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Abstract

With any sequence {z,, n = 0,+1,%2,...} of RP-valued random variables, we
associate the partial sum processes {XI(-), n = 1,2,...} which take value in the
space (D[0,T)?,7g) of right-continuous functions [0,7] — R? with left-hand limits
equipped with Skorohod’s J; topology. Furthermore, in an attempt to capture the
past of the sequence, we introduce the negative partial sum processes { X1~ (), n =
1,2,...} defined by

0
T 1 Z zi(w) if [nt]>1
X"7 (t)(w) = nz:l—fnt] , t€ [OaT]a w €.
0 otherwise

These processes take value in the space (D;[0, TP, 79) of left-continuous functions
[0,T] — R? with right-hand limits also equipped with the Skorohod’s J; topology.

This paper explores some of the issues associated with transfering the LDP for
the family {X1(-), n =1,2,...} in (D[0,1]?, 7o) to the families { X1 (-), n = 1,2,...}
in (D[0, TP, 70), {XD>~ (1), n =1,2,...} in (Dy[0, T)P, 7o) and {(X1(-), XL7(-)), n =
1,2,...} in (D[0, TP, 79) % (Dy[0, TP, 7o) for arbitrary T > 0; the last two types of
transfers require stationarity of the underlying sequence {z,, n = 0,+1,+2,...}.

The motivation for this work can be found in the study of large deviations
properties for general single server queues, and more specifically, in the derivation
of the effective bandwidth of its output process, all discussed in a companion paper.

In a significant departure from the situation under the uniform topology, such
transfers are not automatic under the Skorohod topology, as additional continuity
properties are required on the elements of the effective domain of the rate function
Ix of the LDP for {X}(), n = 1,2,...} in (D[0,1]?,79). However, when the rate
function I'x is of the usual integral form, the transfers are automatic, and the new
rate functions assume very simple forms suggesting that from the perspective of
large deviations, the past of the underlying stationary process behaves as if it were
independent of its future.

Key words: Large deviations, partial sum processes



1 Introduction

Consider a bi-infinite sequence of IRP-valued random variables {z,, n = 0,+1,+2,...}
defined on some probability space (2, F,P). For each T > 0, let D[0, TP denote the
space of RP-valued right-continuous functions with left-hand limits defined on [0, T'].
We construct a family {XI(-), n =1,2,...} of mappings XZ(-) : @ — D[0, TP by

setting for each n =1,2,...

[nt]
1
- . i >
X7 (t)(w) = n;””(“’) it 21 01, weo,
0 otherwise

and write X, (-) for X1(-).

Much effort has been expanded on identifying conditions on the sequence {z,, n =
0,£1,+2,...} under which the partial sum process {X,(-), n = 1,2,...} satisfies
a Large Deviations Principle (LDP) [6, 10, 14, 17, 19, 21], [11, Section 5.1 p. 152].
These sample path LDP results are typically given on the space (D[0, 1)P, 7,) (where
Teo denotes the uniform topology), and it is often noted that the method used to
obtain this LDP would also yield the LDP for {XI'(-), n =1,2,...} in (D[0,T]?, 7o)
for arbitrary T' > 0; this can indeed be done by appropriately modifying the argu-
ments of Section 6.

Here instead we are interested in LDPs for the partial sum processes { X (-), n =
1,2,...} but in (D[0,T]?, 7o) where 7y denotes Skorohod’s J; topology [20]. As we
shall see shortly, this change in the topological structure of the spaces has pro-
found implications for the transfer of the LDP satisfied by {X,(-), n = 1,2,...}
in (D[0,1]P,7) to the family {XZ'(.), n = 1,2,...} in (D[0,T)?, 7o) for arbitrary
T > 0, as well as for other large deviations issues addressed in this paper.

Our focus on the Skorohod topology is rooted in technical considerations that
surface naturally when considering various large deviations properties of the output
process from a single server queue. Such questions have recently been investigated
by several authors [4, 8, 9, 15] in an effort to ascertain the usefulness of the notion of
effective bandwidth in networks. In that context, as discussed in [2], it is necessary
to consider large deviations properties associated with the past of the underlying
sequence {z,, n = 0,+1,%2,...}. More precisely, for each T' > 0, we introduce
D;[0, TP as the space of RP-valued left-continuous functions with right-hand limits
defined on [0,T]. The space D;[0,T]? is endowed with the analog of the Skorohod

topology, which we also denote by 7p; details are presented in Section 4. We then



define the family {XT>=(-), n = 1,2,...} of mappings X'~ (:) : @ — D;[0,T]P by
setting

0
T l Z zi(w) if [nt] 21
X" Ww) = { ™isi Ty , te[0,T], weq.
0 otherwise

The arguments of [2] make use of the joint LDP for the family {(X1(-), X[~ (-)), =
1,2,...} in order to characterize the large deviations of queueing systems in equi-
librium, e.g., the large deviations of the stationary output of a general single-server
queue. As briefly discussed in Section 3, the necessity of considering the joint LDP
of the family {(XI(-), X'~ (:)), = 1,2,...} leads very naturally to working with the
(separable) Skorohod topology (rather than with the non-separable uniform topol-
ogy) on DI[0,1]P, as this ensures that the joint partial sum processes are random
elements in the product space (D[0,T1P,75) x (D;{0, TP, 7). However, this use of
the Skorohod topology introduces technicalities which render the proofs much more
complicated than if the uniform topology were used.

This paper explores some of the issues associated with transfering the LDP for
the family {X,,(-), n = 1,2,...} in (D0, 1], 79) to the families { X1 (-), n = 1,2,...}
in (D[0,T]?, 7o) [Theorem 2.1], {XI'=(-), n = 1,2,...} in (D[0,T]?, 79) [Theorem
2.2], and {(XI(-),XI=(-)), = 1,2,...} in (D[0, TP, 70) x (D0, T}P,75) [Theorem
2.3] for arbitrary T' > 0. The latter two results assume stationarity of the sequence
{zn, n = 0,£1,4£2,...}. In a significant departure from the situation under the
uniform topology, this transfer is not automatic and requires additional continuity
properties on the elements of the effective domain of the rate function Ix of the
LDP for {X,(-), n = 1,2,...} in (D[0,1]?, 7). This can be traced back to the
method of proof, and to peculiarities of the Skorohod topology. Indeed, our main
tool for deriving the desired LDPs is a slight extension of the standard Contraction
Principle [Theorem 3.3] which demands continuity of the transformation only on the
effective domain of I'y. Unfortunately, the relevant functionals are not continuous
on the entire space under the Skorohod topologies (while trivially continuous under
the uniform topologies), and the enforced assumptions are needed to fill this gap.

These continuity assumptions are automatically satisfied in the important special
case when Ix has the integral form (2.8), and the various rate functions of the
derived LDPs can then be computed explicitly [Corollaries 2.4-2.6]. As a result
of these computations, we note an interesting byproduct which can be suggestively

rephrased as follows: From the perspective of large deviations, a strictly stationary



process satisfying a sample path LDP in D[0,1] with good rate function of the
integral form has the property that its past behaves as if it were independent of its
future! Thus far, to the best of the authors’ knowledge, rate functions of the type
(2.8) have only been derived for i.i.d. or stationary hyper-mixing random sequences,
so that this last result is perhaps not too surprising. Our result then seems to imply
a converse in the sense that if a stationary sequence satisfies a sample path LDP
with good rate function of the type (2.8), then the process necessarily exhibits some
form of asymptotic independence or mixing property.

The paper is organized as follows: In Section 2 we present the main results of
the paper. The requisite background in the theory of large deviations is given in
Section 3, while in Section 4 we discuss the spaces D|[a,b] and D;[a, b] endowed with
Skorohod’s topology. Topological properties of some functionals on the space Dla, b]
and Dy[a, b] are developed in Section 5. Finally the proofs of Theorems 2.1, 2.2 and
2.3 are given in Sections 6, 7 and 8, respectively. Section 9 contains the discussion
of the special case when the rate function is of integral form. The proofs of various

technical preliminaries are relegated to the Appendix.

2 Summary of results and comments thereon

Throughout, we carry out the discussion for a given sequence of IRP-valued random
variables {z,, n = 0,%+1,+2,...} under various assumptions which are now listed
for easy reference.

Assumption (L) — The family of partial sum processes {Xp(-), n = 1,2,...}
satisfies the LDP in (D|0, 1]?, 79) with good rate function Ix : D[0,1}? — [0, oo];
Assumption (S) — The sequence {z,, n = 0,+1,+2,...} is strictly stationary.
In stating the results, we often use the following notation: For each T' > 0 and each
mapping ¢ : [0,T] — RP, we define the mapping @7 : [0,1] — R? by

1

(PT(t) = f(p(Tt)a te [07 1] (21)

First, the transfer to {X(-), n=1,2,...}:

Theorem 2.1 Assume (L), and let T > 0. If T is non-integer, assume further that

every element of the effective domain of Ix is continuous at t = T%T

Then, the family of partial sum processes {XZI (-), n=1,2,...} satisfies the LDP



in (D[0, TP, 10) with good rate function I% : D[0,T}P — [0, 00] given by

Z(p) = %Di[&f[T”p{[T]IX(q/)[T]):¢=tp on [0,T)}, ¢eDO,TP. (22

The transfer to {X>~(:), n =1,2,...} is presented next:

Theorem 2.2 Assume (L) and (S), and let T > 0. For T non-integer, assume

further that every element of the effective domain of Ix is continuous att =1— T%T
Then, the family of partial sum processes {XI~(-), n = 1,2,...} satisfies the

LDP in (D)0, TIP, 7o) with good rate function I%_ : D0, T|P — [0, 00] given by

Ix-(p) = seniB s (0w o=y on[0,1)}, ¢eDTP  (23)

where I)((T_] : D0, [TT]P — [0,00] is a good rate function given by

17(y) s{ Lm0 (24)

otherwise

for 1 in D[0, [T']]P and 1 associated to it through (2.1).

We now give conditions to validate the transfer to the joint family {(XI(-), X'~ (")), =
1,2,...}

Theorem 2.3 Assume (L) and (S), and let T > 0. Assume further that every
element of the effective domain D(Ix) of Ix is continuous at t = 1, as well as at
t= % + 5% for T non-integer.

Then, the family {(XI (), X}~ ("), = 1,2,...} satisfies the LDP in the prod-
uct space (D[0,T)P, 7o) x (Dy[0, TP, 70) with good rate function I;";,X_ : D[0, TP x
D,[0, TP — [0, 00] given by

Lo (onp) =  inf LITL (pyap): LT O 0,T 2.5
x,x- (1, p2) e { x.x- (1, 12) or = 1o on [0,T] (2.5)
$2€D[0,[ TP

for @1 in D[]0, TP and ¢pq in D,[0, TP where IE;{_ : D[0, [T} xD[0, [T1]P — [0, 0]
5 a good rate function given by

2TV Ix (qrry%)  if 41(0) =42(0) =0

| (2.6)
o0 otherwise

I;@(— (Y1,¢) = {



for 4y in D[0, [T]P, 1o in Dy[0, [T]]P and ¢ : [0,1] = R defined through

1
y = | P =T 2Ty, ee 5] 2.7)

$o(ITY) + e @ITTe — [T]),  te (3,1

In their general form these results already display the influence of the topology
on large deviations properties of partial sum processes. The continuity assumptions
on the elements of the effective domain of Iy are required in order to overcome the
fact that various natural projection mappings are not necessarily continuous (in the
Skorohod topology) on their entire domain of definition. Note that for each one of
these results to be true for all T > 0, it is necessary for the effective domain of I'x
to be contained in the space Cy[0, 1]P of continuous functions ¢ : [0,1] — RP with
©(0) = 0, this latter requirement following from a standard argument given in the
proof of Proposition 7.1.

The results given thus far take a simpler form in one special case which is often
encountered in applications. To characterize this situation, for each T' > 0, let
ACH[0,T]P denote the space of functions ¢ : [0,7] — IRP which are absolutely
continuous with ¢(0) = 0.

Assumption (I) — The family of partial sum processes {X,(-), n = 1,2,...}
satisfies the LDP in (D[0,1]P, 79) with good rate function Ix : D[0,1]? — [0, c0] of
the integral form

/0 (@) dt i e ACH[D, 1P

00 otherwise

Ix(p) = (2.8)

for some Borel-measurable mapping r : RP — [0, oo] which satisfies inf ege 7(2) = 0.
A rate function Ix of the form (2.8) is said to be of the usual integral form. In
most situations, the integrand r is in fact the rate function governing the LDP for
the sample mean sequence {X,(1), n =1,2,...}, and as such, is Borel-measurable
with infege r(z) = 0.
Under (I), the continuity assumptions of Theorems 2.1, 2.2 and 2.3 are auto-
matically satisfied, and the new rate functions can be explicitly computed as the

next corollaries indicate.

Corollary 2.4 Assume (I). Then, for each T > 0 the conclusion of Theorem 2.1



holds with good rate function I% : D[0, TP — [0, 00] given by

T .
L) = /0 r(o(t))dt if e ACy[0, TP

00 otherwise

(2.9)

Corollary 2.5 Assume (I) and (S). Then, for each T > 0 the conclusion of The-
orem 2.2 holds with good rate function IL_ : Dy[0,T]P — [0, 0] given by

/O Cr o) dt if o€ ACH[0, T]P

00 otherwise

I5_(p) = (2.10)

More surprising perhaps is the following corollary to Theorem 2.3.
Corollary 2.6 Assume (I) and (S). Then, for each T > 0 the conclusion of The-

orem 2.8 holds with good rate function I% ,._ : D[0,T]P x Dy[0,T]? — [0,00] given
by

T T
[ re@de+ [ rade i gipe e ACRTP

00 otherwise

I§,X—(¢17<P2) =
(2.11)

Under assumptions (I) and (S), Corollaries 2.4, 2.5 and 2.6 together imply
I x-(p1,02) = Ix (1) + Ix-(2), 1 € D[0, TP, o2 € D0, TP.  (2.12)

Hence, in view of the result contained in [11, Exercise 4.2.7 p. 113] on the joint LDP
of two independent sequences, each satisfying the LDP, this last relation implies that
the joint process of the past and future has the same large deviations behavior as
two independent processes with same marginal distributions. In other words, from
the perspective of large deviations, {XI(), = 1,2,...} and {X>7 ("), = 1,2,...}
behave as if they were independent. We close this section by wondering whether
the validity of (2.12) for all T' > 0 under the assumptions of Theorems 2.1, 2.2 and
2.3 necessarily implies the usual integral form for the rate function Ix.

3 Background on large deviations

We highlight some of the key ideas from the theory of large deviations which are
used in the paper; most of this material is available in [11].

Let (X, 7) be a topological space, and let B(X) denote its Borel o-field , i.e., the
o-field generated by the open sets of 7.



Definition 3.1 A rate function I is a lower semi-continuous mapping I : X —
[0,00]. A rate function I is said to be a good rate function if it is level compact, i.e.,
all its level sets U(a) = {z : I(z) < a} are compact subsets of X. The effective
domain D(I) of I is the set of points in X of finite rate, namely D(I) = {z € X :
I(z) < oo}.

Let {un, n = 1,2,...} be a collection of probability measures defined on some
o-field B of X.

Definition 3.2 The family {un, n = 1,2,...} satisfies the Large Deviations Prin-
ciple (LDP) in (X, 1) with rate function I : X — [0, 00] if

1
o1 > -
hnrglorgf - Inp,(T) > :rlenlf° I(x) (3.13)
and )
limsup = Inp,(T') < — inf I(z) (3.14)
n—oo T zel’

for every T in B.

Throughout we shall always assume B(X) C B as most of the developments
in [11] require this inclusion. As will be explained shortly in this section, this
assumption is automatically satisfied when considering random elements.

The Contraction Principle constitutes our main tool for establishing the LDPs
of this paper, and we we shall use a version of it mentioned in a remark following
the proof of Theorem 4.2.1 of [11, p. 110].

Theorem 3.3 (Contraction Principle) Let X and Y be two regular topological
spaces and let {pu,, n =1,2,...} be a family of probability measures on the Borel o-
field B(X) of X. Assume the family {pn, n=1,2,...} satisfies the LDP in X with
good rate function I : X — [0,00], and let the Borel-measurable mapping f : X — Y
be continuous on the effective domain D(I) of I.

Then, the family {unof ™1, n = 1,2,...} of probability measures on B(Y) satisfies
the LDP in Y with good rate function I' given by

I'y) = inf{I(z):y=fl&)}, ye). (3.15)

In [11, p. 110] the Contraction Principle is established only for continuous f: X —

YV; a proof of Theorem 3.3 in its general form is given in Appendix A.1.



In this paper we use the technical machinery of [11] in the somewhat more
concrete setup where probability measures are induced by random elements: A
random element £ defined on some probability space (€2, F,P) and taking values in
a topological space (X, 7) — in short, a random element in (X, 7) — is understood
as a measurable mapping ¢ : (Q,F) — (X,B(X)). The distribution law of the
random element ¢ is the probability measure y on B(X) defined by

uw(B) = P[€eB], BeBX).

Given a collection of random elements {¢,, n = 1,2,...} in (X,7), the LDP for
{én, n=1,2,...} is then defined as the LDP for the collection of induced probability
measures {un, n = 1,2,...}; for each n = 1,2,..., the distribution law p, of &, is
automatically defined on the Borel o-field B(X) of (X, 7).

At this level of generality, the notion of random element suffers from limitations
which are tied to the interplay between measurable and topological structures: To
see this, start with random elements X4,..., X,,, i.e., X; is a random element on
some topological space (X, 7;), or equivalently, X; : (Q,F) = (X;, B(&;)) is a mea-
surable mapping, ¢ = 1,2,...,m. Consider the product topological space (X, )
where X = [[%; A; and 7 denotes the product topology on X. In general, the
mapping X : ) = X defined by

X(w) = (Xl(w)a-"aXm(w))a we

may not be F/B(X)-measurable, and is thus not necessarily a random element in
(X,7). Indeed, with B = @7 ,B(X;), it is well known [12, p. 55] that X is F/B-
measurable and that the inclusion B C B(X) always holds [16, p. 6]. However,
the reverse inclusion B(X) C B requires additional properties on the topologies. In
particular it holds for separable Hausdorff spaces [16, Theorem 1.10 p. 6], in which
case B = B(X) and the m-variate X is now a random element in (X, B(X)).
Therefore, in this paper and its sequel [2], we consider only separable Hausdorft
spaces, so as to ensure that m-uples of random elements are themselves random
elements. The distribution law of the m-uple of random elements is now defined on
the Borel o-field of the product space (and the the blanket assumption made earlier

automatically holds).



4 Skorohod topologies on the spaces DJa, b’ and Dj[a, b}

For each T > 0 and each n = 1,2,..., the mappings w — X! (,w) and w —
XD~ (.,w) take values in D[0,T]P and D;[0,T)?, respectively. As pointed out in
Section 3, it is crucial to identify the topological structures on these spaces under
which the families {XT(-), n=1,2,...} and {XI>=(), n = 1,2,...} satisfy LDPs.

Generalizing somewhat the set-up, we consider the spaces Dla,b]P and Dj[a, b}?,
0 < a < b. Two topologies have traditionally been put on these spaces, namely the
uniform topology 7., induced by the uniform metric, and Skorohod’s J; topology
[20].

The uniform metric is defined by

doo(z,y) = Sup, |z(t) —y(®)|, =,y € Dla,b]" (or Di[a,d]?) (4.16)
with | - | denoting Euclidean norm in IR?.

Unfortunately, the complete metric spaces (Da,b]P, 7o) and (Dy[a, )P, 7) are
not separable [5, p. 150]. As a consequence, although X' (-) and X2>~(-) are random
elements in (D[0, TP, 7o) and (D;[0, T)?, 7oo ), respectively, the pair (XZ (-), X'~ ()
is not necessarily a random element in the product space (D[0, TP, 7o) X (D1[0, TP, Too ) -
To avoid this problem we seek instead to equip the spaces D[0, TP and D;[0, TP with
(metrizable) topologies which are coarser than the uniform topology and separable.

A natural candidate topology is the (separable) Skorohod J; topology. Following
[20], we introduce the set Ay, consisting of continuous bijections A : [a,b] — [a,b]
which are strictly increasing; we necessarily have A(a) = a and A(b) = b. A sequence
{zn, n=1,2,...} in Dla, b is said to be J;-convergent to the element x of Dla, b]?
if there exists a sequence of mappings {A\,, n =1,2,...} in A, such that

nli_)nolodoo(a:no)\n,x) = nli)ngodoo()\n,e) =0 (4.17)

where e denotes the identity mapping [a,b] — [a,b]. The Skorohod J; topology on
Dia, b]? is induced by a metric dp which makes it into a Polish space [5]. This metric
dp is defined by

do(z,y) = inf | sup |z(¢) —yo A(t)] V sup|ln M] (4.18)
A€hab \ tea,b] st s—1

for z and y in Dia, bJP.
The Skorohod topology has been extensively studied since its introduction in

the context of weak convergence [20]; comprehensive treatments are available for



instance in the texts [5, 13, 18]. However, its transposition to the space Dj[a, b’
appears not to have attracted much attention; for the sake of completeness, we
briefly indicate how to define the Skorohod topology on Djla, b]P.

To this end, consider the mapping ¢, : [a,b] — [a,b] defined by

o(t) =a+b—1t, tE€]la,b,
and define the mapping @, : Di[a, b’ = Dl[a,b}P by
Dup(z) = 20w, =€ Difa,bP. (4.19)
It is plain that 4 and P4y are both bijections with (,ogbl = @gqp and @;bl (z) = zowap
for all z in D{a, bJP.

Identically to the definition (4.18) of dy on Dla,b?, we define the mapping
d} : Dy[a,bP x Dyfa,b? — R, by setting

d\(z,y) = _inf (sup |z(t) —y o A(t)| V sup|ln .
s#t -

A€Aab \ te[a,b]
= dO(Qab(w)aq)ab(y))’ T,y € Dl[a’ab]p

As) = AlE) I)

where the last equality is validated with the help of Lemma A.2 (with @ = —1 and
B = a+b). Therefore, ®,y being one-to-one, it follows that df is a metric on D)[a, b]?;
in fact, ®,, establishes an isometry between (Dj[a,b]P,d}) and (D[a,b]P,dy). All
topological and metric properties of (D[a, b]?, do) then translate to (Dj[a, b]P, db); in
particular, (D;[a, b]P,d}) is also a Polish space.

In [1, Lemma 2.3] Skorohod’s Ji-convergence on the space Difa, b}? (as defined
by (4.17)) is shown to be equivalent to dj-convergence. For this reason, we can safely
refer to the topology induced by the metric df) as the Skorohod topology on Dj[a, b]P,
and in the sequel we shall use either one of the characterizations of Skorohod con-
vergence in this space. We abuse the notation somewhat by writing do for di, as
well as 7o, and 7g for the uniform and Skorohod topologies on Dj[a, b]P induced re-
spectively by the metrics do, and df). From now on, unless otherwise mentioned, the
topologies considered on D[a, b]? and Di[a,b]?, as well as on any of their subspaces
are the Skorohod topologies induced by the metric dy. In particular, S-continuity

and S-convergence refer to continuity and convergence in these Skorohod topologies.

5 S-continuity considerations on Dla, b’ and Dja, b]?

The results obtained here on the S-continuity (or lack thereof) of certain functionals

may at first appear counter-intuitive as many of these functionals are continuous

10



in the uniform topology but not in the Skorohod topology. Unless stated other-
wise, measurability is understood with respect to the Borel o-fields induced by the
Skorohod topologies.

Lemma 5.1 For a > 0 (resp. a < 0), f in R and v # 0, the mapping F :
Dla,b? — D[aa + 8,ab+ BIP (resp. F : Dla,blP — Djjab+ B,aa + BIP) defined by

1
F(z)(t) = vz (a(t - ,B)) , t€[aat+B,ab+P] (resp. [ab+B,aa+p]), =z € Dla,b?
is do-Lipschitz, hence S-continuous on Dla,b]P.

Proof: Fix a > 0, 8 in R and v # 0, and define the mapping f : [@a+ 3, ab+ ] —
[a,b] by f(t) = é(t — ) for all t in [aa + B,ab + B]. Then, for all z in Dla, b,
F(z) =«zo f, and from Lemma A.2 we get

do(F(z), F(y)) do(yzo f,yyof)
do(vz,7Yy)

max {1, |v|} do(z,y), =,y € Dla,b.

IA

The case a < 0 is handled in a similar way. |

Lemma 5.2 Let ty in [a,b] and define the projection mapping 7y, : Dla,b]? — R?
given by
7Tto(w) = .’E(to), S D[a’ab]p'

Then, the mappings 7, and 7w, are always S-continuous, while for a < ty < b, the
Borel-measurable mapping my, is S-continuous at = if and only if ty is a continuity
point of x.

l

The same properties hold true on Difa,blP for the projection mapping m; :

Di[a,b? - RP : z — z(ty).

Proof: A proof of the Borel-measurability of 7y, can be found in (3, Theorem 1 p.
170] together with the S-continuity results.

We check that the same properties hold true for ﬁéo for each ¢y in [a,b] upon
noting that

mhy () = 2(t0) = @ 0 Yab (92 (t0)) = =115 (% 0 0ab), = € Difa, P,
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and that continuity of z at ty is equivalent to continuity of ®4p(z) = z 0 g at
-1
Pab (tO)- |

The Borel-measurability and S-continuity of the restriction mappings are based

on the following preliminary fact [22].

Lemma 5.3 Let {z,, n = 1,2,...} be a sequence which is S-converging to = in
Dla,b]P, and let ¢ in (a,b) be a continuity point of x. Then, the restrictions of
{zn, n=1,2,...} in Da,c]? (resp. D[c,b]P) form a sequence which is S-converging
to the restriction of z in D[a,c]P (resp. D]c,b]P).

As the details of its proof are not available in [22], we give a complete proof in
Appendix A.3.

Lemma 5.4 Let [c,d] C [a,b], and define the restriction roq : D{a,b]? — D[c,d]P by
ra(@)#®) = ot), teled, =€ Dlabp.

Then, the Borel-measurable mapping roq 45 S-continuous at z in Dla,bP if and
only if ¢ and d are continuity points of x or endpoints of [a,b].
The same properties hold true on Djla,b]P for the restriction réd : Dy[a,b]P —

Dyle,d]P.

Proof: Borel-measurability of r.4 is shown as Lemma 2.3 in [22].

In view of Lemma 5.3, we need only consider the case a < ¢, b < d when showing
the S-continuity of r.4. In that case, let z in Dla, b]P be continuous at both interior
points ¢ and d, and let a sequence {z,, n = 1,2,...} in D[a, b]P be S-converging to z.
Upon applying Lemma, 5.3 twice, first to D[c, b]P and then to Dlc, d]?, we conclude
that the restrictions {z,, n = 1,2,...} on [¢,d] are S-converging to the restriction
of z on [c, d], whence the sequence {r.q4(z,), n =1,2,...} is S-converging to r.q(z)
in Dlc,d]?, and 7cq is thus S-continuous at z.

We now establish the “only if” part by proving its contraposition: To this end,
let  be an element of Dl[a, b]P with a discontinuity at ¢, and suppose now that 7.4
were S-continuous at z. Let 7% : D[a,b? — R? and 7¢% : D[c,d]? — R? denote
the natural projections at c¢. Because c is an endpoint for [c,d], 7¢¢ is S-continuous
on Dic,d]P by Lemma 5.2, so in particular at rcq(z). The equality 72° = 7% 0 r¢q
then yields S-continuity of 7Tg'b at z, a contradiction with Lemma 5.2 since ¢ is a

discontinuity point of . A similar argument holds if d is a discontinuity point, and

12



we conclude that 7.4 is not S-continuous at  whenever c or d are discontinuity point
of x.

In order to establish the Borel-measurability and S-continuity properties of rid,
we start with the observation

rlg(z) = (F O Ty=1 (@)= (c) © <I>ab) (z), =z € Difa,b]?,

ab

with F : D[p ;' (d), ¢y ()] — Dic,d] as defined in Lemma 5.1 with & = —1,
f =a+b,and vy = 1. The properties of rid then follow from that of T (oo (o)
and from the S-continuity of ®,, and F because c,d are either continuity points of
z or endpoints of [a,b] if and only if v ;' (d), p;; (c) are either continuity points of

®,4p(z) or endpoints of [a, b]. |

Lemma 5.5 The addition mapping S : D[a,b]P x D[a,b? — Dla,bP (resp. S’ :
Dya, b x Dy[a,b]P — Dy[a,b]?) is Borel-measurable, and S-continuous at those pairs

of points  and y which do not have common discontinuity points.

Proof: A proof of the results for the addition on Dla, b? x Dla,b]P can be found in
[22, Theorem 4.1].
We readily check that the same result holds on Djfa,b]P x Dfa,b’ once we
observe that
T4y =0, (®uw(z) + Pus(y)), 2,y € Difa,b]?,

or equivalently,
Sl(may) = q>;b1 (S ((I)ab(m), q)ab(y))) , Z,YE Dl[aab]p

and that z and y have no common discontinuity points if and only if ®,(z) and
®,,(y) have no common discontinuity points. [ |

6 LDP for X1 (-) in the space D[0,T]?

The proof of Theorem 2.1, presented in this section, begins with a simple preliminary
lemma.

Lemma 6.1 Assume (L). Then, for each K = 1,2,..., the subsequence { X,k (), n =
1,2,...} in D[0, 1" satisfies the LDP in (D[0,1]P,79) with good rate function K Ix.

13



Proof: Fix K =1,2,.... For any subset B in the Borel o-field of (D[0, 1)?, 75), we
have

1 1
limsup —In P[X,x(-) € B] K limsup —Kln P[X,k(-) € B]

n—oo T n—oo T

1
< K limsup—In P[X,(:) € B]

n—oo T

and

.1 |
liminf —In P[{X,x(-) e B] > K hnn_l)%)rgfgln P[X,() e B].

n—oo n

From these inequalities, it is then plain that the existence of a LDP for the sequence
{Xn(), n=1,2,...} in D[0, 1] with good rate function Ix translates into one for
the subsequence {Xnx(-), n =1,2,...} in D|0, 1)? with good rate function K Ix. ®

The simpler case where T is integer is discussed first.

Proposition 6.2 Assume (L). Then, for each K = 1,2,..., the family {XX(.), n =
1,2,...} satisfies the LDP in (D[0, K|P, 7o) with good rate function I% : D[0, K|P —
[0, 00] given by

IX(p) = KIx(px), €DK (6.20)

where @k is the element of D[0,1]P associated with ¢ through (2.1) (with T = K ).

Proof: Fix K =1,2,... and n=1,2,...; we have

1 lnt] | K%l
XKty = Dz = K— ) =z, te[0,K]
" nia nK 5
Therefore,
X5() = F(Xux(") (6.21)

where the mapping F : D[0,1]? — D[0, K? is defined by
F(2)(t) = Kz(—I%), te[0,K], zeD,1]P .

The S-continuity of F is ensured by Lemma 5.1, and the LDP for the family
{XEK(), n=1,2,...} in D[0,K]P follows from that for the family {X,x(-), n =
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1,2,...} in D[0,1]? (Lemma 6.1) and the Contraction Principle (via (6.21)). The
corresponding rate function I : D[0, K]P — [0, 00] is given by

19 = wt{KIx(w): ot) = K(x), t€[0.K], v € Do, }

= it {KIx(9) : ¥lu) = o(Ku), w€ 0,1}, % € D1}
= KIx(gx), weDO,KP,

and the proof is completed. [ |

We now turn to the proof of Theorem 2.1.
A proof of Theorem 2.1: Fix T > 0. In view of Proposition 6.2 we need only
consider the case when T is non-integer. In fact, Proposition 6.2 already yields
the LDP for the family {X)T1(-), n = 1,2,...} with good rate function I} :
D0, [T]]? — [0, o] given by

@) = [T Ix@r), ¥ € DO, TP, (6.22)

where the element ¢z is associated with ¢ through (2.1).
Next, we note that

XT() = re(XIT), n=1,2,... .

with the restriction rr : D[0, [T} — D[0,T]P being Borel-measurable by Lemma
5.4. The Contraction Principle will thus yield the LDP for {X1 (), n = 1,2,...}
from that for the family {X,Eﬂ(-), n = 1,2,...} provided we can establish the S-
continuity of rr : D[0, [T|]P — D[0,T)? on the effective domain of I £T1 In that
case, the good rate function I% : D[0,T]P — [0,00] is given by (2.2). From (2.1)
and (6.22), we see that D(I ;{T]) is in one-to-one correspondence with D(Ix); in fact
1 belongs to D(I )f(ﬂ) if and only if 471 belongs to D(Ix). Hence, the assumption
on the continuity at t = T%T of the elements in D(Ix) translates into the continuity
at t = T for the elements of D(I )[(T]), and by Lemma 5.4, the restriction rr is thus
S-continuous on the effective domain of I )r{T]. [ |

7 LDP for XI~(-) in Dj[0, T]?
The proof of Theorem 2.2 passes through the intermediate Proposition 7.1.
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Proposition 7.1 Assume (L) and (S). Then, for each K = 1,2,..., the family
{XEK=(-), n=1,2,...} satisfies the LDP in (Dy[0, K]?, 7o) with good rate function
I)Ig’— : Dy[0, KP — [0, 0] given by

5(p) = { K Ix(px(l) —ex(l—-)) if ©(0)=0 o€ D0, KPP (7.23)

. 7
otherwise

where @ is the element of Di[0,1]P associated with ¢ through (2.1) (with T = K ).

Proof: Fix K =1,2,.... Foreachn =1,2,..., we have

Xn ’—(') = - Z Zq st E Z Z; (724)
ni:l— fn-] i=nK+1-—[n-]

where the last step follows from the stationarity of {z,, n =0,%1,%2,...} and the
fact that the shift (nK) does not depend on ¢.
Next, for each ¢ in [0, K], we find after some simple algebra that

nK —[nt] = |[nK —nt] = [n(K-1t)].

Therefore, from (7.24) we get that

1 nK

= FXS(), (7.25)
where the mapping F : D[0, K] — D;[0, KP is defined by
Fz)(t) = 2(K) — 2(K—-t), tel0,K], z¢€ D[0o,K].

By Lemma 5.2, the projection mapping z — z(K) is S-continuous on D[0, K'|P, while
by Lemma 5.1 the mapping z — 2z(K — -) is S-continuous on D[0, K]P. Constant
mappings having no discontinuity points, we can now invoke Lemma 5.5 to conclude
that F is S-continuous on D[0, KP.

By Proposition 6.2 we already know that the family {XX (), n =1,2,...} satis-
fies the LDP in (D0, K]?, 79) with good rate function I¥ given by (6.20). Thus, in
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view of (7.25), and of the S-continuity of F on D0, K?, the Contraction Principle
yields the LDP for the family {F(Xf()), n=12.. } in (D;[0, K1, 79), whence
for the (stochastically equivalent) processes {XX (), n = 1,2,...}. The corre-
sponding good rate function I%_ : D;[0, K]P — [0, 00] is given by

Bt = ot {I¥@):9=FW)}, ¢eDOKP.  (126)

Fix ¢ in D;[0, K|P. The constraint ¢ = F(1) obviously requires that ¢ vanishes
at t = 0, whence IX_(p) = co whenever ¢(0) # 0. On the other hand, XX (0) =0
foralln =1,2,... and the set {¢p € D[0, K]P : (0) = 0} being closed in D[0, K]?, we
conclude from Lemma 4.1.5 in [11, p. 104] that I% (1) = oo for 1(0) # 0. Therefore,
with ¢(0) = 0, the constraint on ¢ entering (7.26) can be further sharpened to

$(0) =0, (t) =¥(K) - (K —1), tel0 K]

Expressing ¢ in terms of ¢, we find

N
>
!
pS
X
=
=
i

P(K) —p(K —t), t€(0,K]

and the desired expression (7.23) is now easily deduced from (6.20) and (7.26). H

A proof of Theorem 2.2: Fix T > 0. In view of Proposition 7.1 we need only
consider the case when T is non-integer. In fact, by Proposition 7.1 the fam-
ily {Xn[T]’—(-), n = 1,2,...} satisfies the LDP with good rate function I){{T]’" :
D;[0, [T]]P — [0, 0] given by (2.4).

Next, we note that

Xy = rp(X[Th7), n=1,2,...

n

with the restriction rr : D;[0, [T} — D;[0, T]? being Borel-measurable by Lemma
5.4. The Contraction Principle will thus yield the LDP for {XI'~(-), n=1,2,...}
from that for the family {X,ET]’_(-), n =1,2,...} provided we can establish that
rr : D0, [T]]P — D;[0,T)? is S-continuous on the effective domain of I )[(T]’_,
in which case the good rate function IZ_ : Dj[0,T]P — [0,00] will be given by
(2.3). But, in view of (2.4) if 1 belongs to the effective domain of I)E‘,j, then
Yrr1(1) — ¥ (1 — ) is necessarily an element of D(Ix), and the continuity at
t=1- T%T of the elements in D(Ix) now translates into the continuity at ¢t = T for

1. By Lemma 5.4, the restriction rp is thus S-continuous on the effective domain
of I )f(ﬂ . [ ]
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8 LDP for (X7(-), XT(-) in D[0, TP x Dy[0,T}?

In order to prove the main result of the paper (Theorem 2.3), we begin by deriving

the result for the particular situation where T is integer.

Proposition 8.1 Assume (L) and (S). Assume further that every element of the
effective domain of Ix is continuous at t = %

Then, for each K = 1,2,..., the family {(X,{{(-),Xf’"(-)) , n= 1,2,...} sat-
isfies the LDP in the product space (D[0,KP,19) x (D[0, K|P,19) with good rate

Junction I¥ . _ : D[0, K]P x D0, K]P — [0,00] given by

2K Ix(5p) i 0) = p2(0) =0
I)I({X—(‘P17‘P2) = X(2K<p) f (pl() (pQ( ) 3 (827)
’ 00 otherwise
for @1 in D[0, K|P, @2 in Di[0, K]P and ¢ : [0,1] — RP given by
1
p2(K) — p2(K —2Kt), tel0,
ot) = %3] (8.28)

02 (K) + 012Kt — K), te [%, 1

For ¢; in D[0, K]? and @9 in D;[0, K]P, the mapping ¢ defined by (8.28) is indeed
right-continuous with left-hand limits, and is therefore an element of D|0, 1]P.
Proof: Fix K=1,2,..;forn=1,2,..., we have

] 0
(x50, x570) = (%;m% > z)

i=1—[n-]
( 1 [n]+nK 1 nK
—st

1

M i—nK+1 M i—nK+1—[n.

where the last step follows from the stationarity of {z,, n =0,+1,%2,...} and the
fact that the shift (nK) does not depend on ¢.
Next, for each ¢ in [0, K], we find after some simple algebra that

nK + |nt] = [nK+nt] = |n(t+ K)|

and
nK —[nt] = [nK—-nt] = [n(K-1)] .
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Therefore, from (8.29) we get that

[n(K+)] nK
(Xrlz(()aXrIz{’_()) =st (% Z Lo s l Z )sz)

i=nK+1 i1 (K —
= — Ti— =) Ti, =) Tji— — z; | -
[t nia ni noia

(8.30)

Finally, upon noting that

| n(E£s)] [2nK 532
D Z i
=1 =1
K=xs
= 2KX2nK(W)1 s € [0,K],

we can rewrite (8.30) as

(XX (), X597 ()
— (2K Xoni () = 2K Xonk(3) , 2K Xonic(3) — 2K inK(%))
= G(Xomk (")) (8.31)

where the mapping G : D[0,1]? — D0, K|P x D;[0, KI? is defined by
K+t 1

G(2)(t) = 2Kz(12K )_ﬂ;z_fg) , te0,K], zeD[0,1]P.

We now argue that G is Borel-measurable and S-continuous on D(Ix). By [12,
p. 55| and Proposition I in [7, p. 44], it suffices to show these properties for each
of the coordinate mappings Gy and G5 of G. Because of the similarity between the
two coordinate mappings, we only consider Gy : z — 2K z(g—;) — 2K z(3).

By Lemma 5.2, the projection mapping z — z(%) is Borel-measurable, and S-
continuous on D(Ix) under the assumption that the elements of D(Ix) are contin-
uous at t = % By Lemma 5.1, the mapping z — 2K z(g—l’(‘i) is S-continuous (hence
Borel-measurable), and it follows easily by [12, p. 55] and Proposition I in [7, p. 44]

1

that the mapping z — (2K z(%), z(i)) is Borel-measurable and S-continuous on

D(Ix). Finally, upon noting that constant mappings have no discontinuity point,
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we again conclude by Lemma 5.5 to the Borel-measurability and S-continuity of Gy
on 'D(Ix).

Next, by Lemma 6.1 the family {Xo,x(-), n = 1,2,...} satisfies the LDP in
(D[0,1]P, 79) with good rate function 2K I'y. Thus, in view of (8.31), and of the
Borel-measurability and S-continuity of G on D(Ix) = D(2KIx), the Contraction
Principle readily yields the LDP for {G(Xonk(-)), n=1,2,...} in (D[0, K?, 79) X
(Dy[0, K]P, 79), whence for the (stochastically equivalent) processes { (XX (:), X~ (), n=
1,2,...}. The corresponding rate function I ,_ : D[0, K]P x Dy[0, K]P — [0, 0] is
good and given by ’

IX (1, 02) (8.32)
= weli)l%(f).,l]l’ {2KIX(1/)) : (‘Pla‘P?) = G(w)}’ ZS D[OaK]pa P2 € Dl[O’K]p'

Fix ¢; in D[0,K]P and @9 in D;[0, K]P. Here, the constraint (¢, p2) = G(¢)
requires ¢;(0) = 2(0) = 0, so that If({’x_(gol,(pg) = oo if either ¢;(0) # 0 or
©2(0) # 0. Moreover, as pointed out in the proof of Proposition 7.1, Ix(¢) = oo if
1(0) # 0, and in the case p1(0) = 2(0) = 0, the non-vacuous constraint entering
the optimization problem (8.32) thus reduces to

p2(t) = 2K4(3) —2K9(55)

Solving for 1 in terms of ¢; and ¢, we find

‘/’(l) = L<p2(K)- { P(t) = 9(3)+xp1RKt—K), t€l[3,1]
27 2K P(t) = Pd) - Lpa(K —2K1), telo,}]
and (8.32) yields the desired expression (8.27) for I fg - -

A proof of Theorem 2.3: Fix T' > 0. In view of Proposition 8.1 we need only con-
sider T non-integer. In fact, under the assumption that {X,(-), n =1,2,...} satisfy
the LDP with each of the elements of D(Ix) being continuous at t = %, Proposition
8.1 (with K = [T") already yields the LDP for { (X["1(), X} ()}, n=1,2,.. .}
in D[0, TJ? x Dy[0, T|P with good rate function Iy _ : D0, [T? x Di[0, [T —
[0, 00] given by (2.6)—(2.7).

Here we have
rr (1), X[ ()) = (X)L XP7()), n=12,...,
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with the restriction mapping 71 : D[0, [T]]P x D;[0, [T']]P — D[0,T}? x D;[0,T]P. By
(12, p. 55] and Lemma 5.4, the restriction mapping 71 is Borel-measurable. Hence,
the Contraction Principle yields the LDP for {(XI(-),XD>=(})), n = 1,2,...} in
(D[0, TP, 7o) x (Dy[0, TP, 79) with good rate function I;";,X_ : D[0, TP x D0, TP —

[T]
Iy x--

view of Lemma 5.4 and Proposition I in [7, p. 49], this latter requirement is implied

[0, 00] given by (2.5) provided 7r is continuous on the effective domain of In

by the continuity at ¢ = T of each element in the effective domain of I LT;{_, which
is easily seen via (8.28) to be a consequence of the assumption on the continuity of

the elements of D(Ix) at t = 5 £ TI'C%T [ |

9 LDP for X7(-) with integral rate function

Under Assumption (I), the continuity assumptions required in Theorems 2.1, 2.2
and 2.3 are automatically satisfied and the rate functions can be explicitly computed;
the next technical lemma is key to the calculations. Let AC[a,b]? denote the space
of absolutely continuous functions ¢ : [a,b] — RP.

Lemma 9.1 Consider a Borel-measurable mapping r : RP — [0,00] such that

infocre r(2) = 0. Then,

inf{/br(z/}(t)) dt: e AC[a,b]p} —0, 0<a<h. (9.33)

Proof: By considering the family of functions {9, = € IR} in AC|[a,b)? defined
by ¥(t) = z t, for ¢ in [a, b], we get the bounds

b . b .
0 < inf { / r((t)) dt < o € AC[a,b]p} < inf [ r(e(t)) dt
a zeR? /,
= (b-a) inf r(a),
and (9.33) follows easily from the assumptions on r. [ ]

A proof of Corollary 2.4: Fix T > 0. Because D(Ix) C ACy[0,1]P, each element
of D(Ix) is continuous at t = T%T’ and by Theorem 2.1, the family {X1(:), n =
1,2,...} satisfies the LDP with good rate function I¥ given by (2.2). In order to
simplify this expression, we substitute the form (2.8) for Ix into (2.2). We note
that for ¢ not element of ACy[0,TP, any ¢ in D0, [T]]? such that ¢ = ¢ on [0,T]
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will not belong to ACy[0, [T']]P, and the associated mapping 17 will not belong
to ACy[0,1?. Combining these remarks, we find that I%(p) = oo for ¢ not in
ACy[0,T)P. On the other hand, for ¢ in ACyH[0,T]?, we get

() = {i 1/ ()t o =y on 0,7}

¢€ACo[0 [T

B zpeACO[o TP {[ 1 / [T]t))dt @ =1 on |0, T]}
= lnf {/rT1T(¢(t))dt¢:¢ on [0 T]}
YEACH[0,[T1)P | Jo : ,

T _ o
= [ remar+ e (/T rw(t))dt)

and the desired conclusion follows by a direct application of Lemma 9.1. [ ]

The proof of Corollary 2.5 can be handled similarly, with the details left to the
interested reader.
A proof of Corollary 2.6: Fix T' > 0. With D(Ix) C ACy[0,1]P, the elements of
D(Ix) are automatically continuous at t = 1 and t = 3 + ﬂzf}—], and by Theorem 2.3
the LDP for {(XI'(-), X~ (:)), n=1,2,...} holds with good rate function given by
(2.5). We claim that under the assumed expression (2.8), the rate function I )[( ;(_
given by (8.27) takes the form

/om r(@u()) dt + /Om r(2()dt i 1,00 € ACO[0, [T

00 otherwise

I;[(jjg—(%ﬂpz) = ,
and the desired expression (2.11) follows upon applying Lemma 9.1 once again, as
in the proof of Corollary 2.4.

To that end, we turn to the expression (8.27) for I )f( ;(_ It is plain from the
definition (8.28) of ¢ that ¢; and @2 belong to ACy[0, K]P if and only if ¢ belongs
to ACy[0,1]P. Hence, under (2.8), Ix(ﬂlﬂgo) = oo for ¢ not in ACy[0,1}?, and
I[ ] _(¢1,¢92) = oo for either ¢; or ps not in ACy[0, [T]]. Finally, for ¢; and ¢3 in
ACO [0, [T']]P, we see that

() = [ rlsmo®)dt
2[T] o 2[T]

1

- /Ozr(¢z(fT1—2[T]t))dt + /:r(<p1(2[T'|t—|'T]))dt
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and a change of variable yields the desired expression. [ |

A Appendix

A.1 A proof of Theorem 3.3

We begin with some elementary topological facts whose proof can be found in [1,
Lemma A.2].

Lemma A.1 Let (X,7x) and (Y, 7y) be two topological spaces, and assume the
mapping f: X — Y to be continuous on the subset D of X. Then, for any subset '

of Y we have the inclusions
FIT)ND c f4T) and fHI°)ND C (f-l(r))".

To show that I’ is indeed a good rate function, we first note that y belongs to
D(I') if and only if it belongs to f(D(I)), so that D(I') = f(D(I)) and D(I) C
D).

Next, fix @ > 0 and consider the level sets Uy (a) and ¥r(a): If y belongs to
f(¥r(a)), then y = f(z) for some z in ¥;(a) and by the definition of I, we get
I'(y) < I(z) < . Hence, y belongs to ¥(a) and the inclusion f(¥7(a)) C Up(a)
follows.

On the other hand, if y belongs to ¥ («), then by definition of the infimum, for

every any n = 1,2, ..., there exists z, in X such that f(z,) =y and
1
I'(y) < In) < I+ (A34

The sequence {z,, n =1,2,...} belongs to the compdct set ¥(a+1), thus contains
a subsequence {zn,, kK =1,2,...} converging to some z* in U;(a+1). Upon letting
n go to oo in (A.34), we readily obtain nli_)ngo I(z,) = I'(y), and the lower semi-
continuity of I then yields

* . . _ ']
I6") < limintI(a) = 7).
Hence, z* belongs in fact to ¥r(a); by continuity of f at z*, we also have

f(@*) = lim f(zn,) =y

k—o00
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and the conclusion I'(y) < I(z*) follows. From the reverse inequality obtained
earlier, we finally get I'(y) = I(z*), and y thus belongs to f(¥;(a)). The equality
Up(a) = f(¥r(e)) is then immediate.

Next, to show compactness of the level set Up/(«), we consider an open covering
UaOq (in Y) of ¥y () = f(¥(a)). Using the continuity of f on D(I), we conclude
from Lemma A.1l that

Ur(@) = ¥r(@)ND()
c U (I (00 nD())

c U(roa)

and Uy (f~1(04))° is indeed an open covering of ¥r(c). The rate function I being
good, ¥(a) is compact, and there exists o, ..., a;, such that

n

¥r(@) ¢ | (F70a))" C Uf

1=1
whence

Up(a) = f(Ur(a an,

Therefore, for each o > 0, ¥ /() is compact and I’ is a good rate function.
Before establishing the LDP bounds, we note from (3.15) that

! = i . A3
ifI'w) = _inf I() TCY (A.35)

Now, let ' be a Borel set in ). By Borel-measurability of f, f~1(T') is a Borel
set in X, and we get from the upper bound in the LDP for {u,, n=1,2,...}

limsupllnunof_l(F) < — inf I(z). (A.36)
n—oo Tt zef~1(T)

From the definition of the effective domain, Lemma A.1 (f is continuous on D(I))
and (A.35), we obtain

inf {I(z) : z € FI(T) }

inf {I(z) : 2 € F(T) N D(I)}

inf{I(w) cxe ft (f)}

inf {I'(y) (Y € f} (A.37)

v
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and the LDP upper bound for {u, o f~!, n = 1,2,...} follows from (A.36) and
(A.37).
Similarly, from the lower bound in the LDP for {u,, n =1,2,...}, we get

.ol _ :
llnlr_l)géfﬁlnynof Ty > —  inf I(2), (A.38)

and by Lemma A.1 and (A.35) we see that

inf {I(z) : 2 € (f—l(r))°}

IA

inf{I(a:) Lz e fH)ND)}
= inf{I(x) ‘z € f—l(r°)}
= inf{I'(y):y eI}. (A.39)

The LDP lower bound for {u, o f~!, n = 1,2,...} then becomes an immediate
consequence of (A.38) and (A.39). [

A.2 A technical Lemma
Lemma A.2 For a # 0 and B in R, let ¢ = min{oaa + 3, ab+ B} and d =
max{aa + B, ab+ B}. Define the mapping f : [c,d] — [a,b] by

1
_a

F@®)

Then, for each pair x and y in D[a,b]P (resp. in Dj[a,b]?), we have

(t_ﬁ)a te [C’d]'

< sup |z o f(t) —yo fo )\(t)|> v ( sup |A(t) — t]) (A.40)

tefe,d] t€[c,d]

- <sup Iw(t)—yofO/\of‘l(tN) v (|a| sup lfvof-1<t)—t|),

telab] t€ab]

for all A in Aoy, and

!
inf (sup 5(t) —yo N(H)| v  sup |1nM|> (A.41)
NeAap \ tea,b] t#s€(a,b] t—s

= _inf (sup |zo f(t)—yofoA(t) V sup llnwo

Nehea \tefe,d] tsele,d] t—=s
Proof: Let z and y in D[a, b (or Djfa,b]P). First note that for any X in A,

zo f(t) —yofoX(t) = 2(f(t) —yo foX(FHF®)), teled,
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whence, f being a bijection from [c, d] onto [a, b],

sup |z o f(t) —yo foA(®)] = sup |z(t) —yo foXo fTH(H)]. (A.42)
te[C,d] te[a,b]
On the other hand, upon using the equality
1
f(t)—f(S)Z—-(t—S), S,tE[C,d]-

«
derived from the definition of f, we see for each X in A4 that

sup [A(t) —¢| = sup [A(f7I(t)) — F7 (D)
tefe,d] t€fab]
= ;ﬁ#ﬂf o) -1 (')
= sup |o|[fodo fl(t) —t|. (A.43)
te(a,b]

Equality (A.40) then becomes an easy consequence of (A.42) and (A.43).
Similarly, for all A in A.; we have

D)~ Ms), o f71(t) — Ao f7(s)
It e B P = 1@) e |
B F(of1®) — £ (ro f7(s)
= o I e = ey
o mlerel 0 feres ),
s#t€[a,b] t—s

(A.44)

Finally, f and f~! are either both strictly increasing (a > 0) or both strictly de-
creasing (o < 0). Hence, f o Xo f~! spans Ay as A spans Agg, and the desired
equality (A.41) follows from (A.42) and (A.44). ]

A.3 A proof of Lemma 5.3

Let {zn, n =1,2,...} be a sequence in D[a, b]P which is S-converging to z, and let ¢
in (a, b) be a continuity point of z. By definition of S-convergence, {z,, n =1,2,...}
is Ji-convergent to z, and there exists a sequence of mapping {\,, n=1,2,...} in
Agp such that

lim sup |zn(t)—zoAu(t)] = lim sup |A\,(t)—t] = lim sup |A;1(t)—t| = 0.

N0 tcla,b] "% te(a,b) "0 4 la,b]

(A.45)
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Because we may not have A, (c) = ¢, the restriction of A, to [a,c] (resp. [c,b]) may
not be in Ay (resp. Ag), and this prevents us from obtaining the convergence of
the restrictions of {z,, n = 1,2,...} on Da,c]? and Dlc,b]P directly via (A.45).
However, it is possible to construct from {\,, n = 1,2,...} a sequence {op, n =
1,2,...} in Agp with op(c) = c for alln =1,2,..., such that

nli’rg%z\[i%] |zn(t) — 2 0 on(t)] = nll)rglo t:}g)b] lon(t) —t| = 0.

To that end, for each n = 1,2,..., we define ¢, and C), by
. 1 1 1 _ 1
¢p = min{c— E,)\nl(c - ﬁ)} and C, = max{c+ e A e+ E)} (A.46)

Fix n = 1,2,... large enough so that [c,,Cp] C [a,b]. We construct the mapping
on ¢ [a,b] = [a,b] as follows: If A,(c) < ¢, we set o, = A, on [a,c — 2] and on
[Ant(c+1),8], and complete o, on [c— £, c] and [¢, \; (c+ L)] by a piecewise linear
interpolation passing through the point (¢,c¢). On the other hand, if A,(c) > ¢,
we set 0, = A\, on [a, ;1 (c — %)] and [c + 71—1,b], and complete o, similarly by a
linear interpolation passing trough the point (c,c¢). By taking into account both
constructions, we can readily check that

sup [An(t) —on(t)] < sup |Au(t) —ou(t)|
t€(a,b] t€[cn,Cn}

I)‘n(cn) - An(cn)| (A47)

INA

Furthermore, because
1 1
)‘n(Cn) = max{)\n(c + ﬁ), c+ ;}, (A48)

we see that lim, oo An(Cr) = ¢ by the uniform convergence (A.45); similarly, we
find that lim, o An(cy) = c. It is now plain from (A.47) that

lim sup |\ (t) —on(t)] = 0,

n—00 tE[a,b]| " "

whence
lim sup |on(t)—t] = 0 (A.49)

N0 te[a,b]
by virtue of the triangle inequality and of (A.45).
For large enough n = 1,2, ..., the definition of the supremum yields the existence
of some t, in [¢,, Cy] such that

1
sup |z oA (t) —zoon(t)] < =4z 0 A(tn) — z 0 on(tn)l (A.50)
t€[en,Cn) n
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The functions A, and o, being monotone increasing, we get lim,_,o0 An(tn) =

lim, 00 on(tn) = ¢, and by the continuity of z at ¢ we finally see that

0 < lim sup |zoA(t)—zoon(t)] < |z(c)—z(c)] = 0 (A.51)

n—00 tE[Cn:Cn] -

upon letting n go to infinity in (A.50).

Consequently, as we have

sup [zn(t) —zoon(t)] < sup |zn(t) -z o0 An(f)| + sup |z o An(t) —zo0on(t)] -

t<(a,b] tela,b] t€fa,b]
< sup |zp(t) —z oAy (t)|+ sup |z o Au(E) — z o on(t),
t€[a,b] t€[en,Cn)

for large enough n for which o, is defined, we get from (A.45) and (A.51) that

lim sup {z,(f) —zoo,(t)] = 0. A.52
iz, sup [an() =20 0a(0) (A52)
The desired result easily follows (after renumbering of o,) from (A.49) and (A.52)
by considering the restrictions of {o,, n = 1,2,...} on [a,c] and [¢, b], once it is

recalled that for each n = 1,2,..., o, belongs to Ay with o,(c) =c. [
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