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ABSTRACT

Schemes for quantization and fusion in multi-sensor systems used for discriminating
between two sequences of dependent observations are introduced and analyzed. The observa-
tion sequences of each sensor under the two hypotheses are arbitrary stationary dependent
sequences that can not be modeled as signal in additive noise; the objective of the fusion center
is to disrciminate between the two hypotheses. These observation models are well motivated by
practical multi-sensor target discrimination problems. Two cases are considered: in the first, the
observation sequences of the sensors are individually dependent but jointly mutually indepen-
dent; in the second case, the observation sequences are dependent across both time and sensors.
The dependence in the observations across time and/or sensors is modeled by m -dependent, ¢-
mixing, or p-mixing processes. The following four quantization/fusion schemes are considered:
(a) forming test statistics at the sensors by passing the observations through memoryless non-
linearities, summing them up, and fusing these test statistics without previous quantization; (b)
quantizing uniformally (with equidistant breakpoints) each sensor observation and then fusing;
(c) quantizing optimally each sensor observation and then fusing; and (d) using the sensor test
statistic of (a) to make binary decisions and then fusing the binary decisions. To guarantee
high-quality performance, a common large sample size is employed by each sensor and an
asymptotic analysis is pursued. Design criteria are developed from the Bayesian cost of the
fusion center for deriving the optimal memoryless nonlinearities of the sensor test statistics and
the sensor quantizer parameters (quantization levels and breakpoints). These design criteria are
shown to involve an extension of the generalized signal-to-noise ratio used in single-sensor
detection and quantization. The optimal nonlinearities and quantizers are obtained as the solu-
tions of linear coupled or uncoupled integral equations involving the univariate and bivariate
probability densities of the sensor observations. Numerical results based on simulation are
presented for specific cases of practical interest to compare the relative performance of the four
quantization/fusion schemes described above and to establish their superiority to schemes that
ignore the dependence across time and/or sensors in the observations.
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Systems Research Center at the University of Maryland, College Park, through the National Science Foundation’s Engineering
Research Centers Program: NSF CDR 8803012.






I. INTRODUCTION AND PROBLEM FORMULATION

In most of the recent works on multi-sensor detection with a fusion center (see [1}-[5]), the
observations are assumed to be independent across time (by being modeled as i.i.d. sequences
of random variables) and sensors (through the assumption that the observation sequences of
the different sensors are mutually independent, when conditioned on a particular hypothesis
being true), both of which are intended to make the analysis tractable. Yet the observations are
generally dependent. Indeed, the observation processes of the sensors become dependent across
time for each sensor, when the sampling rates increase, and correlated across sensors, when the
locations of the sensors are close geographically.

In [6], the problem of distributed detection of a signal in continuous-time correlated additive
Gaussian noise is addressed and the optimal decision test for each sensor derived, for a fixed
fusion rule; the results are limited to Gaussian noise statistics and a signal-in-additive-noise
configuration. In [7], a fusion scheme with a two-bit fuzzy decision at each sensor is considered for
the case of a single observation with dependence across sensors; this is an interesting formulation
but not a sufficiently general one. In our work of [8], we treat multi-sensor detection problems
with correlated observations across time and/or sensors of general m-dependent or mixing type.
However, although the decision rules of the sensors were coupled through the optimization of
a common cost function, no quantization or fusion of the sensor decisions or observations was
considered in [8]. In our other recent work of [9] (a companion paper), quantization and fusion
schemes were considered in a multi-sensor context for the purpose of detecting the presence of
weak signals in stationary dependent noise.

In this paper, we consider quantization and fusion in multi-sensor systems for the
discrimination between arbitrary observation sequences under the two hypotheses
which are dependent across time and/or sensors. This work complements that of [9]
and extends it significantly by considering non-weak-signal models for the observations of the
sensors. In particular, the observations sequence of each sensor under the two hypotheses are
arbitrary (not necessarily signals in additive noise) stationary dependent sequences. The weak-
signal model of [9] and the associated locally optimum detection approach are not applicable
here; a nonlocal detection approach is adopted. For all the quantization and fusion schemes
of interest to this paper, we consider two operational scenarios, one in which the observation

sequences of the various sensors under each hypothesis are characterized by dependence across



time only and another characterized by dependence across both time and sensors.

In our model, the sensors collect n observations each (n being the common sample size) and
either form test statistics, which, after quantization, are transmitted to the fusion center, or
directly transmit to the fusion center a quantized version of their observations. At the fusion
center, the information sent by the sensors is processed further and a decision is reached as to
which of two hypotheses, Hy or Hy, is true. Here we introduce and analyze four quantization
and fusion schemes. In all four schemes, the sensors employ memoryless nonlinearities, while the
fusion center conducts an appropriate likelihood ratio test (and a different one for each scheme)
with a threshold that can be easily determined. These schemes are described in detail later in
this section.

To model the dependence in the observations of each individual sensor and between observa-
tions of different sensors we use stationary mixing processes, such as stationary m-dependent,
$-mixing, or p-mixing processes. The definitions of these mixing processes and the associated
central limit theorems are detailed in [10] and [11]. These models of dependence have been
successfully used in single-sensor discrimination problems (see [12]-[15]).

As a rule, the optimal detection schemes under the above models of dependence, for ei-
ther single-sensor or multi-sensor/fusion-center configurations, involve high-order (larger than
two) probability densities of the observations, which not only are difficult to characterize, but
also impose prohibitive requirements on processor memory and complexity for the storage and
processing of the dependent data. To avoid these complications in our analysis, design, and
implementation, we employ suboptimal sensor decision statistics, and sensor quantiza-
tion schemes based on memoryless nonlinearities; the fusion rules employed at the fusion
center are basically likelihood ratio tests based on these suboptimal sensor decision statistics or
quantization schemes. These are easier to implement and their derivation requires knowledge of
only the univariate and bivariate probability densities of the observation sequences. Large sam-
ple sizes are necessary for the validity of the analysis and the usefulness of the resulting detectors;
but these are well suited to hypothesis testing problems, for which a high-quality performance is
desirable involving the ability to discriminate between two sequences of observations with very
similar statistical description. Our analysis, which is based on a nonlocal detection approach, is
valid under large sample sizes for any statistical relationship between the observation sequences

under the two hypotheses; yet it is the case involving close similarity in the statistical descrip-



tions, for which our approach is most appropriate, as high-quality discrimination necessitates
large sample sizes. For single-sensor systems, these memoryless nonlinearities were successfully
used in [12]-[13] for nonlocal detection (discrimination) problems with m-dependent or mixing
stationary observations, and in [14]-[15] for designing optimal quantizers, by considering the
quantizers as special nonlinearities.

We now describe the four schemes (termed Schemes 1 to 4) for quantization and fusion in
multi-sensor detection systems with dependent observations, whose analysis, optimal design, and
performance evaluation (via simulation) constitute the subject of this paper. In our description,
we focus attention on a two-sensor configuration; the extension to configurations with more
sensors is discussed in a later section. First we introduce the notation for the model of the sensor
observation sequences, the memoryless nonlinearities, the test statistics used by the sensors, and
characterize the necessary probability distributions for the statistical description of our multi-
sensor /fusion-center system.

The distributed discrimination problem considered in this paper is formulated as the following

distributed binary hypotheses testing problem:

2P o X8 ~ ) x®)
7#H . x,® (”)(X Y k=12 (1)

where X(*) = (Xl(k)’ Xék), e, X,(lk)) is the vector of n stationary observations of sensor k£ and flEZ')
the associated n-th order multivariate density of the observation process for sensor k under H z-(k)
(i = 0,1). The above model of the sensor observations is motivated by practical problems of naval
discrimination between targets (ships) and decoys (chaff or active decoys). As is shown below,
only the univariate (marginal) and bivariate (second-order joint) pdfs of the sensor observation
sequences are involved in our analysis. The observations sequences are not modeled as signal
in additive noise. As mentioned already, the two observation sequences {X l(k)}?zl (k =1,2)
are m(;deled by stationary m-dependent, or mixing-type processes such as ¢-mixing or p-mixing
processes. As discussed above, we are interested in worst-case situations, in which the statistical
description of the observation sequences under the two hypotheses are similar, because large
sample sizes are then necessary, if high-quality discrimination is desirable. For example, if
E(XP) = Eo[x®)) and Ey[(X)?] = Eo[(X¥)?] (k = 1,2) (i.e. the means and the powers of

the observations under the two hypotheses are equal), a large sample size is required to achieve



small error probabilities at the fusion center.

Let gi(-) be the memoryless nonlinearity for sensor k. In general, the argument of g is a
continuous-amplitude (real) variable and g can take all real values. (In reality g is irﬁp].emente(l
through a discretized form with a large but finite number of amplitude levels, a matter to
which we will return later). When quantization is employed, gx(-) takes the particular form
of a quantizer characterized by a finite number quantization levels and breakpoints. The test

statistic for each sensor k basically has the form
LS o™y,
Tog == 0x(X]"); k=12 (2)
=1

where n is the common (large) sample size, and {X ,(k) }1.; a stationary observation sequence
characterized by m-dependent or mixing type dependence. These mixing processes are described
in detail in the tutorial {10]; we will not repeat the definitions here.

In general, the true distribution of T}, ; (k = 1,2) is difficult to obtain. However, for large
n, one can employ the central limit theorem for the aforementioned mixing processes (see [11]).

Specifically, under hypothesis Hi(k) (k=1,2;7=0,1), define

pri(gr) = Ei{Thkl; k=1,2 (3)
Mk ,i

o2 i(gr) = varslg (XN + 2 3 conilgn (X)), gu(x 8] (4)
j=1

where var;[-] and cov;[-] are the variance and the covariance operators, respectively, and

Ei Tn, - KV Tn, - \
pi(g1,92) = (T (Z;).ai .)2 t)

(5)
where the numerator of (5) is equal to %[covi{gl(Xl(l)), gz(X1(2))}+2 DY covi{gl(Xl(l)), g2(? J(i)l)}];
m,i (k= 1,2) is the range of dependence under H 1-(k), for the m-dependent observations of the
k-th sensor; and m; o ; is the corresponding parameter for the cross-dependence of the obser-
vations of sensors 1 and 2. For mixing-type observations we take m;; — oo, for [ = 1,2 and
(1,2). Clearly, under hypothesis Hi(k), Lk,i(gx) depends on the univariate pdf of the observa-
tion sequence {Xl(k)}}‘:1 denoted by fri(-); of ;(gx) depends on fi; and the bivariate pdfs of
(ka),XJ(»f_)l), for j = 1,2,.--, denoted by f,gfi)(-, -); and p;(g1, g2) depends on f1;, f,; and the
bivariate pdfs of (Xl(l),XJ(-i)l), for j =0,1,2,---, denoted by fl(Jz)l(, -}. The primary distinction

between the above definitions for the multi-sensor discrimination problem treated in this paper



and the problem of multi-sensor weak-signal detection considered in [9] is that the variances
under the two hypotheses are generally different in this paper, whereas they are the same in [9].

According to the central limit theorem for mixing processes, under H i(k) (¢ = 0,1) and
suitable conditions (see [10]-[11]), if of ; converges (which is trivially satisfied for m-dependent
processes but needs to be assumed for mixing-type processes) and O'Z,i >0, (T k —uk,,-)/(—\/l--—ﬁakyi)
is asymptotically Gaussian distributed with the standard A(0,1) pdf. The conditions for the
validity of the central limit theorem for each individual type of mixing processes are described
in [11] and are assumed to be satisfied in this paper. For example, p-mixing processes (for
which the numerical results in this paper are generated) require not only the convergence of
the infinite series above and the strict positivity of the variance, but also the convergence of
the series Y o2 4 P,('gn’ where p; ,, denotes the sequence of p-mixing parameters under hypothesis
H fk); the superscript (I) is (1) for the observations sequence of sensor 1, (2) for that of sensor
2, and (1, 2) for the jointly considered observation sequences of sensors 1 and 2.

(%)

Henceforth, we suppose that, under hypothesis H;” (¢ = 0,1), T x of sensor k is asymp-
totically Gaussian distributed with mean p;(gx) and variance Uzyi(gk) /n. Moreover, the pair
(Tn,1, Tn2) is asymptotically jointly Gaussian distributed with the correlation coeflicient p;(g1, g2)
(-1 < pi(g1,92) < 1). For the sake of notational convenience, we omit the arguments of the
means j;, the variances oy ;, and the correlation coeflicients p;. We also use g and Ty ¢ to
represent the nonlinearity or quantizer and the associated test statistic, respectively, in the gen-
eral expressions. We then use different notation to emphasize their function in the different
quantization and fusion schemes considered in this paper. Similar notation rules are applied to
the means, variances, and correlation coefficients.

The four quantization and fusion schemes central to this paper are defined as follows: In
Scheme 1 (illustrated in Fig. C.1), the k-th sensor employs the nonlinearity g, forms the test
statistic T}, x given by (2), and transmits it directly to the fusion center, where a likelihood ratio
test is performed based on T, k, for k = 1,2. If one could reliably transmit a real number through
a bandlimited channel (as are the channels between the sensors and the fusion center), this fusion
scheme, which is optimal within the class of schemes employing memoryless nonlinearities in the
sensor test statistics, would also be practical. However, in reality we can only transmit a finite

number of bits of information through the aforementioned channels. Therefore, quantization of

the test statistics or the sensor observations themselves is of interest and this is considered by



the following three schemes.
In Scheme 2 (illustrated in Fig. C.2), the observation Xl(k) of sensor k at time [ is first
quantized by a uniform quantizer §i, which is obtained from the discrete-form of the optimal

nonlinearity g of Scheme 1, and then transmitted to the fusion center, where the test statistic
A _1l¢ (¥)
T = ;Zﬁk(Xz ) (6)
=1

is formed. To distinguish the special nonlinearity (a quantizer) and the associated statistic of
Scheme 2 from those of Scheme 1, we use g and Tn,k for representing them. Finally, the fusion
center performs a likelihood ratio test based on Ty, k, for £ = 1,2. This scheme is motivated by
the need to reduce the information that the sensors transmit to the fusion center. It is simple to
implement, because its breakpoints are uniformly spaced over the interval defining the support of
the sensor observations; for a large number of quantization levels it is supposed to approximate
Scheme 1.

Scheme 3 is similar to Scheme 2, except that the quantizers are now optimized and can be
obtained from the discrete-form of the nonlinearities of Scheme 1. In order to distinguish this
scheme from Schemes 1 and 2, the optimal quantizer (breakpoints and quantization levels) and

the associated test statistic of Scheme 3 are denoted by Qx and Tn’k, respectively, where

. 12 -
T = = ST Qr(xM). (7)
=1

This particular scheme is motivated by the need to approximate Scheme 1 by a quantization
method for the usual reasons of reduction in the transmitted information, but it is also supposed
to achieve better performance than that of Scheme 2 with fewer quantization levels (and thus
transmitted bits of information), because of the optimized break-points and levels.

Finally, in Scheme 4 (illustrated in Fig. C.3), the sensors form the test statistics T x as in
Scheme 1, then use thresholds to make hard binary decisions about which hypothesis (H, or Hp)
is true, and then transmit these binary decisions to the fusion center. The fusion center then
executes a likelihood ratio test based on the sensor decisions in order to reach the final decision.
This scheme has the same configuration as Scheme 4. However, the number of quantization
levels for this scheme is two; thus we can not use the analysis and optimal design developed for

Scheme 4, which is valid only if the the number of quantization levels is large.



As described above, the function of the fusion center is to collect (as in Schemes 1 and 4) or
form (as in Schemes 2 and 3) the test statistics from the information transmitted by the sensors.
In the design of optimal nonlinearities or quantizers for Scheﬁes 1-4, we employ the Bayesian
risk criterion on the error probabilities of the fusion center. We use large deviations theory to
associate the Bayes risk with the final design criterion for each nonlinearity or quantizer that
has the form of generalized signal-to-noise ratio.

The course of obtaining the optimal nonlinearities or quantizers involves solving linear
coupled or uncoupled integral equations, which depend on the univariate and bivariate
probability density functions (pdfs) of the sensor noise sequence. The optimal threshold
of each sensor 7y is determined by the optimization of the individual design criterion for each
case; it depends only on the means and the variances of the test statistics 7}, x, under the two
hypotheses, and thus on the aforementioned univariate and bivariate pdfs.

To recapitulate, the contributions of this paper are the following:

(i) it investigates asymptotically optimal memoryless schemes for quantizing either the sensor
observations or the sensor test statistics, before transmitting to the fusion center, and appropri-
ate fusion rules for multi-sensor/fusion-center discrimination problems with dependence in the
observations across-time and sensors;

(ii) it extends the useful methodology of nonlocal memoryless detection (discrimination) from
the single-sensor case to the case of multiple sensors with a fusion center:

(iii) it treats multi-sensor/fusion-center discrimination problems with dependence in the obser-
vations across-time and sensors, thus extending the existing work in this area which deals with
i.i.d. sensor observations.

The remainder of this paper is organized as follows. In Section II, preliminary comments
apply to all quantization/fusion schemes considered in this paper are provided. In Section III,
our four quantization/fusion schemes are presented for the case of dependence across time only.
Then the same quantization/fusion schemes are presented in Section IV for the case of depen-
dence across time and sensors; the important special case of sensors with identical univariate
and bivariate probability densities is also treated there. In Section V, numerical results for
the two-sensor/fusion-center discrimination between lognormal and Rayleigh dependent obser-
vations sequences are provided. In Section VI, the robustification of our schemes to statistical

uncertainty in the sensor observations, the extension of our schemes to environments with more



than two sensors, and the conclusions drawn from our work are discussed.
II. PRELIMINARIES
Since a large sample size is used, we are interested in the asymptotic exponenfial rate of

decrease of the Bayesian cost defined by
E[C]) = copPo(In L, > )+ c1(1 = p)Pi(In L, < 1) (8)

where p is the a priori probability of Hy and ¢; (¢ = 0,1) are positive constants. When ¢; =1
(i = 0,1), this Bayesian cost is the error probability in the fusion center. The exponential rate
of this expected cost is defined by —1 In E[C].
1. Lower Bound on the Asymptotic Rate of Error Probabilities for Schemes 1 - 3
Here we derive a lower bound on the asymptotic rate of E[C] (or upper bound on E[C]),
which is then used in the design of optimal nonlinearities or quantizers in Schemes 1-3.
Since Ty, 1, T2 are asymptotically jointly Gaussian, the log-likelihood ratio function of the

fusion center takes the form

n L. = n (Tn1 — p1,0)? + (Th2 — p2,0)? 3 2p0(Tn1 = p1,0)(Tn2 — H2,0)
" 2(1 - p3) ot 930 91,002,0
__n (Tny — p11)? + (Tn2 — p2,1)? _ 2p1(Tpx — pia N (Tn2 — pa1)
2(1 - p3) o, o3, 01,102,1
+In 71,002,0 (9)
01,1021

which is a quadratic and not a linear combination of T, ; and T), 2, and thus not asymptotically
Gaussian distributed.

The means of In L,, under the two hypotheses are given by
01,002,0 U%,o U%,o P0P101,002,0

011091 2(1—pHol;  2(1-pd)of,  (1-phoroa,

n (M1,1 - Nl,o)2 (M2,1 - ;u'z,o)2 291(#1,1 - ,ul,o)(uz,l - /12,0)
5 + 5 - 10)

olln L,] = 1+In

- 2
2(1 - py) 011 031 01,1021

and

2 2
01,002,0 91,1 92,1 PoP101,1021
N2 N2 2
011021 2(1-pgloie  2(1=pglose (1 —p5)oieo20

+ n - [(ﬂl,l -;#1,0)2 + (liz,1 —2H2,0)2 _ 2,00(#1,1 - H1,0)(H2,1 - “2’0)](11)
2(1 - po)

010 T30 01,002,0

EylnL,] = —-1+In




moreover, as n — o0,

1 1 - 2 - L) - -
'—Eo[ln Ln] - - (#1,1 2/11,0) + (N2,1 2,uz,o) _ pl(ﬂl,l #1,0)(#2,1 12.0) = o
n 2(1 - p7) 01 1 031 01,102,1

(12)

and

= 1.
(13)

1 , 1 _ 2 _ 2 9 . _
-—El[ln Ln] - . (,um 2#1,0) + (Hz,l 2#2,0) _ Po(m,l Nl,o)(uz,l M,o)
n 2(1 - pg) 71,0 020 01,002,0

In other words, E;[In L,,] (i = 0,1) are dominated by n-¢;, respectively, as n — co. To guarantee
the reasonable condition that the error probabilities converge to zero, as n — oo, we assume

that the consistency condition described by

po<n< 1 (14)

for ¢ = 0,1, holds for the discrimination problem of interest. From the ergodic mean theorem,
the condition (14) guarantees that the error probability in the fusion center converges to zero, as
the sample size increases. A consistency condition similar to (14) was used in the single-sensor
environment, but with a linear test, meaning that the log-likelihood ratio In L, was a linear
function of the test statistics T, x (see [12] and [13]).

Let Prar = max{Fo(In L, >pn), Pi(In L, <m)}. Then, as n — oo, we have
n A

Po(hl L, >h77)
Pma.l‘

Pi(In L, <m)

+e1(1-p) iz

1 1 1 1
— =W E[C]=~=InPpee+——1In |cop —=In Paz
n n n n
(15)
To establish the design criteria for the optimal sensors thresholds and nonlinearities or quan-
tizers, we first apply the large deviation principle of [17] to characterize the exponential rates
of the two types of error probabilities, and then derive lower bounds on these rates (or up-
per bounds on the error probabilities), which are then used in the design of optimal sensor
nonlinearities or quantizers.

Now let us give some definitions associated with the large deviation principle, which are

relevant to our treatment. For s € R, define

bi(s) = nlLIr()lo bin(s) = Jim_ %ln Eilexp(sln L,)] (16)
D:(8;) = {s € R?: bi(s) < o0} (17)

S



and

L(2) = sup{sz — b;(s)} (18)
s€ .

where I; (i = 0,1) are the Legendre-Fenchel transforms of b;. Moreover, under Hi(k) (:=0,1)

and for a subset G of R, define
L(G)=inf{I(2): 2z € G} (19)

and the induced probabilities
P(G)= Pri{ln L, € G} (20)

where I;(G) are termed entropy functions in [17]. It is easy to show that b; ,(s1,52) (i = 0,1)
are convex functions, for all n, hence b;(s1, s2) are also convex functions. The following theorem
characterizes the asymptotic rates of the two types of error probabilities and is a direct result
of Theorem II.2 in [17].
Theorem 1: Under Hi(k) (t = 0,1), suppose b;(s) exist for all s € R as closed functions, and
that D;(b;) has non-empty interior containing the point s = 0. Then, for any closed subset F' of
R,

lim inf ——1In P,(F) > L(F). (21)

n—oco  q

Furthermore, if b; is differentiable on the interior of D; and steep in the sense that the magnitude
of the derivative of b;, |db;(s)/ds| diverges to infinity, as s tends to the boundary of D;, then for
any open subset F of R,

lim sup ——}1-1n P(E) < L(E), (22)

n—o0

In general, under the true distribution of H i(k), the exact form of I; is difficulty to obtain,
especially for the quadratic test characterized above. Even by assuming the joint Gaussian dis-
tribution for (7,1, Tn,2), we cannot have useful criteria for optimal nonlinearities or quantizers,
because the supreme of sz —b;(s) in (18) does not take a neat form. Alternatively, let us consider

the local behavior of sz — b;(s) for |s| < 5 with 3 — 0. Let the set B; be
B;={seR:|s|<55—0} (23)
which is a subset of R. Then we have

I;i(z) = sup{sz — bi(s)} > sup {sz — bi(s)} = Li(2) (24)
s€ s€B,

10



where I;(z) (¢ = 0,1) are characterized by the following lemma, whose proof, together with the
proof of Theorem 2 that follows, are given in Appendix A.

Lemma 1: The lower bounds I;(z) (¢ = 0,1) on the asymptotic rates [;(z) are given by

Ii(z) = (2 = ¢i)3i (25)

where §; = argsup,ep, {5z —bi(z)} has a sign, which makes J; positive for any z in the particular
set G, and ¢; are defined by (12), for i = 0, and (13), for 7 = 1.

Thus, for any set G, we have
I; = i I: > i ; = I3 26
Li(G) ;Ielgfz(Z) > zlgglz(z) Li(G) (26)

where I;(G) is defined in a way similar to I;(G).

In other words, as n — oo, if -—%Pi(G) — L(@G), then Py(G) < exp{~nl;(G)} by using (26).
According to this lemma, we have the following theorem, which characterizes the upper bounds
on the two types of error probabilities of the fusion center under a large sample size.
Theorem 2: Suppose the conditions in Theorem 1 for (21) and (22) are satisfied. Moreover,
suppose that, under Hi(k) (i =0,1;k = 1,2), T » are asymptotically Gaussian distributed with
mean ui; and variance a,fﬂ- and (T 1, T 2) asymptotically jointly Gaussian distributed with the

correlation coefficient p;. Then, for In L, given by (9), as n — o0,
1 - 1 -
- _ﬁln Po(ln L, >in) > (n — ¢0)3; ——ﬁln Pi(InL, <a) > (1 — )3 (27)
A A

where § > 0 with § — 0 and ¢; are given by (12) and (13); consequently, if we define

Imin(n) = mln{(n - 900)57 ((pl - 77)5} (28)
then
- i—lnE[C] > Lin(n). (29)

Equivalently, we have the following upper bounds on the error probabilities and the average

cost
Py(In L, > n) < exp{=n(n— ¢0)3}; Pi(lnL, < n) < exp{—n(e1 —7)} (30)
and

E[C] < exp{_nImin(n)} (31)

11



for a large sample size n. As n — o0, these upper bounds tend to be tight in the sense that
both the bounds and the error probabilities, and thus the average cost, converge to zero under
the consistency condition ¢g < 1 < ;. Then the optimal threshold is obtained by maximizing
Inin(n) as

n=arg max Inn(n)=arg max min{(n— ¢o)3, (¥1—1)3}. (32)

wo<n<ey wo <n<y1
Since under the consistency condition o < 1 < ¢ and for positive 3, (17— o) and (@1 —n)3 are

increasing and decreasing functions of 7, respectively, there is a single solution of the equation
(1= po)3 = (1 — )3 (33)

for 1, and it is the optimal threshold characterized by (32). By solving (33) we obtain the
optimal threshold given by n* = (o + ¢1)/2; by employing this optimal threshold we have the

final form of the lower bound on the asymptotic rate of the average cost given by

Imin(n*) = @5
_ 1 (B1,0 = p1,0)° | (H2a = p20)*  2po(p1,1 — p10)(p21 — pao) | 3
2(1 - p3) a1 g3 01,0020 2
1 (11— p1o)? | (B2 — p20)®  2p3{p1 — i o)(pan — p2o) | 3
2 2 + P - 5
2(1 - p3) 014 o5 01,102,1 2

(34)
Since §/2 is a positive constant, we may normalize the above I,,.;,(n™) by dividing it by 3/2 to

obtain the design criteria for the optimal nonlinearities or quantizers given by

Jmitn(‘PO,‘Pl) = 2Imin(n*)/'§ = @1 — ¥o
- 1 [(#1,1 — #1,0)2 + (Mz,l - M2,o)2 _ 2;00(#1,1 - /h,o)(#m - #2,0)}

2(1 - pd) ais 730 01,002,0
- (1o = p1o) | (B2a = p20)  2pa(k1s = p0)(pi2a = f20)
2(1-p}) ofs o3 01,102,1
(35)

Thus the optimal nonlinearities or quantizers in Schemes 1-3 are characterized by the following

maximization problem:

max Jin (90, 1)
91,92

subject to pp1 > pro; k=1,2. (36)
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In general, numerical optimization techniques, such as nonlinear programming, are required
for solving such as maximization problem, and the two optimal nonlinearities or quantizers
are coupled. In the cases treated in Sections III and IV, which are of practical interest, this
maximization problem can be solved with the help of analytical methods.
2. Asymptotic Rate of Error Probabilities for Scheme 4

In Scheme 4, each sensor transmits its decision, a binary random variable d, , (k = 1,2)
to the fusion center. This random variable d, x is not Gaussian distributed any more (not even
asymptotically Gaussian as n — 0o, and thus the design criterion derived above is not applicable.
To derive a useful design criterion for the optimal nonlinearities, we introduce here the following

asymptotic rates:

1 1

- -7;111 Po(dny =1,dna=1) = —;z-ln Po(Tng > 1, Tk > m2) (37)
1 1

- ';L‘ln Pl(dn,l = Oadn,Q = 0) = _‘7;111 Pl(Tn,k < 77laTn,k < 772) (38)
1 1

- ;111 P-i(dn,l =1, dn,2 = 0) = ——7;111 Pi(Tn,k > nlaTn,k < 772) (39)

and

1 1

- ;111 Pdny =0,dpn2=1) = —;hl Pi(Tng <, Tng > m2) (40)

for ¢ = 0,1. In (37)-(40), d,. x = 0, if sensor k decides in favor of Hy, and d, = 1, if it decides
in favor of Hy. The lemma that follows characterizes the closed-forms of the above asymptotic
rates; it is taken from Theorem 5 of [8] and proved there with the help of the large deviation
principle.

Lemma 2: Suppose

— HU1,0 2 — H2,0 2 — H2,0 m— K10
- lio > Pon a y 7 2 Po (41)
71,0 02,0 72,0 71,0
and
Hi1— T > plﬂz,z — 772, H22 — TR > Hi1 — 771' (42)
J1.1 02,1 02,1 1.1

Then, for jointly Gaussian distributed statistics (T,1,T52), the asymptotic rates defined by
(37)-(40) are given by

1 (n2 — pop)? 1 (p11 —m)?
= o Po(dny = 0,dnp = 1) — 203, —n i i(dny = 0,dnp = 1) — 20,
(43)

13



1 (771 - M 0)2 1 (/lz 1 — 772)2
I n Py(dyy = 1,dyg=0)— L0 Ly P(dyy =1,dy, = 0) — 2
—In 0(dn,1 2=0) 207, ~In 1(dn 1 2=0) 27,
(44)

and

1
-;ln Pg(dn,l = 1,dn,1 = 1)

1 _ 2 _ 2 2 . _
- - (m 2H1,o) + (72 211«2,0) _ po(m — p1,0)(m2 — p2,0) (45)
2(1 - pg) 910 92,0 01,002,0
1
——1;111 Pl(dn,l = 0, dn,l - 0)
SR [ 2—771)2 4 (2 m2)? _ 2p1(p1,0 = m) (21 — M) (46)
2(1 = p37) 011 T2,1 01,102,1
as » — oo. Furthermore,
1 1
- ;ln P()(dn’l = 1,dn’1 = 1) 2 —-7;111 PO(dn,l = 1,dn,1 = 0) (47)
1 1
- ;ln PO(dn,l = l;dn,l = 1) Z —;L-hl Pg(dnyl = O,dnyl = 1) (48)
1 1
- —Tzln Pl(dn,l = O,dn,l = 0) _>_ ——In Pl(dn,l = 1,dn’1 = 0) (49)
n
1 1
- -7;111 Pl(dn,l = O,dn,l = 0) 2 ——-T-L-hl Pl(dn,l - Oydn,l = 1) (50)

In the following two sections, Lemma 2 is used to derive the design criterion for the opti-
mal sensor nonlinearities and thresholds of Scheme 4. For notational convenience, we denote
by P;(0,1), Pi(1,0) (i = 0,1), Po(1,1), and Pi(1,1) the probabilities Pi(d,1 = 0,dn2 = 1),
Pi(dn1 =1,dy2=0), Po(dn1 = 1,dp2 = 1), and Pi(d,1 = 0,dn2 = 0), respectively.

III. DEPENDENCE ACROSS TIME

In this section, we consider the case of dependence across time, in which {X 1(1)‘}?:1 and

{X,(z)}é‘:l are mutually independent. In this case, p; = po = 0 and the objective function

Jmin (%0, 1) characterized in Subsection II.1 has the form

1 1 1 1 \
Jomin (0, - | —_— _ 2 - - 2
min (0, P1) [20%’0 + 2012,1} (H1,1 — p1,0)° + {20%0 + 20%,1} (12,1 — H2,0)

= Ji(p1,0,81.1,01,0,011) + J2(p2,0, 12,1, 02,0, 02,1) (51)

where Ji (k = 1,2) are defined by

1

1 2
S I _ ) 592
Je(tik,0, k1, Ok,05 Ok,1) [202’0 + 202’1] (#k,1 — HE0) (52)
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We notice that J:, given by (51) is the sum of J; and J, which are functionals of their own
individual nonlinearities or quantizers of the two sensors. Therefore, the optimization problem

of Jmin characterized by (36) is decoupled into two optimization problems as

H}}%XJk(/Jk,Ovﬂ'k,lva'k,OaUk,l); k= 152

subject to pr1 > pko (53)

As discussed in Appendix B, this optimization problem can only be solved via numerical
techniques, which are typically very computation-intensive and make the design procedure of
the optimal quantizers (breakpoints and levels) extremely complex. To decrease the design

complexity, we introduce here the following simplified form, for each J,

(,uk,l - ﬂk,o)2

54
Ty ¥ ol, (54)

(k05 k15 Ok 0y Ok1) =

which has been used successfully in single-sensor discrimination (see [13]). According to the
inequality
1 4 1 "'13,0 + ‘713,1 ‘713,0 + ‘713,1 2
2 2 T 952 2. = (g2 7 \2/9 T 52 2
208, 20%,  20540%,  (0iotoi )2 opo+ ok

(85)
we obtain

Je>2Jk; k=12,
with the equality satisfied, if and only if cr,zc,1 = 02,0- This implies that

E[C]

IA

exp{—nlnin} = exp{—nJmind/2} = exp{~n(J1 + J2)5/2}
< exp{-n(Ji + J5)3} (56)

for all m; the first inequality becomes tight as n — oo and the second as ‘713,1 — 04 Thus the
simplified measures J; are also involved in an upper bound on the average cost and the upper
bound characterized by them becomes tight as ‘713,1 —aio— 0.

We notice that Ji has the form of the generalized signal-to-noise ratio of.[lﬁ]; for the case
of detection of a weak signal in additive noise, 0211 = 0’2’0 and Jr = 2J; takes the form of the
deflection criterion.

In the following, Ji is employed as the design criterion for the optimal nonlinearity or quan-

tizer of Schemes 1-3 described in Section I, and this optimization problem is characterized by

H;aX Jk(/“k,O? HE,15 Ok,05 ak,l)
k

subject to g1 > pro; k=1,2. (57)
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1. Fusion of Unquantized Sensor Test Statistics

We first consider the scheme which has a configuration described in Figure 1. The sensor test
statistics are fused without previous quantization. In this case, the maximization characterized
by (57) and (54) was solved for single-sensor systems and continuous nonlinearities in [13]. Each

optimal nonlinearity is obtained by solving the linear integral equation described by (see [13])

(ea(e) = ol fra(e) + frola)) = [ Kalm sy = gu(e); k=12 (59)

where
Ki(z,y) = {2 Z fk (e, y) - Fen(®) fie, 1 ()] + 2 Z (z,9) = fro(2) fr,0(y)]
"fk,l(x)fk,l(y) = fk,o(x)fk,o(y)}/{fk,l(x) + fro(z)} (59)

is the kernel of integration. For the case of m-dependent noise, the above kernel is well defined;
for the p-mixing case we should take my; — oo but we also need to assume that the kernel in
(59) exists, so as to be able to interchange summation and integration in (58).
2. Fusion of Suboptimally Quantized Sensor Observations

Here we consider Scheme 2, in which the nonlinearity used to quantize the sensor observa-
tions before transmitting them to the fusion center is obtained by discretizing the continuous
nonlinearity gx (k = 1,2) of Scheme 1. In the discretized form of the integral equation given by
(58), let the integration range be (Xr(,ﬁ)n,me), which is assigned according to the support of
the observation processes. Then

fea@®) = fuo(aly L

— K’k(zgk),a:(-k))gk(a:('k))Ax(k) = gk(xEk)); k=12 (60)
fea(5P) + fro(=®) Z P

where mgk),i =0,1,2,-.., My are the quantizer breakpoints with x( )= xB) and xf\ij}]‘ = T(rfgz

min

and Amgk) is the discrete approximation to dz (for example, Aa:g- ) = (Xr(mlx - Xf:m)/Mk) for
sensor k (k = 1,2).
Define the vectors
k .
= [fk,i(w(()k)), fk,i(xY“)),'--,fk,i(zﬁwl)] ; 1=0,1 (61)
and the matrix
Gi = [GY)] (62)
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where
G = (fir(a®™) = fro@)NKi®, 2 )ac® 4 5(2H), My (63)

with é6(z,y) = 1, if 2 = y, and 0, otherwise. Then the equation (60) can be written as

(fix = fro)" = Ge x5 k=1,2 (64)
where gy is defined by
g = [0(=8) g2, gulaf))] (65)

(%)

To solve (64) for gy, we assume that ;" (k=1,2; i =0,1,---, My) are chosen for each sensor

so that the matrix .Ci is nonsingular. Thus we obtain

5 -1
07 = G (fua — fuo)Ts k=1,2 (66)
Then, for any observation z, we can characterize the quantizer of sensor k as follows:

lon(zs™) + u(at]/2 if 2 <2y
(@) = o) + a2 ize @2l (67)
lo(a8 1) + gu(a8)l/2 i 2 > i),
fori=1,2,---, My — 2.

Note that, in the above quantization scheme, the number of levels My and the breakpoints
a:z(k), fori=0,1,---, M}, need not be the same for the different sensors. Moreover, the spacing
of the breakpoints in the interval of the support of the noise process of sensor k& need not
be uniform. For the purpose of simplicity in analysis and implementation, we may set the
number of quantization levels to be the same for all sensors and the breakpoints uniformly
spaced over the interval of support. Although the resulting quantization scheme will not be
optimal, its performance, as quantified from simulations, is acceptable for a reasonable number
of quantization levels.

3. Fusion of Optimally Quantized Sensor Observations

In Scheme 2 of the previous subsection, the quantizer g of sensor k is obtained directly from
the discrete-form of the optimal nonlinearity gy of the Scheme 1 and thus is not an optimal
quantizer. Since quantizers also function as nonlinearities [with their sum in (7) satisfying the
central limit theorem] we can recompute the generalized signal-to-noise ratio Ji of (54) for sensor

k by using quantizers and the test statistics of (7); then we can use it as the design criterion
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for the optimal quantizer (breakpoints and levels) of each sensor. This type of scheme has been
addressed in [14] and [15] for single-sensor detection of weak signals and a different performance
measure (the efficacy). The technique of [15] can be extended from the single-sensor weak-signal
case to the single-sensor discrimination case treated in [13] and then to the multi-sensor case
treated below.

Let Qk(X,(k)) (I =1,2,---,n) be the quantizer output, for sensor k (k = 1,2), when M}
quantization levels are employed. Denote by #; = [tro tk,1 --- trnm,] its breakpoints and by
Ug = Uk, Uk2 - - Uk, ] its levels. Then the performance measure Jy of sensor k£ (k = 1,2) in
(54) can be formulated as a function of u; and t; by considering the quantizer @, as a special
nonlinearity.

The variances &2,i/n of L1, Qk(X,(k)) under Hi(k) have the form

mgi M My

~2~ _ 2 N tkr )
Gri = Z(ukl) / fk(z)dm-l—QZZZukruH/ (x y)dzdy
tk,1—1 j=1 r=1 [=1] tk,r—1 tkll
2
—(2m; + 1) [Z ukl/t kit (x)dx] (68)

while the corresponding means have the form
My ikt
i = [ Q@) ust@)ia = Y ues [ frsla)ie. (69)
1=1 k-1

Thus the maximization of (57) will now be with respect to ux and .

Forl=1,2,---, My, k = 1,2, and under Hi(k) (¢ = 0,1), define the vector

Afii = [AFED A AfED) (70)
where
(k) byl
A =/ fri(@)de (71)
tk,1-1
the matrixes
. k.1 Tk, My
Fr; = dwg{/ fri(z)dz, - -,/ fri(z)dz} (72)
- tk0 te, My -1
=[S (73)
and
= [Rf,{cl’l)] (74)
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where, for r,1 = 1,2,-.-, M,

k 1,) RE V
=2 Z / / z,y)dzdy (75)
k ,r—1 kl 1
and

(k i) tk,r tk,l -
R = mie+ 1) [ fuedde [ i) (76)
k-1

tk,r—l

Then Ji (k = 1,2) assumes the form

[ue(Afra — Afro)T]
el 3o (Fryi + Pei — Bii)lus”

Te(@r) = (77)

In this scheme, we assume that ¢x; (I = 0,1, -, M) of sensor k are chosen, such that the matrix

Z}—_—()(Fk,i + Py ; — Ry,;) is positive definite. Then the optimal quantization levels of sensor & for

fixed breakpoints are

1 -1
= [Z(Fk,i + Ppi — Rk,i)} (Afrq — Afeo)’. (78)
i=0
Upon substitution for the optimal levels given by (78) into J, we obtain
1 -1
Je=(Afea — Afip) [Z(Fk,i + Pri — Rk,i)] (Afeg — Afeo)T (79)
1=0

which is now a function of the breakpoints ¢, only. By using numerical optimization techniques
(such as the gradient method) for the objective function Ji given by (79), the optimal breakpoints
can be obtained; then the optimal quantization levels are determined by (78).

4. Fusion of Binary (Hard) Sensor Decisions

In Scheme 4, the log-likelihood ratio test at the fusion center takes the form (see [2])

Pl(dnh n2) 2 1 pl(dn,k)

InL, = In n
" PO(dn 1, n 2) k=1 pO(dn,k)
>
= nfwi(dn;1) + wa(dn2)] <my nn =0 (80)
where

ni=Be = ifd, =1
wi(dng) = e kil mk (81)

_%ln ———k-ﬂk = —Wko if dn,k =0

with a; and B being the probabilities of false alarm and miss for sensor k, respectively, and

nn = 0 the threshold of the fusion center, which corresponds to equiprobable hypotheses Hi
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and Hy (prior probabilities p = 1/2). Thus the LRT fusion rule is characterized by what is a
weighted sum of the decisions of the sensors (compare with [2] and [9]).

Since, in all cases of practical interest, ax + 8x < 1 under a large sample size n, we have
that wr; > 0 (k = 1,2, ¢ = 0,1) for the wg’s defined by (81). Furthermore, if we denote by
nk (k = 1,2) the threshold of sensor k¥ and assume that it satisfies the consistency condition
Hko < Mk < kg, under which the error probability of each sensor tends to zero as n — oo
according to the ergodic mean theorem. Actually, we may use the large deviations principle of

[17] (which we applied in [8] in the context of multi-sensor detection systems without a fusion

center and in [9] for multi-sensor systems with a fusion center for the detection of weak signals)

to obtain
- 1
Wg1 = l]n 1 ﬂk = —-{ln(l — ﬂk) —In Olk]
n ok n
_ 2
o Loy o (e ko) (82)
QUk,o
and
1, 1—q 1
= = I _ —n B
Wk,0 - In 7 - [In(1 - ag) — In By]
1 (1 — )
__ ML R 83
— - In G — 20%,1 (83)

for n — co. Thus the optimal decision rule in the fusion center is given by

If dn,l = dn,g = 0, decide Ho

Hy
if dpp=0,dn2=1, —wio+ w1 <g, 0
) >H
if dnp=1,dr2=0, w1 —weo<g,0 (84)

if dp1=dpa=1, decide Hji.

This rule is similar to the one derived in Subsection IIL.5 of [9], exﬁcept that the weights given
by (82) - (83) are different from the corresponding weights of [9].

For the decision policy given by (84) and under the consistency condition for each sensor, the
probabilities FPy(0,1), Py(1,0), Po(1,1), P1(0,1), Pi(1,0), P1(0,0) of the sensor decision pairs
(0,1), (1,0), (1,1), and (0,0) converge to 0, as n increases, and so does the error probability of

the fusion center P,. Thus it is meaningful to consider the asymptotic exponential rate of the
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error probability for large n, —-71; In P., as the design criterion for the optimal sensor nonlinearities

gr and thresholds 7. The error probability P. has the form

P, = pPy{wi(dn1) + wo(dn2) > 0} + (1 ~ p) Pi{wi(dn1) + wo(dnz2) < 0} (85)

where p is the a priori probability of Ho (p = 1/2 in our case). The optimal fusion test
characterized by (84) results in the coupling of the two optimal thresholds of the sensors when
they disagree (see [9]). As discussed in [9], to avoid the complex optimization problem that
can be solved only via numerical techniques, we consider a simpler suboptimal approach which
is shown via simulation results to provide satisfactory performance. According to this, we try
to make wy; + we 1 and —wy g — wy g respectively as large and as small as possible, since this
will maximize their distance on opposite sides of the fusion center threshold » = 0 and thus
minimize the fusion center error probability. Specifically, we determine the sensor thresholds by
maximizing the minimum of the weights given by (82) - (82), that is,
N = arg ﬂ'k,Og::uéﬂ-k,l min{wg,1, Wko}

1 1
= arg max min{-——lnak,——lnﬂk}
n n

Br,0 <M SHE1
(M = pr0)? (Beg — nk)z}

2 b

= arg max min )
{ 2”k,0 20} 4

BE0SNESHE 1

Tk olk,1 + Ok11k,0 (86)
Ok0 + Ok1

Employing the above thresholds, we obtain

(kg = pp)?

= k=12 87
oroT ora)? : (87)

Wg,1 = Wgo = Wg

Next we evaluate the asymptotic rate —%ln P, by applying Lemma 2. In the case treated
in this section po = p1 = 0, and thus conditions (41) and (42) are satisfied, which enables the
application of Lemma 2. We thus have the following expressions for the error probabilities o

and f of the fusion center under the two hypotheses (see also [9])

a = I(w1 + wy > O)Po(l, 1) + I(’w1 + we > O)PO(O, 1)
+I(w1 — Wo > O)Po(l,O) + I(wl - Wo > O)Po(0,0)
Po(l, 1) + I(w1 + wg > O)Po(o, 1) -+ I(w1 — wo > O)Po(l, 0) (88)
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and

B = I(wr+wy <O)P(L 1)+ I(wr +we £ 0)(0,1)
+I(w1 — W2 S O)Pl(].,O) + I(w1 — W2 S O)Pl(0,0)
= I(w1 + we S O)Pl(O, 1) + I(w1 — Wy S O)Pl(l,()) + Pl(0,0) (89)

where I(A) for a set A denotes the indicator function of A. To minimize the above error
probabilities we must consider the following different cases:

C'ase_gﬁz w1 > w3y OT
(p1,1 - ,Ul,0)2 > (M2 — #2,0)2

(o104 011)? = (090 +021)% (90)
Then wy1 — w0 > 0 =71 and —wy 0+ we1 < 0 =7, which implies that
a = Py(1,1) + Py(1,0) and B = Pi(0,1)+ P1(0,0) (91)
and the error probability of the fusion center has the form
P. = p[Po(1,1) + Ro(1,0)] + (1 - p)[P1(0, 1)] + P.(0, 0. (92)

Intuitively the condition w; > wy corresponds to the decision of sensor 1 being more reliable
than that of sensor 2, and thus, in case of disagreement between the two sensors, the fusion
center decides according to the decision of sensor 1; this is reflected in the forms of the error
probabilities derived above.
Let Pnaz be the maximum of the various error probability terms in P, given by (92), that
is,
P =max{Po(1,1), Py(1,0), P1(0,1), P,(0,0)}. (93)

This P, dominates the asymptotic rate of P.. Using the results of Lemma 2 we obtain

(771 - #1,0)2 (Hl,l - 771)2
20%’0 ’ 20%11

1
——InP, - ——1—lnP,,wz :min{
n n

_ (ma- #1,0)2 (94)
(0104 01,1)

where

2 N2
m = arg maXx min (m /;1’0) , (111 3 m) .
#1,0 Sm Sk, 201,0 201,1

This is in total agreement with the results in (85) and (86).
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The maximization of the performance measure resulting from the above asymptotic rate was
discussed in [12]-[13] in the context of single-sensor discrimination and requires the solution of a
nonlinear integral equation with respect to the nonlinearity g;. This nonlinear integral equation
was shown in [12] to have a unique solution and can be efficiently solved as indicated in [13].
Still it is difficult to robustify to uncertainty in the statistics of the observations. An alternative
approach is to use the inequality (z + y)? < 2(z? + y?) (which becomes an equality for z = y)

and obtain the following lower bound on the asymptotic rate:

(H1,1 - Ml,o)2 (M1,1 - /h,o)2 (95)
(010 +01,1)% = 2(0fo+ 0t )

This lower bound becomes tight as 0'12,1 — U%,o- The maximization of this lower bound with
respect to g; has been addressed in Scheme 1 of Subsection II.1 and results in the solution of a
linear integral equation. When w; > wq, we may use the above lower bound in the design of the
optimal nonlinearity ¢g;. Since we would like the inequality w; > ws to hold for our choice of
g1 as the nonlinearity maximizing (95), it suffices that the desirable inequality (w; > w;) holds
for the g2 that maximizes (p21 — p20)2/(02,0 + 02,1)? (i.e., the weight w,); this g; can also be
obtained from the analysis of Subsection III.1.

Case (11) : wy; < wy or

(ll1,1 - #1,0)2 < (ﬂ2,1 - ﬂ2,0)2' (96)
(0104 01,1)% = (02,0 + 02,1)?

Then wy — wy < 0 and —wy + wy > 0. This case is dual to case (i). The formulation and

necessary steps are similar to those of case (i); we only need exchange the roles of sensors 1 and
2 to obtain the appropriate optimization conditions for sensor nomlinearities and thresholds.
Therefore, we do not repeat the details here.

In summary, for Scheme 4 and under equiprobable hypotheses the optimal thresholds and
nonlinearities of sensors are determined from (86) and (58)-(59), respectively.
IV. DEPENDENCE ACROSS TIME AND SENSORS

The case of interest here is that of identical sensor univariate and bivariate densities, i.e.,
f,i(z) = fa,i(z) = fi(z) and fl(’ji)(m,y) = éfi)(x,y) = f,-(j)(a:,y), fori=0,1and j =1,2,--+,m;j,
where we assume that my ; = mz; = m; for the range of dependence of the sensor observations.
In addition, let fi(j)(:r,y) = fi(Xl(l) =z, J(_z}_)l = y), for j = 0,1,2,---,7m;, denote the joint

densities of the two observation processes, where 7; is the range of dependence of the observa-

tions across the two sensors under hypothesis H; (i = 0,1). It is easy to verify that the choice
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g1 = g2 = g for the sensor nonlinearities satisfies the necessary conditions for the maximization
problem given by (36). Although we cannot argue that this is the optimal solution, it is a
reasonable choice, as it simplifies the implementation and provides a satisfactory performance
(as we establish via simulation). The optimal solution is very difficult to obtain via analytical
techniques.

Thus p1; = po; = ps and 01, = 0g; = 0y, under Hi(k) (i =0,1), and Jpn takes the form

1 1
(14 po)ad (1+P1)‘71

Tmin(®0, 1) = (1 — po)? (97)

Similar to the maximization problem characterized by (53), the maximization of the above Jnn
under DS </ lo Tequires numerical techniques and is not amenable to further analysis. Hence,
we turn to a lower bound on J,,.;, similar to the one used in Section IIL. In particular, we apply

a modified version of the inequality in (55) to deduce the following lower bound on Jyin

Jin 2 4J

where

(Nl - uo)2
(L+ po)ag + (1 + p1)oi (98)

with the equality satisfied, if and only if 0? = o2 and p; = po. This implies that

J—(,U,j, Uivpi;i =0, 1) -

E[C]

IA

exp{_‘nImin} = eXp{_nJming/Q}

exp{—n(2J)3}

IA

for all n; the first inequality becomes tight as n — oo and the second as 0 — o2 and p; — po.

Then the optimal ¢ is obtained by solving the maximization problem described by

mgax ‘]—(/J’ﬁ oi,pist =0, 1)

subject to p1 > po. " (99)

This maximization problem is solved in Appendix C, and the sufficient and the necessary con-
ditions for the optimal g are derived there.

We notice that both (97) and (98) define new expressions for the signal-to-noise ratio of
two-sensor discrimination systems. These performance measures are reminiscent of (but dis-

tinctly different from) the corresponding efficacy-type measures derived in [9] for the two-sensor
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detection of weak signals. For the rest of this section, we use J as the design criterion for the
nonlinearity or the quantizer in the various quantization and fusion schemes except for Scheme
4.
1. Fusion of Unquantized Sensor Test Statistics

From the maximization of J,;, performed in Appendix C we obtain that the optimal non-

linearity satisfies

(Fi(®) = S(@D/(@) + fole)) = [ Bel,9)9()dy = o) (100)

where the integration kernel takes the form

Ee9) = 23U - A@AWI+2Y 1) - AEA)

i=1

25U @, 9) = fl@) o]+ 25 (e 9) — fole) foly)]

7=1 7=1

+ 72, y) - 20(2) i (y) + 157, y) — 2fo(2) fo()} { fi(2) + folz)}. (101)

This is similar to the derivation of gg for Scheme 1 in Subsection III.1.
2. Fusion of Suboptimally Quantized Sensor Observations

Similar to Scheme 2 in Subsection IIL.2, we now obtain the discretized form of (100) as

fi(z:) = fo(z:)
fi(z) + fo(z:)

where z;, for : = 0,1,2,.--, M with M = M, = M;, are the breakpoints. We define the vectors

M
= > K(wi,25)9(zj)Az; = g(z:) (102)
7=0

fi = [fi(®o), fi(z1), -, filzm)]; i=0,1 (103)
and the matrix
G=[Gy] . (104)
where
Gij = (file:) — fo(z)[K (2, 25)A2; + 8(2i, 25)]- (105)

Then (102) can be written as
(h-R)'=Cg (106)
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where g is defined in the same way as g in Subsection IIL.2. We again assume that z; (i =

0,1,---, M) are chosen such that the matrix G is nonsingular. Thus we have

=G A~ )T (107)
and the quantizer for this scheme is characterized by

[9(zo) + ge(z1)]/2 iz <
g(z) =1 [g(zi) + 9(zip1))/2  if z € (74, Tip1] (108)
[9(zp-1) + 9(zm)l/2 iz > zp
fori=1,2,---, M —2.
3. Fusion of Optimally Quantized Sensor Observations

Similar to Scheme 3 of subsection III.3 but using the same structure for both quantizers, in

other words, @1 = Q2 = @, t; =t = ¢ and u; = ug = u, we obtain under Hi(k) (i=10,1)
5t = EQXMQx = (EQ(xMD? + 22{E XM )1 - (Ele(xM)%

= Zzu,u,/::/ )(z y)da:dy-l—?%{Zme / / f (z,y)dzdy}

r=11=1 =1 r=11=1

o+ D> [ #@ap (109)
=1 i

where j; is the correlation coefficient Tn,l and Tnyg. In addition,

pi= [ Q@) m)dm—zuz " fil)de (110)

ti—1

Let the vectors é_fﬁc_z and the matrixes _Fﬁ, _Pi[&i and R_;”_ be defined in the same way as
in Scheme 3 of Subsection III.3. Then under symmetric densities and identical quantizers,
Afii = Afoy = Afi, iy = Fi = B, P = P = P and Ry = Ray -—R~(z‘:01).
Moreover, under H,-(k) (1=0,1), define the matrixes P.; = [P( 9 Jand R.; = [R

¢,

ori] Where

(@) A AL () tr 2l
Pc,,,,=/ / b (w,y)dxdy+22/ / 7@, y)dzdy. (111)

tpo1 Y11 tr—1 vt

and

gl, = (2m; + 1) -/tr fi(z)dz - /tl fi(z)dz (112)

r—1 ti1
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Then the objective function Jp;, of quantizer @ is given by

[wW(AfL - Af)TP?

J—min. = .
= L Er Rt P B Rl

(113)

We also assume that t are such that the matrix Yluo(F; + B + Pei — Ri — R;) is positive

definite. Then the optimal quantization levels of sensor k are given by

1 -1
ul = [E(ﬁ@@gi—&—&i)] (Af - AT (114)
=0

for fixed breakpoints. Upon substitution for the above optimal levels into .J,,;,, we obtain Jin

as a function of the breakpoints t as follows:

1 -1
Tin = (A~ Afy) [Z@@Jrfg—&—ﬁ_@} Ah-ART. (115)
1=0

The maximization of this expression with respect to the breakpoints can be accomplished via
numerical optimization techniques.
4. Fusion of Binary (Hard) Sensor Decisions

Unlike Scheme 4 of Subsection II1.4 and due to the correlation between the sensor decisions
dn,1 and d, 2, the log-likelihood ratio function of the fusion center does not assume an additive

form. The asymptotic log-likelihood ratio is given by
1 1 1 «
—In Ln =—ln Pl(dn,la dn,g) — —In P()(dn,]_, dn,2) (116)
n n n

for any sample size n, and the corresponding log-likelihood ratio test with the threshold n = 0

(for equiprobable hypotheses) at the fusion center is given by

>

%In Pl(d’n,ladn,2) — %ln Po(dnyl,dnyg) <H, 0 (117)

which involves the asymptotic rates of the probabilities P;(0,1), P;(1,0), Po(1,1), and P;(0,0)
of the sensor decisions.
Suppose that the conditions (41) and (42) are satisfied. Then we can apply the results of

Lemma 2 to our case and obtain that, for a large sample size n, the optimal fusion rule is

described by

if dny = 0,dna = 1; ;1;111 P(0,1) - -lem Po(0,1)
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zf dn,l = 1’dn,2 = 0;

Zf dn,1 = 0, dn,2 = O;

l.f dn,l = 17dn,2 = 17

(n2 — p20)? >

(ul 1 771)2
- <m, 0
20%’0 Ho

B 20'%1 t

1 1
;L-lnPl(l,O)-— -T-;hlP()(].,O)

(m — p10)? >H

2
H21 — 12 118
( ) 207, <H, 0 (118)

h 203’1 +

1 1
;L-lnPl(O,O) - EIIIPQ(O,O)

1 (11 —m)? | (p2a—m)?  2p1(pg — m)(pa1 —m)| >™
- ) P + 2 - <o 0
2(1 - p3) 911 921 01,192,1
1 1
—1In P(1,1) - —1n Py(1,1
~lnPy(1,1) - ~In o(1,1)
1 (m = pm10)? | (M= p2p0)? 2po(m — p10)(m2 — pap)| >
2 2 P - <#, 0-
2(1 - pj) 710 73,0 91,092,0

where we use the fact that P1(1,1) — 1 and Py(0,0) — 1, as » — oo, under the consistency

conditions pro < M < pg for the sensor thresholds. Furthermore, notice that

and

1 1
:;hlPl(0,0)—- ;IHPO(O’O) S 0

1 1
;1DP1(1,1)—;111P0(1,1)> 0

in the last two subtests of (118), since 2 +y% — 2pzy = (z — py)? + (1 — p2)y* = (y—p2)* + (1 -

p*)z? > 0, for all p € [—1,1]. Therefore, the sensor decision pairs (0,0) or (1,1) always imply

that the fusion center favors Hy or Hy, respectively, in its decisions. To pursue the optimal

sensor nonlinearities and associated thresholds for the general case of asymmetric (unequal)

sensor observation densities is a very difficult task. Instead, as in the previous subsections, we

restrict our attention to the case of symmetric univariate and bivariate densities.

In the symmetric case, we can easily check that the conditions (41) and (42) are satisfied,

since p; < 1 (i = 0,1), and the factors multiplying it in these conditions are nonnegative, because

of the consistency conditions. Using the results of Lemma 2 we obtain the fusion rule

: (k1 =)? | (7= po)® >™
dny1 = 0,d =1; - < 0

Zf 1 7,2 20_% + 20_(2) Hyp

. _#\2 - 2 S Hy

if dpy =1,dp2=0; —(“120277) + (@ 20";0) <H, 0 (119)
1 0

- (= 7)° >m
dni = 0,dn2=0; ———= <p, 0

H o ? L+ po)og

, (71 = pro)? >
=1l,dpo=1 —m—— 0

Z.f dn,l 1’ ,2 1 (1 + po)o_(g) <H0
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where 77 = 1y = 71 is the threshold used by the two sensors. This threshold is determined in
the manner described by (86) in Subsection IIL.4, that is by maximizing min{(7 — 0)*/[(1 +
po)odl, (g1 — M)?/[(1 + p1)oi]} [the minimum of the weights for sensor decision pairs (0,0) and
(1,1)], except that the final result is now the following:

(14 po)oops + (1 + p1)orpio
(14 po)oo + (1 + p1)oy

f = (120)

With this threshold, the fusion center subtests for the various sensor decision pairs become

(#1 = po)*(2 + p1 + po)
(1 + p1)o1 + (1 + po)ao]

Hy

>H1 ) >
2(—,01 + po) <H, 0, ie, —p1+po<m 0

Zf dn,l = Oadn,Z = 1’

. (#1 = p0)* (2 + p1 + po) > . >H
tfdn1 =1,dp 2 = 0; - <m, 0, ie, —p1+po<m, 0(121
fdny 2 [(1+p1)a1+(1+p0)00]2( p1+ po) <um, p1+ po <H, 0(121)
. (41 — po)® > . .
1fde1=0,dp2=0; — <m, 0, i.e., decide H
f dns ? [(T+ pr)or + (1 + pojool ’
(1 = po)? >

ifdp1=1,dp2=1; 5 <H, 0, ie, decide H;.

(1 + p1)or + (1 + po)oo]
The error probability of the fusion center takes the form
Pe = p{Po(1,1) + I(=p1 + po > 0)Po(0,1) + I(—p1 + po > 0) (1, 0)}
(1= p){P10,0) + I(—p1 + po £ 0)P1(0, 1) + I(—p1 + po S 0)P1(1,0)}  (122)
where I(A) is the indicator function of A. To minimize this error probability, we consider the

cases (1) p1 > po and (ii) p1 < po. Next we only discuss case (i).

In the case p; > po, the error probability of the fusion center becomes
P, = pPy(1,1) + (1 - p)(P1(0,0) + P1(0,1) + P1(1,0)] (123)

whose asymptotic rate is derived by using the results of Lemma 2 as

1 {(77 —po)? (g =AM (H=mo)* (m—7)? }

——InP, i ’ ’
p o ie T 202 202 (14 po)od’ (1+ p1)o?

(=m0 (= )?\ _ (w1 — po)? '
= mm{ 57 257 }—(ao-{—al)z (124)

as n — o0o. Notice that a different sensor threshold, namely

i1 = (dop1 + 0140)/ (0 + 01) (125)

maximizes the above asymptotic rate. If we use this threshold in the fusion rule of (119),

we obtain a fusion rule different from that of (121). Actually, since the fusion center error
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probability is the ultimate performance criterion, the above choice of threshold in (125) and the
fusion rule of (119) with this threshold in place should be preferred over any other design. We
presented here the alternative design based on the maximization of the weights in the fusion
rule of (119) for the sake of completeness. The fact is that no matter which specific inequalities
are satisfied in the various subtests of the fusion rule of (119) (because of the choice of 7), the
error probability of the fusion center will have the asymptotic rate given by (124).

The asymptotic rate of (124) is lower bounded by (1 — p10)%/2(02 + 02); this lower bound
becomes tight as 0 — ¢3. This performance measure is preferable, since its maximization results
in a linear integral equation, as already discussed at the beginning of Section III. Therefore, the
sensor nonlinearity ¢ is determined as the solution of the optimization problem described in
(57).

V.PERFORMANCE EVALUATION OF TWO-SENSOR DISCRIMINATION SCHEMES

In this section we compare via simulation the performance of the various quantization and
fusion schemes which take into account the dependence in the sensor observations and employ
the optimal nonlinearities or quantizers to the ones which ignore the dependence. Moreover,
we simulate and quantify the relative performance of the four quantization and fusion schemes
introduced and analyzed in the previous sections. The sensor observation processes are charac-
terized by stationary lognormal (under Hy) and Rayleigh (under Hp) univariate and bivariate
(second-order joint) densities. Actually, a p-mixing dependence model is adopted for the sensor
observations. These distributions under two hypotheses are motivated by practical problems in
naval target discrimination, in which H; models a target (e.g., a ship) and Ho a decoy (e.g.,
a chaff cloud). It is assumed that the first- and second-order moments of the sensor observa-
tions under Hy are equal to the corresponding ones under Hp; which makes the discrimination
problem particularly difficult. The two hypotheses are assumed to be equiprobable, i.e., p = .5.
A sample size of n = 600 is used in all examples to yield sufficiently small error probabilities.
1000 simulations are run to generate the numerical results in this section; this is sufficient for
providing reliable results, as long as the error probabilities are no smaller than .005, which is
the case here. In our simulations the magnitude of the sensor observations is restricted to be
in the interval [X,in, Ximaz), this is imposed from practical considerations involving the hard-
ware of the radar discrimination systems. In this way, very small and in particular very large

samples (in the tails of the pdfs) are discarded and good quality simulation data are fed to our
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quantization and fusion schemes. The appropriate values of X,,;n and Xm,, are derived for the
specific sensor observation pdfs, by requiring that P ;{¥ < Xpin} = Pri{X > Xaz} < € for
:=0,1,k=1,2,and € = 1078, For the lognormal and Rayleigh univariate and bivariate pdfs
of interest in this section the range of observations turns out to be (0.02,16.6). Finally, in all
examples involving quantizers, we use M; = M, = 8, i.e., eight-level quantizers; the number of
quantization levels was kept small to reduce the complexity of the computation of the optimal
breakpoints and quantization levels.

The lognormal processes under Hj, Xl(ki) fori=1,2,---,n and k¥ = 1,2 are obtained from
the nonlinear transformations Xl(fc) = exp[agc)lNl(i) + u(k)] in which the Gaussian processes

Nl(ﬁ-) are generated from the recursion formula

NE = y®

N = BN i v

where ~1 < pgf)l < 1 are correlation coeflicients and V1(,l;) (1=1,2,---,n), for sensor k (k = 1,2),
is a sequence of i.i.d. standard Gaussian (V(0, 1)) random variables. In the case of dependence
across time only, Vl(;) and Vl(j) are generated independently; in the case of dependence across

time and sensors, they are generated in a coupled manner as

Vi = oD vl 1 - o e
(©

where Wy ; is another i.i.d. standard Gaussian (AV(0, 1)) process and —1 < p; < 1 a correlation
parameter; Vl(;) and Wi ; are mutually independent.
The Rayleigh processes under Hg, X(gki) are obtained from two independent Gaucsian pro-

cesses Yo(,f) and Z(()i-) fori=1,2,---,nand k = 1,2 as on = aG \/(Y e 4 )2, where

Yo(f) and Z((,ﬁ-) are generated by the recursions

R T
and

A - o

A9 = A0 i B i
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where —1 < p(k) < 1 are correlation coefficients and, for sensor &, Vo(k)

U(gﬁ-) (i =1,2,---) are
two ii.d. standard Gaussian (V(0,1)) sequences. In the case of dependence across time only,
(Vo(i') (2)) are generated independently and so are ( 0, , Ué2~))). In the case of dependence

I

across time and sensors, they are generated in a coupled manner as

VO(,2) — Pg) V(l) /1 ~1Ip (C)] Wo,; and Ué l) - p(Cg)OU(l) + [ (o) ]2W0z

where Wy ; and Woyi are two i.i.d. standard Gaussian sequences independent of each other, and

-1< pg) < 1is a correlation parameter; U(glz), Vo(t), Wo,i, and WO,i are mutually independent.
To simplify the presentation of the simulation results, we consider a two-sensor/fusion-center

system with sensor observations that have identical statistics. i.e., the first- and second-order

pdfs, respectively, of the sensor observations are the same for the two sensors. This implies that

the nonlinearities and quantizers employed by the sensors are the same.

1. The Case of Dependence Across Time

Example 1: This example pertains to the Scheme 1 described in Subsection III.1: fusion of

unquantized sensor test statistics. The values of parameters are selected as 08’%) = Ugy)o =2.0

and pG) = plh = 0.9261, under Ho; 05} = o5} = 0.4915, u5) = uf¥) = 0.7982 and

pg’l = P(G)1 = 0.9924, under H;. In the kernel of the integral equations the infinite sums (for the
p-mixing case treated here) were truncated to m;; = mg; = 300 terms under hypothesis H,
and my g = my o = 30 terms under hypothesis Hy, for the two sensors. The above values of the
parameters are characteristic of cases of practical interest in radar discrimination. According to
these values of the parameters, the first- and second-order moments of the observations under
Hy are the same as the corresponding ones under Hy, which makes the discrimination problem
particularly difficult. Since, under each hypothesis, the univariate and bivariate densities of the
observations of the two sensors are identical, the two optimal nonlinearities have the same form
Jopt(z). In Fig. l.a, gopr and the nonlinearity of giy(z) = In{fi(z)/ fo(z)] (the i.i.d likelihood
ratio function), (fi(z),; ¢ = 0,1, being the univariate densities under H;) are presented. In Fig.
1.b, we present the receiver operating characteristics (ROCs) of this example, which show that
the performance of g, is superior to that of Fii4.

Example 2: This example pertains to Scheme 2 of Subsection III.2: fusion of suboptimally
quantized sensor observations. The revalent parameter values are the same as the ones in Exam-

ple 1. The corresponding suboptimal breakpoints and quantization levels for both quantizers g;iq
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and g;;4, which are induced from g, and giiq of Example 1, respectively, are given in Table 1;
the resulted ROCs are drawn in Fig. 2. From the ROCs in Fig. 2, we see that the performance
of the quantizer g,p; is similar to the one of ¢;;4 in this specific example; this is due to the low
number of quantization levels M7 = M, = 8 employed, as this number increases, considerable
improvement in the performance can be achieved.

Example 3: This example pertains to Scheme 3 of Subsection III.3: fusion of optimally quan-
tized sensor observations. We use the same parameter values as in Example 1. The optimal
quantizer Q,p; (breakpoints and levels) is shown in Table 2, where the quantizer Q;;y obtained
by ignoring the dependence is also included. The resulting ROCs are drawn in Fig. 3, which
indicates that the scheme employing the optimal quantizer provides superior performance to the
one which ignores the dependence.

Example 4: This example pertains to Scheme 4 of Subsection III.4: fusion of binary sensor
decisions. The parameter values are set to be the same as in Example 1. In Fig. 4, we compare
the ROCs using the nonlinearities g,,; and giig given in Fig. la. From Fig. 4, we conclude
that the scheme employing g,pt yields a performance superior to the one which ignores the
dependence.

Then we compare the ROCs of the optimal nonlinearities or quantizers for the above four
schemes in Fig. 4a, where we see that the performance of Scheme 1 is best (as intuitively
expected), Scheme 4 follows, then Scheme 3, and the performance of Scheme 2 is the worst. The
two schemes employing quantized observations did not perform that well for this small number
of quantization levels (3-bit or 8-level quantizers).

2. The Case of Dependence Across Time and Sensors

Example 5: This example pertains to the same scheme as in Example 1. The values of the
parameters U(Gk,Z-, ,ugf’)z and p(Gk’), are assigned the same as in Example 1, but here my 1 = mo; = 600
and mq 9 = myo = 60 are used. In addition, we choose pg?o = 0.90 and p(Gf,)l = 0.99. In Fig. 5a,
we present the plots of the nonlinearities gop¢ (which takes into account the dependence across
time and sensors), gopt (wWhich ignores the dependence across sensors), and g;;4 (which ignores the
dependence across time and sensors); g,p¢ and gi;y have the same forms as in Example 1 since the
relevant parameter values are the same. In Fig. 5b, we draw the ROCs of the unquantized fusion
schemes employing these three nonlinearities. From this figure, we see that the performances of

Jopt is superior to that of g,,¢, which is in turn superior to that of g4-
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Example 6: This example pertains to the same scheme as in Example 2. The parameter values
are the same as in Example 5. The suboptimal quantizer g;;4 (breakpoints and levels), which is
induced from g,p: of Example 5, is given in Table 3. In Fig. 6, we draw the ROCs which use
the three quantizers q,p¢, gopt and giiq; where g,y and g;iq are obtained from the g,p¢ and giiq as
in Example 2. From Fig. 6, we notice that the performance of the suboptimal quantizers g,p; is
superior to that of gup¢, which in turn is superior to that of g;;4.

Example 7: This example pertains to the same scheme as in Example 3. We use the same
parameter values as in Example 5. In Table 4, the quantizer Q (breakpoints and levels) resulted
from numerical optimization is given. In Fig. 7, we then present the ROCs for the schemes
employing Qopt, Qopt and Q;iq, respectively; Qopt and (jiq are as defined in Example 3. From
Fig. 7, we observe that the performance of Qopt is superior to that of Q,p: and Q¢ and the
performance of Q¢ is superior to that of Q4.

Example 8: This example pertains to the same scheme as in Example 4. The parameter values
are set to be the same as in Example 5. In Fig. 8, we present the ROCs which uses g,p; and
giid (of Example 1) in this case. From this figure, we see that the performance of g,,: is better
than that of g;;4 for dependent observations across time and sensors.

In Fig. 8a, we provide the same comparison as the one presented in Fig. 4a. From this
figure, we conclude that in this case, the performance of Scheme 1 is best, Scheme 4 follows,
then Scheme 3, and, finally, Scheme 2 which has the worst performance.

VI. EXTENSIONS AND CONCLUSIONS

We conclude this paper by discussing some extensions of the work presented in the previous
sections. First we consider minimax robust discrimination for an environment with uncertainty
in the sensor observations, and then a multi-sensor system with more than two sensors. Finally,
conclusions are drawn from this work.

1. Robustness

In the derivation of the design criteria and the determination of the optimal nonlinearities
and/or quantizers for the four schemes in Sections III and IV, the univariate and bivariate
densities of the sensor observations under the two hypotheses were assumed known a priori.
However, this assumption is not valid in many practical situations. Thus the robust design of
the nonlinearities and quantizers based on models of uncertainty in the univariate and bivariate

pdfs is of interest. A survey of robust single-sensor detection techniques is given in [20]. Here we
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pursue maximin robust designs according to which we solve optimization problems (involving

the design criteria of Sections III and IV) of the form

max min_Ji(gk, feir ) (126)
I finfd)
where ¢ = 0,1, j = 1,2,...,my; for sz’ and k& = 1,2, for the case of dependence across time
only; and
max min Jain(g, fi, 17, J7) (127)
g f"f(])i

where : = 0,1, = 1,2,-.-,m for fi(J), and j =0,1,-.-,7m for fi(j), for the case of dependence
across time and sensors. In these formulations the univariate and bivariate pdfs belong to specific
uncertainty classes as discussed in the following paragraph. The above maximin problems were
formulated for the nonlinearities only, when quantizers are involved instead of or in addition to
the nonlinearities, we maximize with respect to gx or (g, qx ), respectively.

In the previous sections we derived two basic distinct forms of objective functions for the
design of optimal nonlinearities and quantizers: (pr1 — pr0)?/(02o + 07,) (k = 1,2) and
(1 — p0)?/[(1 + po)od + (1 + p1)o?]. The minimax robustness for the objective function (i —
,ukyo)z/(a;“:’o +07,) (k = 1,2) has been addressed in our work of [13] in a single-sensor context.
In [13] we modeled the uncertainty in the univariate pdfs by Huber-Strassen capacity classes
which include the popular e-contaminated, total variation, band, and p-point classes (see [13]
and [18]). For the bivariate pdf under hypothesis H; (i = 0,1) the following uncertainty class

was considered in {13]

leovi{ge(X M), gu(X D}
sup
9 \fvar{gr(X{) pvari{ge(X 31)}

for all nonlinearities gg. This class was first introduced in [19] for robust single-sensor weak-

P k=12 5=1,2,--, mi; (128)

k,z

signal detection and estimation. Thus for the design criterion (ux,1 —uk,o)z/(JZyOJra,%J)(k =1,2)
used for Schemes 1 and 2 in the case of dependence across time (Subsections III.1 and II1.2),
the least-favorable univariate and bivariate densities derived in [13] can be applied directly. For
Scheme 4, since the optimal nonlinearities in both Subsections III.4 and IV .4 are determined by
maximizing the same objective function (the one described above), the maximin robust results
of [13] are still applicable. Unfortunately, for Scheme 3 in both cases of dependence across time

as well as across time and sensors (Subsections II1.3 and IV.3), we were unable to derive explicit
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maximin robust results due to the lack of closed form expressions for the optimal quantization
break-points; further investigation is necessary here.

For the other objective function (p1 — po)?/[(1 + po)od + (1 + p1)o?] which is employed as
the design criterion for Schemes 1 and 2 in the case of dependence across time and sensors
(Subsections IV.1 and IV.2), we can exploit the similarity with the the objective function (p; -
o)?/(0d + o2) of [13] ,and modify the formulation and results of [13] to obtain the desirable
maximin robust design. In particular, we use the same uncertainty classes for the univariate
pdfs as in [13], i.e., the Huber-Strassen classes mentioned above, and for the bivariate pdfs we
require that besides belonging to the class satisfying (128) (for symmetric conditions) they also

satisfy

sup |co”i{g(X1(1)),9(X;(-2+)1)}‘
o foari{g(X)}var{g( X))

under hypothesis H; (i = 0,1) for all nonlinearities g. Consequently, under the stationarity

<7/ j=0,1,0 W (129)

assumption we can derive that
mo . Tho .
sup{(1 + po)oi + (L + p1)of} < [1 w25 45+ 23 fé”} varo{g)
g =1 5=1

my m1
+ [1+22r§” + % +22F§J):| -vary{g} (130)

j=1 j=1

which is the generalization of Eq. (8) in theorem 2 of [19]. Following procedures similar to
lemmas 1-3 of [19] we can construct least-favorable bivariate densities similar to those given in
[19]. Then we follow the procedure of [13] to derive the desirable maximin robust nonlinearities.
2. Systems with More than Two Sensors

The results for Schemes 1-4 of Section III in the case of dependence across time can be
directly extended to configurations with more than two sensors. In a K-sensor environment
(K > 2), it is straightforward to show that the same design criteria Ji, (k = 1,2,---,K) are
involved, because the lower bound on the asymptotic rates of the error probabilities of the fusion
center is additive in Ji. Thus the optimal nonlinearities g; obtained in Section III for Schemes
1-4 for k = 1,2 are still applicable to the case k¥ = 1,2,.--, K and are characterized by the
optimization problem (57) with Ji given by (55) for sensor k.

For the case of dependence across time and sensors, however, even under the symmetric

conditions (identical sensor observation statistics for different sensors) imposed in Section IV,
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coupled nonlinear integral equations are involved in the optimization whose solution requires
numerical search. No explicit analytic solutions can be derived in this case.
3. Conclusions

In this paper we have designed, analyzed, and simulated the performance of new multi-
sensor fusion and quantization schemes for discrimination (nonlocal detection) between different
hypotheses on the basis of stationary dependent observations. These schemes employ memoryless
nonlinearities and take partial advantage of the dependence in the observations across time
and/or sensors. For large sample sizes, our schemes are optimal within the class of sensors using
memoryless nonlinearities and require knowledge of the univariate and bivariate pdfs of sensor
observations. Four different schemes with varying degrees of optimality in the quantization and
fusion procedures were introduced, analyzed, and simulated.

The dependence in the sensor observations was characterized by one of the mixing types:
m-dependent, ¢-mixing, or p-mixing. The performance of the two-sensor/fusion-center configu-
ration was measured by the error probabilities of the fusion center under the two hypotheses.

For three of the quantization/fusion schemes treated in this paper the generalized signal-to-
noise ratio (GSNR) turned out to be the appropriate criterion as a byproduct of the Neyman-
Pearson formulation on the fusion center error probabilities. For the fourth scheme the asymp-
totic rate of the error probabilities of the fusion center was derived as the performance measure
and this also resulted in the GSNR as the criterion for the final optimization. For the case of
dependence across time and sensors a modified GSNR which involves the correlation coefficients
of the test statistics of the two sensors under the two hypotheses was derived.

Optimizing with respect to the nonlinearities and/or quantizers in the different cases has
led to uncoupled or coupled linear integral equations involving the univariate and bivariate pdfs
of the sensor observations. In the case of dependence across time only the resulting uncoupled
linear integral equations are readily solved. In the case of dependence across time and sensors
the resulting coupled nonlinear integral equations are difficult to solve; however, for the special
case of identical sensor statistics they reduce to a single linear integral equation which is readily
solved.

Comparison of the performance of the various schemes via simulation establishes that, as
expected, fusing the unquantized test statistics is superior to all schemes, and fusing binary

(hard) decisions is superior to fusing quantized observations (at least for small numbers of
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quantization levels). Optimal quantization is superior to uniformly-spaced discretization of
the continuous nonlinearities. Moreover, two-sensor discrimination schemes which take into
consideration the dependence across time and sensors outperform the corresponding schemes
which ignore the dependence across sensors, and these schemes outperform by a large margin
the corresponding schemes which ignore the dependence across time and sensors.

Maximin robustification of most of the proposed two-sensor discrimination schemes against
uncertainties in the univariate and bivariate pdfs of the observation processes can be carried out
by applying existing results from single-sensor systems to the case of dependence across time
and the one of symmetric densities for dependence across time and sensors. In addition, in the
case of dependence across time, the proposed discrimination schemes can be directly extended
to configurations involving more than two sensors. In the case of dependence across time and
sensors, the basic methodology is still applicable, but the solution of nonlinear integral equations

is required for the optimal nonlinearities and/or quantizers.
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Appendix A: Proofs of Lemma 1 and Theorem 2
Proof of Lemma 1: By using arguments similar to the ones used in the proof of theorem 2 in

[12], we write the following Taylor series expansion for b;(s)

bi(s) = lim %Ei[ln Lyp)s + o(s)

n—oo

where o(s) represents high-order terms with the property o(s)/s — 0 as s — 0. Thus,as n — o0
bi(s) — ;s
according to (12) and (13). Therefore, from the definitions of B, I;(2) and §;

L(z) = sup{sz — b;(s)} = sup{(z — ¢i)s} = (z — ).
seB seB
Moreover, since I;(z) is the supreme of sz — 5,‘(3) on the set B, we can always choose the sign
of 3; such that I;(2) is positive for any z.

Proof of Theorem 2: We first show the proof of the asymptotic rate for Po(ln L, > n7). Let

z = 717 In L, and define the sets G and G as
G={lnl,eR:InLl,>nn}={2€R:2>n}
and
G={nLl,eR:nL,>nn}={z€R:z>n},

in addition, let G be the closure of G. Then from the definition of L;(G), we have I,(G) =
Ii(G) = I(G). We also have Py(G) < Po(G) < Py(G) since G C G C G. Then from Theorem 1,

we have

lim inf —-1—111 Py(ln L, > nn) = lim inf _%m Po(G)
n n-—0o

n——+00

v

lim inf _%m Py(G)

v

L(G) = I(G)

(\¥

lim sup —% In Po(G)

n-—00

1
lim sup -—;In Py(In L, > nn)

T+ 00

since {In L,, : In L,, > nn} is an open subset of R. On the other hand,

1 1
lim sup ——1;111 Po(ln Ly > nn) > lim _inf_ —Eln Py(ln L, > nny).

T=r OO
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Consequently,
1 -
lim —;ln Po(In Ly, > nn) = Li(z > 7).

n—0o0
The above results were stated and used in [17]; a similar formulation appeared in [12]. We show
them here for completeness. Therefore,

. 1 - . . .
lim —-;ln Po(InLp,>nn)=Lz>n)>L{z>n) = {;I;I;} Ii(z) = {gl;}(z — ©0)30

n—oo

where the last inequality is from (26) and the last equality is from Lemma 1 for i = 0. Under

the consistency condition ¢y < n < ¢1, we have
inf (z - @0)%o = (1~ ¥o)do
{z>n}

where because 71— g > 0, 3 is set to be positive according to Lemma 1. Following steps similar

to the above ones we can obtain

1
lim ~—In Pi(In L, < n7) > {ir<1f}(z —¢1)51 = (n—p1)d
z<n

n—oo N

where because 7 — ¢; < 0 under the consistent condition, 3; is set to be negative. Equivalently,

we have

1 :
Ii n —-;ln Pi(In L, <nn) > (@1~ )3

T—

Since both §; are small numbers near zero, we define
3 = min{30, 51|}

and thus

1
lim ——;ln Po(In L, > nn) > (n— ¢0)3

n—od
and

1
lim —;ln P(InL, £nn) > (p1 - n)3

n—+00
which are the two inequalities in (27). Finally, (29) with I, defined by (28) results from (15)
Appendix B: Maximization of (53)

It is easily to check that Ji is invariant under the scaling of gr. Consequently, the maxi-
mization problem characterized by (53) is equivalent to maximizing

_ 11
H(gr) = prx = pro + A [T + '“T}
%0 %k
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where A is the Lagrange multipler. The necessary condition of the maximization of H(gy) is

o - .
3 Hgs+ €691 )|e=0 =0

where

G4 )1 o = [ (2 Lia(#) = Jiol)

—2/\{ [gk ) freo(z) +/[Qi:o[ Dz, y) = fro(@) fio(y)] = fro(z) fro()gx(y)dy

1

:/ {fk,l(x)—fk,o(ﬂi)-— {[fkl(x) fk,i(m)} gk(af)

+-—— {gk(x fra(z) +/ 2§ [£4) ay)_fk,l(x)fk,l(y)]_fk,l(x)ﬁk,l(y)]gk(y)dy} }}

Ok k0

+/ [Ikkl z,9) n I&koi )} gk(y)dy}}5gk(m)d:z

k1 %k0

with Ky ;(z,y) defined by

ME

Kii(z,y) =2 Z[ (J)(x,y) — fi,i(@) fri ()] = Sri(2) fri(y)-

This leads to the following nonlinear integral equation

fra(®) = feola) _ oy /[Akl 2,9) , Keo(z,y)

fra(z) fk ofz) oy 1(gk ‘72 o(gk)
I N ) ’

] gx(y)dy

Unfortunately, we could not obtain a sufficient condition for this optimization problem. Thus,
although the above nonlinear integral equation can be solved via numerical techniques, we have
no way of guaranteeing the optimality of the solution.
Appendix C: Maximization of (99)

We can easily verify that J is invariant under the scaling of g. By using similar arguments

as in Appendix B, the maximization of (99) is equivalent to the maximization of

H(g) = m — o + A[(1 + p1)or + (14 po)oc]

where A is the Lagrange multiplier and, for ¢ = 0,1,

2 _ {[z L o)) — ] (B o(XP) —p ~]}
N v

= Bi{g(XMg(XE} - 12 423 (ELg(XD)g(XD)) - 1)

i=1

2
XS
I
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The necessary condition for optimal g is given by

which leads to the linear integral equation

0= fi(2) = folz) + 2g(@){fu(=) + fo(2)]
= {2{2 S )~ ) ) 42 SS9~ R+, y)—in(w)fi(y)]H 9(v)dy.

The sufficient condition is given by

92H (g + ebg)

862 |c:() < 0.

and is satisfied if A < 0. Actually, we set \ = —1/2 in order to be consistent with the single-
sensor discrimination formulation of [12]-[13]. Finally, the optimal g is obtained by solving the

linear integral equation given by (100) with the kernel defined by (101).
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Qopt: induced from gop ¢iiqg: induced from g¢;;q = ln(fl/fﬂ
breakpoints levels | breakpoints levels
0.02 -0.4546 0.02 -18.3392
2.0925 | -0.1320 x10~2 2.0925 -0.4213 x10~!
4.1650 | -0.1223 x10-2 4.1650 -0.7578 x 10!
6.2375 | 0.5736 x10~2 6.2375 1.0728
8.3100 | 0.7971 x10~2 8.3100 3.5113
10.3825 | 0.6954 x10~2 10.3825 7.2116
12.4550 | 0.6759 x10-2 12.4550 12.1400
14.5275 | 0.1441 x10~1 14.5275 18.2693

Table 1: 8-level Suoptimal Quantizers in Example 2



Qopt Qiid
breakpoints levels | breckpoints levels
0.02 | 0.9894 0.02 0.5766
0.2488 | 0.8298 0.4398 -0.3341
0.5059 | -0.2231 0.5889 | -0.4371 x10~1
0.7631 | 0.1629 0.7384 0.2217
1.0148 | Q.4922 0.9138 0.4045
1.2643 | 0.4816 1.0867 0.5478
1.5024 | 0.5263 1.5444 0.5317
1.7387 1 0.3725 2.6292 0.3401

Table 2: 8-level Optimal Quantizers in Example 3




Jopt: induced from gop:

breakpoints levels

0.02 -6.0116
2.0925 | -0.4211 x10~2
4.1650 | -0.7475 x 1072
6.2375 | 0.3335 x107!

8.3100 | 0.8737 x10~!

10.3825 0.2609
12.4550 0.3970
14.5275 3.9601

Table 3: 8-level Suboptimal Optimal Quantizer in Example 6



‘Q—opt

breakpoints levels

0.02 | -0.9918

0.2492 | -0.8367

0.5056 | -0.2216

0.7631 | 0.1662

1.0141 | 0.5000

1.2633 | 0.4685

1.5021 | 0.5061

1.7352 | 0.4063

Table 4: 8-level Optimal Quantizer in Example 7






