
ABSTRACT

Title of dissertation: IMPROVING EFFICIENCY
FOR OBJECT DETECTION
AND TEMPORAL MODELING
FOR ACTION LOCALIZATION

Mingfei Gao
Doctor of Philosophy, 2019

Dissertation directed by: Professor Larry S. Davis
Department of Computer Science

Despite their great predictive capability, Convolutional Neural Networks (CNNs)

are computational-expensive to deploy and usually require a tremendous amount of

annotated data at training time. When analyzing videos, it is very important and

challenging to model temporal dynamics due to large appearance variation and com-

plex semantics. We propose methods to improve efficiency of model deployment for

object detection in images and to capture temporal dependencies for online action

detection in videos. To relieve the demand of human labor for data annotation, we

introduce approaches to conduct object detection and natural language localization

using weak supervisions.

First, we introduce a generic framework that reduces the computational cost

of object detection while retaining accuracy for scenarios where objects with varied

sizes appear in high resolution images. Detection progresses in a coarse-to-fine

manner, first on a down-sampled version of the image and then on a sequence

of higher resolution regions identified as likely to improve the detection accuracy.

Built upon reinforcement learning, our approach consists of a model (R-net) that

uses coarse detection results to predict the potential accuracy gain for analyzing a

region at a higher resolution and another model (Q-net) that sequentially selects

regions to zoom in.

Second, we propose a novel framework, Temporal Recurrent Network (TRN),

to model greater temporal context of a video frame by simultaneously performing

online action detection and anticipation of the immediate future. At each moment in

time, our approach makes use of both accumulated historical evidence and predicted

future information to better recognize the action that is currently occurring, and

integrates both of these into a unified end-to-end architecture. We evaluate our

approach on two popular online action detection datasets, HDD and TVSeries, as

well as another widely used dataset, THUMOS’14.

Third, we propose StartNet to address Online Detection of Action Start (ODAS)

where action starts and their associated categories are detected in untrimmed,

streaming videos. Our method decomposes ODAS into two stages: action classifica-

tion (using ClsNet) and start point localization (using LocNet). ClsNet focuses on

per-frame labeling and predicts action score distributions online. Based on the pre-

dicted action scores of the past and current frames, LocNet conducts class-agnostic

start detection by optimizing long-term localization rewards using policy gradient

methods. The proposed framework is validated on two large-scale datasets, THU-

MOS’14 and ActivityNet.

Fourth, we introduce Count-guided Weakly Supervised Localization (C-WSL),

an approach that uses per-class object count as a new form of supervision to improve

Weakly Supervised Localization (WSL). C-WSL uses a simple count-based region

selection algorithm to select high-quality regions, each of which covers a single object

instance during training, and improves existing WSL methods by training with the

selected regions. To demonstrate the effectiveness of C-WSL, we integrate it into two

WSL architectures and conduct extensive experiments on VOC2007 and VOC2012.

In the last, we propose Weakly Supervised Language Localization Networks

(WSLLN) to detect events in long, untrimmed videos given language queries. WSLLN

relieves the annotation burden by training with only video-sentence pairs without ac-

cessing to temporal locations of events. With a simple end-to-end structure, WSLLN

measures segment-text consistency and conducts segment selection (conditioned on

the text) simultaneously. Results from both are merged and optimized as a video-

sentence matching problem. Experiments are conducted on ActivityNet Captions

and DiDeMo.

IMPROVING EFFICIENCY FOR OBJECT DETECTION
AND TEMPORAL MODELING FOR ACTION LOCALIZATION

by

Mingfei Gao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Rama Chellappa
Professor David Jacobs
Professor Ramani Duraiswami
Professor Tom Goldstein

c© Copyright by
Mingfei Gao

2019

Acknowledgments

First of all, I want to express my gratefulness to my advisor, Professor Larry

Davis. As one of the greatest researchers in the field, Larry is very knowledgeable in

diverse areas of research topics. He always encourages me to be creative and provides

me great opportunities to explore interesting topics. Larry is great at advising. He

inspires me by introducing promising directions and gives me enough freedom to

go deep into the research. This is very important for me to be an independent

researcher. I want to especially thank Larry for his kindness and wisdom. Thank

him for admitting me to his group when I was very junior with limited related

experience and for being very patient when I constantly proposed immature ideas

in the early stage of my PhD. It is really my honor to be his student.

Meanwhile, I want to acknowledge the help of people who work closely with

me. When I was a beginner, I obtained great help from Vlad Morariu. As my

research mentor, he discussed ideas with me, worked through my research plans

and helped polish papers. I am really grateful for his support. I want to thank

my colleagues, Yaming Wang, Ruichi Yu, Ang Li and Mingze Xu for their great

collaborations. I also want to express thankfulness to the mentors of my internships

including Ashish Tawari at Honda Research Institute, Caiming Xiong at Salesforce

Research and Zizhao Zhang, Tomas Pfister at Google. I would also like to thank

my lab mates, Zuxuan Wu, Hengduo Li, Peng Zhou, Xitong Yang, Shiyi Lan, Luyu

Yang and Jun Wang who make my PhD life joyful.

My research was partially supported by the Intelligence Advanced Research

ii

Projects Activity (IARPA) via Department of Interior/Interior Business Center

(DOI/IBC) contract number D17PC00345. I really appreciate the funding that

supports my research work.

Finally, I own my deepest gratitude to my family and friends for their unlimited

love. Thank my mother, Liping Liu who always stands by my side. Thank my aunty

Aixiang Liu and her family who took care of me since I was a little child. Thank

my dearest Tong Guan who unconditionally understands, supports and trusts me

as always. I would also like to thank my friends, Chaoyue Liu, Fanxi Qi and Ran

Tao who make my life colorful.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables vii

List of Figures x

List of Abbreviations xiv

1 Introduction 1
1.1 Proposed Approach . 1
1.2 Related Work . 4

1.2.1 CNN based Object Detectors 4
1.2.2 Temporal Action Localization 6

1.3 Outline of Thesis . 8

2 Dynamic Zoom-in Network for
Fast Object Detection in Large Images 9
2.1 Introduction . 9
2.2 Dynamic zoom-in network . 11

2.2.1 Problem formulation . 13
2.2.2 Zoom-in accuracy gain regression network 14
2.2.3 Zoom-in Q function learning network 17

2.3 Experiments . 19
2.3.1 Baseline methods . 20
2.3.2 Variants of our framework . 21
2.3.3 Evaluation metric . 23
2.3.4 Implementation details . 23
2.3.5 Qualitative results . 24
2.3.6 Quantitative evaluation . 25
2.3.7 Ablation analysis . 29

2.4 Conclusion . 30

3 Temporal Recurrent Networks for
Online Action Detection 31
3.1 Introduction . 31

iv

3.2 Online Action Detection . 34
3.2.1 Temporal Recurrent Network (TRN) 34
3.2.2 TRN Cell . 35

3.3 Experiments . 37
3.3.1 Datasets . 38
3.3.2 Implementation Details . 38
3.3.3 Settings . 39
3.3.4 Evaluation Protocols . 40
3.3.5 Baselines . 41
3.3.6 Results . 43

3.3.6.1 Evaluation of Online Action Detection 43
3.3.6.2 Ablation Studies . 44
3.3.6.3 Evaluation of Different Stages of Action 47
3.3.6.4 Evaluation of Action Anticipation 48

3.4 Conclusion . 48

4 StartNet: Online Detection of
Action Start in Untrimmed Videos 50
4.1 Introduction . 50
4.2 Action Start Detection Network (StartNet) 53

4.2.1 Classification Network (ClsNet) 54
4.2.2 Localization Network (LocNet) 55

4.3 Experiments . 60
4.3.1 Experiments on THUMOS’14 62

4.3.1.1 Evaluation Results 63
4.3.1.2 Ablation Experiments 64

4.3.2 Experiments on ActivityNet 69
4.4 Conclusion . 71

5 C-WSL: Count-guided Weakly Supervised Localization 72
5.1 Introduction . 72
5.2 Proposed Approach . 75

5.2.1 Count-based Region Selection (CRS) 75
5.2.2 Detector Refinement Structures with CRS 77

5.2.2.1 Alternating Detector Refinement (ADR). 77
5.2.2.2 Online Detector Refinement (ODR). 79

5.3 Experiments . 80
5.3.1 Experimental Setup . 80
5.3.2 Annotation Time vs. Detection Accuracy 81
5.3.3 Comparison with State-of-the-art (SOTA) Approaches 84
5.3.4 Ablation Analysis . 88
5.3.5 Error Analysis . 89

5.4 Conclusion . 91

v

6 WSLLN: Weakly Supervised
Natural Language Localization Networks 92
6.1 Introduction . 92
6.2 Weakly Supervised Language Localization Networks (WSLLN) 93

6.2.1 Problem Statement . 93
6.2.2 The Proposed Approach . 94

6.3 Experiments . 97
6.3.1 Experimental Settings . 97
6.3.2 Experiments on ActivityNet Captions 98

6.3.2.1 Comparison Results 99
6.3.2.2 Ablation Study . 99

6.3.3 Experiments on DiDeMo . 101
6.4 Conclusion . 102

7 Conclusion 103

Bibliography 105

vi

List of Tables

2.1 Coarse-detection-all(with subscript c) v.s. Fine-detection-all (with
subscript f) on CPD and WP datasets. DT indicates average detec-
tion time per image. 25

2.2 Detection accuracy comparisons in terms of Aperc on the CPD and
WP datasets under a fixed range of processed pixel percentage (Pperc).
Bold font indicates the best result. Numbers are display asAperc(Tperc)-
Tperc is included in the parentheses for the reference of running time.
Note that 25% Pperc overhead is incurred simply by analyzing the
down-sampled image (this overhead is included in the table) and per-
centages are relative to Fine-detection-all baseline (an Aperc of 80%
means that an approach reached 80% of the AP reached by the base-
line). 27

2.3 Comparison between Qnet*-CNN+Rnet and single-shot detectors trained
on CPD. DT indicates average detection time per image. Bold font
indicates the best result. 27

3.1 Results of online action detection on HDD, comparing TRN and base-
lines using mAP (%). 43

3.2 Results of online action detection on TVSeries, comparing TRN and
the state-of-the-art using cAP (%). 43

3.3 Results of online action detection on THUMOS’14, comparing TRN
and the state-of-the-art using mAP (%). 44

3.4 Online action detection results when only portions of videos are con-
sidered in terms of cAP (%) on TVSeries. 46

3.5 Action anticipation results of TRN compared to published state-of-
the-art methods in terms of per-frame cAP (%) and mAP (%) on
TVSeries and THUMOS’14 datasets. Two-stream input features are
used in all the models. 46

3.6 Online action detection and action anticipation results of TRN with
decoder steps `d = 4, 6, 8, 10. 47

vii

4.1 Comparisons using p-mAP at depth Rec=1.0 on THUMOS’14. Re-
sults are under different offset thresholds. ClsNet is implemented with
different structures, i.e., C3D, CNN and LSTM. CNN and LSTM are
using TS features. 63

4.2 Comparisons using average p-mAP at different depths on THUMOS’14.
Average p-mAP means averaging p-mAP over offsets from 1 to 10
seconds. ClsNet is implemented with different structures, i.e., C3D,
CNN and LSTM. CNN and LSTM are using TS features. 63

4.3 Ablation study of our framework using p-mAP at depth Rec=1.0 on
THUMOS’14. LSTM is used to implement ClsNet. Different offset
thresholds are used to evaluate our framework with different features.
Best performance is marked in bold. 65

4.4 Ablation study of our framework using average p-mAP at different
depths on THUMOS’14. At each depth, we average p-mAP over
offset thresholds from 1 to 10 seconds. LSTM is used to implement
ClsNet. Best performance is marked in bold. 65

4.5 Comparisons using p-mAP under various offset thresholds at depth
Rec=1.0 on ActivityNet. ClsNet is implemented with LSTM. Num-
bers of baseline methods are cited from [1]. – indicates that numbers
are not provided in [1]. 70

5.1 Accuracy vs. cost among bounding box, clicks and count supervisions
on VOC2007. We use [2] as a reference of fully supervised detector . . 83

5.2 Comparison with the state-of-the-art in terms of mAP on the VOC2007
test set. Our number is marked in red if it is the best in the column . 84

5.3 Comparison with the state-of-the-art in terms of CorLoc (%) on the
VOC2007 trainval set. Our number is marked in red if it is the best
in the column . 84

5.4 Comparison with baselines in terms of mAP on the VOC2007 test
set. The table contains two comparison groups separated by double
solid lines. Each group shows how much ADR and C-WSL improve
each baseline. Underlineis used if the C-WSL variant outperforms its
baselines . 85

5.5 Comparison with the baseline detectors in terms of CorLoc (%) on
the VOC2007 trainval set. The table contains two comparison groups
separated by double solid lines. Each group shows how much ADR
and C-WSL improve each baseline. Underlineis used if the C-WSL
variant outperforms its baselines . 85

5.6 Comparison with the state-of-the-art in terms of mAP on the VOC2012
val set. Our number is marked in red if it is the best in the column.
Underlineis used if the C-WSL variant outperforms its baselines . . . 87

5.7 Comparison with the state-of-the-art in terms of CorLoc on the VOC2012
train set. Our number is marked in red if it is the best in the column.
Underlineis used if the C-WSL variant outperforms its baselines . . . 87

viii

6.1 Comparison results based on R@1 on ActivityNet Captions. All base-
line numbers are reprinted from [3]. WS: weakly supervised. 99

6.2 R@1 results of our method on ActivityNet Captions when λ in Eq. 6.7
is set to be different values. 100

6.3 Ablation study based on R@1 on ActivityNet Captions. Both meth-
ods are trained using weak supervisions. 101

6.4 Comparison results on DiDeMo. Following MCN, we set th = 1.0 for
the IoU threshold. All baseline numbers are reprinted from [4]. WS:
weakly supervised. 102

ix

List of Figures

2.1 Illustration of our approach. The input is a down-sampled version of
the image to which a coarse detector is applied. The R-net uses the
initial coarse detection results to predict the utility of zooming in on
a region to perform detection at higher resolution. The Q-net, then
uses the computed accuracy gain map and a history of previous zooms
to determine the next zoom that is most likely to improve detection
with limited computational cost. 10

2.2 Given a down-sampled image as input, the R-net generates an initial
accuracy gain (AG) map indicating the potential zoom-in accuracy
gain of different regions (initial state). The Q-net is applied iteratively
on the AG map to select regions. Once a region is selected, the AG
map will be updated to reflect the history of actions. For the Q-
net, two parallel pipelines are used, each of which outputs an action-
reward map that corresponds to selecting zoom-in regions with a
specific size. The value of the map indicates the likelihood that the
action will increase accuracy at low cost. Action rewards from all
maps are considered to select the optimal zoom-in region at each
iteration. The notation 128×15×20:(7,10) means 128 convolution
kernels with size 15×20, and stride of 7/10 in height/width. Each grid
cell in the output maps is given a unique color, and a bounding box
of the same color is drawn on the image to denote the corresponding
zoom region size and location. 12

2.3 Effect of region refinement. Red boxes indicate zoom regions and the
step number denotes the order that the zoom windows were selected.
Before refinement, windows are likely to cut people in half due to the
sampling grid, leading to a bad detection performance. Refinement
locally adjusts the location of a window and produces better results. . 22

x

2.4 Qualitative comparison between using the Q-net* and a greedy strat-
egy (GS) that selects the region with highest predicted accuracy gain
at each step. Red bounding boxes indicate zoom-in windows and
step number denotes the order of windows selection. The Q-net se-
lects regions that appear sub-optimal in the near term but better
zoom sequences in the long term, which leads to fewer steps as shown
in the first row. 25

2.5 Qualitative comparison of R-net and ER on the Caltech Pedestrians
test set. The first row of numbers indicate probability of the red box
being a pedestrian. C denotes coarse detection and F indicates fine
detection. Red font denotes the accuracy gain of R-net and blue is
for ER. Positive and negative values are normalized to [0, 1] and [-1,
0). Compared to ER, R-net gives lower positive scores (row #1)/
negative scores (row #3) for regions that coarse detections are good
enough/ better than fine detections and it produces higher scores for
regions (row #2) where fine detections are much better than coarse
ones. 26

2.6 Detection time and accuracy comparison on the CPD/WP dataset
after zooming in on two/three regions. 26

3.1 Comparison between our proposed Temporal Recurrent Network (TRN)
and previous methods. Previous methods use only historical obser-
vations and learn representations for actions by optimizing current
action estimation. Our approach learns a more discriminative repre-
sentation by jointly optimizing current and future action recognition,
and incorporates the predicted future information to improve the per-
formance of action detection in the present. 32

3.2 Our proposed Temporal Recurrent Network (TRN), which sequen-
tially processes input video frames and outputs frame-level action
class probabilities, like any RNN. But while RNNs only model histor-
ical temporal dependencies, TRN anticipates the future via a tempo-
ral decoder, and incorporates that predicted information to improve
online action detection. 34

4.1 Comparison between (a) the previous method [1] and (b) the pro-
posed framework. [1] aims to generate an action score sequence which
produces low score for background and high score for the correct ac-
tion immediately when the action starts. We propose a two-stage
framework: the first stage only focuses on per-frame action classifi-
cation and the second stage learns to localize the start points given
the historical trend of the action scores generated by the first stage. 51

xi

4.2 Our method works in two stages with ClsNet and LocNet. ClsNet: at
time t, features, ft, are extracted by deep convolutional networks and
input to an one-layer LSTM; The LSTM generates action score distri-
butions at each time step and ClsNet is optimized with cross-entropy
loss between action labels and the generated action scores. LocNet:
after action score generation, it inputs together with a historical deci-
sion vector, H, to a second one-layer LSTM which works as an agent
to generate two-dimensional start probability sequentially; H is up-
dated and the state is changed accordingly; The agent is trained using
policy gradient mechanism to optimize long-term reward of start lo-
calization. At the end, results from ClsNet and LocNet are fused to
obtain the final action start detection results at each time step. Here,
ClsNet is implemented with LSTM. CNN and C3D can also be used
to construct ClsNet (see Sec. 4.2.1 for details). 53

4.3 Qualitative results on THUMOS’14 and ActivityNet after action start
generation in late fusion. × means no starts are detected at those
times. Numbers indicate the scores of detected action starts. Results
of ClsNet and StartNet are marked in blue and red, respectively.
Yes/No (ground-truth) indicates if an action of the associated class
starts at the time. Best viewed in color. 66

4.4 Ablation study of LocNet: (a) effect of length of historical decision
vector (b) effect of different gamma values in Eq. 4.5. Generally,
the model performs better with bigger gamma and longer historical
decision vector. 66

5.1 Given a set of object proposals and the per-class object count label,
we select high-quality positive regions (that tightly cover a single
object) to train a WSL detector. Count information significantly
reduces detected bounding boxes that are loose and contain two or
more object instances, one of the most common errors produced by
weakly supervised detectors . 72

5.2 A common failure case of WSL methods (left) and graph representa-
tion of our region selection formulation (right). Our goal is to select
the two green boxes, each of which tightly covers one object, as the
positive training samples for WSL detectors. We achieve this by an-
alyzing the confidence scores and spatial constraints among regions . 75

5.3 (a): Count-based Region Selection (CRS) is applied to select high-
quality positive training regions from the ground-truth (GT) candi-
date boxes generated by a WSL detector. The WSL detector is then
refined using these regions. (b): The Multiple Instance Detection
Network(MIDN) [5, 6] and multiple detector networks share the same
feature representation to refine the detector at all stages together. Cls
loss indicates the classification loss and Bbox loss indicates bounding
box regression loss . 78

xii

5.4 Detection accuracy analysis when at most K per-class objects are
counted in an image. Average annotation time (in seconds) per im-
age under each K is shown in the parentheses. Detection accuracy
becomes stable when K =3 . 83

5.5 Image number of multiple-objects over image number of non-zero
objects. Note that “pson” means ”person”, “plt” means ”plant” and
“shp” denotes “sheep”. C-WSL works better on most classes with
high multiple-objects percentage. See Sec. 5.3.3 86

5.6 Examples of the training regions selected by OICR+CRS (red) and
OICR (yellow). The regions selected by OICR contain multiple object
instances. Object count information helps to select regions, each
covering a single instance . 87

5.7 (a): model improvement as the number of ADR iterations increases
on the VOC2007 test set. C-WSL approaches improve faster than
others. (b): Evaluation on images with different per-class object
counts on VOC2007. Our approach outperforms the WSL detectors
in the presence of multiple instances in a test image 89

5.8 Qualitative comparison between our CWSL:ODR+FRCNN (red boxes)
and OICR+FRCNN (yellow boxes) on the VOC2007 test set over the
20 classes. Our detector detects much tighter bounding boxes, yields
much fewer boxes with multiple objects in them, and finds instances
more accurately . 90

5.9 Some examples of the common failure cases of our approach (C-
WSL:ODR+FRCNN) on the “person” category of the VOC2007 test
set . 90

6.1 The workflow of our method. Visual and text features are extracted
from n video proposals and the input sentence. Fully-connected (FC)
layers are used to transform the features to the same length, d. The
two features are combined by multi-modal processing [7] and input to
the two-branch structure. Scores from both parts are merged. Video-
level scores, vq, are obtained by summing s over proposals. The whole
pipeline is trained end-to-end using video-level and pseudo segment-
level labels. x× z indicates dimensions. 94

xiii

List of Abbreviations

IoU Intersection over Union
AP Average Precision
mAP mean Average Precision
cAP calibrated Average Precision
FPS Frame Per Second
GT Ground Truth
WS Weakly Supervised
WSL Weakly Supervised Learning
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Units
RCNN Region-based Convolution Neural Network
MIL Multiple Instance Learning
NLL Natural Language Localization
OAD Online Action Detection
ODAS Online Detection of Action Start
DZN Dynamic Zoom-in Network
C-WSL Count-guided Weakly Supervised Localization
CRS Count-based Region Selection
TRN Temporal Recurrent Network
WSLLN Weakly Supervised Language Localization Network

xiv

Chapter 1: Introduction

1.1 Proposed Approach

Despite their great predictive capability, Convolutional Neural Networks (CNNs)

are computational-expensive to deploy and usually require a tremendous amount of

annotated data at training time. When analyzing videos, it is very important and

challenging to model temporal dynamics due to large appearance variation and com-

plex semantics. We propose methods to improve efficiency of model deployment for

object detection in images and to capture temporal dependencies for online action

detection in videos. To relieve the demand of human labor for data annotation, we

introduce approaches to conduct object detection and natural language localization

using weak supervisions.

In the first part, we introduce, Dynamic Zoom-in Network (DZN), a generic

framework that reduces the computational cost of object detection while retaining

accuracy for scenarios where objects with varied sizes appear in high resolution

images. Detection progresses in a coarse-to-fine manner, first on a down-sampled

version of the image and then on a sequence of higher resolution regions identified

as likely to improve the detection accuracy. Built upon reinforcement learning, our

approach consists of a model (R-net) that uses coarse detection results to predict

1

the potential accuracy gain for analyzing a region at a higher resolution and another

model (Q-net) that sequentially selects regions to zoom in. Final detection results

are obtained by combining the coarse and fine predictions. Experiments on the

Caltech Pedestrians dataset show that our approach reduces the number of processed

pixels significantly without a drop in detection accuracy. The merits of our approach

become more significant on a high resolution test set collected from YFCC100M

dataset.

In the second part, we propose, Temporal Recurrent Network (TRN), to ad-

dress online action detection in videos. Most work on temporal action detection is

formulated as an offline problem, in which the start and end times of actions are

determined after the entire video is fully observed. However, important real-time

applications including surveillance and driver assistance systems require identifying

actions as soon as each video frame arrives, based only on current and historical ob-

servations. Our novel framework models greater temporal context of a video frame

by simultaneously performing online action detection and anticipation of the imme-

diate future. At each moment in time, our approach makes use of both accumulated

historical evidence and predicted future information to better recognize the action

that is currently occurring, and integrates both of these into a unified end-to-end

architecture. We evaluate our approach on two popular online action detection

datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS’14.

In the third part, we propose StartNet to address Online Detection of Action

Start (ODAS) where action starts and their associated categories are detected in

untrimmed, streaming videos. Previous methods aim to localize action starts by

2

learning feature representations that can directly separate the start point from its

preceding background. It is challenging due to the subtle appearance difference near

the action starts and the lack of training data. Instead, our method decomposes

ODAS into two stages: action classification (using ClsNet) and start point local-

ization (using LocNet). ClsNet focuses on per-frame labeling and predicts action

score distributions online. Based on the predicted action scores of the past and

current frames, LocNet conducts class-agnostic start detection by optimizing long-

term localization rewards using policy gradient methods. The proposed framework

is validated on two large-scale datasets, THUMOS’14 and ActivityNet.

In the fourth part, we introduce Count-guided Weakly Supervised Localization

(C-WSL), an approach that uses per-class object count as a new form of supervision

to improve weakly supervised localization (WSL). Previous WSL methods utilizes

image-class to supervise the training process. However, their detectors tend to

group multiple objects of the same class as a single instance at test time, since

the image-class label has no information of object counts. C-WSL uses a simple

count-based region selection algorithm to select high-quality regions, each of which

covers a single object instance during training, and improves existing WSL methods

by training with the selected regions. To demonstrate the effectiveness of C-WSL,

we integrate it into two WSL architectures and conduct extensive experiments on

VOC2007 and VOC2012.

In the last part, we propose Weakly Supervised Language Localization Net-

works (WSLLN) to detect events in long, untrimmed videos given language queries.

To learn the correspondence between visual segments and texts, most previous meth-

3

ods require temporal coordinates (start and end times) of events for training, which

leads to high costs of annotation. WSLLN relieves the annotation burden by train-

ing with only video-sentence pairs without accessing to temporal locations of events.

With a simple end-to-end structure, WSLLN measures segment-text consistency and

conducts segment selection (conditioned on the text) simultaneously. Results from

both are merged and optimized as a video-sentence matching problem. Experiments

are conducted on ActivityNet Captions and DiDeMo.

1.2 Related Work

1.2.1 CNN based Object Detectors

One way to deploy an object detector efficiently on high resolution images is

to improve the underlying structure of the detector. Girshick et al. [8] speed up the

region proposal based CNN [9] by sharing convolutional features between proposals.

Ren et al. propose Faster R-CNN [2], a fully end-to-end pipeline that shares fea-

tures between proposal generation and object detection, improving both accuracy

and computational efficiency. He et al. propose Mask R-CNN [10] which extends

Faster R-CNN by adding object mask prediction as an auxiliary task. Single-shot

detectors [11, 12, 13] have received much attention for real-time performance. These

methods remove the proposal generation stage and formulate detection as a regres-

sion problem. Although these detectors performed well on PASCAL VOC [14, 15]

and MS COCO [16] datasets, which generally contain large objects in images with

relatively low resolution, they do not generalize as well on large images with objects

4

of variable sizes. Also, their processing cost increases dramatically with image size

due to the large number of convolution operations.

To ease the burden of human annotation, Weakly Supervised Localization

(WSL) methods are proposed to train a detector using weak supervision. Most WSL

detectors utilize image-class label for training. Bilen et al. [5] propose a two-stream

CNN architecture to classify and localize simultaneously and train the network in

an end-to-end manner. Following [5], Kantorov et al. [17] add additive and con-

trastive models to improve localization on object boundaries instead of local parts.

Singh et al. [18] propose the ‘Hide-and-Seek’ framework which hides informative

patches to encourage WSL to detect complete object instances. In [19], Li et al.

conduct progressive domain adaption and significantly improved the localization

ability of the baseline detector. Diba et al. [20] perform WSL in two/three cascaded

stages to find the best candidate location based on a generated class activation

map. Jie et al. propose a self-taught learning approach in [21] which alternates be-

tween classifier training and online supportive sample harvesting. Similarly, in [6],

Tang et al. design an online classifier refinement pipeline to progressively locate the

most discriminative region of an image.

Alternatively, other types of weak supervisions are proposed to reduce anno-

tation cost. [22] propose a novel framework where an annotator verifies predicted

results instead of manually drawing boxes. Kolesnikov et al. [23] assign object or

distractor labels to co-occuring objects in images to improve WSL. Papadopou-

los et al. [24] propose click supervision and integrate it into existing MIL-based

methods to improve localization performance. However, these methods either highly

5

depend on the produced results and require frequent interactions with annotators

or require annotators to search for and click on each instance in an image.

1.2.2 Temporal Action Localization

Most existing methods [25, 26, 27, 28, 29, 30] on temporal action detection

formulate the problem in an offline manner. These methods segment actions from

long, untrimmed videos and require observing the entire video before making a

decision. S-CNN [25] localizes actions with three stages: action proposal generation,

proposal classification, and proposal regression. Dai et al. [27] propose TCN which

incorporates local context of each proposal for proposal ranking. By sharing features

between proposal generation and classification, R-C3D [31] reduces computational

cost significantly. Buch et al. [28] propose an efficient proposal generation model

that avoids working on overlapping regions. Instead of treating temporal action

detection as segment-level classification, Shou et al. [32] propose CDC network to

produce per-frame predictions using 3D convolutional networks.

Online action detection is usually solved as a per-frame labeling task [33] on

live, streaming videos. As soon as a video frame arrives, it is classified to an action

class or background without accessing future frames. De Geest et al. [33] first

introduced the problem and proposed several models as baselines. Gao et al. [34]

propose a Reinforced Encoder-Decoder network for action anticipation and treat

online action detection as a special case of their framework.

The goal of the above mentioned temporal action detectors is to localize actions

6

in pre-defined categories. However, activities in the wild is very complicated and it

is challenging to cover all the activities of interest by using a finite set of categories.

Natural Language Localization (NLL) in untrimmed videos was first intro-

duced in [4, 7], where given an arbitrary text query, the methods attempt to local-

ize the text (predict its start and end times) in a video. Hendricks et al. propose

MCN [4] which embeds the features of visual proposals and sentence representations

in the same space and ranks proposals according their similarity with the sentence.

Gao et al. propose CTRL [7], where alignment and regression are conducted for

clip candidates. Liu et al. introduce TMN [35] which measures the clip-sentence

alignment guided by the semantic structure of the text query. Later, Hendricks

et al. propose MLLC [36] that explicitly reasons about temporal clips of a video.

Zhang et al. propose MAN [37] which utilizes Graph Convolutional Networks [38]

to model temporal relations among visual clips.

Annotating actions in videos is very expensive. Instead of using temporally

labeled segments, weakly supervised action detectors use weaker supervisions, e.g.,

movie script [39, 40], the order of the occurring action classes in videos [41, 42] and

video-level class labels [43, 44]. Duan et al. proposed WSDEC to handle weakly

supervised dense event captioning in [3] by alternating between language localization

and caption generation iteratively. This approach can be used as a weakly supervised

natural language detector.

7

1.3 Outline of Thesis

The thesis is organized as follows. Chapter 2 introduces, DZN, a framework

to improve efficiency of object detection. This chapter is based on our work in [45].

Chapter 3 is based on the work in [46], where TRN are proposed to address online

action detection. Chapter 4 based on the work in [47] introduces StartNet, an ef-

fective framework for online detection of action starts. In Chapter 5, we propose

C-WSL to handle weakly supervised object detection using object counts as super-

vision. This chapter is based on our work in [48]. Chapter 6 based on [49] introduces

WSLLN, a weakly supervised natural language detector. The thesis is concluded in

Chapter 7.

8

Chapter 2: Dynamic Zoom-in Network for

Fast Object Detection in Large Images

2.1 Introduction

Most recent convolutional neural network (CNN) detectors are applied to im-

ages with relatively low resolution, e.g., VOC2007/2012 (about 500×400) [14, 15]

and MS COCO (about 600×400) [16]. At such low resolutions, the computational

cost of convolution is low. However, the resolution of everyday devices has quickly

outpaced standard computer vision datasets. The camera of a 4K smartphone,

for instance, has a resolution of 2,160×3,840 pixels and a DSLR camera can reach

6,000×4,000 pixels. Applying state-of-the-art CNN detectors directly to those high

resolution images requires a large amount of processing time. Additionally, the

convolution output maps are too large for the memory of current GPUs.

Prior works address some of these issues by simplifying the network archi-

tecture [50, 51, 52, 53, 54] to speed up detection and reduce GPU memory con-

sumption. However, these models are tailored to particular network structures and

may not generalize well to new architectures. A more general direction is treating

the detector as a black box that is judiciously applied to optimize accuracy and

9

efficiency. For example, one could partition an image into sub-images that satisfy

memory constraints and apply the CNN to each sub-image. However, this solution

is still computationally burdensome. One could also speed up detection process

and reduce memory requirements by running existing detectors on down-sampled

images. However, the smallest objects may become too small to detect in the down-

sampled images. Object proposal methods are the basis for most CNN detectors,

restricting expensive analysis to regions that are likely to contain objects of inter-

est [55, 56, 57, 58]. However, the number of object proposals needed to achieve

good recall for small objects in large images is prohibitively high which leads to

huge computational cost.

State	Representation

R-net

Q-net

Update	
&	Iterate

Step	1

Step	2

Zoom	Region	1
Zoom	Region	2

Fine	
Detector

Fine	
Detector

Figure 2.1: Illustration of our approach. The input is a down-sampled version of
the image to which a coarse detector is applied. The R-net uses the initial coarse
detection results to predict the utility of zooming in on a region to perform detection
at higher resolution. The Q-net, then uses the computed accuracy gain map and a
history of previous zooms to determine the next zoom that is most likely to improve
detection with limited computational cost.

10

Our approach is illustrated in Fig. 2.1. We speed up object detection by

first performing coarse detection on a down-sampled version of the image and then

sequentially selecting promising regions to be analyzed at a higher resolution. We

employ reinforcement learning to model long-term reward in terms of detection

accuracy and computational cost and dynamically select a sequence of regions to

analyze at higher resolution. Our approach consists of two networks: a zoom-in

accuracy gain regression network (R-net) learns correlations between coarse and fine

detections and predicts the accuracy gain for zooming in on a region; a zoom-in Q

function network (Q-net) learns to sequentially select the optimal zoom locations and

scales by analyzing the output of the R-net and the history of previously analyzed

regions.

Experiments demonstrate that, with a negligible drop in detection accuracy,

our method reduces processed pixels by over 50% and average detection time by

25% on the Caltech Pedestrian Detection dataset [59], and reduces processed pixels

by about 70% and average detection time by over 50% on a high resolution dataset

collected from YFCC100M [60] that has pedestrians of varied sizes. We also compare

our method to recent single-shot detectors [11, 13] to show our advantage when

handling large images.

2.2 Dynamic zoom-in network

Our work employs a coarse-to-fine strategy, applying a coarse detector at low

resolution and using the outputs of this detector to guide an in-depth search for

11

Coarsedetector CR Layer
AGmap 0.5 0.3

0.7 0.1

0.6 0.5 -1

-1 -1

1.2 -1

0.3

-1

max

R-net Q-net Output	maps Region	selection
downsample/pooling	

1×16×16:(16,16)

Conv
64×3×3:(1,1)

Conv
128×10×13:(5,	6)

Conv
1×3×3:(1,1)

Conv
1×3×3:(1,1)Conv

128×15×20:(7,10)State

Down	sampled	image

Update	&	Iterate

Run	fine	detector

Zoom-in	region

Figure 2.2: Given a down-sampled image as input, the R-net generates an initial
accuracy gain (AG) map indicating the potential zoom-in accuracy gain of different
regions (initial state). The Q-net is applied iteratively on the AG map to select
regions. Once a region is selected, the AG map will be updated to reflect the
history of actions. For the Q-net, two parallel pipelines are used, each of which
outputs an action-reward map that corresponds to selecting zoom-in regions with
a specific size. The value of the map indicates the likelihood that the action will
increase accuracy at low cost. Action rewards from all maps are considered to select
the optimal zoom-in region at each iteration. The notation 128×15×20:(7,10) means
128 convolution kernels with size 15×20, and stride of 7/10 in height/width. Each
grid cell in the output maps is given a unique color, and a bounding box of the
same color is drawn on the image to denote the corresponding zoom region size and
location.

objects at high resolution. The intuition is that, while the coarse detector will not

be as accurate as the fine detector, it will identify image regions that need to be

further analyzed, incurring the cost of high resolution detection only in promising

regions. We make use of two major components: 1) a mechanism for learning the

statistical relationship between the coarse and fine detectors, so that we can predict

which regions need to be zoomed in given the coarse detector output; and 2) a

mechanism for selecting a sequence of regions to analyze at high resolution, given

the coarse detector output and the regions that have already been analyzed by the

fine detector. Our pipeline is illustrated in Fig. 2.2. We learn a strategy that models

the long-term goal of maximizing the overall detection accuracy with limited cost.

12

2.2.1 Problem formulation

Our work is formulated as a Markov Decision Process (MDP) [61]. At each

step, the system observes the current state, estimates potential cost-aware rewards

of taking different actions and selects the action that has the maximum long-term

cost-aware reward.

Action. Our algorithm sequentially analyzes regions with high zoom-in re-

ward at high resolution. In this context, an action corresponds to selecting a region

to analyze at high resolution. Each action a can be represented by a tuple (x, y, w, h)

where (x, y) indicates the location, and (w, h) specifies the size of the region. At each

step, the algorithm scores a set of potential actions—a list of rectangular regions—in

terms of the potential long-term reward of taking those actions.

State. The representation encodes two types of information: 1) the predicted

accuracy gain of regions yet to be analyzed; and 2) the history of regions that have

already been analyzed at high resolution (the same region should not be zoomed

in multiple times). We design a zoom-in accuracy gain regression network (R-net)

to learn an informative accuracy gain map (AG map) as the state representation

from which the zoom-in Q function can be successfully learned. The AG map has

the same width and height as the input image. The value of each pixel in the AG

map is an estimate of how much the detection accuracy might be improved if that

pixel in the input image were included by the zoom-in region. As a result, the

AG map provides detection accuracy gain for selecting different actions. After an

action is taken, values corresponding to the selected region in the AG map decrease

13

accordingly, so the AG map can dynamically record action history.

Cost-aware reward function. The state representation encodes the pre-

dicted accuracy gain of zooming in on each image subregion. To maintain a high

accuracy with limited computation, we define a cost-aware reward function for ac-

tions. Given state s and action a, the cost-aware reward function scores each action

(zoom region) by considering both cost increment and accuracy improvement as

R(s, a) =
∑
k in a

|gk − plk| − |gk − phk| − λ
b

B
(2.1)

where k in a means that proposal k is included in the region selected by action a.

plk and phk indicates coarse and fine detection scores, and gk is the corresponding

ground-truth label. The variable b represents the total number of pixels included in

the selected region, and B indicates the total number of pixels of the input image.

The first term measures the detection accuracy improvement. The second term

indicates the zoom-in cost. The trade-off between accuracy and computation is

controlled by the parameter λ. During training, the Q-net uses this reward function

to calculate the immediate rewards of taking actions and learns a long-term reward

function by Q learning [62].

2.2.2 Zoom-in accuracy gain regression network

The zoom-in accuracy gain regression network (R-net) predicts the accuracy

gain of zooming in on a particular region based on the coarse detection results. The

R-net is trained on pairs of coarse and fine detections so that it can observe how

14

they correlate with each other to learn a suitable accuracy gain.

Toward this end, we apply two pre-trained detectors to a set of training images

and obtain two sets of image detection results: low-resolution detections {(dli, pli, f li)}

in the down-sampled image and high-resolution detections {(dhj , phj)} in the high

resolution version of each image, where d is the detection bounding box, p is the

probability of being the target object and f indicates a feature vector of the corre-

sponding detection. We use the superscripts h and l to indicate the high resolution

and low resolution (down-sampled) images. For the model to learn whether or not a

high resolution detection improves the overall results, given a set of coarse detections

at training time, we introduce a match layer which associates detections produced

by the two detectors. In this layer, we pair the coarse and fine detection proposals

and generate a set of correspondences between them. The object proposals i in the

down-sampled image and j in the high-resolution image are defined as corresponding

to each other if we find a j with sufficiently large intersection over union IoU(dli, d
h
j)

with i (IoU > 0.5).

Given a set of correspondences, {(dlk, plk, phk, f lk)}, we estimate the zoom-in

accuracy gain of a coarse detection. A detector can handle only objects within a

range of sizes, so applying the detector to the high-resolution image does not always

produce the best accuracy. For example, larger objects might be detected with

higher accuracy at lower resolution if the detector was trained on mostly smaller

objects. So, we measure which detection (coarse or fine) is closer to groundtruth

using the metric |gk − plk| − |gk − phk| where gk ∈ {0, 1} indicates the groundtruth

label. When the high resolution score phk is closer to the groundtruth than the low

15

resolution score plk, the function indicates that this proposal is worth zooming in on.

Otherwise, applying a detector on the down-sampled image is likely to yield a higher

accuracy, so we should avoid zooming in on this proposal. We use a Correlation

Regression (CR) layer to estimate the zoom-in accuracy gain of proposal k such

that

min
W

(|gk − plk| − |gk − phk| − Φ(W, f lk))
2 , (2.2)

where Φ represents the regression function and W indicates the parameters. The

output of this layer is the estimated accuracy gain. The CR layer contains two fully

connected layers where the first layer has 4,096 units and the second one has only

one output unit.

The AG map can be generated given the learned accuracy gain of each pro-

posal. We assume that each pixel inside a proposal bounding box has equal contri-

bution to its accuracy gain. Consequently, the AG map is generated as

AG(x, y) =


α

Φ(Ŵ,f lk)

bk
if(x, y) in dlk

0 otherwise

(2.3)

where (x, y) in dlk means point (x, y) is inside the bounding box dlk and bk denotes the

number of pixels included in dlk. α is a constant number. Ŵ denotes the estimated

parameters of the CR layer. The AG map is used as the state representation and

it naturally contains the information of coarse detections’ qualities. After zooming

in and performing detection on a region, all the values inside the region are set 0 to

prevent future zooming on the same region.

16

2.2.3 Zoom-in Q function learning network

The R-net provides information about which image region is likely to be the

most informative if it is inspected next. Since the R-net is embedded within a

sequential process, we use reinforcement learning to train a second network, the

Q-net, to learn a long-term zoom-in reward function. At each step, the system

takes an action by considering both immediate (Eq. 2.1) and future rewards. We

formulate our problem in a Q learning framework, which approximates the long-

term reward function for actions by learning a Q function. Based on the Bellman

equation [63], the optimal Q function, Q∗(s, a), obeys an important identity: given

the current state, the optimal reward of taking an action equals the combination of

its immediate reward and a discounted optimal reward at the next state triggered

by this action Eq. 2.4

Q∗(s, a) = Es′ [R(s, a) + γmax
a′

Q∗(s′, a′)|s, a] (2.4)

where s is the state and a is an action. Following [64], we learn the Q function for

candidate actions by minimizing the loss function at the i-th iteration, i.e.,

Li = (R(s, a) + γmaxa′Q(s′, a′; θ−i)−Q(s, a; θi))
2 (2.5)

where θi and θ−i are parameters of the Q network and those needed to calculate

future reward at iteration i, respectively.

17

Eq. 2.5 implies that the optimal long-term reward can be learned iteratively if

the immediate reward R(s, a) is provided for a state-action pair. Since R(s, a) is a

cost-aware reward, the Q-net learns a long-term cost-aware reward function for the

action set.

In practice, θ−i = θi−C where C is a constant parameter. γ is future reward

discount factor. We choose C = 10 and γ = 0.5 empirically in our experiments. We

also adopt the ε-greedy policy [65] at training to balance between exploration and

exploitation. The ε setting is the same as in [66].

The structure of our Q-net is shown in Fig. 2.2. The input is the AG map

and each pixel in the map measures the predicted accuracy gain if the pixel at

that location in the input image is included in the zoom region. The output is

a set of maps and each value of a map measures the long-term reward of taking

the corresponding action (selecting a zoom region at a location with a specified

size). To allow the Q-net to choose zoomed-in regions with different sizes, we use

multiple pipelines, each of which outputs a map corresponding to zoomed-in regions

of a specific size. These pipelines share the same features extracted from the state

representation. In the training phase, actions from all maps are concatenated to

produce a unified action set and trained end-to-end together by minimizing the loss

function in Eq. 2.5 so that all actions values compete with each other.

After zooming in on a selected region, we get both coarse and fine detections

on the region. We just replace the coarse detections with fine ones in each zoom-in

region.

Window selection refinement. The output of the Q-net can be directly

18

used as a zoom-in window. However, because candidate zoom windows are sparsely

sampled, the window can be adjusted slightly to increase the expected reward. The

Refine module takes the Q-net output as a coarse selection and locally moves the

window towards a better location, as measured by the accuracy gain map by

â = arg maxa∈A
∑

(x,y) in a

AG(x, y) (2.6)

where â selects the refined window and A = (xq ± µx, yq ± µy, w, h) corresponds to

the local refinement area controlled by parameter µ, where (xq, yq, w, h) indicates the

output window of Q-net. We show a qualitative example of refinement in Fig. 2.3.

2.3 Experiments

We perform experiments on the Caltech Pedestrian Detection dataset (CPD) [59]

and a Web Pedestrian dataset (WP) collected from YFCC100M [60]. Datasets like

Pascal VOC [14] and MS COCO [16] are not chosen to validate our method, be-

cause they are not close to our scenario. In [14] and [16], there are generally very

few objects per image and most objects are large, which leads to 1) close-to-zero re-

wards for regions, since large objects are likely to maintain high detection accuracy

after reasonable down sampling; and, 2) large zoom-in windows in order to enclose

large objects. Low region rewards discourage the window selection process and large

zoom-in windows produce high cost, which make our method invalid.

Caltech Pedestrian Detection (CPD). There are different settings ac-

cording to different annotation types, i.e., Overall, Near scale, Medium scale, No

19

occlusion, Partial occlusion and Reasonable [59]. Similar to the Reasonable setting,

we only train and test on pedestrians at least 50 pixels tall. We sparsely sample

images (every 30 frames) from the training set. There are 4,321 images in the train-

ing set and 4,088 images in the test set. We rescale the images to 600 pixels on the

shorter side to form the high resolution version of image during both training and

testing. All of our model components are trained on this training set.

Web Pedestrian (WP) dataset. The image resolution in the CPD dataset

is low (640×480). To better demonstrate our approach, we collect 100 test images

with much higher resolution from the YFCC100M [60] dataset. The images are col-

lected by searching for keywords ”Pedestrian”, ”Campus” and ”Plaza”. An example

is shown in Fig. 2.4 where pedestrians have varied sizes and are densely distributed

in the images. For this dataset, we annotate all the pedestrians with at least 16-

pixel width and less than 50% occlusion. Images are rescaled to 2,000 pixels on the

longer side to fit for our GPU memory.

2.3.1 Baseline methods

We compare to the following baseline algorithms:

Fine-detection-all. This baseline directly applies the fine detector to the

high resolution version of image. This method leads to high detection accuracy with

high computational cost. All of the other approaches seek to maintain this detection

accuracy with less computation.

Coarse-detection-all. This baseline applies the coarse detector on down-

20

sampled images with no zooming.

GS+Rnet. Given the initial state representation generated by the R-net, we

use a greedy search strategy (GS) to densely search for the best window every time

based on the current state without considering the long-term reward.

ER+Qnet . The entropy of the detector output (object vs no object) is

another way to measure the quality of a coarse detection. [67] used entropy to

measure the quality of a region for a classification task. Higher entropy implies

lower quality of a coarse detection. So, if we ignore the correlation between fine and

coarse detections, the accuracy gain of a region can also be computed as

−plilog(pli)− (1− pli)log(1− pli) (2.7)

where pl indicates the score of the coarse detection. For fair comparison, we fix

all parameters of the pipeline except replacing the R-net output of a proposal with

its entropy. SSD and YOLOv2. We also compare our method with off-the-shelf

SSD [11] and YOLOv2 [13] trained on CPD, to show the advantage of our method

on large images.

2.3.2 Variants of our framework

We use Qnet-CNN to represent the Q-net developed using a fully convolutional

network (see Fig. 2.2). To analyze the contributions of different components to the

performance gain, we evaluate three variants of our framework: Qnet*, Qnet-FC

and Rnet*.

21

Before refinement After refinement

Step	1
Step	1

Step	2
Step	2

Step	3
Step	3

Step	1
Step	1 Step	2Step	2

Step	3
Step	3

Figure 2.3: Effect of region refinement. Red boxes indicate zoom regions and the step
number denotes the order that the zoom windows were selected. Before refinement,
windows are likely to cut people in half due to the sampling grid, leading to a bad
detection performance. Refinement locally adjusts the location of a window and
produces better results.

Qnet*. This method uses a Q-net with refinement to locally adjust the zoom-

in window selected by Q-net.

Qnet-FC. Following [66], we develop this variant with two fully connected

(FC) layers for Q-net. For Qnet-FC, the state representation is resized to a vector

of length 1, 200 as the input. The first layer has 128 units and the second layer has

34 units (9+25). Each output unit represents a sampled window on an image. We

uniformly sample 25 windows of size 320×240 and 9 windows of size 214×160 on the

CPD dataset. Since the output number of Qnet-FC can not be changed, windows

sizes are proportionally increased when Qnet-FC is applied to WP dataset.

Rnet*. This is an R-net learned using a reward function that does not ex-

plicitly encode cost (λ = 0 in Eq. 2.1).

22

2.3.3 Evaluation metric

We use three metrics when comparing to the Fine-detection-all strategy: AP

percentage (Aperc), processed pixel numbers percentage (Pperc), and average detec-

tion time percentage (Tperc). Aperc quantifies the percentage of AP we obtain com-

pared to the Fine-detection-all strategy. Pperc and Tperc indicate the computational

cost as a percentage of the Fine-detection-all baseline strategy.

2.3.4 Implementation details

We downsample the high resolution image by a factor of 2 to form a down-

sampled image for all of our experiments and only handle zoom-in regions at the

high resolution.

For the Q-net, we spatially sample zoom-in candidate regions with two different

window sizes (320× 240 and 214× 160) in a sliding window manner. For windows

of size W ×H, we uniformly sample windows with horizontal stride Sx = W/2 and

vertical stride Sy = H/2 pixels. For the refinement, we set (µx, µy) = 0.5(Sx, Sy).

The Q-net stops taking actions when the sum over all the values of the AG map is

smaller than 0.1.

We use Faster R-CNN as our detector due to the success of R-CNN in many

computer vision applications [68, 69, 70, 71, 72, 73]. Two Faster R-CNNs are trained

on the CPD training set at the fine and coarse resolutions and used as black-box

coarse and fine detectors afterwards. YOLOv2 and SSD are trained on the same

training set with default parameter settings in the official codes released by the

23

authors. All experiments are conducted using a K-80 GPU.

2.3.5 Qualitative results

The qualitative comparisons, which show the effect of refinement on the se-

lected zoom-in regions, are shown in Fig. 2.3. We observe that refinement sig-

nificantly reduces the cases in which pedestrians only partly occur in the selected

windows. Due to the sparse window sampling of Q-net, optimal regions might not

be covered by any window candidate, especially when the window size is relatively

small compared to the image size.

We show a comparison between our method (Q-net*-CNN+Rnet) and the

greedy strategy (GS+Rnet) in Fig. 2.4. GS tends to select duplicate zooms on the

same portion of the image. While the Q-net might select a sub-optimal window in

the near term, it leads to better overall performance in the long term. As shown in

the first example of Fig. 2.4, this helps Q-net terminate with fewer zooms.

Fig. 2.5 shows a qualitative comparison of R-net and ER. The examples in

the first row are detections that do not need to be zoomed in on, since the coarse

detections are good enough. R-net produces much lower accuracy gains for these

regions. On the other hand, R-net outputs much higher gains in the second row

which includes regions needing analysis at higher resolution. The third row contains

examples which get worse results at higher resolution. As we mentioned before,

entropy cannot determine if zooming in will help, while R-net produces negative

gains for these cases and avoids zooming in on these regions.

24

Our methodGreedy strategy (GS)

Step	1
Step	2

Step	3 Step	1Step	2

Step	3

Step	1Step	2

Step	1

Step	2 Step	3

Figure 2.4: Qualitative comparison between using the Q-net* and a greedy strategy
(GS) that selects the region with highest predicted accuracy gain at each step. Red
bounding boxes indicate zoom-in windows and step number denotes the order of
windows selection. The Q-net selects regions that appear sub-optimal in the near
term but better zoom sequences in the long term, which leads to fewer steps as
shown in the first row.

2.3.6 Quantitative evaluation

Table 2.1 shows the average precision (AP) and average detection time per

image for Fine-detection-all and Coarse-detection-all strategies on CPD and WP

datasets. The coarse baseline maintains only about 65% and 71% AP on CPD

and WP, respectively, suggesting that the naive downsamping method significantly

decreases detection accuracy.

Dataset AP f AP c DT f (ms) DT c(ms)

CPD 0.493 0.322 304 123

WP 0.407 0.289 1375 427

Table 2.1: Coarse-detection-all(with subscript c) v.s. Fine-detection-all (with sub-
script f) on CPD and WP datasets. DT indicates average detection time per image.

Comparative results on the CPD and WP dataset are shown in Table 2.2.

25

Figure 2.5: Qualitative comparison of R-net and ER on the Caltech Pedestrians
test set. The first row of numbers indicate probability of the red box being a
pedestrian. C denotes coarse detection and F indicates fine detection. Red font
denotes the accuracy gain of R-net and blue is for ER. Positive and negative values
are normalized to [0, 1] and [-1, 0). Compared to ER, R-net gives lower positive
scores (row #1)/ negative scores (row #3) for regions that coarse detections are
good enough/ better than fine detections and it produces higher scores for regions
(row #2) where fine detections are much better than coarse ones.

40 50 60 70 80 90 100
Average Detection Time Percentage (%)

80

85

90

95

100

AP
 p

er
ce

nt
ag

e
(%

)

Comparison on WP

Qnet*-CNN+Rnet
Qnet*-CNN+Rnet*
Qnet-CNN+Rnet
Qnet*-FC+Rnet
GS+Rnet
Qnet*+ER

60 70 80 90 100
Average Detection Time Percentage (%)

85

90

95

100

105

AP
 p

er
ce

nt
ag

e
(%

)

Comparison on CPD

Qnet*-CNN+Rnet
Qnet*-CNN+Rnet*
Qnet-CNN+Rnet
Qnet*-FC+Rnet
GS+Rnet
Qnet*+ER

Figure 2.6: Detection time and accuracy comparison on the CPD/WP dataset after
zooming in on two/three regions.

26

Baselines Variants under our framework
Pperc GS+Rnet Qnet*-CNN+ER Qnet*-CNN+Rnet Qnet*-CNN+Rnet* Qnet*-FC+Rnet Qnet-CNN+Rnet

CPD
≤40% 65%(40%) 88%(74%) 99%(75%) 65%(40%) 93%(64%) 65%(40%)
≤45% 93%(87%) 97%(79%) 102%(80%) 101%(80%) 94%(73%) 96%(73%)
≤50% 95%(97%) 97%(79%) 102%(80%) 101%(80%) 94%(73%) 96%(73%)

WP
≤30% 85%(62%) 83%(38%) 92%(40%) 93%(40%) 71%(31%) 83%(40%)
≤35% 90%(82%) 91%(51%) 93%(45%) 96%(48%) 71%(31%) 85%(47%)
≤40% 94%(96%) 91%(51%) 93%(49%) 97%(52%) 89%(54%) 86%(52%)

Table 2.2: Detection accuracy comparisons in terms of Aperc on the CPD and WP
datasets under a fixed range of processed pixel percentage (Pperc). Bold font in-
dicates the best result. Numbers are display as Aperc(Tperc)- Tperc is included in
the parentheses for the reference of running time. Note that 25% Pperc overhead
is incurred simply by analyzing the down-sampled image (this overhead is included
in the table) and percentages are relative to Fine-detection-all baseline (an Aperc of
80% means that an approach reached 80% of the AP reached by the baseline).

Q-net*-CNN + R-net reduces processed pixels by over 50% with comparable (or

even better) detection accuracy than the Fine-detection-all strategy and improves

detection accuracy of Coarse-detection-all by about 35% on the CPD dataset. On

the WP dataset, the best variant (Q-net*-CNN + R-net*)) reduces processed pixels

by over 60% while maintaining 97% detection accuracy of Fine-detection-all. Ta-

CPD WP
AP DT(ms) AP DT(ms)

SSD500 [11] 0.405 128 0.255 570

SSD300 [11] 0.400 74 0.264 530

YOLOv2 [13] 0.398 70 0.261 790

Our method 0.503 243 0.379 619

Table 2.3: Comparison between Qnet*-CNN+Rnet and single-shot detectors trained
on CPD. DT indicates average detection time per image. Bold font indicates the
best result.

ble 2.2 shows that variants of our framework outperform GS+Rnet and Qnet+ER

in most cases which suggests that Qnet and Rnet are better than GS and ER. Q-net

is better than GS since the greedy strategy considers individual actions separately,

while Q-net utilizes a RL framework to maximize the long term reward.

Qnet*-CNN+Rnet always produces better detection accuracy than Qnet*-

27

CNN+ER under the same cost budget, which demonstrates that learning the ac-

curacy gain using an R-net is preferable to using entropy, a hand-crafted measure.

This could be due to two reasons: 1) entropy measures only the confidence of the

coarse detector, while our R-net estimates the correlation with the high-resolution

detector based on confidence and appearance; 2) according to the regression target

function in Eq. 2.2, our R-net also measures whether the zoom-in process will im-

prove detection accuracy. This avoids wasting resources on regions that cannot be

improved (or might even be degraded) by fine detections.

We observe from Fig. 2.6 that our approach (Qnet*-CNN+Rnet and Qnet*-

CNN+Rnet*) reduces detection time by 50% while maintaining a high accuracy

on the WP dataset. On the CPD dataset, they can reduce detection time by 25%

without a significant drop of accuracy. Detection time cannot be reduced as much

as on the WP dataset, since CPD images are relatively small; however, it is notable

that our approach helps even in this case.

Table 2.3 shows accuracy/cost comparisons between YOLO/SSD and our

method. Experiments suggest the following conclusions: 1) although fast, these

single-shot detectors achieve much lower AP on images with objects occurring over

a large range of scales; 2) as image size increases, YOLO/SSD processing time

increases dramatically, while, our method achieves much higher accuracy with com-

parable detection time; 3) SSD consumes much more GPU memory than other

detectors on large images due to the heavy convolution operations. We have to re-

size images of WP to 800× 800 to fit within GPU memory. Note that it is possible

to improve the results of YOLO/SSD by pruning the networks or training with more

28

data, but that is not within the scope of this paper.

2.3.7 Ablation analysis

Improvement by refinement (Qnet*-CNN+Rnet vs. Qnet-CNN+Rnet).

In Table 2.2, we find that region refinement significantly improves detection accuracy

under fixed cost ranges, especially on the WP. Refinement is more useful when zoom-

in window size is relatively small compared with image size due to the sparse window

sampling of Q-net. Fig. 2.3 qualitatively shows the effect of refinement.

Improvement by CNN (Qnet*-CNN+Rnet vs. Qnet*-FC+Rnet). FC has

two obvious drawbacks in our setting. First, it has a fixed number of inputs and

outputs which makes it hard to handle images with different sizes. Second, it is

spatially dependent. Images from the CPD dataset consist of driving views which

have strong spatial priors, i.e., most pedestrians are on the sides of the street and

the horizon is roughly in the same place. Qnet-FC takes advantage of these spatial

priors, so it works better on this dataset. However, when it is applied to the WP

dataset, its performance drops significantly compared to other methods, since the

learned spatial priors now distract the detector.

Improvement by the cost term (Qnet*-CNN+Rnet vs. Qnet*-CNN+Rnet*).

Qnet*-CNN+Rnet outperforms Qnet*-CNN+R-net* on CPD, especially when Pperc

is low (40%). Without explicit cost penalization, the algorithm often selects the

largest zoom regions, a poor strategy when there is a low pixel budget. However,

since the window sizes are relatively small compared to the image size of the WP

29

dataset, Qnet*-CNN+Rnet* does not suffer much from this limitation. On the con-

trary, it benefits from zooming in on relatively bigger regions. Consequently, it out-

performs other variants. Nevertheless, Qnet*-CNN+Rnet has comparable detection

accuracy and can generalize better on scenarios where window sizes are comparable

with image size.

2.4 Conclusion

We propose a dynamic zoom-in network to speed up object detection in large

images without manipulating the underlying detector’s structure. Images are first

downsampled and processed by the R-net to predict the accuracy gain of zooming in

on a region. Then, the Q-net sequentially selects regions with high zoom-in reward

to conduct fine detection. The experiments show that our method is effective on

both Caltech Pedestrian Detection dataset and a high resolution pedestrian dataset.

30

Chapter 3: Temporal Recurrent Networks for

Online Action Detection

3.1 Introduction

As we go about our lives, we continuously monitor the social environment

around us, making inferences about the actions of others that might affect us. Is

that child running into the road or just walking towards the sidewalk? Is that

passerby outstretching his hand for a punch or a handshake? Is that oncoming car

turning left or doing a U-turn? These and many other actions can occur at any

time, without warning. In order to be able to react to the world around us, we must

make and update our inferences in real-time, updating and refining our hypotheses

moment-to-moment as we collect additional evidence over time.

In contrast, action recognition in computer vision is often studied as an offline

classification problem, in which the goal is to identify a single action occurring in a

short video clip given all of its frames [25, 26, 27, 28, 29, 30]. This offline formulation

simplifies the problem considerably: a left turn can be trivially distinguished from a

U-turn if the end of the action can be observed. But emerging real-world applications

of computer vision like self-driving cars, interactive home virtual assistants, and

31

Previous Methods

𝒙"

…
𝒙# 𝒙$

…
𝒙%$&" 𝒙%$&# 𝒙%$&ℓ(

Temporal Recurrent Networks

𝒕 + 𝟏 	𝒕 + 𝟐	 𝒕 + ℓ𝒅

U-Turn U-Turn U-Turn BG

DetectionSupervision Anticipation

	𝒕	

Figure 3.1: Comparison between our proposed Temporal Recurrent Network (TRN)
and previous methods. Previous methods use only historical observations and learn
representations for actions by optimizing current action estimation. Our approach
learns a more discriminative representation by jointly optimizing current and future
action recognition, and incorporates the predicted future information to improve the
performance of action detection in the present.

collaborative robots require detecting actions online, in real-time. Several recent

papers have considered this online action detection problem [1, 33, 34, 47, 74, 75],

but accuracies are generally lower than the offline case because using only current

and past information makes the problem much more challenging.

Here we introduce the novel hypothesis that although future information is

not available in an online setting, explicitly predicting the future can help to better

classify actions in the present. We propose a new model to estimate and use this

future information, and we present experimental results showing that predicted

future information indeed improves the performance of online action recognition.

This may seem like a surprising result because at test time, a model that predicts

the future to infer an action in the present observes exactly the same evidence as a

32

model that simply infers the action directly. However, results in cognitive science

and neuroscience suggest that the human brain uses prediction of the future as an

important mechanism for learning to make estimates of the present [76, 77, 78, 79].

Our findings seem to confirm that the same applies to automatic online action

recognition, suggesting that jointly modeling current action detection and future

action anticipation during training forces the network to learn a more discriminative

representation.

In more detail, in this paper we propose a general framework called Tem-

poral Recurrent Network (TRN), in which future information is predicted as an

anticipation task and used together with historical evidence to recognize action in

the current frame (as shown in Fig. 3.1). To demonstrate the effectiveness of our

method, we validate TRN on two recent online action detection datasets (Honda

Research Institute Driving Dataset (HDD) [80] and TVSeries [33]) and a widely

used action recognition dataset, THUMOS’14 [81]. Our model is general enough to

use both visual and non-visual sensor data, as we demonstrate for the HDD driv-

ing dataset. Experimental results show that our approach significantly outperforms

baseline methods, especially when only a fraction of an action is observed. We also

evaluate action anticipation (predicting the next action), showing that our method

performs better than state-of-the-art methods even though anticipation is not the

focus of this work.

33

Dec
RNNCell

Dec
RNNCell

Dec
RNNCell

Action 𝑡 + ℓ$Action 𝑡 + 1Action 𝑡 + 0

STA
RNNCell

C
ur

re
nt

“F
ut

ur
e”

Feature
Extractor ℎ()*

ℎ)+,

ℎ)

𝒑)

𝒑.)* 𝒑.), 𝒑.)
ℓ/

𝑓1)* 𝑓1),

𝒇()

ℎ)+,

Action 1 TRN Cell

FC FC

FC

Feature
Extractor

Action 2

Feature
Extractor

Action 𝑡

𝒙)

𝒙,

𝐼,

𝒑,

𝒙6

𝐼6

𝒑6

𝒙)

𝐼)

𝒑)

ℎ, ℎ)

FC

…

ℎ)+,

…

ℎ()
ℓ/+,

𝑟̃)* 𝑟̃)
ℓ/+,

TRNCellTRNCell TRNCell

𝒙.)

𝑓1)
ℓ/

Figure 3.2: Our proposed Temporal Recurrent Network (TRN), which sequentially
processes input video frames and outputs frame-level action class probabilities, like
any RNN. But while RNNs only model historical temporal dependencies, TRN an-
ticipates the future via a temporal decoder, and incorporates that predicted infor-
mation to improve online action detection.

3.2 Online Action Detection

Given a live video stream that contains one or more actions, our goal is to

recognize actions of interest occurring in each video frame. Unlike most prior work

that assumes the entire video is available at once, this online action detection prob-

lem requires us to process each frame as soon as it arrives, without accessing any

future information. More formally, our goal is to estimate, for each frame It of an

image sequence, a probability distribution pt = [p0
t , p

1
t , p

2
t , · · · , pKt] over K possible

actions, given only the past and current frames, {I1, I2, · · · , It} (where p0
t denotes

the “background” probability that no action is occurring).

3.2.1 Temporal Recurrent Network (TRN)

To solve this problem, we introduce a novel framework called a Temporal

Recurrent Network (TRN). The main idea is to train a network that predicts actions

34

several frames into the future, and then uses that prediction to classify an action

in the present. Fig. 3.2 shows the architecture of TRN. The core of the network is

a powerful recurrent unit, the TRN cell. Like a general RNN cell, at each time t

a TRN cell receives a feature vector xt corresponding to the observation at time t,

which could include some combination of evidence from the appearance or motion

in frame It or even other sensor modalities collected at time t, and the hidden

state ht−1 from the previous time step. The cell then outputs pt, a probability

distribution estimating which action is happening in It. The hidden state ht is then

updated and used for estimating the next time step. But while a traditional RNN

cell only models prior temporal dependencies by accumulating historical evidence

of the input sequence, a TRN cell also takes advantage of the temporal correlations

between current and future actions by anticipating upcoming actions and explicitly

using these estimates to help recognize the present action.

3.2.2 TRN Cell

The TRN cell controls the flow of internal information by using a temporal de-

coder, a future gate, and a spatiotemporal accumulator (STA). We use LSTMs [82]

as the backbone for both the temporal decoder and the STA in our implementa-

tion, although other temporal models such as gated recurrent units (GRUs) [83]

and temporal convolutional networks (TCNs) [84] could be used. The temporal de-

coder learns a feature representation and predicts actions for the future sequence.

The future gate receives a vector of hidden states from the decoder and embeds

35

these features as the future context. The STA captures the spatiotemporal features

from historical, current, and predicted future information, and estimates the action

occurring in the current frame.

The temporal decoder works sequentially to output the estimates of future ac-

tions and their corresponding hidden states {h̃0
t , h̃

1
t , · · · , h̃

`d
t } for the next `d time

steps, where hit for i ∈ [0, `d] indicates the hidden state at the i-th time step after t.

The input to the decoder at the first time step is all zeros. At other time steps t,

we feed in the predicted action scores r̃i−1
t , embedded by a linear transformer.

The future gate takes hidden states from the decoder and models the feature rep-

resentation of future context. For simplicity, our default future gate is an average

pooling operator followed by an fully-connected (FC) layer, but other fusion oper-

ations such as non-local (NL) blocks [85] could be used. More formally, the future

context feature x̃t is obtained by averaging and embedding the hidden state vector,

h̃t, gathered from all decoder steps,

x̃t = ReLU(WT
f AvgPool(h̃t) + bf). (3.1)

The spatiotemporal accumulator (STA) takes the previous hidden state ht−1

as well as the concatenation of the image feature xt extracted from It and the

predicted future feature x̃t from the future gate, and updates its hidden states ht.

It then calculates a distribution over candidate actions,

pt = softmax(WT
c ht + bc), (3.2)

36

where Wc and bc are the parameters of the FC layer used for action classification.

As we can see, in addition to the estimated action of the current frame t, TRN

outputs predicted actions for the next `d time steps. In order to ensure a good

future representation and jointly optimize online action detection and prediction,

we combine the accumulator and decoder losses during training, i.e., the loss of one

input sequence is ∑
t

(loss(pt, lt) + α

`d∑
i=0

loss(p̃it, lt+i)), (3.3)

where p̃it indicates the action probabilities predicted by the decoder for step i after

time t, lt represents the ground truth, loss denotes cross-entropy loss, and α is a

scale factor. We optimize the network using offline training in which labels of both

current and future frames are used. At test time, our model uses the predicted future

information without accessing actual future frames, and thus is an online model.

3.3 Experiments

We evaluated our online action detector against multiple state-of-the-art and

baseline methods on three publicly-available datasets: HDD [80], TVSeries [33], and

THUMOS’14 [81]. We chose these datasets because they include long, untrimmed

videos from diverse perspectives and applications: HDD consists of on-road driving

from a first-person (egocentric) view recorded by a front-facing dashboard camera,

TVSeries was recorded from television and contains a variety of everyday activities,

and THUMOS’14 is a popular dataset of sports-related actions.

37

3.3.1 Datasets

HDD[80] includes nearly 104 hours of 137 driving sessions in the San Francisco

Bay Area. The dataset was collected from a vehicle with a front-facing camera,

and includes frame-level annotations of 11 goal-oriented actions (e.g., intersection

passing, left turn, right turn, etc.). The dataset also includes readings from a

variety of non-visual sensors collected by the instrumented vehicle’s Controller Area

Network (CAN) bus. We followed prior work [80] and used 100 sessions for training

and 37 sessions for testing.

TVSeries [33] contains 27 episodes of 6 popular TV series, totaling 16 hours of

video. The dataset is temporally annotated at the frame level with 30 realistic,

everyday actions (e.g., pick up, open door, drink, etc.). The dataset is challenging

with diverse actions, multiple actors, unconstrained viewpoints, heavy occlusions,

and a large proportion of non-action frames.

THUMOS’14 [81] includes over 20 hours of sports video annotated with 20 actions.

The training set contains only trimmed videos that cannot be used to train temporal

action detection models, so we followed prior work [34] and train on the validation

set (200 untrimmed videos) and evaluate on the test set (213 untrimmed videos).

3.3.2 Implementation Details

We implemented our proposed Temporal Recurrent Network (TRN) in Py-

Torch [86], and performed all experiments on a system with Nvidia Quadro P6000

38

graphics cards. To learn the network weights, we used the Adam [87] optimizer

with default parameters, learning rate 0.0005, and weight decay 0.0005. For data

augmentation, we randomly chopped off ∆ ∈ [1, `e] frames from the beginning for

each epoch, and discretized the video of length L into (L −∆)/`e non-overlapping

training samples, each with `e consecutive frames. Our models were optimized in

an end-to-end manner using a batch size of 32, each with `e input sequence length.

The constant α in Eq. (3.3) was set to 1.0.

3.3.3 Settings

To permit fair comparisons with the state-of-the-art [33, 34, 80], we follow

their experimental settings, including input features and hyperparameters.

HDD. We use the same setting as in [80]. Video frames and values from CAN

bus sensors are first sampled at 3 frames per second (fps). The outputs of the

Conv2d 7b 1x1 layer in InceptionResnet-V2 [88] pretrained on ImageNet [89] are

extracted as the visual feature for each frame. To preserve spatial information, we

apply an additional 1 × 1 convolution to reduce the extracted frame features from

8×8×1536 to 8×8×20, and flatten them into 1200-dimensional vectors. Raw sensor

values are passed into a fully-connected layer with 20-dimensional outputs. These

visual and sensor features are then concatenated as a multimodal representation for

each video frame. We follow [80] and set the input sequence length `e to 90. The

number of decoder steps `d is treated as a hyperparameter that we cross-validate in

experiments. The hidden units of both the temporal decoder and the STA are set

39

to 2000 dimensions.

TVSeries and THUMOS’14. We use the same setting as in [34]. We extract

video frames at 24 fps and set the video chunk size to 6. Decisions are made at

the chunk level, and thus performance is evaluated every 0.25 seconds. We use two

different feature extractors, VGG-16 [90] and two-stream (TS) CNN [91]. VGG-16

features are extracted at the fc6 layer from the central frame of each chunk. For the

two-stream features, the appearance features are extracted at the Flatten 673 layer

of ResNet-200 [92] from the central frame of each chunk, and the motion features are

extracted at the global pool layer of BN-Inception [93] from precomputed optical

flow fields between 6 consecutive frames. The appearance and motion features are

then concatenated to construct the two-stream features. The input sequence length

`e is set to 64 due to GPU memory limitations. Following the state-of-the-art [34],

the number of decoder steps `d is set to 8, corresponding to 2 seconds. As with

HDD, our experiments report results with different decoder steps. The hidden units

of both the temporal decoder and the STA are set to 4096 dimensions.

3.3.4 Evaluation Protocols

We follow most existing work and use per-frame mean average precision

(mAP) to evaluate the performance of online action detection. We also use per-

frame calibrated average precision (cAP), which was proposed in [33] to better

40

evaluate online action detection on TVSeries,

cAP =

∑
k cPrec(k) ∗ I(k)

P
, (3.4)

where calibrated precision cPrec = TP
TP+FP/w

, I(k) is 1 if frame k is a true positive,

P denotes the total number of true positives, and w is the ratio between negative

and positive frames. The advantage of cAP is that it corrects for class imbalance

between positive and negative samples.

Another important goal of online action detection is to recognize actions as

early as possible; i.e., an approach should be rewarded if it produces high scores

for target actions at their early stages (the earlier the better). To investigate our

performance at different time stages, we follow [33] and compute mAP or cAP for

each decile (ten-percent interval) of the video frames separately.

3.3.5 Baselines

CNN baseline models [90, 94] consider online action detection as a general image

classification problem. These baselines identify the action in each individual video

frame without modeling temporal information. For TVSeries and THUMOS’14,

we reprint the results of CNN-based methods from De Geest et al. [33] and Shou et

al. [32]. For HDD, we follow Ramanishka et al. [80] and use InceptionResnet-V2 [88]

pretrained on ImageNet as the backbone and finetune the last fully-connected layer

with softmax to estimate class probabilities.

LSTM and variants have been widely used in action detection [80, 95]. LSTM

41

networks model the dependencies between consecutive frames and jointly capture

spatial and temporal information of the video sequence. For each frame, the LSTM

receives the image features and the previous hidden state as inputs, and outputs a

probability distribution over candidate actions.

Encoder-Decoder (ED) architectures [96] also model temporal dependencies. The

encoder is similar to a general LSTM and summarizes historical visual information

into a feature vector. The decoder is also an LSTM that produces predicted repre-

sentations for the future sequence based only on these encoded features. Since there

are no published results of ED-based methods on HDD, we implemented a baseline

with the same experimental settings as TRN, including input features, hyperparam-

eters, loss function, etc..

Stronger Baselines. In addition to the above basic baselines, we tested three types

of stronger baselines that were designed for online action detection on TVSeries and

THUMOS’14. Convolutional-De-Convolutional (CDC) [32] places CDC filters

on top of a 3D CNN and integrates two reverse operations, spatial downsampling

and temporal upsampling, to precisely predict actions at a frame-level. Note that

CDC is an offline method, and comparing with CDC confirms the effectiveness of

our model. Two-Stream Feedback Network (2S-FN) [74] is built on an LSTM

with two recurrent units, where one stream focuses on the input interpretation and

the other models temporal dependencies between actions. Reinforced Encoder-

Decoder (RED) [34] with a dedicated reinforcement loss is an advanced version

of ED, and currently performs the best among all the baselines for online action

42

detection.

3.3.6 Results

Individual actions

Method Inputs
intersection

passing L turnR turn
L lane
change

R lane
change

L lane
branch

R lane
branch

crosswalk
passing

railroad
passingmergeu-turn

Overall
mAP

CNN

Sensors

34.2 72.0 74.9 16.0 8.5 7.6 1.2 0.4 0.1 2.5 32.5 22.7
LSTM [80] 36.4 66.2 74.2 26.1 13.3 8.0 0.2 0.3 0.0 3.5 33.5 23.8
ED 43.9 73.9 75.7 31.8 15.2 15.1 2.1 0.5 0.1 4.1 39.1 27.4
TRN 46.5 75.2 77.7 35.9 19.7 18.5 3.8 0.7 0.1 2.5 40.3 29.2

CNN

InceptionResNet-V2

53.4 47.3 39.4 23.8 17.9 25.2 2.9 4.8 1.6 4.3 7.2 20.7
LSTM [80] 65.7 57.7 54.4 27.8 26.1 25.7 1.7 16.0 2.5 4.8 13.6 26.9
ED 63.1 54.2 55.1 28.3 35.9 27.6 8.5 7.1 0.3 4.2 14.6 27.2
TRN 63.5 57.0 57.3 28.4 37.8 31.8 10.5 11.0 0.5 3.5 25.4 29.7

CNN

Multimodal

73.7 73.2 73.3 25.7 24.0 27.6 4.2 4.0 2.8 4.7 30.6 31.3
LSTM [80] 76.6 76.1 77.4 41.9 23.0 25.4 1.0 11.8 3.3 4.9 17.6 32.7
ED 77.2 74.0 77.1 44.6 41.4 36.6 4.1 11.4 2.2 5.1 43.1 37.8
TRN 79.0 77.0 76.6 45.9 43.6 46.9 7.5 13.4 4.5 5.8 49.6 40.8

Table 3.1: Results of online action detection on HDD, comparing TRN and baselines
using mAP (%).

Method Inputs mcAP

CNN [33]

VGG

60.8
LSTM [33] 64.1
RED [34] 71.2
Stacked LSTM [74] 71.4
2S-FN [74] 72.4
TRN 75.4

SVM [33] FV 74.3

RED [34]
TS

79.2
TRN 83.7

Table 3.2: Results of online action detection on TVSeries, comparing TRN and the
state-of-the-art using cAP (%).

3.3.6.1 Evaluation of Online Action Detection

Table 3.1 presents evaluation results on HDD. TRN significantly outperforms

the state-of-the-art, Ramanishka et al. [80], by 5.4%, 2.8%, and 8.1% in terms of

43

Method mAP

Single-frame CNN [90] 34.7
Two-stream CNN [94] 36.2
C3D + LinearInterp [32] 37.0
Predictive-corrective [97] 38.9
LSTM [98] 39.3
MultiLSTM [95] 41.3
Conv & De-conv [32] 41.7
CDC [32] 44.4
RED [34] 45.3

TRN 47.2

Table 3.3: Results of online action detection on THUMOS’14, comparing TRN and
the state-of-the-art using mAP (%).

mAP with sensor data, InceptionResnet-v2, and multimodal features as inputs,

respectively. Interestingly, the performance gaps between TRN and [80] are much

larger when the input contains sensor data. Driving behaviors are highly related

to CAN bus signals, such as steering angle, yaw rate, velocity, etc., and this result

suggests that TRN can better take advantage of these useful input cues. Table 3.2

presents comparisons between TRN and baselines on TVSeries. TRN significantly

outperforms the state-of-the-art using VGG (mcAP of 3.0% over 2S-FN [74]) and

two-stream input features (mcAP of 4.5% over RED [34]). We also evaluated TRN

on THUMOS’14 in Table 3.3. The results show that TRN outperforms all the

baseline models (mAP of 1.9% over RED [34] and 2.8% over CDC [32]).

3.3.6.2 Ablation Studies

Importance of Temporal Context. By directly comparing evaluation results of

TRN with CNN and LSTM baselines, we demonstrate the importance of explic-

itly modeling temporal context for online action detection. LSTMs capture long-

44

and short-term temporal patterns in the video by receiving accumulated historical

observations as input. Comparing TRN and LSTM measures the benefit of incor-

porating predicted action features as future context. CNN-based methods conduct

online action detection by only considering the image features at each time step.

Simonyan et al. [94] build a two-stream network and incorporate motion features

between adjacent video frames by using optical flow as input. Table 3.3 shows that

this motion information yields a 1.5% improvement. TRN-TS also takes optical

flow as input and we can clearly see a significant improvement (83.7% vs. 75.4%)

on TVSeries.

Future Context: An “Oracle” Study. To demonstrate the importance of us-

ing predictions of future context, we implemented an oracle baseline, RNN-offline.

RNN-offline shares the same architecture as RNN but uses the features extracted

from both the current and future frames as inputs. Note that RNN-offline uses

future information and thus is not an online model; our goal is to quantify (1)

the effectiveness of incorporating future information in action detection, given ac-

cess to actual (instead of predicted) future information, and (2) the performance

gap between estimated future information of TRN and “real” future information of

RNN-offline. To permit fair comparison, the input to RNN-offline is a concatenation

of the feature from the current frame and the average-pooled features of the next `d

frames (where `d is the same as the number of decoder steps of TRN).

The results of RNN-offline are 41.6%, 85.3%, and 47.3% on HDD, TVSeries,

and THUMOS’14 datasets, respectively. Comparing RNN-offline with the RNN

45

Portion of video

Method Inputs 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

CNN [33]
VGG

61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5
LSTM [33] 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.3 64.4 64.3
TRN 73.9 74.3 74.7 74.7 75.1 75.1 75.3 75.2 75.2 75.3

SVM [33] FV 67.0 68.4 69.9 71.3 73.0 74.0 75.0 76.4 76.5 76.8

TRN TS 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3

Table 3.4: Online action detection results when only portions of videos are consid-
ered in terms of cAP (%) on TVSeries.

Datasets Models 0.25s 0.5s 0.75s 1.0s 1.25s 1.5s 1.75s 2.0s Mean

TVSeries
ED [34] 78.5 78.0 76.3 74.6 73.7 72.7 71.7 71.0 74.5
RED [34] 79.2 78.7 77.1 75.5 74.2 73.0 72.0 71.2 75.1
TRN 79.9 78.4 77.1 75.9 74.9 73.9 73.0 72.3 75.7

THUMOS’14
ED [34] 43.8 40.9 38.7 36.8 34.6 33.9 32.5 31.6 36.6
RED [34] 45.3 42.1 39.6 37.5 35.8 34.4 33.2 32.1 37.5
TRN 45.1 42.4 40.7 39.1 37.7 36.4 35.3 34.3 38.9

Table 3.5: Action anticipation results of TRN compared to published state-of-the-
art methods in terms of per-frame cAP (%) and mAP (%) on TVSeries and THU-
MOS’14 datasets. Two-stream input features are used in all the models.

baseline, we see that the “ground-truth” future information significantly improves

detection performance. We also observe that the performance of TRN and RNN-

offline are comparable, even though TRN uses predicted rather than actual future

information. This may be because TRN improves its representation during learning

by jointly optimizing current and future action recognition, while RNN-offline does

not. We also evaluated TRN against ED-based networks, by observing that ED can

also improve its representation by jointly conducting action detection and antici-

pation. Thus, comparisons between TRN with ED and its advanced version [34]

measure how much benefit comes purely from explicitly incorporating anticipated

future information.

Effect of Decoder Step Count. Finally, we evaluated the effectiveness of dif-

46

Decoder steps (`d)

Dataset Task 4 6 8 10

HDD
Online Action Detection 39.9 40.8 40.1 39.6
Action Anticipation 34.3 32.2 28.8 25.4

TVSeries
Online Action Detection 83.5 83.4 83.7 83.5
Action Anticipation 77.7 76.4 75.7 74.1

THUMOS’14
Online Action Detection 46.0 45.4 47.2 46.4
Action Anticipation 42.6 39.4 38.9 35.0

Table 3.6: Online action detection and action anticipation results of TRN with
decoder steps `d = 4, 6, 8, 10.

ferent decoder step counts, `d = {4, 6, 8, 10}. Table 3.6 shows the results, with the

performance of action anticipation averaged over the decoder steps. The results

show that a larger number of decoder steps does not guarantee better performance.

This is because anticipation accuracy usually decreases for longer future sequences,

and thus creates more noise in the input features of STA. To be clear, we follow

the state-of-the-art [34] and set `d to 2 video seconds (6 frames in HDD, 8 frames

in TVSeries and THUMOS’14) when comparing with baseline methods of online

action detection in Tables 3.1, 3.2, and 3.3.

3.3.6.3 Evaluation of Different Stages of Action

We evaluated TRN when only a fraction of each action is considered, and

compared with published results [33] on TVSeries. For example, 20%-30% means

only frames in the 20%-30% time range of action sequences were evaluated. Ta-

ble 3.4 shows that TRN significantly outperforms existing methods at every time

stage. Specifically, when we compare TRN-TS with the best baseline SVM-FV, the

performance gaps between these two methods are roughly in ascending order as less

47

and less of the actions are observed (the gaps are 6.5%, 6.4%, 6.3%, 7.3%, 7.9%,

8.6%, 9.7%, 10.5%, 11.2% and 11.8% from actions at 100% observed to those are

10% observed). This indicates the advantage of our approach at earlier stages of

actions.

3.3.6.4 Evaluation of Action Anticipation

We also evaluated TRN on predicting actions for up to 2 seconds into the

future, and compare our approach with the state-of-the-art [34] in Table 3.5. The

results show that TRN performs better than RED and ED baselines (mcAP of

75.7% vs. 75.1% vs. 74.5% on TVSeries and mAP of 38.9% vs. 37.5% vs. 36.6% on

THUMOS’14). The average of anticipation results over the next 2 seconds on HDD

is 32.2% in terms of per-frame mAP.

3.4 Conclusion

We propose Temporal Recurrent Networks (TRNs) to model greater tempo-

ral context, and we evaluate them on the online action detection problem. Unlike

previous methods that consider only historical temporal consistencies, TRN jointly

models the historical and future temporal context under the constraint of an online

setting. Experimental results on three popular datasets demonstrate that incorpo-

rating predicted future information improves learned representation of actions and

significantly outperforms the state-of-the-art. Moreover, TRN shows greater advan-

tage at earlier stages of actions and in predicting future actions. More generally,

48

we believe that our approach of incorporating estimated future information could

benefit many other online tasks, such as video object localization and tracking, and

plan to pursue this in future work.

49

Chapter 4: StartNet: Online Detection of

Action Start in Untrimmed Videos

4.1 Introduction

Temporal action localization (TAL) in untrimmed videos has been widely stud-

ied in offline settings, where start and end times of an action are recognized after the

action is fully observed [25, 26, 27, 28, 29, 30]. With the emerging applications that

require identifying actions in real time, e.g., autonomous driving, surveillance sys-

tem, and collaborative robots, online action detection (OAD) methods [1, 33, 34, 46]

have been proposed. They typically pose the TAL problem as a per-frame class la-

beling task.

However, in some time-sensitive scenarios, detecting accurate action starts in

a timely manner is more important than successfully detecting every frame contain-

ing actions. For example, an autonomous driving car needs to detect the start of

“pedestrian crossing” as soon as it happens to avoid collision; a surveillance system

should generate alert as soon as a dangerous event is initiated. Online Detection of

Action Start (ODAS) was proposed to address this problem specifically [1]. Instead

of classifying every frame, ODAS detects the occurrence and category of an action

50

start as soon as possible. Thus, it addresses two sub-tasks: (i) if an action starts at

time t and (ii) its associated action class.

Action Score

(b) StartNet

Unseen

Action Start

AS

Action Classification

Start Point Localization
t

No Yes

(a) Previous Method

No Start

No No No No No
No

t

Figure 4.1: Comparison between (a) the previous method [1] and (b) the proposed
framework. [1] aims to generate an action score sequence which produces low score
for background and high score for the correct action immediately when the action
starts. We propose a two-stage framework: the first stage only focuses on per-frame
action classification and the second stage learns to localize the start points given
the historical trend of the action scores generated by the first stage.

The existing method [1] handles the two sub-tasks jointly by training a clas-

sification network that is capable of localizing the starts of different action classes.

The network attempts to make the representation of a start point close to that

of its associated action class and far from its preceding background. As shown in

Fig. 4.1 (a), the network is encouraged to react immediately when an action starts.

However, it is hard to achieve this goal due to the subtle appearance difference near

start points and the lack of labeled training data (one action only contains one start

point).

Our method is inspired by three key insights. First, decomposing a complex

51

task properly allows sub-modules to focus on their own sub-tasks and makes the

learning process easier. A good example is the success of the two-stage object

detection framework [2, 8, 99]. Second, as mentioned in [99], when training data is

scarce, learning from a representation that is pre-trained on an auxiliary task may

lead to a significant performance boost. Third, OAD (per-frame labeling) is very

related to ODAS. Comparing to the scarce labeled data of action starts, the amount

of per-frame action labels is much larger. Thus, there may be potential benefits if

we take advantage of the per-frame labeling task.

Instead of focusing on learning subtle difference near start points, we propose

an alternative framework, i.e. startNet, and address ODAS in two stages: classifi-

cation (using ClsNet) and localization (using LocNet). ClsNet conducts per-frame

labeling as an auxiliary task based on the spatial-temporal feature aggregation from

input videos, and generates score distributions of action classes as a high-level rep-

resentation. Based on the historical trend of score distributions, LocNet predicts

class-agnostic start probability at each time (see Fig 4.1 (b)). At the end, late fusion

is applied on the outputs of both modules to generate the final result. When de-

signing LocNet, we consider the implicit temporal constraint between action starts

– two start point are unlikely to be close by. To impose the temporal constraint

into the framework under the online setting, historical decisions are taken into ac-

count for later predictions. To optimize the long-term reward for start detection,

LocNet is trained using reinforcement learning techniques. The proposed framework

and its variants are validated on THUMOS’14 [81] and ActivityNet [100]. Experi-

mental results show that our approach significantly outperforms the state-of-the-art

52

…

LSTM

LSTM

𝒔𝒕

𝑽$𝒕

𝒅𝒕~𝓝(𝒔𝒕, 𝟎. 𝟏𝟐)
policy

Reward

𝑳𝒄𝒍𝒔

𝑳𝒃

𝒅𝑱𝒔
𝒈𝒕

Update

𝑯𝒕6𝟏

Action
Start

𝑰𝒕

𝑰𝒕8𝟏

𝑰𝒕8𝟐

Action Labels

Action Score Distribution

ClsNet

LocNet Fusion

𝒇𝒕

𝒉𝒕6𝟏
(𝒄𝒍𝒔)

𝒑𝒕

𝒉𝒕6𝟏
(𝒍𝒐𝒄)

𝑯𝒕

Figure 4.2: Our method works in two stages with ClsNet and LocNet. ClsNet:
at time t, features, ft, are extracted by deep convolutional networks and input to
an one-layer LSTM; The LSTM generates action score distributions at each time
step and ClsNet is optimized with cross-entropy loss between action labels and the
generated action scores. LocNet: after action score generation, it inputs together
with a historical decision vector, H, to a second one-layer LSTM which works as
an agent to generate two-dimensional start probability sequentially; H is updated
and the state is changed accordingly; The agent is trained using policy gradient
mechanism to optimize long-term reward of start localization. At the end, results
from ClsNet and LocNet are fused to obtain the final action start detection results
at each time step. Here, ClsNet is implemented with LSTM. CNN and C3D can
also be used to construct ClsNet (see Sec. 4.2.1 for details).

by 10%-30% p-mAP under offsets of 1-10 seconds on THUMOS’14, and achieves

comparable p-mAP with 10 times smaller time offset on ActivityNet.

4.2 Action Start Detection Network (StartNet)

The input of an ODAS system is untrimmed, streaming video frames {I1, I2, ..., It}.

The system processes each video frame sequentially and detects the start of each

action instance. At time step t, it outputs a probability distribution, askt , which

indicates the start probability of the action class k, without accessing any future

information.

The overview of the proposed framework is illustrated in Fig. 4.2. The frame-

53

work contains two sub-networks, i.e., a classification network (ClsNet) and a local-

ization network (LocNet). ClsNet focuses on per-frame class labeling. It takes the

raw video frames as input and outputs action class probabilities at every time step

in an online manner. ClsNet serves two purposes. First, it learns simpler but use-

ful representation for localizing action starts. Second, the classification results can

be combined later with the localization results to produce the action starts for each

class. LocNet takes the output of ClsNet together with the historical decision vector

as inputs. At each time step, it outputs a two-dimensional probability distribution

indicating the probability that this frame contains an action start. The historical

decision vector records its predictions in the previous n steps in order to model the

effect of historical decisions on later ones. Finally, the results of the two networks

are fused to construct the final output.

4.2.1 Classification Network (ClsNet)

Inspired by recent online action detection methods [33, 34, 46], we utilize

recurrent networks, specifically, LSTM [82], to construct ClsNet. At each time t,

it uses the previous hidden state h
(cls)
t−1 , the cell c

(cls)
t−1 , and the feature, ft, extracted

from the current video frame, It, as inputs, to update its hidden state h
(cls)
t and cell

c
(cls)
t . Then, the likelihood distribution over all the action classes can be obtained

in Eq. 4.1,

pt = softmax(WT
clsh

(cls)
t + b), (4.1)

54

where pt is a K dimensional vector and K indicates the number of action classes

including background.

To learn ClsNet, action class label for each frame is needed. The cross-entropy

loss, Lcls(Wc), is used for optimization during training, where Wc represents the

parameter set of ClsNet.

We observe that ClsNet can be implemented with different architectures.

Thus, we validate our framework using two additional structures as the backbone

of ClsNet, i.e., CNN and C3D [101]. CNN conducts action classification based only

on the arriving frame, It. It focuses on the spatial information of the current frame

without considering temporal patterns of actions. C3D labels It based on each

temporal segment consisting of 16 consecutive video frames, from It−15 to It. It cap-

tures spatial and temporal information jointly using 3D convolutional operations.

Comparisons and explanations are discussed in Sec. 4.3.

4.2.2 Localization Network (LocNet)

As discussed in Sec. 4.1, historical action scores can provide useful cues for

identifying action starts. At time t, LocNet observes the action score distribution

over classes of each frame, pt, obtained from ClsNet and outputs a two-dimensional

vector, st, indicating the start and non-start probability distribution.

The start probability is generated sequentially. In general, if an action starts

at time step t, there is a low probability that another action also starts at time t+1,

given reasonable frames per second (FPS). Thus, there are implicit temporal con-

55

straints between nearby start points. To enable the model to consider constraints

between decisions, we record the historical decisions made by LocNet and use the

history to influence later decisions. To enable long-term decision planning, we for-

mulate the problem as a Markov Decision Process (MDP) and use reinforcement

learning to optimize our model. When making a decision1, the model not only con-

siders the effect of the decision at the current step, but also how it will influence the

later ones by maximizing the expected long-term reward. In the following, we first

discuss the inference phase of LocNet and then the training phase in detail.

Inference Phase. LocNet is built upon a LSTM structure. It acts as an agent

which interacts with historical action scores recurrently. During testing, at each

state, the agent makes a decision (predicts start probability) that produces the

maximum expected long-term reward and updates the state according to the de-

cision. To model the dependency between decisions, we incorporate the record of

historical decisions (the decisions made by the agent at previous steps) as a part

of the state. The state update procedure is described in Eq. 4.2 and 4.3, where

Ht−1 = st−n:t−1 indicates historical decisions from step t− n to t− 1 and [pt,Ht−1]

indicates the concatenation of the vectors. At the beginning, H is initialized with

zeros.

h
(loc)
t , c

(loc)
t = LSTM(h

(loc)
t−1 , c

(loc)
t−1 , [pt,Ht−1]). (4.2)

st = softmax(WT
loch

(loc)
t + b). (4.3)

1The term “action” is generally used in reinforcement learning, we use “decision” instead to
remove the confusion with action class.

56

Training Phase. We train an agent that acts optimally based on the state of the

environment. The goal is to maximize the reward by changing the predicted start

probability distribution: at a given state, the start probability should be increased

when the decision introduces bigger reward and be decreased otherwise. The start

prediction procedure is formulated as a decision making policy defined using Gaus-

sian distribution. Following [102, 103], the policy is trained by optimizing with

dt, where dt, is sampled from π(.|h(loc)
t ,pt,Ht−1) = N (st, 0.1

2) and st indicates the

output start probability.

Reward function. Each decision at a given state is associated with an im-

mediate reward to measure the decision made by the agent at the current time.

With the goal of localizing start points, we define the immediate reward function in

Eq. 4.4, where gt ∈ {0, 1} indicates the ground-truth label of action start and dt is

the sampled start probability. The reward function encourages a high probability

when there is an actual start and a low probability when there is not by giving a

negative reward. Considering the sample imbalance between start points and back-

ground, weighted rewards are used by setting a parameter α. In particular, we set

α to be the ratio between the number of negative samples to positive samples for

each dataset.

rt = αgtdt − (1− gt)dt. (4.4)

The long-term reward is the summation of discounted future rewards. In order

to maximize the expected long-term reward, the policy is trained by maximizing the

objective in Eq. 4.5, where Ws represents the parameters of the network and γ is a

57

constant scalar for calculating the discounted rewards over time.

Js(Ws) = E
dt∼π(.|Ws)

[
∑
i=0

γirt+i]. (4.5)

Optimization. When optimizing Eq. 4.5, it is not possible to train the net-

work using error back propagation directly, since the objective is not differentiable.

Following [104], we use policy gradient to calculate the expected gradient of Js as

in Eq. 4.6, where Rt =
∑

i=0 γ
irt+i indicates the long-term reward at time step t

and V̂t is a baseline value (generated by an fully-connected (FC) layer as shown in

Fig. 4.2) which is widely used in policy gradient frameworks to reduce the variance

of the gradient. The principle of policy gradient is to maximize the probability of

an action with high reward given a state.

5Ws
Js = E[

∞∑
t=0

(Rt − V̂t)5Ws
logπ(.|Ws)]. (4.6)

Following [103], we use the expected long-term reward at the current state

as the baseline value and approximate it by minimizing the l2 loss: Lb(Wb) =

1
2
||Rt − V̂t||2. The training procedure of LocNet is summarized in Alg. 1.

The full objective including the loss term in ClsNet is shown in Eq. 4.7, where

λ1 and λ2 are constant scalars.

minLcls(Wc) + λ1Lb(Wb)− λ2Js(Ws). (4.7)

58

Algorithm 1: Training Process of LocNet

Initialize parameters, Ws, of LocNet
for iteration = 1:N do

Obtain training sequence samples of length Tloc
for t = 1:Tloc do

Obtain st based on current policy
Sample decisions: dt ∼ N (st, 0.1

2)
Obtain rt and V̂t for each sample

Compute R1:Tloc , 5Ws
Js and Lb(Wb)

Update parameters, Ws, of LocNet

Late Fusion. ClsNet outputs an action score distribution and LocNet produces

class-agnostic start probabilities at each time step. Then, late fusion is applied to

obtain the start probability for each action class, askt , using Eq. 4.8, where super-

script 1:K-1 indicates positive classes and 0 indicates background.

askt =


stp

1:K−1
t k = 1 : K − 1

(1− st)p0
t k = 0

. (4.8)

Action start generation. Follow [1], final action starts are generated online if all

of the three conditions are satisfied: (i) ct = argmaxk(askt) is an action; (ii) ct 6= ct−1

and (iii) asctt exceeds a threshold. We set this threshold to 0 by default. An action

score sequence generated by ClsNet can also generate action start points online

following this procedure. LocNet can locally adjust the start point by boosting

time points with higher start probabilities and suppressing those with lower start

probabilities.

59

4.3 Experiments

To validate the proposed framework, we conduct extensive experiments on

two large-scale action recognition datasets, i.e., THUMOS’14 [81] and ActivityNet

v1.3 [100].

Evaluation protocol. To permit fair comparisons, we use the point-level average

precision (p-AP) proposed in [1] to evaluate our framework. Under this protocol,

each action start prediction is associated with a time point. For each action class,

predictions of all frames are first sorted in descending order based on their confidence

scores and then measured accordingly. An action start prediction is counted as

correct only if it matches the correct action class and its temporal distance from

a ground-truth point is smaller than an offset threshold (offset tolerance). Similar

to segment-level average precision, no duplicate detections are allowed for the same

ground-truth point. p-mAP is then calculated by averaging p-AP over all the action

classes.

Following [1], we use two metrics based on p-AP to evaluate our framework on

THUMOS’14. First, we use p-AP under different offset tolerances, varying from 1 to

10 seconds. Also, we adopt the metric AP depth at recall (Rec) X% which averages

p-AP on the Precision-Recall curve with the recall rate from 0% to X%. p-mAPs

under different offset thresholds are then averaged to obtain the final average p-mAP

at each depth. This metric is particularly used to evaluate top ranked predictions

and to measure what precision a system can achieve if low recall is allowed. For

60

ActivityNet, we evaluate our methods using p-mAP under offset thresholds of 1-10

seconds at depth Rec=1.0.

Baselines. We compare our framework with the state-of-the-art method, i.e., Shou

et al. [1] and two baselines that were presented in [1], i.e., SceneDetect and Shot-

Detect. The numbers were obtained from the authors [1]. Comparison results with

Shou et al. [1] demonstrate the superior performance of StartNet. SceneDetect

and ShotDetect are also two-stage methods. Similar to two-stage frameworks of

object detection, they first conduct localization by getting action start proposals,

which are generated by soft boundary detectors, and then classify them to different

classes. Comparison with SceneDetect and ShotDetect shows the effectiveness of

our decomposition design. Our framework trained by policy gradient is indicated

by StartNet-PG.

Implementation details. Following [1, 34, 46], decisions are made on short tem-

poral chunks, Ct, where It is its central frame. The appearance feature (RGB) of

Ct is extracted from It and the motion feature (optical flow) is computed using the

whole chunk as input. Following [34, 46], chunk size is fixed to 6 and image frames

are obtained at 24 FPS. Two adjacent chunks are not overlapping, thus, there are

exactly 4 chunks per second. Following [46], for ClsNet, we set the size of LSTM’s

hidden state to 4096 and the length of each training sequence to 64. When using

CNN, we finetune an FC layer with different CNN features as input (see feature

descriptions for each dataset). C3D is pretrained on Sports-1M [105] and finetuned

for the per-frame labeling task on each dataset. Hidden state of LocNet is set to

61

128 and the length of each training sequence, Tloc, is fixed to 16. Following [103],

γ in Eq. 4.5 is fixed to 0.9. The length of the historical decision vector, n, is set

to 8. λ1 and λ2 in Eq. 4.7 are fixed to 1. We adopt an alternating strategy for

classification and localization training: ClsNet is first trained and fixed afterwards,

and then LocNet is trained upon the pre-trained ClsNet. We implement the models

in PyTorch [86], and set batch size to 32 for THUMOS’14 and 64 for ActivityNet.

For parameter optimization, we used the Adam [87] optimizer with learning rate

5e−4 and weight decay 5e−4.

4.3.1 Experiments on THUMOS’14

Dataset. THUMOS’14 [81] is a popular benchmark for temporal action detection.

It contains 20 action classes related to sports. There are only trimmed videos

in the training set which makes it not appropriate for training ODAS methods.

Following [1], we use the validation set (including 200 untrimmed videos, 3K action

instances) for training and the test set (including 213 untrimmed videos, 3.3K action

instances) for testing.

Feature description. Two types of features are adopted on THUMOS’14 dataset,

RGB and Two-Stream (TS) features. Following [34, 46], we extract appearance

(RGB) feature at the Flatten 673 layer of ResNet-200 [92] and motion feature at

the global pool layer of BN-Inception [93] with optical flows of 6 consecutive frames

as inputs. The TS feature is the concatenation of appearance and motion features,

62

which are extracted with models2 pre-trained on ActivityNet.

Offsets (second) 1 2 3 4 5 6 7 8 9 10

Baselines
SceneDetect [106] 1.0 2.0 2.3 3.1 3.6 4.1 4.7 5.0 5.1 5.2
ShotDetect [107] 1.1 1.9 2.3 3.0 3.4 3.9 4.3 4.5 4.6 4.9
Shou et al. [1] 3.1 4.3 4.7 5.4 5.8 6.1 6.5 7.2 7.6 8.2

StartNet-PG
C3D [101] + LocNet 6.8 8.0 9.4 10.1 10.6 10.9 10.9 11.1 11.2 11.2
CNN [108] + LocNet 17.0 23.6 27.6 29.9 31.3 32.1 33.2 33.5 33.9 34.5
LSTM [82] + LocNet 19.5 27.2 30.8 33.9 36.5 37.5 38.3 38.8 39.5 39.8

Table 4.1: Comparisons using p-mAP at depth Rec=1.0 on THUMOS’14. Results
are under different offset thresholds. ClsNet is implemented with different struc-
tures, i.e., C3D, CNN and LSTM. CNN and LSTM are using TS features.

Depth Rec. @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 @0.8 @0.9 @1.0

Baselines
SceneDetect [106] 30.0 18.3 12.2 9.1 7.2 6.1 5.2 4.6 4.0 3.6
ShotDetect [107] 26.3 15.9 11.3 8.6 6.8 5.8 4.9 4.3 3.8 3.4
Shou et al. [1] 42.7 27.3 19.8 14.9 11.8 10.0 8.5 7.4 6.6 5.9

StartNet-PG
C3D [101] + LocNet 34.8 27.7 22.6 19.0 16.3 14.4 12.9 11.8 10.8 10.0
CNN [108] + LocNet 71.8 64.7 58.0 52.4 47.2 43.3 39.5 35.9 32.5 29.6
LSTM [82] + LocNet 77.4 70.2 64.5 59.1 54.2 49.3 45.1 41.2 37.6 34.2

Table 4.2: Comparisons using average p-mAP at different depths on THUMOS’14.
Average p-mAP means averaging p-mAP over offsets from 1 to 10 seconds. ClsNet is
implemented with different structures, i.e., C3D, CNN and LSTM. CNN and LSTM
are using TS features.

4.3.1.1 Evaluation Results

Comparisons with previous methods are shown in Table 4.1 and Table 4.2.

Table 4.1 shows comparisons based on p-mAP at depth Rec=1.0 under different

offset thresholds. All previous methods are under 4% p-mAP at 1 second offset,

while StartNet with LSTM achieves 19.5% p-mAP, outperforming the state-of-the-

arts largely by over 15%. At 10 seconds offset, previous methods obtain less than

9% p-mAP and StartNet (LSTM) improves over Shou et al. [1] by 30% p-mAP.

Table 4.2 shows comparisons based on average p-mAP (averaging over offsets from

1 to 10 seconds) at different depths. The results demonstrate that StartNet with

2https://github.com/yjxiong/anet2016-cuhk.

63

LSTM outperforms previous methods significantly (by around 30%-20% average p-

mAP) at depth from Rec=0.1 to Rec=1.0. Obviously, under both metrics, StartNet

outperforms previous methods by a very large margin.

To measure the performance gap between online and offline methods. We

obtain scores of two recent offline methods [26] and [109] from the authors and

evaluate start detection using p-mAP. The p-mAP are 32.7 and 35.7 (Rec=1.0,

offset is 1 second). As expected, they outperform StartNet, since they observe the

entire action before prediction.

4.3.1.2 Ablation Experiments

ClsNet implemented with different structures. Comparisons among StartNet

with different ClsNet’s backbones are shown in Table 4.1 and Table 4.2. LSTM+LocNet

achieves the best performance among the three structures and C3D performs worse

than CNN and LSTM. Shou et al. [1] chose C3D as its backbone and proposed

sophisticated training strategies for optimization. With C3D, StartNet still signifi-

cantly outperforms Shou et al., which demonstrates the effectiveness of our frame-

work. Since LSTM+LocNet achieves the best performance, the following ablation

studies are conducted using ClsNet implemented with LSTM.

Effectiveness of LocNet. The results from ClsNet alone can be used to generate

action starts by following the action start generation procedure in late fusion. To

evaluate the contribution of LocNet, we construct ClsNet-only by removing LocNet

from our framework. Results of ClsNet-only can also demonstrate the performance

64

Features Offsets (second) 1 2 3 4 5 6 7 8 9 10

RGB
ClsNet-only 11.8 17.2 21.3 24.9 27.9 28.7 29.5 30.0 30.4 30.7
StartNet-CE 13.7 20.7 23.8 27.2 29.4 30.7 31.9 32.5 33.2 33.6
StartNet-PG 15.9 21.0 24.8 28.4 30.7 31.8 33.0 33.5 34.0 34.4

Two Stream
ClsNet-only 13.9 21.6 25.8 28.9 31.1 32.5 33.5 34.3 34.8 35.2
StartNet-CE 17.4 25.4 29.8 33.0 34.6 36.3 37.2 37.7 38.6 38.8
StartNet-PG 19.5 27.2 30.8 33.9 36.5 37.5 38.3 38.8 39.5 39.8

Table 4.3: Ablation study of our framework using p-mAP at depth Rec=1.0 on
THUMOS’14. LSTM is used to implement ClsNet. Different offset thresholds are
used to evaluate our framework with different features. Best performance is marked
in bold.

Features Depth Rec. @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 @0.8 @0.9 @1.0

RGB
ClsNet-only 71.2 61.1 52.8 47.0 42.0 37.7 34.0 30.6 27.5 25.3
StartNet-CE 73.2 64.5 56.8 50.2 45.1 40.5 36.6 33.5 30.5 27.7
StartNet-PG 73.6 65.0 58.0 51.2 45.9 41.5 37.8 34.3 31.5 28.8

Two Stream
ClsNet-only 71.3 63.0 56.9 52.0 46.9 42.3 38.7 35.0 31.8 29.2
StartNet-CE 72.7 65.6 60.2 55.3 51.0 46.8 43.0 39.2 36.0 32.9
StartNet-PG 77.4 70.2 64.5 59.1 54.2 49.3 45.1 41.2 37.6 34.2

Table 4.4: Ablation study of our framework using average p-mAP at different depths
on THUMOS’14. At each depth, we average p-mAP over offset thresholds from 1
to 10 seconds. LSTM is used to implement ClsNet. Best performance is marked in
bold.

of OAD methods if applied on the ODAS task directly. As shown in Table 4.3,

ClsNet-only has already achieved good results, outperforming C3D based methods.

When adding LocNet, StartNet-PG improves ClsNet-only by 5%-6% p-mAP with

TS feature and by 4%-5% p-mAP with RGB features under varying offsets. We

can also observe a trend that the gaps between StartNet-PG and ClsNet-only are

larger when the offset is smaller. As shown in Table 4.4, StartNet-PG outperforms

ClsNet-only by 5%-6% p-mAP with TS features and about 3%-5% p-mAP with

RGB features at different depths. The qualitative comparison in Fig. 4.3 shows an

example that ClsNet-only generates a false positive at the last frame. It may be

because that the frame contains a classic appearance of the action, i.e., Basketball

Dunk. With the help of LocNet, the false positive is corrected by StartNet-PG.

65

No No Yes

0.58 0.57
0.55

t
ActivityNet: RidingBumpercars

0.21

THUMOS’14: BasketballDunk

NoNo

Figure 4.3: Qualitative results on THUMOS’14 and ActivityNet after action start
generation in late fusion. × means no starts are detected at those times. Numbers
indicate the scores of detected action starts. Results of ClsNet and StartNet are
marked in blue and red, respectively. Yes/No (ground-truth) indicates if an action
of the associated class starts at the time. Best viewed in color.

0 2 4 6 8 10 12
(a) Historical Vector Length

18

18.5

19

19.5

p-
m

AP
 (%

)

0 0.2 0.4 0.6 0.8 1
(b) Gamma

18

18.5

19

19.5

p-
m

AP
 (%

)

Figure 4.4: Ablation study of LocNet: (a) effect of length of historical decision
vector (b) effect of different gamma values in Eq. 4.5. Generally, the model performs
better with bigger gamma and longer historical decision vector.

66

Effectiveness of long-term planning. In order to investigate the effect of long-

term planning, we replace the policy gradient training strategy with simple cross-

entropy loss – −βgtlog(st)− (1−gt)log(1− st) – such that every frame is considered

independently. This baseline is referred as StartNet-CE. Similar to StartNet-PG,

weight factor, β, is used to handle sample imbalance. Same as α in Eq. 4.4, we

set β equal to the ratio between the number of negative samples and positive ones.

As shown in Table 4.3 and 4.4, StartNet-PG significantly outperforms StartNet-CE

under each offset threshold and at different depths, which proves the usefulness of

the long-term planning.

In order to further investigate effects of parameter settings for LocNet, we

conduct an ablation study on different values of the length of historical decision

vector, n, and gamma in Eq. 4.5 when offset threshold is set to 1 second and depth

Rec=1.0. Results are shown in Fig. 4.4. Increasing the length of the historical

decision vector means increasing the dependency of later decisions on previous ones.

As is shown, the model performs much better when incorporating historical decisions

and it reaches its highest performance when 8 historical decisions are considered.

Increasing gamma indicates increasing the effect of future rewards to the total long-

term reward. It shows that when increasing values of gamma, the model performs

better.

Results with different features. To investigated the performance of our frame-

work when using different features, we add experiments with ClsNet-only, StartNet-

CE and StartNet-PG using appearance features (RGB) only. Results are displayed

67

in Table 4.3 and Table 4.4. We see that when using only RGB features, perfor-

mance of the three models drops. However, even with RGB features, our method

still outperforms Shou et al. [1] largely.

Effectiveness of two-stage design. We validate our two-stage design by compar-

ing with one-stage network which has similar structure as ClsNet (LSTM) except

that we modify it to directly predict action starts for all classes and optimize it

with cross-entropy loss. We get 6.5% and 10.2% p-mAP at 1 second offset (depth

Rec=1.0) using RGB and TS features, respectively. The results are much worse

than StartNet-CE and StartNet-PG (drops about 7% and 9%), demonstrating that

simply learning classification and localization of action starts jointly is not a good

strategy.

Learning from low-level features. Our framework uses action score distributions

pretrained on an auxiliary task as inputs of LocNet. We believe that learning from

this high-level representation is better than learning from low-level noisy features

for our task due to the lack of training data. To prove this point, we construct

StartNet-img where LocNet learns directly from the low-level image features. The

p-mAP using RGB and TS features under offsets of 1 second (depth is 1.0) is 10.2%

and 14.0%, respectively, which much under perform our framework (drops about

5%).

Efficiency analysis. We test our method with a single Quadro P6000 GPU. It

takes 8ms and 0.3ms on average to forward pass ClsNet(C3D) and LocNet. When

using ClsNet (LSTM-TS), LSTM takes 0.3ms. The bottleneck is RGB and motion

68

feature extraction including flow computation with FlowNet-V2 (97ms). Even so,

our method can process each frame within 0.1s in total. One can reduce time largely

by using real-time flow extractors, e.g. PWC-Net [110].

4.3.2 Experiments on ActivityNet

Dataset. ActivityNet v1.3 [100] is one of the largest datasets for action recognition.

It contains annotations of 200 action classes. There are around 10K untrimmed

videos (15K action instances) in the training set and 5K (7.6K action instances)

untrimmed videos in the validation set. Averagely, there are around 1.6 action

instances in each video. Following [1], we train our models on the train set and test

them on the validation set.

Feature description. TS feature is constructed by concatenating appearance and

motion features that are extracted from TSN model (with BN-Inception) [108] pre-

trained on Kinetics [111]. Besides, we validate our method using appearance features

extracted from fc6 layer of VGG-16 [90]. The VGG-16 model is pretrained on Ima-

geNet [89]. VGG-16 features are not as good as ResNet and InceptionNet features

for action recognition tasks. We use VGG-16 features to show that our framework

can produce reasonable results even when using simple features pretrained only on

images.

Training sample strategy of LocNet. Unlike THUMOS’14 which contains

around 16 action instances per video in average, ActivityNet has only one action

instance in most of the videos. Thus, ActivityNet has much severer imbalance prob-

69

lem between start and non-start classes. To balance the samples, we randomly select

equal numbers of positive and negative sequences for each training batch. Positive

sequence is defined as containing at least one action start and negative one contains

no action start. Then, α is set to the ratio between the number of negative samples

over the number of positive ones after the sample balance.

Offsets (second) 1 2 3 4 5 6 7 8 9 10

Baselines

SceneDetect [106] – – – – – – – – – 4.7
ShotDetect [107] – – – – – – – – – 6.1
Shou et al. [1] – – – – – – – – – 8.3

StartNet

ClsNet-only-VGG 2.7 4.1 5.1 5.9 6.7 7.5 8.1 8.7 9.2 9.8
StartNet-CE-VGG 4.2 6.1 7.4 8.7 9.7 10.5 11.4 12.0 12.6 13.1
StartNet-PG-VGG 6.0 7.6 8.8 9.8 10.7 11.5 12.2 12.6 13.1 13.5

ClsNet-only-TS 4.2 6.1 7.7 8.8 9.8 10.7 11.3 12.2 13.0 13.6
StartNet-CE-TS 6.0 8.3 10.1 11.7 12.9 13.9 15.0 15.8 16.7 17.5
StartNet-PG-TS 8.1 10.2 11.8 13.3 14.4 15.3 16.1 16.7 17.4 18.0

Table 4.5: Comparisons using p-mAP under various offset thresholds at depth
Rec=1.0 on ActivityNet. ClsNet is implemented with LSTM. Numbers of base-
line methods are cited from [1]. – indicates that numbers are not provided in [1].

Evaluation results. Comparisons of StartNet with previous methods on Activi-

tyNet are shown in Table 4.5. StartNet significantly outperforms previous methods.

Specifically, StartNet with TS feature achieves similar performance under 1 sec-

ond offset tolerance compared to Shou et al. [1] under 10 seconds offset. At offset

of 10 seconds, our method improves Shou et al. [1] by around 10%. It also out-

performs SceneDetect and ShotDetect largely by 13.3% and 11.9%, respectively.

Even with VGG features pretrained on only images, our method significantly out-

performs the state-of-the-arts. Besides, we demonstrate the contribution of each

module by comparing with ClsNet-only and StartNet-CE. Results show that by

adding LocNet, StartNet-PG improves ClsNet-only by over 3% (using VGG) and

around 4% (using TS) p-mAP. With long-term planning, StartNet-PG significantly

70

outperforms StartNet-CE under both features, especially when the offset tolerance

is small. Qualitative results in Fig. 4.3 shows a hard case where ClsNet-only misses

an action start due to the subtle appearance difference near the start point. With

LocNet, StartNet-PG successfully captures the start point although the score is low.

4.4 Conclusion

We proposed StartNet to handle Online Detection of Action Starts. Start-

Net consists of two networks, i.e., ClsNet and LocNet. ClsNet processes the input

streaming video and generates action scores for each video frame. LocNet local-

izes start points by optimizing long-term planning rewards using policy gradient

methods. At the end, results from the two sub-networks are fused to produce the fi-

nal action start predictions. Experimental results on THUMOS’14 and ActivityNet

demonstrate that our framework significantly outperforms the state-of-the-arts. Ex-

tensive ablation studies were conducted to show the effectiveness of each module.

71

Chapter 5: C-WSL: Count-guided Weakly Supervised Localization

5.1 Introduction

Convolutional neural networks (CNN) have achieved state-of-the-art perfor-

mance on the object detection task [2, 11, 12, 13, 45, 69, 112, 113, 114, 115, 116, 117].

However, these detectors are trained in a strongly supervised setting, requiring a

large number of bounding box annotations and huge amounts of human labor.

To ease the burden of human annotation, weakly supervised localization (WSL)

methods train a detector using weak supervision, e.g., image-level supervision, in-

stead of tight object bounding boxes. The presence of an object category in an image

can be obtained on the Internet nearly for free, so most existing WSL architectures

require only object categories as supervision.

WSL	Detector

(2,	Dog) Proposals Detections Region	
Selection

Training Testing

Dog

Training	phase Testing	phase

Figure 5.1: Given a set of object proposals and the per-class object count label,
we select high-quality positive regions (that tightly cover a single object) to train
a WSL detector. Count information significantly reduces detected bounding boxes
that are loose and contain two or more object instances, one of the most common
errors produced by weakly supervised detectors

72

Existing methods [5, 6, 17, 18, 19, 20, 21, 118, 119, 120, 121, 122, 123] have

proposed different architectures to address the WSL problem. However, there is still

a large performance gap between weakly and strongly supervised detectors [2, 11, 13]

on standard object detection benchmarks [14, 15, 16]. Often, this is due to the

limited information provided by object-category supervision. One major unsolved

problem of WSL is that high confidence detections tend to include multiple objects

instead of one. As shown in Fig. 5.1 (red cross branch), since training images

containing multiple dogs are labeled just as “Dog”, detectors tend to learn the

composite appearance of multiple dogs as if they were one dog and group multiple

dogs as a single instance at test time. To resolve this ambiguity, we use per-class

object count information to supervise detector training.

Object count is a type of image-level supervision which is much weaker and

cheaper than instance-level supervisions, such as center clicks [24] and bounding

boxes. Unlike center click and bounding box annotations, which require several

well-trained annotators to specify the center and tight box of each object, object

count contains no location information and can be obtained without actually click-

ing on an object. Moreover, a widely studied phenomenon in psychology, called

subitizing [124] suggests that humans are able to determine the number of objects

without pointing to or fixating on each object sequentially if the total number of

objects in the image is small (typically 1-4) [125]. Thus, people may be able to

specify the object count with just a glance. To demonstrate the inexpensiveness of

count annotation, we conduct annotation experiments on Pascal VOC2007. Exper-

imental results show that only a small amount of extra time is needed to obtain

73

per-class object counts compared to labeling just object categories in an image and

the response time of the count annotation is much less than that of object center

and bounding box.

Our proposed method, Count-guided WSL (C-WSL), is illustrated in Fig. 5.1.

During the training process, C-WSL makes use of per-class object count supervision

to identify the correct high-scoring object bounding boxes from a set of object

proposals. Then, a weakly supervised detector is refined with these high-quality

regions as pseudo ground-truth (GT) bounding boxes. This strategy is similar to

existing WSL methods that refine detectors using automatically identified bounding

boxes [6, 19, 21]. However, since these methods do not make use of object count

supervision, they treat only the top-scoring region as the pseudo GT box, regardless

of the number of object instances present in the image. This sometimes leads to

multiple object instances being grouped into a single pseudo GT box, which hurts

the detector’s ability to localize individual objects. With the guidance of the object

count label, C-WSL selects tight box regions that cover individual objects as shown

in Fig. 5.1 (the “(2, Dog)” branch).

The main contribution of C-WSL is that it uses per-class object count, a

cheap and effective form of image-level supervision, to address a common failure

case in WSL where one detected bounding box contains multiple object instances.

To implement C-WSL, we develop a simple Count-based Region Selection (CRS) al-

gorithm and integrate it into two existing architectures—alternating detector refine-

ment (ADR) and online detector refinement (ODR)—to significantly improve WSL.

Experimental results on Pascal VOC2007 [14] and VOC2012 [15] show that C-WSL

74

significantly improves WSL detection and outperforms state-of-the-art methods.

5.2 Proposed Approach

0.95
0.80 0.82
0.20 0.30

compatible exclusive

0.95

0.80 0.82

0.20 0.30

Figure 5.2: A common failure case of WSL methods (left) and graph representation
of our region selection formulation (right). Our goal is to select the two green boxes,
each of which tightly covers one object, as the positive training samples for WSL
detectors. We achieve this by analyzing the confidence scores and spatial constraints
among regions

C-WSL selects regions covering a single object with the help of per-class object

count supervision and then refines the WSL detector using these regions as the pe-

sudo GT bounding boxes. We first introduce a simple Count-based Region Selection

(CRS) algorithm that C-WSL relies on to select high-quality regions from object

proposals on training images. Then, we integrate CRS into two detector refinement

structures to improve weakly supervised detectors.

5.2.1 Count-based Region Selection (CRS)

As shown in Fig. 5.2 (left), without object count information, previous meth-

ods often select the top-scoring box in training images as the positive training sample

75

to refine the WSL detector [6, 19, 21]. Their detection performance is degraded be-

cause in many cases the top-scoring box contains multiple objects from the same

category, e.g., two cats. Our goal is to select distinct regions, each covering a single

object as positive training samples with the help of object count constraints so that

the detector will learn the appearance of a single cat.

We formulate the problem as a region selection problem. Given a set of boxes

B = {b1, ..., bN} and the corresponding confidence scores P = {p1, ..., pN} (e.g.,

the detection score of a region in each detector refinement iteration), a subset G

is selected as the set of positive training regions where |G| = C and C indicates

the per-class object count. We identify a good subset G using a greedy algorithm

applied to a graphical representation of the set of boxes. Each box is represented

as a node in the graph, and two nodes are connected if the spatial overlap of their

corresponding boxes is below a threshold (See solid line in Fig. 5.2). The greedy

algorithm provides an approximation to the following optimization problem:

G∗ = arg max
G

∑
bk∈G

pk, s.t. |G| = C, ao(bi, bj) < T ∀bi, bj ∈ G, i 6= j. (5.1)

To encourage selecting regions containing just one object, we use the asymmetric

area of overlap, i.e, ao(bi, bj) =
area(bi∩bj)

area(bj)
, which has been proposed in [59, 126]

to model spatial overlap between two boxes, where bi is a box previously selected

by the greedy algorithm and bj indicates a box considered for selection. T is the

overlap threshold. If the algorithm has previously added a large box to the solution,

thresholding on ao will discourage the selection of its subregions, regardless of their

76

sizes.1 So, to deliver a high total score, the algorithm prefers C small high-scoring

boxes to one large box, even though the large box may have the highest score.

We conduct region selection after applying non-maximum suppression on a

complete set of the detection boxes, so the number of nodes is limited to a reasonable

number, and the computation cost is low in practice. The algorithm is summarized

in Alg. 2.

Algorithm 2: Count-based Region Selection (CRS)

Input: B = {b1, ..., bN}, P = {p1, ..., pN}, T , C;
B is a list of candidate boxes;
P is the corresponding scores;
T is the overlap threshold;
C indicates the object count;

Initialization: Sort (descend) B based on P;
G∗ ← ∅; smax ← 0;
Output: G∗

for i ∈ {1, ..., N} do
G← bi; s← pi;
for j ∈ {i + 1, ..., N} do

if ao(bk, bj) < T (∀bk ∈ G) then
G← G ∪ {bj}; s← s + pj
if |G| == C or j == N then

if s > smax then
smax ← s; G∗ ← G
break;

5.2.2 Detector Refinement Structures with CRS

5.2.2.1 Alternating Detector Refinement (ADR).

We first integrate CRS into an alternating WSL refinement architecture, where

a poor weakly supervised detector can be refined iteratively. The architecture is

1The commonly used symmetric intersection-over-union measure would select sufficiently small
regions even if they were fully overlapped by an existing large box.

77

GT	Candidates	Generation

WSL	Detector

Pseudo	GTs

Train	detector Generate	Pseudo	GTs

Count	based
Region	Selection

CRS

CRS

MIDN

Detector	Refine,	1-st	time

Detector	Refine,	k-th time

Conv	layers

Proposal	scores

Image	scores

Predicted	boxes
Pseudo	GT	boxes

Cls	loss

Bbox	loss

Cls	loss

Bbox	loss

Img	loss

FC	layers

Image	labels

(a) Alternating detector refinement (b) Online detector refinement w/ CRS

Figure 5.3: (a): Count-based Region Selection (CRS) is applied to select high-
quality positive training regions from the ground-truth (GT) candidate boxes gen-
erated by a WSL detector. The WSL detector is then refined using these regions.
(b): The Multiple Instance Detection Network(MIDN) [5, 6] and multiple detector
networks share the same feature representation to refine the detector at all stages
together. Cls loss indicates the classification loss and Bbox loss indicates bounding
box regression loss

shown in Fig. 5.3, where a WSL detector alternates between generating high-quality

regions as pseudo ground-truth (GT) boxes and refining itself using these GT boxes.

Some WSL methods are based on a strategy like this [21, 118]. The major difference

is that we use CRS to select multiple high-quality regions as the GT boxes.

Initialization phase. We first generate a set of box candidates from the training

data using a pre-trained WSL detector. This set of box candidates is treated as the

initialized pseudo GTs and will be refined iteratively afterwards.

Alternating training phase. We use Fast R-CNN [8] as our WSL network.

Starting from the initialized pseudo GT boxes, Fast R-CNN alternates between

improving itself via retraining with the pseudo GT boxes generated by CRS and

generating a refined set of GT candidate boxes on the training images.

78

5.2.2.2 Online Detector Refinement (ODR).

As argued in [6], the alternating strategy has two potential limitations: 1) it

is time consuming to alternate between training on the fixed labels and generating

labels by the trained model; 2) separating refinements into different iterations might

harm performance since it hinders the procedure from sharing image representations

across iterations.

Based on [6], we propose an online detector refinement framework integrated

with CRS. An illustration of the proposed method is shown in Fig. 5.3. A Multiple

Instance Detection Network (MIDN) and several detector refinement stages share

the same feature representation extracted from a backbone structure. The MIDN

utilizes an object-category label to supervise its training as in [5, 6]. Each detector

refinement network outputs the classification score and predicted bounding box for

each region proposal. The predicted boxes with scores at each stage will be used

to select pseudo GTs for the next stage refinement. Compared to [6], we have two

major differences: 1) we use CRS to generate high-quality regions as pseudo GTs

rather than just choosing the top-scoring region; 2) we use both classification loss

and bounding box regression loss for detector refinement, just as RCNNs do. Note

that the inputs to CRS produced by MIDN are the proposals with scores before the

summation over proposals.

79

5.3 Experiments

We compare with the existing WSL methods which are trained by object class

labels to show the advantage of per-class count supervision. It may seem an ‘unfair’

comparison, since the per-class count provides more information compared to object

class. However, we demonstrate via our annotation experiment that the cost of the

additional information is very low, which makes it reasonable to determine how

much improvement can be gained by adding this information.

5.3.1 Experimental Setup

Datasets and Evaluate Metrics. Comparisons with state-of-the-art methods

are conducted on VOC2007 [14] and VOC2012 [15] which contain 20 object cate-

gories. For VOC2007, all the models are trained on the trainval set which contains

5,011 images and evaluated on test set which includes 4,952 images. For VOC2012,

models are trained on 5,717 images of the train set and evaluated on 5,823 images

in the val set. We use two widely used metrics for localization evaluation: Correct

localization (CorLoc) [119] and Average Precision (AP) [127]. CorLoc evaluates

localization accuracy by measuring if the maximum response point of a detection

is inside the ground truth bounding box. AP evaluates models by comparing IoU

between output and ground truth bounding boxes.

Implementation Details. We fix T = 0.1 for all models at all the iterations on

both datasets. Note that our experiments show that the method is robust to T , e.g.,

varying T from 0.1 to 1 with step 0.1, we achieved (Mean, Std) = (47.2%, 0.42%)

80

mAP. Following [6, 21], we set the total iteration number to 3 and use VGG16 [90]

as the backbone structure for both ADR and ODR. For fair comparison, the existing

works also use VGG16 except for [118] which utilizes AlexNet. In ADR, we strictly

follow the steps of training Fast-RCNN at each iteration and use all the released

default training parameters except that we use the generated pseudo GT boxes

instead of the bounding box labels. In ODR, we follow the basic MIDN structure

and training process from [6], and use the parameters released by the author. Note

that we use the same classification and bounding box regression loss in ODR as

in [8].

Variants of Our Approach. C-WSL:WSLPDA/OICR+ADR indicates ADR

initialized with a pre-trained WSLPDA [19] (or OICR [6]) model where CRS is used

to select confident GT boxes in each iteration. Then, a Fast-RCNN is alternatively

refined as we mentioned in Sec. 5.2.2.1. C-WSL:ODR indicates the structure shown

in Fig. 5.3(b). C-WSL:ODR+FRCNN denotes a Fast RCNN trained with the top-

scoring region generated by C-WSL:ODR to improve results (inspired by [6, 19]).

C-WSL* indicates models trained by our annotated counts.

5.3.2 Annotation Time vs. Detection Accuracy

Object counting is very straightforward. The user interface includes an image

and 15 buttons indicating the count numbers. We cap object count with 15 since

it is very rare to have a count of the same class bigger than 15. Similar to the

click experiments [21], an annotator was given a category and was asked to click the

81

count corresponding to that category. Following [24], given an object category, we

measure the response time of counting the object instances from the moment the

image appears until the count is determined.

Annotation evaluations are conducted on the full trainval set with 20 categories

of VOC2007 [14]. The average response time of counting a single object per class

per image is 0.90s. Average response time per image of annotating a single image

class is from 1.5s to 1.9s [128] and that of annotating count given object class is

1.48s, so obtaining per-class object count from an image only needs 1.48/1.9 = 78%

to 1.48/1.5 = 99% more time compared to annotating just the object class.

Annotation time of object counts per image increases as the number of objects

increases. However, it might not always be helpful to count all the objects, especially

for images with many objects, since these images are more likely to depict complex

scenes, e.g., significant occlusions and small object instances, and for such images

the generated GT candidates might not include all the objects in the first place.

Thus, we evaluate the detection accuracy of our model using at most K per-class

objects annotation, where K is the upper bound of per-class object instances that

are counted for each image. Obviously, K has positive correlation with annotation

time, since annotators may not be able to subitize for high values of K and will

need to spend an amount of time proportional to K in order to produce an accurate

count. Analysis of mAP and average CorLoc vs. K is shown in Fig. 5.4. The

results suggest that the detection accuracy reaches the highest point when at most

3 per-class objects are counted per image. Average annotation time per image for

images with at most 3 per-class objects is 1.20s which is 63% ∼ 80% overhead

82

1(0.99) 2(1.12) 3(1.20) 4(1.27) 5(1.33) 6(1.37) 7(1.40) all(1.48)
At most K per-class objects

59

60

61

62

63

64

65

66

67

Av
g.

 C
or

Lo
c(

%
)

Avg. CorLoc v.s. K on VOC2007 trainval

C-WSL*:WSLPDA+ADR
C-WSL*:OICR+ADR
C-WSL*:ODR
C-WSL*:ODR+FRCNN

1(0.99) 2(1.12) 3(1.20) 4(1.27) 5(1.33) 6(1.37) 7(1.40) all(1.48)
At most K per-class objects

41

42

43

44

45

46

47

48

49

m
AP

(%
)

mAP v.s. K on VOC2007 test

C-WSL*:WSLPDA+ADR
C-WSL*:OICR+ADR
C-WSL*:ODR
C-WSL*:ODR+FRCNN

Figure 5.4: Detection accuracy analysis when at most K per-class objects are
counted in an image. Average annotation time (in seconds) per image under each
K is shown in the parentheses. Detection accuracy becomes stable when K =3

Method Faster-RCNN [2] Two-clicks [24] One-click [24] C-WSL*:ODR+FRCNN
mAP(%) 69.9 49.1(AlexNet)/57.5(VGG16) 45.9(AlexNet) 48.2(VGG16)

Annotation cost
34.5s/img+anno. train

+re-draw rejected boxes
3.74s/img+anno. train
+re-click rejected clicks

1.87s/img+anno. train
+re-click rejected clicks

1.48s/img

Table 5.1: Accuracy vs. cost among bounding box, clicks and count supervisions on
VOC2007. We use [2] as a reference of fully supervised detector

compared to object category annotations. We compare our models trained by our

annotated counts and those obtained from the VOC2007 annotations in Table 5.2

and 5.3. The results demonstrate that models trained by the two sets of annotations

have comparable performance, which suggests that our annotation is as useful as

the VOC2007 annotations. Thus, in the following analysis, we just use (C-WSL)

VOC2007 annotations.

Accuracy and cost comparisons among box, clicks and count supervisions are

shown in Table 5.1. Although the accuracy of our approach does not outperform

supervised and two-click methods, we have achieved a significant reduction in an-

notation cost. We are 38× and 4× faster regarding to response time for labeling a

single image. In addition, box and clicks annotations require additional repeated an-

notator training to accurately locate objects and lengthy quality control processes.

83

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP
Cinbis et al. [118] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2
Wang et al. [120] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
Jie et al. [21] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7
WSDDN [5] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
WSDDN+Context [17] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
WSDDN-Ens. [5] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3
WCCN-3stage [20] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
WSLPDA [19] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
OICR [6] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
OICR-Ens.+FRCNNa [6] 64.5 64.4 44.1 25.9 16.9 67.8 68.4 33.2 9.0 57.5 46.4 21.7 57.8 64.3 10.0 23.7 50.6 60.9 64.7 58.0 45.5
C-WSL:ODR 62.7 63.7 40.0 25.5 17.7 70.1 68.3 38.9 25.4 54.5 41.6 29.9 37.9 64.2 11.3 27.4 49.3 54.7 61.4 67.4 45.6
C-WSL*:ODR 62.9 64.8 39.8 28.1 16.4 69.5 68.2 47.0 27.9 55.8 43.7 31.2 43.8 65.0 10.9 26.1 52.7 55.3 60.2 66.6 46.8
C-WSL:ODR+FRCNN 61.9 61.9 48.6 28.7 23.3 71.1 71.3 38.7 28.5 60.6 45.4 26.3 49.7 65.5 7.2 27.3 54.7 61.6 63.2 59.5 47.8
C-WSL*:ODR+FRCNN 62.9 68.3 52.9 25.8 16.5 71.1 69.5 48.2 26.0 58.6 44.5 28.2 49.6 66.4 10.2 26.4 55.3 59.9 61.6 62.2 48.2

Table 5.2: Comparison with the state-of-the-art in terms of mAP on the VOC2007
test set. Our number is marked in red if it is the best in the column

aThe numbers are reproduced by using the code released by the author.

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
Cinbis et al. [118] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0
Wang et al. [120] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
Jie et al. [21] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
WSDDN [5] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
WSDDN+Context [17] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
WSDDN-Ens. [5] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0
WCCN-3stage [20] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7
SP-VGGNet [121] 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6
WSLPDA [19] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
OICR [6] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
OICR-Ens.+FRCNN2 [6] 88.3 78.8 62.8 48.9 38.9 83.2 85.4 50.0 21.9 77.4 45.6 41.9 79.3 91.6 12.6 60.8 86.6 70.2 80.2 79.9 64.2
C-WSL:ODR 86.3 80.4 58.3 50.0 36.6 85.8 86.2 47.1 42.7 81.5 42.2 42.6 50.7 90.0 14.3 61.9 85.6 64.2 77.2 82.4 63.3
C-WSL*:ODR 85.8 81.2 64.9 50.5 32.1 84.3 85.9 54.7 43.4 80.1 42.2 42.6 60.5 90.4 13.7 57.5 82.5 61.8 74.1 82.4 63.5
C-WSL:ODR+FRCNN 85.8 78.0 61.6 52.1 44.7 81.7 88.4 49.1 50.0 82.9 44.1 44.4 63.9 92.4 14.3 60.4 86.6 68.3 80.6 82.8 65.6
C-WSL*:ODR+FRCNN 87.5 81.6 65.5 52.1 37.4 83.8 87.9 57.6 50.3 80.8 44.9 44.4 65.6 92.8 14.9 61.2 83.5 68.5 77.6 83.5 66.1

Table 5.3: Comparison with the state-of-the-art in terms of CorLoc (%) on the
VOC2007 trainval set. Our number is marked in red if it is the best in the column

Our annotation does not require knowing the location of an object so it avoids the

sensitivity to location noise. Consequently, we do not need annotator training and

quality control in our experiments.

5.3.3 Comparison with State-of-the-art (SOTA) Approaches

Comparison in terms of mAP on the VOC2007 test set and CorLoc on the

VOC2007 trainval set are shown in Table 5.2 and 5.3, respectively. Overall, the

proposed C-WSL:ODR+FRCNN outperforms all the existing SOTA methods using

both CorLoc and mAP measurements.

84

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP
WSLPDA [19] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
WSLPDA+ADR 57.9 68.3 47.8 20.3 12.2 52.9 67.6 68.8 24.6 50.0 24.9 49.8 54.8 63.5 14.1 27.4 41.2 19.5 57.1 30.7 42.7
C-WSL:WSLPDA+ADR 60.5 70.1 52.5 24.7 24.4 63.6 71.8 58.1 26.0 66.4 26.5 34.7 55.0 65.8 8.8 31.9 51.6 20.4 60.0 41.8 45.7

OICR [6] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
OICR+ADR 58.1 61.2 43.3 24.4 19.4 65.5 67.1 34.3 3.6 56.5 45.5 26.4 61.9 60.7 10.4 23.6 49.2 62.1 61.4 64.2 44.9
C-WSL:OICR+ADR 61.7 66.8 45.6 21.1 23.5 67.2 73.8 32.5 10.6 54.6 42.9 16.6 59.2 63.3 11.0 25.4 55.3 61.3 67.4 67.8 46.4

Table 5.4: Comparison with baselines in terms of mAP on the VOC2007 test set.
The table contains two comparison groups separated by double solid lines. Each
group shows how much ADR and C-WSL improve each baseline. Underline is used
if the C-WSL variant outperforms its baselines

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
WSLPDA [19] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
WSLPDA+ADR 84.6 76.9 69.7 41.0 21.8 68.5 83.2 77.6 34.4 76.7 19.8 73.7 75.2 84.7 26.3 53.8 70.1 22.3 73.8 50.9 59.2
C-WSL:WSLPDA+ADR 83.3 80.0 70.9 51.6 41.2 73.6 85.3 67.7 40.7 79.5 20.9 54.7 79.6 87.1 24.5 56.8 83.5 20.7 76.0 60.2 61.9

OICR [6] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
OICR+ADR 85.8 76.9 65.8 49.5 38.5 83.2 84.8 49.7 14.0 79.5 46.8 41.2 80.3 89.2 15.0 60.1 84.5 66.4 78.3 80.6 63.5
C-WSL:OICR+ADR 85.4 78.0 65.5 49.5 43.5 84.3 87.5 48.0 23.6 80.8 43.3 38.8 79.9 92.8 15.8 60.1 87.6 66.4 81.0 80.3 64.6

Table 5.5: Comparison with the baseline detectors in terms of CorLoc (%) on the
VOC2007 trainval set. The table contains two comparison groups separated by
double solid lines. Each group shows how much ADR and C-WSL improve each
baseline. Underline is used if the C-WSL variant outperforms its baselines

Table 5.4 and 5.5 compare our variants with the two baseline detectors, i.e.,

WSLPDA [19] and OICR [6]. The results suggest that even the simple ADR strat-

egy can significantly improve the results. Moreover, if we use object count infor-

mation, we can largely improve WSLPDA by 6.2% mAP (9.5% average CorLoc)

and OICR by 5.2% mAP (4.0% average CorLoc). C-WSL improves the results of

WSLPDA+ADR on 17 (15) out of 20 categories and the results of OICR+ADR on

10 (10) out of 20 categories in terms of mAP on the VOC2007 test set (in terms of

CorLoc on the VOC2007 trainval set).

As stated in Sec. 5.1, the object count information is helpful to avoid a de-

tector localizing on multiple objects. To demonstrate this point, we first calcu-

late the percentage of images that have more than one per-class object (multi-

objects percentage) in VOC2007. As shown in Fig. 5.5, “bottle”, “car”, “chair”,

“cow”, “person”, “plant” and “sheep” have a high percentage of images which in-

85

VOC2007 testset

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

M
ul

ti-
ob

je
ct

s
Pe

rc
en

ta
ge

VOC2007 trainvalset

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

M
ul

ti-
ob

je
ct

s
Pe

rc
en

ta
ge

Figure 5.5: Image number of multiple-objects over image number of non-zero ob-
jects. Note that “pson” means ”person”, “plt” means ”plant” and “shp” denotes
“sheep”. C-WSL works better on most classes with high multiple-objects percent-
age. See Sec. 5.3.3

clude more than one object in the corresponding category. As shown in Table 5.2

and 5.3, C-WSL:ODR+FRCNN outperforms SOTA methods for 5 out of these 7

categories. When looking into the effect of object count supervision on WSLPDA

and OICR, we see significant improvement on these categories as shown in Table 5.4

and 5.5. Consider the “sheep” category for example. C-WSL:WSLPDA+ADR im-

proves WSLPDA+ADR by 13.4% CorLoc and 10.4% AP. C-WSL:OICR+ADR im-

proves OICR+ADR by 3.1% CorLoc and 6.1% AP. Fig. 5.6 shows some examples of

training regions selected by OICR+CRS and OICR. OICR tends to select regions

containing multiple instances, while object count helps to obtain regions including

a single instance. Qualitative comparison between our C-WSL:ODR+FRCNN and

OICR-Ens.+FRCNN on the VOC2007 test set is shown in Fig. 5.8, demonstrating

that our approach achieves more precise localization when multiple per-class objects

appear in an image. We will further analyze our approach on images with different

numbers of objects in Sec. 5.3.4.

Table 5.6 and 5.7 show the comparison of C-WSL with the SOTA on VOC2012.

Note that results of WSLPDA and OICR models are reproduced by running the

86

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP
Jie et al. [21] 60.9 53.3 31.0 16.4 18.2 58.2 50.5 55.6 9.1 42.1 12.1 43.4 45.3 64.6 7.4 19.3 44.8 39.3 51.4 57.2 39.0
OICR-Ens.+FRCNN [6] 71.0 68.2 52.7 20.1 27.2 57.3 57.1 19.0 8.0 50.6 30.2 34.5 63.3 69.5 1.2 20.5 48.5 55.2 41.1 60.4 42.8
WSLPDA [19] 42.2 27.8 32.7 4.2 13.7 52.1 35.8 48.3 11.8 31.7 4.9 30.4 45.3 51.8 11.5 13.4 33.5 7.2 45.6 38.4 29.1
WSLPDA+ADR 70.0 65.6 46.3 14.4 22.8 57.5 54.2 67.5 16.1 45.0 4.4 40.0 51.7 71.8 5.8 27.7 38.3 11.7 55.2 34.1 40.0
C-WSL:WSLPDA+ADR 69.8 62.8 52.7 16.7 28.3 61.1 56.6 58.0 18.5 47.8 5.1 36.3 53.3 66.8 6.8 24.2 47.1 11.0 60.1 43.4 41.3
OICR [6] 71.0 59.1 42.3 27.4 20.2 58.7 46.4 18.6 18.1 45.7 21.7 20.5 53.1 68.5 1.8 15.7 42.7 40.0 41.0 61.5 38.7
OICR+ADR 67.0 63.1 50.8 12.8 23.8 55.3 55.1 16.1 5.2 47.2 23.4 28.2 55.9 69.2 1.9 21.5 46.5 49.9 35.9 63.8 39.6
C-WSL:OICR+ADR 71.3 68.3 50.9 17.1 24.8 60.9 56.4 13.9 14.5 54.6 22.2 25.7 57.7 70.4 1.6 20.0 55.8 46.0 35.7 62.9 41.5
C-WSL:ODR 74.0 67.3 45.6 29.2 26.8 62.5 54.8 21.5 22.6 50.6 24.7 25.6 57.4 71.0 2.4 22.8 44.5 44.2 45.2 66.9 43.0
C-WSL:ODR+FRCNN 75.3 71.6 52.6 32.5 29.9 62.9 56.9 16.9 24.5 59.0 28.9 27.6 65.4 72.6 1.4 23.0 49.4 52.3 42.4 62.2 45.4

Table 5.6: Comparison with the state-of-the-art in terms of mAP on the VOC2012
val set. Our number is marked in red if it is the best in the column. Underline is
used if the C-WSL variant outperforms its baselines

Methods are bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
OICR-Ens.+FRCNN [6] 85.4 81.5 70.4 44.7 46.6 83.6 78.4 33.9 29.3 83.2 51.6 50.5 86.1 88.0 11.0 56.7 82.5 69.1 65.1 83.6 64.1
WSLPDA [19] 80.5 63.7 64.4 34.1 29.3 76.7 71.5 62.8 30.3 76.1 23.0 55.3 75.2 77.7 18.7 56.4 66.7 25.1 66.5 54.8 55.4
WSLPDA+ADR 87.2 79.7 72.4 38.6 40.9 82.6 75.2 79.8 35.1 81.3 18.9 62.1 82.4 83.9 21.6 60.9 75.4 29.5 74.5 55.5 61.9
C-WSL:WSLPDA+ADR 85.7 77.2 73.4 38.6 46.4 84.9 75.8 69.1 43.0 76.8 20.1 58.6 79.8 79.6 20.3 57.8 79.5 35.4 76.4 61.9 62.0
OICR [6] 86.6 80.4 65.2 57.6 42.1 85.4 72.5 28.0 45.7 79.4 46.2 34.0 78.2 87.2 7.5 55.0 83.6 58.5 62.2 84.3 62.0
OICR+ADR 84.5 79.0 72.4 39.0 47.1 83.6 79.9 31.9 25.0 84.5 48.7 48.3 87.8 88.7 13.3 55.0 82.5 67.4 65.1 83.9 63.4
C-WSL:OICR+ADR 86.6 80.8 73.9 43.2 44.4 87.7 76.2 32.2 34.0 87.1 49.1 46.2 88.2 91.2 12.1 57.1 78.4 65.5 65.1 85.3 64.2
C-WSL:ODR 90.9 81.1 64.9 57.6 50.6 84.9 78.1 29.8 49.7 83.9 50.9 42.6 78.6 87.6 10.4 58.1 85.4 61.0 64.7 86.6 64.9
C-WSL:ODR+FRCNN 92.1 84.3 69.9 58.3 53.9 86.8 80.4 30.6 52.6 83.9 54.7 45.8 83.2 90.1 12.7 56.4 86.0 64.9 66.5 84.3 66.9

Table 5.7: Comparison with the state-of-the-art in terms of CorLoc on the VOC2012
train set. Our number is marked in red if it is the best in the column. Underline is
used if the C-WSL variant outperforms its baselines

pretrained model and the code released by the authors. The results suggest that

our method outperforms the SOTA method (OICR-Ens.+FRCNN) by 2.6% in mAP

on the VOC2012 val set and by 2.8% in CorLoc on the VOC2012 train set. C-WSL

improves the results of WSLPDA+ADR on 12 (10) out of 20 categories and the

results of OICR+ADR on 10 (12) out of 20 categories in terms of mAP on the

VOC2012 val set (in terms of CorLoc on the VOC2012 train set).

We also evaluated our methods and baselines (pre-trained on the VOC2007

Figure 5.6: Examples of the training regions selected by OICR+CRS (red) and
OICR (yellow). The regions selected by OICR contain multiple object instances.
Object count information helps to select regions, each covering a single instance

87

trainval set) on the common 20 classes in MS COCO [16] 35k-val2014 set using

COCO mAP@0.5 metric. Although not fine-tuned on COCO, our approaches still

outperform the baseline methods. The results are that C-WSL:WSLPDA improves

WSLPDA [19] from 17.9% to 19.6%. C-WSL:OICR+ADR improves OICR [6] from

18.7% to 20.1% and C-WSL:ODR+FRCNN improves OICR-Ens.+FRCNN [6] from

19.0% to 20.0%.

5.3.4 Ablation Analysis

Two major components contribute to the success of our approach. One is

the iterative training process (alternating/online) and the other one is the per-

class object count supervision. In Table 5.4 and 5.5, we can see the improvement

by adding ADR and object count into the system. For WSLPDA [19], iterative

training (ADR) improves mAP by 3.2% and the count information (CRS) increases

it by 3%. For OICR [6], ADR helps by increasing 3.7% mAP and CRS contributes

1.5%. In the following, we analyze each component in detail.

Number of iterations. ADR performances as a function of the number of

iterations using the WSLDPA and OICR models is shown in Fig. 5.7(a). Generally,

models improve as the number of iterations increases. When adding object count

supervision into the framework, the results of both WSLDPA and OICR models

improve faster, which demonstrates the advantage of count information in WSL.

Number of object instances per image. Adding the object count constraint

helps a detector focus on a single object rather than multiple objects. To demon-

88

0 1 2 3
Iteration number

39

40

41

42

43

44

45

46

47

m
Ap

WSLPDA+ADR
C-WSL:WSLDPA+ADR
OICR+ADR
C-WSL:OICR+ADR

0 2 4 6orMore
Per-class Object Count number
10

15

20

25

30

35

40

45

50

55

m
Ap

WSLPDA+ADR
C-WSL:WSLDPA+ADR

0 2 4 6orMore
Per-class Object Count number
10

15

20

25

30

35

40

45

50

55

m
Ap

OICR+ADR
C-WSL:OICR+ADR

(a) (b)

Figure 5.7: (a): model improvement as the number of ADR iterations increases on
the VOC2007 test set. C-WSL approaches improve faster than others. (b): Evalu-
ation on images with different per-class object counts on VOC2007. Our approach
outperforms the WSL detectors in the presence of multiple instances in a test image

strate this, we partition images in the VOC2007 test set based on their per-class

object count and re-evaluate our approaches on each subset.

The results are shown in Fig. 5.7(b). For both WSLPDA and OICR, the

performance is much better under C-WSL. Generally, the gaps between curves of

with and without C-WSL are bigger as the object count number increases.

5.3.5 Error Analysis

The results shown in Table 5.2, 5.3, 5.6 and 5.7 suggest that most existing WSL

detectors perform poorly on the “person” category: strongly supervised detectors

achieve more than 76% AP on the VOC2007 test set (e.g., 76.6% [11] and 76.3% [2]),

while the best WSL detection result on “person” is 20.3% (see Table 5.2). This result

is likely due to the large appearance variations of persons in the dataset. Without

constraints provided by tight bounding boxes, rigid parts are easier to learn and

mostly sufficient to differentiate the object from others. So, WSL detectors focus

89

Figure 5.8: Qualitative comparison between our CWSL:ODR+FRCNN (red boxes)
and OICR+FRCNN (yellow boxes) on the VOC2007 test set over the 20 classes.
Our detector detects much tighter bounding boxes, yields much fewer boxes with
multiple objects in them, and finds instances more accurately

Figure 5.9: Some examples of the common failure cases of our approach (C-
WSL:ODR+FRCNN) on the “person” category of the VOC2007 test set

on local parts instead of the whole object as shown in Fig. 5.9.

Intuitively, this can be overcome if we can roughly estimate the size of object

instances. We conducted a preliminary experiment as follows. Suppose that we

know the size of the smallest instance of an object category in an image and assume

all the object parts are smaller than the smallest object. This assumption is not

generally true and we use it just as a proof-of-concept. We preprocess the region

candidates by removing all boxes whose size is smaller than the smallest object and

90

then conduct C-WSL:WSLPDA+ADR on VOC2007. The AP on “person” improves

to 40.0% and the mAP over all the classes improves to 52.7%.

5.4 Conclusion

We proposed a Count-guided Weakly Supervised Localization (C-WSL) frame-

work where a cheap and effective form of image-level supervision, i.e., per-class

object count, is used to select training regions each of which tightly covers a sin-

gle object instance for detector refinement. As a part of C-WSL, we proposed a

Count-based Region Selection (CRS) algorithm to perform high-quality region se-

lection. We integrated CRS into two detector refinement architectures to improve

WSL detectors. Experimental results demonstrate the effectiveness of C-WSL. To

prove the inexpensiveness of the per-class object count annotation, we conduct an-

notation experiments on VOC2007. The results show that only a small amount of

time is needed to obtain the count information in an image and that we reduce

the annotation time of center click and bounding box by more than 2× and 38×

respectively.

91

Chapter 6: WSLLN: Weakly Supervised

Natural Language Localization Networks

6.1 Introduction

Extensive work has been done on temporal action/activity localization [25, 26,

27, 28, 29, 30], where an action of interest is segmented from long, untrimmed videos.

These methods only identify actions from a pre-defined set of categories, which limits

their application to situations where only unconstrained language descriptions are

available. This more general problem is referred to as natural language localization

(NLL) [4, 7]. The goal is to retrieve a temporal segment from an untrimmed video

based on an arbitrary text query. Recent work focuses on learning the mapping from

visual segments to the input text [4, 7, 35, 36, 37] and retrieving segments based on

the alignment scores. However, in order to successfully train a NLL model, a large

number of diverse language descriptions are needed to describe different temporal

segments of videos which incurs high human labeling cost.

We propose Weakly Supervised Language Localization Networks (WSLLN)

which requires only video-sentence pairs during training with no information of

where the activities temporally occur. Intuitively, it is much easier to annotate

92

video-level descriptions than segment-level descriptions. Moreover, when combined

with text-based video retrieval techniques, video-sentence pairs may be obtained

with minimum human intervention. The proposed model is simple and clean, and

can be trained end-to-end in a single stage. We validate our model on ActivityNet

Captions and DiDeMo. The results show that our model achieves the state-of-the-

art of the weakly supervised approach and has comparable performance as some

supervised approaches.

6.2 Weakly Supervised Language Localization Networks (WSLLN)

6.2.1 Problem Statement

Following the setting of its strongly supervised counterpart [4, 7], the goal of

a weakly supervised language localization (WSLL) method is to localize the event

that is described by a sentence query in a long, untrimmed video. Formally, given a

video consisting of a sequence of image frames, Vi = [I1
i , I

2
i , ..., I

T
i], and a text query

Qi, the model aims to localize a temporal segment, [Isti , ..., I
ed
i], which semantically

aligns best with the query. st and ed indicate the start and end times, respectively.

The difference is that WSLL methods only utilize video-sentence pairs, {Vi, Qi}Ni=1,

for training, while supervised approaches have access to the start and end times of

the queries.

93

input	sentence	is	here.

×

+
#$: &×'

#(:1×'

dot	prod ∑ over	p
+,:&×2

+': &×2

+: &×2 ./:1×2

01: 1×123

4 ∈ {0,1}
video-level	GT

pseudo	GT

2:visual	feats

text	feats
…
…

;< ;= ;>

?< ?= ?>
Sent_Enc

+@ABC,DE

+@ABC,DF

alignment	branch

detection	branch
generate

Figure 6.1: The workflow of our method. Visual and text features are extracted
from n video proposals and the input sentence. Fully-connected (FC) layers are used
to transform the features to the same length, d. The two features are combined by
multi-modal processing [7] and input to the two-branch structure. Scores from both
parts are merged. Video-level scores, vq, are obtained by summing s over proposals.
The whole pipeline is trained end-to-end using video-level and pseudo segment-level
labels. x× z indicates dimensions.

6.2.2 The Proposed Approach

Taking frame sequences, [I1
i , I

2
i , ..., I

T
i], as inputs, the model first generates a

set of temporal proposals, {p1
i , p

2
i , ..., p

n
i }, where pji consists of temporally-continuous

image frames. Then, the method aligns the proposals with the input query and

outputs scores for proposals, {s1
i , s

2
i , ..., s

n
i }, indicating their likelihood of containing

the event.

Feature Description. Given a sentence query Qi of arbitrary length, sentence

encoders can be used to extract text feature, fqi, from the query. For a video,

Vi = [I1
i , I

2
i , ..., I

T
i], features, fvi = [fv1

i , fv
2
i , ..., fv

T
i], are extracted from each frame.

Following [4], the visual feature, fpji , of a proposal pji is obtained using Eq. 6.1,

where pool(x, t1, t2) means average pooling features x from time t1 to t2, || indicates

concatenation, jst/jed indicates start/end times of the proposal and j̄ means time is

94

normalized to [0, 1].

pool(fvi, jst, jed)||pool(fvi, 0, T)||[j̄st, j̄ed] (6.1)

We see that the feature of each proposal contains the information of its visual

pattern, the overall context and its relative position in the video.

Following [7], features of the sentence and a visual proposal are combined as in

Eq. 6.2. The feature, fm, will be used to measure the matching between a candidate

proposal and the input query.

fm = (fp+ fq)||(fp · fq)||FC(fp||fq) (6.2)

The workflow of WSLLN is illustrated in Fig. 6.1. Inspired by the success

of the two-stream structure in the weakly supervised object and action detection

tasks [5, 43], WSLLN consists of two branches, i.e., alignment branch and selection

branch. The semantic consistency between the input text and each visual proposal

is measured in the alignment branch. The proposals are compared and selected in

the detection branch. Scores from both branches are merged to produce the final

results.

Alignment Branch produces the consistency scores, sai ∈ Rn×2 = [sa1
i , sa

2
i , ..., sa

n
i],

for proposals of the video-sentence pair. sai in Eq. 6.3, measures how well each pro-

posal matches the text. Different proposal scores are calculated independently where

softmaxa indicates applying the softmax function over the last dimension.

95

sai = softmaxa(Wafmi) (6.3)

Detection Branch performs proposal selection. The selection score, sdi ∈ Rn×2 =

[sd1
i , sd

2
i , ..., sd

n
i] in Eq. 6.4, is obtained by applying softmax function over proposals.

Through softmax, the score of a proposal will be affected by those of other proposals,

so this operation encourages competition among segments.

sdi = softmaxd(Wdfmi) (6.4)

Score Merging is applied to both parts to obtain the results by dot production,

i.e., si = sai · sdi, for proposals. si is used as the final segment-sentence matching

scores during inference.

Training Phase. To utilize video-sentence pairs as supervision, our model is opti-

mized as a video-sentence matching classifier. We compute the matching score of a

given video-sentence pair by summing sji over proposals, vqi =
∑n

j=1 s
j
i . Then, Lv

is obtained in Eq. 6.5 by measuring the score with the video-sentence match label

li ∈ {0, 1}. Positive video-sentence pairs can be obtained directly. We generate neg-

ative ones by pairing each video with a randomly selected sentence in the training

set. We ensure that the positive pairs are not included in the negative set.

Lv = loss(vqi, li) (6.5)

Results can be further refined by adding an auxiliary task Lr in Eq. 6.6 where

96

ŷi = {0, 1, ..., n − 1} indicates the index of the segment that best matches the

sentence during training. The real segment-level labels are not available, thus we

generate pseudo labels by setting ŷi = argmaxjs
j
i [:, 1]. This loss further encourages

competition among proposals.

Lr = loss(sji , ŷi) (6.6)

The overall objective is minimizing L in Eq. 6.7, where λ is a balancing scalar.

loss is cross-entropy loss.

L = loss(vqi, li) + λloss(sji , ŷi). (6.7)

6.3 Experiments

6.3.1 Experimental Settings

Implementation Details. BERT [129] is used as the sentence encoder, where

the feature of ‘[CLS]’ at the last layer is extracted as the sentence representation.

Visual and sentence features are linearly transformed to have the same dimension,

d = 1000. The hidden layers for both branches have 256 units. For ActivityNet

Captions, we take the n = 15 proposals over multiple scales of each video provided

by [3] and use the C3D [101] features provided by [130]. For DiDeMo, we use the

n = 21 proposals and VGG [90] features (RGB and Flow) provided in [4].

Evaluation Metrics. Following [4, 7], R@k,IoU=th and mIoU are used for eval-

97

uation. Proposals are ranked according to their matching scores with the input

sentence. If the temporal IoU between at least one of the top-k proposals and

the groundtruth is bigger or equal to th, the sentence is counted as matched.

R@k,IoU=th means the percentage of matched sentences over the total sentences

given k and th. mIoU is the mean IoU between the top-1 proposal and the

groundtruth.

6.3.2 Experiments on ActivityNet Captions

Dataset Description. ActivityNet Captions [130] is a large-scale dataset of human

activities. It contains 20k videos including 100k video-sentences in total. We train

our models on the training set and test them on the validation set. Although the

dataset provides segment-level annotation, we only use video-sentence pairs during

training.

Baselines. We compare with strongly supervised approaches, i.e., CTRL [7],

ABLR [131] and WSDEC-S [3] to see how much accuracy it sacrifices when using

only weak labels. Originally proposed for dense-captioning, WSDEC-W [3] achieves

state-of-the-art performance for weakly supervised language localization. Although

showing good performance, WSDEC-W involves complicated training stages, and

alternates between sentence localization and caption generation for iterations.

98

Model WS IoU=0.1 IoU=0.3 IoU=0.5 mIoU
CTRL F 49.1 28.7 14.0 20.5
ABLR F 73.3 55.7 36.8 37.0
WSDEC-S F 70.0 52.9 37.6 40.4
WSDEC-W T 62.7 42.0 23.3 28.2
WSLLN T 75.4 42.8 22.7 32.2

Table 6.1: Comparison results based on R@1 on ActivityNet Captions. All baseline
numbers are reprinted from [3]. WS: weakly supervised.

6.3.2.1 Comparison Results

Comparison results are displayed in Table 6.1. It shows that WSLLN largely

outperforms WSDEC-W by ∼4% mIoU . When comparing with strongly supervised

methods, WSLLN outperforms CTRL by over 11% mIoU . Using the R@1, IoU =

0.1 metric, our model largely outperforms all the baselines including strongly and

weakly supervised methods which means that when a scenario is flexible with the

IoU coverage, our method has great advantage over others. When th =0.3/0.5, our

model has comparable results as WSDEC-W and largely outperforms CTRL. The

overall results demonstrate good performance of WSLLN, even though there is still

a big gap between weakly supervised methods and some supervised ones, i.e., ABLR

and WSDEC-S. mIoU (mean±std) of WSLLN across 3 runs is 32.2 ± 0.05 which

demonstrates the robustness of our method.

6.3.2.2 Ablation Study

Effect of λ. We evaluate the effect of λ (see Eq. 6.7) in Table 6.2. As it shows,

our model performs stable when λ is set from 0.1 to 0.4. When λ = 0, the refining

module is disabled and the performance drops. When λ is set to a big number, e.g.,

99

λ → 0.0 0.1 0.2 0.3 0.4 0.5
IoU=0.1 64.9 75.4 75.5 75.5 75.5 66.6
IoU=0.3 36.2 42.8 42.9 42.9 42.9 38.3
IoU=0.5 19.4 22.7 22.7 22.8 22.7 20.7
mIoU 27.4 32.2 32.3 32.3 32.3 28.8

Table 6.2: R@1 results of our method on ActivityNet Captions when λ in Eq. 6.7 is
set to be different values.

0.5, the contribution of Lv is reduced and the model performance also drops.

Effect of Sentence Encoder. WSDEC-W uses GRU [96] as its sentence encoder,

while our method uses BERT. It seems an unfair comparison, since BERT is powerful

than GRU in general. However, we uses pretrained BERT model without fine tuning

on our dataset, while WSDEC-W uses GRU but performed an end-to-end training.

So, it is unclear which setting is better. To resolve this concern, we replace our

BERT with GRU following WSDEC-W. The R@1 results when IoU is set to be 0.1,

0.3 and 0.5 are 74.0, 42.3 and 22.5, respectively. The mIoU is 31.8. It shows that

our model with GRU has comparable results as that with BERT.

Effect of Two-branch Design. We create two baselines, ie, Align-only and Detect-

only, to demonstrate the effectiveness of our design. To perform fair comparison,

both of them are trained using only video-sentence pairs.

Align-only contains only the alignment branch. For positive video sentence

pair, we give positive labels to all proposals. Negative pairs have negative labels

for all the proposals. Loss is calculated between proposal scores and the generated

segment-level labels.

Detect-only contains only the detection branch. Loss is calculated using the

highest detection score over proposals and the video-level label at each training

100

iteration.

Comparison results are displayed in Table 6.3. It shows that the two baselines

underperform WSLLN by a large margin, which demonstrates the effectiveness of

our design.

Model IoU=0.1 IoU=0.3 IoU=0.5 mIoU
Align-only 40.0 18.9 7.5 13.4
Detect-only 33.7 18.3 10.4 13.6

Table 6.3: Ablation study based on R@1 on ActivityNet Captions. Both methods
are trained using weak supervisions.

6.3.3 Experiments on DiDeMo

Dataset Description. DiDeMo was proposed in [4] for the language localization

task. It contains 10k, 30-second videos including 40k annotated segment-sentence

pairs. Our models are trained using video-sentence pairs in the train set and tested

on the test set.

Baselines. To the best of our knowledge, no weakly supervised method has been

evaluated on DiDeMo. So, we compare with some supervised methods, i.e., MCN [4]

and LOR [132]. MCN is a supervised NLL model. LOR is a supervised language-

object retrieval model. It utilizes much more expensive (object-level) annotations

for training. We follow the same setup of LOR as in [4] to evaluate LOR for our

task.

Comparison Results are shown in Table 6.4. WSLLN performs better than LOR

in terms of R@1/5. We also observe that the gap between our method and the

supervised NLL model is much larger on DiDeMo than on ActivityNet Captions.

101

This may be due to the fact that DiDeMo is a much smaller dataset which is a

disadvantage for weakly supervised learning.

Model WS Input R@1 R@5 mIoU
Chance – – 3.75 22.50 22.64
LOR F RGB 16.2 43.9 27.2
MCN F RGB 23.1 73.4 35.5
MCN F Flow 25.8 75.4 38.9
WSLLN T RGB 19.4 53.1 25.4
WSLLN T Flow 18.4 54.4 27.4

Table 6.4: Comparison results on DiDeMo. Following MCN, we set th = 1.0 for the
IoU threshold. All baseline numbers are reprinted from [4]. WS: weakly supervised.

6.4 Conclusion

We propose WSLLN– a simple language localization network. Unlike most

existing methods which require segment-level supervision, our method is optimized

using video-sentence pairs. WSLLN is based on a two-branch architecture where one

branch performs segment-sentence alignment and the other one conducts segment

selection. Experiments show that WSLLN achieves promising results on ActivityNet

Captions and DiDeMo.

102

Chapter 7: Conclusion

We proposed methods to improve efficiency of object detectors in terms of

both deployment at testing time and supervision at training time, and introduced ap-

proaches to improve temporal modeling for online action detectors in long, untrimmed

videos. These approaches are motivated by the following insights: (1) CNNs are

computationally expensive, so methods that improve their deployment efficiency is

essential; (2) CNNs are data hungry. Tremendous labeled data is required to suc-

cessfully train CNN models, so investigating methods to train models using weak

supervisions can largely reduce human labor for annotation and (3) Complex tem-

poral information in videos makes action recognition challenging. Thus, improving

modeling temporal dependencies are necessary for action detectors.

We introduced (1) a coarse-to-fine strategy to speed up CNN object detectors

on large image; (2) a sophiscated structure to improve temporal modeling; (3) an

effeceive temporal modeling framework to improve online detection of action start;

(4) an efficient approach to refine object detectors using only object counts as weak

supervisions and (5) a useful framework to model langugage localization in videos

using only video-sentence pairs for training.

There are also other directions can be explored for efficient model training and

103

effective temporal modeling. Promising future work may include training models in

semi-supervised manners; integrating model training and data labeling using active

learning techniques and improving temporl modeling using self-supervised signals in

videos.

104

Bibliography

[1] Zheng Shou, Junting Pan, Jonathan Chan, Kazuyuki Miyazawa, Hassan Man-
sour, Anthony Vetro, Xavier Giro-i Nieto, and Shih-Fu Chang. Online action
detection in untrimmed, streaming videos-modeling and evaluation. In Euro-
pean Conference on Computer Vision, 2018.

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99, 2015.

[3] Xuguang Duan, Wenbing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu,
and Junzhou Huang. Weakly supervised dense event captioning in videos. In
Advances in Neural Information Processing Systems, pages 3059–3069, 2018.

[4] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,
and Bryan Russell. Localizing moments in video with natural language. In
IEEE International Conference on Computer Vision, pages 5803–5812, 2017.

[5] Hakan Bilen and Andrea Vedaldi. Weakly supervised deep detection networks.
In IEEE Conference on Computer Vision and Pattern Recognition, June 2016.

[6] Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu. Multiple instance
detection network with online instance classifier refinement. arXiv preprint
arXiv:1704.00138, 2017.

[7] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal
activity localization via language query. In IEEE International Conference on
Computer Vision, pages 5267–5275, 2017.

[8] Ross Girshick. Fast r-cnn. In IEEE International Conference on Computer
Vision, pages 1440–1448, 2015.

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2014.

105

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In IEEE International Conference on Computer Vision, 2017.

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot multibox detector.
In European Conference on Computer Vision, 2016.

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 779–788, 2016.

[13] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv
preprint arXiv:1612.08242, 2016.

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[17] Vadim Kantorov, Maxime Oquab, Minsu Cho, and Ivan Laptev. Contextloc-
net: Context-aware deep network models for weakly supervised localization.
In European Conference on Computer Vision, pages 350–365. Springer, 2016.

[18] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network
to be meticulous for weakly-supervised object and action localization. IEEE
International Conference on Computer Vision, 2017.

[19] Dong Li, Jia-Bin Huang, Yali Li, Shengjin Wang, and Ming-Hsuan Yang.
Weakly supervised object localization with progressive domain adaptation. In
IEEE Conference on Computer Vision and Pattern Recognition, June 2016.

[20] Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash, and Luc Van Gool.
Weakly supervised cascaded convolutional networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5131–5139, 2017.

[21] Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, and Wei Liu. Deep self-
taught learning for weakly supervised object localization. arXiv preprint
arXiv:1704.05188, 2017.

106

[22] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and Vittorio Ferrari.
We don’t need no bounding-boxes: Training object class detectors using only
human verification. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 854–863, 2016.

[23] Alexander Kolesnikov and Christoph H Lampert. Improving weakly-
supervised object localization by micro-annotation. British Machine Vision
Conference, 2016.

[24] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and Vittorio Ferrari.
Training object class detectors with click supervision. IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[25] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action local-
ization in untrimmed videos via multi-stage cnns. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[26] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and
Dahua Lin. Temporal action detection with structured segment networks.
In IEEE International Conference on Computer Vision, 2017.

[27] Xiyang Dai, Bharat Singh, Guyue Zhang, Larry S Davis, and Yan Qiu Chen.
Temporal context network for activity localization in videos. In IEEE Inter-
national Conference on Computer Vision, 2017.

[28] Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard Ghanem, and
Juan Carlos Niebles. SST: Single-stream temporal action proposals. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[29] Jiyang Gao, Zhenheng Yang, Chen Sun, Kan Chen, and Ram Nevatia. TURN
TAP: Temporal unit regression network for temporal action proposals. IEEE
International Conference on Computer Vision, 2017.

[30] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A Ross,
Jia Deng, and Rahul Sukthankar. Rethinking the faster r-cnn architecture for
temporal action localization. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[31] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: Region convolutional 3d
network for temporal activity detection. In IEEE International Conference on
Computer Vision, 2017.

[32] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-
Fu Chang. CDC: Convolutional-de-convolutional networks for precise tempo-
ral action localization in untrimmed videos. In IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

107

[33] Roeland De Geest, Efstratios Gavves, Amir Ghodrati, Zhenyang Li, Cees
Snoek, and Tinne Tuytelaars. Online action detection. In European Con-
ference on Computer Vision, 2016.

[34] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. RED: Reinforced encoder-
decoder networks for action anticipation. In British Machine Vision Confer-
ence, 2017.

[35] Bingbin Liu, Serena Yeung, Edward Chou, De-An Huang, Li Fei-Fei, and Juan
Carlos Niebles. Temporal modular networks for retrieving complex composi-
tional activities in videos. In European Conference on Computer Vision, pages
552–568, 2018.

[36] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,
and Bryan Russell. Localizing moments in video with temporal language. In
Empirical Methods in Natural Language Processing, 2018.

[37] Da Zhang, Xiyang Dai, Xin Wang, Yuan-Fang Wang, and Larry S Davis.
Man: Moment alignment network for natural language moment retrieval via
iterative graph adjustment. arXiv preprint arXiv:1812.00087, 2018.

[38] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[39] Olivier Duchenne, Ivan Laptev, Josef Sivic, Francis R Bach, and Jean Ponce.
Automatic annotation of human actions in video. In IEEE International Con-
ference on Computer Vision, 2009.

[40] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld.
Learning realistic human actions from movies. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2008.

[41] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev, Jean Ponce,
Cordelia Schmid, and Josef Sivic. Weakly supervised action labeling in videos
under ordering constraints. In European Conference on Computer Vision,
pages 628–643. Springer, 2014.

[42] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal
modeling for weakly supervised action labeling. In European Conference on
Computer Vision, pages 137–153. Springer, 2016.

[43] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool. Untrimmednets
for weakly supervised action recognition and detection. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 4325–4334, 2017.

[44] Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa, and Shih-Fu Chang.
Autoloc: Weakly-supervised temporal action localization in untrimmed
videos. In European Conference on Computer Vision, pages 154–171, 2018.

108

[45] Mingfei Gao, Ruichi Yu, Ang Li, Vlad I Morariu, and Larry S Davis. Dynamic
zoom-in network for fast object detection in large images. In IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[46] Mingze Xu, Mingfei Gao, Yi-Ting Chen, Larry S Davis, and David J Crandall.
Temporal recurrent networks for online action detection. IEEE International
Conference on Computer Vision, 2019.

[47] Mingfei Gao, Mingze Xu, Larry S Davis, Richard Socher, and Caiming Xiong.
Startnet: Online detection of action start in untrimmed videos. IEEE Inter-
national Conference on Computer Vision, 2019.

[48] Mingfei Gao, Ang Li, Ruichi Yu, Vlad I Morariu, and Larry S Davis. C-
wsl: Count-guided weakly supervised localization. In European Conference on
Computer Vision, 2018.

[49] Mingfei Gao, Larry S Davis, Richard Socher, and Caiming Xiong. Wslln:
Weakly supervised natural language localization networks. Empirical Methods
in Natural Language Processing, 2019.

[50] Michael Figurnov, Dmitry P. Vetrov, and Pushmeet Kohli. Perforatedc-
nns: Acceleration through elimination of redundant convolutions. CoRR,
abs/1504.08362, 2015.

[51] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Ef-
ficient and accurate approximations of nonlinear convolutional networks. In
IEEE Conference on Computer Vision and Pattern Recognition, June 2015.

[52] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann Lecun, and Rob
Fergus. Exploiting linear structure within convolutional networks for efficient
evaluation. In Advances in Neural Information Processing Systems 27, pages
1269–1277. Curran Associates, Inc., 2014.

[53] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. Compression of deep convolutional neural networks for fast
and low power mobile applications. CoRR, abs/1511.06530, 2015.

[54] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks
using neuron importance score propagation. IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[55] Ian Endres and Derek Hoiem. Category independent object proposals. In
European Conference on Computer Vision, pages 575–588. Springer, 2010.

[56] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International Journal of
Computer Vision, 104(2):154–171, 2013.

109

[57] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals
from edges. In European Conference on Computer Vision, pages 391–405.
Springer, 2014.

[58] Ziming Zhang, Yun Liu, Tolga Bolukbasi, Ming-Ming Cheng, and Venkatesh
Saligrama. Bing++: A fast high quality object proposal generator at 100fps.
arXiv preprint arXiv:1511.04511, 2015.

[59] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian
detection: An evaluation of the state of the art. IEEE transactions on pattern
analysis and machine intelligence, 34(4):743–761, 2012.

[60] Sebastian Kalkowski, Christian Schulze, Andreas Dengel, and Damian Borth.
Real-time analysis and visualization of the yfcc100m dataset. In Proceedings
of the 2015 Workshop on Community-Organized Multimodal Mining: Oppor-
tunities for Novel Solutions, pages 25–30. ACM, 2015.

[61] Richard Bellman. A markovian decision process. Indiana Univ. Math. J.,
6:679–684, 1957.

[62] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[63] Richard Bellman. Dynamic programming and lagrange multipliers. Proceed-
ings of the National Academy of Sciences, 42(10):767–769, 1956.

[64] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[65] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press Cambridge, 1998.

[66] Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep
reinforcement learning. In IEEE International Conference on Computer Vi-
sion, pages 2488–2496, 2015.

[67] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo
Larochelle, and Aaron Courville. Dynamic capacity networks. In Interna-
tional Conference on Machine Learning, pages 2549–2558, 2016.

[68] Mingfei Gao, Ang Li, Ruichi Yu, Vlad I. Morariu, and Larry S. Davis.
C-wsl: Count-guided weakly supervised localization. arXiv preprint
arXiv:1711.05282, 2017.

[69] Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. Visual relationship
detection with internal and external linguistic knowledge distillation. IEEE
International Conference on Computer Vision, 2017.

110

[70] Ang Li, Jin Sun, Joe Yue-Hei Ng, Ruichi Yu, Vlad I. Morariu, and Larry S.
Davis. Generating holistic 3d scene abstractions for text-based image retrieval.
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[71] Ruichi Yu, Hongcheng Wang, and Larry S. Davis. Remotenet: Efficient rel-
evant motion event detection for large-scale home surveillance videos. IEEE
Winter Conference on Applications of Computer Vision, 2018.

[72] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask
R-CNN. CoRR, abs/1703.06870, 2017.

[73] Sean Bell, C. Lawrence Zitnick, Kavita Bala, and Ross B. Girshick. Inside-
outside net: Detecting objects in context with skip pooling and recurrent
neural networks. CoRR, abs/1512.04143, 2015.

[74] Roeland De Geest and Tinne Tuytelaars. Modeling temporal structure with
lstm for online action detection. In IEEE Winter Conference on Applications
of Computer Vision, 2018.

[75] Yu Yao, Mingze Xu, Yuchen Wang, David J Crandall, and Ella M Atkins.
Unsupervised traffic accident detection in first-person videos. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2019.

[76] Grace Edwards, Petra Vetter, Fiona McGruer, Lucy S. Petro, and Lars Muckli.
Predictive feedback to V1 dynamically updates with sensory input. Scientific
Reports, 2017.

[77] Andreja Bubic, D Yves Von Cramon, and Ricarda I Schubotz. Prediction,
cognition and the brain. Frontiers in Human Neuroscience, 2010.

[78] Andy Clark. Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behavioral and Brain Sciences, 2013.

[79] Joseph Fruchter, Tal Linzen, Masha Westerlund, and Alec Marantz. Lexical
preactivation in basic linguistic phrases. Journal of Cognitive Neuroscience,
2015.

[80] Vasili Ramanishka, Yi-Ting Chen, Teruhisa Misu, and Kate Saenko. Toward
driving scene understanding: A dataset for learning driver behavior and causal
reasoning. In IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[81] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar. THUMOS challenge: Action recognition with a large number
of classes. http://crcv.ucf.edu/THUMOS14/, 2014.

[82] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 1997.

111

http://crcv.ucf.edu/THUMOS14/

[83] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv:1412.3555, 2014.

[84] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.
Temporal convolutional networks for action segmentation and detection. In
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[85] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local
neural networks. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018.

[86] http://pytorch.org/.

[87] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980, 2014.

[88] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. arXiv:1602.07261, 2016.

[89] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
ageNet: A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[90] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556, 2014.

[91] Yuanjun Xiong, Limin Wang, Zhe Wang, Bowen Zhang, Hang Song, Wei Li,
Dahua Lin, Yu Qiao, Luc Van Gool, and Xiaoou Tang. CUHK & ETHZ &
SIAT submission to activitynet challenge 2016. arXiv:1608.00797, 2016.

[92] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[93] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv:1502.03167, 2015.

[94] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Conference on Neural Information Pro-
cessing Systems, 2014.

[95] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori,
and Li Fei-Fei. Every moment counts: Dense detailed labeling of actions in
complex videos. In International Journal of Computer Vision, 2018.

112

http://pytorch.org/

[96] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine translation.
arXiv:1406.1078, 2014.

[97] Achal Dave, Olga Russakovsky, and Deva Ramanan. Predictive-corrective
networks for action detection. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[98] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recur-
rent convolutional networks for visual recognition and description. In IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[99] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2014.

[100] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos
Niebles. Activitynet: A large-scale video benchmark for human activity under-
standing. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[101] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks. In
IEEE International Conference on Computer Vision, 2015.

[102] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of
visual attention. In Advances in neural information processing systems, pages
2204–2212, 2014.

[103] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S
Davis. Adaframe: Adaptive frame selection for fast video recognition.
arXiv:1811.12432, 2018.

[104] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[105] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul
Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional
neural networks. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2014.

[106] https://github.com/Breakthrough/PySceneDetect.

[107] https://github.com/johmathe/Shotdetect.

113

https://github.com/Breakthrough/PySceneDetect
https://github.com/johmathe/Shotdetect

[108] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang,
and Luc Van Gool. Temporal segment networks: Towards good practices for
deep action recognition. In European Conference on Computer Vision, 2016.

[109] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and Ming Yang. BSN:
Boundary sensitive network for temporal action proposal generation. In Eu-
ropean Conference on Computer Vision, 2018.

[110] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: Cnns
for optical flow using pyramid, warping, and cost volume. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 8934–8943, 2018.

[111] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new
model and the kinetics dataset. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[112] Bharat Singh and Larry S Davis. An analysis of scale invariance in object
detection–snip. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3578–3587, 2018.

[113] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In IEEE International Conference on
Computer Vision, 2017.

[114] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature pyramid networks for object detection. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[115] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the layers: Fast
and accurate cnn object detector with scale dependent pooling and cascaded
rejection classifiers. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2129–2137, 2016.

[116] Bharat Singh, Hengduo Li, Abhishek Sharma, and Larry S Davis. R-fcn-3000
at 30fps: Decoupling detection and classification. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1081–1090, 2018.

[117] Ruichi Yu, Xi Chen, Vlad I. Morariu, and Larry S. Davis. The role of context
selection in object detection. In British Machine Vision Conference, 2016.

[118] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. Weakly su-
pervised object localization with multi-fold multiple instance learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(1):189–203,
2017.

[119] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object localiza-
tion for free?-weakly-supervised learning with convolutional neural networks.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 685–
694, 2015.

114

[120] Chong Wang, Weiqiang Ren, Kaiqi Huang, and Tieniu Tan. Weakly supervised
object localization with latent category learning. In European Conference on
Computer Vision, pages 431–445. Springer, 2014.

[121] Yi Zhu, Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Soft
proposal networks for weakly supervised object localization. arXiv preprint
arXiv:1709.01829, 2017.

[122] Dahun Kim, Donggeun Yoo, In So Kweon, et al. Two-phase learning for
weakly supervised object localization. arXiv preprint arXiv:1708.02108, 2017.

[123] Miaojing Shi, Holger Caesar, and Vittorio Ferrari. Weakly supervised object
localization using things and stuff transfer. arXiv preprint arXiv:1703.08000,
2017.

[124] Douglas H Clements. Subitizing: What is it? why teach it? Teaching children
mathematics, 5(7):400, 1999.

[125] Prithvijit Chattopadhyay, Ramakrishna Vedantam, Ramprasaath RS, Dhruv
Batra, and Devi Parikh. Counting everyday objects in everyday scenes. IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[126] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral channel
features. In British Machine Vision Conference, 2009.

[127] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional Journal of Computer Vision, 88(2):303–338, 2010.

[128] Ranjay A Krishna, Kenji Hata, Stephanie Chen, Joshua Kravitz, David A
Shamma, Li Fei-Fei, and Michael S Bernstein. Embracing error to enable
rapid crowdsourcing. In Proceedings of the 2016 CHI conference on human
factors in computing systems, pages 3167–3179. ACM, 2016.

[129] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[130] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles.
Dense-captioning events in videos. In International Conference on Computer
Vision, 2017.

[131] Yitian Yuan, Tao Mei, and Wenwu Zhu. To find where you talk: Temporal
sentence localization in video with attention based location regression. arXiv
preprint arXiv:1804.07014, 2018.

[132] Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng, Kate Saenko, and
Trevor Darrell. Natural language object retrieval. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 4555–4564, 2016.

115

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Proposed Approach
	Related Work
	CNN based Object Detectors
	Temporal Action Localization

	Outline of Thesis

	Dynamic Zoom-in Network for Fast Object Detection in Large Images
	Introduction
	Dynamic zoom-in network
	Problem formulation
	Zoom-in accuracy gain regression network
	Zoom-in Q function learning network

	Experiments
	Baseline methods
	Variants of our framework
	Evaluation metric
	Implementation details
	Qualitative results
	Quantitative evaluation
	Ablation analysis

	Conclusion

	Temporal Recurrent Networks for Online Action Detection
	Introduction
	Online Action Detection
	Temporal Recurrent Network (TRN)
	TRN Cell

	Experiments
	Datasets
	Implementation Details
	Settings
	Evaluation Protocols
	Baselines
	Results

	Conclusion

	StartNet: Online Detection of Action Start in Untrimmed Videos
	Introduction
	Action Start Detection Network (StartNet)
	Classification Network (ClsNet)
	Localization Network (LocNet)

	Experiments
	Experiments on THUMOS'14
	Experiments on ActivityNet

	Conclusion

	C-WSL: Count-guided Weakly Supervised Localization
	Introduction
	Proposed Approach
	Count-based Region Selection (CRS)
	Detector Refinement Structures with CRS

	Experiments
	Experimental Setup
	Annotation Time vs. Detection Accuracy
	Comparison with State-of-the-art (SOTA) Approaches
	Ablation Analysis
	Error Analysis

	Conclusion

	WSLLN: Weakly Supervised Natural Language Localization Networks
	Introduction
	Weakly Supervised Language Localization Networks (WSLLN)
	Problem Statement
	The Proposed Approach

	Experiments
	Experimental Settings
	Experiments on ActivityNet Captions
	Experiments on DiDeMo

	Conclusion

	Conclusion
	Bibliography

