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A decision-maker, when faced with a limited and fixed budget to collect data in support of
a multiple attribute selection decision, must decide how many samples to observe from
each alternative and attribute. This allocation decision is of particular importance when the
information gained leads to uncertain estimates of the attribute values as with sample data
collected from observations such as measurements, experimental evaluations, or simula-
tion runs. For example, when the U.S. Department of Homeland Security must decide upon
a radiation detection system to acquire, a number of performance attributes are of interest
and must be measured in order to characterize each of the considered systems. We identi-
fied and evaluated several approaches to incorporate the uncertainty in the attribute value
estimates into a normative model for a multiple attribute selection decision. Assuming an

additive multiple attribute value model, we demonstrated the idea of propagating the at-



tribute value uncertainty and describing the decision values for each alternative as proba-
bility distributions. These distributions were used to select an alternative. With the goal of
maximizing the probability of correct selection we developed and evaluated, under several
different sets of assumptions, procedures to allocate the fixed experimental budget across
the multiple attributes and alternatives. Through a series of simulation studies, we com-
pared the performance of these allocation procedures to the simple, but common, allocation
procedure that distributed the sample budget equally across the alternatives and attributes.
We found the allocation procedures that were developed based on the inclusion of decision-
maker knowledge, such as knowledge of the decision model, outperformed those that ne-
glected such information. Beginning with general knowledge of the attribute values pro-
vided by Bayesian prior distributions, and updating this knowledge with each observed
sample, the sequential allocation procedure performed particularly well. These observa-
tions demonstrate that managing projects focused on a selection decision so that the deci-
sion modeling and the experimental planning are done jointly, rather than in isolation, can

improve the overall selection results.
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Chapter 1  Introduction

Decision-makers are often required to make decisions based on limited knowledge as a
consequence of time and resource constraints on their information gathering efforts. These
decisions are further complicated when important characteristics about the alternatives are
described by uncertain quantities such as estimates based on experimental or measurement
results.

We define a decision where a decision-maker must select a single alternative from a
finite set of alternatives and each alternative is described by several characteristics that are
important to the decision-maker as a multiple attribute selection decision. We use the term
attribute value uncertainty to refer to the uncertainty in the quantities that describe the
alternatives’ characteristics that are important to the decision-maker. A common normative
model of the multiple attribute selection decision entails the decision-maker placing a de-
cision value on each alternative by considering the tradeoffs amongst, and the desirability
of, the alternatives’ important characteristics and choosing the alternative that provides the
greatest decision value (Keeney & Raiffa, 1993; Clemen & Reilly, 2001; Kirkwood, 1997;
Dyer, 2005).

We illustrate this model in Figure 1.1, where m alternatives, a,,...,a,, are each de-
scribed by k important characteristics (attributes). The values of the attributes, z4,,..., 4,

are used by the decision-maker in developing a decision value, &, for each of the



i=1,...,m alternatives. The decision-maker then selects the alternative, a., that has the

largest decision value.

Alternative Attribute Value Decision Value  Selection
Hiy
Hip
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Hoy
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/uml
ﬂmz

tumk

Figure 1.1: Conceptual model of a multiple attribute selection decision.

In this dissertation, we consider the problem of incorporating attribute value uncer-
tainty in a normative decision model and, further, how a decision-maker might optimally

use his limited information-gathering budget to identify the best alternative.

1.1 Motivating Examples

This section describes three motivating examples. The first example, regarding the uncer-
tainty in the United States’ census values and Congressional reapportionment, illustrates a
series of single attribute selection decisions that contain attribute value uncertainty. Select-

ing a consumer service based on customer reviews provides an example of a multiple at-



tribute selection decision with attribute value uncertainty. And finally, the selection deci-
sion faced by the U.S. Department of Homeland Security in choosing a radiation and nu-
clear detection system to install at U.S. based international arrival airport terminals pro-
vides an example of a multiple attribute selection decision with attribute value uncertainty
where the allocation of the fixed information-gathering budget may be altered to optimally

support the identification of the best system.

1.1.1 Census Uncertainty in U.S. Congressional Reapportionment

Article I, Section 2 of the United States Constitution mandates that, every 10 years, a cen-
sus of the United States be taken. The census yields data about millions of families that is
valuable to government agencies, social scientists and economists, marketing firms, and
many others who want to know who lives where. Though large, the resources of the U.S.
Census Bureau are limited. Insufficient resources and enumeration errors imply that the
census data collection methods cannot determine the precise population of every state,
county, and place in the United States. For the 2010 Census, the Census Bureau conducted
a post-enumeration study (the 2010 Census Coverage Measurement program, or CCM sur-
vey) to estimate the size of the error in the census counts. This study estimated a net over-
count of 0.01% (Mule, 2012) (Davis & Mulligan, 2012). Although this was smaller than
the 2000 Census net undercount (0.49%), the 2010 study showed more variability in the
state-level errors for the 2010 Census (some states had a larger undercount or overcount
than in 2000). In another attempt to understand the uncertainty in the population estimates,
the Census Bureau used demographic analysis to estimate the population change from de-

mographic data such as births and deaths, and this analysis yielded a range of population



estimates. The resulting low and high estimates for the population of the United States were
305 million and 312 million (U.S. Census Bureau , 2010).

The primary reason for the decennial census is to assign seats in the House of Repre-
sentatives. How to assign this integer number of representatives in a fair manner to the
States of the Union has been an often debated question dating back to the Constitutional
Convention of 1787. Over the years, a number of methods proposed by prominent politi-
cians and mathematicians have been employed in the reapportionment of Congress. Ba-
linski and Young (1982) provide a comprehensive historical note of these methods.

The total number of seats in the House of Representatives currently equals 435, and
each state will be allocated at least one seat. The decision of which Congressional appor-
tionment realization to implement is the responsibility of the United States Congress and
is currently computed using the method of equal proportions. This method has been imple-
mented computationally as follows (Burnett, 2011): The first 50 seats are allocated with
each state receiving one seat, which satisfies the minimum requirement. Each subsequent
seat is assigned to the state with the largest priority value. (That is, the state with the largest
priority value is selected for that seat.) Each state’s priority value depends upon its popu-
lation and the number of seats already assigned.

Because uncertainty exists in the estimate of the states’ populations, uncertainty is also
prevalent in the priority value, and thus each selection decision has attribute value uncer-

tainty.



1.1.2 Selecting Consumer Services Based on Ratings

Consumers today can access personal opinions regarding just about anything with only a
few clicks of a mouse. While some opinions — fashion, entertainment, political — may be
appealing only in the eye of the beholder, others can be very useful for consumers.

Although individual qualitative reviews are certainly useful, more quantitative sum-
maries of consumers’ opinions are available from non-profit organizations such as Con-
sumers Union and the Center for the Study of Services. Such surveys attempts to assess the
true values of performance rating criteria for products and services. Because any survey is
based on limited data, the summary statistics used for the performance rating criterion
value are estimates of their true values and contains uncertainties, i.e., attribute value un-
certainty. When selecting a product or service provider, the decision-maker should consider
how this uncertainty affects the relative desirability of the alternatives.

For example, the Washington Consumers’ Checkbook (Center for the Study of
Services, 2011) includes ten performance rating criteria for 94 roofing firms. The results
of the review were obtained through a survey of the organization’s members. For six of the
criteria, the measure provided is the proportion of customers surveyed who rated the firm
as “superior.” The review’s performance criteria values are uncertain estimates of the true
attribute values that describe each roofer. Consider a consumer who wishes to choose a
roofer for a job and is using the survey results to inform this decision. This consumer faces

a multiple attribute selection decision with attribute value uncertainty.



1.1.3 Selecting a Radiological and Nuclear Detection System

In 2008 the Domestic Nuclear Detection Office (DNDO) of the U.S. Department of Home-
land Security was congressionally mandated to work with the U.S. Customs and Border
Protection (CBP) on evaluating and improving the radiation detection systems in U.S.
based international airports. As a result of this mandate, the DNDO PaxBag pilot program
was initiated to identify the best possible system design for detecting, identifying and lo-
calizing illicit radiological or nuclear (rad/nuc) material entering the United States through
international passenger and baggage screening. A major objective of the PaxBag program
was to identify a system that displayed strong potential for improved capability over cur-
rently deployed technology to put forth for an operational demonstration.

Passengers arriving at U.S. based international airport terminals are subject to two man-
datory encounters with CBP agents. As illustrated in Figure 1.2, passengers exit the aircraft
and choose one of several queues prior to the first CBP encounter at the passport control
booths. Upon exiting the passport control booths, passengers proceed to the luggage car-
ousel to claim any luggage they may have. With luggage in tow, passengers proceed to the
second CBP encounter at one of several customs declaration booths before exiting the in-
ternational arrival terminal for the main terminal of the airport. During each of these en-
counters, or at any other time within the international arrival terminal, passengers may be

subject to further interrogation as deemed necessary.
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Figure 1.2: Generic passenger and luggage flow at a U.S. based international arrival terminal.

With respect to screening, a detection system has two subsystems: passport control and
customs declaration. Each subsystem will have one of three detection sensor technologies.
In each subsystem, the sensor technology will be placed either at the booths containing the
CBP agents or in the queues prior to the booths and used in one of four operational modes.
Thus, there are 3 x 2 x 4 = 24 combinations of sensor technologies, sensor locations, and
operational modes for each subsystem, which yields a total of 24> =576 possible pairs of
subsystems. The detection system alternatives in this multiple attribute selection decision
are these 576 possible combinations. The goal of the decision analysis is to select the de-
tection system alternative that maximizes the value function as defined by the DNDO and
CBP preference structure.

Three main objectives (Figure 1.3) were considered in developing the decision model:
(1) maximize material interdiction, (2) minimize operational impact, and (3) minimize cost.

Sub-objectives and attributes were developed to support the main objectives.
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Figure 1.3: Objectives and associated weights for the selection of a radiation detection system.

Due to the uncertainty in their assessment, those attributes of direct interest to this re-
search were the detection system performance measures that supported the material inter-
diction objective (interdiction performance attributes). These attributes were based on the
detection systems’ ability to detect and identify eleven radiological and nuclear sources of
specific interest to DNDO which included Special Nuclear Material and radioisotopes used
in industry and medicine. All other attributes (those that supported the second and third
objectives) were considered to contain no uncertainty in this analysis.

To provide a value for each of the interdiction performance attributes, the detection and
identification performance of the three detection sensor technologies against the eleven
rad/nuc sources under the four different operational modes was experimentally evaluated
in a laboratory setting. The results of these limited number of experimental evaluations
were expressed as probability estimates with associated uncertainties and provided esti-
mates of the sensor’s true capabilities. By accounting for the sensor technologies and op-
erational modes of each subsystem, these uncertain probability estimates were used in the

evaluation of the interdiction performance attributes for each detection system alternative.



These uncertain attribute values were combined with the remaining attribute values using
a multiple attribute decision model.

To select the detection system to put forth for the operational demonstration, DNDO
and CBP formulated a multiple attribute selection decision model and developed a labora-
tory experimental plan to support the estimation of the attribute values. The development
of the experimental plan led to the following question: how should the limited laboratory
experimental budget be allocated to best support the decision process? This question, which
is not limited to the selection of a radiation detection system, applies to all selection deci-
sion processes where the values of multiple attributes are estimated based upon experi-

mental evaluations.

1.2 Research Questions

A decision-maker faced with a limited and fixed budget for collecting information about
multiple attributes of the alternatives in a selection decision must decide how much of his
information-gathering budget to allocate to each attribute of each alternative. This alloca-
tion decision is important when the information gained leads to uncertain estimates of the
attribute values as with sample data collected from observations such as measurements,
experimental evaluations, or simulation runs. These uncertain attribute values lead to un-
certainty in selecting the true best alternative. When more information is gathered about
one attribute of one alternative, its value becomes more certain, but this comes at the ex-
pense of less information (more uncertainty) about the remaining attributes and alterna-

tives.



To understand how the allocation decision impacts the decision-maker’s ability to se-
lect the true best alternative (correct selection), we must first understand how the uncer-
tainties in the attribute values may be reflected in the selection decision model. In this
dissertation we address the following research questions as they pertain to this described
situation:

1. What approaches can a decision-maker use to incorporate and propagate un-
certainty and identify the best alternative when faced with a multiple attribute
selection decision with attribute value uncertainty? What are the advantages
and disadvantages of these approaches?

2. What approaches can be used to inform the allocation of a limited and fixed
budget for collecting observations across multiple attributes of multiple alter-
natives in support of a multiple attribute selection decision with attribute value

uncertainty? How well do each of these approaches perform?

1.3 Notation

As a convenience to the reader, here we provide a list of notation used throughout this
dissertation.

a. An individual alternative, alternative i; throughout, alternatives
are indexed by i

{311 e am} Set of m alternatives

Attribute | An individual attribute, attribute j; throughout, attributes are in-
dexed by j

s The true value of attribute j of alternative a,

10



X A random variable that represents the outcome of an evaluation
of attribute j of alternative a,

X An observed realization (sample observation) of an evaluation of
attribute j of alternative a

Ny An integer number of observations for alternative a,, attribute j

X Set of n; observations from an evaluation of attribute j of alterna-
tive q;, i.e., (xijl,..., Xiin, ) :

X; The set of all observations collected to support alternative a,, i.e.,
(g0 Xi)

X The set of all observations collected to support the selection deci-

sion, i.e., (X;,..,Xy,)

A The decision weight associated with attribute |

il Decision value for alternative a,

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows: Chapter 2 is a review of the
literature that provides a foundation for the work in this dissertation. Chapter 3 addresses
the problem of incorporating attribute value uncertainty into a selection decision. We pro-
vide assumptions and present several approaches for selecting an alternative when the at-
tribute value uncertainty has been propagated through the decision model and onto the
decision value. Using the methods presented in Chapter 3, Chapter 4 develops and com-
pares several methods for allocating a constrained information-gathering budget across the

multiple attributes and alternatives of a multiple attribute selection decision. We consider

11



both Gaussian and Bernoulli error distributions and present optimal one-shot and sequen-
tial allocation procedures. Chapter 5 closes this dissertation with conclusions and proposals

for future work.
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Chapter 2 Literature Review

The problems of formulating a model to describe a decision amongst alternatives with mul-
tiple characteristics important to the decision-maker, deciding how to best allocate experi-
mental effort when gathering information, and selecting a single alternative from a set of
alternatives that are described by uncertain or random metrics span several disciplines
which include decision analysis, statistical design of experiments, and ranking and selec-
tion. In this chapter, we review works from these disciplines and discuss their limitations

in addressing the research questions of this dissertation.

2.1 Decision Analysis

At the core of the problem studied in this dissertation, we have a decision problem. More
specifically, the decision-maker faces a multiple attribute decision problem with uncer-
tainty in the attribute values. Ron Howard first coined the term decision analysis in a 1966
conference talk (Howard, 1966) where he provided a formal procedure for the modeling
and analysis of decision problems. Active work in this field had been taking place for more
than a decade prior to Howard’s introduction of the terminology. Notable contributions
during this time include works from von Neumann and Morgenstern (1944), Savage
(1954), and Luce and Raiffa (1957). These works provided the foundation to formally ad-
dress, through analytical methods, the decision problem for which the consequence of the

action cannot be realized until some uncertain event is resolved, i.e., decisions with risk.
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The method of expected utility theory first formalized by von Neumann and Morgenstern
and later put into practical terms for multiple attribute decision analysis in the text of
Keeney and Raiffa (1993) provides a structured approach to decision analysis when uncer-
tain events exist through the consideration of the probability distributions over the potential
outcomes of the uncertain event.

A decision-maker’s preference structure is fundamental to all decisions. Models to de-
scribe a decision-maker’s preference include ordinal value functions, measureable value
functions, and utility functions. Dyer (2005) provides a comprehensive overview of these
models, their applications, underlying assumptions, and assessment methods. In brief, or-
dinal value functions are applicable in decisions under certainty. They lead to a rank order-
ing of the decision alternatives, but they do not indicate the magnitude of preference among
the alternatives. Measureable value functions, also applicable in decisions under certainty,
provide an interval scale of measurement; that is, the decision-maker’s strength of prefer-
ence amongst the alternatives is captured. Finally, utility functions are applicable in deci-
sions with risk. The utility model of one’s preference structure not only considers the de-
cision-maker’s values of the potential consequences but also incorporates his psychological
reactions to taking risks. Dyer and Sarin (1979), von Winterfeldt and Edwards (1986), Far-
quhar and Keller (1989), Keeney and Raiffa (1993), and Kirkwood (1997) provide in-depth
discussions of these preference structure models as they apply to both single and multiple
attribute decisions.

Multiple attribute decision methods require the decision-maker to consider tradeoffs
amongst the multiple criteria being addressed in the decision analysis. The tradeoffs are

quantified and modeled by the decision-maker’s preference, or attribute, weights. Pandey,
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Nikolaidis, and Mourelatos (2011) studied the uncertainty in defining the general structure
of the decision-maker’s preferences, while others, e.g., (Kahn & Meyer, 1991; Mustajoki
et al., 2005; Chambal et al., 2011) have considered the difficulty faced by a decision-maker,
particularly a group of decision-makers, in precisely defining attribute weights. The sto-
chastic multiobjective acceptability analysis (SMAA) methods (Lahdelma et al., 1998)
were developed to help multiple decision-makers explore the impact of uncertain or un-
specified attribute weights. Rather than producing a ranking of alternatives based on a pre-
cisely defined preference structure, the SMAA methods describe the ranking of alternatives
though several measures across the entire parameter space of preference weights by com-
puting multidimensional integrals. In practice, these multidimensional integrals are esti-
mated using Monte Carlo simulation. The original SMAA method included three descrip-
tive measures. The SMAA-2 method (Lahdelma & Salminen, 2001) expands the descrip-
tive measures to five. Other versions of the SMAA method, including methods to consider
ordinal measures, are reviewed in the survey paper of Tervonen and Figueira (2008).
Beyond the uncertainties in the decision-maker’s preference structure and about which
outcome will occur in a risky decision, a decision-maker may face decision ambiguity.
First defined in the 1960s by Daniel Ellsberg (1961), who is best known in the decision
analysis community for his now infamous Ellsberg Paradox (see (Einhorn & Hogarth,
1986) for a well described presentation), the term decision ambiguity in the decision anal-
ysis context has since been generalized and elaborated on by many. Frisch and Baron
(1988) gave the following definition: “Ambiguity is uncertainty about probability, created
by missing information that is relevant and could be known.” In decision analysis, ambi-

guity is specific to the probabilities used to describe an uncertain event in a risky decision.
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Some have used this idea to challenge the validity of utility theory, particularly as a de-
scriptive theory, though most proponents of utility theory argue that the theory was meant
only as a normative one (Raiffa, 1961; Frisch & Baron, 1988; Dyer, 2005). Others have
attempted to expand utility theory to include ambiguity (see (Srivastava, 1997) as an ex-
ample). Herrmann (2015) used the idea of decision ambiguity in the discussion of the value
of information. In some cases, a decision-maker may be able to collect additional infor-
mation to reduce his uncertainty about the probability of a future uncertain event. In short,
decision ambiguity refers to the uncertainty in describing the probability profile of a risky
decision.

To summarize, uncertainty in decision making is not a new concept. The theory of
expected utility addresses the decision problem for which an uncertain future event stands
between the decision at hand and the realized consequences. Decision ambiguity considers
the uncertainty involved in describing the probability profile of the uncertain event in a
risky decision. Other examples of uncertainty in decision making include uncertain deci-
sion-maker preference structures and uncertainty in attribute weights. Although these the-
ories and methods encompass many aspects of uncertainty in decision making, they all
presume that the consequences (described by the attribute values) are precisely defined and
neglect any uncertainty that may exist in their assessment. The PROMETHEE outranking
technique allows for some degree of attribute value uncertainty to enter the decision model
through the decision-maker’s selection of a generalized criterion function (Hyde et al.,
2003; Zhang et al., 2010). But we are unaware of any published work that allows for an

explicit representation of the attribute value uncertainty to enter the decision model.
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2.2 Experiment Design

The statistical design of experiments discipline is devoted to the importance of obtaining
the best set of observations in an experimental setting. The statistical design of experiments
provides the foundation for defining experimental factors and levels in developing a design
space, identifying optimal locations to sample within the design space, and determining the
appropriate sample size. Classic references such as Box et al. (2005) and Montgomery
(2013) provide extensive guidance for the principles and numerous example applications
of the methods of statistical design of experiments. Problems in this domain span the realm
of comparing entities, quantifying the impact of various experimental factors, and estimat-

ing functional relationships. These problems can be generically represented by

y = f(l,....I), where y is the response variable of interest, there are k experimental fac-

tors that each have multiple levels, and I, is the level of the i"" experimental factor. A

primary focus of the design of experiments discipline is how to best allocate the total ex-
perimental budget of observations across the design space defined by the factors and their
levels while adhering to the underlying principles which, for example, minimize estimation
variability and maximize hypothesis testing power. In this regard, the designer must choose
which particular combinations of factors and levels will be included in the experiment. The
response variable can be either a single response or multiple responses, with all responses
measured over each of the identified design points. While the principles are much the same,
an alternative to the traditional design of experiments approach is that of Bayesian experi-

mental design (Chaloner & Verdinelli, 1995). In Bayesian design, information available
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prior to experimentation is leveraged in identifying optimal locations to sample within the
design space and determining the appropriate sample size.

Although the research questions in this dissertation are also concerned with sample
allocation, the principles and techniques of statistical design of experiments provide guid-
ance on allocating samples across a design space defined by experimental factors and lev-
els, which is different than allocating samples across multiple attributes of multiple alter-
natives in a selection decision. Using the statistical design of experiments terminology, the
measured values for each of the attributes may be viewed as a response variable dependent
on the single factor, alternative, with the number of levels equal to the number of alterna-
tives considered. Thus the sample allocation problem of this dissertation is to allocate a
sample budget across these multiple responses, each evaluated by a different experiment
and whose importance differs according to the attribute weights, with the goal of maxim-
izing the decision-maker’s ability to select the most preferred alternative according to his
preference model. To our knowledge, the work of the statistical design of experiments dis-

cipline does not address these needs.

2.3 Ranking and Selection

Most closely related to the topic of this dissertation are the methods of ranking and selec-
tion. Ranking and selection methods are used to compare a finite number of alternatives
whose performance measures are generated by a stochastic process, e.g., experimentation
via physical measurements or computer simulation. The study of ranking and selection first
gained traction in the 1950s in the statistics community with the noteworthy publication of

Bechhofer (1954). Gupta and Panchapakesan (1979) published the first modern text on the
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subject, and Bechhofer et al. (1995) is a more recent text. During this time, the field of
computer simulation, and in particular discrete event simulation, began advancing the work
of ranking and selection and now accounts for much of the research in the area.

Kim and Nelson (2006) provided an extensive overview of the recent developments in
ranking and selection with a focus on the indifferent zone (1Z) allocation procedure for
selecting the alternative with the largest expected value. The 1Z procedure, which has no
fixed limit on the number of observations, determines how often each alternative is ob-
served (sampled) while guaranteeing a specified probability of correct selection provided
that the true performance of the “best” alternative exceeds that of its closest competitor by
an amount the experimenter wishes to detect. Butler et al. (2001) applied the 1Z procedure
to a multiple attribute decision problem using a multiple attribute value model.

Kim and Nelson described four classes of comparisons as they relate to ranking and
selection problems: selecting the alternative with the largest or smallest expected perfor-
mance measure (selection of the best), comparing all alternatives against a standard (com-
parison with a standard), selecting the alternative with the largest probability of actually
being the best performer (multinomial selection), and selecting the system with the largest
probability of success (Bernoulli selection). In developing an experimental approach for
each class, a constraint is imposed on either the probability of correct selection or on the
overall experimental budget. That is, some procedures (e.g., indifference zone procedures)
attempt to find a desirable alternative with a guarantee on the probability of correct selec-
tion with no regards to the experimental budget, and other procedures attempt to maximize
the probability of correct selection while adhering to an experimental budget constraint.

Computational results presented by Branke et al. (2007) demonstrated the strengths and
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weaknesses of several ranking and selection procedures including the indifference zone,
the expected value of information procedure, and the optimal computing budget allocation.

Unlike the 1Z allocation procedure, the Optimal Computing Budget Allocation
(OCBA) procedure derives a sample allocation based on a fixed budget with the goal of
maximizing the probability of correct selection subject to this budget constraint. Thus,
OCBA is the ranking and selection procedure most similar to our work. Chen and Lee have
published many articles on the subject and presented a comprehensive collection of ideas
in a recent text (Chen & Lee, 2011). Chen et al. (2008) developed a version of OCBA that
can be used to find the best m alternatives efficiently. Lee et al. (2004, 2010) considered
the problem of finding the set of non-dominated alternatives when there are multiple ob-
jectives and developed approaches for allocating simulation replications to different alter-
natives. LaPorte et al. (2012) developed a version of OCBA that is useful when the com-
puting budget is extremely small.

Although the ranking and selection methods have some similarities to the problem con-
sidered in this dissertation, a main difference is that they all consider the allocation of sam-
ples across multiple alternatives with a single performance measure, while our work is
focused on the allocation of samples across both the multiple alternatives and the multiple
attributes. We used the idea of Butler et al. (2001) and combined the multiple uncertain
attribute values using a multiple attribute decision model to provide an alternative’s overall
performance measure. As the OCBA procedure is a sequential procedure that derives a
sample allocation based on a fixed budget we adapted ideas from OCBA in our develop-

ment of the sequential allocation procedure.

20



Chapter 3  Decision Uncertainty in Alternative Selection

The Roman scholar Gaius Plinius Secundus, better known as Pliny the Elder (23-79), stated
that, “the only certainty is that nothing is certain.” Uncertainty and its assessment has be-
come a popular topic in recent years. Lindley (2006) suggested that the reason for this
popularity is that the rules for assessing and applying uncertainty are now understood and
that past tendencies of suppressing uncertainties are no longer necessary.

Many terms and classifications have been defined relating to the concept of uncertainty.
Bevington and Robinson (2002) discussed accuracy and precision as they relate to experi-
ments in the physical sciences. The accuracy of an experiment is a measure of how close
the results of an experiment are to the true value. The idea of accuracy is closely related to
the statistical term bias, where the bias of an estimator is the difference between the ex-
pected value of the estimator and the true value of the parameter being estimated (DeGroot,
1989). Precision is a measure of the reproducibility of the result, irrespective of the agree-
ment with the true value. In general, when the uncertainty of an experiment is noted, it is
the precision of the experiment that is being referenced. It is often the case in metrology
that the true value of the measurand is unknown, thus the accuracy cannot be determined
and only the precision of the measurement can be quantified.

Many have attempted to categorize the sources of uncertainty in the decision analysis
context. For example, French (1995) listed ten sources of uncertainty as it relates to deci-

sion analysis. He classified these sources into three broad groups: uncertainties expressed
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during modeling (or problem structuring), uncertainties expressed during exploration of
the models, and uncertainty expressed during interpretation. Stewart (2005) further classi-
fied these sources as internal and external uncertainties. Under this classification, internal
uncertainties refer to uncertainties due to the problem formulation, structure of the model
adopted, and the judgmental inputs required by the model. External uncertainties refer to
the lack of knowledge about the consequences of a particular choice.

Stewart’s external uncertainty class can be further detailed through the consideration
of another common classification of uncertainty: aleatory versus epistemic uncertainty.
Aleatory uncertainty is the uncertainty due to a random process; uncertainty as a result of
natural, unpredictable variation in the performance of the system under study. Epistemic
uncertainty is the uncertainty due to a lack of knowledge about the system under study.
The focus of this chapter is incorporating attribute value uncertainties, and more specifi-
cally epistemic uncertainties, into a decision analytic model of a selection decision. The
propagation of attribute value uncertainty results in an uncertain decision value for which
the selection decision is based. We discuss four approaches to selecting an alternative from
a set of alternatives described by uncertain attribute values and hence uncertain decision
values. We conclude the chapter by applying these methods to the examples introduced in
Chapter 1.

The discussions and examples found in this chapter are largely taken from the works

of Leber and Herrmann (2012, 2013b).
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3.1 Uncertainty in Decision Making

Decision problems can be classified on several dimensions. First, the decision-maker can
be either an individual or a group. Second, the number of attributes used to describe the set
of consequences can be a single attribute or can consist of multiple attributes. And finally,
a decision problem may be classified under conditions of certainty, risk, or uncertainty.
These conditions may be defined as follows (Luce & Raiffa, 1957):

1. Decisions under certainty: Each alternative is known to lead invariably to a specific
outcome.

2. Decisions with risk: Each alternative leads to one of a set of possible outcomes,
where each outcome occurs with a probability assumed to be known by the deci-
sion-maker. These outcomes may be the result of an uncertain future event, for
example.

3. Decisions under strict uncertainty: Each alternative leads to one of a set of possible
outcomes, though nothing is known or can be stated about the probability of the
occurrence of each outcome.

The consequence associated with any decision is the result of the selected alternative

and the outcome of relevant external factors that are outside the control of the decision-

maker (e.g. uncertain future events). To illustrate this perspective, a decision may be rep-
resented as a decision table (Table 3.1). The m decision alternatives, a,,...,a,, are the rows
in the table. The columns in the table correspond to s,,...,S,, the r mutually exclusive and
collectively exhaustive possible outcomes of relevant external factors (“states of nature”).

Associated with each possible state of nature is P(sI ) the probability that s, will be the
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true state. As shown in each cell of the table, the consequence that ensues when alternative

a, is selected and s, is the state of nature is described by k attributes and their associated
attribute values, z;,i=1...,m, j=1...k I=1...,r.

Table 3.1: General form of a decision table with multiple attributes and multiple states of nature.

State of Nature

S1 S2 Sr
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]
S >
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S £ :
a2
<
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Table 3.1 clearly displays the components of a decision: the alternatives, the possible
states of nature, and the resulting consequences described by attribute values. When the
decision components are viewed as displayed in Table 3.1, it becomes evident that any

uncertainty in estimating the attribute values (attribute value uncertainty) is essentially un-
like uncertainty about which of the set of possible outcomes, s,...,S,, will occur (risky

decision) and uncertainty in defining the probability of each outcome (decision ambiguity).

While it may be conceivable to model the attribute value uncertainty as an uncertain
event in a risky decision, we choose to maintain a decision model that distinguishes the
attribute value uncertainty as a unique component of uncertainty. The reason is that a de-
cision-maker can control, to some extent, the amount of uncertainty in an estimate of the
true value of an attribute by varying the amount of information observed in its assessment,

whereas the outcome of a future uncertain event cannot be controlled in this same manner.
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Decision-makers often consider decision alternatives that have consequences that are
described by uncertain attribute value estimates. If a decision problem includes attributes
whose values are estimated based on a limited set of sample data collected from observa-
tions such as measurements, experimental evaluations, or simulation runs, then attribute
value uncertainty exists. When these attribute values are provided only as point values, the
decision-maker must move forward under the assumptions that the values are accurate and
that the level of uncertainty associated with each alternative is equivalent.

Scientists and engineers are trained to quantify and report the uncertainties in assess-
ments, including measured physical quantities such as mass and performance characteris-
tics such as the probability of system failure. These uncertainties may be developed through
a variety of techniques including data-based methods and subjective expert opinions.

When faced with attribute value uncertainty, the decision-maker confronts the risk of
selecting an alternative that is not the best one, which in fact could be identified if no at-

tribute value uncertainty existed.

3.2 Assumptions

Expanding on the general concepts introduced in Chapter 1, Figure 1.1, the random meas-

ured value, X, , used in estimating attribute j from alternative a, adheres to a probability

ij 7
distribution, denoted F; (,uij,ﬂij), that depends upon the attribute’s true value, z;, and

other distributional parameters, 0;, to include the uncertainty associated with the measure-

ment technique. Upon observing the n, measurements, X,...,X;, , used to estimate the

o ijnlk !

value of attribute j for alternative a,, a decision-maker may describe the attribute value by
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a single point, such as a sample mean, or a distribution, such a Bayesian posterior distribu-

tion. We denote this attribute value description as the probability distribution
G, ( LNy ,(pij) that depends upon the attribute’s true value, g, the number of observed

measurements, n.

;» and other distributional parameters, ¢, , to include the uncertainty as-

sociated with the measurement technique. The multiple attribute decision model, f (+), is

used to combine the attribute values, leading to a decision value for each alternative. The

decision-maker may describe the decision values as a single point or a distribution. We

denote the decision value description as the probability distribution H (&, v, ) that depends

upon the alternative’s true decision value, &, and other distributional parameters, y;, to

include the uncertainty associated with the measurement techniques and the number of

observed measurements for each attribute. Based on the decision-maker’s description of
the decision values, an alternative, a,, is selected according to a selection rule that takes
into account the information that is generated from the measurements. Note that a, is ran-

dom because it depends upon the random measurements. The conceptual model of a selec-
tion decision presented in Figure 1.1 is expanded in Figure 3.1 to include the measurement

processes and distributional descriptions.
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Figure 3.1: Model of a multiple attribute selection decision including measurement processes, value estima-

tions, and distributional representations.

Given this expanded conceptual model of a multiple attribute selection decision with

attribute value uncertainty, we make the following assumptions in this chapter.

1. The set of m distinct alternatives, {a,,...,

itive integer such that all alternatives can be assessed.

a, }, is provided, where m is a finite pos-

2. Each alternative is described by k > 2 attributes. The decision-maker’s knowledge

of the value of attribute j of alternative @, is uncertain and is described by a proba-

bility distribution which depends on the attributes true value, ;.

3. Also provided is a decision model, & = f (..., 4 ) Z, NG J(,u”), that re-

flects the decision-maker’s preference structure and combines the multiple attribute

values as provided by the k individual value functions, v; (,uij ) to produce a deci-

sion value, &, for each alternative a;. The attribute decision weights, 4;, are de-

fined such that z

—lJ
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Note that the probability distribution used to describe the attribute values (Assumption
2) may be a parametric probability distribution, such as a Gaussian or Binomial probability
distribution, or it may be a nonparametric distribution, such as the empirical distribution of

the collected set of sample observations.

3.3 Propagating Attribute Value Uncertainty

The ideal attribute value input to the decision model is the true, but often unknown, value.
As previously discussed, when attribute values are obtained based on sample data collected
from observations such as measurements, experimental evaluations, or simulation runs, the
values acquired are merely estimates of the true attribute values. We denote the set of ob-

1 Tijny;

served samples as x; =(xij1,.. X ) where n; is the number of measurements obtained

for attribute j of alternative a,, and the total sample data observed in support of alternative
a, are X; =(X,,--.,X; ). While the uncertainty in the attribute value estimates is fundamen-

tal to this work, it is the uncertainty in the decision values, ¢, that directly impacts the

decision-maker’s ability to make a correct selection. Describing the uncertain attribute
value estimates with probability distributions allows for the attribute value uncertainties to
be propagated through the decision model to the decision value. This section describes
techniques for propagating the attribute value uncertainty in order to describe the decision
value uncertainty; these will be essential parts of the sample allocation methods discussed
in Chapter 4.

Under some models of attribute value uncertainty, it is possible to propagate the uncer-

tainty to the decision value using an analytical approach. This is the case when the attribute
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values are described by Gaussian (normal) probability distributions. Consider when the
decision-maker’s knowledge of'the attribute values is described by the normally distributed

Bayesian posterior distributions in Equation (3.1) where g, and z,; are the parameters of

the conjugate normal prior distribution and o is the variance of the measurement process

used to measure attribute j.

2 2 7 2_2
o +,7, X o7
luou OIJ 0ij Ji:lw,,m,jzl,...,k (3.1)

L | Xy X ~ N
i o ol Ty O Th
As the attribute values for each alternative a; are combined according to the linear

decision model, & = thl/lj,uij (Assumption 3), it follows from the properties of the sum

of normally distributed random variables (Casella & Berger, 2002) that the distribution of

the decision-maker’s knowledge of the true decision value, & , can be described by the

posterior distribution in Equation (3.2).

|X - (iﬂ O- luolj +1; TOI] ij le G TOIJ J (32)
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When no closed form expression exists for the distribution of the decision values, e.g.,
when the decision value is a linear combination of Binomial random variables with differ-
ing success probabilities, then Monte Carlo simulation provides a method to propagate the
attribute value uncertainty. Generally speaking, a Monte Carlo simulation is a computer
experiment that consists of drawing a random sample (a number) from a specified distri-
bution, performing some operation involving the drawn sample, and recording the result.

This process is repeated numerous times building a distribution of results. Fishman (1996)
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discussed error and sample size considerations as well as sampling techniques and vari-
ance-reducing techniques.

Monte Carlo simulation can be leveraged to describe the probability distribution of a
function of multiple random variables. As the decision value in the multiple attribute se-
lection decision model is a function of multiple attribute values that may be described by
probability distributions, the application of Monte Carlo simulation to propagate the attrib-
ute value uncertainties to the decision values is a useful tool.

To summarize, when possible, the attribute value uncertainty can be propagated
through the decision model using an analytical approach. Monte Carlo simulation offers a
general method to propagate the attribute value uncertainty and is particularly useful when

no closed form expression exists for the distributional description of the decision value.

3.4 Selection Approaches

Traditional decision analysis approaches clearly identify the most desirable alternative.
This property should not be lost when expanding the model to be more comprehensive by
including attribute value uncertainty. The result of propagating attribute value uncertainty
is a set of uncertain decision value estimates that may be described by distributions. Thus,
the problem of selecting an alternative changes from a simple ordering exercise to a com-
parison of distributions. This section discusses four approaches to compare the resulting
decision value distributions: expected value, multinomial selection, stochastic dominance,

and majority judgment.
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3.4.1 Expected Value

Kim and Nelson (2006) use the term selection of the best to describe selecting the alterna-
tive with the largest or smallest expected performance measure. Based on this idea, we

define the expected value selection procedure as selecting the alternative that has the larg-

est expected decision value. For example, when the decision-maker’s knowledge of & is

described by the posterior probability distribution of & provided by Equation (3.2), we

kK o? | Mg 1 7’
select the alternative a, where s =argmax Z/I 2 I A
- o} +NyTo;

] . That is, the selected

alternative is chosen by selecting the alternative with the largest posterior mean.

In the multiple attribute selection setting, the expected value selection procedure has
the desirable trait of simplicity which likely leads to its common use in practice, even in
the presence of attribute value uncertainty. This simplicity can be seen when the popular

frequentist method of maximum likelihood is used to provide estimates of the attributes’

true values using the maximum likelihood estimator / = X = 112 ! X - From the invar-

iant property of maximum likelihood estimators (Casella & Berger, 2002) it follows that

the maximum likelihood estimators of the alternatives’ true decision values are

E = Z AKX X, . Thus the alternative a is selected where s =arg m:axf, This selection is

made without consideration for the uncertainty in the estimation of the attribute values.
Because the expected value procedure fails, in most cases, to consider the uncertainty
in the decision values when making a selection, it may fail to select the alternative that

maximizes the decision-maker’s satisfaction.
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3.4.2 Multinomial Selection

Multinomial selection approaches were originally designed for experiments with a cate-
gorical response, for example, which among five soft drinks will a subject say they prefer
(Kim & Nelson, 2006). Goldsman (1984a, 1984b) suggested a more general perspective

for the field of computer simulation. Given m competing alternatives, it is assumed that

there is an unknown probability vector p=(p,,...,p,) such that 0<p <1 and

ZL p, =1. The p; are the probabilities that alternative a, “wins” on any given trial,
where winning is the observation of a most desirable criteria of goodness (e.g., the largest
decision value). p thus defines an m-nomial probability distribution for winning over the
set of alternatives. The goal of a multinomial selection procedure is to identify the alterna-
tive with the largest p;.

We used the ideas of Goldsman to define the multinomial selection procedure which

selects the alternative that has the greatest probability of having the largest decision value.

That is, we define p, =P (& >¢&,,Vr=1,...,mr=i) and select the alternative a, where
s=argmaxp,.

Because intractable multiple integrals are often involved in calculating the p,, we im-
plemented the multinomial selection procedure using Monte Carlo simulation to estimate
the p,. From each of the distributions for &,i=1,...,m, we draw a single realization and

note the alternative with the largest realized value among the m values. We repeat this

process a large number of times and tabulate the relative frequency, p;, that alternative &,

provided the largest realized value. We select the alternative a, where s=argmax p,.
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Though we did not use the techniques, we note that Miller et al. (1998) provided an effi-
cient computational approach for implementing the multinomial selection procedure using
resampling of the Monte Carlo samples. And recently Tollesfson et al. (2014) provided

optimal algorithms for the multinomial selection procedure.
Due to the intractable multiple integrals often involved in calculating the p, in the

multinomial selection procedure, one must either spend the resources to calculate these
integrals or use Monte Carlo simulation to estimate them, which is faster but may (will) be
wrong. Using Monte Carlo simulation to obtain accurate estimations of the integrals may
also become computationally expensive to implement. However, the approach clearly con-
siders the uncertainty in the attribute value estimates. And further, when attribute and de-
cision values are described using Bayesian posterior distributions, the multinomial selec-
tion procedure has the desirable property of directly maximizing the probability of correct
selection (see Section 4.7.1). For these reasons, we use Bayesian posterior distributions in
describing attribute and decision values and the multinomial selection procedure as a basis

for much of the sample allocation work presented in Chapter 4.

3.4.3 Stochastic Dominance

Our third selection approach builds upon the concept of stochastic dominance for compar-
ing distributions. In the following discussion & and &, represent the uncertain decision
values for alternatives a, and a, respectively. Hadar and Russell (1969) discuss stochastic

dominance as an approach to predicting a decision-maker’s choice between two uncertain

events without knowledge of the decision-maker’s utility function. They define two types
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of stochastic dominance: first-degree stochastic dominance and second-degree stochastic

dominance.

&, stochastically dominates &, in the first degree if and only if
P[&<y]<P[& <y] Wy (3.3)
That is, the value of the cumulative distribution for & never exceeds that of £, for all
yeé.
When the support of £ and ¢, is contained within the closed interval [a, b], & sto-

chastically dominates &, in the second degree if and only if

[[Pla<yldy<[P[s<yldy Vte[ab] (3.4)

That is, the area under the cumulative distribution for £ is less than or equal to that of
&, fora<é<t, vtelab].

If & is found to stochastically dominate &, in the first degree, then the decision-maker
will prefer alternative a, to alternative a, as long as his utility function is monotonic. If &
is found to stochastically dominate &, in the second degree, then the decision-maker will
prefer alternative a, to alternative a, as long as his utility function is concave (which im-
plies that the decision-maker is risk-averse). Under these restrictions, if & is found to sto-
chastically dominate &, in either the first or second degree then the decision-maker will

prefer alternative a, to alternative a, because alternative 1 will have a greater expected

utility.

34



If there exists a single & that stochastically dominates &,, Vr,i=r (first- or second-

degree), and, in at least one case, the inequality in Equation (3.3) or (3.4) is found to be a
strict inequality, then alternative i can be selected with few underlying assumptions (Hadar

& Russell, 1969). We thus define the stochastic dominance selection procedure to select
alternative a, such that the distribution that describes the uncertain decision value, &,
stochastically dominates &, Vr,s=r (first- or second-degree), and, in at least one case,
the inequality in Equation (3.3) or (3.4) is found to be a strict inequality.

When the distributions of & and &, are provided as empirical distributions, as in the
case where R Monte Carlo simulation replicates are used to propagate the attribute value
uncertainty, alternative a, dominates alternative a, based upon the ideas of first-degree
stochastic dominance if, for all values y, the number of observed values of & that are not
greater than y is less than or equal to the number of observed values of &, that are not
greater than y. To check for second-degree stochastic dominance, let

Z = {yi[l], Yigzre- s yi[R]} be the ordered set of the R decision values for alternative a; where
Yiey < Yigg -+ < Yigy - L€t () be the number of decision values in Z; that are less than

or equal to y. Note that this is a step function that increases at each value in the set Z,. Let
a and b be the lower and upper bounds on the decision values for all of the alternatives.
Alternative a, dominates alternative a, based upon the ideas of second-degree stochastic

dominance if Inequality (3.5) holds.

_L: (y)dy < J.; f,(y)dy Vte[a,b] (3.5)
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Because fl(y) and f, (y) are step functions, it is easy to calculate these integrals for

any value of t, and this condition holds for all t [a,b] if it holds forall te Z, U Z,.

Using the idea of stochastic dominance as a decision rule to select an alternative from
a set of alternatives characterized by uncertain decision values is attractive because of the
minimal restrictions necessary on the utility functions. Because the integrals required to
evaluate stochastic dominance are univariate, they are substantially easier to compute than
those required of the multinomial selection procedure. Although many alternatives can be
easily dismissed from consideration due to dominance, this procedure may not produce a
solution, and thus an alternative would not be identified for selection. This phenomenon is

illustrated in the example in Section 3.7.

3.4.4 Majority Judgement

Consider an empirical distribution of R values that describe the uncertain decision value
&, and another empirical distribution of R values that describe &, . By viewing each value

from these distributions as a score assigned by an individual judge or voter, the problem of
selecting an alternative based on distributions of decision values may be viewed as one of
social choice. A consensus value for each alternative that appropriately represents the mes-
sage of all judges is sought in comparing and selecting the most desirable alternative. While
many models of social choice exist, we consider the method of majority judgment.

In an attempt to identify a model of social choice that overcomes the shortcomings
displayed by traditional social choice models such as the Borda and Condorcent methods,
Balinski and Laraki (2007, 2010) proposed the method of majority judgment. The majority

judgment method relies upon the middlemost interval to identify a social grading function
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that has desirable functional properties, provides protection against outcome manipulation

by individual voters or judges, and overcomes many of the shortcomings of traditional

social choice models. When considering the ordered scores for alternative a,,

Yig < S Yiggp» the majority-grade is defined to be the median score, Yir( when R is

R+1)/2]"
odd and the lower bound of the middlemost interval, ;. when R is even. The majority

judgment method identifies the alternative with the largest majority-grade as the most de-
sirable alternative in the social choice context. If multiple alternatives have the same largest
majority-grade, then a single majority-grade value is removed from the set of scores for
each alternative in the tie, and the majority-grade of the new distributions are calculated. If
a tie again occurs, this process is repeated until a single alternative has the largest majority-
grade. The majority judgment method extends this concept to provide a complete rank-
ordering termed the majority-ranking.

We define the majority judgement selection procedure to select the alternative with the
largest majority-grade. To implement the majority judgment selection procedure, the ma-
jority-grade is computed for each alternative. When the decision values are described by
probability distributions that are expressed analytically, the majority-grade is simply the
median of the probability distribution. When the & are described by empirical distributions
of R values, the majority-grade for each alternative is the median (if R is odd) or the lower
bound of the middlemost interval (if R is even) of the distribution of decision values. The
alternative with the largest majority-grade is then identified as the most desirable alterna-
tive. If a tie exists, the tie-breaking procedure defined by the majority judgment method is

used to identify the single most desirable alternative.
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As the majority-grade is defined based upon the middle-most interval, it emphasizes
the significance of place in order rather than magnitude. That is, it is robust against extreme
scores. Further, the majority-ranking provides, for any two alternatives, a ranking that de-
pends upon the grades of only those two alternatives. In other words, the majority-ranking
is independent of irrelevant alternatives (Arrow's 11A) (Arrow, 1951). But like the expected
value selection procedure, the majority judgment selection procedure focuses on the loca-
tions of the decision value distributions and does little to consider the uncertainty aspects

of these distributions.

3.5 Application to Congressional Reapportionment

In this section, we expand on the “Census Uncertainty in U.S. Congressional Reapportion-
ment” example introduced in Section 1.1.1. We illustrate the application of methods pre-
sented in this chapter for propagating attribute value uncertainty and selecting an alterna-

tive.

3.5.1 Apportionment Decision Model

According to the Encarta Dictionary, apportionment is the division and allocation of some-
thing among different people or groups. Specific to the United States Congress, apportion-
ment is the process of dividing the total seats in the House of Representatives among the
50 states according to their proportional population. The apportionment population for

2010 is defined to be the resident population of the 50 states plus overseas U.S. military
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and federal civilian employees (and their dependents living with them) allocated to their

home state, as reported by the employing federal agencies (Burnett, 2011).

For this example, let P=(P,...,P,) be the population vector and S=(S,,...,S,) be

the apportionment vector, where P, represents the population of state i and S; the number
of Congressional seats allocated to state i for i =1,...,50. The total number of seats in the

House of Representatives to be allocated is currently equal to 435, and each state will be
allocated at least one seat. The problem of Congressional reapportionment in the United
States is to define an apportionment vector S that satisfies Article I, Section 2 of the United
States Constitution.

The decision of which Congressional apportionment realization to implement is the
responsibility of the United States Congress and is currently computed using the method
of equal proportions. This method has been implemented computationally as follows
(Burnett, 2011):

1. Seats 1 through 50 are allocated with each state receiving one seat, which satisfies

the minimum requirement.

2. Seat 51 is assigned to the state with the largest priority value. (That is, the state with

the largest priority value is selected for that seat.) The priority value, v;, for each
state i=1,...,50 and seat assignment j=51,...,435 is calculated according to

Equation (3.6) where s; is the number of seats currently assigned to state i. Thus

for the 51st seat assignment where all states are currently assigned a single seat,
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v=p——L (3.6)

(55 +1)s,
3. Upon assigning the 51st seat, the s; are updated to reflect the new allocation, Equa-

tion (3.6) is used to calculate the revised priority values, and the 52nd seat is as-
signed to the state with the largest priority value.

4. This process is repeated until all 435 seats have been assigned.

This computational implementation of the method of equal proportions leads naturally
to a decision model that consists of a series of 385 decisions of selecting the state to receive
the j" seat, j=51,...,435. Each decision consists of 50 alternatives, the 50 states, with a
single attribute, the priority value. The criterion for selecting an alternative in any decision
is the state that maximizes the priority value.

We model each of these sequential decisions as a single attribute decision under cer-
tainty (Keeney & Raiffa, 1993). Because uncertainty exists in the estimate of the states’
populations, these decisions contain attribute value uncertainty. Rather than considering
approaches for adjusting the population estimates, we used the methods presented in this
chapter to propagate the uncertainty in the population estimates and select a state to assign

the Congressional seat for each of the 385 selection decisions.

3.5.2 Census Uncertainty

For more than three decades, there has been debate — often fierce — over the inclusion of
statistical adjustments to the census enumeration. One basis for the proposed incorporation
of statistical adjustment is that the census enumeration is not accurate and precise but is

rather an uncertain estimate of the true population that statistical procedures may improve
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(Anderson, et al., 2000). The Census Act and a 1999 Supreme Court ruling prohibit the use
of statistical sampling for alternate counts in the reapportionment population. It should be
noted that statistical sampling procedures are accepted for non-apportionment purposes
such as unemployment and housing estimates.

Over the past 50 years the U.S. Census Bureau has conducted programs as part of the
decennial census to evaluate the degree of the census coverage error. Programs in the 1990
and 2000 Censuses were designed to produce alternative counts based on the measurement
of net coverage area. As a result of the 1999 Supreme Court ruling prohibiting the use of
statistical sampling in determining the population for apportionment purposes, the goal of
the 2010 program, referred to as the Census Coverage Measurement (CCM) survey, was
to focus on improving the process for subsequent Censuses (Committee on National
Statistics, 2009). While the names and year-to-year goals may differ, the census coverage
programs all aim to capture some measure of uncertainty in the population estimates.

The 2010 state level apportionment population and results are provided in Table 1 of
the U.S. Census report Congressional Apportionment (Burnett, 2011). As previously men-
tioned, the apportionment population includes the resident population of the 50 states plus
overseas U.S. federal employees (military and civilian) and their children. No measures of
uncertainty are provided with the apportionment population values.

The results of the 2010 Census Coverage Measurement program are provided in a se-
ries of twelve reports published by the U.S. Census Bureau. Two of the CCM reports
(Mule, 2012; Davis & Mulligan, 2012) provide state level population estimates along with
a measure of uncertainty in the form of a root mean squared error. (The root mean squared

error uncertainty measures for the states ranged from 0.73 % to 2.43 %.) The CCM reports’
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population estimates do not include overseas U.S. federal employees, residents of remote
Alaska, or persons living in group quarters. Thus the population estimates are not useful
for reapportionment purposes. However, we assumed that the relative uncertainties pro-
vided in the CCM reports represented the uncertainties of the apportionment population
values and used these to model the uncertainty in the population estimates, and in turn, the
uncertainty in the priority values (the decision value used for seat assignment).
Specifically, we used a parametric bootstrap approach (Efron & Tibshirani, 1993) to
model the apportionment population uncertainty for each state and each sequential seat
assignment decision. For each state, we modeled its population as a normally distributed
random variable, with a mean equal to its apportionment population and a standard devia-
tion equal to that state’s CCM relative root mean squared error multiplied by the appor-
tionment population. For a given seat assignment decision we generated 10,000 realizations
from these apportionment population models (each realization included a population value
for every state) and calculated the corresponding priority values as defined in Equation

(3.6). For example, the apportionment population of Maryland, the 20" state alphabetically,
was modeled by a N (1,,,0,,) probability distribution where 1, =5,789,929 (reported
apportionment population) and o,, =0.01194,, =68,900 (root mean squared error of

1.19 %). A single realization from this distribution, 5,841,425, provides the priority value,

according to Equation (3.6), for the 51% seat assignment where the current number of seats
assigned, S, =1, of v, =5,841, 425/ﬂ /(2) =4,130,511. This sampling process was

replicated 10,000 times for each of the 50 states, producing a distribution of 10,000 priority

values for each state.
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The multinomial selection procedure (Section 3.4.2) was used to select the state to
which the Congressional seat would be assigned. That is, the seat was assigned to the state
that most often had the largest priority value. This process was repeated 385 times until all

435 House of Representative seats were assigned.

3.5.3 Results

When incorporating census uncertainty into the sequential seat assignment decisions, the
uncertainty in the population estimates had little impact on some seat assignment decisions,
but the impact was more substantial on others. Consider the distribution of priority values
obtained during the assignment of seat 51 (Figure 3.2). For each state, the 10,000 priority
values obtained by sampling the apportionment population models are displayed by the
mostly overlapped plotting characters. The single vertical hash for each state represents the
single priority value obtained based on the published apportionment population value. In
this decision there is little question that California has the largest priority value and should

be assigned the 51% seat.
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Figure 3.2: Priority values for the assignment of seat 51. The states are arranged in alphabetical order from
bottom to top along the y-axis. The distributions of points are a result of the uncertainty propagation. The
vertical hashes are the priority values that result from the apportionment population value.

On the other hand, consider the distribution of priority values obtained during the as-
signment of seat 384 (Figure 3.3). Here the priority values obtained from the apportionment
population (vertical hashes) for a number of states are nearly equal. The propagation of the
population uncertainty leads to priority value distributions that are difficult to distinguish
from one another, and it is not clear which state should be assigned this seat. In this situa-

tion a multinomial selection procedure is necessary to aid in the decision.
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Figure 3.3: Priority values for the assignment of seat 384. The states are arranged in alphabetical order from
bottom to top along the y-axis. The distributions of points are a result of the uncertainty propagation. The
vertical hashes are the priority values that result from the apportionment population value.

In each randomly generated realization, the multinomial selection procedure identifies
the state with the maximum priority value, and each state’s multinomial probability is es-
timated by the proportion of realizations in which it had the maximum priority value. The
state with the largest estimated multinomial probability value is selected (assigned the
seat). When one state clearly holds the maximum priority value, as California did for seat
51 (Figure 3.2), that state is identified as having the maximum priority value in all of the
realizations (that is, its estimated multinomial probability value is 1). When it is less obvi-
ous which state holds the maximum priority value, as it was for Seat 384 (Figure 3.3), there

may be multiple states with nearly equal multinomial probability values.
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The states’ estimated multinomial probability values for each of the 385 seat assign-
ment decisions are displayed in the stacked bar chart of Figure 3.4. The bars are sorted by
the estimated multinomial probability values. For each seat assignment decision, the height
of the bottom (most lightly shaded) bar represents the estimated multinomial probability
value for the selected state. The height of the next bar represents the estimated multinomial
probability value for the state with the second largest estimated multinomial probability

value, and so on.
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Figure 3.4: Estimated multinomial probability (Rank 1) values for each state in the 385 seat assignment de-
cisions. For each seat decision, the estimated multinomial probability value for the selected state is dis-
played by the height of the bottom bar. The states with the second and subsequent largest estimated multi-
nomial probability values are displayed by the additional stacked bars.
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Two trends are observed in Figure 3.4. First, the estimated multinomial probability
values for the selected states are generally smaller and more nearly equal to the other esti-
mated multinomial probability values in the later seat assignment decisions. This reflects a
desirable property of apportionment: as more seats are assigned, the differences in the
states’ representativeness (as measured by the priority values) approaches zero.

Within the general trend of decreasing estimated multinomial probability values for the
selected states, we observe the second trend: the estimated multinomial probability values
of these selected states occasionally increase dramatically. This often occurs when there
are several states that have nearly equal priority values, and there is a significant gap be-
tween the priority values of these states and the next-largest priority value. The estimated
multinomial probability values for these states will be nearly equal (and much less than 1).
The priority value of a state decreases after it is awarded a seat. Thus, after most of these
states have been awarded seats (and their priority values decreased), only one of these states
remains, and its priority value is significantly larger than any other state, which will lead
to a large estimated multinomial probability value for that state.

The complete apportionment (the number of seats assigned to each state) that was gen-
erated by the uncertainty propagation approach was exactly the same as the official 2010
Congressional reapportionment that was applied to the 113th Congress. (This also occurred
when the approach was applied to the 2000 Census.) The sequence of seat assignments,
however, was not the same. For example, in the 2010 apportionment, seat 176 was assigned
to New York, and seat 177 was assigned to Arizona. Our approach assigned seat 176 to

Arizona and seat 177 to New York.
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A total of 77 differences occurred. Of these, 46 differences occurred in 23 pairs like the
example. The other discrepancies occurred in longer sequences of seat assignment deci-
sions. The longest had six seats and four differences.

Although the complete apportionments were equal, the observed differences in seat
assignment sequences shows that the two approaches could produce differing apportion-
ments. For example, if the House of Representations had only 433 seats, Texas would have
a total of 35 seats using the apportionment populations (which assigned seat 433 to Texas).
Because the uncertainty propagation approach assigned seat 433 to Minnesota, however,
that state would take a seat from Texas (which would then have only 34).

The decision analysis approach incorporated population estimate uncertainty into the
apportionment procedure without directly adjusting the apportionment population values.
Such an approach could satisfy some critics of the current apportionment process, which

prohibits the use of statistical sampling to adjust values in the apportionment population.

3.5.4 Summary

This example of the Congressional reapportionment process illustrated the idea of incor-
porating attribute value uncertainty (states’ uncertain population estimates) in a selection
decision. The reapportionment process was modeled as 385 single attribute selection deci-
sions with attribute value uncertainty. The uncertainty model for the attribute values was
based on a parametric bootstrap approach with parameter estimates provided by the appor-
tionment population and the CCM program’s uncertainty measure. Using Monte Carlo

simulation, the population uncertainties were propagated to the priority values (decision
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values). Given the relatively simple functional form of the decision value and that the at-
tribute values were modeled as Gaussian random variables, an analytical approach could
have been implemented to propagate the uncertainty. We implemented the multinomial
selection procedure using Monte Carlo simulation to estimate the multinomial probabilities

and select an alternative.

3.6 Application to Consumer Services

In this section, we expand on the “Selecting Consumer Services Based on Ratings” exam-
ple introduced in Section 1.1.2. We illustrate the application of methods presented in this

chapter for propagating attribute value uncertainty and selecting an alternative.

3.6.1 Selecting a Roofer

When homeowners require a repairman or other services, they often seek reviews and rec-
ommendations for potential service providers. The Spring/Summer 2011 edition of the
Washington Consumers’ Checkbook (Center for the Study of Services, 2011) provided an
extensive review of roofing firms in the Washington, D.C., metropolitan area. We consid-
ered the problem of selecting a roofing firm using the data in the Washington Consumers’
Checkbook to illustrate the presence of attribute value uncertainty in a multiple attribute
selection decision.

The Washington Consumers’ Checkbook review included ten performance rating cri-

teria for 94 roofing firms obtained through a survey of the organization’s members. Be-
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cause the review is based on only a limited survey sample, the review’s performance crite-
ria values are uncertain estimates of the true attribute values that describe each roofer. The
consumer who wishes to pick a roofer for a job using these survey results to inform this
decision faces a multiple attribute selection decision with attribute value uncertainty. To
demonstrate the methods presented in this chapter of incorporating attribute value uncer-
tainty into a multiple attribute selection decision, we formulated a roofer selection decision
with the following four performance rating criteria (attributes) that were measured in the
survey:

1. Work performed properly on first attempt

2. Began and completed work promptly

3. Neatness of work

4. Percent of $5,000 job the firm allows the customer to pay upon completion

The survey results for the performance rating criteria were used as estimates of the true
attribute values. Attributes 1 — 3 are the probability of a “superior” rating with estimated
values provided as the proportion of customers surveyed who rated the firm “superior”.
These attribute value measures are random variables consisting of a collection of Bernoulli
trials: the performance criterion was rated by each survey respondent as either superior or

not. Thus, for each roofing firm (alternative) i=1,...,87 (seven firms were removed from
the analysis due to incomplete data), the data supporting attribute j = 1, 2, 3 can be modeled

by a binomial random variable with parameters z; and n;, where g; is the probability of

obtaining a rating of “superior” and N, is the number of survey responses. For these attrib-

utes, a larger value is preferred. The fourth attribute is not random; it is provided by the

roofing firm and thus for each firm, its value is considered to be a constant. Larger values
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are preferred because, if the value is small, the customer must pay more upfront, which
increases the customer’s financial risk. Summary statistics of the distribution for the four
attributes and the number of survey responses across the m = 87 firms considered are pro-

vided in Table 3.2.

Table 3.2: Summary statistics for the distribution of data across the 87 roofing firms.

Mean Std Dev Min Median Max

Number of survey responses 54.17 66.30 10 29 390
Work performed properly 0.74 0.16 0.23 0.79 1.00
Began and completed promptly 0.74 0.16 0.28 0.77 1.00
Neatness of work 0.76 0.16 0.27 0.79 1.00
Percent paid after completion 0.77 0.19 0.33 0.67 1.00

A multiple attribute measurable value function was used to represent the decision-
maker’s (the author’s) preference structure. We assumed the preference structure is such
that attributes are mutually preference independent and mutually difference independent.
Therefore, the multiple attribute measureable value function can be represented by the sum

of single attribute measureable value functions (Dyer & Sarin, 1979), which provides the

decision value of each alternative, &, as displayed in Equation (3.7).
4
S :V(/uil’/uiZ’ﬂiS’ruM):zﬂ‘jvj (/Uij) (3.7)
j=1
Here Z;lj =1 and the individual measureable value functions v, (/uij) are scaled

such that, for y” the most preferred outcome overall all i for a fixed j, v; (,u“) =1 and, for

yi‘j’ , the least preferred outcome overall all i for a fixed J, v; (,ui?) =0.
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3.6.2 Uncertain Attribute and Decision Value Estimates

One may employ the expected performance rating values published as the survey results in
conjunction with Equation (3.7) to obtain a decision value for each roofing firm. As de-
scribed by Keeney and Raiffa (1993), the alternative with the largest resulting decision
value would be considered to be the alternative most fitting given the decision-maker’s
preferences. We refer to such an approach as a deterministic selection.

To implement the deterministic selection approach, we developed the individual
measureable value functions v, (yij), j=1...,4 using an augmentation to the midvalue

splitting technique that leverages an analytical exponential form (Kirkwood, 1997) based

on the attribute value ranges displayed in Table 3.2. The swing weighting procedure
(Clemen & Reilly, 2001) was used to obtain the attribute decision weights, 4,,...,4,. The

individual measureable value functions and associated weights are provided in Table 3.3.

Table 3.3: Individual measureable value functions and decision weights for deterministic selection.

Attribute v (4) 4

Work performed properly v, (1) = —ﬁ(l— gl 02/ 0'502) 0.476
Began and completed promptly V, (14,) =1—g (e 0200 0.190
Neatness of work Vy (t43) = p45/0.73-0.37 0.286
Percent paid after completion v, (t44) = Wlog(l— g (ka0 0‘280) 0.048

Based on these defined individual measureable functions and associated weights, Equa-

tion (3.7) was evaluated for each alternative with results displayed graphically in Figure

52



3.5. Roofing Firm 29, whose decision value equals 0.9837, is identified as the most desir-

able alternative. This firm is followed closely by Roofing Firm 84, whose decision value

equals 0.9835.
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Figure 3.5: Roofing firm decision model results using the deterministic selection approach.

To describe the uncertainty in attributes 1 — 3, we used Bayesian posterior distributions.

For each of the 87 alternatives and each attribute j = 1, 2, 3, we began with the assumption

(prior knowledge) that the true value of the attribute, 4, lies between 0 and 1 with equal
likelihood. This is represented by the Uniform[O,l] prior probability distribution, which is
equivalent to a Beta(l,l) probability distribution. Observations, i.e., the number of “supe-

rior” ratings recorded by the survey (modeled by a Binomial (ni,,uij) probability distribu-

tion), for each performance criteria j = 1, 2, 3 for each of the 87 roofing firms were used to
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update the prior distributions. Because the Beta(«, ) distribution is the conjugate prior

distribution to the Binomial(n,;z) distribution, upon observing the survey results, our
knowledge of the true attribute value is updated and described by the
Beta(1+ n By, 1+ (1- )) posterior distribution where p; is the rating value provided
for performance criteria j and roofing firm i and n. is the number of survey responses.

Given the posterior distributions for each attribute of each alternative, we drew 1000
random samples from each of these distributions. Based on the distributions of the random

realizations for each attribute across all alternatives, we redefined the individual measure-
able value functions v; (,uij), J =1,2,3 and attribute decision weights, again using an aug-

mentation to the midvalue splitting technique and the swing weighting procedure. Since
attribute 4 was considered a constant having no uncertainty, its individual value function
as provided by the deterministic selection analysis was unchanged. The updated individual

measureable value functions and associated weights are provided in Table 3.4.

Table 3.4: Individual measureable value functions and decision weights when considering attribute value
uncertainty.

Attribute v (4) 4

Work performed properly v, (1) = —ﬁ(l— glHa=0027)/ °‘57°) 0.526
Began and completed promptly v, (z4,) = ﬁ(l—e’(””’o‘oso)/ 0'309) 0.158
Neatness of work Vy (45) = £45/0.951—0.05 0.263
Percent paid after completion v, (t44) = Wlog(l— g (ka0 0‘280) 0.053

Based on these updated individual measureable functions and associated decision

weights, Equation (3.7) was evaluated for each alternative for each of the 1000 random
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realizations (and constant value of attribute 4). The result was a distribution of 1000 deci-
sion values for each roofing firm. We found the minimum value of each of these 87 deci-
sion values distributions and identified the greatest of these 87 minimum values. Fifty-nine
alternatives were observed to provide a maximum decision value that was less than the
greatest minimum value and were thus determined to be dominated. The decision value

distributions for the 28 non-dominated alternatives are displayed in Figure 3.6.
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Figure 3.6: Decision value distributions for the 28 non-dominated alternatives.
3.6.3 Results

We applied the multinomial, stochastic dominance, and majority judgment selection pro-

cedures to the distributions of decision values for the non-dominated roofing firms. Using
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the multinomial and majority judgment procedures, we identified the alternative to be se-
lected first. By removing that alternative from consideration, we were able to identify the
alternative to be selected second, and so on. This enabled us to provide a rank order of
alternatives. Table 3.5 displays the rank order as provided by the multinomial and majority
judgment selection procedures for the firms that had the six largest decision values as pro-
vided by the deterministic selection approach. The results for the stochastic dominance
decision procedure are best displayed graphically as empirical cumulative distribution

curves, which are displayed in Figure 3.7 for the top roofing firms.

Table 3.5: The rank of the top six roofing firms as provided by the deterministic, multinomial, and majority
judgement selection procedures.

Roofing Firm n Deterministic Multinomial Majority Judgement
Firm 29 24 1 2 2
Firm 84 82 2 1 1
Firm 57 23 3 3 5
Firm 28 54 4 4 4
Firm 90 36 5 5 6
Firm 8 347 6 6 3

From Table 3.5 we see that the multinomial and majority judgement selection proce-
dures, which incorporate the attribute value uncertainty, identify Roofing Firm 84 as the
most desirable alternative with Roofing Firm 29 identified as the second most desirable
alternative. The deterministic selection approach flips this order by identifying Roofing
Firm 29 as the most desirable alternative (deterministic decision value of 0.9837) and Roof-
ing Firm 84 as the second most desirable (deterministic decision value of 0.9835). In 1000
Monte Carlo simulation realizations, Roofing Firm 84 was identified as the most desirable

option 74 % of the time, and Roofing Firm 29 was the most desirable option only 17.5 %
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of the time (these values are interpreted as estimates of the p; in the multinomial selection

procedure). The majority-grade in the majority judgment selection procedure for Roofing

Firm 84 was 0.9724, while the majority-grade for Roofing Firm 29 was 0.9426.
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Figure 3.7: Empirical cumulative distribution curves for the top six roofing firms.

As shown in Figure 3.7, the empirical cumulative distribution curve for Roofing Firm
84 never exceeds that of any other alternative, so Roofing Firm 84 stochastically dominates
all other alternatives in the first degree. Thus, Roofing Firm 84 is deemed to be the most
desirable alternative using the stochastic dominance decision procedure. This result is con-
sistent with the results obtained by the other decision procedures that consider the attribute
value uncertainty. Further, the fact that we found one alternative that stochastically domi-

nates all of the other alternatives in the first degree is an extremely powerful result, as
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Hadar and Russell (1969) have shown that this is the decision-maker’s most preferred al-

ternative regardless of his underlying utility function.

3.6.4 Summary

This example of selecting a roofing firm based on performance criteria estimates obtained
through a customer survey illustrated how attribute value uncertainty may be incorporated
into a multiple attribute selection decision model and how an alternative may be selected
using the selection approaches discussed in Section 3.4. The multiple uncertain attributes
were viewed as success probabilities and modeled using Bayesian posterior probability
distributions. Monte Carlo simulation was used to propagate the attribute value uncertainty
to the decision value. We applied the deterministic, multinomial, majority judgement, and
stochastic dominance selection procedures to produce a rank ordering of the roofing firms.
We observed that the selection procedures that explicitly consider the attribute value un-
certainty (multinomial, majority judgement, and stochastic dominance) all identified Roof-
ing Firm 84 as the most preferred alternative. The deterministic selection procedure, which
does not consider the uncertainty in the estimation of the true attribute values, identified
Roofing Firm 24 as the most preferred. While we are unable to definitively state which
roofing firm is truly the most preferred, this observation illustrates that ignoring attribute

value uncertainty in a selection decision does indeed have an impact.
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3.7 Application to Radiation Detection

In this section, we expand on the “Selecting a Radiological and Nuclear Detection System”
example introduced in Section 1.1.3. We illustrate the application of methods presented in

this chapter for propagating attribute value uncertainty and selecting an alternative.

3.7.1 Radiation and Nuclear Detection System Selection Model

To identify a radiation and nuclear detection system from a set of 576 candidate systems
to put forth for an operational demonstration in the PaxBag pilot program, the Domestic
Nuclear Detection Office (DNDO) and the U.S. Customs and Border Protection (CBP)

agencies formulated a multiple attribute decision model consisting of k =26 attributes

(Equation (3.8)) to determine the decision values, & , of each system i=1,...,576.
26
& :V(/uil""huiZG):Zﬂ“jvj (/uij) (3.8)
j=1
In Equation (3.8), g is the true value for attribute j of alternative g . Z?;lj =1 and

the individual value functions v; (/uij) are scaled such that, for yu the most preferred out-
come overall all i for a fixed j, v, (ﬂu) =1 and, for yij.’ , the least preferred outcome overall

all'i for a fixed j, v, (,ui?) =0. The individual value functions were defined to be linear, i.e.,

Vi (g ) = (g = 1) (1t~ 15).
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3.7.2 Uncertain Attribute and Decision Value Estimates

The 26 attributes and their decision weights, 4,, are provided in Table 3.6. Only the inter-

diction performance attributes, attributes 1 — 22, were studied in this research because their
values were success probabilities that were estimated using the results of laboratory eval-
uations. We note from Table 3.6 that the attribute decision weights differ across the inter-
diction performance attributes. This reflects the different level of importance that DNDO

and CBP place on the ability of a system to interdict the different sources.

Table 3.6: Decision model attributes and decision weights for the selection of a rad/nuc detection system.

Attribute A; Attribute 4;

1. Inderdict Source 1 - Passenger 0.022500 | 14. Inderdict Source 3 - Baggage 0.022500
2. Inderdict Source 2 - Passenger 0.022500 | 15. Inderdict Source 4 - Baggage 0.022500
3. Inderdict Source 3 - Passenger 0.022500 | 16. Inderdict Source 5 - Baggage 0.022500
4. Inderdict Source 4 - Passenger 0.022500 | 17. Inderdict Source 6 - Baggage 0.022500
5. Inderdict Source 5 - Passenger 0.022500 | 18. Inderdict Source 7 - Baggage 0.022500
6. Inderdict Source 6 - Passenger 0.022500 | 19. Inderdict Source 8 - Baggage 0.016875
7. Inderdict Source 7 - Passenger 0.022500 | 20. Inderdict Source 9 - Baggage 0.016875
8. Inderdict Source 8 - Passenger 0.016875 | 21. Inderdict Source 10 - Baggage 0.016875
9. Inderdict Source 9 - Passenger 0.016875 | 22. Inderdict Source 11 - Baggage 0.016875
10. Inderdict Source 10 - Passenger 0.016875 | 23. Passenger Delay 0.202500
11. Inderdict Source 11 - Passenger 0.016875 | 24. Additional CBP Officers 0.202500
12. Inderdict Source 1 - Baggage 0.022500 | 25. System Integration 0.045000
13. Inderdict Source 2 - Baggage 0.022500 | 26. Cost 0.100000

The data collected in the laboratory evaluations were the number of times a sensor

technology was successful at interdicting the source of interest under the various opera-

tional modes. These data were modeled with a Binomial (n, 7, ) probability distribution,
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where n, is the number of observations made for sensor technology and operational com-

bination ¢ against source d and 7z, is the probability that combination ¢ will successfully

interdict source d. Based upon this data, attribute value estimates (probabilities) were for-
mulated for each system by taking into account the fact that passengers will go through
both detection subsystems, while checked baggage will go through only the second sub-
system. As these probabilities were based on experimental evaluations from a limited num-
ber of trials, they were only estimates for the detection system’s true capabilities.

We used Bayesian posterior distributions to describe the uncertain values of the inter-

diction performance attributes. We began with the assumption (prior knowledge) that the

true probability, =

C

4+ that sensor technology and operational combination ¢ will success-
fully detect and identify source d lies between 0 and 1 with equal likelihood. This is repre-

sented by the Uniform[O,l] prior probability distribution, which is equivalent to a
Beta(1,1) probability distribution. The data from the laboratory evaluations were used to
update the prior distributions. Because the Beta(c, £) distribution is the conjugate prior
distribution to the Binomial (n, ) distribution, upon observing the experimental evalua-
tion results, our knowledge of 7, is updated and presented by the

Beta(1+ X.,1+n,, — X, ) posterior distribution where X is the number of times that sen-

sor technology and operational combination ¢ was successful at interdicting source d. Due

to its sensitive nature, we cannot present the experimental evaluation results.
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Using Monte Carlo simulation we propagated the uncertainty in the 7, to the attribute
values, 4, j=1...,26, and ultimately to the decision values & for each of the 576 can-

didate radiation and nuclear detection systems. Specifically, we drew 1000 random sam-

ples from the posterior distribution for 7, . For each of these 1000 realized samples, we
calculated a realization of y;, for attributes 1 — 22, using the required attribute formula-

tions. For each of the attribute value realizations, together with the constant values provided

for attributes 23 — 26, we computed & using Equation (3.8). This resulted in a distribution

(1000 realizations) of & values for each of the 576 candidate radiation and nuclear detec-

i
tion systems.

We found the minimum value of each of the 576 decision values distributions and iden-
tified the greatest of these 576 minimum values. We then determined that 540 alternatives
were dominated by observing that the maximum decision value provided for these 540
alternatives was less than the greatest minimum value. The decision value distributions for

the remaining 36 non-dominated alternatives are displayed in Figure 3.8.
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Figure 3.8: Decision value distributions for the 36 non-dominated alternatives.

3.7.3 Results

We applied the multinomial, stochastic dominance, and majority judgment selection pro-
cedures to the distributions of decision values for the non-dominated detection systems.
Using the multinomial and majority judgment selection procedures, we identified the al-
ternative to be selected first. By removing that alternative from consideration, we were able
to identify the alternative to be selected second, and so on. This enabled us to provide a
rank order of alternatives. Under the DNDO and CBP preference structure, the order of the
top 6 most desirable alternatives provided by both the multinomial and the majority judg-
ment selection procedures are identical. These alternatives are provided in Table 3.7. The

empirical cumulative distribution functions of the decision values for these six alternatives
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are displayed in Figure 3.9. Among these six, no alternative stochastically dominates all

others.

Table 3.7: Six top ranked detection systems according to the multinomial and majority judgment selection

procedures.

Rank Alternative ID

Sensor Tecnology & Placement

Operational Mode

1 80 PMPP 1 in Passport booth dwell: 30 s
PMPP 2 in Customs booth dwell: 30 s

) 3 PMPP 1 in Passport booth dwell: 2 min
PMPP 2 in Customs booth dwell: 30 s

3 29 PMPP 1 in Passport booth dwell: 2 min
PMPP 2 in Customs booth walk: 0.5 m/s

4 27 PMPP 1 in Passport booth dwell: 30 s
PMPP 2 in Customs booth walk: 0.5 m/s

5 56 PMPP 1 in Passport booth walk: 2.5 m/s
PMPP 2 in Customs booth dwell 30 s

6 128 PMPP 2 in Passport booth dwell: 2 min
PMPP 2 in Customs booth dwell: 30 s

Both the multinomial and majority judgment selection procedures identify alternative

80 as the most desirable followed by alternative 32. In the 1000 Monte Carlo simulation
realizations, alternative 80 was identified as the most desirable option 33 % of the time,

and alternative 32 was the most desirable option 27 % of the time (these values are inter-
preted as estimates of p; in the multinomial selection procedure). The majority-grade in

the majority judgment selection procedure for alternative 80 was 0.819, while the majority-

grade for alternative 32 was 0.818.
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Figure 3.9: Empirical cumulative distributions of the decision values for the six top ranked detection sys-
tems according to the multinomial and majority judgment selection procedures.

From the empirical cumulative distributions of the decision values displayed in Figure
3.9, it is seen that the two top ranked alternatives (80 and 32) have nearly identical distri-
butions of decision values. Because they do not stochastically dominate all other alterna-
tives, the decision-makers are faced with making a tradeoff between these alternatives,
which have greater uncertainty in their decision values, and alternatives 29 and 77, which
have less uncertainty. In this case, the decision value empirical cumulative distribution
curves of alternatives 80 and 32 fall largely to the right of all other alternatives.

The DNDO and CBP decision-makers should take comfort in the fact that the top five
alternatives displayed in Table 1 utilize the same sensor technologies (PMPP 1 and PMPP
2) and sensor placements (within booths). The only difference between these alternatives

is the operational modes. Further, of the 1000 Monte Carlo simulation realizations, one of
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these top five alternatives was identified to be the most desirable in the multinomial selec-

tion procedure 998 times.

3.7.4 Summary

In this example we illustrated how the DNDO and CBP decision-makers could incorporate
uncertain performance criteria estimates obtained through a limited number of laboratory
evaluations in the multiple attribute selection decision model for selecting a radiation and
nuclear detection system. Of the 26 attributes considered in the decision model, the values
of 22 of the attributes were uncertain as they were estimated based on a limited number of
laboratory evaluations. Using Bayesian posterior probability distributions and Monte Carlo
simulation, we modeled and propagated the uncertainties resulting from the laboratory
evaluations to the decision values. We applied the multinomial, majority judgement, and
stochastic dominance selection procedures to produce a rank ordering of the candidate sys-
tems. The multinomial and majority judgement selection procedures provided identical
rankings for the top six alternatives. The stochastic dominance procedure did not provide
a selection as no alternative dominated all others.

This example provided the original motivation for this dissertation research because
the experiment design used for the laboratory evaluation could have been altered to best
support the multiple attribute selection decision. There was a set budget regarding the num-
ber of evaluations that could be performed. Provided the multiple attribute selection deci-
sion model, how should the limited laboratory experimental budget have been allocated
amongst the alternatives and attributes to maximize the probability of the best system being

selected? This question of sample allocation is the focus of Chapter 4.
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3.8 Summary

This chapter provided general notation and assumptions for the multiple attribute selection
decision model considered in this dissertation. We presented two methods, analytical and
Monte Carlo simulation, which may be used to propagate attribute value uncertainty
through the decision model to the decision value. By identifying and adapting existing
methods for comparing multiple random variables, we formulated four selection proce-
dures that may be applied to a multiple attribute selection decision with attribute value
uncertainty. The deterministic selection procedure, which is often used in practice, selects
the alternative with the largest decision value by evaluating the decision model using the
expected attribute values. The multinomial selection procedure selects the alternative that
has the greatest probability of having the largest decision value. The stochastic dominance
selection procedure selects that alternative whose distribution of the decision value sto-
chastically dominates, in the first- or second-degree, all other alternatives’ decision value
distributions. The majority judgement selection procedure selects the alternative with the
largest majority-grade.

Through demonstrations in three different examples, we modeled the multiple attribute
decision and the attribute value uncertainty, propagated the uncertainty to the decision val-
ues, and applied one or more of the above mentioned selection procedures to select an
alternative. In the Congressional apportionment example, we illustrated how the uncer-
tainty in the states’ population estimates could be propagated to the states’ priority values
and a selection made using the multinomial selection procedure. We used data from a lim-

ited survey in the selection of a roofer example to illustrate a multiple attribute selection
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decision with attribute value uncertainty. In this example the uncertainty in the perfor-
mance attributes was due to the limited number of survey responses. We used the deter-
ministic, multinomial, majority judgement, and stochastic dominance selections proce-
dures. A single alternative was found to stochastically dominate all other in the first-degree.
This was the same alternative selected by the multinomial and majority judgement selec-
tion procedures, but the deterministic selection procedure chose a different alternative. Our
final example presented the decision to select a radiation and nuclear detection system to
consider for installation in U.S. based international arrival airport terminals. In this exam-
ple, the 22 uncertain performance measures, provided as success probabilities, for 576 al-
ternative systems, were modeled using Bayesian posterior probability distributions and
propagated to the decision value using Monte Carlo simulation. Here, the stochastic dom-
inance selection procedure failed to identify an alternative for selection while the multino-
mial and majority judgment selection procedures agreed on the top six alternatives.

The selection of a radiation and nuclear detection system example was of particular
relevance to the overall work of this dissertation because it presented a situation where the
attribute values were estimated based on a limited number of laboratory evaluations. While
the number of laboratory evaluations was equivalent for all attributes and alternatives, the
allocation of the fixed experimental budget could have been allocated differently to each
of the attributes and alternatives. The development and evaluation of sample allocation
procedures across multiple attributes of multiple alternatives in a selection decision is the

topic addressed in Chapter 4.

68



Of the selection procedures identified and illustrated in this chapter, the expected value
and the majority-judgement selection procedures account for and propagate the uncertain-
ties in the estimates of the attribute values, but then fail to consider the uncertainty in the
decision values when selecting an alternative. The stochastic dominance selection proce-
dure does consider the uncertainty in both the attribute and decision values and maintains
other desirable features, however, a selection cannot be guaranteed using this procedure.
Though Monte Carlo estimation is often required in its implementation, the multinomial
selection procedure does directly consider the uncertainty in the attribute and decision val-
ues. Also, as we will later demonstrate, when a Bayesian estimation approach is used, a
selection made using the multinomial selection procedure also maximizes the probability
of making a correct selection. For these reasons, we relied on the multinomial selection
procedure and Bayesian estimation as a basis for much of our sample allocation work in
Chapter 4. By understanding how the attribute value uncertainty is modeled and used in
the selection decision, we were able to focus our efforts in developing sample allocation

procedures that improved the likelihood of selecting the true best alternative.
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Chapter 4 Information Gathering

In this chapter we turn to the development and evaluation of budget-constrained sample
allocation methods for selection decisions with attribute value uncertainty. When attribute
values are estimated using sample data collected from measurements, experimental evalu-
ations, or simulation runs, uncertainty associated with the estimates is present and relevant
to the selection decision model. In particular, this attribute value uncertainty can limit the
decision-maker’s ability to identify the alternative that truly maximizes his value (utility)
due to the uncertainty of the decision values. Since the decision-maker can reduce the
amount of uncertainty associated with each attribute value by increasing the amount of
information used in its assessment, the allocation of experimental effort (sample allocation)
across the decision alternatives and attributes plays an important role in maximizing the
probability of selecting the truly best alternative (the alternative that would have been se-
lected had the true attribute and decision values been known).

In general, the uncertainty in the true attribute values can be reduced by increasing the
number of samples used in their estimation, which, in turn, reduces the uncertainty in the
decision values and conceivably increases the likelihood of making a correct selection.
When the decision-maker is provided a fixed sample budget that must not be exceeded,
where a sample measures only one attribute for one alternative at a time, the challenge
becomes how to allocate this budget across the alternatives and across the attributes to

provide the greatest probability of making the correct selection. If the sample budget is
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sufficiently large, then the decision-maker can gather enough information about every at-
tribute of every alternative to reduce the attribute value uncertainty to a point where it is
clear which alternative is truly the best. In practice, however, especially when experiments
are expensive, this is not possible. For this work, we assume that the experimental budget
is fixed and limited.

Section 4.1 expands on the Assumptions provided in Chapter 3 as necessary to formu-
late the budget-constrained sample allocation problem for selection decisions with multiple
uncertain attributes. In Section 4.2 we introduce a simulation approach common to all of
the studies presented in this chapter. The work presented in Section 4.3 applies to the Ber-
noulli measurement model where the sample observations are the results of a series of Ber-
noulli trials. More generally, the attribute values are success probabilities that are evaluated
using pass-fail testing. From empirical studies we formulated and compared allocation pro-
cedures for single-stage experimental planning. In Section 4.4 we present work related to
the Gaussian measurement model. Here, the attribute values are results from measurement
processes that are assumed to contain Gaussian measurement error. This model is useful
when the attribute values are physical quantities measured on a continuous scale such as
the weight of an object. We formulated and evaluated allocation procedures for single-
stage experimental planning from empirical studies (Sections 4.4 & 4.5) and using analyt-
ical methods (Section 4.6). The formulation and evaluation of a sequential sample alloca-
tion approach for the Gaussian measurement model is presented in Section 4.7. Chapter 4
closes with a summary of the allocation approaches developed in this dissertation in Sec-

tion 4.8.
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The discussions found in this chapter are largely taken from the works of Leber and

Herrmann (2013a, 20144, 2014b, 2015).

4.1 Problem Definition

We assume in the multiple attribute selection decision that the best alternative is the one
that has the greatest decision value, which is a function of its true attribute values, and that
it is the decision-maker’s goal to select this best alternative. While true values for the mul-
tiple attributes exist for each alternative, they are unknown to the decision-maker and will
be estimated through a series of experiments (measurements, evaluations, or simulation
runs). In this setting, an “experiment” is an information-gathering activity that provides a
value for one attribute of one alternative. Due to randomness in the experiment, the value
returned is a random variable that depends upon the true value of the attribute for that
alternative. The uncertainty associated with the attribute is a function of the values that are
collected from experimentation; more experiments gather more information about an at-
tribute and will reduce the uncertainty about the estimate for the true attribute value. After
the information is gathered, the results of the experiments are used to model the uncertainty
about the estimated attribute values and ultimately the estimated decision values in sup-
porting the selection decision. Provided this uncertainty, the decision-maker seeks to max-
imize the probability of selecting the most preferred alternative.

The information-gathering resource allocation problem can be stated as follows: The
overall experimental budget in terms of sample observations, denoted B, shall not be ex-
ceeded and the cost of each observation is equivalent. Thus, B is the upper bound on the

number of observations that can be collected. B is fixed and will be divided among the k
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attributes of the m alternatives. Information is gained about each attribute through experi-
mental (measurement) processes. The experimental processes are independent, and, for a

given attribute, the same process is used to assess all alternatives. Let X, be the independ-

ijl
ent random variables that describes the 1™ outcome from the experimental processes used
in estimating the value of the j™ attribute of alternative a,. Realized sample observations

are denoted Xijpo+++ X o where n; is the number of measurements obtained for attribute ]

of alternative a,, and the sample data observed in support of alternative a, are
Xi = Xig1s+ - Xian,» Xigrr+ - Xign, 1+ Xikrr -+ - X, - 10E problem is to find values n; that maxim-

ize the probability that the decision-maker will choose the truly best alternative (the prob-

ability of correct selection), given the decision-maker’s preferences as modeled in the se-
. . . m k

lection decision, such that > " > n; <B.
Provided the formulation of the information-gathering resource allocation problem, we

restate and amend the assumptions provided in Section 3.2 as the basis for the development

of the allocation procedures presented in this chapter.
1. The set of m distinct alternatives, {al,...,am} , is provided, where m is a finite pos-

itive integer such that all alternatives can be assessed.
2. Each alternative is described by k > 2 attributes. The decision-maker’s knowledge

of the value of attribute j of alternative a, is uncertain and is described by a proba-

bility distribution which depends on the attributes true value, ;.
. . . . k
3. Also provided is a decision model, & = f (z4;,..., 14, ) = Y, (,uij), that re-

flects the decision-maker’s preference structure and combines the multiple attribute
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values to produce a decision value, &, for each alternative a,. The decision model

is a multiple attribute linear value model with linear individual value functions,
V; (14;) = 4 . The attribute decision weights, 4, , are defined such that z;lj =1.

4. The total fixed experimental budget in terms of sample observations, denoted B,
shall not be exceeded and the cost of each measurement is equivalent. Thus, B is
the upper bound on the number of measurements that can be performed.

5. The decision-maker seeks to maximize the probability of selecting the true best
alternative (PCS).

A Bayesian posterior distribution representation of the uncertain attribute values and
uncertain decision values is the basis for many of the sample allocation procedures devel-
oped and evaluated in this chapter. The Bayesian approach to modeling uncertainty pro-
vides a natural avenue to incorporate prior knowledge. This feature was advantageous in
our development of a sequential allocation approach where the decision-maker’s
knowledge is updated with each new observation. Further, the ability to recognize prior
knowledge allows for a selection decision to be made based on an allocation where no
additional information is collected for one or more attributes of one or more alternatives.
We also assume in much of the work of this chapter that, when faced with uncertain deci-
sion values, the decision-maker prefers (and will select) the alternative that has the greatest
probability of being the best (largest decision value) among the given set of alternatives,
i.e., he uses the multinomial selection procedure.

This problem definition and set of assumptions hold in general for the work in this

chapter with additional definitions and assumptions provided as needed in the sections to
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follow. We close this section with a quick look overview (Table 4.1) of the decision sce-

narios for which the allocation procedures in each section of this chapter are developed.

Table 4.1: Quick look overview of allocation procedures developed in Chapter 4.

Section 4.3 4.4 45 4.6a 4.6b 4.7
Sampling N o I — ——— .
Approach single-stage  single-stage  single-stage  single-stage single-stage sequential
Attribute success continuous  continuous  continuous  continuous  continuous
Type probability = measurand  measurand  measurand  measurand ~ measurand
Number of
Attributes 2 2 3 k>2 k>2 k>2
mce)gsétljrement Bernoulli Gaussian Gaussian Gaussian Gaussian Gaussian
Measure_ment NA unknown known known known known
Uncertainty
Estimation Bayesian Bayesian Bayesian ML Bayesian Bayesian
Approach y y y y y
Selection . . . . . . expected expected . .
Procedure multinomial multinomial multinomial value value multinomial
Allocation = uniform = uniform = uniform = uniform = uniform = uniform
Procedure - proportion = proportion = proportion = MLEEV = BayesEv  (1-stage)
Comparison step « 1-param = 3-zone * proportion
step . 4-70ne (1-stage)
= 2-param = sequential
step

4.2 A Simulation Approach

We relied on simulation studies to provide insights and evaluations of the allocation ap-

proaches. Unlike the examples presented in Chapter 3, by using simulated data with known

truths we are able to determine when the alternative with the largest true decision value

had been selected. This allowed for us to estimate the probability of correct selection as a

performance and evaluation criteria of each of the developed allocation procedures.
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We developed our allocation procedures with the focus on decision cases with m > 2
alternatives and k > 2 attributes whose true attribute values formed concave efficient fron-
tiers (Keeney & Raiffa, 1993). Such a set of non-dominated decision alternatives provided
the most challenging decision situation in terms of identifying the true best alternative un-
der the assumed linear multiple attribute decision model (Assumption 3). While some of
the allocation procedures are generalizable, most of the evaluations in this chapter are
based on decision cases with m =5 alternatives and k = 2 attributes. These values were
chosen to create decision cases that were both non-trivial and capable of being evaluated
with reasonable computational effort. In the Gaussian measurement model cases, the error
associated with the measurement processes used to collect information for each attribute
was also defined as part of the decision case. The description of the algorithms used to
generate these simulated decision cases is described in the following sections.

Given a simulated decision case, which consisted of k true attribute values for each of
m alternatives, and sometimes k measurement errors, we simulated results of the experi-

mental evaluation process under a given sample allocation for each attribute of each alter-
native. That is, for each attribute j of each alternative &, we randomly selected n; obser-
vations from a probability distribution whose functional form is defined by the assumed
measurement model and whose distributional parameters are equal to the true attribute

value (and measurement error, if applicable) as defined by the decision case. Provided these

simulated observations, X;;,..., X, , We modeled the value and uncertainty of attribute j of
alternative @, according to the defined estimation approach for all i and j. Based upon these

attribute value models, we then, for each alternative a,, evaluated the given multiple at-

tribute decision model (with specific attribute weights) and propagated the attribute value
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uncertainty using either the analytical approach or the Monte Carlo simulation approach

presented in Section 3.3. The result of this evaluation was a description, i.e., distribution,
of the decision value, & , for each of the i=1,...,m alternatives. The defined selection

procedure was applied to this set of m uncertain decision values, and an alternative was
identified for selection.

Because the decision case provides the true attribute values, the true best alternative
can be identified by evaluating the given multiple attribute decision model (with specific
attribute weights), for each alternative, using its true attribute values. The result is a set of
m true decision values, and the true best alternative is the one that provides the largest true
decision value.

We compared the alternative that was identified for selection as a result of the simulated
experimental evaluation to the true best alternative to conclude whether a correct selection
had been made. By repeating this process many times, either for the same decision case or
over multiple decision cases (or both), we are able to define the frequency of correct selec-
tion (fcs) measure as the proportion of times that a correct selection was made. As an esti-
mate of the probability of correct selection (PCS), the fcs provides an evaluation metric for
the allocation performance under the specific multiple attribute decision model. While de-
tails may vary, we used this general simulation and evaluation approach in all of the studies

presented in this chapter.
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4.3 Allocation for Two Attribute Bernoulli Measurement Model

In this section we describe a single-stage allocation method for the Bernoulli measurement

model that was developed using results from an empirical study. In a single-stage alloca-

tion, the sample allocation (set of n; values) is determined prior to, and is unaltered

throughout, the data collection process. We use the term Bernoulli measurement model to
refer to the situation where the attributes are success probabilities that are evaluated using
a series of Bernoulli trials (e.g., pass-fail testing).

We describe the outcomes of the evaluation process using the independent random var-
iables X, ~ Bernoulli(r; ) with the sample observations X,,..., X, . In this notation, z;
is the true attribute value, a success probability, for attribute j of alternative a, and the
notation of the decision model from Assumption 3 of Section 4.1 becomes as displayed in

Equation (4.1) with linear individual value functions, v; (ﬂ'ij ) =7 -

k
&= f(ﬂil,...,ﬂik)zzjzlijvj (ﬂij) (4.2)
We assume that the decision-maker’s knowledge of the unknown true attribute value,

7, prior to observing any sample evaluations, can be described by a Beta(aij, ij) prob-
ability distribution with parameters «; = £, =1, Vi, j . This Beta(l,l) probability distribu-
tion is equivalent to a Uniform[O,l] probability distribution and is interpreted as the deci-
sion-maker’s a priori knowledge is that the true attribute value may be any value within

the interval (0,1) with equal likelihood. Let the random variable Y; :ZI"“ X; be the

=17l

number of successful evaluations observed out of n; total evaluations, for attribute j of
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alternative a , then; ~ Binomial (n,

;7 ) - Because the Beta(a, ) distribution is the con-

jugate prior distribution to the Binomial (n, ) distribution, upon observing realizations

Y = :‘:Jl X;i » the decision-maker’s knowledge of 7;; is updated and presented by the pos-

terior distribution (Gelman et al., 2004) described in Equation (4.2). This is the probability

distribution referenced in Assumption 2 of Section 4.1 for this Bernoulli measurement
model.

i |y; ~ Beta(l+yy, 140, —y;) i=L...m, j=1...k (4.2)

From the description of the decision-maker’s knowledge of the true attribute values

after observing the results of n; experimental evaluations for each attribute of each alter-

native, we used Monte Carlo simulation to propagate the attribute value uncertainty to the
decision values, & . The multinomial selection procedure described in Section 3.4.2 was

then used to select an alternative based upon then uncertain decision values.

It was further assumed that the overall fixed experimental budget (Assumption 4 of
Section 4.1), B = cmk, where c is a positive integer, was divided equally among the m al-
ternatives. The budget for each alternative was further divided among the k attributes. In
general, the budgets for different alternatives could have been divided differently, but we

made the simplifying assumption that the allocation is the same for all alternatives. And

thus, n; =---=n.;, Vj. This assumption is reasonable when there is no informative prior

information about the alternatives that would suggest treating them differently.
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4.3.1 Simulation Study

Intuitively, it would seem reasonable to perform more experiments on those attributes that
have the most uncertainty and are the most important in the decision model. To test this
intuition and understand better the behavior of the probability of correct selection as a
function of sample allocation across the attributes, we conducted a simulation study. We
considered the situation where each of m =5 alternatives is described by k = 2 attributes,
and the two attributes are the alternative’s probability of success in two different, inde-

pendent tasks. The alternatives, when characterized by their true attribute values form a

concave efficient frontier in R* space. The overall experimental budget of B = 50 Ber-

noulli trials was divided equally among the five alternatives. The problem was to determine

the number of trials to be allocated to attribute 1, n,;, and the number of trials to be allocated

to attribute 2, n,,, (where n, +n,, =10) to maximize the probability of correct selection.

To form the training decision cases for our initial simulation experimentation, we de-
veloped 20 concave efficient frontiers (decision cases) where each decision case included
five alternatives characterized by two attributes. The attribute values associated with each
alternative were randomly generated subject to the constraints necessary for non-domi-
nance and concavity using a construction algorithm (see Appendix A for details). The left
panel of Figure 4.1 displays the attribute values of the 20 decision cases considered in our
initial experimentation.

Given the random nature of the 20 decision cases, many aspects of possible sets of
alternatives are captured such as frontiers with great curvature, nearly linear frontiers, both
horizontally and vertically situated frontiers, frontiers that span a small region, and those

that span a larger region. Two characteristics were quantified and used to describe each
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case: a measure of nonlinearity, NL, and a measure of general angle, 6. Generally speaking,
the nonlinearity measure is the area of the polygon formed by the attribute values scaled
by the distance between the extreme attribute pairs. The general angle is the acute angle
formed by the line segment connecting the extreme attribute pairs and the horizontal line
that passes through the maximum attribute 2 value (see Appendix B for details). The right

panel of Figure 4.1 provides an illustration of the nonlinearity and general angle measures.
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Figure 4.1: Twenty training cases (left panel) with the case number displayed by the numeric plotting char-
acter. Right panel illustrates the measures of nonlinearity (scaled shaded area) and general angle, é.

Under the provided assumptions for this Bernoulli measurement model, we simulated,
as described in Section 4.2, the experimental evaluation process for each case using all 11
possible sample allocations defined as (n,,n;,) pairs: (0,10),(1,9),...,(10,0) . The param-

eters of the Bayesian posterior distributions for the attribute values (Equation (4.2)) were

calculated based on the outcome of each simulated evaluation. We defined 19 unique de-

cision models by applying the 19 unique (/11,/12) pair of attribute decision weights:
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(0.05,0.95),(0.10,0.90),...,(0.95,0.05) to Equation (4.1). Using 1000 Monte Carlo sim-

ulation replicates, the attribute value uncertainty was propagated to the decision values
under each decision model, and a selection was made using the multinomial selection pro-
cedure. For each decision case, we repeated this simulation a total of 1000 times, compar-
ing each resulting selection to the true best alternative. The final result was 4180 fcs values:

one for each of the 11 allocations, 19 decision models, and 20 decision cases.

4.3.2 The Impact of Sample Allocation

Before exploring the results of the decision simulation, we gained some insight about the

impact of sample allocation in this two-attribute problem. Using the set of five alternatives
with the true attribute value pairs {(0.1, 0.9),(0.4,0.85),(0.7,0.7),(0.85,0.4),(0.9,0.1)}

we investigated the impact of sample allocation on the expected Bayesian posterior distri-
butions for the attribute values.

As with our general problem, we allocated a fixed number of samples (in this case 250)

across the five alternatives and two probability of success attributes as n, and n, =50-n;
where n;; =---=n;;, Vj =1,2. For each alternative and attribute, we defined the expected

Bayesian posterior distribution to be the posterior distribution obtained when the propor-

tion of successes observed in the binomial experiment of size n; equals 7, the true attrib-

ij?

ute value. That is, the observed results y; = z;n; and the expected Bayesian posterior dis-
tribution is Beta(1+ g, 1+n, (1—7zij )) The 95 % credible interval was calculated for

!

each alternative and attribute as the interval from the lower 2.5 % quantile to the upper
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97.5 % quantile of the expected Bayesian posterior distribution. We defined a 95 % ex-
pected credible box to be the rectangle whose edges are equal to the end points of the 95 %
credible intervals for each attribute in R* space. Because the attributes are independent,
the probability that the alternative’s true attribute values are believed to be contained within
this credible box is 0.95* =0.9025. Figure 4.2 displays graphically the expected credible

boxes for each of the five alternatives for three different sample allocations.
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Figure 4.2: Expected credible boxes for three different sample allocations when the proportion of successes
observed equals the true attribute value. The position of the plotting character (1 to 5) indicates the true at-
tribute values for each alternative.

When moving from the left panel (sample allocation n, =5,n, =45) to the center
panel (N, =25,n, =25) and to the right panel (n, =45,n,, =5) of Figure 4.2, it is seen
that the ability to discern alternatives improves when considering attribute 1 (width of
boxes decrease) and declines when considering attribute 2 (height of boxes increase). This

suggests that allocations placing more samples with attribute 2, such as in the left panel,

would provide the ability to better identify the true best alternative for a decision model

83



with a large emphasis on attribute 2 (i.e., large A, value). Whereby the opposite is sug-
gested for allocations placing more samples with attribute 1 (better suited for decision mod-

els with large A, value).

4.3.3 Frequency of Correct Selection Results

For each of the 20 decision cases and each of the 19 decision models considered in the

*

i1’

decision simulation, there is at least one sample allocation value of n,, denoted n,, that
produced the maximum frequency of correct selection (in some cases, for some values of

A, there were multiple values of n;). This optimal sample allocation should maximize the
probability of choosing the true best alternative. Since 4, =1-4, and n, =10—-n,, it was
sufficient to consider only A, and n, when exploring the fcs results. The relationship be-

tween n; and 4, was seen to follow a general trend in which n; increased as 4, increased,

often in a manner that could be well represented by an “S-curve” such as the logistic func-
tion. The shape and location of the S-curves varied but displayed dependencies on 6, the
frontier characteristic measure of overall angle.

For each of the 11 sample allocations for each decision case and decision model, we
defined the relative frequency of correct selection (rel fcs) as the ratio of the fcs for that
sample allocation to the fcs that results from the optimal sample allocation. This measure
provided a continuous response variable, as a function of n, and A, that indicates the
relative quality of each sample allocation versus the optimal sample allocation. The rel fcs
measure allows us, within the confines of the problem which include the alternatives’ at-

tribute values and the total experimental budget, to quantify how much better the selection
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could be if a different sample allocation was chosen. By viewing the relationship between
n,, 4, and the rel fcs as a contour plot for each case, further insights were gained.

The shaded contour plots of Figure 4.3 present the relative frequency of correct selec-
tion as a function of n, and A4, ranging from dark (low values) to light (high, desirable

*

values). The solid squares within the plots denote n,,

the sample allocation that produced

the maximum frequency of correct selection for each A, considered in the simulation study.

The contour plots of Figure 4.3 serve to illustrate three general trends observed across the

20 training cases.

Case 8 Case 7
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Figure 4.3: Contour plots for the rel fcs as a function of n, and A, for three selected training cases. The
solid squares denote n;, for the 4, values evaluated.

The left panel in Figure 4.3 displays the contour plot as a result of decision case 1. The
general increasing trend of n;, as a function of A, is observed, but further, it is observed

that favorable rel fcs values can be obtained through much of the middle of the graph; in

other words, choosing a sample allocation that performed poorly would be difficult for

nearly all values of A,. The center panel in Figure 4.3 displays the contour plot as a result

of decision case 8. Again the general increasing trend of n; as a function of 4, is observed,
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but here the optimal “path” from 4, =0 to 4 =1 is much more defined with less room for

error, and thus more careful consideration is necessary when choosing a sample allocation.

Finally, the rightmost panel in Figure 4.3 is the contour plot as a result of decision case 7.

Here, favorable rel fcs values at low values of A, correspond to low values of n, (lower
left region of graphic) and at high values of A, favorable relative frequency of correct

selection values correspond to high values of n,; (upper right region of graphic). But unlike
the first two cases, these two regions are disconnected. We suspect that had we evaluated

several decision models with 0.45< 4 <0.50 in decision case 7 that a very steep and de-

fined optimal “path” from 4, =0 to 4 =1 would have been presented.

4.3.4 Allocation Procedures

In general, the optimal allocation procedure has dependencies on the degree of information
possessed by the decision-maker. In the absence of any information, including knowledge

of the decision model, the decision-maker will have no reason to allocate more samples to
either attribute. Thus, a balanced allocation of n, =n, =2 would be implemented as the

experimental plan to collect data to support the estimation of each attribute value of each
alternative and ultimately the selection decision. We refer to this sample allocation as the
uniform allocation procedure. This allocation is consistent with the principle of balance in

the traditional design of experiments discipline.

If knowledge of the decision model, specifically, the values of 4, and 4,, is available,

the decision-maker may choose to implement an allocation procedure that assigns n, and
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n., proportional to 4, and 4,. Such an approach is supported by the general insights dis-
cussed in Section 4.3.2 as well as the observations made is Section 4.3.3 that the optimal

allocation n increased as 4, increased. Since n, and n,, must be integer values, rounding

is necessary; we chose the rounding rule n, =round (4, £), n, =2-n,. We refer to this

m
sample allocation approach as the proportional allocation procedure.

If, in addition to knowledge of the decision model, the decision-maker is able to make
some general statements about the shape of the concave frontier, such as the value of the

general overall angle, 6, a case-specific allocation procedure may be utilized. It was ob-

served in the work described in Section 4.3.3 that as a function of A, the optimal sample

*

allocation, n;, was reasonably represented by an S-curve with location and shape depend-

ent on the general overall angle of the concave frontier. One simplification of an S-curve

is a step-like function with the horizontal steps connected by a line which may or may not

be vertical. We considered, for 0<c, <c, <1 and 0< 4 <1, a step allocation procedure

with n, defined by Equation (4.3) and n, =3 —n,.

0 if 4, <c
-c, |B| .
n, =< round Hﬁ: _({]E} if ¢, <c,and ¢ < 4 <c, (4.3)
B .
— if L >c
~ A >C,

For each of our 20 training cases, we determined the values of ¢, and C, in Equation
(4.3) that maximized the average relative frequency of correct selection across the 19 eval-

uated values of A,. From this, we hypothesized a quadratic relationship between @ and c,
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(and c,) and found the best fit (Equation (4.4)) using restricted least-squares regression
that required the modeled responses ¢, =¢, =0 when =0, and ¢, =C, =1 when ¢ =90.

¢ (0)=26+L6°

225 13500 i (44)
¢,(0) = 50—z 0

Note that for a horizontal frontier (¢ =0 and ¢, =c¢, =0) and a vertical frontier (¢ =90
and ¢, =c, =1) this step procedure provides the sample allocations (n, =10,n,, =0) and

(n, =0,n,, =10), respectively, for any decision model values of 4, and 4,.

An illustration of the sample allocations generated by each allocation procedures and
their resulting rel fcs values over the range of A, for training case 8 is provided in Figure
4.4. As in Figure 4.3, the shaded contour plots of Figure 4.4 present the rel fcs as a function
of n, and A, ranging from dark (low rel fcs values) to light (high, desirable rel fcs values).
The solid squares within the plots denote n, the optimal sample allocation at each 4
value. The solid red line in each plot represents the sample allocation generated by the

specified allocation procedure for the attribute decision weight, 4, .

uniform proportional step

0.05 020 035 050 065 080 095 005 020 035 0350 065 080 095 005 020 035 050 0.65 080 095
M M M

Figure 4.4: Sample allocations (solid red line) generated by each allocation procedures for training case 8.
The shaded contour plots display the rel fcs as a function of n,, and A, . The solid squares denote n, .
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A good allocation procedure provides sample allocations that result in high rel fcs val-

ues for any attribute decision weight (4, value); an ideal procedure provides a sample al-
location equal to n; at each A, value. While no procedure presented in Figure 4.4 provides
an optimal sample allocation at every A, value, the step allocation procedure offers sample

allocations that provide high — and often optimal — rel fcs values for most A, values. Sam-
ple allocations provided by the uniform and proportional allocation procedures are seen to

result in less desirable (darkly shaded) rel fcs values over many values of 4, .

4.3.5 Comparison of Allocation Procedures

The second part of our study compared the performance of the allocation procedures. One
hundred new concave frontiers (evaluation cases), each containing 5 alternatives described
by 2 attributes were randomly generated using the construction algorithm described in Sec-
tion 4.3.1. These evaluation cases were used to evaluate and compare the three sample
allocation procedures described in Section 4.3.4 (uniform allocation, proportional alloca-
tion, and step procedure). The attribute values of the 100 evaluation cases and their non-

linearity and general angle measure values are displayed in Figure 4.5.
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Figure 4.5: Attribute values (left panel) and nonlinearity and general angle measure values (right panel) for
the 100 concave frontiers in the evaluation set.

The sample allocations directed by each of the three allocation procedures were deter-
mined for each of the 100 evaluation cases. Based on these sample allocations, we used the
decision simulation described in Section 4.2, again with 1000 simulation replicates and

1000 Monte Carlo simulation replicates, to evaluate the fcs (and rel fcs) for each evaluation
case and each of the 19 decision models (4,4, pair). We then examined, on a case-by-
case basis, the relative frequency of correct selection that resulted from the simulation, as
a function of 4,. At each A, value, we calculated the average rel fcs across the 100 evalu-

ation cases. The uncertainties in the average rel fcs were expressed as 95 % pointwise con-
fidence intervals based on the normality assumptions provided by the Central Limit Theo-

rem.
While it varied from case to case and across A, values, in general, the step allocation
procedure provided the largest relative frequency of correct selection values. The propor-

tional allocation procedure displayed similar performance to the step procedure with A,
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values near 0 and near 1, but provided lower rel fcs values elsewhere. The uniform alloca-
tion procedure nearly always produced the smallest rel fcs values. Figure 4.6 illustrates

these general conclusions by displaying, for each of the three allocation procedures, the rel

fcs averaged across all evaluation cases at each A4, value.
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Figure 4.6: rel fcs values averaged across all evaluation cases for the step allocation for each 4, value;
shaded area represents 95 % pointwise confidence bounds for the true relative PCS.

It is observed from Figure 4.6 that sample allocations provided by the uniform alloca-

tion procedure lead to, on average, a relative frequency of correct selection near 0.75, and
this performance is nearly constant over all values of A,. The sample allocations provided
by the proportional allocation procedure near 4, =0.5 are identical to the uniform alloca-

tion, and hence the performance of the proportional and uniform allocation procedures are

comparable in this region. The relative frequency of correct selection for the proportional
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allocation procedure increases as A, moves away from 0.5 and towards either 4 =0 or

A =1. Overall, the average relative frequency of correct selection for the proportional al-
location procedure is approximately 0.83. The step procedure provided a maximum aver-

age relative frequency of correct selection value of 0.98 at 4 =0.95, a minimum average
value of 0.88 at 4, =0.5, and an overall average relative frequency of correct selection of

0.93. We thus arrive at the important conclusion that for nearly all values of A, the step

procedure provides average relative frequency of correct selection values that are statisti-
cally distinguishable (non-overlapping confidence intervals) and superior to the other allo-
cation procedures.

It can be observed from the right panel of Figure 4.5 that there were a number of eval-

uation cases that displayed nearly identical frontier curve characteristic measures of non-
linearity and general angle. The contour plots of the rel fcs as a function of n, and 4,, and

ultimately the rel fcs values that resulted from the sample allocations dictated by the three
allocation procedures were very similar when comparing several such pair of evaluation
cases near the limits of the characteristic measures (6 =0 or € =90). On the other hand,
these similarities were not observed when comparing pairs of cases near the middle of the
characteristic measures’ domain. This observation leads us to believe that there is at least
one additional frontier curve characteristic that would help distinguish relative frequency
of correct selection performance from case to case, and ultimately aid in identifying the

optimal sample allocation.
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4.4 Allocation for Two Attribute Gaussian Measurement Model

In this section we describe a single-stage allocation method for the Gaussian measurement
model that was developed using results from an empirical study. Again, in a single-stage
allocation, the sample allocation (set of n; values) is determined prior to, and is unaltered
throughout, the data collection process. We use the term Gaussian measurement model to
refer to the situation where the attributes are continuous measurands and the error in the
process used to obtain the measurements is modeled as a normal probability distribution
(e.g., measured physical quantities such as distance).

with

In the Gaussian measurement model we use the random variable X;, = 4 +¢;,

realized sample observations denoted X;,, .. to describe the 1" outcome from the

L] IJn 1
measurement process used in estimating the value of the j™ attribute of alternative a, . Here

is the true attribute value, &, is the random measurement error, and n; is the number

Hj
of measurements obtained for attribute j of alternative a, . This notation is the basis for the
decision model as written in Assumption 3 of Section 4.1 and repeated here as Equation

(4.5) with linear individual value functions v; (,uij ) = M .

éi :f lull’ : ’zulk ZJ =177 J(/uu) (45)

An experimental sample (measurement process) generates one random measurement
of one attribute of one alternative. Separate and independent measurement processes are

used in obtaining n, measurement data (samples) for each attribute, and for a given attrib-

ute j, the measurement process is the same for all i=1,...,m alternatives. Further, it is
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assumed that the measurement errors associated with these measurement processes are in-

dependent and identically distributed (i.i.d.) and can be modeled by a normal probability

ii.d.
distribution centered at zero, &; ~ N(0,07),i=1...m;I=1...,n;. It follows that the

measurement distribution for X;; ~ N (,uij,ajz), and in this section we assume that ajz is

unknown. It is common in the field of metrology for the error associated with a continuous
measurand to be modeled with a Gaussian distribution (Joint Committee for Guides in
Metrology, 2008).

We assume that the decision-maker’s prior knowledge of the unknown true parameters

for this Gaussian measurement model, x; and ajz, can be described by the probability

distributions provided in Equation (4.6).

#; ~N (/uOij'Téij) (4.6)
2 2 2 '
o) ~Inv-y (voj,aoj)

While it was preferable to minimize the assumption on prior knowledge by using a non-

informative pair of prior distributions such as a Jeffrey’s prior on ajz and a uniform distri-

bution over (—oo,0) on 4 , these priors are improper priors and do not integrate to one.

When updated based on observed data and Bayes rule, the resulting posterior is indeed
proper. However, in this work there are situations where no data is provided, i.e., no sample
allocated to the attribute, thus the prior distributions will be relied upon as a surrogate for
the posterior, and since the non-informative prior distributions are improper, they are not

useful in the analysis. Also, this non-informative uniform prior on z; allows for negative

values to be observed with non-negligible probabilities, which is problematic in a meas-

urement model where measurand values are often assumed to be non-negative.
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The selected prior distributions of Equation (4.6) are attractive as they do maintain

some non-informative traits. The selected prior on ajz approaches a Jeffrey’s prior in form
when ajj =1 and v,; is very small (e.g., 0.001), but remains a proper prior. The selected
prior on g can approach uniform distribution in form when rjij is selected to be very
large. To best meet these goals, we used the prior parameters z,,; =150 and Tg-j =35%, and

v,; =0.01 and ajj =1, for all i and j. The prior parameters for . were chosen to be cen-
tered on the domain of the true attribute values as defined in the simulation study described
below in Section 4.4.1, with a variance that provided as large a distributional spread as

possible without creating non-negligible probabilities over negative values of ;. The

prior parameters for ajz were chosen so that the prior distribution closely resembles a non-

informative Jeffrey’s prior distribution.
This Bayesian semi-conjugate prior model for normally distributed data (Gelman et al.,

2004) provided the useful conditional posterior distribution for x; given by Equation (3.7).

2 2 2 2
O Hoij + NyToi X O’ Toij ]

2 2 ! 2 2
o +N;Ty; o +N;To;

A |o-j2’xijl""’xijnij - N{ (4.7)

To make use of Equation (4.7), a Monte Carlo simulation approach must be used that
ij1r e Nijng

first samples from the marginal posterior distribution of ajz, p(aj2 | x X ) and then

samples from the conditional posterior distribution for ;. In this case, however, the mar-

ginal posterior distribution of ajz does not follow a standard parametric form, and thus

must be computed numerically (see pp. 82 (Gelman et al., 2004)). Fortunately, the Learn-

Bayes package (Albert, 2014) of the R software environment for statistical computing and
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graphics (R Core Team, 2015) provides a function (normpostsim) that produces simulated

samples from the joint posterior distribution of 4 and ajz using efficient Gibbs sampling.
The simulated samples of 4; provided empirical distributions for the decision-maker’s
knowledge of the true attribute values after observing n; sample measurements for each

attribute of each alternative. From these distributions, we used Monte Carlo simulation to
propagate the attribute value uncertainty to the decision values, & . The multinomial se-

lection procedure described in Section 3.4.2 was then used to select an alternative based
upon the uncertain decision values.

We again assumed that there is no informative prior information about the alternatives
that would suggest treating them differently and thus the overall fixed experimental budget
allocation was the same for all alternatives. Specifically, the overall fixed experimental
budget, B = cmk, where c is a positive integer, was divided equally among the m alterna-

tives and further divided among the k attributes such that n;; =---=n_;, vj .

4.4.1 Simulation Study

We conducted a simulation study to understand how the experimental sample allocation
affects the probability of correct selection and to test our general intuition that obtaining
more measurements on those attributes that have the most uncertainty and are the most
important to the decision-maker is an obvious strategy for allocating the overall experi-
mental budget. We considered the situation where each of m =5 alternatives is described
by k = 2 attributes that are measured using two different and independent measurement

processes. The error of each measurement technique is normally distributed with unknown
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variance. The alternatives, when characterized by their true attribute values form a concave

efficient frontier in R* space. The overall experimental budget of B = 50 sample measure-

ments was divided equally among the five alternatives. The problem was to determine the

number of samples to be allocated to attribute 1, n,, and the number of samples to be

allocated to attribute 2, n,,, (where n, +n, =10) to maximize the probability of correct

selection.

Based on the results of Section 4.3, which considered pass-fail testing to estimate at-
tribute values in terms of probabilities, we expected that sample allocation procedures
might provide the decision-maker with guidance. We generated a set of 20 training cases
and used these to guide the values of the parameters in our sample allocation procedures.
Like the Bernoulli measurement model study, our decision cases consisted of five alterna-
tives described by two attributes. To generate these training cases, we transformed the true
values of the attributes of the random training cases used in the Bernoulli measurement
model study to the domain [100, 200] and again measured the nonlinearity and general
angle characteristics of each case. Figure 1 displays the true attribute values of the 20 train-

ing cases.
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Figure 4.7: Twenty training cases for the Gaussian measurement model with the case number displayed by
the numeric plotting character.

In the simulation study for the Gaussian measurement model, we also needed to provide
the true but unknown variance of the measurement error, ajz , associated with the measure-
ment process used to measure the value of each attribute j. For each training cases, we
considered the 16 different measurement error scenarios described in Table 4.2 which de-
fined the variance of the measurement errors, o and o, for the measurement processes

used to measure attribute 1 and attribute 2. We referred to a decision case under a particular

measurement error scenario as a “subcase” and used the notation 16.30.1, for example, to
refer to decision case 16 with a measurement error variance for attribute 1 of 30% and a

measurement error variance for attribute 2 of 1°. In this initial simulation experiment for
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the Gaussian measurement model, we considered 320 subcases: each of the 20 decision

cases evaluated under each of the 16 measurement error scenarios.

Table 4.2: Measurement error scenarios for the Gaussian measurement model simulation study with two

attributes.

Scenario o} o,
1 1° 1°
2 1? 10?
3 1? 20?
4 1? 307
5 10? 1°
6 10° 10°
7 10? 20°
8 10° 30?
9 20? 1°
10 20° 10°
11 20° 20°
12 20° 30°
13 307 1°
14 30° 10°
15 30° 20°
16 30? 30°

Under the provided assumptions for this Gaussian measurement model, we simulated,

as described in Section 4.2, the experimental evaluation process for each subcase using all

11 possible sample allocations defined as the (n,,n;,) pairs: (0,10),(1,9),...,(10,0). We
defined 19 unique decision models by applying the 19 unique (4,,4,) pair of attribute

decision weights: (0.05,0.95),(0.10,0.90),...,(0.95,0.05) to Equation (4.5). Based on the

outcome of the simulated evaluation process for each subcase under each allocation, we
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generated 1000 simulated samples from the conditional posterior distribution of 4, (Equa-

tion (4.7)) for each attribute of each alternative and calculated the decision values, &, as
defined in Equation (4.5) for each of the 19 decision models. Using these empirical distri-
butions of &, an alternative was selected using the multinomial selection procedure and

checked to determine whether this alternative was the true best. We repeated this experi-
mental evaluation simulation a total of 1000 times. The final result was 66,880 fcs values:

one for each of the 11 allocations, 19 decision models, and 320 subcases.

4.4.2 Frequency of Correct Selection Results

We identified n,; and defined the rel fcs for each of the 320 subcases and each of the 19

decision models. Recall that for a given decision model, n,; is the optimal sample alloca-

tion for attribute 1 that produced the maximum frequency of correct selection and the rel-
ative frequency of correct selection (rel fcs) for each sample allocations is the ratio of the

frequency of correct selection for that sample allocation to the frequency of correct selec-
tion for the n; allocation. Though complicated by the measurement error scenario, similar
observations were made regarding the relationship between n; and 4, as were observed in
Section 4.3.3.

The shaded contour plots of Figure 4.8 present the rel fcs as a function of n, and A4,
ranging from dark (low rel fcs values) to light (high, desirable rel fcs values) for training

case 16. The solid squares within the plots denote n;, the optimal sample allocation for
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attribute 1 at each A, value. The contour plots of Figure 4.8 serve to illustrate two general
trends observed across the 320 subcases.

Subcase 16.30.1 Subcase 16.30.30 Subcase 16.1.30

TE Wi

10

0.05 020 035 050 065 080 095 005 020 035 0350 065 080 095 005 020 035 050 0.65 080 095
iy M M

Figure 4.8: Contour plots displaying rel fcs as a function of n, and A, for training case 16 under measure-
ment error scenarios (30°,1°), (30%,30% ), and (1?,30°). For each 4, , the squares denote n .

First, consider the left panel of Figure 4.8 (subcase 16.30.1) where the measurement

error variance associated with attribute 1 is large (o7 =30%) and that associated with at-
tribute 2 is small (o7 =1). When attribute 1 is very important to the decision-maker ( 4,

is near 1), then only sample allocations that allocate nearly all 10 samples to attribute 1 (n,
is near 10) produce favorable rel fcs values. When, however, attribute 1 is not important
(when A, is near 0), nearly all sample allocations produce very favorable results. Although
attribute 2 is very important in this situation, because it has low measurement variability,
sample allocations with small, non-zero values of n,, still produce favorable rel fcs values.

This phenomenon is seen in reverse in subcase 16.1.30 (right panel, Figure 4.8). Subcase
16.30.30 (center panel, Figure 4.8) combines the restrictive observations of the previous

two subcases because both attributes have large measurement error variance

(af =0 :302). That is, only sample allocations that allocate nearly all 10 samples to
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attribute 1 produce favorable rel fcs results when attribute 1 is very important, and only
sample allocations that allocate nearly all 10 samples to attribute 2 produce favorable rel
fcs results when attribute 2 is very important. These observations begin to illustrate the
complex tradeoff between apportioning samples based on measurement variability and
sampling the important attribute.

Like we observed in Section 4.3.3, we see in Figure 4.8 that, in general, as the im-
portance of attribute 1 increases (that is, as the weight A, increases from 0 to 1), the n,

values that generate the most desirable sample allocations increase. This relationship is not
strictly linear, but it can be reasonably represented by an “S-curve” such as the logistic
function. This can be seen most clearly in subcase 16.30.30 (center panel, Figure 4.8). Alt-
hough the location and shape of a representative S-curve varied from case to case, we saw

that these parameters depended on the shape of the frontier.

4.4.3 Allocation Procedures

As in the Bernoulli study of Section 4.3, we again consider the uniform allocation proce-

dure, a balanced allocation of n, =n, =-2-, and the proportional allocation procedure,
where the decision-maker assigns n, and n, proportional to 4 and A, by
n,, = round (ﬂl %) and n,, =2 —n, . Although the proportional allocation procedure is sim-
ple, the evaluations showed that the relationship between 4, and n_; was usually not linear,

but rather, distinctly nonlinear. To approximate this relationship, we used a step-like func-

tion that we called a step allocation procedure. For 0<c, <c, <1 and 0< 4 <1, the step

procedure assigns n, as defined by Equation (4.8) and n, =2-n,.
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0 if 2,<c,
-c, |B| .
n, =< round Kj: —cja} if ¢, <c,and ¢, < 4 <c, (4.8)
B .
— if 4,>c
- h>e,

We determined, for each training case, the values of the parameters ¢, and c, that

maximized the average relative frequency of correct selection across all measurement error
scenarios. We used those results to generate insights into how these parameter values de-
pend upon the shape of the concave frontier (the values of the general overall angle, 6, and
the nonlinearity measure, NL). From this, we hypothesized a quadratic relationship be-

tween @ and ¢, (and C,) and found the best fit (Equation (4.9)) using restricted least-
squares regression that required the modeled responses ¢, =¢, =0 when ¢ =0 (a horizon-
tal frontier), and ¢, =¢, =1 when ¢ =90 (a vertical frontier). We refer to the step allocation

procedure as a 1-parameter step allocation procedure when ¢, and c, in the step function

of Equation (4.8) are defined according to the univariate models of Equation (4.9).

¢, = f,(0)=8.47x100+1.14x10 "
N, (4.9)
2 2

(6)=2.09x1020-1.09x107* 6

We also hypothesized a bivariate relationship between @and NL and ¢, (and c,) and

found the best fit (Equation (4.10)) using restricted least-squares regression that required

the modeled responses ¢, =¢, =0 when =0 and NL=0; ¢, =C, =1 when =90 and

NL=0; and, ¢,=0,c,=1 when =45 and NL=0.25. We refer to the step allocation
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procedure as the 2-parameter step allocation procedure when ¢, and ¢, in the step func-
tion of Equation (4.8) are defined according to the bivariate models of Equation (4.10).

C = fl(ﬁ, NL) =1.11x107%6+0.674NL—5.94x1076- NL

(4.10)
c, = f,(6,NL)=1.11x1026 + 4.56NL —5.69x10 20 NL

Thus, if the decision-maker had information about the shape of the concave frontier, a

specific step rule could be generated and used to determine the sample allocation. Note that

for a horizontal frontier (=0, NL=0, and ¢, =C, =0) and a vertical frontier (¢ =90,
NL =0, and ¢, =c, =1), both the 1-parameter and the 2-parameter step procedures pro-
vide the sample allocations (n, =10,n,, =0) and (n, =0,n,, =10), respectively, for any
decision model values of 4, and 4,.

An illustration of the sample allocations generated by each allocation procedure and
their resulting rel fcs values over the range of A, for subcase 8.20.20 is provided in Figure

4.9. As in Figure 4.8, the shaded contour plots of Figure 4.9 present the rel fcs as a function

of n, and A, ranging from dark (low rel fcs values) to light (high, desirable rel fcs values).
The solid squares within the plots denote n_, the optimal sample allocation for attribute 1
at each A, value. The solid line in each plot represents the sample allocation generated by

the specified allocation procedure for the range of attribute decision weight, A, .
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Figure 4.9: Sample allocations (red line) generated by each allocation procedure for training subcase
8.20.20. The shaded contour plots display the rel fcs as a function of n, and 4, with n; denoted as solid
squares.

A good allocation procedure provides sample allocations that result in high rel fcs val-
ues for any attribute decision weight (4, value); an ideal procedure provides a sample al-

location equal to n; at each A, value. While no procedure presented in Figure 4.9 provides

an optimal sample allocation at every A, value, the step allocation procedures offer sample
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allocations that provide high — and often optimal — rel fcs values for most A, values. Sam-
ple allocations provided by the uniform and proportional allocation procedures are seen to

result in less desirable (darkly shaded) rel fcs values over many values of 4, .

4.4.4 Comparison of Allocation Procedures

To test the sample allocation procedures, we generated 500 new concave frontiers (evalu-
ation cases) using the construction algorithm. Each evaluation case was a set of 5 randomly
generated alternatives described by 2 alternatives. Again, the frontier generation process
ensured that the alternatives formed a concave efficient frontier with attribute values re-
stricted to the domain of [100, 200]. We calculated the nonlinearity (NL) and general angle
(6) measures for each evaluation case.

We tested each of the sample allocation procedures developed in Section 4.4.3 using

all 500 evaluation cases and 19 decision models. To each of the 500 evaluation cases, we

assigned a pair of measurement error variance values, o and o . The assigned o, values

(j=1,2) were independent, random draws from a uniform distribution with parameters

min = 1 and max = 30. Then, for each of the 11 possible sample allocations, for each of the
19 attribute models, across the 500 evaluation cases, we obtained a rel fcs value using the
same simulation process used for the training cases as described in Section 4.4.1. For each
evaluation case and decision model, we used each of the sample allocation procedures to
produce a sample allocation. The rel fcs value from the results of the simulation for these
allocations were identified. The performance of an allocation procedure, for each attribute

decision weight, was defined to be the average rel fcs of its sample allocation across the
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500 evaluation cases. The uncertainties in the average rel fcs were expressed as 95 %
pointwise confidence intervals based on the normality assumptions provided by the Central
Limit Theorem.

The general ranking of the allocation procedures in terms of performance (average rel

fcs) from best-performing to worst-performing is as follows: 2-parameter step, 1-parameter

step, proportional, uniform. At A, values very near 0 and very near 1 the proportional al-
location procedure and the step procedures provide similar sample allocations (n, =0 at
A4 =0 and n, =2 at 4 ~1) and thus displayed similar performance at these attribute de-
cision weight values. At 4, values near 0.5 the proportional allocation procedure and the

uniform allocation procedure provide similar sample allocations (n, =n,, == ) and thus

displayed similar performance at these attribute decision weight values. Figure 4.10 illus-
trates these general conclusions by displaying, for each of the four allocation procedures

studied, the relative frequency of correct selection averaged across all evaluation cases at

each A, value and the 95 % pointwise confidence interval for the true relative PCS value.
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Figure 4.10: rel fcs values averaged across all testing cases for the 2-parameter step allocation for each A,
value; shaded area represents 95 % pointwise confidence bounds for the true relative PCS.

As shown in Figure 4.10, the sample allocations generated by the uniform allocation

procedure led, on average, to a rel fcs near 0.80, and this performance is nearly constant

over most values of A,. The average rel fcs for the proportional allocation procedure in-

creases as 4, moves away from 0.5 and towards either 4, =0 or 4 =1. Overall, the aver-
age rel fcs for the proportional allocation procedure is approximately 0.84. The one-param-

eter step procedure provides a maximum average rel fcs value of 0.96 at 4 =0.95, a min-
imum average value of 0.83 at 4, =0.5, and an overall average rel fcs of 0.88. The two-
parameter step procedure provides a maximum average rel fcs value of 0.97 at 4, =0.95,

a minimum average value of 0.90 at 4, =0.5, and an overall average rel fcs of 0.92. We
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thus conclude that, for nearly all values of A4, the two-parameter step procedure, which
leverages the frontier characteristic measures of overall theta and nonlinearity, provides
average relative frequency of correct selection values that are statistically distinguishable
(non-overlapping confidence intervals) and superior to the other allocation procedures.
When one attribute is largely more important than the other (i.e., when A, is near 0 or
1), and the less important attribute also has more measurement uncertainty, we have seen
that there is a range of near-optimal sample allocations that have a high rel fcs. Thus, it
appears that it is easier to generate a near-optimal sample allocation when A, is near 0 or
1, which would perhaps explain why the evaluation curves in Figure 4.10 tend be lower

when 4, is near 0.5 and higher when 4, is near 0 or 1.

4.5 Allocation for Three Attribute Gaussian Measurement Model

In this section we continue our study of the single-stage allocation method for the Gaussian
measurement model. We develop allocation methods for a fixed experimental sample
budget across three attributes based on insights gained from an empirical study.

As a continuation of the Gaussian measurement model work presented in Section 4.4,
the notation regarding the measurement process and the decision model also hold in this

k = 3 attribute study. We again assume that the measurement errors associated with the

i.id.
measurement processes, &; -~ N(O,ajz),izl,....m, I=1,...,n; and the measurement dis-
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tribution X;; ~ N (,uij,ajz). Unlike Section 4.4, here we assume that ajz IS known. In me-
trology, it is not uncommon for the variance of the measuring process to be well character-
ized and assumed known (Lee P. M., 1997).

This knowledge of ajz allows for us to use a conjugate normal prior distribution,

N ( His s r(fj ) to describe the decision-maker’s prior knowledge of the single unknown true

parameters for this Gaussian measurement model, ; (the true attribute value). While this

conjugate prior model simplified computations over the semi-conjugate model used in the
two-attribute study, we needed to continue to be cautious of defining a prior distribution

that allowed for negative values to be observed with non-negligible probabilities and thus
we used the prior parameters ,; =150 and z;; = 35°. These prior parameters for ., were
chosen to be centered on the domain of the true attribute values as defined in the simulation

study described below in Section 4.5.1, with a variance that provided as large a distribu-

tional spread as possible without creating non-negligible probabilities over negative values

of x;. Upon observing n, measurement samples for attribute j of alternative &, , the deci-
sion-maker’s knowledge of ; is updated and presented by the normally distributed pos-

terior distribution (Gelman et al., 2004) displayed in Equation (4.11).

2 2 - 2.2

_ O} Moy + T X; O Ty
2 2 ! 2 2
o +MT; o +NT;

H;j | Xijtr- -1 Xijn, (4.11)

As discussed in Section 3.3, since the decision model (Equation (4.5)) is linear, we are

able to analytically propagate the uncertainty in the decision-maker’s knowledge of z; t0
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the decision value & . That is, given X;, the total sample data observed in support of alter-

native a,, the decision-maker’s knowledge of the true decision value, & , can be described

by the posterior distribution in Equation (4.12).

K +n,
é:i |Xi - N (zi O- luOu TOI] ij Zﬂvz G TOIJ J (412)
j=i

0' +n; TOU =} 0' +n; TOU

Based on these uncertain decision values, we used the multinomial selection procedure
described in Section 3.4.2 to select an alternative.

Like in the two-attribute study, we assumed that the overall fixed experimental budget,
B = cmk, where c is a positive integer, was divided equally among the m alternatives and

further divided among the k attributes such that n;; =-- Vj (i.e., the allocation is the

mj’

same for all alternatives).

4.5.1 Simulation Study

We conducted a simulation study similar to that used in studying the two attribute Gaussian
measurement model to understand how the experimental sample allocation affects the
probability of correct selection. However, in this case, we considered the situation where
each of m = 5 alternatives is described by k = 3 attributes. Again, each attribute is measured
using a different measurement technique, and an experimental sample (measurement pro-
cess) generates one random measurement of one attribute of one alternative. The error of
each measurement technique is normally distributed with known variance. The alterna-

tives, when characterized by their true attribute values form a concave efficient frontier in

% space. The overall experimental budget of B = 45 sample measurements was divided

equally among the five alternatives. The problem was to determine the sample allocation
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triplet, (n,,n,,n;) such that n, +n, +n; =9 to maximize the probability of correct se-

i Mizs Mg
lection.

We generated a set of 20 training cases, evaluated every possible sample allocation,
and used the results to generate insights for developing sample allocation procedures. Each
training case consisted of five alternatives described by three attributes. The true values of
the attributes were randomly assigned from the domain of [100, 200], subject to the con-

straints necessary for non-dominance and concavity. The construction algorithm used to
generate the training cases in R® space is provided in Appendix C.

Each attribute was measured with a different measurement technique and it was as-
sumed that the technique maintained a measurement variability that was consistent across
all alternatives measured. We set the measurement error variance of the three attributes,
ol,0%, and o2, to one of 10? or 30°, which created the 2° =8 different “measurement
error scenarios” described in Table 4.3. Again, we referred to a decision case under a par-
ticular measurement error scenario as a “subcase” and we use the notation analogous to
that used in two attribute study, e.g., 7.30.10.10, to refer to decision case 7 with measure-
ment error variances o =307, o7 =107, and o =10°. In this initial simulation experi-
ment for the three attribute Gaussian measurement model, we considered 160 subcases:

each of the 20 decision cases evaluated under each of the 8 measurement error scenarios.
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Table 4.3: Measurement error scenarios for the Gaussian measurement model simulation study with three

attributes.
Scenario o} o; o;
1 107 10° 10°
2 10? 10° 30
3 10? 30? 10°
4 107 30 30
5 302 10? 10°
6 302 10? 30°
7 30° 30 10°
8 302 30? 30°

Under the provided assumptions for this three attribute Gaussian measurement model,

we simulated, as described in Section 4.2, the experimental evaluation process for each

subcase using all 55 possible sample allocations defined as the (n,,n,,n;) triplets:

(0,0,9),(0,1,8),...,(9,0,0). We defined 39 decision models by applying the 39 (4, 4,,4;)
triplets of attribute decision weights: (0.1,0.1,0.8),(0.1,0.2,0.7),...,(0.8,0.1,0.1) and

(0.05,0.05,0.9),(0.05,0.9,0.05),(0.9,0.05,0.05) to Equation (4.5). For each decision
model, the parameters of the Bayesian posterior distributions for the decision values (Equa-
tion (4.12)) were calculated based on the outcome of each simulated evaluation. Using
these posterior distributions of £, , an alternative was selected using the multinomial selec-

tion procedure and checked to determine whether this alternative was the true best. We
repeated this experimental evaluation simulation a total of 1000 times. The final result was
343,200 fcs values: one for each of the 55 allocations, 39 decision models, and 160 sub-

Cases.
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4.5.2 Frequency of Correct Selection Results

For each of the 160 subcases and each of the 39 decision models, there is at least one
optimal sample allocation that produced the maximum fcs value. This optimal sample al-
location should maximize the probability of choosing the true best alternative. For each
subcase and decision model, we defined the relative frequency of correct selection (rel fcs)
for each sample allocation as the ratio of the fcs for that sample allocation to the fcs for the
optimal allocation. Within the confines of the problem which include the alternatives’ at-
tribute values and the total budget, this relative frequency of correct selection measure al-
lows us to quantify how much better the selection could have been if a different sample
allocation were chosen.

The rel fcs values produced by the training cases were illustrated through a series of
contour plots such as those presented in Figure 4.11. Each panel of Figure 4.11 displays

the rel fcs values for the indicated training subcase under a single decision model defined
by the attribute decision weight pair A, and 4, (recall that 4, =1-4 —4,). Within each
panel, the shaded contours present the rel fcs values as a function of n, and n,,, ranging
from dark (low rel fcs values) to light (high, desirable rel fcs values). Note that results are
only feasible in the region n, <9-n, since the overall sample budget n, +n,+n,=9.

The solid squares within the plots denote the optimal sample allocation for the decision
model. For each decision model there is at least one, but potentially more than one optimal

sample allocation.
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Figure 4.11: Contour plots displaying rel fcs as a function of n, and n,, for training subcase 2.30.30.30
under decision model (4, =0.1,4, =0.8,4, =0.1), subcase 7.30.10.10 under decision model (0.8, 0.1, 0.1),

subcase 9.10.30.30 under decision model (0.1, 0.1, 0.8), and subcase 18.10.30.30 under decision model
(0.3, 0.3, 0.4). The solid squares denote the optimal sample allocation for the decision model.

The immediate observation to be made from Figure 4.11 is that the choice in sample
allocation matters. That is, the rel fcs for the selection problem is impacted by the choice

in sample allocation. Consider, for example, Subcase 7.30.10.10 (top right panel) where a

sample allocation of n, =9, n, =0, n; =0 is indicated to be the optimal sample allocation.
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If a different sample allocation is selected, say n, =1, n,, =6, n,; =3, then the rel fcs would

be approximately 0.3 and hence, the probability of selecting the true best alternative (cor-
rect selection) would be reduced by nearly 70 %.

A second observation that can be made from the plots in Figure 4.11 is that when the
decision models are such that high weight (high 4, value) is placed on one of the attributes
and the other two attributes receive low weight, the optimal allocation is to allocate all or
nearly all of the budget (£ samples) to the highly weighted attribute. This trend is illus-

trated by Subcase 9.10.30.30 under decision model (0.1, 0.1, 0.8), (bottom left panel of

Figure 4.11) and was seen repeatedly throughout the 160 training subcases.

45.3 Allocation Procedures

We again consider the uniform allocation procedure and the proportional allocation proce-

dure. In this three attribute study, the uniform allocation procedure is defined as
n, =n, =N, == The proportional allocation procedure is defined as n, = round (/11 %) :
n,, =round (/12 %), n, =2-n,—n,. As an example of the proportional allocation proce-
dure, when the attribute decision weights are (0.1,0.5,0.4) and the budget B/m=9, then

the sample allocation equals (1,5,3).

The results from the training cases also showed that “extreme allocations” that allocate
all of the budget to only one attribute (while the others are not evaluated) were optimal
allocations for some of the 39 attribute decision weight triplets, especially those in which
one weight is near 1 while the other two weights are near 0. This observation was consistent

with observations in the previous work involving two attributes. We thus created two
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“zone” allocation approaches that determined the allocation based on the attribute decision

weight values of 4,, 4,, and 4,.

The 3-zone allocation procedures assigns the allocation (n,n;,,n;)=(9,0,0) when

i1 727 73

the decision model has a 4, value near 1, assigns the allocation (0,9,0) when the decision
model has a 4, value near 1, and assigns the allocation (0,0,9) when the decision model

has a 4, value near 1. The 4-zone allocation procedure assigns the same allocation as the

three-zone allocation procedure except for decision models in which all of the attribute

decision weights are between 0.2 and 0.4; to these triplets the procedure assigns the allo-
cation (n,,n;,,n;)=(3,3,3). Figure 4.12 illustrates the sample allocations provided by the

3-zone and 4-zone allocation procedures as a function of decision model.
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Figure 4.12: Sample allocation definitions for the 3-zone (left) and 4-zone (right) allocation procedures.
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4.5.4 Comparison of Allocation Procedures

To test the sample allocation procedures, we generated 500 new concave frontiers (evalu-

ation cases) using the construction algorithm to generate the cases in R® space described
in Appendix C. Each evaluation case was a set of m =5 randomly generated alternatives
described by k = 3 attributes. The frontier generation process ensured that the alternatives
formed a concave efficient frontier with attribute values restricted to the domain of
[100, 200].

We tested the sample allocation procedures developed in Section 4.5.3 using all 500
evaluation cases and the 39 decision models used in exploring the training cases. To each

of the 500 evaluation cases, we assigned a triplet of measurement error variance values,
2 2 2 - - .
(01 105,05 ) The assigned o; values, j=1,2,3, were independent, random draws from

a uniform distribution with parameters min =1 and max = 30. Then, for each of the 55
possible sample allocations, for each of the 39 decision models, across the 500 testing
cases, we obtained a rel fcs value using the same simulation process used for the training
cases as described in Section 4.5.1. For each evaluation case and decision model combina-
tion, we used each of the sample allocation procedures to produce a sample allocation. The
rel fcs value from the results of the simulation for these allocations were computed. The
performance of an allocation procedure, for each decision model, was defined to be the
average rel fcs of its sample allocation across the 500 test cases. The uncertainties in the
average rel fcs were expressed as 95 % pointwise confidence intervals for the true relative

PCS value based upon the normality assumption as justified by the Central Limit Theorem.
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When 4 =4, =4, the proportional allocation procedure and the uniform allocation

procedure provide the same sample allocation, n, =n, =n, ==, and thus the procedures

=L,
displayed similar performance near these decision weight values. Otherwise, the propor-
tional allocation procedure provided rel fcs values that exceeded those provided by the
uniform allocation procedure. Figure 4.13 illustrates these general conclusions by display-
ing, for each of the four allocation procedures studied, the relative frequency of correct
selection averaged across all test cases and the 95 % pointwise confidence interval for the

true relative PCS value at each decision model.
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Figure 4.13: rel fcs values averaged across all testing cases for the 4-zone allocation for each decision
weight value; shaded area represents 95 % pointwise confidence bounds for the true relative PCS.

The 3-zone and 4-zone allocation procedure, which leverage extreme sample alloca-

tions, provided the largest rel fcs value as 4; approaches 1 for any j=1,2,3. However, as
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the 4, move away from 1 and approach equality at };, the performance of the 3- and 4-
zone allocation procedures rapidly decreases. With few exceptions, when 0.3< 4, <0.6

forany j=1,2,3, the average rel fcs values provided by the 3- and 4-zone allocation pro-
cedures either the average rel fcs values provided the uniform and proportional allocation
procedures. Only when 0.2< 4, <0.4 forall j=1,2,3 does the performance of the 4-zone

allocation procedure exceed that of the 3-zone allocation procedure. It is within this range

of A that the 4-zone allocation utilizes the uniform allocation.

4.6 An Optimal Allocation for Gaussian Measurement Model

In this section we continue our study of single-stage allocation methods for the Gaussian
measurement model first introduced in Section 4.4. Here we take an analytical approach in

an attempt to develop optimal allocation procedures.

4.6.1 Assumptions

While many of the assumptions are stated elsewhere in this dissertation, we provide here a
comprehensive set of assumptions for this analytical study of single-stage allocation meth-

ods for the Gaussian measurement model.

1. The set of m distinct alternatives, {a,,...,a,}, is provided, where m is a finite pos-

itive integer such that all alternatives can be assessed.
2. Each alternative is described by k > 2 attributes. The true but unknown value of

attribute j of alternative a; is x4 . Separate and independent measurement processes
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are used in obtaining measurement data (samples) for each attribute, and for a given

attribute j, the measurement process is the same for all i =1,...,m alternatives. The

measurement data are collected in a single experimental effort (single-stage). n; is
the number of samples observed for attribute j of alternative a,. We represent the

outcomes of the measurement process by the random variable X;; = z; +¢&;,. The

iid.
random measurement error associated with each observation, & ~ N(O, af),

i=1...m;1=1...,n;,and o is known. It follows that X, ~ N(,uij,af) with re-

alizations Xy,..., X, . Note that it is common in the field of metrology for the error

associated with a continuous measurand to be modeled with a Gaussian distribution
(Joint Committee for Guides in Metrology, 2008) and for the variance of this dis-

tribution to be well characterized and assumed known (Lee P. M., 1997).
. . .. k
. Also provided is a decision model, & =f (z,,..., 14, )= Y, (uij), that re-

flects the decision-maker’s preference structure and combines the multiple attribute
values to produce a decision value, &, , for each alternative a, . The decision model

is a multiple attribute linear value model with linear individual value functions,

v, (,uij ) = p; . The decision weights, 4;, are defined such that Zt A =1.

E

. The total fixed experimental budget in terms of sample observations, denoted B,
shall not be exceeded and the cost of each measurement is equivalent. Thus, B is
the upper bound on the number of measurements that can be performed. Unlike in
our empirical studies, we do not assume that the allocations be equivalent across

alternatives.
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5. The decision-maker seeks to maximize the probability of selecting the true best

alternative (PCS).

4.6.2 Expected Value Selection using Maximum Likelihood Estimation

The decision-maker uses the limited number of measurements, x X, to estimate the

i1 e Nijny

true value, g, of attribute j of alternative &; in support of the selection decision. Under
the Gaussian measurement model where X; ~N(;,07) and o7 known, the maximum

likelihood (ML) estimator for the true attribute value s; is the sample mean of the n,

measurements, /=X, =2>"" x
ij

" %; (because the measurements x X;, are assumed

ij1r 700 Mijny
to be i.i.d., it follows that Xij ~N (:uij ‘;—f)) Since the decision model is linear (Assumption

3), it follows from the invariant property of maximum likelihood estimators (Casella &

Berger, 2002) that the maximum likelihood estimators of the alternatives’ true decision

values are E:Zﬁ A Xy, i=1...,m. And further, & ~ N(;Zf ﬁ) Using maxi-

=177] =1 N
mum likelihood estimation, a decision-maker who selects an alternative using the expected

value selection procedure (Section 3.4.1) will select alternative a, such that s=arg maxfi
1

The probability of correct selection (PCS) is the probability that the alternative identi-
fied for selection, a,, is indeed the most preferred alternative (largest true decision value).

The primary goal of this work was to determine, given the provided assumptions, the num-

ber of samples (measurements), n;, required to maximize the PCS such that zi"llzl;:ln.j
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does not exceed the total experimental budget, B. This sample allocation problem can be

expressed by the optimization problem in Equation (4.13).

max PCS = P&, is actually the most preferred alternative)

n

st. ZZ n; <B (4.13)

Without loss of generality, we assume that & > &, Vi=2,...,m. That is, alternative a,

is truly the most preferred alternative. Given this assumption and that the decision-maker
will use the expected value selection procedure using maximum likelihood estimation, we
can state the more precise definition of PCS as provided in Equation (4.14).
PCS=P(a,=a)=P(&>&,Vi=2...m)= P{ﬂ(g—g <o)} (4.14)
i=2
We can thus restate the sample allocation problem of Equation (4.13) as Equation

(4.15). Note that the final constraint in Equation (4.15) is due to the requirement that

n; 21 Vi, j to allow for X, and subsequently, & , to be computed.

ij

m k
st. > > n;<B (4.15)
1 j=1

We first consider the m = 2 alternatives case. The objective function in Equation (4.15)

“ ﬁ) then

j=1

thus ~ becomes maxP(&—-&<0) and since §~N(§i,z

E-&~N (52 —§1,Z;Zk ﬁ) This yields the definition of PCS provided by Equa-

=N

tion (4.16).
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PCS=P(5,-&)=0| —2—4 (4.16)

2 ko Ao
Zi:le:lT
®(y) in Equation (4.16) denotes the standard normal cumulative distribution function

evaluated at y. Because @ is a monotonically increasing functionand & —¢, >0, maxim-

k ﬂ,jzajz

=1

izing PCS requires minimizing z;z . Note that this expression is the sum of the

mean squared errors (MSE) of the estimators & and &, (see (Casella & Berger, 2002) for

discussion of MSE). Therefore, the optimization problem in Equation (4.15), with m = 2,

is equivalent to that provided in Equation (4.17)

2k %57
m|nzzzz#
" i1 Ny
2k
st. > > n,<B (4.17)
i1 j-1
n.>1

We restated the second constraint of the nonlinear optimization problem of Equation

(4.17) as —n; <-1, and derived the optimal solution displayed in Equation (4.18) using the

Kuhn-Tucker conditions (Winston, 2004).

n, = %% —B a=12,b=1...k (4.18)
ab k

E Ao, |2

=i

Since the objective function, z, in Equation (4.17) is the sum of convex functions, then
z is too a convex function. As the constraints of this minimization problem are linear, they

are also convex. Therefore, the Kuhn-Tucker conditions are necessary and sufficient for

the solution displayed in Equation (4.18) to be an optimal solution.
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When m > 2, there is no closed-form expression for PCS as defined in the objective
function of Equation (4.15). The solution to the m = 2 case suggested an approach to over-

come this dilemma, so we derived a sample allocation procedure that minimized the sum
of the mean squared errors of the estimators &, Vi =1,...,m subject to the constraints pro-

vided in Equation (4.15). The solution to this general m alternative problem is provided by

Equation (4.19).

n. = 40, E
ab k m
Zj:lljo-j

Note that in Equations (4.18) and (4.19), the sample allocation, n

a=1....mb=1...k (4.19)

is dependent only

ab
on the second index, b, which represents the attribute. This means that for this single-stage
problem, the sample allocations may vary across attribute, but are equivalent across the
alternatives. While equivalent allocations across alternatives was a constraint placed upon
the solutions in our empirical studies (Sections 4.3-4.5), it is interesting to note that here,
equivalent allocations across alternatives is a property of the derived optimal allocation.
Because the number of measurements made on any attribute must be an integer value
greater than or equal to one, and the total number of measurements must not exceed B, we
implement the following rounding rule, which completes our definition of the sample allo-
cation procedure using the expected value selection procedure and maximum likelihood

estimation (MLE EV allocation procedure).

I. Calculate the n; according to Equation (4.19) for alternatives a,i=1...,m and

attributes j=1,...k.

2. Calculate nj =[nij—’ , Where [ +] is the ceiling function.
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3. Calculate r; =nj —n;.
4. Calculate O = Z len —

5. Order the n; =1 in decreasing order of r,. (Forany j, r,; = ; thus, for each j

mJ ’
such that nj =1, the n; are ordered in increasing order of i.)

6. Subtract 1 from each of the first O ordered n; ; these adjusted n;; are the sample

ij ?
allocations for alternative a; and attribute j.

We first evaluated the MLE EV allocation procedure using a simulation study similar
to those used in the empirical studies of Sections 4.3-4.5 that allowed for us to compute the
rel fcs. We calculated the rel fcs that resulted over a range of 19 decision models when a
sample budget of B =50 was allocated to m = 5 alternatives and k = 2 attributes using the
MLE EV allocation procedure and an alternative was selected using the expected value
selection procedure. Recall that the rel fcs provides a performance measure of the sample
allocation suggested by the allocation procedure versus the optimal allocation. This al-
lowed for us to gauge the level of concessions made by adopting the easily computed allo-
cation provided by Equation (4.19) rather than working with the intractable multiple inte-
grals required for the definition of PCS when m > 2.

It was our desire to draw an evaluation conclusion that was valid over the population
of all possible decision cases with m=5 alternatives described by k =2 attributes whose
true attribute values formed a concave efficient frontier with a domain
[100, 200] = [100, 200]. To accomplish this, we sought a random and representative sam-
ple from this population against which the allocation procedures would be evaluated. Be-

cause we recognized that the construction methods used in the empirical studies for the

126



generation of the testing and evaluation cases did not sample concave frontiers from the
population space with uniform probability, we turned to the rejection algorithm described
in Appendix D to generate decision cases. The rejection algorithm assured that each deci-
sion case in the population had an equal likelihood of being accepted as an evaluation case.
And therefore, we considered any set of evaluation cases generated using the rejection al-
gorithm as random and representative of the population.

Using the rejection algorithm, we generated 500 concave efficient frontiers (evaluation
cases), each consisting of m =5 alternatives described by k = 2 attributes. This required
generating, on average, 2,922 sets of points for each accepted concave efficient frontier.
As in our previous studies of the Gaussian measurement model, the standard deviation of

the measurement error for each attribute of each evaluation case was randomly generated

from a Uniform[1,30] probability distribution. We simulated, as described in Section 4.2,
the experimental evaluation process for each evaluation case using the 11 sample alloca-
tions that provided equivalent allocations across alternatives defined as the (n,;,n;,) pairs:
(0,10),(1,9),...,(10,0). Based on the outcome of the simulated evaluation process for
each evaluation case under each allocation, we calculated the ML estimator for the true
. For each of 19 decision models defined by the 19

attribute value, /1, =X; =2>"" x,
ij =]

unique (4,,4,) pair of attribute weights: (0.05,0.95),(0.10,0.90),...,(0.95,0.05), we cal-

culated the ML estimator of the true decision values, & = Z;/Ij X; . An alternative was

selected according to the expected value selection procedure and compared to the true best.
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We repeated this experimental evaluation simulation a total of 10,000 times. The final re-
sult was 104,500 fcs values: one for each of the 11 allocations, 19 decision models, and
500 evaluation cases.

For each evaluation case, we calculated, for each decision model, the rel fcs provided

by the MLE EV allocation procedure as the ratio of the fcs of its allocation to the fcs of the
optimal allocation (assuming equivalent allocations across alternatives). At each A4, value,

we calculated the average rel fcs across the 500 evaluation cases. With one being the ideal

performance measure value, we observed a distribution of average rel fcs values that
ranged froma low 0f0.994 at 4 =0.65, to a high 0f0.998 at 4, =0.95. These observations

illustrated that although the MLE EV allocation procedure was not derived as an optimal
solution, it does perform at a near optimal level when evaluated against the performance
of sample allocations that provide equivalent allocations across alternatives.

Our second evaluation of the MLE EV allocation procedure was to compare its perfor-
mance against the performance of a uniform allocation procedure that used maximum like-
lihood estimation and the expected value selection procedure. For reasons that will become
clear in the following sections, we chose to perform this comparison using the absolute fcs
measure as an estimate of PCS, rather than consider the rel fcs.

In general, for each evaluation case, the evaluation consisted of a number of sample
measurements (as defined by the allocation procedure) being simulated and an alternative
selected according to a selection procedure and compared to the true best alternative. We
thus had a Bernoulli trial for each evaluation (either succeeded or failed to select true best
alternative). Because the evaluation decision cases are unique, so too are the associated

Bernoulli success probabilities. As an evaluation metric, we were not interested in these
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individual success probabilities, but rather, the success probability (PCS) of the allocation
procedure over the population of all decision cases. Random effects modeling (Searle et
al., 2006) provides a method to account for variability amongst the evaluation cases when
estimating the overall population success probability. Fleiss et al. (2003) address this “es-
timation of the marginal mean proportion” problem and suggest the pooled average pro-

portion (Equation (4.20)) as an unbiased estimate.

— m

p= %ZH n; P; (4.20)
Here, m is the number of evaluation cases, n, is the number of evaluations made on case

i, n. :ZLni ,and p, :nAZLl y; » Where y; is the Bernoulli outcome of the j*" evaluation

. - . — m n
of case i. Assuming n evaluations are made on each case, then p = #ZMZH y; and the

variance of P is provided by Equation (4.21).

z:il( Pi— ﬁ)z

var(p)= m(m-1)

(4.21)

We note from Equation (4.21) that the variance of the estimator for the overall popula-
tion success probability is independent of the number of evaluations, n, made on each case,

and decreases as the number of evaluation cases, m, increases. To keep the variance of p

small, we chose an evaluation experiment design that makes only a single evaluation of
each of a large number (50,000) evaluation decision cases.

We also used the variance-reduction technique of common random numbers (Law,
2007) across the comparisons of the allocation procedures. To reduce the variability in the
comparison of the results from the allocation procedures, for each evaluation case, a set of

N = 10 sample measurements were randomly drawn from the measurement distributions
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that defined each alternative of each attribute (with mean equal to the true attribute value
and variance equal to the variance of the measurement error). These sample measurements
were used in the evaluations of all of the allocation procedures as needed. For example, the
first 5 sample measurements for each of the alternatives and attributes was used in the
evaluation of the uniform allocation procedure.

We estimated the PCS for the MLE EV and uniform allocation procedures by creating
50,000 evaluation cases with m =5 alternatives described by k = 2 attributes using the re-

jection algorithm. The standard deviation of the measurement error for each attribute of

each evaluation case was randomly generated from a Uniform[1,30] probability distribu-

tion. We simulated, as described in Section 4.2, a single experimental evaluation process
for each evaluation case under the allocation provided by each allocation procedure. Based

on the outcome of the simulated evaluation process for each evaluation case, we calculated

ay =X, =n—1”zr” X; and subsequently & :le/lj X.. , for each of 19 decision models

=1 ij !
defined by the 19 wunique (A4,4,) pair of attribute decision weights:

(0.05,0.95),(0.10,0.90),...,(0.95,0.05). An alternative was selected according to the ex-

pected value selection procedure and compared to the true best. This resulted in 50,000
true or false (correct selection made) observations for each of the 19 decision models for
each allocation procedure. To estimate the PCS, we computed the pooled average fcs
(Equation (4.20)) and its variance (Equation (4.21)) over the 50,000 evaluation cases for
each decision model and allocation procedure. Using the normality assumption as justified
by the Central Limit Theorem, we computed the 95 % pointwise confidence intervals.

These results are provided in Figure 4.14.

130



—— MLE EV
—0— Uniform

8
x___x X~
I:I._,_I:I

= —x =
‘é:é:ﬁ:ﬁ:ﬁ:éié’é

PCS

040 045 050 055 0.60 065 0.70
|
e

I I | I I I I I I [ | I | I I I I I I
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

A

Figure 4.14: Estimated PCS values for the MLE EV allocation over the 50,000 evaluation cases; shaded
area represents 95 % pointwise confidence bounds.

We observe from Figure 4.14 that the estimated PCS values provided by the MLE EV
allocation procedure are only slightly larger than those provided by the uniform allocation
procedure. These performance values are statistically indistinguishable (overlapping con-

fidence bounds) when 0.4< 4, <0.7. We further note that while the rel fcs values for the

MLE EV allocation procedure was near the optimal value of one, the estimated PCS values
were rather low. This may be a function of the sample size used in the evaluation or perhaps
a result due to the limitations of the allocation and selection procedures, e.g., only alloca-

tions providing equivalent allocations across alternatives are produced.
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4.6.3 Expected Value Selection using Bayesian Estimation

Under the Bayesian paradigm for estimation, we assume that, before collecting any meas-

urement data, the decision-maker’s knowledge of the unknown true attribute value, s,

can be described by the conjugate normal prior distribution N (uou,r(fj) and a priori, the

u; are independent. Upon observing the normally distributed measurement data,

X.

ivs+ -1 X, » the decision-maker’s knowledge of z; is updated and presented by the normal

posterior distribution (Gelman et al., 2004) in Equation (4.22).

2_2
O- /uolj + TOI] O TOI] J (422)

i | Xigyeo s X ~ N
vy i ol Ty O Ty

Assumption 3 of Section 4.6.1 provides & =Z?:l/1].vj (,uij) for each alternative a, .

The posterior distribution of the decision value & describes the decision-maker’s
knowledge of the true decision value for alternative &, after observing n; measurements
for the estimation of each of the k attributes, X; =Xy, Xy s Xigps-+-Xign, -+ s Xirs -+ Xign, -

The posterior distribution of £, is presented in Equation (4.23).

kol + n, r k olrl.
£1x ~N (2/1 ﬂou ou 12/11_2 21—0”2J (4.23)
j=i

0' + N TOU 1 O My
Using Bayesian estimation, a decision-maker who selects an alternative using the ex-

pected value selection procedure (Section 3.4.1) will select alternative a, such that

K ol + n, r
s = arg maX (zl ILIOU OIJ ] .
i o

a +n; TOU
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As we did deriving the allocation procedure using maximum likelihood estimation

(Section 4.6.2), we assumed that & >¢&,Vi=2,...,m and defined the PCS using the

Bayesian estimation of ¢

(Equation (4.23)) and the rule to select a, where

2

X G luOu +n IJTOIJ le
$ =arg max Z/I . With m = 2 alternatives this led to the optimization
- o} +NTo;

problem of Equation (4.24).

Kk 2 2
ZZ o) ﬂ011 +n1]T011/’L_LJ _2 O Hypj t Ny Top s

i 2 2

O' +r\ljfOlj o +n2jr02j

max P (&, - & <0)=d| =

i 2 K n.ze.o?
2 IJ 0ij 7 j
\/ZZAJ

2
A (of+myry)

2
st. Z n, <B (4.24)

Because the unknown attribute values, z; , in Equation (4.24) cannot be separated from

the decision variables, n;, we chose to minimize the sum of the mean squared errors of the

estimators p(¢& |x;). We present this revised optimization problem for the general case
with m alternatives in Equation (4.25).

m k
O Toj

mlnz =y a1

njj i=1 j=1 O- +N. Z-Oij

st. ZZnij <B (4.25)

i=1 j=1

n; >0
The optimal solution to this general m alternative problem, found using the Kuhn-

Tucker conditions, is displayed in Equation (4.26).
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n
ab k
Zj:lﬂ'io-i

Here, the sample allocation is dependent only on both indices, a and b, which means

24,0 [E_iipi% zi_zJ a=1..,mb=1...k (4.26)

that the sample allocations may vary across both attributes and alternative. This would

happen only when the prior knowledge differs from one alternative to another; more spe-
cifically, when the variances of the prior distributions, z;;, differ from one alternative to

another.

When there is little prior knowledge of the true attribute values, z;, that is, the prior
distribution for the 4; are diffuse and the variances of the prior distributions, z;; , are very
large, then the limiting posterior distribution for s can be stated as displayed in Equation

(4.27).

1 g
nij

,uij|Xijl,.. X ~N| Xjj,— | aszy; > (4.27)

Further, as fg”. — oo, the allocation solution using the expected value selection proce-

dure under Bayesian estimation displayed in Equation (4.26) converges to the solution
found using maximum likelihood estimation provided in Equation (4.19).

We finalize our definition of the sample allocation procedure using the expected value
selection procedure and Bayesian estimation (Bayes EV allocation procedure) by provid-
ing a rounding rule that assures that the number of measurements made on any attribute is

a non-negative integer and that the total number of measurements does not exceed B.

I. Calculate the n; according to Equation (4.26) for alternatives a,i=1...,m and

attributes j=1,...k.
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2. Calculate nj =[nij—’ , Where [+ is the ceiling function.
3. Calculate r; =nj —n;.
m k ,
4. Calculate O=% " > ni-B.
5. Order the n; in decreasing order of r;. (Foranyj, r; =---=r,; thus, for each j, the
n; are ordered in increasing order of i.)

6. Subtract 1 from each of the first O ordered n; ; these adjusted n;; are the sample

allocations for alternative a; and attribute j.
It has been observed that, when the variances of the prior distributions, z5;, are very

small, the sample allocations resulting from the rounding rule may be negative. In this case
the sample allocation must be set to zero.

As we did in Section 4.6.2, we performed a computational experiment to evaluate the
Bayes EV allocation procedure over a range of 19 decision models when a sample budget
of B =50 was allocated to m =5 alternatives and k = 2 attributes and an alternative was
selected using the expected value selection procedure. Because there is no constraint re-
quiring equal allocations across the alternatives in the Bayes EV allocation procedure, the
number of possible sample allocations can grow very large. The “k-part compositions of

n” problem from the field of combinatorial mathematics provides us with the binomial

.. n+ .. . . .
coefficient [ J as the number of distinct allocations of the n objects among k bins,

n

where the number of objects in any bin can include zero (Feller, 1950). For each of our

evaluation cases we have B = 50 samples to be allocated among mk = 5 x 2 = 10 alternative
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) ) ) . (50+10-1 0 . . .
and attribute “bins” which results in 50 ~12.6x10° possible allocations. Since

we cannot possibly evaluate all 12.6 trillion allocations for each evaluation case to deter-
mine the optimal allocation, we cannot compute the rel fcs. Thus, we simply present the
results as absolute fcs values; an estimate of the PCS.

Using the absolute fcs measure as an estimate of the PCS, we compared the perfor-
mance of the Bayes EV allocation procedure to the performance of a uniform allocation
procedure that used Bayesian estimation and the expected value selection procedure. We
used the same 50,000 evaluation cases and variance-reduction techniques that were used
to compare the MLE EV to the uniform allocation procedure that used maximum likelihood
estimation and the expected value selection procedure in Section 4.6.2. We assumed that

the decision-maker’s a priori knowledge of the attribute values, z;, were modeled by the

N (,uOij,rgj) prior distribution with s, =150 and z;, =35 for all attributes, for all alter-

natives, for all evaluation cases. We simulated, as described in Section 4.2, a single exper-
imental evaluation process for each evaluation case under the allocation provided by each
allocation procedure. Based on the outcome of the simulated evaluation process for each
evaluation case, we calculated the parameters of the Bayesian posterior distributions for

the decision values (Equation (4.23)), for each of 19 decision models defined by the 19
(4. 4,) pair of attribute decision weights: (0.05,0.95),(0.10,0.90),...,(0.95,0.05). An
alternative was selected according to the expected value selection procedure and compared
to the true best. This resulted in 50,000 true or false (correct selection made) observations

for each of the 19 decision models for each allocation procedure. To estimate the PCS, we

computed the pooled average fcs (Equation (4.20)) and its variance (Equation (4.21)) over
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the 50,000 evaluation cases for each decision model and allocation procedure. Using the
normality assumption as justified by the Central Limit Theorem, we computed the 95 %

pointwise confidence intervals. These results are provided in Figure 4.15.
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Figure 4.15: Estimated PCS values for the Bayes EV allocation over the 50,000 evaluation cases; shaded
area represents 95 % pointwise confidence bounds.

We observe from Figure 4.15 that the PCS values provided by the Bayes EV allocation

procedure are larger than those provided by the uniform allocation procedure when
4,<0.3 and A4, >0.75, but otherwise the performance values are statistically indistin-
guishable (overlapping confidence bounds). As the difference between A, and 0.5 in-

creases, so too does the difference in the performance of the allocation procedures.
We end this section with a comparison of the estimated PCS values resulting from the

Bayes EV and the uniform allocation procedures that used Bayesian estimation and the
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expected value selection procedure to the estimated PCS values resulting from the MLE
EV and the uniform allocation procedures that used ML estimation and the expected value
selection procedure (Section 4.6.2). The estimated PCS values (pooled average fcs) and the

95 % pointwise confidence intervals for each allocation procedure are presented in Figure

4.16.
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Figure 4.16: Estimated PCS values for the Bayes EV and MLE EV over the 50,000 evaluation cases;
shaded area represents 95 % pointwise confidence bounds.

We recognize that the Bayesian estimation approach adds information about the attrib-
ute values in the form of a prior dissertation. The PCS values that resulted when the uniform
allocation procedure was used with ML estimation and those that resulted when the uni-
form allocation procedure was used with Bayesian estimation are nearly identical (as

shown by the black overstruck plotting characters of Figure 4.16). This implied that under
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the uniform allocation procedure, the information added by the Bayesian priors, given the
nonspecific (same for all alternatives and attributes) and diffuse nature of their distribu-
tions, had minimal impact on the PCS results.

The results of Figure 4.16 do though illustrate the benefit of even the slightest amount
of additional information when considering the allocation procedure. When A, is near 0 or

1, we see that the PCS results from the Bayes EV allocation procedure are distinguishably

larger than those provided by the MLE EV allocation procedure. We ascribe this to the fact
that near these extreme values of A, the prior information allows the Bayes EV allocation

procedure to allocate all observations to a single attribute while using only the prior infor-
mation to estimate the other. This maximizes the information gained about the exceedingly
important attribute. With the MLE EV allocation procedure at least one observation must
be allocated to each attribute. This impact in information gained may be large with only 10

observations made on each alternative.

4.7 Sequential Allocation for Gaussian Measurement Model

The work presented in the previous sections of this chapter considered single-stage sample
allocation plans for multiple attribute selection decisions where the complete allocation
plan is determined before any samples are collected. Here we consider a sequential alloca-
tion approach where the experimental effort is divided into stages, each consisting of a

single sample. Within each stage, the decision-maker determines, based on his current
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knowledge, which single alternative and attribute pair to sample next. This process is re-

peated until the experimental budget is exhausted and a selection decision is made (Figure

4.17).
Stage 0 Stage 1 Stage B
1 - 1. Sample 1. Sample
2. Analyze —» 2. Analyze > ... —» 2. Analyze
3. Allocation 3. Allocation 3. Selection
Decision Decision Decision

Figure 4.17: Sequential allocation procedure.

In stage t=0,...,B—1, the sequential allocation procedure analyzes the available in-
formation and identifies the alternative and attribute to sample in stage t+1 (that is, the

next sample is allocated to that alternative and attribute). Let n; (t) be the number of ob-
servations and x; (t)=X;y,-.., Xin, vy D€ the data collected in stages 1....,t for alternative
a and attribute j (note that n,(0)=0,Vi,j). Let X (t)=x;y(t),....x,(t) and
X(t)=x(t),....x, (t). In stage B the final sample is collected, that is,
ZLZ;nU (B) =B, and the selection decision made.

In many multi-staged and sequential allocation procedures, an initialization set of ob-
servations are taken to gather preliminary information about each unknown value to be
used in the subsequent stages of the allocation procedure (Bechhofer et al., 1995; Kim &
Nelson, 2006; Chen & Lee, 2011). For each unknown value, Chen and Lee (2011) sug-
gested an initialization set of between 5 and 20 observations, and Kim and Nelson (2006)

suggested 10 or more observations. While the information gained from the initial set of
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observations is valuable in making subsequent sample allocations, it may be cost prohibi-
tive in the multiple attribute setting. Initially observing each of the multiple attributes for
each of the multiple alternatives 5 or more times can quickly approach the total limited and
fixed measurement budget. For this reason, we do not require an initial set of observations
for our sequential allocation procedure, but rather allow the allocation procedure to dictate

how to allocate all measurement samples.

4.7.1 Allocation Procedure Derivation

To develop this sequential allocation procedure for the Gaussian measurement model, we
began with the assumptions provided in Section 4.6.1 (with the modification to Assumption
2 that the measurement data are collected in a sequential experimental effort). Further, we
assumed that the decision-maker will describe the attribute values and decision values us-
ing Bayesian posterior distributions (Equations (4.22) and (4.23)) and that the decision-

maker will use the multinomial selection procedure (Section 3.4.2). Under these assump-

tions, Equation (4.28) gives the probability, p;, that alternative @, has the largest decision
value.

p=P(&>&,vr=1...,mr=i) (4.28)

If the decision-maker selects alternative a,, then the probability of correct selection is

the probability, p,, that alternative a, has the largest decision value (Equation (4.29)). The

decision-maker, who wants to maximize PCS, will select alternative a, where

s=argmax p, .

PCS=p,=P(& >&,Vr=1...,mr#s) (4.29)
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When developing the Optimal Computing Budget Allocation (OCBA) method, Chen
and Lee (2011) defined PCS in a manner similar to Equation (4.29) but suggested that the
alternative be selected based upon its expected decision value. We see the multinomial
selection procedure to be more directly aligned with the decision-maker’s objective of
maximizing the PCS than a selection based on the expected decision value. We note that
the approach presented here could be modified to represent a decision-maker who plans to
select the alternative with the best expected value.

Returning to the sequential allocation procedure illustrated in Figure 4.17, we note that
in any stage t =0,..., B, the decision-maker’s current knowledge of the attributes as given
by the posterior distribution p( e |Xi,-1,---,Xijn,,(t))’ and subsequent current knowledge of
the decision values, p(& |x;(t)), can be obtained for all alternatives a,,i=1,...,m and all
attributes j=1,...,k. It then follows that the probability, p,, that alternative a, has the

largest decision value (Equation (4.28)) can be calculated and the alternative a, where

s=argmax p, identified. Thus, the PCS at stage t is as described in Equation (4.30).

PCS(t)=P(&>&,vr=1...,mr=s|X(t))
=[ e [p(&n & IX(1)dE . dg,

&s>&,Vr=1,..m,r#s

(4.30)

The joint posterior probability distribution of &,..., & at stage t, p(§1,...,§m | X(t)), is
the product of the individual marginal distributions (probability density of Equation (4.23)
given X (t)). This follows from the conditional independence of the measurements, X

ijl

and the prior independence of the true attribute values, z; .
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Simply stated, Equation (4.30) provides, given the decision-maker’s knowledge at
stage t, the probability that the selected alternative, a,, has the largest decision value.
While we chose to use the multinomial selection procedure that identified a, as the alter-
native that provides the maximum PCS, other selection procedures may be used to identify

a, with PCS(t) again calculated according to Equation (4.30).

To make the sample allocation decision at stage t, we note that the next sample, X, ..
ij

observed from alternative and attribute pair (a;, j), will lead to a new PCS value (see Fig-

ure 4.18). Although the value of the sample and the subsequent new PCS cannot be known
until the observation is made, the probability distribution of each can be described based
upon the decision-maker’s current knowledge. The distribution of the new observation is

described by its posterior predictive distribution (Press, 1988; Ntzoufras, 2009) with

density p(xijnij(M) | X, (t)): p(xijnij(M) |,uij) p(4; 1%, (t))d s . Given our normality as-

$——38

sumptions and Bayesian framework, the predictive distribution of x;. .,
ij

| is provided by

the normal distribution (Lee P. M., 1997) in Equation (4.31).

20+ (1) 72X (t 272
Xin, ey | Xi (1) = N LG“UO” 1y (8 705% ),0-2 it j (4.31)

O'f‘ +N; (t)Tg'ij ! 0';.2 +n; (t)rozij

For each of the mk alternative and attribute pairs of the allocation decision illustrated

by the decision tree in Figure 4.18, assuming that the multinomial selection procedure is
used, the expected PCS in stage t + 1 if attribute j of alternative @, is sampled can be cal-

culated according to Equation (4.32).
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E(PCS; (t+1))=

I max
vq

=1,...m

] (& | X(E) Ky -0 | DX 1% () B
vr=l,...,m

(4.32)
For a given attribute j and alternative a,, the inner multiple integral of Equation (4.32)
provides, given the decision-maker’s knowledge at stage t and the knowledge from a po-

tential new observation, X, .,

),the probability that alternative a, has the largest decision
value. The maximum such probability over all m alternatives (i.e., g=1,...,m) provides
the PCS according to the multinomial selection procedure. Multiplying the PCS by the
posterior predictive probability density and integrating over the possible values of Xiin (111
provides the expected PCS in stage t + 1.

The sequential allocation approach allocates the sample in stage t + 1 to the alternative

and attribute pair that yields the maximum E(PCSU (t +l)).

Upon collecting the final observation in stage B, the sequential allocation approach

calculates the probability p; that alternative @, has the largest decision value (Equation

(4.28)) and identifies the selected alternative a, where s=argmax p, (the multinomial

selection procedure).
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Figure 4.18: Sample allocation decision to occur at each experimental stage.

We summarize the sequential allocation procedure as follows:

1.

Assignt = 0.

Calculate E(PCSU (t +l)) for each attribute and alternative pair, (a,, j).

Identify the attribute and alternative pair with the largest E(PCSU (t+l)) as the
pair to be next sampled.

Assignt=t+ 1.

Sample the attribute and alternative pair identified in Step 3.

Update the posterior distributions p(g‘i | X, (t)) based on the sample collected in
Step 5.

Repeat steps 2 to 6 until the experimental budget is exhausted.

Use the multinomial selection procedure to select an alternative.
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4.7.2 Numerical Experiments

To investigate the behavior of the sequential allocation procedure, we conducted a pilot
study of numerical experiments. We developed 20 concave efficient frontiers (decision
cases) where each decision case included m =5 alternatives each characterized by k = 2
attributes. The attribute values associated with each alternative were randomly generated
from the domain [100, 200] subject to the constraints necessary for non-dominance and
concavity using the rejection algorithm described in Section 4.6.2. The attribute values for

these 20 decision cases are displayed in Figure 4.19. Each attribute of each decision case

was assigned a known standard deviation of the measurement error from a Uniform{1,30]
distribution. We assumed that the decision-maker’s a priori knowledge of the attribute val-
ues, x;, were modeled by the N (/,zoij,r(fj) conjugate prior distribution with s, =150 and
75, =35 for all attributes, for all alternatives, for all decision cases. We considered 19

decision models defined by the (4, 4,) pair (0.05,0.95),(0.1,0.9),...,(0.95,0.05) and the

overall experimental budget was limited to B = 50 sample measurements.
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Figure 4.19: Decision cases for sequential allocation pilot study.

In each sampling stage, the multiple integral in Equation (4.32) is computed to provide

the expected probability of correct selection if the next sample to be observed were from

attribute j of alternative a,. As there is no tractable analytical solution to Equation (4.32)

when m > 2, we used Monte Carlo simulation to obtain an estimated solution. In imple-

menting the Monte Carlo simulation, a number of random replicates are taken to estimate

the outermost integral in Equation (4.32), and another number of random replicates are

taken to estimate each of the remaining integrals; we term these numbers of Monte Carlo

simulation replicates MCrep.predict and MCrep.compare, respectively. Recognizing the

impact that these two variables may have on the performance of the sequential allocation
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approach, we considered four combinations of Monte Carlo replication size in the pilot

experiment (Table 4.4).

Table 4.4: Number or Monte Carlo replicates for sequential allocation pilot study.

Combination MCrep.predict ~ MCrep.compare

1 100 1000
2 100 10000
3 1000 1000
4 1000 10000

For each decision case, decision model, and Monte Carlo replication combination, we
simulated the selection decision with allocations made according to the sequential alloca-
tion procedure. At each stage the simulated sample measurement was a random draw from
a normal distribution with a mean equal to the true attribute value and a standard deviation
equal to the measurement error for the alternative and attribute pair identified to be sam-
pled. Upon collecting the 50" sample measurement, an alternative was selected according
to the multinomial selection procedure. This process was repeated 100 times and the fre-
quency of correct selection was defined to be the proportion of times that the selected al-

ternative was the true best alternative. These results are displayed in Figure 4.20.
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Figure 4.20: fcs results for the sequential allocation pilot study. The plotting characters present the four dif-
ferent levels of Monte Carlo simulation replication considered.

The first observation that we made from the results displayed in Figure 4.20 was that
the number of Monte Carlo replicates had little impact on the fcs values. The results from
an ANOVA model that adjusted for the decision case and decision model further supported
this observation by providing the insignificant p-value of 0.98 for an effect due to the
Monte Carlo replication combination.

We then observed three general trends amongst the 20 pilot study decision cases: (1)

an increasing trend in fcs as A, increased, e.g., case 9; (2) a decreasing trend in fcs as A,

increased, e.g., case 5; and (3) one or more inflection points in the fcs values over 4, e.g.,
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case 12. These trends appear to depend on the shapes of the efficient frontiers. The efficient
frontier for Case 9 is nearly horizontal, thus it is very difficult to distinguish alternatives

based on an uncertain attribute 2 value, resulting in low fcs values for decision models that

place large importance on attribute 2 (i.e., small 4, values). As the importance of attribute

1 (A,) increases it becomes easier to discern the alternatives as the alternatives are reason-

ably spaced in the attribute 1 dimension. The efficient frontier for Case 5 is nearly vertical
and thus an opposite argument holds. The efficient frontier for Case 12 has an overall slope

of nearly -1. Thus, when the decision model places equal weight on attribute 1 and attribute
2 (4, =4,=0.5), it is very difficult to discern the alternatives as many alternatives have

similar decision values. But as the decision model places greater weight on either of the

alternatives, it becomes easier to discern an optimal alternative. These conjectures are re-

flected in the fcs results where fcs values are high when A, is small or large, and fcs values

reach a low point near 4 =4, =0.5. Similar observations and casual relationships were

observed to exist between frontier slopes and inflection points in fcs results for other pilot
study cases.

We expected that the more sequential stages completed (samples observed), the better
the quality of the decision (higher fcs). By noting, at the end of each sequential stage, the
alternative that would have been selected under the multinomial selection procedure, we
were able to calculate the fcs as a result of each stage. These results are presented in Figure
4.21 for the Monte Carlo replication combination 3 (1000, 1000). The horizontal line on
each plot at fcs = 0.2 represents the results expected from a random draw (equal probabil-

ity) from 5 alternatives.
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Figure 4.21: fcs values at each sequential stage under Monte Carlo replication combination 3.

We observe from Figure 4.21 that in general, the fcs does indeed increase as the number
of stages (sample measurements) increases. We see however, that the rate of increase is

largely dependent on both the decision case and the decision model. Consider, for example,
the results from Case 8. Decision models with small A, values achieve fcs values near 1
within only a dozen sample measurements. Decision models with large 4, values, how-

ever, never provide fcs values much larger than 0.2.
We also observed from Figure 4.21 that it was not uncommon for the sequential allo-

cation approach to provide fcs values worse than a random draw (< 0.2) in early stages
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when the sample size was small (< 10). This behavior was predominantly observed for
decision cases under decision models that provided multiple alternatives with nearly iden-
tical true decision values (one being the true best) and those alternatives were not well
separated in attribute value space. In this case, the measurement distributions are very sim-
ilar across the alternatives and thus there is approximately a 50 % chance that an observa-
tion made on any of these alternatives will shift the resulting posterior distribution in the
positive direction, increasing the likelihood of the alternative being selected. Because all
attributes and alternatives began with the same prior probability distribution, the first sam-
ple allocation was influenced only by the attributes’ decision weights and measurement
errors, but otherwise was assigned at random across the alternatives. This leads to a 20 %
chance (1 in 5) that the first sample is allocated to the alternative that is the true best. As a
result, the probability that the resulting posterior distribution of the true best alternative is
shifted in the positive direction, increasing its likelihood of being selected, is approxi-
mately 10 %. With approximately 90 % probability, the resulting posterior distributions
are such that the true best alternative appears either inferior to, or indistinguishable from,
the other similar alternatives. Furthermore, the alternative with the most favorable posterior
distribution in any stage is more likely to be allocated the next sample (the one observed
in the next stage). This perpetuates the observed low fcs value over the early stages until
enough data is collected to begin to distinguish the nearly identical decision values. The
sequential approach did however provide results reflective of a self-correcting behavior as
the fcs most always increased beyond that expected from a random draw as the number of

sample measurements increased.
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4.7.3 Evaluation Experiment

Similar to the work described elsewhere in this chapter, we evaluated the sequential allo-
cation procedure using a simulation study which calculated, as an estimate of the PCS, the
frequency of correct selection that resulted when the multinomial selection procedure was
applied to the allocations of the sample budget of B = 50 made according to the sequential
allocation procedure over a range of 19 decision models and across a number of decision
(evaluation) cases. These estimated PCS results were compared to the estimated PCS re-
sults obtained using the multinomial selection procedure applied to allocations made ac-
cording to the uniform allocation and the proportional allocation (defined in Section 4.3.1),
and to the estimated PCS results obtained using the expected value selection approach ap-
plied to allocations made according the Bayes EV allocation (defined in Section 4.6.3).
Again, because there is no constraint requiring equal allocations across the alternatives in
the sequential allocation procedure and the number of possible sample allocations is ex-
tremely large, we simply present the results as absolute fcs values.

We used the same 50,000 evaluation cases and variance-reduction techniques that were
used in the evaluations of the MLE EV and Bayes EV allocation procedures (Section 4.6).
We also applied the variance-reduction technique of common random numbers within the
implementation of the sequential allocation procedure. At each sampling stage t, Monte

Carlo simulations were used to estimate the multiple integrals required in the calculation

of the mk =10 E(PCSU (t +l)) values (Equation (4.32)) for each of the 19 decision mod-
els. Recall that for each decision model, the 10 E(PCSU (t+l)) values were compared to

one another and the alternative and attribute pair with the largest E(PCSU (t+1)) value
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was selected to receive the sample allocation in sampling stage t + 1. To reduce the varia-

bility within this comparison, for sampling stage t, the same set of Monte Carlo simulation
samples was used in all 10 calculations of E(PCS” (t +l)) for all 19 decision models.

From the pilot study results presented in Section 4.7.2, we concluded that among the
Monte Carlo replication combinations considered, no effect was observed on the fcs results

in the implementation of the sequential allocation method. We chose to use 1000 Monte
Carlo simulation replicates to estimate the outermost integral in the E(PCS” (t+1)) cal-

culation (Equation (4.29)) and 1000 Monte Carlo simulation replicates to estimate each of

the remaining integrals. Due to the large number of decision cases and the computational
effort needed to estimate E ( PCS; (t +1)) at every stage in the sequential sample allocation

approach, parallel computing with distributed memory on the University of Maryland’s
High Performance Computing cluster Deepthought2 was used to perform this evaluation
experiment. Using 200 CPU cores, it required approximately 44 hours to evaluate all
50,000 evaluation cases using all of the considered allocation procedures.

To summarize, we used the 50,000 random evaluation cases generated by the rejection
algorithm for the evaluation studies of Section 4.6. Each evaluation case had m =5 alter-
natives described by k = 2 attributes with true attribute values from the domain [100, 200].

The standard deviation of the measurement error for each attribute of each evaluation case

was randomly generated from a Uniform[1,30] probability distribution. Nineteen decision

models with (4,,4,) pairs (0.05,0.95),(0.10,0.90),...,(0.95,0.05) were considered. Four

sample allocation procedures: uniform, proportional, Bayes EV, and sequential, were used

to allocate the overall sample budget of B =50 to the alternatives and attributes of each

154



evaluation case. One thousand Monte Carlo samples were used in estimating the outermost
integral and each of the inner integrals in the E(PCS” (t +l)) calculation for the sequential

allocation procedure. Common sample measurements were used across the evaluations of
the allocation algorithms, and common Monte Carlo samples were used across the alterna-
tive and attribute pair in the implementation of the sequential allocation procedure. The
multinomial selection procedure was used with the allocations resulting from the uniform,
proportional, and sequential allocation procedure. The expected value selection procedure
was used with the allocations resulting from Bayes EV allocation procedure. As a measure
of performance of each allocation procedure at each decision model, we used an estimate
of the overall probability of correct selection (PCS) presented as the pooled average fcs

value over the 50,000 single-evaluation (Bernoulli trial) results of the evaluation cases.

4.7.4 Comparison of Allocation Procedures

As described in the previous section, we performed a simulation study to compare the per-
formance of the sequential, uniform, proportional, and Bayes EV allocation procedures.
For each allocation procedure and each decision model we estimated the PCS by compu-
ting the pooled average fcs (Equation (4.20)) and its variance (Equation (4.21)) over the
50,000 evaluation cases. Using the normality assumption as justified by the Central Limit
Theorem, we computed the 95 % pointwise confidence intervals. These results are pro-

vided in Figure 4.22.
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Figure 4.22: Estimated PCS values for the sequential allocation over the 50,000 evaluation cases; shaded
area represents 95 % pointwise confidence bounds.

We observed from Figure 4.22 that the performance (PCS) of all allocation procedures

varied in the same way as the attribute decision weights varied: the PCS values were lower

when the decision weights were nearly equal (4, = 4, = 0.5) and increased when the deci-

sion weight for one attribute was much larger than the other (A, or 4, near 1). This phe-

nomenon was observed in our previous studies and may occur because, when the weights
are nearly equal, there are multiple alternatives with similar decision values.

We also observed in Figure 4.22 that the sequential allocation procedure outperforms
the uniform allocation procedure (larger PCS values with non-overlapping confidence in-
tervals) across all decision models. This same observation holds when comparing the se-

quential allocation procedure to the proportional and Bayes EV allocation procedures for
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0.1< 4 <0.9. When the decision weight for one attribute was much larger than the other

(A, or 4, near 1), the performances of the sequential, proportional, and Bayes EV alloca-

tion procedures were not clearly distinguishable. To emphasize this comparison, we calcu-
lated the performance of the sequential allocation procedure relative to each of the other
three allocation procedures (Figure 4.23). We propagated the uncertainties of the PCS es-
timates (Bevington & Robinson, 2002) and again displayed them as 95 % pointwise con-
fidence intervals.

Figure 4.23 displays the sequential allocation PCS values relative to the PCS values for

the other allocation procedures evaluated. We observed that only at 4 =0.05 and
A, =0.95 does the performance of any of the allocation procedures match or exceed that
of the sequential allocation procedure (relative PCS <1). At 4, =0.05 and 4, =0.95, the
performance of the sequential procedure and the proportional allocation procedure are
equivalent. Across all other decision models ( 4, values), the performance of the sequential

procedure exceeded that of the proportional allocation procedure by more than 5 % (1.06

average relative PCS).
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Figure 4.23: Sequential allocation procedure PCS results relative to the results of the uniform, proportional,
and Bayes EV allocation procedures; shaded area represents 95 % pointwise confidence bounds.

On average, across all decision models, the performance of the Bayes EV allocation
procedure was nearest the performance of the sequential allocation (1.05 average relative

PCS). It did not, however, match or exceed that of the sequential allocation approach for

any A, value.

When compared to the commonly used uniform allocation procedure, the sequential
allocation procedure produced PCS values that are approximately 10 % larger (1.09 aver-
age relative PCS) across all decision models. Although the lower 95 % confidence bounds
on the uniform relative PCS values was as low as 1.05, these results show that the sequen-
tial allocation procedure produced significantly better results than the uniform allocation

procedure.
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4.8 Summary

Through a series of simulation studies that investigated various decision situations, we
demonstrated that, when collecting data to support a selection decision with multiple un-
certain attributes, the allocation of the experimental budget across the multiple attributes
and alternatives does impact the decision-maker’s ability to select the true best alternative,
i.e., the probability of correct selection. In this chapter we developed and evaluated a num-
ber of procedures to allocate the samples of a fixed experimental budget to the multiple
attributes and alternatives of a multiple attribute selection decision with the goal of max-
imizing the probability of correct selection.

We first considered the multiple attribute selection decision where the attributes were
success probabilities that were evaluated using separate and independent series of Bernoulli
trials (e.g., pass-fail testing). We formulated several single-stage sample allocation proce-
dures based on insights gained from an empirical simulation study of decision cases with
m =5 alternatives and k =2 attributes. The uniform allocation procedure allocated an
equivalent number of samples to each attribute of each alternative. The proportional allo-
cation procedure allocates samples to attributes proportional to the attribute’s decision
weight. If, in addition to knowledge of the decision model, the decision-maker had
knowledge of the shape of the efficient frontier formed by the attribute values, then he
could implement the step allocation procedure. Through a second simulation study, we
evaluated each of these allocation procedures by considering its frequency of correct se-
lection (fcs) performance when applied to 100 new decision cases with m = 5 alternatives

and k = 2 attributes. The results of our evaluation showed that the step allocation procedure
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provided rel fcs that were nearly 25 % higher, on average (0.93 versus 0.75), than those
provided by the common uniform allocation procedure.

We next conducted studies that considered the multiple attribute selection decision
where the attributes were continuous measurands that were evaluated using separate and
independent measurement processes. We developed single-stage allocation procedures for
both the k = 2 attributes and k = 3 attributes decision cases. For the k = 2 attributes study,
we developed and evaluated the performance of the uniform, proportional, 1-parameter
step, and 2-parameter step allocation procedures. From the fcs and rel fcs results provided
by an evaluation against 500 new decision cases with m =5 alternatives and k = 2 attrib-
utes, we again saw that the additional information provided by the decision-maker proved
beneficial. That is, the 2-parameter step outperformed the 1-parameter step, which outper-
formed the proportional, which outperformed the uniform allocation procedure in terms of
rel fcs. The best performing 2-parameter step allocation procedure provided rel fcs that
were 15 % higher, on average (0.92 versus 0.80), than those provided by the common uni-
form allocation procedure.

In the k = 3 attributes study of the Gaussian measurement model, we developed and
evaluated the performance of the uniform, proportional, 3-zone, and 4-zone allocation pro-
cedures. The evaluation of these allocation procedures using 500 new decision cases with
m = 5 alternatives and k = 3 attributes provided fcs and rel fcs results that demonstrated the
inferiority of these extreme allocation approaches. The zone allocation procedures were
outperformed by the proportional allocation procedure for all decision models investigated,
and they were outperformed by the uniform allocation procedure for most decision models

investigated.
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We conducted an analytical study of the Gaussian measurement model. We began by
developing an optimal, single-stage allocation procedure for m = 2 alternatives when max-
imum likelihood estimation was used in conjunction with the expected value selection pro-
cedure. We extended the ideas used in developing the optimal m = 2 allocation procedure
to the derivation of a general, near-optimal, m alternatives procedure using maximum like-
lihood estimation and the expected value selection procedure. We called this general pro-
cedure the MLE EV allocation procedure. In an evaluation using 500 decision cases with
m =5 alternatives and k = 2 attributes, we found that for all decision models the MLE EV
provided, on average, fcs results that were within 1 % of fcs values provided by the optimal
allocation (over all allocations that provide equivalent allocations across alternatives).

We extended the analytical study of the Gaussian measurement model to develop a
general single-stage allocation procedure using Bayesian estimation and the expected value
selection procedure. Though the Bayes EV allocation procedure was not derived to be op-
timal, an evaluation using 50,000 decision cases with m = 5 alternatives and k = 2 attributes
showed it to perform well when compare to the uniform allocation using Bayes estimation
and expected value selection, the MLE EV, and the uniform allocation using ML estima-
tion and expected value selection. We saw that the additional information provided by the
Bayesian prior distribution benefited the allocation procedure for some decision models.

In our final study of the Gaussian measurement model, we developed and evaluated a
general sequential allocation procedure using Bayesian estimation and the multinomial se-
lection procedure. Using 50,000 decision cases with m = 5 alternatives and k = 2 attributes,

we evaluated the performance of the sequential allocation procedure and compared it to the
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performance of the uniform and proportional allocations procedures using Bayesian esti-
mation and multinomial selection, and to the performance of the Bayes EV allocation pro-
cedure using Bayesian estimation and the expected value selection procedure. Although
the sequential allocation requires additional overhead in terms of evaluating a multiple in-
tegral at each stage, the resulting fcs values were, on average, 10 % larger than those pro-
vided the common uniform allocation and, on average, 5 % larger than the fcs values pro-
vided by the proportional and Bayes EV allocation procedures.

In the evaluation of each of these allocation procedures, we observed an increase in the
probability of correct selection when additional information was used in the allocation pro-
cedure and in the evaluation of the selection decision model. This information was either
in the form of knowledge of the shape of the efficient frontiers, or provided by Bayesian
prior distributions on the attribute values. While providing nonlinearity and general angle
measures for the frontier shape may be difficult in most decision situations, providing some
general information or bounding for the attribute values in terms of a Bayesian prior dis-
tribution may prove to be a beneficial and easier task.

The allocation procedures developed in this chapter were based on the set of assump-

tions provided in Section 4.1, with one of the more restrictive assumptions being the iden-
tity form of the individual value functions, i.e., v; (:uij ) = u; . When all attributes are meas-

ured on the same scale, using the same measurement units, and are of comparable size, this
assumption is reasonable. However, when attributes are measured on different scales, a

change of scale transformation may be necessary. When the individual value function is a
linear transformation, e.g., v, (,uij)=ajﬂij +/;, where «; is the scaling factor and f; is

the location constant for attribute j, the approaches presented in this dissertation can be
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modified appropriately with straightforward changes. The most notable change that must

be accounted for is due to the change in the definition of the decision value, &, and more

specifically, the change in the probability distribution of & . To account for this change in

the MLE EV allocation procedure (Equation (4.19)) and the Bayes EV allocation procedure
(Equation (4.26)), A is replaced by y =al (with appropriate subscripts) . Both the mean
and the variance parameters of the posterior probability distributions of the decision values
that underlie the sequential allocation procedure (Equation (4.23) must be appropriately
updated, but otherwise the sequential allocation procedure remains as defined. While it is
believed that nonlinear value functions will have greater impact on the analyses and results

of this chapter, further work is required to understand the extent of their impact.
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Chapter 5 Conclusions, Contributions, and Future Work

In this dissertation we studied the problem of allocating a fixed experimental budget across
multiple attributes and alternatives in a selection decision where the results of the experi-
mental evaluations lead to uncertain estimates of the true attribute values. Subject to the
budget constraint, the goal was to identify an allocation approach that maximized the prob-
ability of correct selection. Through a series of simulation studies, we developed and eval-
uated a number of allocation procedures under both the Bernoulli measurement model (suc-
cess probability attributes) and the Gaussian measurement model (continuous measurand
attributes). We considered several approaches to incorporating the uncertainty about the
attribute values into the selection decision model including the multinomial selection pro-
cedure.

As a baseline for comparisons, we used a uniform allocation procedure that allocated
the sample budget equally across the alternatives and attributes. This simple and common
approach is consistent with the principle of balance in the traditional design of experiments
discipline. We observed the performance of the uniform allocation procedure to be inferior
to that of allocation procedures that leveraged additional information, such as specific
knowledge of the decision model or general knowledge about the attribute values. Of the
allocation procedures developed, the best performing was found to be the sequential allo-
cation procedure, which uses specific knowledge of the decision model and general

knowledge of the attribute values provided by Bayesian prior distributions that is updated
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with each observed sample. These observations lead us to the important conclusion that the
manner in which the information gathering budget is allocated across the multiple attributes
and alternatives does impact the quality of the selection made. Further, any available in-
formation should be used in developing the allocation plan and evaluating the selection
decision model. We saw that even vague information in the form of nonspecific and diffuse
Bayesian prior probability distributions describing the attribute values can lead to an in-
crease in selection performance for some decision models. In practical terms, this empha-
sizes the importance for projects focused on a selection decision to be managed so that the
decision modeling and the experimental planning are done jointly rather than in isolation
(which, unfortunately, is currently common). Our work demonstrates that such a coopera-
tive approach can improve the overall selection results of the project.
We summarize the contributions of this dissertation as follows:
1. We identified and evaluated methods to incorporate the uncertainty in the attribute
value estimates into a normative model for a multiple attribute selection decision.
We demonstrated the idea of propagating the attribute value uncertainty and de-
scribing the decision values for each alternative as probability distributions and
used these distributions in the selection of an alternative. We noted that, by select-
ing the alternative that has the greatest probability of having the largest decision
value, the multinomial selection procedure most closely aligns with the goal of
maximizing the probability of correct selection. This is particularly true when a
Bayesian approach is used to model the attribute and decision values.
2. We provided a set of allocation procedures that were developed under a variety of

assumptions and decision situations. From the results of simulation experiments,
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we produced evidence of the relative performance of the allocation procedures. The
allocation procedures that included decision-maker knowledge outperformed those
that neglected such information.

Thus, we have answered the research questions posed in Chapter 1. We expect these
contributions will lead to the further advancement of selection decision and allocation
methods that promote the use and recognition of the uncertainty in attribute values that
results when the values are estimated based on a limited set of sample data collected from
observations such as measurements, experimental evaluations, or simulation runs.

We assumed in this work that, for a given decision, all attributes were of the same type
(e.g., success probabilities), were evaluated or measured on the same scale, the values of
each attribute were described by simply linear individual value functions, and the cost to
collect information about each attribute and alternative was the same. While these assump-
tions may hold for some decision situations, they will not for many. We will look to relax
each of these assumptions in future work and specifically provide allocation and selection
methods to handle mixed attribute error types with differing individual value functions.

Another general topic that we would like to contemplate in future work is the consid-
eration of evaluation metrics beyond the probability of correct selection. For example, a
measure of regret that indicates how far, in decision value space, a selected alternative is
from the true best alternative would be of interest. Such a measure may help us to further
understand what impact the proximity of the alternatives in attribute space has on the qual-

ity of the selection decision.
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Simulation studies that allowed for the true best alternative to be known were the basis
for the evaluations performed in this dissertation. We relied upon the several methods de-
scribed in Appendix A, Appendix C, and Appendix D to generate the true attribute values
for the random decision cases used in the evaluations. While using the rejection algorithm
of Appendix D assured that each frontier in the population of all concave efficient frontiers
with m alternatives described by k = 2 attributes had an equal probability of being con-
structed, it came with a computational cost. As noted, for m = 5 alternatives, the generation
of an average of 2,922 sets of points was required for each accepted concave efficient fron-
tier. This number of required sets of points increased to 3.5 million for each accepted con-
cave efficient frontier when m =7, and the algorithm was unable to return a result when
m = 8. Further research on the development of a random set of concave efficient frontiers
for the general m alternatives with k attributes case would be beneficial in further progress-
ing this work. An immediate use of such random concave frontiers with k > 2 attributes
would be to evaluate the general allocation procedures developed in Sections 4.6 and 4.7.

One focus of the work of this dissertation was how to allocate a provided information
gathering budget to best support a selection decision. The ideas of the value of information
(Clemen & Reilly, 2001) focus on whether the decision-maker should collect additional
information to improve the quality of the decision outcome. Though different, there is a
similarity between these topics that may be worthy of further exploration. The similarity is
most apparent in the sequential decision allocation procedure that considers, at each sam-
pling stage, whether or not to sample from each alternative and attribute pair based on the
“value” that such a sampling is expected to provide in terms of probability of correct se-

lection.
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The sequential allocation procedure, which provided the most favorable results and is
the most complicated allocation procedure that was studied, also raises many questions for
future work. The complex relationships illustrated in Figure 4.21 between decision case,
measurement error, decision model, and the fcs result at each stage provide for a rich topic
of research. Also of interest is updating the sequential allocation procedure to allow for a
sample size greater than one in each stage. By pushing this idea to the extreme of allocating
all B samples in the first stage of the sequential allocation procedure would provide another
single-stage allocation procedure.

Finally, we noted that the OCBA method (Chen & Lee, 2011) selected an alternative
based upon the expected decision value. We believe this approach may be inconsistent with
the stated goal of maximizing the probability of correct selection and view the multinomial
selection procedure as a better choice for a selection procedure. We plan to further inves-
tigate these views by formulating and evaluating an OCBA-like approach using a multino-
mial selection procedure and comparing the results to those that resulted from numerical

experiments performed by Chen and Lee.
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Appendix A Constructing Frontiers with Two Attributes

Here we describe the construction algorithm used to generate a concave efficient frontier

with m =5 alternatives, each described by k = 2 attributes such as that presented in Figure

A.1. For this discussion, let X and Y denote the values of attribute 1 and attribute 2. We use

the ordered statistic notation x;, to denote the i™ smallest value of attribute X.
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Figure A.1: Concave efficient frontier with 5 alternatives and 2 attributes.

The construction algorithm proceeds as follows:

1.

Define the domain of the attribute values as [ X .\, X | @nd [Yoins Y | -
Randomly select the distance between the smallest and largest value of attribute X by

drawing a single value from a Uniform[O,(Xm‘,le — Xiin )] probability distribution. Re-

peat for attribute Y. Denote these values d, and d, .

169



3. Determine the attribute values of the extreme alternatives, (x[l], y[s]) and (x[s], y[l]) by
assigning a single value drawn from a Uniform[0,1—d, | distribution to Xy and
Xe) = Xy + 0y ; similarly, assign a single value drawn from a Uniform[0,1—d, | distri-
bution to yy, and y, =y, +d, .

4. Define the attribute values of the third attribute, (x[3], y[s]) such that L, <x, <X, and
L, < Yj5 < ¥}, Where L is the line segment with endpoints (x[l], y[s]) and (x[s], y[l]) as

displayed in Figure A.2. We do this by drawing a single value r from a Uniform[0,1]

probability distribution.

a. If r<0.5, then:

i Xy israndomly selected froma Uniform[x[l], x[SJ probability distribu-
tion.

ii. Define L (x)= (X=Xy)+ Y Vg is randomly selected from

a Uniform[Ll(xls]), y[s]} probability distribution.
b. If r>0.5, then:
I. Y3 is randomly selected froma Uniform[y[l], y[s]] probability distribu-

tion.

ii. Define L'(y)= M(y ~ Y5 )+ X X s randomly selected from
Y — Vs

a Uniform[Lf(y[s]),x[sJ probability distribution.
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Figure A.2: Constraints for the attribute values of the third alternative.

5. Define the attribute values of the fourth and fifth alternatives, (x[z], Y 4]) and (x[ a0 Y )

by randomly determining the order that they are created. If (x[z], y[4]) is the fourth al-

Xis1 ~ Xty

Y — Y

ternative created then, L, <x, <L, and, if x, <X'= (Vg = Yia )+ Xy » then

L, < Vi < Vs else L, < TR L,. Where L, is the line that extends through the points
(x[l],y[s]) and (x[a],y[s]) and L; is the line that extends through the points (x[3],y[3])
and (x[s], y[l]). These constraints are illustrated by the shaded area in the left panel of

Figure A.3. It follows that the values of the fifth alternative (x[4], y[z]) are such that

- " y _y
Lo <Y<k and 1F yp, <X :ﬁ(xwl—’ﬁa)”[ﬂ’ then L <x,) <Xy, else

Ly <x, <L,. Where L, is the line that extends through the points (x[z],ym) and
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(x[3], y[s]). These constraints are illustrated by the shaded area in the right panel of

Figure A.3.
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Figure A.3: Constraints for the attribute values of the fourth (left panel) and fifth (right panel) attributes, if
attribute (xm, ym) is the fourth attribute created.

If, on the other hand, (XM, y[z]) is the fourth alternative created, then, L, <y, <L,

Y131 — Yis)

*

and, if y, <X =
X3~ X
These constraints are illustrated by the shaded area in the left panel of Figure A.4. It

(X[5] _Xm)+ Vs then Ly <, <Xgq, else Ly<x, <L,.
follows that the values of the fifth alternative, (x[z], y[4]), are such that L, < Xz < Ls

(Vs = Yo )+ % then L, <y <y, else L, <y < L.

and if x, i
Yo~ Y
Where L is the line that extends through the points (x[a],y[s]) and (xw,y[z]). These

constraints are illustrated by the shaded area in the right panel of Figure A.4.
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Figure A.4: Constraints for the attribute values of the fourth (left panel) and fifth (right panel) attributes, if

attribute (X[4]’ y[z]) is the fourth attribute created.

We accomplished this by defining:

Yz Y _
L, (X) A -8 ( o X[l] ) + y[5] and Lzl( ) X[S] Xm (y - y[5] ) + X[1]

X3~ Xy

Yia —

Yis)

L(x)= Y — y[s]( X=X )+ Yy @nd L5 (y) = );[5] X[S](y_y[3])+X[3]

Xs1 ™ X3

Yia)

Yis Y -
L, (x)= —A— ( B X[2])+ Yia and L' (y)= ue . (y_ y[4])+ ae

X3~ X2

~Yig

L (0= 2828 (g )y and L (y) = (y oy o

X1~ X3

Yiz1 —

Yia)

Randomly select a single value u from a Uniform[O,l] probability distribution.

a. Ifu< 8,then:

L Xy,

tion.
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iv.

If ><[2]<L;1(y[5]), then 'y, is randomly selected from a
Uniform[Lz(x[z]),y[E)J probability distribution; else, y, is randomly
selected from a Uniform[L2 (X[z])’ L, (x[z] )J probability distribution.

X4 is randomly selected from a Uniform[xp], x[s]] probability distribu-
tion.
Y,y is randomly selected from a Uniform[ Ly (x,, ), L, (x,,) ] probability

distribution.

b. If%<u§%,then:

X, is randomly selected froma Uniform[x[l], x[S]] probability distribu-
tion.

If x[2]<L;1(y[5]), then 'y, is randomly selected from a
Uniform[Lz(x[z]),y[SJ probability distribution; else, Yiq is randomly
selected from a Uniform[L2 (x[z]), L, (x[z] )J probability distribution.

Yz is randomly selected froma Uniform[y[l], y[s]} probability distribu-
tion.

If y[2]<L4(x[5]), then x, is randomly selected from a
Uniform[L;l(y[Z]),x[SJ probability distribution; else, X4 is randomly

selected from a Uniform| L Lt probability distribution.
Yig )b Yz
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c. If %<us38,then:

iv.

Y| Is randomly selected from a Uniform[yls], y[s]] probability distribu-
tion.

X is randomly selected from a Uniform[ L' (y,,,), 5" (¥, ) | probabil-
ity distribution.
X is randomly selected from a Uniform[x[s], x[s]] probability distribu-

4]
tion.
Y is randomly selected from a Uniform| Ly (x,,,). L, (%,,) ] probability

distribution.

d. If%<u£ 2,then:

Yiq is randomly selected froma Uniform[y[s], y[SJ probability distribu-
tion.

X is randomly selected from a Uniform[ L' (y,,,), 5" (¥, ) | probabil-
ity distribution.

Yz is randomly selected froma Uniform[y[l], y[s]} probability distribu-

tion.

If y[2]<L4(x[5]), then x, is randomly selected from a
Uniform[L;l(y[Z]),x[SJ probability distribution; else, X4 is randomly

selected from a Uniform| L Lt probability distribution.
Yig )b Yz
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e. If %<us58,then:

X, 1s randomly selected from a Uniform[xp], x[s]] probability distribu-
tion.

Y, is randomly selected from a Uniform| Ly (x,,,). L, () ] probability
distribution.

X, is randomly selected from a Uniform[x[l], x[s]] probability distribu-
tion.

If ><[2]<L;1(y[5]), then 'y, is randomly selected from a
Uniform[Lz(ﬁz]),y[E)J probability distribution; else, Yiq is randomly

selected from a Uniform[L2 (x[z]), L (x[z] )} probability distribution.

f. If %<us%,then:

X, 1s randomly selected froma Uniform[x[s], x[s]} probability distribu-
tion.

Y,y is randomly selected from a Uniform[ Ly (x,, ), L, (x,,) ] probability
distribution.

Yiq is randomly selected froma Uniform[yls], y[SJ probability distribu-
tion.

X, is randomly selected from a Uniform| L*(y;,,), Ls'(V,,,) ] probabil-

ity distribution.
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g. If %<u§%,then:

Y Is randomly selected froma Uniform[y[l], y[SJ probability distribu-
tion.

If y[2]<L2(x[5]), then x, is randomly selected from a

Uniform[L;l(y[z]),x[SJ probability distribution; else, x,, is randomly

[4]
selected from a Uniform[Lgl(y[z]), L;l(y[z]ﬂ probability distribution.
X, is randomly selected from a Uniform[x[l], x[s]] probability distribu-

tion.

If x[2]<Lg1(y[5]), then 'y, is randomly selected from a
Uniform[Lz(x[z]),y[E)J probability distribution; else, Yiq is randomly

selected from a Uniform[L2 (x[z]), L (x[z] )} probability distribution.

h. If %<u£1,then:

Yz is randomly selected froma Uniform[y[l], y[s]} probability distribu-
tion.

If y[2]<L2(x[5]), then x, is randomly selected from a
Uniform[L;l(y[Z]),x[SJ probability distribution; else, X4 is randomly

selected froma Uniform[L;l(y[Z]), L;l(y[z]ﬂ probability distribution.
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iii. Yiq is randomly selected froma Uniform[y[s], y[s]] probability distribu-
tion.
is randomly selected from a Uniform| L} (y,,, ). L* (¥, ) | probabil-

\A X[Z]

ity distribution.
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Appendix B Frontier Measures

Here we define the measure of nonlinearity, NL, and a measure of general angle, 6, that are
used to describe a concave efficient frontier with m alternatives, each described by k = 2
attributes. For this discussion, let X and Y denote the values of attribute 1 and attribute 2.
For notational purposes, when considering m alternatives, alternative 1 will maintain the
smallest value for attribute 1 and the largest value for attribute 2 when compared to the
remaining alternatives. Alternative 2 will maintain the second smallest value for attribute

1 and the second largest value for attribute 2, and so on. The values for the attribute value

pair will be represented as (x;,y;) for alternative i=1,...,m. Figure B.1 illustrates this

alternative number convention for a concave efficient frontier with m = 5 attributes.

0.8 1.0
|

04
]
I~

0.0
|

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

X

Figure B.1: Concave efficient frontier with 5 alternatives and 2 attributes.

179



The measure of nonlinearity is defined as a scaled area between the piecewise linear

concave curve formed by the alternatives on the concave frontier and the line segment
connecting the alternatives defined by the attribute value pairs (x,,y,) and (x,y, ). Spe-
cifically, all points on the piecewise linear concave curve are scaled such that the distance

between (x,,y,) and (X, Y, ) is 1. The nonlinearity measure is the area between the scaled
piecewise linear concave curve and the line segment connecting the scaled points (x;, y;)

and (Xr'n, Y, ) This measure can range from 0 (linear) to 0.25 (“extreme concave” curve or

“90° knee”).
The algorithm to calculate the measure of nonlinearity is as follows:

1. For each alternative i, represented by (x,y;),i=1...,m, calculate:

a. J _\/(x —x) +(y,-v,)", the distance between (x;,y;) and (%, Y,)-

b. K = \/(x +(y,—y,) , the distance between (x;,y;) and (X, Y, ).

c. L:\/i(xl—xm)2+(yl—ym)2 , the distance between (x,y,) and (X, Y, )

2 2 2 2 2_K? 2
d. Scaled points x =2 K L and - J_z_ # :
212 L 2L

2. For each of the m — 1 line segments in the piecewise linear concave curve formed

by the scaled points (X, y;),i=1...,m, calculate area between the line segment

and the horizontal line y'=0.

3. The measure of nonlinearity, NL, is the sum of the areas calculated in Step 2.
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The measure of general angle, &, is defined as the acute angle formed by the line seg-

ment connecting the attribute value pairs (x,,y,) and (x,,Y, ) and the horizontal line

y =Y,. This measure can range from 0° to 90°. A measure of 0° indicates that all alterna-

tives fall on a horizontal line. A measure of 90° indicates that all alternatives fall on a
vertical line.
The algorithm to calculate the measure of general angle is as follows:

1. Calculate the angle, in radians, formed by the line segment connecting the attribute

value pairs (x,y,) and (X, V,) and the horizontal line y=y, as
Or =tan " (¥, = Yo /X, = %)
2. Calculate the measure of general angle as 8 =6, .

The measures of nonlinearity, NL, and a measure of general angle, 6, are illustrated in

Figure B.2.

0.8
7

o _| i -
< N NL\ 0
ey
N 4
< _| N
=] . \
~ ¥
\\5\ K
o N
o | AN

Figure B.2: lllustration of the measures of nonlinearity (scaled shaded area) and general angle, 6.
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The measures of nonlinearity and overall angle are related. Piecewise linear concave
curves with an overall angle measure near 0° (nearly horizontal) or near 90° (nearly verti-
cal) will have small nonlinearity measures. A piecewise linear concave curve consisting of
m points provides a maximum nonlinearity measure when all points fall on one of two line
segments and these line segments form a 90° angle. The maximum nonlinearity measure,

as a function of the overall angle measure, can thus be described by

max NL(8) =4sin(%).
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Appendix C Constructing Frontiers with Three Attributes

Here we describe the construction algorithm used to generate a concave efficient frontier

with m = 5 alternatives, each described by k = 3 attributes. The algorithm used to generate

a concave efficient frontier in R® space is as follows:

1. For each attribute j=1,2,3, an attribute space was defined by:
a. The distance between the minimum attribute value and the maximum attrib-

ute value, denoted dist;, was randomly selected from a Uniform[0,100]

distribution.

b. The attribute value for the alternative with the minimum attribute value,

;> Was randomly selected from a Uniform [100,200—dist; | distribution.

c. The attribute value for the alternative with the maximum attribute value,

Xispj = X +dist; .

2. A normalized space was defined such that the domain of each random variable,
Z;, =123 is [0,1].

3. A random concave surface in normalized space was defined by the curve
z; +12,+12,=1, where s was generated by randomly selecting a value r from a
Beta(1,2) distribution and setting s=9r +1 so that min(s)=1 and max(s)=10

(The expected value of s was 4).
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4. The normalized attribute values (z,,z,,z;) for each of five alternatives were ran-

domly selected from the concave surface. For each alternative a;,i=1...,5, the
following steps were performed:

a. Avalue of z; was randomly drawn from a Uniform[0,1] distribution.

b. A value of z;, was randomly drawn from a Uniform[o, f/l— zflJ distribu-

tion.

S S
C. Z, :45/1— Z,+17, .

5. The normalized attribute values for each alternative &, i=1,...,5, were translated
to the attribute space that was defined in step 1 by:
a. Assigning 14, =Z,,, l, = Z;,, s = Z;; Where (a, b, ) is a random permuta-
tion of (1, 2, 3), with each permutation having equal probability.

b. Scaling (by dist;) and shifting (by s,;) each s, j=1,2,3.
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Appendix D Rejection Algorithm for Frontier Construction

Here we describe the rejection algorithm used to generate a random concave efficient fron-
tier with m alternatives, each described by k = 2 attributes.
1. Generate a set of m = 5 points from a bivariate uniform probability distribution over
the two-dimensional region [100, 200] x [100, 200].

2. Order the points over the first dimension, we denote these m ordered pair as
CRARCERAE

3. Calculate the m — 1 gradients g, YTV G ot
= X
i+1] [i]

4. Accept the set of points as a concave efficient frontier if g, >g,,, Vi=1...,m-1.

This rejection algorithm assures that each frontier in the population of all concave efficient
frontiers with m alternatives described by k = 2 attributes has an equal probability of being

constructed.
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