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Vicinal surfaces can exhibit a number of different instabilities and step pat-

tern formation that are important in directed growth and nanofabrication. This

dissertation attempts to present some theoretical progress made in understanding

and predicting the evolution of surface morphology under direct current heating.

We study current-induced instabilities found on both Si(111) and Si(001) sur-

faces with a physically suggestive two-region diffusion model, motivated by the idea

of surface reconstruction or rebonding that often occurs on semiconductor surfaces.

The model not only gives a coherent and unified view of the seemingly different

instabilities on both surfaces, but also provides a physical way of interpreting the

boundary conditions in classic sharp step models. In particular, we find that the

effective kinetic coefficient can be negative.

The studies of instabilities enlighten us to pursue a systematic study of the

general linear kinetics boundary conditions in sharp step models. We construct a

one dimensional discrete hopping model that takes into account both the asymmetry

in the hopping rates near a step and the finite probability of incorporation into the

solid at the step site. By appropriate extrapolation, we relate the kinetic coefficient

and permeability rate in general sharp step models to the physically suggestive



parameters of the hopping models. The derivation shows in general the kinetic rate

parameters can be negative when diffusion is faster near the step than on terraces.

The subsequent step pattern formation resulting from current-induced instabil-

ities are also discussed. The velocity function formalism is applied to step bunching

and in-phase wandering. The more intricate step wandering patterns are treated by

a nonlinear evolution equation derived from a geometric representation of the two

dimensional curves. The results from numerical calculations resemble the patterns

observed in experiments. Two dimensional kinetic Monte Carlo simulations are im-

plemented in a qualitative way, with an emphasis on the physical realization of the

effective boundary conditions in terms of microscopic hopping rates. The simula-

tions confirm both the theory of current-induced instabilities and the derivation of

boundary conditions.
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Chapter 1

Introduction

1.1 Overview

The main purpose of this dissertation is to develop theoretical understanding of the

evolution of surface morphology at length scales from nanometers to microns. First

of all, a wealth of experimental data that could lead to an understanding at these

length scales has become available with the development of powerful microscopic

probing techniques, such scanning tunneling microscopy (STM), which essentially

allow the observation of atomic structures on crystal surfaces. More importantly,

the forefront of current research is focused on developing novel materials and device

properties in these length scales. The combination of the two have greatly inspired

the study of fundamental physics on crystal surfaces. One of the interesting sub-

jects is to study the morphological instabilities and evolution under various external

driving fields (eg. growth, etching and electric current), since the patterns generated

may provide useful templates for nanoscale fabrication.

In particular, this dissertation centers around the instabilities and morpholog-

ical evolutions on silicon surfaces with a particular driving field - a direct electric

current. This problem is of great interest not only because it serves as a physi-

cal example of pattern formation on a length scale of interest in a system driven
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far from equilibrium by a weak and controllable field, but also because it provides

a unique and experimentally controllable probe that can uncover many aspects of

fundamental physics on crystal surfaces.

The dissertation is structured as the following. In this first chapter, the ther-

modynamics of vicinal surfaces are briefly reviewed to provide a necessary back-

ground. An overview of step dynamics as a moving boundary problem follows, to

introduce some general idea of instabilities and boundary conditions that will be

the main focus in the rest of the dissertation.

In Chapter 2 and 3, we study in detail of the physical origins of current-induced

instabilities on both Si(111) and Si(001) surfaces, and provide a coherent and unified

view of current-induced instabilities. The results from these studies point to the im-

portance and necessity of further understanding on the general boundary conditions

for modeling step dynamics. We pursue this general problem in Chapter 4 with a

physically instructive hopping model, that relates the “microscopic” parameters in

kinetic Monte Carlo simulations to the effective parameters in continuum boundary

conditions.

Having understood the instabilities and related issue of boundary conditions,

in Chapter 5 we study the interesting step pattern formations as the results of the

current-induced instabilities. Three different approaches - velocity function integra-

tion, geometric formulation and kinetic Monte Carlo simulation will be discussed.

Finally, some concluding remarks are given in Chapter 6.

1.2 Surface Morphology and Representa-

tion

A surface is a boundary between two macroscopic regions with different phases. For

the surfaces of primary interest in this thesis, one of the phases is a crystalline solid.

2



In order to create such a surface, one has to break chemical bonds, and this costs

energy. At finite temperature, it is more appropriate to consider free energy. One

can think of breaking a crystalline material along a plane. The process results in

two surfaces with equal area S, and it requires a certain amount of work W . The

surface free energy per unit area or surface tension is defined as σ ≡ W/ (2S).

Usually the solid phase is anisotropic, and thus the surface tension σ depends

on surface orientation. At low temperatures, crystallographic orientations of high

symmetry (low Miller index) generally represent local minima in the surface free

energy. The surfaces misoriented at small angles to such high symmetry planes

are called vicinal surfaces, which consist of terraces at high symmetry orientation

separated by steps of atomic-layer height. It is often useful to define the surface

free energy per unit projected area f (θ, T ) ≡ σ (θ, T ) / cos θ in the high symmetry

plane, where θ is the misorientation angle and T is temperature. When the angle

is small and the step density is low, the reduced free energy density takes the form

[1, 2]

f (θ, T ) = f0 (T ) +
β (T )

h
|tan θ| + g

h3
|tan θ|3 . (1.1)

The first term f0 (T ) = σ (0, T ) is the surface free energy per unit area of the high

symmetry plane. The second term represents the step free energy contribution, in

which β (T ) is the free energy per unit length for forming an isolated single-layer

height (denoted as h) step and |tan θ| /h is the step density. The last term is due to

interactions between steps and g is a parameter that depends on the step stiffness

(to be defined in next section), temperature and specific type of interaction [3].

It is easy to see from Eq. (1.1) that the surface free energy has a cusp singu-

larity at the orientation of the high symmetry plane. At high enough temperatures

where excitations on terraces occur, it is known that the step free energy will even-

tually vanish and the surface becomes rough since its free energy has minima at

nonvanishing step densities. This corresponds to a well-studied phase transition -

often called roughening transition [4, 5], and the exact temperature at which the
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step free energy vanishes is called the roughening temperature (TR). The roughening

transition of the high symmetry surface occurs below the melting point (TR < TM),

and is a very weak transition in the sense that the theoretical result from renormal-

ization group calculations shows [4, 5, 6] that

β (T ) ∼ exp

[
−

√
T1

TR − T

]
, (1.2)

where T1 is a constant.

Above TR, fluctuations are sufficiently strong that the discreteness of the crys-

tal lattice becomes negligible, so that the surface may be represented by a continuum

height function z (x, y) in Cartesian coordinates. The surface tension is then a func-

tion of the partial derivatives zx = ∂z/∂x and zy = ∂z/∂y. The total surface free

energy at a given temperature is simply

F =

∫∫
σ (zx, zy)

√
1 + z2

x + z2
ydxdy =

∫∫
f (zx, zy) dxdy. (1.3)

Throughout the thesis, the surfaces of interest are vicinal surfaces that are

well below TR of the corresponding high symmetry plane. The morphology of such

surfaces is governed by the behavior of discrete steps. From the above discussion,

one can see that it is appropriate to incorporate this discreteness in the surface rep-

resentation at temperatures below TR. However, it turns out possible (see discussion

in the next section) to maintain much of the computational simplicity of a contin-

uum approach by treating the step as a continuum string-like entity. Therefore, the

surface is characterized by xn (y), where n = 1, 2, ... is the step index and y is the

continuum dimension along the step. The surface free energy is thus a functional of

xn (y), which can be written as a sum of the energies of individual steps and their

interactions

F ({xn (y)}) =

∫
dy

∑

n

[β (φ) + V ({wn (y)})] , (1.4)

where φ is the angle characterizing local step direction, which is a function of x′
n (y)

in Cartesian coordinates (prime here denotes derivative with respect to y). V is

effective step interaction that depends on step separations Wn (y).
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1.3 Thermodynamics of Vicinal Steps

The thermodynamic properties of a single step are contained in β (φ) — the step

free energy per unit length. However, to further investigate β (φ), one has to think

about whether there is a similar roughening transition for a one dimensional step

as for two dimensional surfaces. The answer is that the step is always rough at

any finite temperature, which justifies the validity of the continuum description on

this dimension in the previous section. The reason lies in the fact that the creation

of a kink (taking one atom out of the straight step creates two kinks) on a one

dimensional step requires only a fixed small energy cost. Once one such kink has

formed neighboring kinks can be very easily excited. Thus there is a finite kink

density at any temperatures above zero, and step fluctuations are easily excited.

1.3.1 An Isolated Step - Chemical Potential and

Stiffness

At any finite temperature, the free energy for an isolated step can be conveniently

written as a continuum integral in terms of geometrical quantities

F =

∫
dsβ (φ) , (1.5)

where s denotes the arc length along the step. The step chemical potential, defined

as the free energy change upon adding an atom to the step, can be obtained by

taking the derivative of F with respect to a virtual displacement δξ of the step

position

µ = Ω
δF

δξ
= Ωβ̃κ, (1.6)

in which β̃ is commonly called step stiffness that has the form related to the step

free energy

β̃ ≡ β +
∂2β

∂φ2
(1.7)
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and κ ≡ ∂φ/∂s is the local step curvature.

Finally, it is straightforward to derive Eqs. (1.5-1.7) using Cartesian coordi-

nates in accord with Eq. (1.4). When the step fluctuations are small (x′ (y) � 1),

this yields

F =

∫
dy

β̃

2

[
∂x

∂y

]2

(1.8)

and the linearized chemical potential µ = Ωβ̃∂2x/∂y2.

1.3.2 A Step Array — Step-Step Repulsions

Eq. (1.6) only applies to an isolated step. It is more of interest to determine the step

chemical potential in a step array, which will be modified by step-step interactions

(V ({wn (y)}) in Eq. (1.4)). The most evident interaction between steps is the step-

step repulsion induced by the configurational entropy. The transverse fluctuations of

a step tend to be suppressed by its neighbors due to the prohibitively high energy cost

associated with step crossings and overhangs. This produces an effective repulsion

between steps that favors uniform step spacing at equilibrium. Clearly the repulsive

interaction between steps depends on the step separation. It was shown by Gruber

and Mullins [1] that the interaction is proportional to 1/w2, where w is the average

step separation in the uniform step array. Other types of interactions exist, such as

elastic [7, 8] or dipole interactions [9], which generally give rise to the same inverse

square dependence on step separations.

Assuming only nearest- neighbor interactions, the step interaction term in Eq.

(1.4) can be effectively treated as

V ({wn (y)}) = g/w2
n (y) , (1.9)

where g is some constant and wn (y) ≡ xn+1 (y) − xn (y) is the local terrace width.
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Therefore, the step chemical potential in a step array is given by

µn = µ + 2g

[
1

w3
n−1 (y)

− 1

w3
n (y)

]
, (1.10)

in which µ is the isolated step chemical potential given by Eq. (1.6).

1.4 Step Dynamics - Boundary Conditions

and Instabilities

In many interesting practical processes including crystal growth [10], etching [11]

and surface electromigration [12], the vicinal surface is driven far from equilibrium.

Typically, there is a non uniform adatom (atoms adsorbed on surfaces) concentration

field c (x, y, t) on each terrace. The steps are boundaries separating the concentra-

tion fields on neighboring terraces. The steps serve as sources and sinks of adatoms,

and evolve in time by exchanging mass with the terrace concentration fields. Hence

the step dynamics belongs to the class of moving boundary problems. The formu-

lation of step dynamics generally requires consideration of both the dynamics of

the adatom concentration field and the appropriate boundary conditions at steps.

While the adatom concentration field can be treated quite straightforwardly in most

cases, the appropriate formulation of boundary conditions can be very subtle, since

it inevitably involves assumptions about the underlying microscopic physics. In

fact, the interplay between the external driving force and step boundary conditions

constitutes the major theme in the studies of dynamic modeling of vicinal steps.

This interplay often results in kinetic instabilities. Two types of step instabil-

ities are commonly seen on vicinal surfaces. One is step bunching - steps are closely

packed and separated by wide terraces, which is essentially a one dimensional in-

stability. The other is step wandering - steps undergo long wavelength undulations,

which requires a two dimensional treatment of the step.
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It is well known that the general solution of the moving boundary problem

as described above is a formidable challenge [13, 14]. For this reason, the problem

is usually formulated using the quasi-static approximation. As will be discussed in

detail later, this assumes that the terrace concentration field relaxes faster that the

typical time scale for step motion. Thus the terrace concentration field can be first

determined for fixed step positions. This is very similar to the Born-Oppenheimer

approximation in quantum mechanics, which separates the different time scales for

electronic and nuclear motion. Using this approximation, the instabilities can be an-

alyzed by linear stability analyses on fairly simple surface morphologies correspond-

ing to the steady states, and the subsequent surface morphology can be carried out

by numerical integration.
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Chapter 2

Current-Induced Instabilities on

Vicinal Si(111) Surfaces

2.1 Electromigration Experiments on Vic-

inal Si(111) Surfaces

Electromigration refers to the enhanced diffusion of atoms in response to an applied

electric field. This phenomenon has long been of great scientific and technological

interest, particularly in metals, since it represents the failure mode of many micro-

electronic devices [15, 16]. Researchers have also studied surface electromigration,

the enhanced motion of adatoms on a surface in response to an applied field. In

particular, current induced instabilities on vicinal Si(111) surfaces have received a

great deal of attention since the first experiments were carried out by Latyshev et al.

in 1989 [17]. They observed the formation of closely packed step bunches separated

by wide step-free terraces after a vicinal surface with monatomic height and equidis-

tant steps is resistively heated with a properly directed direct electric current. The

uniform step train is stable when the current flows in the opposite direction. Since

then, current induced step bunching on Si(111) surfaces have been studied by several
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research groups using various modern microscopy techniques (AFM, REM, STM,

synchrotron X-ray scattering, etc.) [18, 19, 20, 21, 22, 23, 24, 25, 26]. These ex-

periments show clearly that the instabilities can manifest themselves with different

characteristic step patterns.

Moreover they show that the bunching instability has a mysterious dependence

on temperature. At temperatures between the first-order phase transition (Tc
∼=

830◦C) [27, 28] between the 7×7 and 1×1 reconstructed surface and about 1050◦C

(we shall call this range I), the bunching instability occurs with a step-down direction

of current. At higher temperatures, in the range of 1050◦C−1150◦C (range II), the

direction of current causing the bunching instability reverses. Surprisingly, above

1150◦C (range III) it changes back again to the step-down direction. Moreover,

recent experiments [29, 30, 31] have revealed that the step train in range II under a

step-down current, originally thought to be completely regular and stable, undergoes

a novel in-phase wandering instability after being heated for a longer time.

2.2 Theoretical Development

The first quantitative treatment of step flow on crystal surface was carried out by

Burton, Cabrera and Frank [32] more that fifty years ago. They assumed that the

rate limiting step for mass transfer on vicinal surfaces arises from adatom diffusion

on the terraces. Steps at the boundaries of terraces were assumed to act as perfect

sinks or sources for adatoms so that local equilibrium at the step edges is always

maintained. Since then, many authors have offered various generalizations and

clarifications of the BCF theory. Perhaps the most significant modification is to

account for the deviation from local equilibrium arising from the finite adatom

attachment/detachment rate at both edges of the step. This is indeed necessary

for materials such as semiconductors where the mass exchange between steps and

terrace edges is not fast enough to maintain local equilibrium.
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In important work Stoyanov [33, 34] first extended the BCF theory to describe

electromigration on vicinal Si(111) surfaces. He proposed that each surface adatom

acquires an effective charge z∗ and thus feels a constant force (the electromigra-

tion force, usually written as F = z∗eE) from the electric field. The adatoms thus

undergo driven diffusion in the presence on an electric field. Within this general

mathematical framework a number of researchers have proposed different physical

mechanisms to account for particular aspects of this mysterious phenomenon. In

particular, two main theories have been suggested to explain the existence of elec-

tromigration instabilities, as well as the change in the stable and unstable current

directions.

1. Attachment/detachment limited kinetics in all temperature regimes arising

from step reconstruction along with a change of sign of the effective charge [35, 36].

This idea is motivated by the physics of rebonding and surface reconstruction that

can occur near steps as the system tries to minimize the excess free energy associated

with “broken bonds” at the step edge. The step reconstruction gives rise to an energy

barrier to incorporate an additional adatom into the step, since it requires a collective

motion of many atoms as the rebonding is modified. In presence of this barrier, it

was shown that the direct current will always induce a bunching instability if it is

in the same direction as the electromigration force, and will stabilize the uniform

step train if it is in the opposite direction. Thus, the unstable current direction will

change provided that the sign of the effective charge on adatoms changes [36] in

the three temperature ranges. The barrier is an essential feature here; if the step is

assumed to be in local equilibrium, then the bunching instability is not found. This

theory is successful in understanding fundamental bunching dynamics as well as

related experiments, such as 2D step patterning [37] and anti-band formation [38].

However, it has difficulty in explaining in-phase wandering in temperature range

II. Moreover, experimental evidence seems to suggest that the sign of the effective

charge stays positive for all three temperature ranges [39].
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2. Significant step transparency in temperature range II with the same positive

effective charge [40, 41]. Some researchers attributed the change of the unstable

current direction to a change in step transparency associated with different kink

densities. They assume that unlike the other two ranges, the kink densities are

especially low in temperature range II, so that the adatoms are most likely to cross

the step without being solidified at kinks. However, there are at least two important

physical aspects that this theory did not make clear. First, it is not obvious why the

kink densities should change non-monotonically with temperature. Second, even if

the kink density were lower, still it is hard to understand physically why the nearly

uniform surface diffusion (except at the very few kink sites where the communication

between crystal solid and surface adatoms takes place in the normal way) could

generate any instabilities.

Some other scenarios have also been suggested. Suga et al. [42] proposed field-

dependent kinetic coefficients based on a series of simulation models. In their model

both step bunching and wandering instabilities are obtained in temperature range

II with the same positive effective charge, when the kinetic processes associated

with steps become much faster compared to terrace diffusion. The theory is not as

widely accepted as the other two. In fact, we will show in Chapter 4 that the kinetic

coefficients are independent of the field under typical experimental conditions where

the field is very weak. However, their simulations suggest the possibility of diffu-

sion limited kinetics in temperature range II as apposed to attachment/detachment

limited in the previous two theories, which in part motivates the work below.

2.3 A Two-Region Diffusion Model

It is well known that the dangling bonds at semiconductor surfaces quite generally

rearrange to form characteristic surface reconstructions. We expect a different local

rearrangement of bonds in the vicinity of a step, which itself represents an additional
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source of dangling bonds. Clearly this reconstruction can directly influence surface

mass transport and hence possible instabilities. Standard boundary conditions in

the continuum sharp step model may include some effects of surface reconstruction

in special cases. For example, Liu and Weeks [35] interpreted electromigration ex-

periments in the lowest temperature regime of Si(111) using attachment/detachment

limited kinetics, and argued that the attachment barriers could arise from a local

reconstruction of the dangling bonds at a step edge. However, it is not clear how

this picture should be modified at higher temperatures.

Steps differ fundamentally from terraces by serving as sources and sinks for

adatoms. In the classical BCF picture it was assumed that the local equilibrium

concentration of adatoms at a step is maintained even in the presence of non equi-

librium driving forces. In addition the rates of various mass transport processes

near steps can differ from kinetic processes on terraces, e.g., because of differences

in local surface reconstructions. The kinetic coefficients in generalized BCF models

try to take both features of steps into account in an effective way.

Our approach here is to consider a more detailed description where both fea-

tures are treated separately in the simplest possible way. We then obtain the relevant

sharp step boundary condition by an appropriate coarse-graining. To that end, we

assume that an atomic step has sufficient kink sites to maintain a local equilibrium

concentration of adatoms as in the classical BCF picture. Reconstruction is taken

into account by assuming that the atomic step is surrounded by a step region where

adatoms undergo effective diffusion with a diffusion constant Ds that can differ from

Dt, the value found on terraces.

Here we use the simplest realization of this idea, where the reconstruction is

assumed to occur fast relative to step motion, so that the step region moves with

the atomic step and has a fixed width s of a few lattice spacings at a given tem-

perature. Thus a uniform vicinal surface can be viewed as an array of repetitive

two-region units, made up of the step region and its neighboring lower terrace re-

13



t

... ...

Terrace region n

D t

D s

ls

y

x
Step n Step n+1 

Figure 2.1: The upper part of the figure shows a 2D schematic view of the vicinal

surface composed of different reconstruction regions on terraces and near steps,

separated by dashed lines. In this paper, we assume that the step reconstruction

with a fixed width s always follows the motion of the atomic step (solid line). The

lower part of the figure shows a corresponding 1D side view that illustrates our

coordinate system.

gion. We assume that straight steps extend along the y direction and that the step

index increases in the step-down direction, defined as the positive x direction, as

schematically shown in Fig. 2.1.

The adatoms undergo driven diffusion from the electric field. The biased

diffusion flux of adatoms with density c takes the form:

Jα = −Dα∇cα + Dα
F

kBT
cα, (2.1)

where α = (t, s) indicates the terrace or step region and Dα is the diffusion constant

in the corresponding region, which here is taken to be isotropic for simplicity. We

also assume that the effective charge is the same in both regions and ignore the

small effects of step motion on the steady state adatom density field, since the

direct field-induced adatom drift velocity is generally very much larger than the net
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velocity of the steps (driven by free sublimation in real experiments) even at high

temperatures.

In many studies of step dynamics, because the separation of their respective

time scales, it suffices to solve the diffusion problem with fixed step positions and

then balance the fluxes locally at a step to determine its motion. This is often called

the quasi-stationary approximation, and it will be adopted throughout this paper.

Thus the static diffusion problem is simply

∇ · Jα = 0 (2.2)

in each region, along with continuity of c and J at fixed boundaries between ter-

race and step regions. The normal velocity of the step region is given by mass

conservation locally at an infinitesimal portion of the step region

vn∆c =
[
J−

t − J+
t

]
· n̂ −

∫

s

∂τ [Js · τ̂ ] . (2.3)

Here J±
t denote diffusion fluxes in the front and back terraces respectively and

∆c is the difference of the areal density of the two phases — the solid phase and

the 2D adatom gas phase. For simplicity, we take a simple cubic lattice, so that

∆c ≈ 1/Ω = a−2, where a is the lattice parameter. The last term in Eq. (2.3)

represents the contribution from diffusion flux in the step region parallel to the

step, where τ denotes the arc length.

2.4 Steady State Solutions

Eqs. (2.1-2.3) define the two-region diffusion model. We first consider the steady

state solution corresponding to a 1D uniform step train. In this case, the step normal

direction coincides with the x direction on terraces, and thus parallel or tangential

diffusion in the step region plays no role here. The steady state concentration profile

(denoted by a superscript ’0’) in a two-region unit is easily obtained by solving
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Figure 2.2: Plot of concentration profiles according to Eq.(2.4) with model param-

eters. R = 10 for (i) and (ii), R = 0.1 for (iii) and (iv); |fa| = 0.01 in all cases.

Eq. (2.2) in both regions subject to continuity of concentration and fluxes at the

boundaries and is given by

c0
s = C

[
R +

(1 − R)
(
eflt − 1

)

eflt − e−fs
efx

]

c0
t = C

[
1 − (1 − R)

(
1 − e−fs

)

eflt − e−fs
efx

]
,

(2.4)

Here

R ≡ Dt/Ds (2.5)

is the key dimensionless parameter that describes the relative diffusion rate of

adatoms on terraces and in the step regions. f ≡ F · x̂/kBT has a dimension of

inverse length and characterizes the strength of the external field. lt is average

terrace width in the steady state. C is a constant to be determined shortly.

Evidently, it is the interplay between the external electric field and changes

in the local diffusion rates, characterized by various combinations of the two pa-
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rameters f and R, that causes the intriguing instabilities. With the electric field

perpendicular to the step region, altogether there are four types of steady state

adatom concentration profiles with different combinations of parameters f and R,

as shown in Fig. 2.2.

In the absence of sublimation, the concentration profiles we obtain here are

completely driven by the external field. By taking the limit f → 0 in Eq. (2.4), one

should recover the equilibrium concentration (denoted as ceq) on the entire surface.

This fixes the constant in Eq. (2.4) as

C = ceq (lt + s) / (lt + Rs) . (2.6)

Note that the steady state concentration profile of adatoms given by Eq. (2.4) re-

duces to a constant on the entire surface in presence of the field if the diffusion in

the normal step direction is the same as terrace diffusion, i.e., when R = 1.

Moreover, the constant flux at the steady state can be written as

J0(l) = Dtceqf
l

l + (R − 1)s
, (2.7)

where

l ≡ lt + s (2.8)

is the distance between the centers of two adjacent step regions in a uniform step

train. When R = 1, a uniform flux Dtfceq results, independent of terrace widths.

2.5 Step Bunching and Wandering Insta-

bilities

In this section, we study the stability of the steady state solutions. In particular, the

physical origins of both step bunching and wandering instabilities are qualitatively

discussed.
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2.5.1 Step Bunching Instability

A common feature of all steady state profiles shown in Fig. 2.2 is that adatom con-

centration gradients build up in both terrace and step regions. Under experimentally

relevant conditions the field is sufficiently weak that fs < flt � 1 and linear con-

centration (or chemical potential) gradients form. It is then easy to see that the

local equilibrium boundary condition c = ceq in the center of the step region holds

automatically by symmetry. In the qualitative picture of step bunching discussed

by Liu and Weeks [35], a positive terrace concentration gradient (induced in their

model by a step-down current with an attachment barrier at a sharp step edge) leads

to step bunching. The steady state profile they analyzed leading to step bunching

in temperature regime I is very similar to case (i) in Fig. 2.2. This corresponds in

the two-region model to a step-down field with slower diffusion in the step region,

in agreement with an intuitive picture of a step barrier.

Moreover, it is clear that profile (iv) is qualitatively the same as (i). Hence

we expect that the steady state (iv), corresponding to faster diffusion in the step

region with a step-up field, also undergoes a bunching instability. The feature of

faster diffusion inside the step region considered here is qualitatively similar to

the simulation model studied by Suga et al.[42], and indeed they observed a step

bunching instability with the step-up current.

To understand the bunching of straight steps it is useful to consider a 1D

version of Eq. (2.3):

vn = Ω [J0 (ln−1) − J0 (ln)] , (2.9)

where the 1D flux J0 as given by Eq. (2.7) now depends on the local terrace widths.

Consider a small deviation δxn = εne
ω1t for nth step from the steady state, where

εn ≡ εeinφ and φ is the phase between neighboring steps. Then the step will move as

a result of the unbalanced fluxes induced by changing width of the terrace in front

ln = l + εn

(
eiφ − 1

)
and back ln−1 = l + εn

(
1 − e−iφ

)
. The amplification rate ω1 is
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given by ω1 = vn/εn, and substituting into Eq. (2.9) gives

ω1 = −2ΩDs
dJ0 (l)

dl
(1 − cos φ)

= 2ΩDtc
0
eq

f(R − 1)s

[l + (R − 1)s]2
(1 − cos φ) .

(2.10)

Clearly, step bunching occurs when f (R − 1) > 0, corresponding to two different

regimes discussed above, and in both cases the most unstable mode is a step pairing

instability with φ = π.

2.5.2 Step Wandering Instability

The 1D steady state concentration profiles also provide important insights into step

wandering, which is essentially a 2D phenomenon. It is clear that the concentration

gradient on the terraces in cases (i) and (iv) can drive a step wandering instability.

The monotonically increasing terrace chemical potential tends to make a forward

bulging part of a step move even faster, as was first demonstrated for vicinal surfaces

by Bales and Zangwill [43, 44]. This is the essence of the classic Mullins-Sekerka

instability [45, 46]. However, as shown above, these same profiles lead to 1D step

bunching, which tends to suppress the wandering instability. Moreover, this mech-

anism cannot explain the behavior in regime II of Si(111) where wandering and

bunching occur for different current directions.

The fact that this step wandering cannot be of the Mullins-Sekerka type driven

by terrace gradients suggests that it may originate from mass transport in the step

region. Let us focus on a single 2D step region, as in Fig. 2.3. In this case, it

is convenient to describe the step region using curvilinear coordinates set up by

the local normal and tangential directions of the step. For a long wavelength step

fluctuation with wavenumber q, there exists a nonzero component of the field in

the tangential direction, which induces a driven flux along the step proportional to

fq2. For a step-down field (f > 0), this driven flux is destabilizing since it tends to

transport mass from “valleys” to forward-bulging “hills”. On the other hand, the
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Figure 2.3: A geometrical view of a single wandering step region. n̂ and τ̂ denote

the normal and tangential direction of the step respectively, and angle θ is between

step normal n̂ and the average step-down direction along x-axis. The dashed arrows

inside the step region schematically shows the driven flux that is parallel to the step

for a step-down (x direction) field.

stabilizing flux due to the curvature relaxation is proportional to Γq4, where Γ is

an effective capillary length in the step region. The competition between these two

terms results in a finite wavelength linear instability, occurring on a length scale of

order ξ, where

ξ ≡
√

Γ/ |f |. (2.11)

In principle this new wandering instability could arise in cases (i) and (iii) of

Fig. 2.2 where there is a step-down field. However step bunching also occurs for

case (i). Only case (iii) with f > 0 and faster diffusion in the step region (R < 1) is

free of step bunching, and thus capable of explaining experiments in Regime II of

Si(111). In the following sections we show that these qualitative conclusions are in

agreement with the quantitative linear stability analysis based on a mapping of the

two-region model to the equivalent sharp step model.
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Figure 2.4: Shown is a highly exaggerated profile for a downhill force and slower

diffusion in the step region. Also illustrated with the dashed-dot line is the extrap-

olation of the terrace profile to the center of the step region, thus determining the

parameter c̄+
t in Eq. (2.12). The lower part of the figure gives a side view of sharp

equilibrium steps and their associated step regions.

2.6 Mapping to A Generalized BCF Model

In this section we show how the two-region model can be used to generate the

appropriate sharp step boundary conditions by a mapping to a generalized BCF

model.

The general continuum boundary condition in the sharp-step model assumes

small deviations from local equilibrium and introduces linear kinetic coefficients k±

to relate c̄+
t (or c̄−t ), the limiting lower (or upper) terrace adatom density at the step

edge, to the associated terrace adatom flux into the step. To linear order in the field

this gives rise to the standard sharp step boundary condition:

±Dt [∇ct − fct]± = k (ct − ceq)± . (2.12)
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Here k is the corresponding sharp step kinetic coefficient, which is taken to be

symmetric in this case, since there has been evidence for the absence or a very small

Ehrlich-Schwoebel effect on Si(111) [47, 48, 49].

A natural way of relating the steady state solutions of the two-region model

to those of sharp step model is to extrapolate the terrace concentration profile to

the center of the step region. This corresponds to a physical coarse-graining where

the step region has negligible width when compared to the terrace widths. The

use of extrapolation to relate the parameters in discrete and continuum models is

well known in other interface applications [50]. We use Eq. (2.4) to evaluate the

gradient, and identify c±t as the extrapolated value of terrace concentration at the

atomic step, as illustrated in Fig. 2.4. Substituting into Eq. (2.12), to lowest order

in the field we find that

d ≡ Dt

k
=

1

2
(R − 1)s. (2.13)

Note that the terrace width l in the sharp step model is naturally related to the

two-region width lt by l = lt + s, as in Eq. (2.8). Here d is often referred to as the

attachment-detachment length.

Equation (2.13) gives a mapping of the parameters in the simplest two-region

model to those of a generalized BCF model. When R > 1 (faster diffusion in the

terrace region), k is positive, which leads to a bunching instability for a step-down

current. When R = 1 (the diffusion rate is the same in both regions), k goes to

infinity, which forces c±t in Eq. (2.12) to equal ceq, corresponding to local equilibrium

with no instability. When R < 1 (diffusion is faster in step regions than in terrace

regions), k becomes negative, which leads to step bunching by a step-up current

together with step wandering by a step-down current.

The possibility of a negative kinetic coefficient, or equivalently a negative d,

was first suggested in the work of Politi and Villain [51], though with no derivation

or discussion of any physical consequences. Note that even though the derivation

given here considers a terrace concentration profile obtained by electromigration,
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Eq. (2.13) is a general result that is independent of the field. In Chapter 4 we shall

derive general sharp step boundary conditions by considering a discrete hopping

model with different hopping rates in two regions but without the field, and there

Eq. (2.13) is recovered.

2.7 Linear Stability Results

With the mapping defined by Eq. (2.13), the linear stability analysis can be per-

formed using a standard sharp step model, with parameters obtained from the phys-

ically suggestive two-region model. The general calculation is quite cumbersome.

Here we omit the algebraic detail and concentrate on the resulting stability in the

weak field (fl � 1) and long wavelength (ql � 1) limit. The real part of the

stability function can be written as

ωr = ω1 (f, φ) + ω2 (q, f, φ) , (2.14)

where

ω1 = ΩDtc
0
eq

4df

(l + 2d)2
(1 − cos φ) , (2.15)

and

ω2 = ΩDtc
0
eqq

2

{
−Γ

[
2 (1 − cos φ)

l + 2d
+

(
l +

s

R

)
q2

]

+f

(
2dl

l + 2d
+

s

R

)}
,

(2.16)

ω1 characterizes the 1D instability and thus is independent of q. The bunching

instability occurs for df > 0 with most unstable mode giving step pairing with φ = π.

Note that Eq. (2.15) is identical to Eq. (2.10), when Eq. (2.13) is used.

ω2 characterizes 2D wandering instabilities with respect to perturbations of

wavenumber q. The first term on the right hand side is stabilizing, and has its

minimum value for φ = 0, where it is proportional to Γq4 and all the steps wander

in phase.
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Table 2.1: Linear Stability Results

d > 0 (R > 1) d < 0 (R < 1)

f > 0
Bunching with maximum mode φ = π

Wandering with maximum mode φ = 0
Wandering with maximum mode φ = 0

f < 0 Linearly stable Bunching with maximum mode φ = π

The second term, proportional to the field, contains two destabilizing contri-

butions. The first contribution, proportional to Dtdfq2, describes a Mullins-Sekerka

or Bales-Zangwill instability induced by the terrace concentration gradient that can

occur when df > 0. The second contribution, proportional to Dssfq2, represents

an alternative mechanism for step wandering induced by field-driven periphery dif-

fusion along the step. When d > 0, both mechanisms operate with a step-down

current, while the step-up case is completely stable. When d < 0, the second mech-

anism can produce wandering with a step-down current, while bunching occurs for

a step up current, as was discussed earlier in Sec. (2.5.2). These stability results are

summarized in Table 2.1.

2.8 Implications and Comparison with Ex-

periments

Thus far, both step bunching and wandering instabilities have been analyzed in

general terms based on the simple idea of two-region diffusion. Now we examine

the implications for vicinal Si(111) surfaces. If we assume for concreteness that

reconstruction is generally associated with slower adatom diffusion, we can give a

qualitatively reasonable scenario that can account for many features of the electro-

migration experiments observed on Si(111).

In temperature range I, we assume there exists reconstruction in both step
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and terrace regions. Consistent with the analysis of Liu and Weeks, we assume

that at low temperature the adatom diffusion in the reconstructed step region is

slower than in the terrace region, i.e. R > 1, corresponding to cases (i) and (ii) in

Fig. 2.2. A step-down current induces both step bunching and step wandering of

Mullins-Sekerka type. However, the wandering is likely suppressed by the bunching

instability. A step-up current produces a stable uniform step train.

At higher temperatures, we expect reconstruction in step region could have a

more fragile structure when compared to that in the terrace region since step atoms

have more dangling bonds. Thus, there could exist an intermediate temperature

range where because of changes in the step reconstruction, diffusion is faster in the

step region than on terraces, i.e. R < 1, corresponding to cases (iii) and (iv) in

Fig. 2.2. The uniform step train now exhibits bunching with a step-up current.

Wandering occurs with a step-down current, induced by driven diffusion parallel to

the step. In particular, if we substitute in Eq. (2.11) the latest experimental values

for the step stiffness [52], β̃ = 16.3meV/Å, and for the effective charge [38] z∗ = 0.13,

and use a typical electric field strength of E = 7V/cm, the resulting wavelength is

roughly given by λ ' 2πξ ∼ 5µm, comparable with experimental values [29, 30, 31]

of 6 − 9µm.

In this picture, the transition between different temperature regimes is asso-

ciated with local equilibrium where R = 1. Conceivably, such a transition could

happen again at higher temperatures, since only small changes in the relative dif-

fusion rates can take the fundamental parameter R from less than to greater than

unity and vice versa. This scenario provides a consistent interpretation of exper-

iments in the second temperature regime and suggests more generally why there

could be such a complicated temperature dependence.

25



2.9 Summary

In this chapter we consider current-induced instabilities on Si(111) surfaces and its

seemingly mysterious dependence on temperature. We have studied a physically

suggestive two-region diffusion model. The basic idea is to consider different hop-

ping rates associated with different reconstruction and rebonding in the terrace and

step regions. The resulting steady state profiles provide important insight into the

physical origins of both step bunching and wandering instabilities. Step bunching

is induced by positive chemical potential gradients on terraces that are essentially

determined by the sign of f(R−1) or equivalently fd in sharp step models. We show

that in-phase step wandering observed on Si(111) electromigration does not arise

from the well known Mullins-Sekerka instability. Rather, it is induced by driven

diffusion along the step edge under the influence of a step-down force, and only

becomes significant when step bunching is absent, which requires a negative kinetic

coefficient.

We also carried out a mapping from the two-region model to a sharp step model

using a simple extrapolation procedure. The result connects the kinetic coefficients

in sharp step models to relative diffusion rates in terrace and step regions. In

particular, the lowest order result shows that the kinetic coefficients are independent

of the driving field, in contrast to earlier suggestions [42].

A coherent scenario for Si(111) electromigration is proposed based on the

linear stability analysis of the model. In particular, the mysterious second temper-

ature regime is interpreted using a negative kinetic coefficient. This allows the step

wandering that generally occurs with a step-down force to be separated from step

bunching. The transition between different temperature regimes is governed by the

relative diffusivity in the terrace and step regions. Other theories can predict a

reversal of step bunching arising from a change in step transparency [40, 41] or from

a change of sign of the effective charge [36]. However, neither approach can give a

consistent treatment for step wandering.
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Chapter 3

Current-Induced Instabilities on

Vicinal Si(001) Surfaces

3.1 Step Bunching on a Si(001) Dimple

In Chapter 2 we have discussed current-induced instabilities on Si(111) surfaces. At

similar temperatures vicinal Si(001) surfaces miscut along [110] exhibit step bunch-

ing from current normal to the steps in both directions [53, 54]. The most notable

differences in current-induced step bunching on Si(001) and Si(111) surfaces arise

from the (2 × 1) surface reconstruction (dimerization) on Si(001), which persists up

to temperatures of at least 1200◦C [55]. Two characteristic directions on the surface

are established by dimerization, either parallel or perpendicular to the substrate

dimer rows in the orthogonal [110] direction, denoted by ‖ and ⊥ respectively. Ex-

perimental evidence suggests that the diffusion along the dimer rows is much faster

at low temperatures, i.e., D
‖
t � D⊥

t [56].

In recent experiments [57], the bunching behavior has been studied on dimple

geometries, where steps of all orientations are found. As schematically shown in Fig.

3.1a, there are in general two angles needed to describe the local geometry of the

dimple when the electric field is applied [57], characterized by the angle θ between
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Figure 3.1: A schematic illustration of the dimple geometry on the Si(001) surface.

(a) The general view of the dimple with the crystallographic directions indicated

above. Zooming into a given local area of the dimple (the dotted line box), we show

the step-terrace configuration with a general direction of the electric field. ϕ is the

angle between field direction and the local normal to the steps, while θ is the angle

between the field and [110]. θ = π/4 corresponds to a field direction along [010].

(b) The top view of the dimple when θ = 0. Zooming into the dotted-lined box near

the center of the dimple with ϕ = 0, we show a top view of the vicinal surface and

a side view of the step-terrace configuration. Most of basic physics of step pairing

and bunching will be illustrated in this simple 1D geometry with the electric field

perpendicular to average step position.
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direction of the electric field and the [110] direction, and the angle ϕ between the

field and the local normal to the steps.

The bunching exhibits interesting angular dependences. When the current

is parallel to the orthogonal [110] direction (θ = 0), the bunching is observed to

be strongest in the areas where the current is locally parallel to the step normal

direction (ϕ = 0), e.g., the dotted line box in Fig. 3.1b. No bunching occurs in the

corresponding perpendicular directions (ϕ = π/2). However, if the current is rotated

to π/4 off the dimer row direction (θ = π/4), the strongest bunching occurs in the

areas where the current is perpendicular to the local step directions (ϕ = π/2). No

bunching is seen in the corresponding perpendicular direction (ϕ = 0), which in

the previous case was where the maximum bunching was found. In the following

discussion, we will first study the instabilities for the simplest case as shown in the

dotted line box in Fig. 3.1b (θ = 0 and ϕ = 0), and then generalize our results to

arbitrary θ and ϕ.

3.2 Domain Conversion and Step Pairing

Let us begin with the simplest case, where the vicinal surface is misoriented in the

[110] direction. At equilibrium rather straight SA steps that run parallel to the

dimer rows of the upper A terrace alternate with much rougher SB steps that run

perpendicular to the dimer rows of the upper B terrace. Here we have used the

notation of Ref. [58], where related instabilities during growth are examined. When

the field is normal to the steps, as illustrated in the boxed region of Fig. 3.1b, the

terrace diffusion rates normal to the steps satisfy DB
t � DA

t .

We assume that the dimerization persists, at least to some extent, on both

adjacent half-step regions around each terrace and will similarly affect diffusion

rates there. The normal diffusion in the two half-step regions around a given step is

characterized by DA
s and DB

s . Taking account of the differences in terrace diffusion
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rates, it seems reasonable to assume at least that DB
s ≥ DA

s , or

(
DB

t − DA
t

) (
DB

s − DA
s

)
≥ 0. (3.1)

Special cases of this assumption include classical local equilibrium steps where RA =

RB = 1 and a symmetric step model where DB
s = DA

s . The assumption here

essentially states that the fundamental physics on Si(001) surfaces is dominated by

the alternating reconstruction domains on terraces. Under this assumption, it is

natural to think of the surface as made up of alternating A and B units, where the

unit α (α = A or B) contains an α terrace together with the two neighboring α half

step regions.

We consider here cases where the system is driven away from equilibrium only

by the electric field and neglect evaporation. We make the same assumption as for

Si(111) that the atomic step always maintains local equilibrium at the temperature

of our interest. This assumption effectively eliminates the step transparency (See

Chapter 4 for detailed discussion). Thus it decouples the concentration fields on

the terraces, and permits a simple solution to the steady state diffusion problem in

terms of exponential functions efx (f ≡ F · x̂/kBT ), as we have seen in the Si(111)

steady state.

Assuming the same positive effective charge on the entire surface, the weak

field limit (fs � flt � 1, where s and lt are the width of the step and terrace regions

as before) allows us to obtain piecewise linear profiles for the adatom concentration.

It is straightforward to write down the general solution for the adatom density in

unit α as

cα (x) =





ceq + mα
s

(
x +

lα
t
+s

2

)
− lα

t
+s

2
≤ x ≤ − lα

t

2

ceq + mα
t x − lα

t

2
≤ x ≤ lα

t

2

ceq + mα
s

(
x − lα

t
+s

2

)
lα
t

2
≤ x ≤ lα

t
+s

2

(3.2)

where lαt is the α terrace width. In the above expression the origin is set at the

center of the terrace region to take maximum advantage of symmetry. It is easy to

transform the origin to the left atomic step position in accordance with the previous
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discussion on Si(111) steady state, and the results below will not be altered by any

specific choice of the coordinate system.

The mα
s,t can be obtained by requiring continuity of concentration and flux at

±lαt /2 and are given by

mα
t (lαt ) = ceqsf (Rα − 1) / (lαt + Rαs)

mα
s (lαt ) = ceql

α
t f (1 − Rα) / (lαt + Rαs) (3.3)

Here Rα ≡ Dα
t /Dα

s gives a dimensionless measure of the relative diffusion rates in

the α unit between the terrace and step regions in a direction perpendicular to the

step direction, and ceq is the average concentration for a uniform step array when

f = 0. Again the sign of the concentration gradient on the terrace of the α unit is

determined by the product of f(Rα − 1).

In the quasi-static approximation the step velocities are computed by a flux

balance. The surface flux normal to the step is constant throughout the α unit and

is exactly given by

Jα
0 = Dα

t ceqf
lαt + s

lαt + Rαs
. (3.4)

Because of the perfect sink assumption, the fluxes in the individual α units on

either side of a step are independent of each other. Thus the step velocity is easy

to compute for a given step configuration.

Consider in particular the initial velocity of step Sα in a uniform step train

(lAt = lBt = lt). This is given by

vα
0 = Ω

(
Jα

0 − Jβ
0

)

= Ωceqf (lt + s)

[(
Dα

t − Dβ
t

)
lt +

(
Dα

s − Dβ
s

)
sRαRβ

]

(lt + Rαs) (lt + Rβs)
(3.5)

where α, β = A or B and Ω is the atomic area. In this case the velocities of the

two types of steps satisfy vB
0 = −vA

0 . Therefore the initial uniform step array is not

a steady state. Depending on the direction of the electric field, one reconstruction
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domain expands while the other shrinks, creating step pairs separated by the minor

terrace. With a step-down current one finds double height DB steps (consisting

of an upper SB step and a lower SA step with a narrow A terrace trapped in be-

tween) separated by wide B terraces; the equivalent configuration with DA steps

and narrow B terraces is seen for an step-up current. Experiments show that this

field-driven step pairing continues until it is balanced at short distances, probably

by step repulsions, as first suggested by Natori et al. [59], in the special case where

local equilibrium was assumed for all the steps, corresponding to RA = RB = 1 in

our model.

3.3 Mapping of the Effective Step Region

Now let us examine the stability of arrays of such paired steps. Assuming that

the step pairs (boundaries of the minor domain) with constant spacings persist

throughout the bunching process, as is shown by experiments, we can define a

symmetric effective two-region model that can describe the continued bunching of

the paired steps. To that end, we treat the minor reconstruction terrace together

with the two step regions bounding it as an effective step region that separates

one major terrace from another, as schematically shown in Fig. 3.2 for the case

of a step-down current. As shown below the bunching behavior is determined by

the field direction and the sign of the kinetic coefficient for the sharp step model

associated with the effective two-region model defined here.

In Section 2.6 we discuss the mapping to a sharp step model from continuum

concentration profiles, assuming local equilibrium atomic step in the middle of the

step region. In the present case a minor terrace resides at the center of the effective

step region. Nevertheless, we can still follow the extrapolation procedure of concen-

tration profiles in section 2.6, except that we need to take into account of the minor

domain in the middle. First we note that the effective equilibrium concentration in
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Figure 3.2: A schematic illustration of extrapolation for an effective step region.

With a step-down current, domain (1 × 2) expands to form an effective terrace

region with some typical concentration profile ct. On the other hand, domain (2 × 1)

shrinks to l′ and forms an effective step region when combined with the two step

regions bounding it. ct is extrapolated to the dotted-dashed line at x = 0 in the

middle of the minor terrace which represents the effective “sharp” step.
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the center c̄eq is linearly modified by the weak field from its value ceq at the “real”

local equilibrium step near the lower boundary of the effective step region, so that

c̄eq = ceq

[
1 − 1

2
f (l′ + s)

]
, (3.6)

where l′ is the width of the minor reconstruction domain.

Next we proceed as before and find that the effective sharp step boundary

condition takes a form analogous to Eq. (2.12)

Dα
t

[
∇c|+−fc+

]
= k̄α

(
c+ − c̄eq

)
, (3.7)

where Dα
t , α = A or B, is the normal diffusion constant in the major terrace. And

the analog of Eq. (2.13) is given by

d̄α ≡ Dα
t

k̄α
=

s̄

2

[
R̄α − 1

]
, (3.8)

where s̄ = l′ + 2s is the width of the effective step region and R̄α = sRα/s̄ is the

relative diffusivity in the effective two region model defined above. The concentra-

tion extrapolation is schematically depicted in Fig. 3.2 for the case of a step-down

current.

Two new features are seen in Eq. (3.7) arising from the use of a single effective

step region to describe the paired steps. First, the major terrace is determined by

the current direction in the initial step pairing regime. Second, both an effective

kinetic coefficient k̄ and an effective “equilibrium concentration” c̄eq appear in the

sharp step boundary condition.

3.4 Simultaneous Step Bunching in Both

Current Directions

Equations (3.7)-(3.8) give the mapping between the effective two region model de-

scribing paired steps separated by major terraces and an equivalent sharp step
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model. In the steady state where the major terraces all have the same width,

the surface flux in the sharp step model can be obtained from Eq. (3.4) as follows.

We replace the parameters ceq, s, and Rα by the corresponding effective parameters

c̄eq, s̄, and R̄α. Clearly l = lt + s̄ represents the terrace width in the sharp step

model. The steady state flux in the sharp step model as a function of the terrace

width is thus given by

Jα
0 (l) = Dα

t ceqf
l

l + 2d̄α
. (3.9)

Note that α = A or B is determined by the current direction.

To examine the stability of the above steady state, consider a small deviation

δxn = εneωt of the nth step in the uniform step train, where εn = εeinφ. Here ε is

a small constant and φ is the phase between neighboring steps. Then the nth step

will move in response to the unbalanced flux induced by the changed widths of the

terraces in front ln = l + εn(eiφ − 1) and back ln−1 = l + εn(1 − e−iφ). The linear

amplification rate ω = vn/εn is given by

ω = ΩDα
t ceq

4d̄αf
(
l + 2d̄α

)2 (1 − cos φ) . (3.10)

An instability towards step bunching results if d̄αf > 0 with a maximum at φ = π,

corresponding to step pairing. Note that the direction of the field and the sign of

the effective kinetic coefficient combine to determine when step bunching occurs,

the same as Si(111) discussed earlier.

Using Eqs. (3.8) and (3.10), we see that to get simultaneous step bunching

from current in both directions seen in experiments, the following inequality has to

hold

RA > 2 +
l′

s
> RB. (3.11)

With a step-down current, the first part of the inequality in Eq. (3.11) makes the

effective kinetic coefficient for the effective step region containing the slower diffusion

domain positive, which results in a step bunching instability. The second inequality

in Eq. (3.11) give rise to a negative effective kinetic coefficient which produces step
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bunching with a step-up current. Note that this does not require negative kinetic

coefficients for single steps of either kind.

However, if one assumes the individual steps are at local equilibrium, (RA =

RB = 1), then the kinetic coefficient for the effective step region is negative in both

cases, and therefore bunching is expected only from a step-up current.

3.5 Angular Dependent Step Bunching

It is straightforward to extend the above analysis to a general dimple geometry

shown in Fig. 3.1a, where the domain conversion exhibits interesting angular de-

pendences. Again, we need to consider the fluxes from the neighboring terraces

going into the step. Using Eq. (3.4), we can represent the surface flux as the sum

of fluxes along the two characteristic directions,

Jf = cos θJB
0 ‖̂ + sin θJA

0 ⊥̂ (3.12)

for the front terrace and

Jb = cos θJA
0 ⊥̂ + sin θJB

0 ‖̂ (3.13)

for the back terrace of step 1 in Fig. 3.1a, where ‖ and ⊥ are the directions parallel

and perpendicular to dimer rows as defined earlier. The angular dependent step

velocity is readily obtained

v
(1)
0 (θ, ϕ) = vB

0 cos (2θ − ϕ) , (3.14)

where vB
0 is given by Eq. (3.5). Eq. (3.14) shows that a steady state of paired steps

will form on the part of the dimple where cos (2θ − ϕ) 6= 0.

In the following, we will concentrate on two special configurations that are

studied experimentally [57]. The first is shown in Fig. 3.1b, where the current is

parallel to the dimer row direction. In this case θ = 0, and cos ϕ characterizes the
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angular dependence around the dimple. The maximum pairing instability occurs

at ϕ = 0 where the current is perpendicular to the step normal direction, and no

instability in seen at ϕ = ±π/2. From the previous discussion in Section 3.2 and

Section 3.4, we can easily see that continued step bunching occurs with a maximum

at ϕ = 0.

The other interesting configuration corresponds to an upright field parallel to

[010] direction in Fig. 3.1a. In this case the current is at an angle θ = π/4 from the

dimer row direction. Hence the angular dependence becomes cos (π/2 − ϕ) = sin ϕ.

The maximum pairing instability occurs at ϕ = π/2, where the current is parallel to

the steps, and no instability occurs when the current is perpendicular to the steps.

Again the sharp step model corresponding to the steady state can be extracted. The

subsequent step bunching instability for a parallel current was discussed by Liu et

al. [60]. Their stability analysis suggests that step bunching generally occurs for

a non-vanishing attachment/detachment length d, regardless of its sign, when the

current is parallel to the average step positions.

The results discussed here are in good agreement with experiments. For the

angular dependent step pairing, the result is consistent with the original analysis

by Nielsen et al. [57]. However, our explanation for the subsequent step bunching

is different. Our analysis provides a simpler scenario that does not require a tensor

character to the effective charge.

3.6 Unified View of Current-Induced In-

stabilities

In this Chapter we analyze current-induced instabilities on Si(001) surfaces along

the same lines as is done for Si(111) surfaces. The notable complication arise from

the well-known fact that Si(001) has two reconstruction domains. The basic physical
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idea here is that the fundamental physics of mass transport on Si(001) surfaces is

dominated by the two alternating terrace domains. Hence the two half-step domains

have similar diffusion property to the specific terrace domain bounded in between.

Together with the local equilibrium assumption at the atomic steps, a simple and

coherent account for most of the interesting findings in Si(001) electromigration

experiments is obtained. Despite of the seemingly different appearance, the current-

induced instabilities on Si(111) and Si(001) surfaces can be interpreted in a simple

and unified way.

First of all, the step bunching instability always occurs when the sign of the

product fd is positive. For single-domained Si(111) surfaces, the unstable current

direction reverses as temperature rises if the sign of d changes, which can give rise

to multiple temperature ranges in Si(111). For double-domained Si(001) surfaces

at a given temperature, fd can hold the same sign even with a change of current-

direction, since the change in current direction leads to different domain conversion

and subsequently different sign of d. Hence Si(001) have step bunching simultane-

ously in both current directions. In fact, based on the discussion in Section 3.4, one

can easily map the step-down bunching on Si(001) to Si(111) in temperature range

I, and the step-up bunching to Si(111) in temperature range II.

Second, the step wandering instability of Mullins-Sekerka type is also deter-

mined by the sign of fd, thus always coincides with the bunching instability. Only

when the step bunching is effectively suppressed, step wandering can be observed

in the same current direction that normally induces step bunching. One numerical

example is given by Sato at. al. [61], where step wandering is seen with a step down

current for attachment/detachment limited kinetics without transparency (normal

condition for step bunching), when an unphysically high step-step repulsion is ap-

plied in the simulation. There are also some experimental evidence of some step

wandering occurred in the bunching regime, e.g. in Si(001) step-up bunching regime

(see figure 4 in Ref. [57]). However, it is clear that to account for the wandering
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instability on Si(111) in temperature range II, we need to break the symmetry of

fd. As discussed in Chapter 2, the new mechanism we proposed involves the driven

diffusion inside the step region, not the terraces. Thus it only depends on the sign

of f . When the negative sign of d reverses the bunching current to the step-up

direction, the wandering instability stays with the step-down current.
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Chapter 4

From Discrete Hopping to

Continuum Boundary Conditions

4.1 Kinetic Boundary Conditions and Sur-

face Morphology

Vicinal surfaces which exhibit a uniform train of steps, created by a miscut along a

low index plane below the roughening temperature, have long been of great interest

in both basic and applied research [62]. High quality crystals can be grown through

step-flow — the uniform motion of more or less equally-spaced steps. Moreover, step

bunching and wandering instabilities obtained under external driving can create

two dimensional patterns that could serve as templates for nanoscale structures

and devices. Therefore, the fundamental understanding of the dynamics of the

preexisting steps plays a central role in many studies of non equilibrium processes

on vicinal surfaces.

Most fundamental studies of the static and dynamic properties of vicinal sur-

faces are based on generalizations of the classic theory of Burton, Cabrera, and

Frank (BCF) [32] that we briefly mentioned in Chapter 2. This theory describes

40



the diffusion of adatoms on terraces with boundary conditions at steps, which are

treated as sharp line boundaries. Originally BCF assumed that the steps acted as

perfect sinks and sources of adatoms so that the limiting adatom concentration at

the step boundaries always reduces to local equilibrium.

Many extensions and modifications of the BCF theory have been suggested

to provide a more general framework for the description of different experiments.

One of the most important was Chernov’s introduction of linear kinetic coefficients

[63, 64], which permit deviations from local equilibrium at steps. It was soon recog-

nized that in general the kinetic coefficients could be asymmetric [65, 66]. Another

generalization permits step permeability or transparency, with a term in the bound-

ary condition directly connecting the limiting adatom concentration on adjacent

terraces [67]. These generalized BCF models provide a mesoscopic or coarse-grained

description of surface evolution with effective boundary conditions at sharp steps,

and we will generally refer to them as sharp step models.

Many kinetic instabilities seen in experiments have been successfully described

from this perspective using various combinations of boundary conditions. However

in general it is not clear how to connect the choices and values of the effective param-

eters in sharp step models to the underlying physical processes or how to determine

the uniqueness of such a mapping. A similar difficulty arises in trying to relate

“microscopic” parameters in kinetic Monte Carlo simulations of discrete hopping

models to the effective parameters in a generalized sharp step model. Very differ-

ent microscopic models can sometimes seem to give equally plausible mesoscopic

descriptions of limited sets of experimental data.

In Chapter 2 and 3 we proposed a novel continuum two-region diffusion model,

which gave a rather simple and unified description of a variety of current-induced

instabilities seen experimentally on vicinal Si surfaces. The model assumes that

diffusion rates in a finite region around a step could be affected by the different local

bonding configurations and thus differ from those found elsewhere on terraces. By
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extrapolating the steady state concentration profile to the center of the step region,

we obtained a mapping of the parameters in the continuum two region diffusion

model to those of an equivalent classical sharp step model. One surprising conclusion

was that negative kinetic coefficient can arise when the diffusion rate near a step is

faster than that on the terraces.

In this chapter, we will provide a more systematic way of deriving the boundary

conditions for the continuum sharp step models from a rather general 1D discrete

hopping model that permits both asymmetric diffusion in the step region as well as

step permeability. As discussed by Ghez and Iyer [68], such an effective 1D model

can result from averaging over relevant 2D configurations of kink and ledge sites

on an atomic step. This model provides a physical way of connecting microscopic

hopping parameters that are used in simulations with the effective parameters in

sharp step boundary conditions.

4.2 A 1D Hopping Model Based on Two-

region Diffusion

The simple 1D model that we study is schematically shown in Fig. 4.1, where an

atomic step site is surrounded by a region of width s with generally different diffusion

rates, induced by reconstruction or rearrangements of local dangling bonds. As we

will see, this difference can generate effective kinetic coefficients in a sharp step

description.

In general, the width s of the step region with different diffusion barriers

should vary for different systems. However, it is found that the essential physics of

the hopping model is not strongly affected by specific choices of s that is on the order

of a few lattice spacings a. Thus we analyze the algebraically simplest case shown

in Fig. 4.1 with half-step regions of width a. The more general result in terms of s,
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Figure 4.1: A schematic plot of the 1D potential surface near an atomic step. Differ-

ent D’s that have dimensions of diffusion constants characterize the hopping rates

associated with different barrier heights. Here, we take the width of the step region

to be 2a.

needed in accordance with the analysis of Si electromigration experiments, is easily

obtained by replacing a with s/2, as will become clear later when the results of this

generic hopping model are compared to our previous results in Chapter 2 and 3.

We include here two additional physical features of the step region as illus-

trated in Fig. 4.1. One is the possible asymmetry in the diffusion processes in the up

and down half-step regions, described by hopping rates D±/a. The D± have dimen-

sions of a diffusion constant, and the model is usefully characterized by dimensionless

parameters

R± ≡ Dt/D±, (4.1)

with Dt the diffusion constant on the terraces. Here Eq. (4.1) is a natural extension

of Eq. (2.5) when the step kinetics is asymmetric.

The other feature we build in is step permeability or transparency, characterized
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in our model by a single parameter pk (0 ≤ pk ≤ 1). This can be understood as

the effective probability in our 1D model, that an adatom hopping to site 0 will

encounter a kink site at a given temperature and thus equilibrate with the solid. This

parameter takes account of effects from both kink site density and ledge diffusion

in a full 2D model.

When pk = 1, the step site acts as a perfect sink maintained by either enough

kink sites or fast ledge diffusion or both, and consequently the step site concentration

will be pinned at equilibrium ceq. In the opposite limit with pk = 0 no adatoms are

incorporated into the solid. The step site behaves like any other terrace site and thus

is perfectly permeable. We neglect other possible sources of permeability, including

direct hopping over the step region from one terrace to another or effects of rapid step

motion [69], which we believe are less physically relevant for our cases of interest.

In the rest of this chapter, general diffusion fluxes resulting from concentra-

tion gradients are considered first, followed by the case of driven diffusion from

an external field in the limit pk → 1, directly corresponding to the examples of

electromigration on Si surfaces encountered in Chapter 2 and 3.

4.3 Discrete Diffusion Fluxes

Without the external driving, we assume that the net flux of adatoms that hop

between step site 0 and site a can be partitioned into two effective contributions:

Ja/2 =
D+

a
[pk{ceq − ĉ (a)} + (1 − pk) {ĉ (0) − ĉ (a)}] . (4.2)

The first term describes an adatom exchange with probability pk involving equili-

brated “kink-like” adatoms at site 0 with density ceq and the neighboring terrace

site. The second term involves a similar exchange with probability (1 − pk) involving

unincorporated “ledge-like” adatoms with density ĉ (0) . Only the former involves

creation/annihilation of adatoms, and the latter is treated as a normal diffusion flux

that conserves the adatom density.
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Similarly, the flux from site −a to 0 is

J−a/2 =
D−

a
[pk{ĉ (−a) − ceq} + (1 − pk) {ĉ (−a) − ĉ (0)}] . (4.3)

Since we assume that all the sinks/sources reside only at site 0, the net flux of

adatoms that hop from site a (−2a) to site 2a (−a) takes on the simpler form

J±3a/2 = ±Dt

a
[ĉ (±a) − ĉ (±2a)] . (4.4)

As has been introduced in Section 2.3, we will use the quasi-static approxima-

tion to simplify the analysis. Here we assume that the motion of the step region is

much slower than the relaxation of the terrace diffusion field, so that one can deter-

mine the diffusion process on terrace sites with fixed positions of the step regions.

In the quasi-static limit the net change in the number of adatoms at each terrace

site given by a total flux balance must vanish, i.e., dĉ(x)/dt = 0 for x = ±a,±2a . . .

In particular, at sites ±a, the balance of fluxes is given by

0 =
dĉ (±a)

dt
= ±

[
aJ±a/2 − aJ±3a/2

]
. (4.5)

At step site 0, ĉ (0) can be determined by balancing the conserved flux terms

proportional to (1 − pk) in Eqs. (4.2) and (4.3), and is given by

ĉ (0) =
D+ĉ (a) + D−ĉ (−a)

D+ + D−
. (4.6)

4.4 Relating Parameters in Discrete and

Continuum Models

Our task now is to relate the physically suggestive parameters R± and pk in the

discrete hopping model to the kinetic coefficients k± and permeability rate P ap-

pearing in the boundary conditions of a continuum sharp step model as in Eq. (4.7)

below. For x > 0, consider a smooth continuum concentration profile c (x) that
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passes through the discrete concentrations ĉ (a) and ĉ (2a). (The caret distinguishes

discrete from continuum functions.) The behavior of c (x) at larger x is determined

by the physical processes on the terraces, but does not need to be specified explicitly

for our purposes here.

To make contact with the sharp step model, we rewrite the fluxes in Eqs. (4.2)-

(4.5) in terms of c(x). To that end we use a Taylor series expansion to linear order

to express c (a) = ĉ (a) and c (2a) = ĉ (2a) in terms of c+ ≡ c(0+), the extrapolated

limiting concentration as x → 0+ at the sharp step edge in a continuum picture,

and its associated gradient ∇c |+. Similarly, ĉ (−a) and ĉ (−2a) can be expressed in

terms of c− and ∇c |−, which in general are different than c+ and ∇c |+.

Using Eq. (4.6) to eliminate ĉ (0) , and substituting into Eq. (4.5), we find

that the result can be rewritten in the form of a generalized linear kinetics boundary

condition with permeability

±
[
Dt∇c |± ∓vc±

]
= k±

(
c± − ceq

)
+ P

(
c± − c∓

)
. (4.7)

The kinetic coefficients k± are given by

k± =
Dt

a

pk

(R± − 1) [1 + (1 − pk) M ]
, (4.8)

where

M ≡ R+R−

(R+ + R−)

[
R+

R− − 1
+

R−

R+ − 1

]
(4.9)

is symmetric on exchange of + and −. Note in general that the ratio of the kinetic

coefficients satisfies
k+

k−

=
R− − 1

R+ − 1
(4.10)

independent of pk. The permeability rate P can be written as

P =
k±

pk(R∓ − 1)
· (1 − pk) R+R−

(R+ + R−)
. (4.11)

Using Eq. (4.8) in the first factor, we see that P is symmetric on exchange of + and

−, and has a finite limit as pk → 0.
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The final parameter v in Eq. (4.7) is zero in our present treatment since we

used the quasi-static approximation to derive Eqs. (4.5) and (4.6). In principle, a

non-vanishing v would arise if we took the flux due to step motion into account in

the discrete hopping model. However, the quasi-static limit is valid in most physical

cases of interest, and thus this additional complication can be avoided.

Equations (4.7-4.11) are the central results in this section. As mentioned

earlier, we find that the sharp step boundary condition can indeed be generally

expressed using linear kinetics with permeability. More importantly, we are able

to relate the effective parameters in the sharp step boundary conditions to the

physically suggestive parameters we considered in our generic hopping model. This

mapping provides a simple way to understand many aspects of kinetic boundary

conditions in sharp step models.

4.5 Interpretation of Sharp Step Bound-

ary Conditions

A notable general feature of the results derived in the previous section is that the

kinetic coefficients k± are proportional to pk and the permeability rate P is propor-

tional to (1 − pk). The kinetic coefficients characterize adatom exchange involving

equilibrated solid adatoms at kinks and the adatom gas phase, while the permeabil-

ity rate characterizes adatom motion across the step without equilibrating with the

solid phase. Moreover, the kinetic coefficients k± are in general asymmetric on the

two sides of the step due to the asymmetry of emission and diffusion processes from

kinks. However, the permeability rate P is symmetric since the physical processes of

hopping from one side to the other without attachment at the step always involves

the diffusion constants on both sides.

We now consider some limits of those general expressions to illustrate some
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interesting features of both the kinetic coefficients and the permeability rate.

4.5.1 Impermeable steps, pk → 1

This limit is usually considered in treatments of the sharp step model, and we

used it to analyze current-induced instabilities on Si surfaces in Chapter 2 and 3.

In this limit the only way for the adatoms to go across a step is through attach-

ment/detachment at kinks, and the permeability rate P vanishes.

The results are conveniently described in terms of the asymmetric attach-

ment/detachment lengths

d± ≡ Dt/k±. (4.12)

Using Eq. (4.8), these are given by

d± = a (R± − 1) . (4.13)

If we restrict ourselves in a symmetric case and replace the width 2a of the step

region in the present model by a general value s, we recover exactly the result of Eq.

(2.13) that we found earlier by extrapolating concentration profiles obtained using

continuum two region diffusion model. The consistency between the two equations

clearly shows the general validity of the mapping between model parameters in

previous chapters when diffusion driven by a weak electric field is considered. In

fact, as will be shown in Section 4.6 when the external driving field is explicitly

taken into account, the above result still holds at least to the lowest order of the

field.

For R± > 1, corresponding to slower diffusion in the step region, the at-

tachment/detachment lengths and kinetic coefficients are positive. The kinetics is

usually called attachment/detachment limited when d± � l, with l the average ter-

race width in a uniform step train, or diffusion limited when 0 ≤ d± � l. For

R± = 1, d± vanishes, and the kinetic coefficients diverge. This forces c± to equal
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ceq in Eq. (4.7) and generates the local equilibrium boundary condition originally

proposed in the BCF model.

More interestingly, for R± < 1, corresponding to faster diffusion in the step re-

gion, the attachment/detachment lengths and the corresponding kinetic coefficients

are negative. As we showed earlier, the sign of the kinetic coefficients plays a key

role in interpreting electromigration experiments on Si surfaces, since it determines

the stability of a uniform step train for a given current direction.

In the following, we will characterize the limit pk → 1 as defining a perfect sink

model, since adatoms can not diffuse across a step without attachment/detachment

at kink sites. As a direct consequence, the two sides of the step are decoupled and

any change of the microscopic rates on one side of the step does not affect the kinetic

coefficient on the other side. However, as shown above, the two sides of the step will

in general be coupled for pk < 1 through Eqs. (4.10) and (4.11), and the subsequent

analysis of step dynamics becomes much more involved.

4.5.2 Very permeable steps, pk → 0

This limit may be physically relevant at low enough temperatures, or slow enough

ledge diffusion, or some proper combination of both. Here the adatoms hop around

on the surface without encountering sinks/sources in the step region. Thus one

expects vanishing kinetic coefficients, but a finite permeability rate, and this is

indeed what Eq. (4.8) and Eq. (4.11) predict in this limit.

As in Eq. (4.12), let us define a corresponding permeability length

dP ≡ Dt/P. (4.14)

Then Eqs. (4.11) and (4.8) yield

dP = 2a

[
1

2
(R+ + R−) − 1

]
. (4.15)

Similar to d±, the permeability length dP can become negative when (R+ + R−) < 2,

with faster diffusion in the step region. Eq. (4.15) is consistent with results derived
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Figure 4.2: Plot of the dimensionless permeability length dP/a as a function of R

in the symmetric case for a general pk.

from a continuum phase field model [69]. Recently Pierre-Louis and Métois have

argued that negative permeability lengths can explain some novel growth-induced

instabilities seen during electromigration on Si(111) surfaces.

4.5.3 Partially permeable steps, 0 < pk < 1

This is the most general case, where only a finite fraction of adatoms at the step

equilibrate at kinks, presumably corresponding to intermediate temperatures with

moderate ledge diffusion. We focus on the simplest symmetric case where D± = Ds

or R+ = R− = R in Eqs. (4.8)-(4.11). The attachment/detachment length becomes

d =
a

pk

(R − pk) , (4.16)

and the permeability length is

dP = 2a (R − 1)
(R − pk)

(1 − pk) R
. (4.17)

Equation (4.16) can be understood using the same physics as in the perfect
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sink model. With a finite probability pk to encounter a kink, an adatom has to

move faster in the step region (Ds = Dt/pk) to maintain local equilibrium (d → 0 or

k → ∞) compared with the perfect sink case (Dt = Ds). The permeability length in

Eq. (4.17) is a new feature arising from the possibility that the adatoms go directly

across the step without equilibrating with the solid. This expression shows a fairly

complicated dependence on microscopic motions characterized by R and pk.

A schematic plot of dP versus R for a given pk is shown in Fig. 4.2. Both

d and dP diverge as R → ∞, since all motion in the step region vanishes in this

limit. dP decreases as R decreases, and stays positive for R > 1. Just like the

attachment/detachment length, the permeability length changes sign from positive

to negative as R passes through 1, with equal hopping rates in the terrace and step

regions. However, the permeability length becomes positive again for small enough

R when the motion in the step region is sufficiently fast (R < pk) that the probability

of crossing the step without involvement of a kink is effectively decreased to a point

that it is no longer faster than hopping on terraces.

4.6 A Perfect Sink Model with a Con-

stant Electric Field

In the generic hopping model discussed earlier, we assumed that the flux arose only

from concentration gradients. We consider here the case where there is a additional

external driving force from the electric field, and take the perfect sink limit pk = 1.

In particular, we examine whether or not the kinetic rate parameters in the resulting

sharp step model could depend on the field as Suga et al. previously suggested [42].

In the absence of the field, the 1D potential energy surface is similar to that

in Fig. 4.3, where now the site at x = 0 is a perfect sink surrounded by a more

general region of width s with different diffusion barriers. When a weak electric field
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Figure 4.3: A schematic plot of the 1D potential surface for DTR in which a half

step region with its neighboring terrace is considered.

is applied in the positive x direction, the potential energy surface will be modified

by an amount V = −
∫

Fdx, where F = z∗eE, z∗e is the effective charge. The

modification of the potential surface produces a bias for adatom hopping, which

will later lead to a convective flux contribution in the continuum description.

The driven flux inside the step region can be written as

Jx+a/2 =
Ds

a
efa/2ĉs (x) − Ds

a
e−fa/2ĉs (x + a) , (4.18)

where f ≡ |F| /kBT . The quasi-static approximation suggests continuity of fluxes,

i.e. Jx+a/2 = Jx−a/2, which leads to the following equation for the discrete concen-

tration ĉs (x),

0 = e−fa/2ĉs (x + a) −
(
efa/2 + e−fa/2

)
ĉs (x) + efa/2ĉs (x − a) , (4.19)

where x is evaluated at discrete lattice sites inside the step region. It is easy to write

down the solution of Eq. (4.19) as

ĉs (x) = ceq + A
(
efx − 1

)
, (4.20)

taking account of the perfect sink at x = 0. Here A is a constant that can be

determined by continuity of fluxes at the boundary between step and terrace region,
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i.e. Js/2−a/2 = Js/2+a/2. This gives

A =
e−fa/2Rĉt

(
s
2

+ a
)
−

[
e−fa/2 + efa/2 (R − 1)

]
ceq

efa/2 (efs/2 − 1)R + efa/2 − e−fa/2
. (4.21)

Here ĉt is the discrete concentration on the terrace site.

To obtain the sharp interface boundary condition, we apply flux continuity

Js/2+a/2 = Js/2+3a/2, and express all the discrete terrace concentrations in terms of

the extrapolated c+ and the corresponding gradient ∇c |+. In the weak field limit

that is valid in most experiments, we can linearize the exponentials in all of the

above expressions. To the leading order, we obtain the boundary condition as

±Dt

[
∇c |± ∓fc±

]
= k±

(
c± − ceq

)
. (4.22)

where results for both the + and − sides can be given by symmetry. Note that the

term proportional to f is the convective flux induced by the field, which is of the

same order as the concentration gradient. As mentioned earlier in Section 4.4, the

mapping to the kinetic coefficient is independent of the field to lowest order, and is

given by

d± ≡ Dt

k±
=

1

2
(R± − 1) s, (4.23)

where R± ≡ Dt/Ds. Equation (4.23) recovers the results we derived earlier from

continuum two region diffusion model, and is also consistent with the general result

in Eq. (4.13).

In the above we discuss the mapping to a sharp step model from a perfect sink

model in which the effects of the electric field are treated explicitly, while assuming

the perfect sink resides at x = 0 - the center of the step region. Now let us turn to

examine the effective step region formed as the result of the initial pairing instability

on Si(001) electromigration.

In this case a minor terrace resides at the center of the effective step region. We

can still follow the treatment above if we take this into account by shifting the origin

of the coordinate system by transforming x → x − (l′ + s) /2 and s/2 → l′/2 + s,
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where l′ is the width of the minor reconstruction domain, see Fig. 3.2 for relevant

lengths. Representing the discrete terrace concentrations by a continuum function

c (x) and Taylor expanding as before about x = 0+ — the center of the effective

step region — we find that the effective sharp interface boundary condition, keeping

the same notation as in Section 3.3, takes exactly the same as Eq. (3.7):

Dα
t

[
∇c|+−fc+

]
= k̄α

(
c+ − c̄eq

)
. (4.24)

in which the two effective parameters c̄eq and k̄ are naturally emerging from the

analysis, given by

c̄eq = ceq

[
1 − 1

2
f (l′ + s)

]
, (4.25)

and

d̄α ≡ Dα
t

k̄α
=

s̄

2

[
R̄α − 1

]
, (4.26)

where s̄ = l′ + 2s and R̄α = sRα/s̄. Eqs. (4.24-4.26) recover the exact results

obtained in Section 3.3 without knowing any detailed concentration profiles on ter-

races.

4.7 Summary

This chapter derives expressions for sharp step boundary conditions characterized

by linear kinetics rate parameters k± and P for general BCF type models by ap-

propriate coarse-graining from a microscopic hopping model. k± and P are related

to the attachment/detachment kinetics at kinks and to diffusion across the ledges

respectively. In particular, the study shows that both parameters can be negative

when diffusion is faster in the step region than on terraces. The possibility of neg-

ative kinetic coefficients was first suggested by Politi and Villain [51], but with no

derivation or discussion of any physical consequences. In the perfect sink limit, we

recover the mapping previously obtained with the continuum two region diffusion
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model. Moreover, both kinetic rate parameters k± and P are shown independent of

the field to the lowest order.

The detailed concentration profiles are not involved in the derivations of bound-

ary conditions. The only underlying assumption is quasi-stationary condition, which

is widely acceptable in studies of step dynamics. Therefore, the results obtained are

expected to be generally applicable. Theoretically they can be applied directly to

analyze the step dynamics in presence of a variety of driving forces, such as electric

field, super or under saturation. They can be used to connect the theories and

Monte Carlo simulations as we shall show later in Chapter 5.

Finally, it is worth mentioning that the results here show consistency with

those from phase field models [69], while providing a simple and physically suggestive

picture.
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Chapter 5

Current-Induced Step Pattern

Formation

5.1 Patterns of Vicinal Steps

The concept of two dimensional (2D) pattern formation by vicinal steps has been

actively explored as a promising pathway for lateral nanostructuring of surfaces.

Often the origin of step pattern formation is due to kinetic instabilities, developed

as a result of the interplay of the fundamental physics of crystal structure and the

external driving field. The typical patterns formed are step bunching and wandering.

A well-studied class of 2D pattern formation occurs for molecular beam epi-

taxial (MBE) growth of metal surfaces (see e.g. on Cu [70]). The basic idea can

be traced to the presence of an extra energy barrier associated with the asymmetry

of the step structure for adatom diffusion, known as the Ehrlich-Schwoebel (ES)

barrier. Upon growth, all the steps wander in phase with a temperature and flux

dependent wavelength [43]. Along the same line, Pierre-Louis et. al. [71] recently

pointed out that another ES like asymmetry for adatom diffusion exists at kink sites,

often called kink Ehrlich-Schwoebel effect (KESE). The KESE mechanism also gives

rise to a 2D pattern of step wandering, although with different scaling [72].
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For semiconductor surfaces like Si(111), however, there has been strong evi-

dence for a negligible ES barrier [49, 48, 47], and conceivably not a significant KESE

effect either. Part of the reason, we belive, arises from reconstruction or rebond-

ing often occurred on semiconductor surfaces, especially near a step since there are

more dangling bonds. The surface reconstruction or rebonding in general tend to

diminish any asymmetry near a step.

However, based on the discussions in Chapter 2 and 3, it is clear that 2D

patterning on Si surfaces can be conveniently controlled by direct current heating. It

has been thoroughly discussed that the fundamental instability mechanism involves

the sign of the effective kinetic coefficients. This Chapter is devoted to the study of

long time dynamics of the steps resulting from current-induced instabilities. First,

the typical bunching and in-phase wandering patterns are carried out by integrating

the step velocity functions. Then, for some intricate step patterns recently seen

in experiments where each individual step develops overhangs on itself [73], we

employ a geometric approach to capture the pattern formation. Finally, 2D kinetic

Monte Carlo simulations on a Solid-on-Solid (SOS) model [74] are performed. In

particular, we investigated several interesting microscopic mass transport scenarios

that can give rise to different instability regimes when a constant field is applied.

5.2 Velocity Function Calculation

To calculate the long time morphology of vicinal surfaces, effective equations relating

the velocity of a step to the local terrace widths have proved to be very useful [75].

A simple example of such a velocity function is given by Eq. (2.9). The extended

velocity function formalism [37, 76] takes into account also the capillarity of steps

(line tension effects) as well as step repulsions, which are needed to prevent step

overhangs as the initial instabilities grow. Here we also incorporate a periphery

diffusion term, the sharp step analog of the parallel diffusion flux in the two-region
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Figure 5.1: A uniform step train composed of 30 steps with spacing of l = 10 forms

step bunches at later times both for (i) f > 0, R > 1 and (ii) f < 0, R < 1.

model. Thus the general form of the velocity function can be written as:

vn(y) = f+ (ln; µn, µn+1) + f− (ln−1; µn−1, µn) − ∂τJs (5.1)

where ln(y) is the local width of terrace n that is in front of step n and µn(y) is the

local chemical potential of step n.

The velocity functions f± contains contributions both from driven fluxes on

the two neighboring terraces given by the sharp step equivalence of Eq. (2.9), and

equilibrium relaxation terms that can be calculated in terms of the step edge chemi-

cal potentials µn [77]. The µn take account of both capillary effects for an individual

step (using a linear approximation for the curvature) and the effects of nearest neigh-

bor step interactions as described earlier. See Refs. [37, 76] for detailed expressions

for f± and µn.

Numerically integrating Eq. (5.1), we find step bunching patterns for two pa-

rameter regimes (i) f > 0, R > 1 and (ii) f < 0, R < 1, in agreement with

predictions of linear stability analysis. The bunching patterns in these two regimes
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Figure 5.2: A uniform step train comprised of 5 steps with spacing l = 5 forms

in-phase wandering patterns at later times for f > 0, R < 1. Notice there are some

defects in the pattern because the wandering wavelength is incommensurate with

the finite size of our system in the y-direction.

are qualitatively similar, as shown in Fig. 5.1. In both cases, step bunches form

and grow. In between the step bunches there are crossing steps traveling from one

bunch to the other.

In-phase step wandering is also given by Eq. (5.1) in the regime f > 0, R < 1,

as suggested by the previous linear stability analysis. Typical wandering patterns

with model parameters are shown in Fig. 5.2. Even though this is known to be a

linear instability, numerically we observe that it acts very much like a nucleation

process. The steps fluctuate randomly as if the surface were completely stable until

a sinusoidal perturbation of the right wavelength forms. Once formed, these small

scale sinusoidal waves propagate through effective “pulling” by capillary effects in

the lateral direction and by step repulsions in the normal direction, until the entire

surface is covered. This is qualitatively consistent with experimental findings on

Si(111) [31].
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Figure 5.3: A geometrical view of a single wandering step region. The dashed arrows

inside the step region schematically shows the driven flux that is parallel to the step

for a step-down (x direction) field. The lower right corner shows the case when the

field is at an angle ϕ off the x-axis.

5.3 Step Wandering in a Geometric Rep-

resentation

Although Eq. (5.1) has captured many physical features, it uses a linearized curva-

ture approximation and cannot be trusted when the step curvature becomes large.

Recent experiments show a continuous distortion of the sinusoidal wandering wave

by a field directed at an angle to the step normal. We treat this problem here using a

geometrical representation [78, 79] of the step, where a single curve is parameterized

by intrinsic properties like its arc length τ and curvature κ.
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Figure 5.4: Step evolution under a perpendicular electric field (a) At t = 160,

a linear instability develops; (b) At t = 170, asymmetry between the peaks and

valleys creates a periodic cellular structure; (c) At t = 190, the cellular shape is

preserved but it grows in amplitude.

5.3.1 Derivation of Equations of Motion

It suffices to concentrate on a single step, since step wandering occurs in phase.

Consider a geometric representation of our step region with constant width s, as

in Fig. 5.3. The morphology of the step region is specified by the position vector

x (t, τ) of the atomic step in the middle, where τ represents the arc length measured

from an arbitrary origin. To follow x (t, τ) at a later time we need to know the

velocity of the curve
∂x

∂t
= vnn̂ + vτ τ̂ , (5.2)

where n̂ and τ̂ denote normal and tangential directions as before.

A general treatment of time-dependent curvilinear coordinates [80] shows the

equation of motion for the curve is

∂κ

∂t
= −

[
κ2 +

∂2

∂2τ

]
vn + vτ

∂κ

∂τ
, (5.3)
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which is subjected to the nonlocal metric constraint

∂τ

∂t
= vτ (τ) − vτ (τ = 0) +

∫ τ

vnκds′. (5.4)

Interpreting τ as the arc length is arbitrary and other parameterizations can be

used, since only the normal velocity of the curve is physically relevant. Following

previous workers [78, 79], we take advantage of this “gauge freedom” and choose

the orthogonal gauge, where τ is chosen at each instant of time so that the interface

velocity has only a normal component (vτ = 0).

Now, we need to determine the normal velocity along the step. For simplicity,

we will neglect contributions from the terrace diffusion field as well as from the

normal diffusion field in the step region, since it has already been shown that the

wandering instability we are interested in is induced by the biased diffusion parallel

to the step. In the quasi-stationary limit, the diffusion field inside the step region

is stationary for any given step position. To a good approximation, it can be taken

as cs ' c0
s (1 + Γκ), where c0

s = c0
eqs is the adatom density per unit step length for

straight steps.

Next we consider the time rate of change of the adatoms contained in an

element of the step region with an infinitesimal length δτ that moves with velocity

vn as in Fig. 5.3. This balance contains contributions from the motion of the step,

and from the divergence of the flux parallel to the step. The latter accounts for

diffusion driven both by the field and by chemical potential variations arising from

changes in step curvature. We thus have

[
d

dt
(csδτ)

]

n

= −Ω−1vnδτ − Ds∂τ [fcs sin (ϕ − θ)] δτ

+Ds∂
2
τ csδτ. (5.5)

Using the exact geometrical relation [d (δτ) /dt]n = vnκδτ, which can be understood

physically as the rate at which the arc length δτ on a circle of radius |κ−1| changes
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if the circle grows only radially at rate vn, Eq. (5.5) reduces to the following form

vn [1 + Ωc0
s (1 + Γκ)κ]

ΩDsc0
s

= f cos (ϕ − θ) (1 + Γκ) κ

−f sin (ϕ − θ) Γ∂τκ + Γ∂2
τ κ.

(5.6)

Combining Eq. (5.6) with Eqs. (5.3) and (5.4) yields a complete description of the

dynamics of a single step region in the presence of an electric field at an angle ϕ off

the x-axis.

5.3.2 Numerical Results

We first consider the special case ϕ = 0 where the external field is perpendicular to

the average step direction (the y -axis). In Fig. 5.4, we show three step configura-

tions evolving from a straight step with a small perturbation in the middle. The

linear wandering instability develops first as shown in Fig. 5.4(a), then gradually

changes into a cellular shape with the wavelength selected by the linear instability,

as illustrated in Fig. 5.4(b). At later stages, the cellular shape grows without signif-

icant distortion or overlap, as shown in Fig. 5.4(c). Notice that indeed we observe

numerically a long time period before the linear instability is significant.

In Fig. 5.5, we show configurations of the system with ϕ = π/4. Fig. 5.5

suggests that the linear instability is induced by the perpendicular component of the

field. However, as the magnitude of the instability grows, the peaks turn gradually

until they are aligned with the direction of the field. We obtain the same peak

turning process when the angle ϕ is varied while keeping f constant. However,

since the perpendicular component decreases with increasing ϕ, both the wavelength

selected by the initial instability as in Eq. (2.11) and the time period before it forms

increases monotonically with ϕ. The numerical results for three particular angles

are shown in Fig. 5.6.
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Figure 5.5: Step evolution when the electric field is at an angle ϕ = π/4 from the

x-axis: (a) t = 300, the initial instability induced by the normal component of the

field; (b) t = 315, the peaks have begun to turn; (c) t = 330, all the peaks align

with the direction of the field.
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Figure 5.6: Comparison of the step evolution as the angle ϕ increases: (a) t = 230,

ϕ = π/6; (b) t = 330, ϕ = π/4; (c) t = 640, ϕ = π/3.
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5.3.3 Discussion

To provide a more qualitative understanding of the pattern formation process, we

neglect the higher order terms in κ in Eq. (5.6). To linear order in κ, Eq. (5.6)

becomes
vn

ΩDsc0
s

= fκ cos (ϕ − θ) − f sin (ϕ − θ) ∂τκ + Γ∂2
τ κ. (5.7)

In particular, for ϕ = 0

vn

ΩDsc0
s

= fκ cos θ + f sin θ∂τκ + ∂2
τ κ. (5.8)

In the usual Mullins-Sekerka instability κ alone appears in the first term. Here

however we have κ cos θ, resulting from field driven diffusion inside the step region.

The extra cos θ term brings in a field induced anisotropy that makes the peaks

and valleys of a perturbation preferably grow rather than the sides. This stabilizes

cellular structures. This anisotropy will keep the tip unsplit, and it provides a cut

off as the sides become nearly vertical. Thus the cellular shapes formed under the

influence of the external field do not emit side branches, in contrast to most systems

that undergo a Mullins-Sekerka instability.

The second term in Eq. (5.7) is a flux induced by −κ that effectively transports

mass from the bottom to the top of a bulge and is responsible for the asymmetric

shape of the peaks and valleys, as is illustrated in Fig. 5.7.

Although Eq. (5.7) is linear in the curvature, κ itself is a highly nonlinear

function of the deviation from a straight step. The early evolution is governed by

the following linearized equation

1

ΩDsc0
s

∂x

∂t
= −f cos ϕ

∂2x

∂y2
− f sin ϕ

∂3x

∂y3
− Γ

∂4x

∂y4
. (5.9)

The above equation is unstable when f cos ϕ > 0, suggesting that the wavelength

selection is determined by the perpendicular component of the field. For ϕ = 0,

perturbations with wavenumber q0 = 1/(
√

2ξ) are maximally amplified. For 0 < ϕ <
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Figure 5.7: A study of the asymmetry of the cellular patterns: (a) t = 180, a

snapshot of the system given by Eq. (5.8). Note the close agreement with Fig.

5.4(c). This shows that the simplified Eq. (5.7) with only terms linear in κ captures

most features of Eq. (5.6); (b) t = 180, a snapshot of a model equation where the

term ∼ ∂τκ is left out of Eq. (5.8). Clearly this term is mainly responsible for the

asymmetric shape in (a).
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π/2, the most unstable wavenumber selected by the linear instability is decreased

by a factor of
√

cos ϕ, i.e., qϕ = q0
√

cos ϕ.

As the instability grows, the field induced anisotropy characterized by the fac-

tor cos(ϕ− θ) becomes more significant. As in the ϕ = 0 case above, the anisotropy

makes the initial sinusoidal wave grows preferably in the direction where cos(ϕ− θ)

in Eq. (5.7) attains its minimum. Thus the wave will be continuously distorted until

the peaks point toward the field direction, and subsequently only the magnitude of

the pattern grows.

5.4 Monte Carlo Simulations

A quantitative Monte Carlo calculation of a full 2D atomistic diffusion model under

external driving force would be extremely hard, and it would be almost impossible

to simulate the long time behavior of the system with real world parameters. For-

tunately, as we demonstrated previously in Section 5.2, our hope of predicting the

long time dynamics comparable to experiments is achieved quite well by mesoscopic

velocity function calculations.

Nevertheless, it is useful to generate a computationally simple Monte Carlo

scheme that takes account of the microscopic physics of both the positive and neg-

ative kinetic coefficients in a reasonable way. This becomes quite easy to do since

we have already established a general mapping scheme from discrete hopping to

continuum modeling and vice versa. Moreover, based on the mapping one can eas-

ily explore using simulations a host of possible boundary conditions that may be

relevant for other surfaces, in particular the asymmetric cases such as ES or inverse

ES. These studies will shed light on the understanding of negative kinetic coefficient

and the generality of current-induced instability mechanism.
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5.4.1 SOS Model with Biased Diffusion

The study here is based on a 2D SOS system - in which the surface is represented by

a discrete height function of columns of atoms - under the influence of an external

driving force. The SOS model in general belongs to the broad class of ‘broken bond

models’, in which the total energy is assumed to be proportional to the number of

bonds between neighboring columns. We believe that this is the simplest microscopic

model that can properly describes the interplay between adatom diffusion and step

motion. Unlike the velocity function calculations where we focus on the step motion

from the very beginning by coarse graining the surface, the spirit of the SOS model

is to obtain the large scale dynamics from purely individual atomic motions.

Restricted to only nearest neighbor interactions, the Hamiltonian of a general

SOS system can be written as

H =
∑

<ij>

ε |hi − hj| (5.10)

where hi is the height of column i and < ij > denotes the nearest neighbor pairs. 2ε

is the energy associated with each broken bond. The total energy clearly depends on

lattice structure. However, without losing any interesting physics, we will confined

ourselves to a square lattice for simplicity. Thus the transition probability from state

i to j, i.e. the probability for an atom hopping from site i to its nearest neighbor

site j, is simply

Γi→j ∝ exp (−2εni), (5.11)

where ni = 0, ..., 4, is the number of the nearest neighbor bonds that the atom at

site i has.

The external electric field induces small effective charges and thus exerts con-

stant forces on atoms. Neglect the small atomic masses, the adatoms undergo driven

diffusion with constant drift velocity. This can be simulated by putting a bias on

diffusion parallel to the current direction, which favors motion along the current di-

rection by a factor of exp(2 |F| a/kBT ) when compared to the opposite direction. We
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always assume positive effective charge here, and the motion that is perpendicular

to the field direction is assumed not affected.

5.4.2 Simulating a Negative Kinetic Coefficient

In previously proposed theory, the current-induced instabilities depend on the sign

of the kinetic coefficients for a given current direction, which in turn originated from

the relative diffusion rate between on terrace and near a step. It may seem difficult to

implement the different diffusion rates using such an atomistic model, simply because

there are no explicitly defined “steps” or “terraces” except as initial conditions. To

solve this problem, we adopt the scheme of modified Arrhenius dynamics, suggested

by Liu and Weeks in the study of electromigration on Si(111) at temperature range

I [35]. The basic idea is that the energy difference between the two states before

and after the move tells important information about the local structure, so that

one can use it to effectively distinguish the adatom motion on terraces and near a

step.

To a good approximation, if the adatom movement does not change the energy,

it corresponds to adatom diffusion on the “terrace” region, while a change in energy

results from attachment/detachment at a step. The approximation relies on the fact

that there is no significant island nucleation processes occurring, since the adatom

concentration is generally low on terraces in both experimental and our simulation

regime. Note that the step region that we constructed in this way always has a

constant width of 2a.

In their work, Liu and Weeks impose an extra barrier for adatom attach-

ment/detachment, which originated from the physics of step reconstruction. This

corresponds to a positive effective kinetic coefficient. Here, we shall study the case

of the negative kinetic coefficient simply by imposing the extra barrier on terrace
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diffusion. In particular, the transition rate between state i and j is constructed as

Γi→j =





exp(−2εni),4Eij 6= 0

b exp(−2εni),4Eij = 0
(5.12)

where b < 1 denotes the extra diffusion barrier on terrace diffusion.

The initial configuration of the simulation is a uniformly stepped surface con-

taining 30 single atomic height steps that run along the y direction, and a large

diffusion bias is put along x direction with |f | = |F| /kBT = .2. During the sim-

ulation, b = 0.1 and ε/kBT = 1 are assumed. It should be mentioned that much

narrower terrace and stronger field than reality are chosen here to speed up the sim-

ulation. This is appropriate since we are not interested in any quantitative detail

here, rather the qualitative idea of current-induced instabilities and the association

between the kinetic coefficients and microscopic hopping rates. Two snapshots of

the system for negative kinetic coefficient but with f > 0 and f < 0 are shown in

Fig. 5.8 and Fig. 5.9, respectively. In addition, the system is completely stable

when b = 1 as we expected, since all the steps are at local equilibrium.

5.4.3 Asymmetric Kinetic Coefficients

In the theory of current-induced instabilities for Si surfaces, only symmetric kinetic

coefficients are considered due to the unimportance of the ES barrier in general on

semiconductor surfaces. However, the ES barrier is proved to exist on many other

surfaces and plays an important role in surface morphology under non equilibrium

driving (see discussion in Section 5.1), most commonly studied with growth flux

or sublimation. With the knowledge of the ES barrier that has been extensively

discussed in the past decade and the surface electromigration that we believe to

have a good understanding of, it seems natural to explore the interplay of the two,

which has not been addressed in the literature.

Still we follow the basic idea of modified Arrhenius dynamics, and try to

impose an energy barrier for adatom motion of descending steps. Obviously the
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Figure 5.8: Monte Carlo simulation in the case of d < 1 and q > 0, with an initial

step train containing 30 steps of uniform spacing l = 10.
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Figure 5.9: Monte Carlo simulation in the case of d < 1 and q < 0, with an initial

step train containing 30 steps of uniform spacing l = 10.
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energy measure that are used previously becomes inappropriate in this case, since

the energy difference is symmetric on the two sides of the step. Instead we shall

use the column height as our new measure. In an SOS model, an atom at site i

hopping to one of its nearest neighbor site j is simulated by changing height of

column i and j with one unit in the opposite way (hi → hi − 1 and hj → hj + 1).

Hence, if we define our measure to be 4hij = hi − hj, all the diffusion process on

the same terrace satisfy 4hij ≡ 1, whereas an atom hopping from one terrace to

the other at a step edge is associate with 4hij 6= 1. Note that no permeability or

multi-site jumps are allowed in this model. Of course, there are some other possible

events on the surface with 4hij 6= 1, such as creation of adatom vacancy or adatom

overhang, but these are very low probability events and can be neglected to a good

approximation. Therefore, the transition rate for an atom hopping from site i to its

nearest neighbor site j takes the form

Γi→j =





exp(−2εni),4hij = 1

b exp(−2εni),4hij 6= 1
(5.13)

in which everything is as previously defined.

Using the transition rate defined as in Eq. (5.13), the SOS system is simulated

with the same initial conditions as in the previous section. Interestingly, it is found

that there is always stable step flow in case of f < 0, while big step bunches and

large terraces form in the case of f > 0, as is shown in Fig. 5.10.

The result here can be understood as the following. First of all, notice that

the system with diffusion property defined by Eq. (5.13) generates a special case

of ES barrier. On the lower side of the step, the attachment rate is the same as

terrace diffusion. Hence the effective kinetic coefficient diverges and the step is at

local equilibrium on this side (k+ → ∞ or d+ → 0). On the other side, the rate of

descending step is very low compared to terrace diffusion. Hence a finite and positive

kinetic coefficient (k− > 0) is generated. Second, in presence of step asymmetry, the

current-induced instabilities in general depend on the factor f(d+ + d−). Therefore
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Figure 5.10: Monte Carlo simulation in the case of d > 1 and q > 0, with an initial

step train containing 30 steps of uniform spacing l = 10.

the instability will occur in a similar fashion as Si(111) in temperature range I or

Si(001) with step-down current.

Combining the energy and height measure, another interesting case can be

simulated with transition rate

Γi→j =





exp(−2εni),4hij = 1 and 4Eij 6= 0

b exp(−2εni), otherwise
(5.14)

Note that this is a case in which the attachment/detachment from the lower side

of the step is much faster than anything else. In this case, the effective kinetic

coefficient on the upper side of the step diverges (k− → ∞ or d− → 0), while a

negative kinetic coefficient is generated on the lower side of the step. The instabilities

are therefore expected to be the same as the temperature range II on Si(111) or

Si(001) with a step-up current. The simulation results confirm the reasoning here

and resemble the patterns in Fig. 5.8-5.9.

Other models can also be created by tuning the three rate parameters distin-
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guished by some combination of height and energy measures. All the results are

consistently interpreted with the theory previously developed in the similar way as

above.

74



Chapter 6

Conclusion

This chapter summarizes the main contributions in this dissertation, and conclude

with possible directions for future work.

The first basic idea introduced is to allow for different diffusion pathways on

terraces and in a small region around a step in models of step dynamics. The

idea is physically plausible and is motivated by surface rebonding or reconstruction

that are likely important on semiconductor surfaces. In the thesis we examine the

consequences of the simplest realization of this idea, in which isotropic diffusion in

both regions and fixed width for step regions are assumed. The key parameter in the

model is the relative diffusivity that in general depends on temperature. The steady

state of this simple two region model is suggestive, in that it provides a physical

way of understanding both bunching and wandering instabilities plus a plausible

transition mechanism with temperature.

The second key idea is to use extrapolation of the two region results to relate

the effective kinetic boundary conditions to microscopic physical processes. Using

extrapolation to obtain sharp step boundary conditions is new for this field and it

elucidates the physical meaning of the effective parameters. The idea is applied first

to the two region diffusion model, where we extrapolate the concentration profiles on

terraces to obtain the linear kinetics boundary condition. Through the mapping, it is
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found that the lowest order result is independent of the field, in contrast to previous

suggestions by other researchers. Moreover, for the first time to our knowledge, the

negative kinetic coefficient is connected to plausible physical processes.

The idea of extrapolation can be applied more generally as is shown in the

study of the 1D hopping model. Without assuming much detailed information

about the physical processes on terraces, we are able to derive the general linear

kinetics boundary conditions using the quasi-stationary approximation. The deriva-

tion is simpler and can be easily interpreted in a physical context when compared

to the much involved derivation from phase field models [69]. The results directly

relate the microscopic parameters in kinetic Monte Carlo simulations to the effective

parameters in a generalized sharp step model.

The third idea is to introduce a geometric representation of the step to elu-

cidate some nonlinear features of step patterns seen in step wandering instabilities.

A geometrical representation which uses arclength and curvature to parameterize

a 2D curve is not new and has proven very useful in dendritic growth problems

[78, 79]. In the dissertation, we adopt this representation to derive the highly non-

linear evolution equations for current-induced step wandering. The advantage of the

geometric approach is that it does not introduce any artificial restrictions on the

resulting shapes, in contrast to the usual x(y) representation, where x is assumed

to be a single valued function of y. Thus it allows us to describe step patterns with

large curvature and even “overhangs” that can not be captured by the standard

multi-scale expansion method [81, 82].

Guided by the above conceptual ideas, we have obtained a number of new

results in terms of instabilities and patterns. We proposed a coherent scenario for

temperature dependent current-induced instabilities on Si(111), and analyze the

step bunching in both current directions through step pairing on Si(001). Based

on these, a unified view of current-induced instabilities is formulated in terms of

the sign of kinetic coefficients. We also extended the velocity function formalism to
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include both negative kinetic coefficients and periphery diffusion, so that the bunch-

ing and in-phase step wandering patterns for Si(111) at middle temperatures can

be carried out. The nonlinear peak turning pattern has been described well by the

numerical solutions of the geometric equations. Moreover, some interesting Monte

Carlo simulations are studied, not only to implement the general mapping results

from the hopping model, but also put the theory of current-induced instabilities in

a more general context where step asymmetry is also considered.

Going forward, there are several directions to pursue. First, we can do further

study of the instabilities on Si(111) in middle temperature range. In particular, it

will be interesting and reasonably straightforward to take sublimation and super-

saturation explicitly into account, especially since recently there seems to be some

controversy about whether the growth flux can change the unstable current direction

[83, 84]. Moreover, a study of scaling and relaxation in this regime, which could differ

from the commonly studied regime of positive kinetic coefficients, seems worthwhile.

Second, it is possible to extend the 1D hopping model to 2D, and thus gain a better

understanding of the periphery diffusion term in the sharp step boundary condition

from the physically motivated picture of the two region diffusion model. Third, it

might be possible to generalize the geometric single step approach for in phase step

wandering to account in an effective way for repulsion from other steps. This could

better describe cases where adjacent steps are close together. More generally, we ex-

pect continuing experimental and theoretical work on driven instabilities on surfaces

as workers try to understand and exploit the interesting patterns that emerge.
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