, the results for NB = 15 were used to approximate the numerical error.
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Figure 3.8: D shown as a function of capillary number over a range of low, moderate,

and strong flow rates for a Skalak capsule with (a) C = 1 or (b) C = 10. The data

are consistent with the results of Lac et al. [48] for the range of capillary numbers

shown in their Figure 20 using bi-cubic splines. The dotted line indicates the upper

stability limit for the bi-cubic spline method for C = 1.

interfacial perturbation. Due to its spectral nature, a fewer number of discretization

points may be required for our high-order method to achieve a sufficient accuracy,

compared to those required with low-order algorithms.
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3.5 Robustness of the SBE Method

At higher capillary numbers, previous numerical methods produce divergent

results. In particular, the early work of Pozrikidis [63], based on curvilinear dis-

cretization along the meridian and azimuthal directions of the capsule surface, found

a critical shear rate above which the method does not converge to a steady state.

This conclusion was later revoked by Ramanujan and Pozrikidis [72] who, by im-

plementing an unstructured mesh discretization of the capsule surface based on

low-order triangular elements, predicted a monotonic increase of the equilibrium

deformation with the capillary number and thus no critical flow rate. The recent

study of Lac et al. [48], which was based on bi-cubic B-spline interfacial interpola-

tion, found a region of moderate capillary numbers outside of which the capsule does

not reach steady-state. The authors justified the contradiction of their results with

those from Ramanujan and Pozrikidis [72] because the latter study employed an

unstructured mesh which requires the usage of approximations (e.g. load averaging

over each triangular element) for the determination of the membrane’ stresses which

may eliminate potential instabilities.

We emphasize that the earlier investigations (as well as the current study) are

based on the boundary integral formulation. An exception is the work of Eggle-

ton and Popel [29] who employed an immersed boundary method to study capsule

deformation in shear flow; the behavior of this methodology is unclear since the

authors studied the interfacial deformation for small to moderate capillary numbers

over relatively short time periods.

52



The bi-cubic B-spline methodology of Lac et al. [48] predicts that, for a Skalak

capsule with C = 1 and λ = 1 in a planar extensional flow, equilibrium shapes can

only be found for capillary numbers Ca in the range [CaL, CaH ] where CaL = 0.15

and 0.6 < CaH < 0.75. (See Table 1 in that earlier study.) Figure 3.8 shows our

results for planar extensional flow for a range of moderate to high capillary numbers

both for a Skalak capsule with λ = 1 and either C = 1 or C = 10. Our results agree

with those of Lac et al. [48] in their region of stability, i.e. for moderate capillary

numbers. Yet, the SBE method produces stable results, which do not undergo

continuous extension or exhibit numerical instability, even above the upper stability

limit of Lac et al. (indicated by the dotted line on Figure 3.8 for C = 1). The SBE

method, because it is able to resolve all geometric quantities, including curvature,

accurately, is more robust, and extends the possible set of capillary numbers that can

be studied numerically. In fact, it reveals novel physical behavior at high capillary

numbers, which will be the subject of Chapter 4.

3.6 Conclusions Regarding the SBE Method

We have developed a Spectral Boundary Element algorithm for interfacial

dynamics in Stokes flow of three-dimensional elastic capsules with shearing and area-

dilatation tensions. To produce a stable method and preserve the continuity of the

interfacial geometry and its derivatives at the edges of the spectral elements during

the interfacial deformation, a suitable interfacial smoothing based on a Hermitian-

like interpolation has been developed which preserves the correspondence between
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the reference shape and the deformed geometry of the capsule. The smoothing

methodology is applied both to the interfacial geometry as well as the surface forces.

Our interfacial spectral boundary element algorithm preserves the main char-

acteristic of the spectral methods, i.e. the exponential convergence in the interfacial

accuracy as the number of spectral points increases. However, it avoids creating a

large dense system as spectral methods used in volume discretization do. The accu-

racy of the method and the associated exponential convergence have been demon-

strated for the calculation of the geometric properties of a fixed-boundary interface,

such as the interfacial curvature, as well as the dynamic evolution of the interfacial

shape.

Our numerical results for capsules obeying different membrane laws in shear

and planar extensional flows at moderate capillary numbers are consistent with

those of earlier methodologies. However, at higher flow rates, our spectral algorithm

predicts stable transient and steady-state capsule shapes in contrast to earlier low-

order methodologies which predict interfacial breaking.

The present algorithm constitutes a new approach for membrane deforma-

tion in Stokes flow based on the (high-order) spectral boundary element formula-

tion which in the near past has demonstrated its high accuracy, robustness and

efficiency for fixed boundary surfaces [42, 57, 59], particulate flows [65], equilib-

rium droplet interfaces under steady flows and/or gravity [25, 26] as well as for the

transient droplet evolution [88]. With respect to existing low-order methodologies,

our spectral boundary element method for membrane dynamics has the significant

advantage of the accurate determination of any interfacial property (including geo-
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metric derivatives and membrane tensions) due to its spectral nature. As discussed

in Chapter 4, we believe that this is an important issue for the correct and accurate

determination of complicated membrane shapes. These characteristics along with

the excellent performance of our spectral method for surfaces in close contact (which

has been well demonstrated in Muldowney and Higdon [57]) show that our capsule

spectral boundary element algorithm is well suited for a wide range of interfacial

problems in physiological systems and microfluidic devices.
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Chapter 4

Capsule Deformation in Planar

Extensional Flow

In this chapter we consider in greater detail the deformation of a Skalak capsule

with C = 1 in a planar extensional flow u∞ = G (x,−y, 0) for moderate and large

capillary numbers. The flow pattern is illustrated in Figure 4.1. The goal is to use

the SBE method to investigate the physical behavior of elastic capsules including

the evolution of the interfacial shape and the membrane tensions. We also compare

our results with earlier computational and experimental findings.

As discussed previously in Section 3.5, there remains considerable uncertainty

regarding the behavior of elastic capsules extended in strong or very strong flows.

Ramanujan and Pozrikidis [72] predicted a monotonic increase of the equilibrium

deformation with the capillary number, with smooth equilibrium shapes and no

upper limit. Lac et al. [48], using a method based on bi-cubic B-spline interfacial

interpolation, avoided load averaging as in Ramanujan and Pozrikidis [72], but found

a critical shear rate above which the method could not obtain a steady-state solution.

Navot [58] found results similar to Ramanujan and Pozrikidis [72], but used an elastic

law with questionable basis in physical reality.
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Figure 4.1: A capsule with internal viscosity λµ suspended in an ambient fluid with

viscosity µ extended in planar extensional flow. The undisturbed fluid velocity field

u∞ = G(x,−y, 0) is shown around the deformed capsule.

To contribute to the physical understanding in this area, we utilize our interfa-

cial spectral boundary element algorithm for capsules with elastic tensions presented

in Chapter 3 to study large deformations, in a planar extensional Stokes flow, of

a capsule whose membrane follows the Skalak constitutive law, with C = 1. This

strain-hardening law accounts for both shearing and area-dilation, and while origi-

nally developed to describe biological membranes (such that of the erythrocyte) [80],

it can also be employed to model membranes obtained by interfacial polymerization

[7]. Our high-order, spectrally-accurate computational methodology predicts stable

equilibrium shapes whose edges become rounded, spindled and finally cusped with

increasing flow rate, in excellent agreement with experimental findings. The transi-

tion from concave to convex edges results from the transition of the tensions at the

capsule edges from tensile to compressive. In addition, our study shows that there
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is a range of high flow rates where both spindled and cusped equilibrium shapes ex-

ist; this bifurcation is found by implementing different transient processes to reach

equilibrium.

4.1 Moderate to Moderately-High Planar Extensional Flow

We begin by examining the deformation of Skalak capsules with C = 1 and

λ = 1 in planar extensional flow for a range of moderate to moderately strong

flows, beyond the stability limit of the bi-cubic B-spline method of Lac et al. [48].

Throughout this chapter, we employ simulation parameters NB = 12 and ∆t =

10−4 − 10−3. The number of surface elements NE is 6 for Ca < 0.75, 10 for 0.75 ≤

Ca ≤ 1, and 14 for Ca > 1.

4.1.1 Lengths and Overall Deformation

Figure 4.2(a) shows the deformation D for a Skalak capsule in a planar exten-

sional flow for several capillary numbers ranging from moderate to strong flows. As

Ca increases, the capsule’s length L increases while its width S decreases as shown

in Figure 4.2(b); this results in a monotonic increase of the capsule’s deformation D

at equilibrium with the capillary number as seen in Figure 4.2(a). A careful exam-

ination of Figures 4.2(a) and (b) reveals that while the capsule’s width S reaches

equilibrium at about the same time for all the flow rates (or Ca) studied here, it

takes more time for the capsule’s length L (and thus for its deformation D), to reach

equilibrium for the high capillary numbers Ca = 0.9, 1.1. (This is the reason that
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in this figure we monitor the capsule evolution up to time t = 18.)

To explain this anisotropy, in Figure 4.2(c) we present the evolution of the

capsule’s depth W for the same capillary numbers. At low flow rates (e.g. Ca =

0.15, 0.25, 0.45), the capsule’s depthW shows a monotonic increase with time, reach-

ing equilibrium at about the same time as the other two dimensions of the capsule.

(Observe that W shows a transient maximum even in this range of flow rates.)

However, the time evolution of the capsule’s depth W is quite different at the large

flow rates Ca = 0.9, 1.1; after a fast initial growth, W decreases over time, while

at equilibrium the higher capillary numbers correspond to smaller depth W . This

non-trivial behavior of the capsule’s depth W affects mostly its length L, i.e. the

late-time reduction of the depth W at high flow rates causes a further increase of

its length L.

4.1.2 Capsule Profile and Geometry

The evolution of the capsule’s profile in the y = 0 and z = 0 planes for Ca =

0.45 is shown in Figure 4.3(a,b). As the capsule deforms, the increase of its length

L along with the corresponding decrease of its width S, shown in Figure 4.2(b),

results in a rather elongated shape in the z = 0 plane as depicted in Figure 4.3(a).

However, at the same time the capsule’s depth W is slightly increased as shown

in Figures 4.2(c) and 4.3(b). Both actions results in a flat elliptical (i.e. lamellar)

shape of the capsule at equilibrium as seen in Figure 4.3(c).

These results for the evolution of the capsule’s deformation D for the moderate
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Figure 4.2: Evolution of a Skalak capsule with C = 1 in a planar extensional flow

for capillary number Ca = 0.15, 0.25, 0.45, 0.90, 1.1. Time evolution of the capsule’s

(a) deformation D, (b) length L and width S, and (c) depth W . The results for D

for Ca = 0.45 are in excellent agreement with the results of Lac et al. [48] reported

in their Figure 16.
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Figure 4.3: Evolution of a Skalak capsule with C = 1 in a planar extensional flow

with Ca = 0.45. (a) Capsule cross-section with the plane z = 0 at times t =

0, 0.5, 1, 18. (b) Capsule cross-section with the plane y = 0 at times t = 0, 0.5, 1, 18.

(c) Capsule shape at time t = 18, i.e. well past equilibrium.
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capillary number Ca = 0.45 shown in Figure 4.2(a) are in excellent agreement

with the computations of Lac et al. [48] reported in their Figure 16. In addition,

the capsule profile in the plane z = 0 at equilibrium shown in Figure 4.3(a) is in

excellent agreement with that from the study of Lac et al. [48] reported in their

Figure 17. However, as discussed in Section 3.5, the bi-cubic B-spline methodology

of Lac et al. [48] predicts that, for a Skalak capsule with C = 1 and λ = 1 in a

planar extensional flow, equilibrium shapes can only be found for capillary numbers

Ca in the range [CaL, CaH ] where CaL = 0.15 and 0.6 < CaH < 0.75. Our

results in Figure 4.2(a) agree with those of Lac et al. [48] in their region of stability

(i.e. for moderate capillary numbers); however, our spectral boundary interfacial

algorithm also predicts stable equilibrium shapes for higher capillary numbers, e.g.

Ca = 0.9, 1.1.

To provide more information on the behavior of the capsule at large capillary

numbers, in Figure 4.4 we present our numerical results for Ca = 1.1. As seen in

Figure 4.4(a,b), over time the capsule elongates in the x-direction and flattens in

the y-direction while its depth shows a rather small but non-trivial variation (which

was presented earlier in Figure 4.2(c). The lamellar interfacial shape of the capsule

at equilibrium is shown in Figure 4.4(c). It is of interest to observe that the capsule

profile with the plane z = 0, shown in Figure 4.4(a), becomes quite pointed around

time t = 1 while at equilibrium the edges in the x-direction are more rounded but

still more pointed than those for Ca = 0.45 shown in Figure 4.3(a).
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Figure 4.4: Evolution of a Skalak capsule with C = 1 in a planar extensional flow

with Ca = 1.1. (a) Capsule cross-section with the plane z = 0 at times t =

0, 0.5, 1, 18. (b) Capsule cross-section with the plane y = 0 at times t = 0, 0.5, 1, 18.

(c) Capsule shape at time t = 18, i.e. well past equilibrium.

63



4.1.3 Principal Tensions

To investigate the membrane dynamics, in Figures 4.5(a) and (b) we present

the time evolution of the maximum τPmax and minimum τPmin principal tensions,

respectively, over the capsule surface for several capillary numbers. The maximum

principal tension increases with time from a zero initial value until equilibrium, and

thus it is always positive. In addition, higher capillary numbers cause larger values

of τPmax at equilibrium. The evolution of the minimum principal tension is more

complicated. Starting from zero, τPmin decreases with time and thus it obtains a

negative value at early times. Later the minimum tension increases with time and

becomes positive. At equilibrium, τPmin increases monotonically with the capillary

number.

The location of the minimum and maximum tensions on the capsule surface

follows the same basic trend for the different capillary numbers. Initially, the mini-

mum tension τPmin occurs at the capsule edges, e.g. looking at the capsule profiles in

Figure 4.4, the minimum tension is at y = z = 0. After an initial transient period,

however, the location of the surface minimum changes. The new surface minimum

occurs at the capsule largest depth, e.g. looking at the capsule shape shown in Fig-

ure 4.4, the minimum tension occurs at x = y = 0. The direction of this tension at

late times has no x-component, i.e. this tension acts entirely in the yz cross-section.

The maximum tension τPmax is initially located at the largest width of the capsule,

e.g. at the points x = z = 0. After a transient period, this tension switches location,

and is located in the same place as the steady-state minimum tension; thus at equi-
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Figure 4.5: Time evolution of the (a) maximum τPmax and (b) minimum τPmin principal

tensions among the spectral discretization points capsule surface for a Skalak capsule

with C = 1 in a planar extensional flow with Ca = 0.45, 0.90, 1.1.
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librium, the locations of the minimum and maximum tensions become congruent.

Note that the maximum tension τPmax on the surface is always associated with the

direction of the capsule’s elongation.

4.2 Strong Flows and Cusp Formation

Current understanding of capsule dynamics at higher flow rates than those

presented in Section 4.1 is rather limited. Comparing our results with those of Lac

et al. [48], it is unclear what causes the bi-cubic B-spline methodology to fail in de-

termining the equilibrium shapes for the high capillary numbers we have examined

with the SBE method. Lac et al. reported that for capillary numbers above the

stability limit CaH (where 0.6 < CaH < 0.75), the capsule develops high-curvature

protruded tips, and the deformation and the tensions in the membrane increase

without bound causing interfacial breaking. (See Figure 18(a) from Lac et al. [48].)

Comparing the capsule profiles at moderate and moderately-high capillary numbers,

e.g. for Ca = 0.45 and 1.1 shown in Figures 4.3 and 4.4, respectively, we observe

that for the higher flow rate the capsule develops pointed edges during the transient

evolution. (See the capsule profile with the plane z = 0 at time t = 1 included in

Figure 4.4(a).) For a numerical method to be stable, it must be able to calculate

accurately the associated large variation of the curvature at these pointed edges.

With respect to this issue, our spectral boundary element method has the signifi-

cant advantage of the accurate determination of any interfacial property (including

curvature) due to the exponential convergence in the numerical accuracy illustrated
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Figure 4.6: Steady-state profiles of a capsule (made from a polymerized polylysine

membrane coated by an alginate film) in a planar extensional flow reported in Fig-

ure 6 of the work by Barthès-Biesel [6]. As the capillary number increases, the

membrane develops first spindled and then cusped edges.

in Figures 3.6 and 3.7.

Experimental findings have revealed a wealth of possible configurations, includ-

ing stable equilibrium shapes whose edges become rounded, then more extended but

still concave (i.e. spindled), and finally convex (i.e. cusped) as the flow rate increases,

as shown in Figure 4.6. It is of interest to note that the cusped equilibrium shapes

at high flow rates suggest that the membrane shown in Figure 4.6 has negligible

bending resistance.

Existing analytical and computational studies are unable to predict the stable

spindled and cusped interfacial shapes observed in experiments. The asymptotic

solutions for initially spherical capsules by Barthès-Biesel et al. [3], for instance,

are restricted to small deformations, and the results from the state of the art (low-

order) three-dimensional computational methodologies disagree at high flow rates,

with none matching the experimental observations. Ramanujan and Pozrikidis [72]
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predicted continuous equilibrium elongation, but with rounded interfacial shapes as

the flow rate increases, and Lac et al. [48] predicted unbounded extension and inter-

facial breaking at high flow rates. The failure at large deformations of the existing

theoretical studies points to the fact that the dynamic behavior of a membrane-like

interface submerged in an ambient flow is a complicated physical problem due to

the coupling of the fluid dynamics with the (nonlinear) elastic mechanics of the

membrane.

On the other hand, the SBE method produces stable equilibrium shapes even

at high flow rates. The edges of these shapes become rounded, spindled and finally

cusped with increasing flow rate, in excellent agreement with experimental findings.

The formation of these cusped edges is a transient process, and by investigating the

tensions on the interface, the SBE also elucidates the mechanisms of cusp formation.

4.2.1 High-Curvature Tip Formation

Figure 4.7 shows the equilibrium shapes we obtain for several capillary num-

bers Ca by starting from quiescent initial conditions (i.e. a spherical configuration)

and applying a steady flow rate Ca. The sequence of equilibrium profiles is (qualita-

tively) similar to that found in the experiments of Figure 4.6. That is, the shape for

Ca = 1 shows rounded edges while for Ca = 1.5 the edges are more pointed (i.e. the

shape is spindled); at higher flow rates the shapes become cusped. We emphasize

that we are unable to make quantitative comparisons since the exact parameters

in the experimental study are not known, including which constitutive law is best
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Figure 4.7: Equilibrium shapes for a Skalak capsule with C = 1 and λ = 1 in a planar

extensional flow, starting from a sphere, for capillary number Ca = 1, 1.5, 2, 2.5, 3.

The capsules are extended along the x-direction, mainly contracted along the y-

direction, and the view-point is on the positive z-axis.

suited to describe the specific membrane, and the exact value of the viscosity ratio

λ and the flow rates Ca for the shapes shown in the experimental photographs.

(As shown in Figure 20 of Ref.[48], polylysine membrane shows higher surface-area

resistance than the Skalak membrane with C = 1 used in our computations; this

may account for why the experimental shapes show less elongation compared to our

shapes.)

Examination of the membrane tensions reveals that the appearance of cusped

edges at steady-state is caused by the existence of negative, or compressive, tensions

near the capsule edges. Recall that in Section 4.1.3 (Figure 4.5(b)) we observed
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transient negative tensions near the beginning of the interfacial evolution, and that

these negative tensions occurred at the y = z = 0 intersection, which is where the

cusp forms at higher capillary numbers. This tension produces no wrinkling owing

to its transient nature. Figure 4.8 shows the evolution of the minimum tension on

the capsule surface for high capillary numbers, with moderate numbers present for

comparison. For Ca = 0.5, 1, 1.5 as the geometry reaches equilibrium, the tensions

become positive, or tensile, everywhere on the capsule including its edges. Recall

that for these shapes τPmin relocates to the capsule intersection with the z-axis, or

x = y = 0. For higher flow rates (Ca = 2, 2.5, 3), τPmin remains located at the

capsule edges throughout deformation and reaches a steady-state negative value.

The negative tensions near the capsule edges cause local compression (similar to if

we pinch the capsule edges with our fingers) which results in cusped equilibrium

tips. Unlike the results of Lac et al. [48], these are stable equilibrium shapes.

4.2.2 Bifurcation at Extreme Capillary Numbers

We emphasize that the value of the capillary number Ca where this transition

occurs depends on how the transient dynamics reach equilibrium and thus on the

specific transient experiment we apply to the capsule. Therefore, there should be a

range of high flow rates where both spindled and cusped equilibrium shapes exist.

Note that our results so far represent the case where, to find the equilibrium capsule

shape for a given flow rate Ca, we start from a spherical geometry and apply a

steady flow rate with capillary number Ca. In this type of experiment, the lowest
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Figure 4.8: Evolution of the minimum principal tension τPmin among the spectral dis-

cretization points on a Skalak capsule with C = 1 and λ = 1, in a planar extensional

flow, starting from a sphere, for Ca = 0.5, 1, 1.5, 2, 3.
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flow rate where cusped shapes were formed is Ca = 1.75.

To find the bifurcation in the equilibrium shapes (i.e. the existence of both

spindled and cusped edges for a range of high flow rates), we also implemented

another type of experiment. In particular, starting from the rounded shape for

Ca = 1, we gradually increased the capillary number (with step size ∆Ca = 0.25)

allowing the system to reach equilibrium after each flow rate increase. An example

of this sort of experiment is shown in Figure 4.9. Here, initially Ca = 1.5; after

D is at equilibrium, the capillary number is raised to Ca = 1.75, which can be

observed as a corresponding increase in the deformation. In this experiment, the

steady-state shapes are spindled until Ca = 2.5 as shown in Figure 4.10; for higher

Ca we obtained the cusped profiles we found earlier shown in Figure 4.7. We also

implemented a gradual decrease in the capillary number (with step size ∆Ca = 0.25)

starting from the cusped equilibrium shape for Ca = 3 shown in Figure 4.7. In this

experiment, the steady-state shapes are cusped until Ca = 2 and spindled for lower

flow rates.

To show clearly the transition from spindled to cusped shapes as well as the

shape bifurcation, in Figures 4.11(a) and (b) we collect our data for the minimum

principal tension τPmin and the edge curvature of the equilibrium shapes for the flow

rates studied. Near the end of the spindle curve, there is a large increase of the

edge curvature with positive value, and thus the pointed shapes have concave (or

spindled) edges as shown in Figure 4.10. On the other hand, along the cusp curve

the negative tensions near the capsule edges cause local compression and convex (or

cusped) equilibrium profiles with large negative edge curvature (Figure 4.7). It is
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Figure 4.9: In order to produce a smooth, non-cusped geometry at a high capillary

number, we start with a lower capillary number, allow it to come to equilibrium,

and then raise the capillary number. Here D is shown as a function of time for a

simulation beginning with Ca = 1.5, and then transitioning to Ca = 1.75 at t = 18.

The final geometry is smooth, with no negative tensions on the surface.
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Figure 4.10: Spindled equilibrium shapes for a Skalak capsule with C = 1 and λ = 1

in a planar extensional flow with capillary number Ca = 2, 2.5. A three-dimensional

view of the Ca = 2.5 shape is also included to show the flat elliptical conformation

of the capsule. These shapes lie in the bifurcation range 1.75 ≤ Ca ≤ 2.5 and were

found by gradually increasing the flow rate.

of interest to note that, although the shape bifurcation creates a district change in

the capsule profile, it causes minimal changes in the capsule’s overall dimensions.

A similar shape transition and bifurcation (but over a limited range of high

flow rates) was predicted by the complex-variable analysis of Antanovskii for two-

dimensional bubbles [2]; however, computational (transient) dynamics were not able

to verify the stability of these equilibrium shapes [64].

4.2.3 The Effect of Viscosity Ratio on the Bifurcation

Because there is no internal fluid motion at equilibrium, previous investiga-

tors believed that the viscosity ratio can have no effect of the steady-state solution

for a capsule extended in planar extensional flow [48]. However, the results with

SBE show that multiple steady-state solutions can exist for one capillary number in
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Figure 4.11: Bifurcation in the dependence of (a) the minimum principal tension

τPmin and (b) the edge curvature (determined along the interfacial cross-section with

the z = 0 plane) with the capillary number Ca, for the equilibrium shape of a Skalak

capsule with C = 1 and λ = 1 in a planar extensional flow.
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Figure 4.12: The dependence of the minimum principal tension τPmin with the cap-

illary number Ca, for the equilibrium shape of a Skalak capsule with C = 1 for

(a) λ = 5 and (b) λ = 0.1 in a planar extensional flow. The dotted lines indicate

the results for λ = 1 from Figure 4.11(a). At large viscosity ratios, the bifurcation

region expands. At small viscosity ratios, it contracts and disappears entirely.
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Figure 4.13: The dependence of the edge curvature with the capillary number Ca,

for the equilibrium shape of a Skalak capsule with C = 1 for (a) λ = 5 and (b)

λ = 0.1 in a planar extensional flow. The dotted lines indicate the results for λ = 1

from Figure 4.11(b).

77



planar extensional flow, and that the steady-state solution for a particular capsule

deformation problem depends on the transient deformation dynamics. Therefore,

while the influence of the viscosity ratio will disappear at equilibrium because in-

ternal fluid motion ceases, it is possible for the viscosity ratio to determine which

equilibrium geometry a capsule achieves by influencing the transient dynamics.

To investigate possible effects of viscosity ratio, we reproduced for different λ

the tension bifurcation plot shown in Figure 4.11 for λ = 1. Figures 4.12(a) and (b)

show the results for λ = 5 and λ = 0.1, respectively. In both figures, the behavior

for λ = 1 is shown for comparison as a dotted line. At higher viscosity ratios, as

shown in Figure 4.12(a), the lower limit of the bifurcation region decreases and the

region extends. That is, at higher viscosity ratios, cusp formation is first observed at

lower capillary numbers. Raising the viscosity ratio does not affect the upper limit

of the bifurcation region. Conversely, at lower viscosity ratios, the lower limit of

the bifurcation region increases, so the region contracts. Eventually, the bifurcation

disappears entirely, as seen in Figure 4.12(b). Similar results are observed with

respect to the edge curvature, shown in Figures 4.13(a) and (b).

4.3 Length Changes and Maximum Surface Tension

We have also examined how the equilibrium semi-axis lengths and the maxi-

mum surface tension change as a function of capillary in moderate to high planar

extensional flow. Figure 4.14 shows the semi-axis lengths length L, width S and

depth W for λ = 1 in a planar extensional flow. L increases with capillary number.
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Both W and S decrease with capillary number. At high capillary numbers, within

the bifurcation region, there are no overall capsule length differences between the

smooth shapes and the cusped conformations.

Based on our computational modeling, rupture due to excessive surface tension

can be determined for a specific membrane (with known lytic tension) by monitoring

the membrane tensions during the capsule’s dynamic evolution. It may also be

estimated readily by the simple dependence of the equilibrium maximum principal

tension τPmax with the capillary number which our analysis shows to be linear at high

flow rates as illustrated in Figure 4.15. Starting from a sphere, initially τPmax occurs

at the capsule intersection with the y-axis, and shortly thereafter it relocates to the

z-axis intersection, the equilibrium location; for gradual changes in the flow rate,

τPmax remains at the z-axis intersection. Thus this location is the most probable to

rupture in an extensional flow.

4.4 Conclusions

As the flow rate increases, the transition from spindled to cusped shapes al-

lows the capsule to withstand the increased hydrodynamic forces, as found for low-

viscosity drops or bubbles in strong extensional Stokes flow [16]. We note that

strong flows are commonly encountered in industrial and physiological processes,

because artificial capsules have wide applications in the pharmaceutical, food and

cosmetic industries [69]. In pharmaceutical processes, for example, capsules are com-

monly used for the transport of medical agents. For mm-size capsules made from
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Figure 4.14: Influence of the capillary number Ca on the equilibrium semi-axis

lengths length L, width S and depth W for a Skalak capsule with C = 1 and λ = 1
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aminomethacrylate membranes with shearing modulus Gs = O(10−2) N/m and for

µm-size erythrocytes with Gs = O(10−5) N/m, flow rates Ca = O(1) require shear

stress µG = O(10) Pa [56, 61].

The investigation also reveals that viscosity ratio λ can affect the steady-state

solution for a capsule in planar extensional flow, even though there is no internal

fluid motion at equilibrium. Raising or lowering the viscosity ratio either expands

or shrinks, respectively, the bifurcation region. The effect is entirely on the lower

limit of the bifurcation region; the upper limit is unaffected by viscosity ratio. This

suggests that cusp formation can be controlled or eliminated over a range of capillary

numbers through manipulation of the viscosity ratio.

The shape transition at high flow rates occurs due to the appearance of com-

pressive tensions near the capsule edges. We emphasize that our results were derived

for zero bending resistance; as the bending resistance increases from zero (but still

remains very small as happens for many artificial and biological membranes), we

expect that the transition from concave to convex edges occurs at a slightly higher

flow rate. Much higher bending resistance will probably inhibit the transition to

cusped shapes.

It is of interest to note that compressive tensions at low flow rates result in

interfacial wrinkling around the capsule equator [48, 87]. The occurrence of com-

pressive tensions can be caused either by mechanical deformation (i.e. due to an

external flow as investigated in this chapter) or owing to a (bio)physical process, as

in the case of a fluid vesicle undergoing lipid uptake [83]. At large deformations, the

analytical prediction of the formation of compressive tensions for nonlinear elastic
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laws is practically unattainable; thus, computational investigation is an attractive

alternative. The large values of the edge curvature for spindled and, more impor-

tantly, for cusped capsules, along with the fact that the membrane tensions are

complicated functions of the interfacial geometry, clearly indicate the need for a

highly-accurate computational methodology (such as our interfacial spectral algo-

rithm) for the accurate determination of membrane dynamics in strong flows.
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Chapter 5

Strain-Softening Membranes in a Planar

Extensional Flow

In Chapter 4, we examined in detail the behavior of an initially spherical,

Skalak capsule deformed in a planar extensional flow. We showed that the SBE

method extends the range of stable solutions past that of previous numerical meth-

ods, and we identified and characterized the process of cusp formation at high flow

rates for these capsules. However, the Skalak law is only representative of cer-

tain classes of membrane, such as biocompatible serum albumin alginate [17] and

the erythrocyte membrane [8]. A key feature of these membranes is that they are

strain-hardening [7]. That is, the relationship between strain and tension is not

linear. Rather, with increasing extension, the tension rises faster than if the rela-

tion were linear. In contrast, many synthetic membranes are strain-softening; the

rate at which tension grows with increasing extension slows as the extension be-

comes larger. This strain-softening effect is often due to polymer disentanglement.

Instead of a Skalak model, these synthetic membranes are better represented by

the Mooney-Rivlin and Neohookean membrane models [87]. It was predicted by

Barthès-Biesel, Diaz, and Dhenin that the behavior of strain-softening membranes
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may diverge radically from that of strain-hardening membranes at large deforma-

tions [7]. Therefore, in this chapter we investigate the behavior of a strain-softening

Neohookean membrane, at large deformation in an extensional flow, and compare

its behavior to the Skalak membrane studied in Chapter 4.

5.1 Neohookean Extension in Weak to Moderate Flows

The results presented here for Neohookean capsules in a planar extensional flow

with undisturbed flow field u∞ = G(x,−y, 0) use simulation parameters NB = 12

and ∆t = 5 · 10−4, unless otherwise specified. The number of surface elements

NE is 10 for Ca < 0.325, and 14 for Ca ≥ 0.325. The Neohookean results are

compared with the results for Skalak capsules from Chapter 4. At large extensions

corresponding to the Skalak bifurcation region, all comparisons made to Skalak

capsules use the spindled, not the cusped, equilibrium geometries.

For flow rates Ca ≤ 0.4, the SBE method produces stable, extended, equilib-

rium geometries for Neohookean capsules. Figure 5.1 shows the deformation D and

the semi-axis lengths L, S, and W as a function of time for Neohookean capsules

at capillary numbers below, including, and above the upper limit of Ca = 0.4. The

simulation results for Ca = 0.4 have been extended to t = 40 to verify that it does

in fact attain a stable, steady-state geometry. Lac et al. previously reported that

their bi-cubic B-spline method produced no equilibrium solutions above Ca = 0.24

for this capsule type [48]; the SBE method has shown that this upper limit was

merely an artifact of their numerical technique. As we saw in Chapter 4 for Skalak
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Figure 5.1: For Neohookean capsules in a planar extensional flow, (a) D, (b) L,

(c) S, and (d) W are shown as a function of time for capillary numbers Ca =

{0.2, 0.3, 0.4, 0.425}. For the capillary numbers Ca ≤ 0.4, the capsule reaches an

equilibrium shape after an initial transient period. (Note that we have continued

the solution for Ca = 0.4 until t = 40 to ensure that it does reach an equilibrium

solution). When Ca = 0.425, the capsule appears to undergo continuous extension,

i.e. its length increases without bound.
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of the length L shown in Figure 5.1(b).
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capsules, the SBE method obtains stable equilibrium results at capillary numbers

above the upper stability of previous low-order methods, because of its ability to

resolve complicated geometries accurately. However, the present method also en-

counters an upper limit. As Figure 5.1(b) demonstrates, at Ca = 0.425, just above

the upper limit, the largest length L appears to pass through an inflection point,

after which it continues to increase without bound. The maximum tension τPmax,

shown in Figure 5.2, behaves like L. Eventually, the simulation can no longer accu-

rately describe the geometry because it becomes too extended, and the numerical

method fails.

The equilibrium geometry for Neohookean capsules at weak flow rates is similar

to that of Skalak capsules. Figures 5.3(a) and (b) show the cross-sections in the

planes z = 0 and y = 0, respectively for a Neohookean capsule with Ca = 0.2. The

equilibrium geometry for a Skalak capsule with the same capillary number is also

shown for comparison. At this capillary number, the Neohookean capsule is only

slightly more extended than the Skalak capsule. The remaining dimensions are also

comparable. Figure 5.3(c) shows the final geometry for the Neohookean capsule; it

appears as an ellipsoid.

At higher flow rates, however, the appearance of the deformed Neohookean

capsules differs considerably from that of their Skalak counterparts. Figures 5.4(a)

and (b) show the same cross-sections for a Neohookean capsule with Ca = 0.4. The

equilibrium geometry for the Skalak capsule at the same capillary number, shown

as the dotted line (–– ––) now appears much less deformed than the Neohookean

capsule. The dimension in the direction of extension is almost twice as much for
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Figure 5.3: The initial (t = 0) and equilibrium (t = 20) geometric cross-sections for

a Neohookean capsule (——) in a planar extensional flow with Ca = 0.2, and the

equilibrium cross-sections of a Skalak capsule (–– ––) with the same capillary number

for purposes of comparison. (a) Capsule cross-sections with the plane z = 0. (b)

Capsule cross-sections with the plane y = 0. (c) Neohookean capsule shape at

equilibrium, from several viewing angles.
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Figure 5.4: The initial (t = 0) and equilibrium (t = 40) geometric cross-sections for

a Neohookean capsule (——) in a planar extensional flow with Ca = 0.4. Also shown

are equilibrium cross-sections for a Skalak capsule for the same capillary number (––

––), and for Ca = 2 (- - - -), which has similar extension. (a) Capsule cross-sections

with the plane z = 0. (b) Capsule cross-sections with the plane y = 0.
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Figure 5.5: The equilibrium geometry (t = 40) for a Neohookean capsule with

Ca = 0.4 in a planar extensional flow, from several viewing angles.

the Neohookean compared to the Skalak capsule. For the Skalak capsule, Ca = 0.4

produces moderate deformation, while for the Neohookean capsule, Ca = 0.4 should

be considered a strong flow, because it produces large deformation.

To compare the large deformation equilibrium geometries between the two

membrane laws, the cross-sections in Figure 5.4 also display the final geometry for

a Skalak capsule with Ca = 2, shown as the dotted line (- - - -). This capillary

number was chosen because the capsule dimension in the direction of extension

is similar to the Neohookean capsule at 0.4. As is clear from the Figure 5.4(a),

at similar extension, the Neohookean capsule is thinner, and in Figure 5.4(b) the

cross-section in that plane appears rounder. Examining the equilibrium geometry

for the Neohookean capsule from several viewing angles, as in Figure 5.5, it appears

not ellipsoidal, but flat and lamellar.
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5.2 Equilibrium Behavior with Increasing Flow Rate

We have observed that the equilibrium geometry for a Neohookean capsule

at a given capillary number appears more extended and flatter than its Skalak

counterpart. To examine this comparison more closely, Figure 5.6 illustrates the

steady-state behavior of deformation D, and semi-axis lengths L, S, and W for a

Neohookean capsule (solid lines) in a planar extensional flow over a range of capillary

numbers up to Ca = 0.4, the upper stability limit. The vertical line on Figure 5.6(a)

indicates the upper stability limit reported by Lac et al. for Neohookean capsules

in this flow pattern [48]. As the flow rate increases, D, L, and W increase, while

S decreases. Results for Skalak capsules over the same range of capillary numbers

are also shown on Figure 5.6 as dotted lines for purposes of comparison. The Neo-

hookean capsules are slightly more deformed than Skalak capsules at low capillary

numbers, and much more deformed at higher flow rates. Over this range of capillary

numbers, L appears to grow linearly with Ca for Skalak capsules, but shows a much

faster, monotonic increase for Neohookean capsules, as seen in Figure 5.6(b). Con-

sequently, at Ca = 0.4 the Neohookean capsule is almost twice as extended as the

Skalak capsule. The rates of change also differ between the two capsule types for S

and W ; S decreases in both cases, but more rapidly for the Neohookean membrane,

while W increases for the Neohookean membrane, but holds steady over this range

of capillary numbers for the Skalak membrane.

The maximum tension τPmax on the surface, shown for both capsule types in

Figure 5.7(a), behaves as a function of capillary number like the largest semi-axis
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Figure 5.6: Equilibrium dimensions of a Neohookean (solid line) or Skalak (dotted

line) capsule in a planar extensional flow as a function of capillary number: (a)

Deformation D, and semi-axis lengths (b) L, (c) S, and (d) W as a function of

capillary number. The solid vertical line in (a) represents the upper stability limit

for Neohookean capsules in planar hyperbolic flow reported by Lac et al. using their

bi-cubic B-spline method [48].
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length L. That is, it grows linearly over this range of capillary numbers for Skalak

capsules, but appears to grow faster for Neohookean capsules. Combined with the

fact that τPmax is associated with the direction of extension, this similarity in be-

havior suggests that L can serve as a proxy for strain, if we wish to examine the

tension versus strain behavior, which is determinant of whether a membrane is

strain-softening or hardening. Examining τPmax as a function of L also allows us

to compare the two membrane laws over the entire range of capsule deformations,

without being restricted to a small window of capillary numbers. Figure 5.7(b)

shows τPmax as a function of L for both membrane types, and the strain-hardening

behavior of the Skalak capsule now becomes apparent. As the capsule extends, for

the Neohookean capsule, the tension increases only linearly with L; for the Skalak

capsule, the tension grows faster than linear. The picture produced is remarkably

similar to Figures 1 and 3 produced by Barthès-Biesel et al. with these two capsules

for uniaxial extension and isotropic expansion, respectively.

Besides tension, other quantities can also be examined over the entire range

of extension by examining their behavior as a function of L. Figure 5.8(a) and (b)

show S and W , respectively, versus L. Although the absolute magnitude of S given

L differs between the two membranes, the trend is similar; we observe decreasing

capsule thickness with increasing extension. However, the behaviors are different

with respect to the intermediate length W . For Neohookean capsules, W increases

monotonically over the entire range of extension pictured. For Skalak capsules with

increasing L, W at first increases at low extension, and then decreases over most

of the range of capillary numbers examined. The differences in behavior for the
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Figure 5.7: (a) The maximum equilibrium tensions τPmax on the capsule surface are

shown over a range of capillary numbers for Neohookean (solid line) compared to

Skalak (dotted line) capsules in a planar extensional flow. (b) τPmax are shown as a

function of L for the same capsule types and flow pattern.
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two non-extensional axes can be summed up by examining the aspect ratio S/W ,

pictured in Figure 5.9(a). Apparent from the figure, for the Skalak capsule, the

ratio approaches a non-zero asymptote of 0.4 at large deformations, while this ratio

appears unbounded for the Neohookean capsule over the range of capillary num-

bers for which we obtain stable equilibrium solutions. This means that at large

capsule extension, the zy-cross section (perpendicular to the direction of extension)

will appear more circular for the Skalak capsules. The Neohookean cross section

will be a more extended ellipsoid, and the overall geometry for the extended Neo-

hookean capsules will be more lamellar, or pancake-like, compared to the Skalak

capsules. Interestingly, however, the edge curvature for these two capsules, shown

in Figure 5.9(b) is the same, and depends only on extension, regardless of membrane

material composition.

5.3 Continuous Extension

As we previously observed in Section 5.1, the capsule extension increases with-

out bound when Ca is above the upper stability limit of Ca = 0.4. We have at-

tempted to verify the numerical results for Ca = 0.425 by decreasing the time-step

to 2.5 · 10−4; the results are unchanged. We have also varied the number of surface

elements NE from 14 to 10, and although there is a slight disparity in the magnitude

of the length values, the overall behavior is the same.

Unclear from the transient results is whether the transition to continuous

extension observed at Ca = 0.425 is a phenomenon arising from the transient de-
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Figure 5.8: Using L as a proxy for strain as in Figure 5.7(b), the remaining two semi-

axis lengths are examined as a function of capsule extension in a planar extensional

flow for Neohookean (solid line) compared to Skalak (dotted line) capsules. (a) S

is shown as a function of L; the overall behavior is similar for strain-softening and

strain-hardening capsules. (b) W is shown as a function of L; while W increases

with L for Neohookean capsules over the entire range of capillary numbers explored,

it decreases with L, after an initial plateau, for Skalak capsules.
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Figure 5.9: (a) The ratio S/W of the two non-extensional axes is shown as a function

of capsule extension L in a planar extensional flow for Neohookean (solid line) com-

pared to Skalak (dotted line) capsules. For the Skalak capsule, this ratio approaches

a non-zero asymptote of approximately 0.4 at large deformations. This ratio for the

Neohookean capsule does not approach a limit in the range of capillary numbers for

which we obtain stable equilibrium solutions. (b) Edge curvature is nearly identical

for Neohookean and Skalak capsules.
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formation process, whether this capillary number actually represents a flow rate at

which no equilibrium solution exists, or whether continuous extension here is a nu-

merical artifact due to insufficient grid density for such an extended geometry. To

eliminate the first of these three possibilities, we performed a stepping experiment,

similar to the experiments in Chapter 4 used to characterize the shape bifurcation.

Here, a Neohookean capsule was deformed at Ca = 0.4 and allowed to reach equi-

librium. Then, the capillary number was raised to Ca = 0.425. The results of this

experiment for L and S are shown in Figure 5.10. If the continuous extension came

from the transient process, we expected that this would produce a stable equilib-

rium geometry. Instead, the capsule transitions to continuous extension, indicating

either that there is no stable geometry corresponding to this flow rate, or that the

geometry is so extended that the numerical method fails.

Examining the development of the geometric cross-sections in the plane of ex-

tension in Figure 5.11(a) for Ca = 0.4, the highest capillary number to produce a

stable, steady-state geometry, we observe that both the transient and final geome-

tries have a rounded tip, not unlike the highly deformed but still concave Skalak

shapes discussed in Chapter 4. However, as can be seen in Figure 5.11(b), the

transition to continuous extension at Ca = 0.425 is accompanied by a transition to

cusp formation. The cusp is also observed in the Figure 5.11(c), the incremental

experiment described in the previous paragraph. This cusp bears a resemblance to

the cusp observed previously with Skalak capsules, but with a major difference; the

cusped Skalak capsules are stable, steady-state geometries, while the Neohookean

capsules are undergoing a continuous extension process, which eventually results in

99



1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

L

t

(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

S

t

(b)

Figure 5.10: The semi-axis lengths (a) L and (b) S are displayed as a function of

time for a stepping experiment with a Neohookean capsule in an extensional flow.

Initially, Ca = 0.4, and the capsule is allowed to reach equilibrium. At t = 24,

indicated by the arrow, the capillary number increases to Ca = 0.425, and the

capsule undergoes continuous extension. The dotted line indicates the behavior of

an unperturbed capsule allowed to remain at Ca = 0.4.
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failure of the numerical method.

5.4 Conclusions

In the previous chapter, we examined strain-hardening Skalak capsules in ex-

tensional flow, found that the SBE method is capable of modeling highly extended

geometries, and characterized a bifurcation phenomenon at strong flow rates, in

which both smooth and cusped steady-state geometries exist. In contrast, the Neo-

hookean capsules studied in this chapter are strain-softening. Consequently, Neo-

hookean capsules become highly extended at much lower flow rates than do Skalak

capsules. The shapes of the extended capsules are also less rounded, and more lamel-

lar, than Skalak capsules with similar extension. No steady-state cusp formation was

observed with Neohookean capsules.

Examining the capsule geometry and associated membrane tensions as a func-

tion of capsule extension L has allowed us to compare Skalak and Neohookean

capsules over the entire range of extension, instead of a narrow window of flow

rates. Examining tension in this way, as in our Figure 5.7(b), contrasts the strain-

softening versus strain-hardening membrane behavior. Examining the two smaller

semi-axes, we found congruent behavior with respect to the capsule thickness S,

but divergent behavior with respect to depth W . We have also shown that, for the

strain-hardening Skalak capsules, the ratio S/W approaches a limit at large exten-

sions, while no such limit is observed for the strain-softening Neohookean capsules.

The geometric implications of this limit are that the aspect ratio for the two non-
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Figure 5.11: (a) Cross sections in the plane of extension for Ca = 0.4 at times

t = {0, 0.5, 1, 2, 5, 40} show formation of a smooth, rounded equilibrium geometry.

(b) Cross sections for Ca = 0.425 at times t = {0, 0.5, 1, 2, 5, 10, 12} show cusps

accompanying continuous extension. (c) Cross sections for the transient experiment

described in Figure 5.10 at times t = {24, 25, 26, 28, 30, 32, 34, 35} show a shape

transition to a cusped conformation accompanied by continuous extension. t = 24

is the time at which the capillary number was raised.
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extensional directions remains comparable for the strain-hardening capsules, but it

does not for the strain-softening capsules.

At flow rates Ca > 0.4 with Neohookean capsules, we have observed un-

bounded extension, with subsequent failure of the numerical method. We have

attempted to verify the continuous extension behavior we observe at larger flow

rates by using alternate surface grids, time step refinement, and also the stepping

experiment shown in Figure 5.10. The stepping experiment indicates that the con-

tinuous extension is not a result of the transient process, but it remains unclear

whether it represents a physical transition to a region of capillary numbers in which

no steady-state geometry exists, or merely a numerical artifact. Consider that in

the case of a steady-state geometry in an extensional flow, the boundary integral

equation simplifies

u∞(x0) =
1

8πµ

∮

S
∆f (x) · S(x,x0)dS (1)

All quantities in this expression, including u∞, ∆f , and S, are functions of

geometry x, but this geometry is now not known a priori. If continuous extension

actually occurs at higher flow rates, then we predict that, for the Neohookean law,

a solution for x should exist when Ca ≤ 0.4, but not when Ca > 0.4. Investigation

into this hypothesis could help to determine whether or not the continuous extension

process we have observed for Neohookean capsules represents a physical transition

in behavior, as opposed to a product of the numerical scheme employed.
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Chapter 6

Erythrocyte Deformation in a Simple

Shear Flow

In this chapter, we extend the SBE method to model an erythrocyte deforming

in shear flow. The SBE method for erythrocytes has been designed to address many

of the shortcomings of previous methods, and it produces solutions in excellent

agreement with experimental results. The results produced with our method also

supplement existing experimental results, many of which are incomplete due to

geometric constraints; SBE provides a truly three-dimensional picture of cellular

deformation in shear flow, over a range of flow rates and viscosity ratios.

6.1 Modeling the Erythrocyte

The resting geometry of an erythrocyte is not spherical, but in the shape of

a biconcave disc, pictured in Figure 6.1. Working with experimental observations

from interference microscopy, Evans and Fung gave the following empirical equation

to describe the half-thickness f(r) as a function of the radial distance r from the
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f(r)
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Figure 6.1: The biconcave disc geometry of a resting erythrocyte under physiological

conditions. r indicates the radial distance from the central axis of symmetry, and

f(r) the half-thickness at r. R0 is the radius of the largest cross-section of the

biconcave disc. This geometry is taken from the results of Evans and Fung [30].

central axis of symmetry [30]

f(r) =
1

2

[

1−
(

r

R0

)2
]

1

2

[

C0 + C2

(

r

R0

)2

+ C4

(

r

R0

)4
]

(1)

At physiological osmolarity (300 mO), R0 = 3.91 µm, C0 = 0.81 µm, C2 =

7.83 µm, and C4 = −4.39 µm. The surface area to volume ratio is high; excess

surface area means that, without bending resistance or some other factor, the surface

will buckle easily. At hypotonic osmolarity of 217 mO, the cells are swollen, and

the parameters become R0 = 3.80 µm, C0 = 2.10 µm, C2 = 7.58 µm, and C4 =

−5.59 µm. Because certain abnormal states including hereditary elliptocytosis and

spherocytosis are associated with a loss of membrane surface area, the surface area

to volume ratio for these swollen cells is representative of the pathological geometry

105



[56].

The erythrocyte membrane, discussed in Sections 1.1 and 2.4, is a complex,

multi-layered object. The plasma membrane is essentially a two-dimensional, in-

compressible fluid [9], but the spectrin skeleton exhibits shear resistance like a two-

dimensional elastic solid [39]. This raises the question whether, in constructing an

erythrocyte model, the interface should be represented as a liquid, a solid, or some

combination of the two.

If the interface is thought of as a two-dimensional fluid, then the erythrocyte

is being represented as a fluid vesicle. A basic fluid vesicle model, of the type

implemented by Zhou and Pozrikidis [90], by Kraus et al. [46], or by Sukumaran and

Seifert [85], characterizes the surface by a two-dimensional isotropic stress (surface

tension γ). Unlike in the case of a liquid droplet [88], the surface tension γ varies over

the surface; it is not known a priori. Rather, the distribution of γ on the surface must

be calculated so the area incompressibility condition is satisfied; that is, a surface

distribution for γ must be determined such that two-dimensional continuity ∇S ·u =

0 holds everywhere on the surface. Mathematically and computationally, this is a

much more difficult problem than determining the stress distribution resulting from

the known deformation of an elastic solid, as in Chapter 2. In the absence of

simplifications, one must solve for γ across the surface simultaneously with velocity

u. The three studies cited above restricted themselves to the case of a viscosity

ratio λ of unity in order to simplify the problem. Thus, these methods are not

reflective for the erythrocyte, either in vivo, where λ ≈ 5, or in the laboratory using

ektacytometry equipment, discussed in Section 6.3.1, where λ ≈ 0.1.
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On the other hand, treating the erythrocyte membrane as a two-dimensional

elastic solid, as we treated elastic capsules in previous chapters, also introduces

computational difficulties. The erythrocyte model of Pozrikidis [68], extended from

the elastic capsule model of Ramanujan and Pozrikidis [72], treats the membrane

in this way. The axisymmetric erythrocyte model of Secomb et al. is also of the

two-dimensional elastic solid type [75, 76, 77]. The basic numerical implementation

appears straightforward, and stable methods exist, including our own, and partic-

ularly for the case of negligible bending resistance. These approaches have proven

accurate and reliable for a range of artificial capsules. However, in the case of the

erythrocyte, the ratio of area dilatation to shear modulus is, as stated in Section 2.4,

approximately 104 − 105. The relative magnitudes of the shearing and area dilata-

tion resistances result in a stiff problem. That is, the dilatation tensions develop

over a short time scale, which requires a very small time step, but shearing tensions

develop over a long time scale, which necessitates a long simulation runtime. Previ-

ous investigators who used this approach for three-dimensional simulation weakened

these requirements by employing a much smaller moduli ratio than the true phys-

ical value (several orders of magnitude smaller) [68] in order to make the problem

computationally feasible.

Further, it is questionable to what extent either model is representative of

physical reality. The fluid vesicle model tends to miss key aspects of erythrocyte

membrane mechanics, like shear elasticity, and because it lacks correspondence with

any reference geometry, it also cannot account for erythrocyte shape memory. Ery-

throcyte shape memory was demonstrated by Fischer [33] when he showed that,
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after tank-treading, an erythrocyte will always reform its two dimples in the same

distinct loci on the membrane. However, the elastic solid model is not a completely

accurate model either. While the plasma membrane component of the erythrocyte

membrane is nearly area incompressible, it is essentially a two-dimensional fluid, not

an elastic solid. That is, the plasma membrane enforces overall area incompress-

ibility, but the phospholipid molecules can flow on the surface. Representing the

membrane as an elastic solid eliminates its fluid nature, and attempts to enforce not

only global area stability, but also local area incompressibility for every differential

elastic surface element, a much more stringent condition.

A final consideration in formulating an accurate and computationally amenable

model for the erythrocyte membrane is that, as discussed in Section 2.4, the erythro-

cyte membrane does exhibit measurable bending resistance, with reduced bending

modulus κ of 3.8×10−3 [73, 77]. This is not large enough to affect the overall cellu-

lar deformation [56], but it will prevent local buckling which could otherwise occur

under certain flow conditions. A realistic model for the erythrocyte membrane must

have a way of preventing localized buckling, although it will not necessarily do so

by representing explicitly the formation of bending moments.

6.2 Prestress and Adaptive Prestress for Area Incompress-

ibility

The mechanism by which the plasma membrane enforces area incompressibil-

ity is an isotropic surface stress. Such a stress can also be generated with an elastic
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Figure 6.2: The normalized surface area for a biconcave disc in shear flow with

two different levels of prestress, α = 0.05 and 0.10. Also displayed are the results

with adaptive prestress, which effectively maintains a constant surface area (Ca =

1.5, λ = 0.1, Skalak law, C = 1)
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element surface model. Applying a prestress, generated by shrinking or expand-

ing the elastic reference shape, without changing the current shape, will apply an

isotropic surface tension to an undeformed shape, and add a near-isotropic tension

to a deformed shape. Lac et al. employed using minor prestresses to represent el-

evated internal cell pressure [49]. They also used it to prevent local buckling, by

counteracting any local compressive tensions [50]. Thus they extended the range of

possible capillary numbers they could study with their numerical method.

We have applied prestress in combination with the Skalak material law (C = 1)

using the SBE method to demonstrate that it can also be used to enforce overall

area incompressibility. Following Lac et al. [49], we define the prestress parameter α

such that all lengths in the undeformed capsule would be scaled by (1+α), relative

to the reference shape. Thus, for α = 0.05, for instance, the undeformed capsule

would be 5% larger than the reference. Note that this is mathematically equivalent

to scaling the stretch ratios by (1 + α). Figure 6.2 shows the normalized change

in area over a short time for the cases of α = 0.05 and α = 0.10. It is apparent

that prestress counteracts the shearing forces in the flow, to dampen the initial area

rise. However, area oscillations of greater than 4 % are still observed for the larger

prestress. Further, as the simulation continues, the prestress causes contraction,

and the normalized area drops significantly below 1. Consequently, we decided to

implement an adaptive prestress algorithm. The goal was to adjust the prestress

continually throughout the numerical method, in order to achieve a constant surface

area. The algorithm is based on a standard discrete PID controller, with the output
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(prestress level) given by the control equation

αn = αn−1 + (Kp +Ki +Kd)en − (Kp + 2Kd)en−1 +Kden−2 (2)

The prestress αn is adjusted at each time step based on αn−1 from the previous

step, the current error en in surface area, and, for iterations after the initial two,

the error from the previous two steps en−1 and en−2. Kp, Ki, and Kd are the

proportional, integral, and derivative control parameters, respectively. Using the

parameter settings Kp = Ki = Kd = 1, we obtained excellent control performance,

so no attempt was made to tune the control parameters. Figure 6.2(c) shows that

the adaptive prestress method maintains a near-constant surface area for a biconcave

disc in shear flow. SBE with adaptive prestress produces a stable solution for the

erythrocyte deformation problem over a range of moderate capillary numbers. At

the capillary number shown, the adaptive prestress α is less than 15% throughout

the simulation. At a slightly higher capillary number, such as Ca = 2.25, α ≤ 20%

throughout the simulation.

Local area incompressibility enforced in a basic elastic model, as stated pre-

viously, does not allow the surface to flow as a fluid; rather, connected elements

are fixed to one another. By applying a prestress to the shape, which can change

such that the surface area remains constant, we allow local area changes in one

section of the membrane to compensate for complementary changes in other places.

This hybrid model retains the basic elastic element model to represent the spectrin

network, and enforces via prestress the area incompressibility aspect of the plasma

membrane. The prestress method also avoids creating a stiff problem, because all
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Figure 6.3: The cross section of the erythrocyte in the shear plane is shown at several

times early in the deformation to illustrate the shape transition from a biconcave

disc to an ellipsoid for Ca = 1.5 and λ = 0.1.

time scales are of the same order. An additional advantage is that prestress pre-

vents local buckling, thus fulfilling the role of bending resistance for a system like

the erythrocyte where the reduced bending modulus is very low.
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Figure 6.4: The geometry for the erythrocyte is shown slightly askew from the shear

plane at several times {t = 0, 0.2, 0.4, 0.6, 1, 2} early in the deformation to illustrate

the shape transition from a biconcave disc to an ellipsoid for Ca = 1.5 and λ = 0.1.
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Figure 6.5: An erythrocyte in a simple shear flow, Ca = 1.5 and λ = 0.1. (a)

The largest L and intermediate W normalized semi-axis lengths of the erythrocyte

oscillate over time. The smallest length S attains a steady-state and exhibits almost

no oscillation. (b) The orientation angle Φ shown as a function of time also oscillates.

(c) L (——), and the orientation angle Φ (-- -- --), shown over one period. The phase

lag is π/2, as predicted by Skotheim and Secomb [81].
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Figure 6.6: An erythrocyte in shear flow for Ca = 1.5 and λ = 0.1. (a) A cross-

section in the shear plane at times t = 13 (——), 15 (-- -- --), 17 (- - - -), and 19 (-- ·

--), representing one period of oscillation. By t = 21.5, not shown, the cross-section

matches t = 13 again. (b) The delineated region from (a) magnified. The arrow

indicates the direction of motion for the edge of the cross-sectional geometry. (c)

The geometry shown at these four times illustrates that the period of oscillation

corresponds to one-half of the tank-treading period.
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6.3 Results From the Erythrocyte Model

The results in this chapter represent an erythrocyte with physiological geomet-

ric parameters [30] suspended in a simple shear flow u∞ = G(z, 0, 0), as in Figure 1.1.

For all simulations, NE = 10 and NB = 12. The time step is ∆t = 5 × 10−4. As in

previous chapters, all reported times are normalized with the shear rate. The initial

position of the undeformed geometry is at an orientation angle Φ of 20 degrees in the

shear plane. Area incompressibility is enforced with the adaptive prestress method

described in Section 6.2. After an initial transient period, the erythrocyte assumes

an ellipsoidal conformation [55]. Once the shape is ellipsoidal, the semi-axis lengths

can be calculated accurately from the inertia tensor [48].

The transition from a biconcave disc to an ellipsoidal geometry happens from

t = 0 to t = 2. This transition is illustrated in Figures 6.3 and 6.4. Following

the transition, the erythrocyte tank-treads. However, unlike the case examined in

previous chapters, in which the reference shape is spherical, the biconcave reference

shape introduces periodic oscillations into the tensions produced as the deformed

erythrocyte tank-treads; the dimpled regions of the original biconcave geometry

deform differently than the edge regions as they pass around the surface contour.

Thus, at steady-state, the lengths L and W of the deformed erythrocyte oscillate,

as shown in Figure 6.5(a) for Ca = 1.5 and λ = 0.1, which is representative of the

experimental systems discussed later. Its width S, after an initial transient period,

exhibits minimal oscillation, remaining essentially fixed in time. The orientation

angle in the xz-plane also oscillates, shown in Figure 6.5(b). Orientation angle in
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the shear plane is calculated from the eigenvectors of the inertia tensor that lie in

that plane.

The period Π for the length and angle oscillations is the same, but there is

a phase lag. Figure 6.5(c) displays the orientation angle and the largest semi-axis

length, shown together over one period. The time length of the period is 8.4. The

time lag between the peaks is 2.1, giving a phase lag of π/2 between the angle and

length oscillations. This phase lag was predicted for erythrocytes in shear flow by

Skotheim and Secomb [81]. As observed by those authors, this phase lag was also

identified experimentally by Walter et al. for capsules with small deviations from

sphericity [87]. This suggests that the π/2 phase lag may not be specific to the

biconcave disc reference geometry, but rather may reflect deeper physical aspects of

the capsule deformation problem in the nonspherical case.

Abkarian et al. [1] recently described the oscillation of the orientation angle in

the plane of shear as a swinging motion. That is, the ellipsoid rocks back and forth

between the maximum and minimum orientation angle. However, our SBE results

reveal that the real dynamics are more complex. In Figures 6.6(a,b), we show the

cross section in the shear plane for the deformed shape. Because of the phase lag

between length and angle oscillations, the edge of the interfacial geometry traces

an approximately circular path, illustrated in Figure 6.6(b). Figure 6.6(c) shows

three dimensional images for the same times as in Figures 6.6(a,b). It is apparent

from the images that the oscillation period for the lengths and angle corresponds to

one-half of the tank-treading period, meaning that a material point moves halfway

around the cell surface during one complete length or angle oscillation.
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(a) (b)

Figure 6.7: (a) An erythrocyte extended in the parallel-plate device of Dobbe et al.

[27]. The erythrocyte is sheared between two parallel plates, and viewed from above

the top plate. (b) An erythrocyte modeled with the SBE method, viewed in the

xy-plane for one time instant (λ = 0.1, Ca = 1.5, t = 17).

6.3.1 Validation By Comparison To Ektacytometry

As discussed in Chapter 1, several diagnostic processes have been developed

which attempt to quantify the deformability of the erythrocyte by observing the

deformation behavior of individual cells, or average deformabilities for populations of

cells. For both a light diffraction ektacytometer [40] and a counter-rotating parallel

plate device [27], the flow pattern is a simple shear flow or a good approximation.

In these studies, the flow strength is usually reported as the wall shear stress σwall.

Letting a again be the characteristic length scale, an expression can then be derived

for the capillary number

Ca =
aσwall

Gs
(3)

Because of the geometry of the ektacytometry systems, the deformed erythro-
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cyte is not observed in the plane of shear. In our terminology, the plane of shear

is the xz-plane, and u∞ = G(z, 0, 0). Based on this definition, we can say that

ektacytometry observes the deformed erythrocyte projected as an ellipse into the

xy-plane, as illustrated in Figure 6.7. The deformation parameter computed from

the largest and smallest semi-axes of this ellipse, and reported by researchers using

ektacytometry, we will call Dxy. Because, as we have already seen, the erythrocyte

has shape oscillations in shear flow, it is obvious that the deformation parameter

from ektacytometry is averaged over time. Further, because this technique does not

follow individual cells, Dxy is also averaged over the erythrocyte population.

Figure 6.8 shows results from ektacytometry (dashed lines), compared with

data produced through the SBE method (solid line with data points) for the time-

averaged Dxy for a range of moderate capillary numbers with λ = 0.1. Note that

the viscosity ratio for ektacytometry systems usually ranges between 0.1 and 0.2.

The Dxy versus capillary number plots are visually indistinguishable for these two

viscosity ratios, so we feel comfortable comparing all ektacytometry data to the

case of λ = 0.1. Further discussion of the effect of viscosity ratio is presented in

Section 6.3.4.

The value for the shear modulus commonly reported in the literature, and

measured through micropipette aspiration, is Gs = 6×10−3 mN/m [56, 73, 77], but

we find that the capillary numbers calculated with this value need to be translated

along the x-axis. This suggests that the shear modulus we observe is somewhat

less than the reported value. Gs = 2.43 × 10−3 mN/m produces an excellent fit of

our data to the experimental results from Figure 6.8. The disparity between this
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Figure 6.8: Ektacytometry results (dashed lines) for Dxy reported by Hardeman

et al. [40], converted to the capillary number domain using either (a) Gs = 6 ×

10−3 mN/m or (b) Gs = 2.43 × 10−3 mN/m. Also displayed as a solid line with

data points is the average Dxy for the oscillatory solution produced by the SBE

method for λ = 0.1. Using Gs = 2.43 × 10−3 mN/m, there is excellent agreement

between the experimental and numerical results. For 1.25 ≤ Ca ≤ 2.25, our data

produces the regression line Dxy = 0.3663 log(Ca) + 0.1133 (R2 = 0.9999).
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value and the generally reported value of Gs = 6 × 10−3 mN/m bolsters the con-

tention of Fischer, Skalak, and coworkers that the erythrocyte shear modulus may

display strain dependent behavior [32]. The correspondence between our observa-

tions and previous experimental and theoretical predictions regarding erythrocyte

shear modulus will be discussed further in Section 6.4.

Using Gs = 2.43 × 10−3 mN/m, the SBE method captures two important

aspects of the relationship between Dxy and capillary number. First, the relation-

ship is logarithmic for this range of capillary numbers. Second, using a logscale for

capillary number, the SBE method produces a slope consistent with experimental

results. Note that the logarithmic behavior is not observed for droplets or for spher-

ical capsules. To the best of our knowledge, no previous numerical model has been

able to reproduce real ektacytometry data.

6.3.2 The Deformability Distribution

In ektacytometry, the entire population is averaged together by the light scat-

tering process. Because the cells are not synchronized, this also averages cellu-

lar deformation over the oscillation period. The second experimental setup, the

counter-rotating parallel plate device, was designed by Dobbe et al. [27] to study

the deformability differences within a population of erythrocytes. Note that they

retain the geometric orientation of ektacytometry; that is, they still view the ery-

throcyte as an ellipse projected into the xy-plane. The viscosity ratio is consistent

with ektacytometry, and the mean deformabilities they observed are consistent with
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Capillary Number Dxy Range

1.25 0.127

1.50 0.128

1.75 0.128

2.00 0.127

2.25 0.126

Dobbe 95 % Interval 0.168

Table 6.1: Dxy range for the SBE solution, determined from the data points in

Figure 6.8. Range, calculated as maximum minus minimum Dxy, is essentially

unchanged over this set of capillary numbers. Also shown is range computed from

Table 3 by Dobbe et al. [27], using two standard deviations around the mean. The

time oscillations can account for much of the experimentally observed variation.
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ektacytometry [40]. Dobbe et al. designed their experiments so that they can cap-

ture data about individual erythrocytes within a population, but they do not follow

or monitor individual cells over time. They compiled their results to produce de-

formability distributions for different shear stresses.

However, Dobbe et al. attribute the range of deformabilities they observe to

inherent differences among the cells themselves. While these differences may exist,

we have already observed that the deformation parameter for a single cell in shear

flow oscillates over time. Dobbe et al. observe many cells, but they do not follow

individual cells over time. It is possible therefore that some of the variation they

observe is due to the oscillatory steady-state behavior. To examine the possible con-

tribution of the oscillation to the range observed in the deformability distributions,

we display in Table 6.1 the range, maximum Dxy minus minimum Dxy, computed

for each SBE data point from Figure 6.8. The range is essentially constant over this

set of capillary numbers.

Dobbe et al. display in their Figure 3 and Table 4 results for a shear stress of

3 Pa, corresponding to Ca ≈ 3.5, slightly above our upper limit for this viscosity

ratio, but close enough so that the relative magnitudes of the deformability range

can still be compared. Using the reported mean and standard deviation, we estimate

a range for two standard deviations around the mean of 0.168 for the experimen-

tal results. The range produced by oscillation alone, with no inherent differences

between erythrocytes within a population, is therefore 76% of the experimentally

observed range. This indicates that the oscillation has a larger contribution to the

range of deformabilities observed than was previously appreciated. Any researchers
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who wish to study inherent differences between erythrocytes within a population in

the future must therefore devise a way of monitoring individual cells over time.

6.3.3 Effects of the Flow Strength

As discussed in the comparison to ektacytometry experiments in Section 6.3.1,

the deformation parameter Dxy increases logarithmically with capillary number over

the range of capillary numbers we observed. However, because the geometry is

projected into the xy-plane, this gives only limited information about how the actual

three-dimensional shape changes. The SBE method provides an opportunity to

address through simulation this shortcoming of the experimental technique.

Figure 6.9(a) shows the semi-axis lengths from the inertia tensor, averaged

over time for the steady-state solution, as a function of capillary number. Like the

behavior observed with Dxy, the lengths change logarithmically over this range of

capillary numbers. Again, this is consistent with experiments, but unlike the case

with a spherical reference geometry. As expected, the largest semi-axis length L

increases with capillary number, as the shear flow extends the cell. However, with

the biconcave disc, the intermediate length W decreases with capillary number,

and almost no change at all is observed in the smallest semi-axis length S. This

is qualitatively different behavior from the spherical reference shape case, in which

major changes were observed in the magnitude of the smallest length, and minor

changes in the intermediate length. With a biconcave disc geometry, the thickness

of the cell is essentially fixed, and does not change as a stronger flow extends the
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Figure 6.9: Erythrocyte deformation dynamics as a function of capillary number for

λ = 0.1. (a) The normalized semi-axis lengths, averaged over time for the steady-

state solution, as a function of capillary number. Like the Dxy behavior observed

in Figure 6.8, the lengths change logarithmically with capillary number over this

range. The regression lines are L = 0.4475 log(Ca) + 1.2685 (R2 = 0.9996), and

W = −0.3264 log(Ca) + 0.9340 (R2 = −0.9999). S is essentially constant. (b) The

maximum, time-averaged, and minimum orientation angles Φ decrease with capillary

number. (c) The amplitude of the angle oscillations ∆Φ, defined as (Φmax −Φmin),

decreases with capillary number.
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Figure 6.10: The oscillation period Π increases linearly with viscosity ratio λ, as

illustrated for Ca = 1.5. The regression line is P = 5.11λ+ 7.92 (R2 = 0.9999).

cell.

The maximum, average, and minimum orientation angles decrease slightly with

capillary number, as shown in Figure 6.9(b). The magnitude of the change over the

range of capillary numbers we observed is less than the amplitude of the orientation

angle oscillations. The amplitude of these oscillations also decreases with capillary

number, shown in Figure 6.9(c). Increasing the flow rate appears to dampen the

motion described by Abkarian et al. as swinging [1].
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Figure 6.11: Erythrocyte deformation dynamics as a function of viscosity ratio.

(a) The normalized semi-axis lengths for Ca = 2 averaged over time as a function

of viscosity ratio. L (L = −0.0765 Ca + 1.4096; R2 = −0.9913) and W (L =

0.0661 Ca+0.7707; R2 = 0.9957) decrease and increase, respectively, with increasing

λ. S is essentially unchanged. (b) The time-average orientation angle Φ as a function

of λ for Ca = 1.5 and Ca = 2.5. The orientation angle decreases much more

rapidly with λ than with Ca (Figure 6.9(b)). (c) The range of the orientation angle

oscillation ∆Φ shown as a function of λ for Ca = 1.5 and Ca = 2.5. Higher viscosity

ratios dampen the orientation angle oscillation.
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6.3.4 Effects of the Viscosity Ratio

The majority of experimental systems like ektacytometry operate in the range

0.1 < λ < 0.2. Yet, the physiological value for a healthy human subject is closer to

λ ≈ 5 [56]. Therefore, here we use the SBE method to study the effect of increasing

viscosity ratio on the erythrocyte deformation behavior. It is well known that at high

viscosity ratio in shear flow erythrocytes transition from tank-treading to tumbling

[1, 68, 81]. Our goal therefore is to examine the changes that occur first within the

tank-treading regime, and then as the transition to tumbling occurs.

First, because the time scale for the flow increases with viscosity ratio, the

tank-treading period Π also increases with viscosity ratio. Figure 6.10 shows that

the relationship between Π and λ is linear. Also apparent from the figure, as λ

approaches zero, the period approaches a minimum period of approximately 7.9.

The average lengths of the erythrocyte, shown in Figure 6.11(a), show that,

at constant flow rate, the cell becomes less deformed as the viscosity ratio increases.

That is, when λ increases, the largest semi-axis L contracts, and the intermediate

one W grows. As in the case of increasing capillary number, the smallest semi-axis

changes only minimally. It appears fixed with viscosity ratio, just as it was fixed

with both time and capillary number. The average orientation angle Φ decreases

with the viscosity ratio, as observed in Figure 6.11(b), and the extent of the decrease

is much greater than was observed with increasing capillary number over the range

of capillary numbers shown in Figure 6.9(b). Increasing the viscosity ratio also

dampens the angle oscillation, or swinging motion, as seen in Figure 6.11(c). The
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overall effect is to bring the ellipsoid in the shear plane closer and closer to the

horizontal orientation as λ increases.

It is well-known that the erythrocyte undergoes a transition from tank-treading

to tumbling at high viscosity ratios [81]. However, the mechanisms of this transi-

tion remain unclear. With the knowledge that the orientation angle decreases with

increasing viscosity ratio (Figure 6.11(b,c)), our results suggest that, as the viscos-

ity ratio increases, the cell swings closer to the horizontal axis. Eventually, it may

reach a tipping point, beyond which it cannot return to the tank-treading orienta-

tion, and so it begins to rotate as a rigid body. The transition from tank-treading

and swinging to tumbling can be observed in Figure 6.12. Here, using a capillary

number of Ca = 2, the orientation angle is shown as a function of time for viscosity

ratios λ = 0.1, 1, 2, and 5. For the smallest three viscosity ratios, the angle begins to

oscillate around an average value. As the viscosity ratio increases, the average value

drops. The evolution of the angle in the case of λ = 5 begins similarly, but now

the average angle has dropped to such an extent that the angle becomes less than

zero. In this case, the geometry of the shear flow ensures that, instead of returning,

it continues to rotate. Thus the cell tumbles.

6.4 Conclusions Regarding Erythrocyte Modeling with SBE

In this chapter, the SBE method for elastic capsules has been extended by

using prestress to enforce area incompressibility. This implementation of SBE, when

applied to biconcave discoid initial and reference geometries, accurately reproduces
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Figure 6.12: The orientation angle Φ in the shear plane for Ca = 2 as a function of

time. (a) Shown over one period for λ = 1 and λ = 0.1 illustrates that increasing the

viscosity ratio decreases the average angle, dampens the oscillation, and increases

the oscillation period. (b) Examining the initial behavior of the angle with viscosity

ratio λ = 0.1, 1, 2, 5, these trends continue, eventually resulting in the transition

from tank-treading and swinging to tumbling.
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experimental data for erythrocyte deformation in an ektacytometer. To the best

of our knowledge, no previous numerical method has been able to reproduce real

ektacytometry data.

The SBE method allows analysis of the deformation dynamics beyond the geo-

metric constraints inherent in ektacytometry and other experimental techniques. It

allows true visualization of the three-dimensional oscillatory behavior over a range

of capillary numbers and viscosity ratios. Several conclusions can be drawn. First,

because the flow is oscillatory, much of the variation observed in parallel-plate vis-

cometry systems [27] could be due not merely to differences between individual cells,

but also to the time-variant oscillatory behavior described by Abkarian et al. [1] as

swinging. To verify this experimentally, it would be necessary to track and monitor

individual cells over time.

Second, the SBE method demonstrates that the smallest dimension S of the

tank-treading erythrocyte, which exists in the shear plane, is invariant in time,

capillary number, and viscosity ratio. Therefore, the shape changes observed as time

oscillations, and also the changes with capillary number and viscosity ratio, occur

with respect to L and W . Fixed S behavior has not been previously observed with

spherical elastic capsules or droplets, and appears to be a result of the biconcave

disc reference geometry. S has a normalized magnitude of approximately 0.32,

corresponding to a real cell thickness of 2.5 µm. It is interesting the note that this

value is only slightly less than constrictions commonly observed in the capillary,

which can often be as small as 4 µm in diameter [77].

Third, by studying the deformation behavior with increasing viscosity ratio,
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the SBE method has elucidated linkages between the orientation of the erythrocyte

in the shear plane and the transition to tumbling. In particular, we show that

tumbling is not a radically new behavior which suddenly appears at higher viscosity

ratios. Rather, it is an extension of a trend observed with increasing viscosity ratio;

the maximum, average, and minimum orientation angles decrease with increasing

viscosity ratio. Because the minimum angle cannot decrease below zero and return

to a positive angle orientation, the cell reaches a tipping point, and begins tumbling.

Finally, the value of erythrocyte surface shear modulus Gs measured through

micropipette aspiration and most commonly reported in the literature is Gs = 6 ×

10−3 mN/m [56, 73, 77]. Years ago, Fischer, Skalak, and coworkers [32] noted

that this experimental technique only produces stretch ratios λα in the range of

2-4, and predicted that Gs decreases at smaller shear deformations. Fischer et al.

suggested a value of Gs = 2 × 10−3 mN/m for stretch ratios λα ≈ 1.3, assuming

a biconcave disc unstressed configuration (It has since been confirmed that the

biconcave disc shape is indeed unstressed [33]). Our comparison to ektacytometry

data from Hardeman et al. [40], shown in Figure 6.8, indicates that the surface shear

modulus Gs which fits the experimental data to the results from SBE modeling is

Gs = 2.43×10−3 mN/m, remarkably close to the prediction made by Fischer et al..

Recent work by Abkarian et al. also derived an erythrocyte shear modulus less than

the value obtained through aspiration [1]. Together, their analysis and our own

support the hypothesis of Fischer and coworkers that the shear modulus is strain-

dependent, and that it reduces at small deformations.
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Chapter 7

Additional Erythrocyte Investigations

In Chapter 6, the Spectral Boundary Element method was extended via a novel

implementation of membrane prestress to model the erythrocyte. Over a range of

moderate capillary numbers, the extended SBE method produces an oscillatory so-

lution for erythrocyte deformation in a linear shear flow. As shown in Figure 6.8,

the results were in excellent agreement with experimental data from ektacytometry.

The simulation allowed us to go beyond the geometric limitations of past exper-

imental systems to examine the complete three-dimensional deformation behavior

of erythrocytes in shear flow. In this chapter, we study two additional problems:

1) erythrocyte deformation in a planar extensional flow, and 2) the deformation of

swollen erythrocytes in shear flow, as compared to normal, healthy cells.

All results presented in this chapter were produced via the SBE erythrocyte

model from Chapter 6. In all cases, NE = 10 and NB = 12. The time step is

∆t = 5× 10−4.

133



0

-1 -0.5 0 0.5 1

y
/R

0

x/R0

t = 0 0

-1 -0.5 0 0.5 1

y
/R

0

x/R0

t = 0.2

0

-1 -0.5 0 0.5 1

y
/R

0

x/R0

t = 0.4 0

-1 -0.5 0 0.5 1

y
/R

0

x/R0

t = 0.6

0

-1 -0.5 0 0.5 1

y
/R

0

x/R0

t = 1.0 0

-1 -0.5 0 0.5 1

y
/R

0

x/R0

t = 2.0

Figure 7.1: The cross section of the erythrocyte in the extensional plane is shown

at several times early in the deformation to illustrate the shape transition from a

biconcave disc to an ellipsoid for Ca = 0.2 and λ = 1.
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Figure 7.2: The geometry of the erythrocyte is shown slightly askew from the ex-

tensional plane at several times {t = 0, 0.2, 0.4, 0.6, 1, 2} early in the deformation

to illustrate the shape transition from a biconcave disc to an ellipsoid for Ca = 0.2

and λ = 1.

7.1 Erythrocytes in a Planar Extensional Flow

The first set of experiments investigate the behavior of an erythrocyte de-

forming in a planar extensional flow field. This flow pattern, shown in Figure 4.1,

was previously examined with elastic, spherical capsules in Chapters 4 and 5. We

observe that the erythrocyte loses its biconcave disc shape, and transitions to an

ellipsoidal conformation, even at low flow rates. This transition is illustrated for

Ca = 0.2 in Figures 7.1 and 7.2. Therefore, like in the shear flow erythrocyte stud-

ies of Chapter 6, length values calculated via the inertia tensor accurately reflect

the real semi-axis lengths after an initial transient period.

Figure 7.3 shows the normalized semi-axes length L, width S, and depth W

as a function of time for several capillary numbers. The capillary numbers chosen
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Figure 7.3: Erythrocyte deformation in an extensional flow as a function of time.

Semi-axis lengths (a) L, (b) S, and (c) W are shown as a function of time.
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Figure 7.4: Erythrocyte deformation in an extensional flow as a function of capillary

number. (a) Deformation D, and normalized semi-axis lengths (b) L, (c) S, and (d)

W . The overall deformation D plateaus near Ca = 2. The rate of change for L and

W slows down with increasing capillary number, suggesting they may also reach an

upper limit at higher capillary numbers.
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are Ca = 0.2, representative of weak flows, Ca = 1, a moderate flow rate, and

Ca = 3.75, a strong flow near the upper stability limit for our method. Over

this range of capillary numbers, the SBE method reaches a stable, steady-state

configuration. Because of the area incompressibility condition enforced via prestress,

no cusped shapes are observed analogous to the tips seen with spherical, Skalak

capsules.

The trends with capillary number of the semi-axes and the deformation D are

shown in Figure 7.4. The deformation parameter D, in Figure 7.4(a) appears to

reach an asymptotic limit of approximately D ≈ 0.67 for Ca ≥ 2. The erythrocyte

length L increases monotonically, as shown in Figure 7.4(b). The shape of the curve

indicates that it may also be approaching an asymptotic limit, but unfortunately

the present method is unable to verify this. The thickness S changes slightly (Fig-

ure 7.4(c)), while the depth W decreases monotonically, as shown in Figure 7.4(d);

like L, the depth W may be approaching a limit at high flow rates.

Comparing the behavior of erythrocytes in the two different flow patterns for

which we have results, i.e. a simple shear flow and a planar hyperbolic extensional

flow, certain differences are obvious; in shear flow, the erythrocyte tank-treads, and

the lengths oscillate, while in extensional flow, the undisturbed flow field lacks a

rotational component, and therefore there is no rotation or oscillatory behavior in

the solution. However, in both flow fields, the erythrocyte assumes an ellipsoidal

geometry under proper flow conditions. We therefore decided to study how the

semi-axes of these ellipsoids relate to one another, for the two different flow fields.

Figure 7.5(a) shows the smallest semi-axis length S as a function of the largest
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Figure 7.5: (a) For the shear flow results presented in Chapter 6, the smallest

semi-axis S is shown as a function of the largest semi-axis L over one period of

oscillation for several capillary numbers. Because the erythrocyte response to the

flow is oscillatory, the graph produces a closed loop. (b) The shear flow results

(solid line) from (a) are shown along with the steady-state S versus L values for

erythrocytes in a planar extensional flow (dotted line).
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Figure 7.6: (a) For the shear flow results presented in Chapter 6, intermediate

semi-axis W is shown as a function of the largest semi-axis L over one period of

oscillation for several capillary numbers. Like Figure 7.5(a), these shear flow results

are a closed loop, but they appear as lines because the W versus L data retraces the

same path twice during one period of oscillation. (b) The shear flow results (solid

line) for W as a function of L from (a) are shown along with the steady-state W

versus L values for erythrocytes in a planar extensional flow (dotted line).
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length L for an erythrocyte in shear flow from Chapter 6, plotted over one period

of oscillation for several sets of parameters. Because the semi-axis lengths of an

erythrocyte oscillate in shear flow, as shown in Figure 6.5(a), plotting S as a func-

tion of L produces a closed loop in each case. Figure 7.5(b) shows the shear flow

results (solid line) from Figure 7.5(a) along with data for the steady-state results

for erythrocytes in a planar extensional flow (dotted line). The data sets for the

steady-state behavior for extensional flow and the transient, oscillatory behavior for

shear flow are seen to overlap, with similar magnitudes and trends.

Figure 7.6 repeats this analysis for W as a function of L. Figure 7.6(a) shows

W as a function of L for shear flow, plotted over one period of oscillation for the

same sets of parameters as in Figure 7.5(a). These appear more as lines than loops,

because the path in the second half of an oscillation period is essentially the reverse of

the path traveled in the first half forW considered as a function of L. The shear flow

results are shown along with extensional flow steady-state results in Figure 7.6(b),

and once again the results for shear flow over one period of oscillation are congruent

with the extensional flow steady-state results.

Finally, we examined the ratio S/W as a function of extension L. Figure 7.7

shows this ratio for the range of capillary numbers we have studied. The ratio in-

creases towards 1 at large extensions, indicating that the cross-section perpendicular

to the direction of extension is becoming more circular.
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7.1.1 Erythrocytes in Extensional Flow Conclusions

Comparing the magnitudes of the shortest S and intermediate W semi-axis

lengths, relative to the longest L, as we do in Figures 7.5 and 7.6, suggests that

the set of possible geometric conformations that can be produced via flow-induced

deformation is limited. That is, given a value for L, the values of S and W are

largely predetermined. This is particularly true for the intermediate length W .

It is also clear that S, which in the shear flow investigations of Chapter 6 was

thought to be constant, actually does change at larger cellular extensions. Based

on our observations in this chapter, we predict that S would increase at larger

shear-induced deformations than we were able to produce in Chapter 6. We further

predict, based on examining the ratio S/W , that the cross-section perpendicular to

the largest semi-axis length will become more circular at large extensions.

These conclusions indicate that the flow pattern used to investigate the flow-

induced deformation of an erythrocyte may be largely irrelevant. This agrees with

the finding of Shin et al., displayed in their Figure 5, that the cellular deformation

for erythrocytes in microchannel systems is approximately the same as that in shear

flow systems at the same wall shear stress [78]. This information is advantageous for

experimental researchers, because it indicates that the information that could be ob-

tained from large-deformation investigations in an extensional flow may be obtained

equally well by continued investigation in shear flow systems. This is important be-

cause extensional flow experiments at high flow rates are technically difficult due

to the instability of the central stagnation point [18]. Shear flow experiments with
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erythrocytes, in contrast, have a long and successful history [11, 12, 27, 28, 40].

7.2 Deformation of Swollen Erythrocytes in Shear Flow

Here we have investigated the deformation of osmotically swollen erythrocytes

in a simple shear flow u∞ = G(z, 0, 0). We have used the geometric parameters

R0 = 3.80 µm, C0 = 2.10 µm, C2 = 7.58 µm, and C4 = −5.59 µm, which are

representative of a hypotonic osmolarity of 217 mO [30].

The primary effect of swelling on the undisturbed shape is to increase the

thickness, while leaving R0 mostly unaffected. This effect is preserved in the de-

formed shape. Figure 7.8(a) shows the normalized semi-axis lengths for a swollen

erythrocyte with Ca = 1.5 and λ = 0.1, with the results for a normal erythrocytes

shown as dotted lines for purposes of comparison. Although the period Π and phase

are slightly different for lengths L andW , the swelling appears to have only marginal

affect on the average magnitude and amplitude of oscillation for these two semi-axis

lengths. The swelling does increase S significantly, although it still exhibits little

oscillation in time. The second major effect of the swelling, besides increasing S,

is to increase the orientation angle Φ compared to that of normal cells, as seen in

Figure 7.8(b). The amplitude of the angle oscillation also increases slightly.

Figure 7.9 show the semi-axis lengths, angle Φ, and the amplitude of the angle

oscillation over a range of capillary numbers for λ = 0.1. It is immediately apparent

that the swelling broadens the range of capillary numbers for which our method

produces a stable oscillatory solution at this viscosity ratio, and this is because the
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Figure 7.8: A swollen erythrocyte (solid lines) deforming in a shear flow for Ca = 1.5,

λ = 0.1. The results from Chapter 6 for a physiologically normal cell (dotted lines)

at the same parameters are also shown for purposes of comparison. (a) Normalized

semi-axis lengths L, W , and S are shown as a function of time. (b) The orientation

angle Φ for the swollen (solid line) and normal (dotted line) erythrocytes are shown

as a function of time.
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Figure 7.9: Deformation of swollen (solid lines) and normal (dotted lines) cells as

a function of capillary number for λ = 0.1, chosen to study pure tank-treading

behavior. (a) Normalized semi-axis lengths L, W , and S, b) the orientation angle

Φ, and (c) the amplitude of angle oscillation, defined as (Φmax − Φmin).
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Figure 7.10: The oscillation periods Π for swollen (solid line) and normal (dotted

line) erythrocytes are shown as a function of viscosity ratio λ for Ca = 2.

decreased surface area to volume ratio makes the formation of surface instabilities

less likely. For the normal cells, with λ = 0.1, the SBE method for erythrocytes

produces stable solutions for the range 1.25 ≤ Ca ≤ 2.25, while for the swollen cells

under similar conditions, the method is stable for 0.75 ≤ Ca ≤ 3. The trends of

all three semi-axis lengths appear similar, as seen in Figure 7.9(a), but the smallest

length, as seen previously in Figure 7.8(a), is increased in the swollen cells compared

to the normal cells. The orientation angle Φ and amplitude of angle oscillation also

increase over the entire range of capillary numbers relative to normal cells, as seen

in Figures 7.9(b,c).

147



We have observed already from Figure 7.8(a) that the swollen cells have a

slightly different oscillation period Π. To examine this more closely, we plot Π as

a function of viscosity ratio λ for Ca = 2 for both swollen and normal cells in

Figure 7.10. The results indicate that the swelling has two effects on the oscillation

period; first, it lowers the low-viscosity limit for oscillation period, which in this

figure is represented by the y-axis intercept, and second, it lowers the slope, the

rate at which period increases with increasing λ. The phase lag between length and

orientation angle Φ oscillations, not shown, remains π/2, as observed with normal

cells in Chapter 6 and predicted by Skotheim and Secomb [81].

The trends for the swollen cells with increasing viscosity ratio λ are shown

in Figure 7.11(a-c), with respect to semi-axis lengths, angle Φ, and amplitude of

Φ oscillation. For the most part, the trends here also appear to follow the trends

for the normal cells, with elevated S, Φ, and amplitude of Φ oscillation. The low-

viscosity limit of L for the swollen cells is slightly depressed compared to the normal

cells, and W increases slightly slower with increasing λ for the swollen cells.

7.2.1 Swollen Erythrocyte Conclusions

Several disease states are associated with a change in the surface area to volume

ratio of the erythrocytes, including hereditary elliptocytosis and spherocytosis [38,

56]. It is well known that the deformability of affected erythrocytes is reduced in

experimental systems including ektacytometry [20] and parallel plate shearing [27].

Similar effects can be observed by treating the erythrocytes with thermal [41, 55] or
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Figure 7.11: Erythrocyte deformation for swollen (solid lines) and normal (dotted

lines) cells is examined as a function of viscosity ratio λ for Ca = 2. (a) Normalized

semi-axis lengths L, W , and S, (b) the orientation angle Φ and (c) the amplitude

of angle oscillation, defined as (Φmax − Φmin).
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chemical means [14]. However, in the disease states, both the surface area to volume

ratio and the membrane mechanical properties are affected [56]; it is not clear if one

or the other is primarily responsible for the decreased erythrocyte deformability.

Our results in this section demonstrate that erythrocytes with elevated surface

area to volume ratios have increased thickness S, but show minimal change in lengths

L and W . Since L and W are most closely related to the lengths observed in

these experimental systems, this suggests that the swelling has little effect on the

cellular dimensions observed in the experimental geometries. Figure 7.12 shows

the deformation parameter Dxy, as it would be observed in ektacytometry, for the

swollen cells, compared to the results for normal cells presented in Figure 6.8 in

Chapter 6. While the deformability for each capillary number is slightly depressed

for the swollen cells, compared to the normal cells, the differences in deformability

are minor. In contrast, Chasis and Mohandas, in their Figure 8, observed that

elliptocytotic cells had a deformability of only 10 % of the value for a normal, healthy

erythrocyte [20]. Figure 7.12 demonstrates that swelling alone cannot produce such

affects, which suggests that the altered membrane mechanics play a greater role in

reducing cellular deformability than does the cellular swelling.

151



Chapter 8

Conclusions

The capsule deformation problem is found in many scientific and engineer-

ing applications including pharmaceuticals, adhesives, cosmetics, and insecticides

[17, 21, 45, 61, 87], and in biological systems such as the erythrocyte, which also

consists of a liquid core enclosed by a deformable outer shell [56]. Like an emulsion or

a suspension of solid particles, a capsule suspension can exhibit complex viscoelastic

flow behavior as a result of the capsule micro-rheology [72]. For instance, the tank-

treading motion of erythrocytes first observed by Schmid-Schönbein and Wells [74]

is a contributing factor to the shear-thinning behavior of blood [9, 13]. Understand-

ing or controlling flow applications involving these capsules or capsule suspensions

requires a comprehension of the behavior of fluid-filled capsules in ambient flow, and

the response of these capsules to various flow conditions.

The dynamic behavior of an object such as an elastic capsule or an erythrocyte

is a fluid mechanics problem coupled to an elastic solid mechanics problem [66]. In

this work, we have investigated the flow-induced deformation dynamics of elastic

capsules and erythrocytes using the Spectral Boundary Element (SBE) method,

which we have developed for interfacial dynamics of elastic shells with shearing and

area-dilatation tensions in Stokes flow. This numerical method, originally designed
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for fixed boundary Stokes flow computations [42, 57, 59] and later extended for the

deformation of viscous droplets [88], has excellent geometric versatility, and is more

robust than previous methods. By using the boundary integral formulation, we

avoid creating a large dense system as required for spectral methods used in volume

discretization. The SBE algorithm also preserves the exponential convergence in the

numerical accuracy as the number of spectral points increases, which is the primary

advantage of spectral methods. The accuracy of the method and the associated

exponential convergence have been demonstrated for the calculation of the geometric

properties of a fixed-boundary interface, such as the interfacial curvature, as well as

the dynamic evolution of the interfacial shape.

In a planar extensional flow, our investigations have revealed a shape tran-

sition for strain-hardening Skalak capsules to a cusped conformation at high flow

rates which occurs due to the appearance of compressive tensions near the cap-

sule edges. The transition from spindled to cusped shapes allows the capsule to

withstand the hydrodynamic forces at higher flow rates, similar to cusp formation

with low-viscosity drops or bubbles in strong extensional Stokes flows [16]. These

cusped geometries have been observed experimentally [6], and further results should

be experimentally attainable; for mm-size capsules made from aminomethacrylate

membranes with shearing modulus Gs = O(10−2) N/m, flow rates Ca = O(1) re-

quires shear stress µG = O(10) Pa [61]. Our computational method also reveals a

region of bifurcation at high capillary numbers, in which both spindled and cusped

equilibrium geometries can exist for a single flow rate. Adjusting the viscosity ratio

λ raises or lowers the lower limit of the bifurcation region. This suggests that cusp
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formation could be controlled or eliminated through manipulation of the viscosity

ratio. The large values of the edge curvature for spindled and, more importantly, for

cusped capsules, along with the fact that the membrane tensions are complicated

functions of the interfacial geometry, clearly indicate the need for a highly-accurate

computational methodology (such as our interfacial spectral algorithm) for the ac-

curate determination of membrane dynamics in strong flows.

In contrast to Skalak capsules, which are strain-hardening, the strain-softening

Neohookean capsules we examined become highly extended at much weaker flow

rates, but no formation of steady-state cusped shapes is observed. The geometries

of the extended Neohookean capsules are also less rounded, and more lamellar,

compared to the shapes of the Skalak capsules. We have contrasted the strain-

hardening versus the strain-softening behavior by examining the membrane tension

over the entire range of capsule extension for the two membrane types, and observed

a linear increase in tension for the Neohookean capsule, but a much greater increase

for the Skalak capsule.

In addition to studying elastic capsules, we have also adapted the SBE method

to model erythrocytes by using a biconcave disc reference geometry and adaptive

prestress to enforce area incompressibility. This implementation of SBE accurately

reproduces experimental data for erythrocyte deformation in an ektacytometer, and

is, to the best of our knowledge, the first numerical method to do so. The SBE

method allows examination of the erythrocyte deformation beyond the geometric

constraints inherent in ektacytometry and other experimental techniques, including

observation of the three-dimensional oscillatory behavior over a range of capillary
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numbers and viscosity ratios.

Our results support a prediction by Fischer, Skalak, and coworkers [32] that

the erythrocyte shear modulus decreases at small shear deformations. Other re-

cent experimental results also support the idea that the shear modulus decreases

at small deformations [1]. Additional conclusions regarding deformation of healthy

erythrocytes deforming in shear flow include that much of the variation observed

in parallel-plate viscometry systems [27] may be due to the time-variant oscillatory

behavior we observe, and that the transition to tumbling at high viscosity ratio rep-

resents not a new behavior, but a continuation of the trend of decreasing orientation

angle with increasing viscosity ratio.

The extended SBE method for erythrocytes was also employed to study the

deformation of erythrocytes in a planar extensional flow, and the shear-induced de-

formation of osmotically swollen erythrocytes. In the extensional flow studies, the

erythrocyte transitions to an ellipsoidal conformation at both low and high cap-

illary numbers. We observed that the semi-axis lengths, relative to one another,

are largely independent of the flow pattern. That is, the smallest and intermediate

lengths depend only on the largest length L, which represents the overall cellular

extension. This is consistent with the findings of previous investigators that ery-

throcyte deformation in microchannel systems is approximately the same as that

in shear flow systems at the same wall shear stress [78], and suggests that similar

cellular deformability data can be derived equally well deforming the cell in geomet-

rically simple flow systems, as opposed to flow setups that may require complicated

control systems.
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Regarding swollen erythrocytes, our results show that changes in the surface

area to volume ratio, as observed in osmotic swelling [30] or disease states [38, 56],

primarily affect the smallest semi-axis length of the ellipsoid, which is the thickness

of the tank-treading erythrocyte. Swelling also increases the angle of inclination in

the shear plane. Little effect is seen on the largest or intermediate lengths of the

deformed geometry. Because these lengths determine the geometry when viewed in

experimental systems like ektacytometry, our results predict only minor differences

between normal and osmotically swollen erythrocytes, as reflected in Figure 7.12.

This suggests that for disease states like hereditary elliptocytosis, where the de-

formability of abnormal cells is only 10 % of the deformability for cells from healthy

patients, the primary factor reducing the deformability is changes in the membrane

mechanics, and not the altered surface area to volume ratio.

The Spectral Boundary Element method has in the recent past proven its ef-

fectiveness for fixed boundary computations [42, 57, 59], interfacial dynamics for

viscous droplets [88], and now flow-induced capsule deformation. The spatial dis-

cretization allows accurate computation of surface quantities, including curvature

and membrane tensions, which makes it more robust compared to previous low-order

numerical methods for capsule deformation. With elastic capsules, it has revealed

and characterized a process of cusp formation and shape bifurcation at high flow

rates. Studying erythrocytes, the method produces results in excellent agreement

with experimental results for erythrocyte deformation in shear flow, and it has al-

lowed us to go beyond the geometric limitations of the experimental systems to

study the three-dimensional geometry of the deforming erythrocyte in its entirety.
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