
for Url in Urls:
Url = Url.text
print(Url)
if UrlInput == “PQ”:

docViewUrl = re.search(r’docview/(\d+)’, Url)
if docViewUrl is None:
 gatewayUrl = re.search(r’(openurl.+)’, Url)

if gatewayUrl is None:
umiUrl1 = re.search(r’,*fullcite/(\d+)’, Url)
if umiUrl1 is None:

umiUrl2 = re.search(r’.*(fullcit\?.+)’, Url)
if umiUrl2 is None:

 umiUrl3 = re.search(r’.*fullcit/(.+)’, Url)
if umiUrl3 is None:

titleUrl = ‘not found’
 else:

titleUrl = ‘http://wwwlib.umi.com/disserations/fullcit/’+um
else:

 titleUrl = ‘http://wwwlib.umi.com/cr/’+umiUrl2.group(1)
break

lse:
titleUrl = “http://wwwlib.umi.com/dissertations/”+umiU l1 (1
reak

titleUrl = “http://gatewar.proquest.com/” + gatewayUr
break

 els
 t

br
 else:

iUrl1.group(1

rl..group(1

24 | APRIL 2020 | infotoday.com

AutomAting
E-REsouRcE

WoRkfloWs With
computER scRipts

[L]EARNING TO CODE

CAN BE A STEP-BY-STEP,

PROGRESSIVE PROCESS THAT

NOT ONLY ENRICHES YOU

PERSONALLY, BUT CAN BENEFIT

YOUR LIBRARY AND EVEN THE

COMMUNITY AT LARGE.

http://www.infotoday.com

for Url in Urls:
Url = Url.text
print(Url)
if UrlInput == “PQ”:

docViewUrl = re.search(r’docview/(\d+)’, Url)
if docViewUrl is None:
 gatewayUrl = re.search(r’(openurl.+)’, Url)

if gatewayUrl is None:
umiUrl1 = re.search(r’,*fullcite/(\d+)’, Url)
if umiUrl1 is None:

umiUrl2 = re.search(r’.*(fullcit\?.+)’, Url)
if umiUrl2 is None:

 umiUrl3 = re.search(r’.*fullcit/(.+)’, Url)
if umiUrl3 is None:

titleUrl = ‘not found’
 else:

titleUrl = ‘http://wwwlib.umi.com/disserations/fullcit/’+um
else:

 titleUrl = ‘http://wwwlib.umi.com/cr/’+umiUrl2.group(1)
break

lse:
titleUrl = “http://wwwlib.umi.com/dissertations/”+umiU l1 (1
reak

titleUrl = “http://gatewar.proquest.com/” + gatewayUr
break

 els
 t

br
 else:

iUrl1.group(1

rl..group(1

infotoday.com | APRIL 2020 | 25

A
s a new librarian, I have begun writing scripts to automate
some of my workflows, while simultaneously expanding my
coding knowledge. I have leveraged coding to automate ac-
tivities that otherwise would not be possible at my institu-
tion because they are too time-intensive. In this article, I will

discuss three scripts (one I use and contribute to, while the other two
I created) and demonstrate how I obtained programming knowledge
and the ability to create more complex scripts. I began my work us-
ing code developed by another librarian. Subsequently, I gained the
ability and knowledge from that script to create new scripts, which
perform increasingly complex and helpful work.

A

By BEnjAmin BRAdlEy

http://www.infotoday.com

26 | APRIL 2020 | infotoday.com

COMPUTERS IN LIBRARIES | Automating E-Resource Workflows With Computer Scripts

for Url in Urls:
Url = Url.text
print(Url)
if UrlInput == “PQ”:

docViewUrl = re.search(r’docview/(\d+)’, Url)
if docViewUrl is None:
 gatewayUrl = re.search(r’(openurl.+)’, Url)

if gatewayUrl is None:
umiUrl1 = re.search(r’,*fullcite/(\d+)’, Url)
if umiUrl1 is None:

umiUrl2 = re.search(r’.*(fullcit\?.+)’, Url)
if umiUrl2 is None:

 umiUrl3 = re.search(r’.*fullcit/(.+)’, Url)
if umiUrl3 is None:

titleUrl = ‘not found’
 else:

titleUrl = ‘http://wwwlib.umi.com/disserations/fullcit/’+um
else:

 titleUrl = ‘http://wwwlib.umi.com/cr/’+umiUrl2.group(1)
break

lse:
titleUrl = “http://wwwlib.umi.com/dissertations/”+umiU l1 (1
reak

titleUrl = “http://gatewar.proquest.com/” + gatewayUr
break

 els
 t

br
 else:

iUrl1.group(1

rl..group(1

Ebook Access Checker
When I started in my current position as a discovery

librarian at the University of Maryland (UMD) Libraries,
my supervisor introduced me to the ebook Access Checker1
and asked me to use it to evaluate some ebook collections.
Developed by Kristina Spurgin2 and written in JRuby, the
Access Checker enables librarians to perform automated link
checking and assesses if the vendor is providing access to the
title. The script outputs a report listing if the link worked
and the library has access or if there was a problem. The li-
brarian can fix the problem or follow up with the appropriate
vendor. Librarians usually need their users to report these
kinds of problems; by utilizing the script, librarians are able
to transform this reactive maintenance activity into a pro-
active process to better serve their users. The script reads
links from a text file, which can be a simple list of URLs,
or you can use a title list or KBART file. The only require-
ment is that the URLs must be in the last column of the file,
so some minor editing may be required. Once the script is
running, it asks users to select which platform they are us-
ing, and then it will begin to check the links (see Figure 1).

When selecting a platform, the user is triggering differ-
ent sections of code that apply certain criteria to evaluate
access. See Figure 2 for an example of code for Alexander
Street Press.

The logic for packages act as templates, allowing
someone to learn how the script works and add new plat-
forms. The logic for packages use two methods: “include”
and “match.” The include method takes a string, while
match uses a regular expression pattern to match against
the platform’s code and then tries to find it in the web-
page’s code. If a match is found, the access variable takes
the appropriate value. By understanding these two meth-
ods as used in the existing code, I could create code for
other packages. See Figure 3 for code I added for the IGI
Glo bal platform.

To construct the logic for the platform, I looked at the
IGI platform to find code to use in the script. It displays a
green check mark on book chapters when access is avail-
able to the user. Using Element Inspect in my browser,
I found the code associated with the green check marks,
which I used for the script (see Figure 4).

Figure 2: Code depicting the criteria used for
assessing if a library has access to an item on
the Alexander Street Press platform

Figure 1: Script running in my terminal
showing platform list

Figure 4: Using Inspect Element to find code in a platform to use in the Access Checker

Figure 3: Code I created for the
IGI Global platform

http://www.infotoday.com

infotoday.com | APRIL 2020 | 27

Automating E-Resource Workflows With Computer Scripts | COMPUTERS IN LIBRARIES

for Url in Urls:
Url = Url.text
print(Url)
if UrlInput == “PQ”:

docViewUrl = re.search(r’docview/(\d+)’, Url)
if docViewUrl is None:
 gatewayUrl = re.search(r’(openurl.+)’, Url)

if gatewayUrl is None:
umiUrl1 = re.search(r’,*fullcite/(\d+)’, Url)
if umiUrl1 is None:

umiUrl2 = re.search(r’.*(fullcit\?.+)’, Url)
if umiUrl2 is None:

 umiUrl3 = re.search(r’.*fullcit/(.+)’, Url)
if umiUrl3 is None:

titleUrl = ‘not found’
 else:

titleUrl = ‘http://wwwlib.umi.com/disserations/fullcit/’+um
else:

 titleUrl = ‘http://wwwlib.umi.com/cr/’+umiUrl2.group(1)
break

lse:
titleUrl = “http://wwwlib.umi.com/dissertations/”+umiU l1 (1
reak

titleUrl = “http://gatewar.proquest.com/” + gatewayUr
break

 els
 t

br
 else:

iUrl1.group(1

rl..group(1

MARCDownloader
UMD Libraries uses WorldShare Collection Manager

to administer and provide access to its e-resources through
WorldCat Discovery (WCD) and the OCLC link resolver.
While most major collections are represented in the World-
Cat knowledgebase (WCKB), not all databases are repre-
sented, and the metadata may not be complete. Because the
UMD Libraries manages e-resources in the WCKB only, it
is critical to ensure that the holdings are fully represented
with the metadata needed to facilitate access.

When a WCKB collection does not exist for a platform,
there are a couple of avenues you can take to create one:
find and transform vendor MARC records into a KBART
file (preferably using a tool such as MarcEdit’s MARC 2
Kbart Converter) or manually create the collection. These
strategies do not work in some situations such as with large
databases or if records are not available. The ProQuest
Dissertations and Theses Global (PQDT Global) database
has been a pain point. The database is very large; as of
this writing, it contains about 5 million theses and dis-
sertations.3 During a study of canceled interlibrary loan
borrowing requests, Hilary Thompson found that 16% of
them (the largest of any single platform) at the UMD Li-
braries were for materials available in PQDT Global, but
that were not accessible in WCD.4 There are an estimated
1 million records for items in PQDT Global in WorldCat,
but without a corresponding collection, no one can provide
access to them within WCD.

MARCDownloader5 is a Python script I developed that
uses the WorldCat Search API to find a record in WorldCat
and transform the MARC21XML metadata returned by the
API into a KBART file to upload into Collection Manager.
The script was initially developed for finding and adding
titles in PQDT Global, but I am able to use it for a variety
of platforms.

First iteration—Initially, I struggled to create a script
that could convert the MARC21XML returned by the World-
Cat Search API into a KBART file because I had no experi-
ence with XPath to parse and use that metadata. Thus, the
first iteration of the script searched WorldCat and wrote
the resulting data to a text file; then, I used MarcEdit’s
MARC 2 Kbart Converter to transform the MARC21XML
into the tabular KBART format needed to upload into Col-
lection Manager. To prepare for using MarcEdit, I used a
text editor and regular expressions to remove the URLs I
did not need and clean up the URLs I did need. Regular
expressions were fast, but the time needed to ensure that
the data was ready for transformation was prohibitive.

Second iteration—In order to circumvent the manual
cleanup, I began exploring using XPath to read and use the
MARC21XML returned by the API. After learning XPath,
I was able to pull metadata from the MARC21XML and
create a KBART file using that metadata. Figure 5 shows
the code I use to find title and URL information. This code
looks for the subfields A and B in the 245 field, saving the
metadata (if available) to the “titleMain” and “subTitle”

variables. The script then concatenates those variables to
create the “completeTitle,” which is then used to write the
data to the KBART file. The last line of code finds the URLs
in the record (all instances of 856$u), which is parsed by the
script to find the desired URLs and then scrubs the string
to ensure it is ready to be written to the file.

In Figure 6, I have five “if ” statements that check the
URLs to see if they match any of the identified patterns.
If they do, the variable “titleURL” is assigned the corre-
sponding value (see the “else” statements). Using XPath to
extract the metadata, the script now can create a KBART
file, which can be uploaded (see Figure 7).

KBQuery
When evaluating titles for renewals, cancellations, and

other considerations, the personnel in my department often
manually search our knowledgebase to collect holdings infor-
mation. I was approached by a librarian in my department
about the possibility of automating the process. Building on
my experience using OCLC APIs, I realized I could use the
WCKB API to automate the searching and then develop a re-
port that could be useful for a variety of needs as an output.

Figure 5: Code using XPath to find and extract data from the MARC21XML
returned by the WorldCat Search API

Figure 6: Code using regular expressions to extract and clean up URLs

Figure 7: Screenshot of the script finding records for materials in the Archive
of Recorded Poetry and Literature at the Library of Congress

A

http://www.infotoday.com

28 | APRIL 2020 | infotoday.com

COMPUTERS IN LIBRARIES | Automating E-Resource Workflows With Computer Scripts

KBQuery6 is the script I developed to execute batch
searches using the WCKB API. It searches each term, pro-
vided by a text file created by the user, and writes the re-
turned metadata to a separate file (including title, OCLC
number, coverage date information, and the WCKB collec-
tion name). Additionally, it uses the OCLC License Manager
API to add perpetual access rights and archival copyrights
information to the report, enabling the user to identify all
the different collections and platforms the library has for a
title. For example, you may subscribe to a journal and have
some coverage in an aggregator database, and some years
might be available in an OA collection. The report collects
that data, enabling the librarian to see where there is over-
lap and the kind of access that is available.

The script currently supports two different functions:
checking a particular collection to ensure that entitlements
are selected and finding all the collections a title has been
selected in for WCKB. After discussions with a librarian
who is interested in the script, I am working on developing a
feature to enable the user to list a set of knowledgebase col-
lections to limit the script to those collections (see Figure 8).

The report contains 11 fields, some of which are standard
metadata, such as title, standard number, and OCLC num-
ber (see Figure 9).

The first field in the report—number—uses a “#.#” pat-
tern. The first number corresponds to the search term, and
the second corresponds to the item’s place in the search re-
sults. For example, 1.1 is the first search term and the first
matching result, whereas 1.3 is the first search term and
the third match. The number field enables a librarian to
quickly see how many matches there are for a title selected
in the WCKB. For instance, the second title is selected
in six different collections. During a serials review, a li-
brarian could then look at the collection name, coverage,
perpetual access, and archival copy fields to help inform
any decision making.

Finally, the status field is largely used in the first use
case I previously described. When the search is limited to
a particular collection, the script first checks to see if the
title has been selected; the WorldCat Knowledge Base API
only enables searching for the selected titles. However, if
the script does not find a match, it downloads the entire
KBART file—which is accessible via a URL provided by the
API—and then checks the file to look for a match. If the
script finds a match in the complete KBART file, it would
then record that the title is unselected. In the second use
case, it is only searching for selected titles.

Final Thoughts
The scripts discussed may be helpful to some librarians

more than others, but I hope that the pathway I illustrated—
from editing and using another librarian’s script to creat-
ing a script that synthesizes data from multiple sources—
shows how learning to code can be a step-by-step, progressive
process that not only enriches you personally, but can benefit
your library and even the community at large.

Benjamin Bradley
(Bbradle1@umd.edu) is a
discovery librarian at the

University of Maryland (UMD) Libraries.
He has worked with e-resources

at the UMD Libraries since 2015 and
accepted his current position in 2017.

Endnotes

1. Code available on GitHub: github.com/UNC-Libraries/Access-Checker.

2. Spurgin, Kristina M. (2014). “Getting What We Paid For: A Script
to Verify Full Access to E-Resources.” Code4Lib Journal, 25.
journal.code4lib.org/articles/9684.

3. Total number of theses and dissertations taken from the PQDT
Global webpage: proquest.com/products-services/pqdtglobal.html.

4. Thompson, Hilary (2015). Find It Fail: What ILL Can Tell Us About
Challenges Related to Known Item Discovery. hdl.handle.net/
1903/16871.

5. Code available on GitHub: github.com/bradley-benjamin26/
WCSearchAPIMARCHarvester.

6. Code available on GitHub: github.com/bradley-benjamin26/KBQuery.

Figure 8: KBQuery starts with several prompts when the script starts.

Figure 9: Example of a report created by KBQuery, viewed in Microsoft Excel

http://www.infotoday.com
mailto:Bbradle1%40umd.edu?subject=
http://github.com/UNC-Libraries/Access-Checker
http://journal.code4lib.org/articles/9684
http://proquest.com/products-services/pqdtglobal.html
http://hdl.handle.net/1903/16871
http://hdl.handle.net/1903/16871
http://github.com/bradley-benjamin26/WCSearchAPIMARCHarvester
http://github.com/bradley-benjamin26/WCSearchAPIMARCHarvester
http://github.com/bradley-benjamin26/KBQuery

