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ABSTRACT

Let £ be a collection of IR~valued mappings defined on IR, and let </ denote the integral
order induced by L on the class of probability distributions on IR... For integrable distributions F' and
GG with no mass at the origin, we write F' <pp_r G provided F <r G where F and G denots the
stationary forward recurrence times associated with the renewal processes with interarrival times F' and
G’, respectively. Simple analytical characterizations of the stochastic order <pRr._ are developed, their
relationships with the classical integral orders <, clarified and several of their properties obtained with
the view towards building a “calculus.” Emphasis is put on conditions which ensure the stability of the
orderg < pp— under various transformations. They include classical operations on distribution functions
such as convolution and weak convergence, as well as transformations on renewal (and thus more generally
point) processes, e.g., thinning and superposition. Particular attention is given to the case where the order

<z is either the standard stochastic order < ; or the convex increasing order <;qz.
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1. Introduction

In this paper we focus on a family of stochastic orders for probability distribu-
tions on the positive real line which were first introduced by Whitt [11]. These order
are naturally associated with the notion of forward recurrence time and allow for a
stochastic comparison between renewal processes (and therefore more generally be-
tween point processes). To set the stage, let £ be a collection of IR-valued mappings
defined on. the positive real line IR+, and let <, denote the integral order induced
by £ on the probability distributions on IR,. For integrable distributions F' and G
with no mass at the origin, we write F' <pr_ G provided F <, G where F and G
denote the stationary forward recurrence times associated with the renewal processes
with interarrival times F' and G, respectively.

We develop new analytical and qualitative results on these orders <pg_ ., therebyl}
expanding on and complementing the work already carried out in [1]. Here, most
notably, we put emphasis on three types of properties with the view towards building
a “calculus” for these non-integral stochastic orders.

1. Following the developments in Stoyan’s monograph [10], we seek conditions
which ensure the stability of the order <ppr—, under classical operations on dis-
tribution functions, as usually done for the integral orders <. Transformations
of interest include convolution and limit operation under weak convergence;

2. These orders <pp.. have a natural interpretation within the framework of the
theory of point processes, as indicated more fully in [1]; in fact they can be
interpreted as orders on the class of renewal processes and more generally on the
class of stationary point processes [3,1]. This connection thus suggests a whole
new class of transformations on probability distributions which are defined via
a corresponding transformation on point processes; for instance the standard
thinning and superposition of point processes induce such transformations. Here
too, we seek conditions under which the order <pgr_, will be preserved when
applying such transformations; and

3. We explore the relationship of these non—integral orders to the classical (integral)
stochastic orders such as the convex order <.;, the increasing convex order
<;cz and the usual strong stochastic order <, [2,9,10]. In particular we show
(Theorem 5.3) that the order <ppr—s: is located between the integral orders <.,
and Sst-

The beginnings of a rich theory emerges in this paper which is organized as
follows: In Section 2, we review various facts form the theory of integral stochastic
orders <. as discussed in [9,10]. The orders <pgr_, associated with the forward
recurrence time are introduced in Section 3, where basic analytical characterizations
are developed, and general preservation properties are established in Section 4. When
the underlying order < is the usual strong stochastic order <,;, the corresponding
order <pgr_c is shown in Section 5 to exhibit rather interesting properties. In Section
6, we introduce the so—called Palm orders <p_, which can be viewed as the “dual”
of the orders <pgr_; the terminology will become apparent from the definitions.
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The relation of the orders <pp-, and <p_, to classical integral orders is taken
on in Section 7 where we have also developed various counterexamples to possible
implications. Finally, Section 8 is devoted to the preservation of forward recurrence
time order by the thinning and superposition (of point processes).

The notation adopted here is the one used in [2]: We find it convenient to
define all the random variables (rvs) of interest on some common probability triple
(Q,F, P). Let D(IR,) denote the collection of all probability distribution functions
on IRy, i.e., D(IR4) is the collection of all mappings F' : IRy — [0, 1] which are
non—decreasing and right—continuous with lim; .o F(z) = 1 [5]. We identify an
element F' of D(IR,.) with an IR;-valued rv X which has distribution F', in which
case F(z) = P[X < z] for all z > 0, and we denote the first moment of F' either by
m(F) or by m(X). Finally two IR-valued rvs X and Y are said to be equal in law
if they have the same distribution, a fact we denote by X =,; Y, in agreement with
notation introduced below.

II. Preliminaries on integral orders

We begin by briefly reviewing some basic notions from the theory of integral
stochastic orders; the reader is referred to the monographs by Ross [9] and Stoyan
[10] for additional information on this material.

Let S be an arbitrary set. A binary relation R on S which is reflexive and
transitive is called a partial semi-orderon S. If, in addition, R has the anti-symmetry
property (i.e., 2Ry and yRz imply ¢ = y), then R is said to define a partial order
on S.

Let £ be any non—-empty collection of Borel mappings ¢ : IR+ — IR. Any such
collection £ induces a binary relation <, on D(IR.) by requiring that

F<:G if /0°°¢(m>F<da:>s /0°°¢(:c)G<dx> (2.1)

for every ¢ in L such that the integrals are well defined. Equivalently, if X and Y
are rvs with distribution F' and G, respectively, we require that

X <Y it EB(X)] < E[$(Y)] (2.2)

for every mapping ¢ in £ such that the expectations in (2.2) exist. Since the binary
relation < is clearly reflexive and transitive on D(IR..), it always defines a partial
semi—order on D(IR.). If the collection L is large enough to yield the anti-symrnetry
property, then <, defines a partial order on D(IR+).

During the discussion, we shall consider the following collections L:

1. The set {st} defined by
{st} = {¢: IRy — IR | ¢ increasing } (2.3)
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induces the strong order <, on D(IR4). The anti-symmetry property of <,; imme-
diately follows from the following equivalent definition of <, [10, pp. 4-6].

Lemma 2.1. For distributions F' and G in D(IR. ), we have

F<aG iff F(z)>G(z), z2>0. (2.4)

2. The set {cz} defined by
{cz} ={¢: IR+ — IR | ¢ convex } (2.5)

induces the convez order <., on D(IR). For each s > 0, the function z — exp(—sz)
is an element of {cz}. Consequently, F <.; G and G <.; F imply F and G to have
1dentical Laplace transforms, and the equality F = G follows, 1.e., the relation <.,
is anti-symmetric on D(IR4.).

3. We shall find it useful to consider the following subset {icz} of both (2.3)
and (2.5) defined by

{icz} = {st}[ |{ez}. (2.6)

The collection {icz} induces the increasing convez order <;.; on D(IRy). The fol-
lowing characterization of <;., [10, pp. 8-9] will find use in later sections.

Lemma 2.2. For distributions F' and G in D(IR.) with finite first moment, we have

F<iwG iff / (1- F(t))dtg/ (1—GE)dt, z>0.  (27)

From (2.7) (with z = 0) we already see that F <;.; G implies m(F) < m(G).
Consequently, F' <;c; G and G <j¢; F imply m(F) = m(G). But the comparison
F <icz G with m(F) = m(G) is equivalent to F <., G {10, Thm. 1.3.1, p. 9].
Therefore, F' <;.r G and G <. F together imply F' = G by the antisymmetry
property of <., and the antisymmetry property of <;.; follows.

If we replace convex functions by concave functions in the definitions 2 and 3,

we get the concave and increasing concave orders on D(IR. ), which are respectively
denoted <., and <;p.

The obvious relations between these partial (semi-)orders are summarized in the
implications

FZLa4G = F<ZiC (2.84a)
and
F<.:.G = F<iG (2.80)
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Since —¢ is concave whenever ¢ is convex, we readily conclude that
X <Y iHfandonlyif Y <. X. (2.9)

Moreover, each of the inequalities X <4 Y, X <.; Y and <j.; Y implies a corre-
sponding inequality between the moments (of any order) of X and Y. Finally, we
have

X <Y ifandonlyif -—-X <., -Y (2.10)

since for any convex function ¢, the mapping ¢ — ¢(—z) is also convex. This
immediately yields

X<.Y = E[X]=E[Y) (2.11)

ITI. Orderings associated with forward recurrence times

We introduce D as the subset of distribution functions on IR, which are inte-
grable and which have no mass at the origin, i.e., F belongs to D if F' is an element
of D(IR4) such that m(F) < co and F(0) = 0.

Let X be a non—negative rv with distribution F' in D. The (statlonary) forward
recurrence time of X is any non-negative rv X with distribution F given by

F(z) = Jy (lrgégt))dt, z>0. (3.1)

Since
m(F) = /O (1— F(t))d, (3.2)

we can also write f°° (1 — (o)) de
A O

This formula will find its use in what follows.

The correspondence implicit in (3.1) forms the basis for a new class of stochastic
orders defined on P which we now introduce. Let £ be any non—-empty collection
of Borel mappings ¢ : IR+ — IR. Any such collection £ induces a binary relation
<Fr-c on D by requiring that

F<ppeG if F<,G (3.4)
where the distribution £ and G are the forward recurrence time distributions asso-

ciated with F and G, respectwely, through (3.1). Equlvalently, if X and Y are rvs
with distribution F' a.nd G in D, respectively, we require

X <pp_cY if X <Y (3.5)



where X and Y are rvs with distribution F and G, respectively. Using (2.1)~(2.2),
the definitions (3.4)—(3.5) become

FrncG i [ " $(2)F(da) < /0‘”¢<x>@(dx> (3.6)

and
X <Y if E[¢(X)] < Elg(Y)] (3.7)

for every ¢ in £ such that the integrals (resp. expectations) in (3.6) (resp. (3.7)) are
well defined.

We pause at this point to draw the reader’s attention to the following connec-
tion which was developed more fully by the first author in [1]: Each distribution
F in D determines a synchronous renewal process with i.i.d. inter-renewal times of
common distribution F. Therefore, any order on D expressed through the forward
recurrence time transformation (3.1) — and the orders <pgr_. are such orders - can
be interpreted as an order on the class of renewal processes. In fact, as shown in [1],
since a time-stationary point process is fully determined by its Palm version, this
connection can be extended to the class of all time-stationary point processes with
inter—event time distributions in D. This will not be used throughout the paper,
except in Section 8 for motivating some of the results obtained there.

Lemma 3.1. Let £ be an non—-empty collection of Borel mappings ¢ : IRy — IR. If
the binary relation < is a partial order on D(IR. ), so is <pr—c on D.

Proof. We need only check the antisymmetry property of <pgr_,: By definition
(3 4), if the distributions F' and G in D satisfy F' <pr-¢ G and G <pr_r F, then
F <, G and G <, F. The antisymmetry of <, implies F = G, whence

JFa-Feyat _ Ja-Gceydt ,
i B e 0 (3.8)

upon using (3.1). Differentiating this equality with respect to z, we finally get

—F(z) 1-G(z) . .
mF) () > 0. (3.9)

The condition F(0) = G(0) = 0, when used in (3.9), yields m(F) = m(G), and this
in turn implies F(z) = G(z) for all z > 0.
- ||

In view of the results of Section 2, we observe from Lemma 3.1 that <pr_4
and <gRr_ics are both partial orders on D. The remainder of this section is devoted
to deriving various properties and analytical characterizations of the order <pg—_¢,
when £ = {st} and £ = {icz}.

We begin with a simple result which will allow us to directly relate the order
<pr—_c to the order <.. For any Borel mapping ¢ : IR+ — IR which is locally
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integrable (with respect to Lebesgue measure), we define its antiderivative ® : IR, —

IR by i
() = / s(t)dt, > 0. (3.10)

Lemma 3.2. Let X be a rv distributed according to F in D. For any Borel mapping
¢ : IRy — IR which is locally integrable, the equality

E[e(X)]

Bl = =755

(3.11)

holds whenever these expectations are well defined; in fact both expectations are
simultaneously well defined and finite (resp. infinite).

Proof. We start with a locally integrable mapping ¢ : IRy — IR+, whence both
expectations in (3.11) are well defined, though possibly infinite. The very definition
of X immediately yields

E[4(X)] = / ” g(x)F(dz)

1 o0 .
- /0 6(2)(1 — F(z))de. (3.12)

Integrating by parts, with the notation (3.10), we see that

rA

A A
| 4@~ F@pde = (81 - F@)]; + [ #(@)F(do)

0

A
= B(A)(1 = F(A) + / B(z)F(dz), A>0. (3.13)
Moreover, when E[®(X)] is finite, we get |
Ali_r*noo ®(A)(1 - F(4)) =0. (3.14)

It is now immediate to check with the help of (3.12), (3.13) (with A going to infinity)
and (3.14) that E{¢(X)] and E[®(X)] are simultaneously finite or infinite.

For an arbitrary mapping ¢ : IR+ — IR which islocally integrable, we decompose
¢ into its positive and negative parts, and use the first part of the proof on each
component.

In order to take advantage of Lemma 3.2, we assume from now on that £ contains
only Borel mappings which are locally integrable with respect to Lesbegue measure
so that the antiderivative (3.10) is always well defined. This is a rather weak as-
sumption since it holds in all cases discussed in practice, namely {st}, {icz} and
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{cz}. Combining Lemma 3.2 and the definition (3.7), we readily obtain the following
characterization.

Theorem 3.3. Let £ be a non—empty collection of Borel mappings which are locally
integrable. For rvs X and Y with distribution F' and G in D, respectively, we have
X <pp_. Y if and only if
E[3(X)] _ E[3(Y)]
m(X) T m((Y)

(3.15)

for all mappings ¢ : IRy — IR in L provided the expectations in (3.15) exist.

Since all the rvs considered in this paper are non-negative, it is easy to see for
L = {st} and £ = {icz} that only IR, ~valued mappings ¢ in £ need to be considered
in the characterization of Theorem 3.3.

IV. General properties of the order <pr__.

In this section we discuss several general properties of the orders <pr_,. Fol-
lowing Stoyan [10, p. 2], as was done for integral orders, we consider properties (R.),

(M), (E), (C) and (W).
IV.1. Property (R)

For every a > 0, let U, denote the probability distribution with all its mass at
T = a, so that
0 f0<z<a
Ua(z) = { (4.1)

1 ifa<z.

The order <pr_( is said to have the property (R) if the distributions {U,, a > 0}
are monotone increasing in the order <pp_¢, i.e., Uy <pgr—r Uy whenever 0 < a < b.

Theorem 4.1. The order <gg_. has the property (R) if and only if for any mapping

¢ : IRy — IR in L, its antiderivative ® is star-shaped, i.e., the mapping r — 2(:”—)

non—decreasing on (0, +00)

s

Proof. Fix a and b scalars, with 0 < a < b. Using Theorem 3.3, we see that
U, <pp-r Uy if and only
3(a) _ ()

s S5 (42)

for all mappings ¢ : IRy — IR in £, and the result follows from [7, Prop. B.9, p.
453].

|
By the remark that follows Theorem 3.3, for £ = {st} and £ = {icz}, we need
only consider (4.2) for IR —valued mappings ¢ in £, in which case the antiderivative

® is necessarily convex with ®(0) = 0, thus star—shaped [7, p. 453] and the orders
<FRr-st and <pRr_icz both enjoy the property (R). On the other hand, the order
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<FR-cz does not enjoy the property (R) as can be seen by taking the convex mapping
¢ :x — e~ %, in which case the mapping z — 2(231 is readily checked to be decreasing

“on (0, +00).
IV.2. Property (M)

Let X be a rv with distribution F' in D. For every ¢ > 0, we define the distribu-
tion F, as the distribution of the rv ¢X, i.e., Fi(2) = F(z/c) for all z > 0. We shall
say that the order <pp_. has the property (M) if for rvs X and Y with distribution
F and G in D, respectively, the comparison F <pp_, G implies F, <pgr_r G, for
all ¢ > 0. In other words, <pr_, has the property (M) provided the order <pgr_.
is stable under multiplication (of the corresponding rvs) by positive scalars.

It is now plain after a simple change of variable that

Jo (1= F(t/c))dt

F(=) = cm(F)

= F(z/c), z>0. (4.3)

Equivalently, cX =, cX, a remark which leads to the next result.

Theorem 4.2. The order <pr—_¢ has the property (M) provided the order <. itself
has the property (M).

IV.5. Property (W)

Let {X,, n=1,2,...} and {Y,, n = 1,2,...} be sequences of rvs with distri-
butions in D such that

Xn SFR—-C Yn. n:1,2,...(4.4)

If the sequences {X,, n =1,2,...} and {Y,,, n = 1,2,...} converge weakly to the rvs
Xoo and Y, respectively, it is natural to ask if and when the comparison (4.4) holds
in the limit, in which case the property (W) is said to hold for the order <gp_r.
The next result explores this question.

Theorem 4.3. Let the rvs {X,, n=1,2,...} and {Y,,, n =1,2,...} with distribu-
tions in D converge weakly to X, and Y, respectively.

1. If the limiting rvs X, and Y., have finite mean, and
Iim m(X,)=m(Xe) and lim m(Y,)=m(Yx), (4.5)

then both X and Y have distributions in D;
2. If in addition, the order <. has the property (W), then the condition (4.4)
implies

Koo SFR-£ Yoo (4.6)



Proof. The weak convergence of the rvs {X,, n =1,2,...} implies that X, has no
mass at the origin, and X, thus has a distribution in D since m(F ) is assumed finite.
Similar comments hold for the rvs {Y,, n =1,2,...}, and Claim 1 is established.

To prove Claim 2, we first observe with the help of (3.1) that the forward
recurrence times {X’n, n = 1,2,...} converge weakly to the forward recurrence
time X'oo of Xo. This is an easy consequence of the weak convergence of the rvs
{Xn, n=1,2,...} to X, of the convergence of moments (4.5) and of the finiteness
assumption on m(Fh,). Similar comments hold for the rvs {Y,, n=1,2,...}. With
this in mind, we note from the definition of <pp_., that (4.4) is equivalent to

Xn <t Yo, n=1,2...(47)

and the result (4.6) is now a consequence of (4.7) since the order <. is assumed
stable under weak convergence.

When £ = {st}, we observe from (4.4) by Lemma 5.2 that m(X,) < m(Yx)
for all n = 1,2,.... As a result, the finiteness of m(Y,) implies m(Xo) < co, and
the convergence conditions (4.5) are equivalent to the rvs {X,, n = 1,2,...} and
{Y,, n = 1,2,...} being uniformly integrable {4, Thm. 5.4, p. 32]. Finally, we
recall that the order <,; has the property (W) [10, Prop. 1.2.3, p. 6]. For the case
L = {icz}, conditions for the stability of <;., under weak convergence are available
in [10, Prop. 1.3.2, p. 10].

IV.3. Property (E)

The order <pg_. 1s said to have the expectation property (E) if for rvs X
and Y with distribution F and G in D, respectively, the comparison X <pr_, Y
implies m(X) < m(Y"). There seems to be no general result concerning this property.
In Lemma 5.2 we show that the order <pgr.s has the property (E). On the other
hand, for £ = {cz}, the comparison X <pp_c Y is equivalent to X <. Y, whence
E[X] = E[X] by (2.11). From standard results on the moments of forward recurrence
times [6, p. 173], this last equality becomes

1E[X?] 1E[Y?
2 E[X] ~ 2 E[Y]

(4.8)

under an asssumption of finite second moments. It is easy to infer from (4.8) that
property (E) cannot hold for <gp-.,. Similar comments apply for <pp—icz.

IV.4. Property (C)

The order < pr_ is said to enjoy the convolution property (C) if for independent
rvs X, Y, U and V with distributions in D, X <pr_¢ Y and U <pr-¢ V imply
X +U <pr-c Y + V. Although this property does not hold in this general form,
we shall obtain somewhat weaker versions of it. Before doing so, we observe that
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D is indeed stable under convolution, i.e., if for independent rvs X and U with
distributions in D, the rv X + U has distribution in D.

We prepare the discussion with a simple representation result for the forward
recurrence time of the sum of two independent rvs. This representation is readily

obtained either by direct probabilistic arguments or by straightforward calculations
on the Laplace-Stieltjes transforms.

Lemma 4.4. Let X and U be independent rvs with distributions in D. The forward
recurrence time of their sum X + U can be represented as

X+U=.wBX+U)+(1-B)YU (4.9)

where the rvs X, X, U and B are taken mutually independent, and B is a {0,1}~
valued rv with ¥
P(B = 1] = &)

= X py =L PE=0 (4.10)

We can express (4.9) in a more suggestive manner as

X+U wp. m(X)

X+U= AT 4.11)
T v “
P mxXTOy-
Note also that
— X - U ~
BXT U] = —o B + U) + —BO B (412)

for any mapping ¢ : IR+ — IR in L provided the expectations exist.

Lemma 4.4 paves the way to several convolution results for the order <pg...
The most basic one is considered first.

Theorem 4.5. Assume the order <. itself to have the convolution property (C),
and let X,Y, U and V be independent rvs with distributions in D such that

X <pr—cY and U <gpr_¢ V. (4.13)
In addition, if either
UL,V (4.14q)
or
X <Y, (4.14b)
and if ,
mX)  m)

mX+U) my+v) D (4.15)
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then
X+U<pp_cY+V. (41:.16)

Proof. By symmetry, we need only consider the case when (4.14a) is satisfied, as

we do from now on. Recall that (4.16) is equivalent to X+U <Y +V. In view of
(3.7), we see from (4.12) under the condition (4.15) that this last comparison holds
true if and only

E[¢(X + U) + (1 —p)E[¢(U)] < pE[$(Y + V)] + (1 — p)E[$(V)] (4.17)

for any mapping ¢ : IRy — IR in L provided the expectations exist. Under (4.13)-
(4.14a) we have U<,V,X<;YandU <.V, whence X +U <, Y + V since the
order < itself has the convolutlon property (C) These comparisons readily imply
that (4.17) holds true for all mappings ¢ : IR+ — IR in £ provided the expectations
exist, and the result (4.16) follows.

This last result has several interesting consequences.

Corollary 4.6. Assume the order <. itself to have the convolution property (C),
and let X, Y and U be independent rvs with distributions in D such that X <pp_.
Y. Im(X)=m(Y), then

X+U<Lpp_cY+U. (4.18)

Proof. With the identification U =4 V', we see that the conditions (4.13), (4.14a)
and (4.15) are in place, and the result immediately follows from Theorem 4.5.

By a repeated application of Corollary 4.6 we obtain another set of conditions

under which (4.18) holds.
Theorem 4.7. Assume the order <. itself to have the convolution property (C),
and let X,Y, U and V be independent rvs with distributions in D such that
X <ppr-2Y and U <pp-.V. (4.19)

In addition, if

m(X)=m(Y) and m(U)=m(V), (4.20)
then (4.16) holds true.
Note that Theorem 4.7 is neither subsumed by nor implie Theorem 4.5.

To formulate additional consequences of Theorem 4.5, we consider the sequences
of iid. rvs {X,, n=1,2,...} and {Y,, n = 1,2,...} with common distribution F
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and G in D, respectively. We also define the corresponding partial sums {S,, n =
1,2,...} and {T,, n=1,2,...} by

Se=) Xx and T,=) Yi n=1,2,...(421)
k=1 k=1

with the usual convention Sg = Ty = 0.

Corollary 4.8. Assume the order <. itself to have the convolution property (C).
If the comparisons

F<:G and F <pp_ G . (4.22)

hold true, then
Sn <rr_r T,. _ n=12,...(4.23)

Proof. The proof proceeds by induction on n: For n = 1, the result (4.23) is trivially
true by the first part of assumption (4.22), and the basis step is established.

Next, assuming (4.23) for some n > 1, we show that it also holds for n + 1. This
will follow from Theorem 4.5 with the identification X = S,, U = X411, ¥ = Tj,
V = Y,+1, provided the assumptions of Theorem 4.5 are satisfied. To see that it
is indeed the case, we observe that assumption (4.22) is equivalent to U < V and
U <rr-¢ V, whereas the condition X <pr_, Y holds by the induction hypothesis.
Here, we obviously have

m(X) _ m(Y) __n (4.24)
m(X+U) m(Y+V) n+1l
and the condition (4.15) on the moments thus holds.
|

In the same way that Theorem 4.5 leads to Corollary 4.8, we can invoke Theorem
4.7 to get another set of conditions for (4.23) to hold. This is the content of Corollary
4.9; its proof proceeds by induction and is omitted in the interest of brevity.

Corollary 4.9. Assume the order <. itself to have the convolution property (C).
If the comparison

F<rr-rc G (4.25)

hold true, with
M(F) = M(G), (4.26)

then (4.23) holds true.
V. Properties of the order <ggr_st
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This section is devoted to a more detailed discussion of some of the properties of
the order <pgr—s¢:. From the previous section, we already know from Theorems 4.1
and 4.2 that properties (R) and (M) are satisfied. Furthermore, Theorem 4.3 (and
the remark that follows its proof) gives simple conditions for the order <pg-_ 4 to be
stable under weak convergence.

We first provide a convenient characterization of the order <pgr_;: by specializ-
ing Theorem 3.3 for £ = {st}.

Theorem 5.1. For rvs X and Y with distribution F and G in D, respectively, we
have F <pp_4 G if and only if

[ F@)d _ [0 6

=) < G c20 (5.1)
Moreover (5.1) holds if and only if
E[¢(X)] _ E[¢(Y)] .
m(X) = m(Y) (5-2)

for every mapping ¢ : IR, — IR, in {icz} such that ¢(0) = 0, provided the expec-
tations are well defined.

Proof. The first characterization (5.1) follows from the definition (3.4) when spe-
cialized to £ = {st} with the help of Lemma 2.1 and of the remark (3.3).

By Theorem 3.3 and the remark that follows it, we see that F' <pgr_,s¢ G if and
only if

E(¥(X)] _ E[¥()]

mX) = m(Y) (33)

for every mapping ¢ : IR, — IR, in {st}, with ¥ denoting the antiderivative (3.11)
of ¢. The second characterization (5.2) is now easily obtained upon observing that
any function ¢ : IRy — IRy in {i¢cx} with ¢(0) = 0 is indeed the antiderivative ¥ of
an IR -valued increasing mapping .

||

We then proceed to show that the order <pp_,: has the expectation property

(E).

Lemma 5.2. The order <ppr_,: has the expectation property (E), i.e., for distribu-
tion F' and G in D such that F <pgp-s G, we have m(F) < m(G).

Proof. Using (3.2) on (5.1), we readily see that F <pg_,: G if and only if

1Jo (1= F(s))ds Sl [ (1=G(s))ds
t m(F) =1 m(G)

> 0. (5.4)

14



Letting t go to zero in (5.4), we get

1—F(0)>1—G(0)
m(F) = m(G) ’

and the result follows from the fact that F(0) = G(0) = 0.

(5.5)

With the help of this result, we now establish that <pp_,; is located between
the stochastic orders <., and <;...

Theorem 5.3. For distributions F and G in D, we have the following implications:
1. f F <.; G, then F <pp-s G;
2. If F <pgp—q G, then F <;.;. G.

Moreover, when m(F) = m(G), then

F<: G iff FL<pp-st G iff F <icr G. (5.6)

Proof. Let X and Y be rvs with distribution F' and G in D. The comparison
X <.; Y implies E[X] = E[Y] and E[¢(X)] < E[¢(Y")] for all mappings ¢ in {cz},
thus in {icz}. Claim 1 now follows from Theorem 5.1.

Using Theorem 5.1 and Corollary 5.2, from the comparison X <pp_s Y, we
have E[X]
Elp(X)] < === E[(Y)] < E[4(Y)] (5.7)
E[Y]
for all mappings ¢ : IRy — IR+ in {icz} such that #(0) = 0, whence (5.7) holds for
all mappings ¢ : IRy — IR in {icz} since the rvs are non-negative. This establishes
Claim 2. Finally, if E{X] = E[Y], then X <;.; Y if and only if X <.; Y [10, Thm.
1.3.1, p. 9], and the equivalences (5.6) follow from Claims 1 and 2.

The implications of Theorem 5.3 hold only in one direction as stated; counterex-
amples are given in Section 7. Additional properties of the order <pr_;¢ are given
in Section 9 after connections with point processes will have been presented.

V1. Stochastic orders associated with Palm distributions

Not every distribution function in D(IRy) is the distribution function of a for-
ward recurrence time associated with a distribution in D. The first result of this
section identifies conditions for this to happen.

To set the terminology, observe from (3.1) that a distribution F' in D(IR..) will
be the distribution of the forward recurrence time associated with some distribution
function F° in D if the representation

L (1= F°@)) dt
m(F0) ’

F(z)= (6.1)
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holds. For reasons that will become apparent in the next section, any distribution
F° in D satisfying (6.1) is called a Palm distribution induced by F.

Lemma 6.1. A distribution function F' in D(IRy) is the distribution of the forward
recurrence time associated with a distribution F°® in D if and only if F' is concave
on IR, with F(0) = 0 and has a finite non—vanishing (right) derivative at ¢ = 0.
Moreover, each one of the distributions F and F° is determined uniquely by the
other, that is F' induces exactly one Palm distribution F°.

Proof. To establish the necessity part, let F' be an element of D(IRy) which is
the distribution of the forward recurrence time associated with some distribution
function F° in D, in which case (6.1) holds. It is plain from (6.1) that F is concave
non—decreasing, thus differentiable on IR, except possibly on a countable set of
points. In fact, the right derivative F| exists everywhere and is given by

Fi(z) = }—T—;(—FF—O%Q-Q, z > 0. (6.2)

Therefore, since F? is continuous at z = 0 in view of the condition F°(0) = 0 and F°
has finite mean, we see that F' is indeed differentiable at z = 0 with non-vanishing
derivative given by

nl — 1 g
FL0) = — oy (6.3)
Combining (6.2) and (6.3), we obtain
Fi(z)={1-F)]F;(0), z>0. (6.4)

Conversely, let F' be a distribution on IRy which is concave with F(0) = 0 and
which has a finite non—vanishing (right) derivative at z = 0. We need to show that F
indeed induces a Palm distribution F° in D. Guided by (6.4), we define a mapping
FO. 1R+ — IR+ by

Filz) z > 0. (6.5)

Fo(z)::l—F_'},(O)’ >

We first show that F? is an element of D: From the concavity of F, we conclude
[8] that F! is non-increasing and right-continuous with F}(z) < 0 for all z > 0.
Therefore F° is non—decreasing and right—continuous with 0 < F 0(:z) <lforallz >
0. It is also straighforward to see that lim, .o F/,(z) = 0, whence lim; . F°(z) =1,
and F is indeed an element of D(IR) with no mass at z = 0, i.e., F?(0) = 0. Its
mean is finite since given by

Jo Fivdt 1
FL(0)  Fi(0)

m(F°) = /Ooo (1-F°(t)) dt = (6.6)
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and F° is therefore an element of D. It is now plain that F and F° are indeed related

by (6.1). The claim on uniqueness is a straightforward byproduct of the arguments
given above.

Let C denote the subset of distribution functions on IRt which are concave with
no mass at the origin and which have a finite non-vanishing (right) derivative at
the origin, i.e., F' belongs to C if F' is an element of D(IR+ ) such that F' is concave
with F(0) = 0 and 0 < Fi(0) < oo. The proof of Lemma 6.1 shows that the
correspondence F — F9 given either by (6.1) or (6.5) defines a bijection between
D and C. This correspondence will allow us to define another class of stochastic
orders, this time on C, in the same way that the correspondence (3.1) formed the
basis for defining the stochastic orders of Section 2 on C. We refer to this new class
of stochastic orders as Palm orders on C.

Let £ be any non-empty collection of Borel mappings ¢ : IR, — IR. Any such
collection £ induces a binary relation <p_, on C by requiring that

F<p_cG iff F*<.G° (6.7)

where F° and G° are the Palm distributions in D induced by F and G, respectively.
Equivalently, if X and Y are rvs with distribution ' and G in C, respectively, we
require

X<p_ Y iff X°<Z,Y? (6.8)

where X? and Y are rvs with distribution F° and G°, respectively. The next fact
parallels Lemma 3.1.

Lemma 6.2. Let £ be an non—-empty collection of Borel mappings ¢ : IR, — IR. If
the binary relation < is a partial order on D, so is <p._. onC.

Proof. We need only check the antisymmetry property of <p_r on C: By the
definition (6.8), if the distributions F' and G in C satisfy F <p_. G and G <p_ F,
then F® <, G° and G® <, F°. The antisymmetry of <, implies F° = G°, whence
F = G by the arguments of Lemma 6.1.

||

We conclude this section with some obvious analytical results on these stochastic
orders; proofs are straightforward and are omitted in the interest of brevity.

Theorem 6.3. For distributions F' and G in C, we have F' <p_,; G if and only if

Fi(z) _ Gy(x) ,
7O S o) °2* (6.9)

Theorem 6.4. For distributions F and G in C, we have F <p_;.. G if and only if

1-F(z)  1-G(z) .
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Theorem 6.5. For distributions F' and G in C, we have F <p_., G if and only if
F <o G and F(0) = G..(0).

As a direct consequence of Theorem 5.3, we also conclude with

Theorem 6.6. For distributions F' and G in C, we have the implications:
1. f F <p_¢cx G, then F <4 G;
2. If F <4 G, then F <p_;.: G.

Claims 1 and 2 can also be validated through Theorems 6.4 and 6.5, respectively.

VII. Summary of the relations between the orders

Collecting the results of Sections 5 and 6, we summarize the relationships be-
tween these new orders and the integral orders in the following chart.

FR—cz =— FR-—~FR—st

|

cT = FR—-st = FR —icz
P—cz = st = tex (7.1)

P — st = P —icz

|

P—P—icx

We conclude this section with several examples which show that some of the
implications of the tableau (7.1) cannot be reversed. In each case, the implication
which is shown not to hold is displayed in square brackets:

1. [<Fpr-st==><cx] : First we exhibit two distributions F' and G in D such that
F <pp_o G, yet F and G are not comparable for <.,: With 0 < g < A, take

F' deterministic with mean } and G exponentially distributed with mean % Since

m(F) < m(G), F and G cannot be compared in the order <.;. On the other hand,

F is uniform on [0, i] while G is still exponentially distributed with parameter p.

Under the enforced assumption, we readily check

Fz)=(Ax)A12G(z)=1—-€e"#, 20 (7.2)
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so that F <, G, and F <pp_4 G-

2. [Siecx=>ZFR-st] : Next we find F and G in D such that F <;.; G, yet F and
G are not comparable for <pp_4:: Let F be any distribution function in D with the
property that F(z) > 0 whenever 0 < z < u for some u > 0. Define the distribution
function G in D by
0 fo<z<u
G(z) = (7.3)
F(z) iffu<z.

In other words G is the distribution of a rv X V u where X has distribution F. By
construction F' and G are distinct distributions satisfying G(z) < F(z) for all z > 0
so that F <, G, whence F' <;.; G. However, F' and G are not comparable in the
order <ppr—st: Indeed, if they were comparable, it would follow from Theorem 5.3
that ' <pgp-st G necessarily, so that

L QA-F@)dt _ [ (1 - G)dt
m(F) = m(G)

, >0 (7.4)
by using the characterization (5.1). From the definition (7.3), we obtain

/m (1— F())dt = /oo (1-GE)dt, z>u (7.5)

and the strict inequality m(F') < m(G) precludes (7.4) to hold, at least for z > u.

3. [<st==><rRr-st] : The previous counterexample applies here since the distribu-
tions F' and G constructed in 2. have the property that F <,; G, yet F and G are
not comparable under the order <pp_.

4. [<FR-st=><st] : Let X be a non—constant rv, so that X # m(X) with probability
one. By Jensen’s inequality, m(X) <.; X, thus m(X) <pgp-s¢ X by Theorem 5.3,
yet m(X) and X are clearly not comparable under the order <,;.

Counterexample 3 shows that increasing F' for <,; does not automatically result
in a increase of F for <, that is an increase of F for <pg_s. We expand on this point
by showing on a more concrete parametric example derived from the construction
(7.3) that a strict increase of F in <,; gives rise to a decrease of the mean value
m(F'): Take X to be an exponentially distributed rv with parameter 1, and define
the delayed rvs X, = X Vu with u > 0. It is plain that X <, X, for allu > 0. By
“straightforward computations we find

EX,)=u+e™ and E[X2]=u’+2(1+u)e™", (7.6)
so that

u? +2(1 +u)e™
20u +e~v)

E[X.) = u > 0. (7.7)
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Elementary considerations show that

E[%) <EX], 0<u<u (7.8)
where u* is the root of the transcendental equation
ut+2e"=-2=0, u>0. (7.9)

Direct numerical computations yield u* ~ 1.5936. In particular, it is easily shown
that for u = u*, the mean forward recurrence time is 1, namely the same as for u == 0,
while the mean value of X« is approximately 1.797. The value of v that minimizes
E[X.]is u° =1n2, in which case we get

E[X 0] = .9109. (7.10)

In other words, Feller’s paradox [6] can be continued by the following comments: By
delaying the interarrival times of a Poisson point process of intensity 1 as it was done
above, a point process is constructed with both a smaller intensity and a smaller mean
forward recurrence time. In particular, the delay u can be selected in such a way
that the intensity of the delayed process is .56, while keeping the same mean forward
recurrence time as the initial Poisson process, namely 1. The smallest possible mean
forward recurrence time obtained by this technique is roughly .91.

VIII. Preservation of <gr_s: under thinning and superposition

As should be apparent from the results obtained so far, the orders <pg_, do
not behave quite like the standard integral orders, although they are obtained from
them by a simple transformation, namely (3.1). In particular, we see that these
orders <pp- are not naturally compatible with basic operations, e.g., convolution
and expectation. At first glance, this may seem rather unfortunate since this com-
patibility with elementary operations provided the basis for a “calculus” which has
made integral orders so useful in many applications [2]. However, in light of the cor-
respondence with orders on point processes developed in [1], we argue that the basic
and natural operations of interest for the orders <ppr_, should correspond to basic
and natural operations on point processes. Below we take this viewpoint one step
further and consider two operations which have simple interpretations in the theory
of (renewal) point processes, namely thinning and superposition. We have elected to
carry out the discussion only for the order <pg_,: for which these two operations
are shown to be preserved.

VII1.1. Thinning

The setup is as follows: Consider a sequence of i.i.d. IR;~valued rvs {X,, n =
1,2,...} with common distribution F in D. We define the corresponding partial sums
{Sp, n=0,1,...} by (4.21), and denote by Nx the synchronous renewal process with
event times {Sn, n = 0,1,...} [3]. Let also {an, n = 1,2,...} be another sequence

20



of i.i.d. {1,2,...}-valued rvs which are independent of the rvs {X,, n =1,2,...},
hereafter called a thinning sequence. The an-thinning of the renewal process Nx
is the synchronous renewal process N§ with inter—event times {X2%, n = 1,2,...}
given by

2nit
Xga= Y X n=0.1,...(8.1)
k=a,+1
where we have defined
Qg =0, An+1 :an-l-an.H. n =O,1,(82)

The rvs {XZ, n =1,2,...} are of course i.i.d. with some common distribution F*
which is easily determined from F and from the common distribution of the rvs
{an, n = 1,2,...}. To simplify the notation, let X, @ and X denote generic rvs
for the iid. rvs {X,, n = 1,2,...}, {an, n = 1,2,...} and {X, n = 1,2,...},
respectively.

Following the viewpoint developed in [1], and briefly indicated in Section 3, it is
quite natural to investigate in what sense should two thinning sequences {a,, n =
1,2,...} and {f#n, n = 1,2,...} be comparable in order to guarantee that the a,-
thinning N§ and the S,-thinning N f( of the same synchronous renewal process Nx
be comparable in the order <pg.. As in [1] this is equivalent to the rvs X* and
X% be comparable in the order <pg_,¢, and requires that of the order <pp_4 under
random summation be investigated. We take this on in the following proposition.

Theorem 8.1. Let o and 8 be two integrable {1,2,...}-valued rvs, each independent
of the i.id rvs {Xnp, n=1,2,...}. fa <ppr-s: B, then

Sa <FR-st Sp (8.3)

or equivalently,
X® <pp_o XP. (8.4)

Proof. By Theorem 5.1 and Wald’s equation [5, Thm. 5.5.3, p.137], it suffices to

show that
E9(S)] _ E6(Sp)
E[X]E[e] — E[X]E[B]

for every mapping q§ IR+ — IR, in {icz} with ¢(0) = 0. Introducing the notation

(8.5)

B(n) := E[4(Sn)], n=0,1,...(86)
we observe that
E[$(Sa)] = E[4(a)] and E[¢(Ss)} = E[4(8)] (8.7)
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since the rvs o and 8 are assumed independent of the rvs {X,, n=1,2,...}.

Using the fact that the i.i.d. rvs {X,, n = 1,2,...} are non-negative, we see
that the mapping n — q;(n) is increasing and integer-convex with $¢(0) = 0 since the
mapping ¢ is also increasing convex with ¢(0) = 0; details are available in [9, Lemma
8.6.7, p. 278]. The interpolated mapping ¢ : IR, — IR defined by

Pe(t) := d(n), n<t<n+1 n=0,1,...(3.8)

is thus in {écz} with ¢.(0) = 0. Now, as we combine (8.7) and (8.8), we get (8.5) in
the equivalent form ) A

E(d(e)] _ E(B.(8)

Ele] = Ef]

From the necessary part of Theorem 5.1 we see that (8.9), thus (8.5), holds under
the assumption o <pp_,: G.

(8.9)

We extend readily this last result to the situation where two different syn-
chronous renewal processes Nx and Ny are each thinned by its own thinning se-
quence, say {an, n=1,2,...} and {Br, n = 1,2,...}. Here, the renewal process Ny
is generated by a sequence of i.i.d. rvs {¥,, n = 1,2,...} which is independent of the
thinning sequence {f,, n = 1,2,...}. The sequence of partial sums {7, n = 1,2,...}
associated with Ny is defined by (4.21). Using the generic notation introduced earlier
in this section, we have

Corollary 8.2. Let o and 3 be two integrable {1,2,...}-valued rvs, each indepen-
dent of the sequences of i.i.d. rvs {X,, n = 1,2,...} and {Y,, n = 1,2,...}. If
a <ppr-st B and if both conditions X <4, Y and X <pg-s: Y hold, then

So <FR-st T3, (8.10)

or equivalently
X% <pr-o Y7, (8.11)

Proof. In view of Theorem 8.1, it is enough to establish

Soz SFR—st Ta- (812)
By Theorem 5.1, as in the proof of Theorem 8.1, this is equivalent to showing

E[3(52)] _ El8(Ta)]
E[X|Ela] — E[Y)E[a]

(8.13)

22



for every mapping ¢ : IRy — IR, in {icz} with ¢(0) = 0. From the independence
assumption we get

¢(S i Pla = n E18(50)]

~Fix (8.14)

with a similar decomposition for E[¢(Ty)]. By Corollary 4.8, the comparison as-
sumptions on X and Y now imply S, <pr-st Tn foralln = 1,2,.... Invoking again
the characterization (5.2) we see that these comparisons are equivalent to

E[6(Sy)] _ El4(Ty)
nE[X] — nE[Y]’

n=1,2,...(8.15)

and the proof of (8.13) is concluded by using (8.15) on the representation (8.14).
||

By Theorem 5.3 we see that in Theorem 8.1. and its corollary, the condition
a <pRr—st B can be replaced by a <., 8. In particular, this will be the case when

a = K for some positive integer K, and 8 is the geometric rv with parameter . i.e.,

1 1\"
Plg = 1 1—-=1 . =0,1,...(8.16
p=n+1=3(1- %) n=0.1,..(319

Finally, in the same way that Corollary 4.8 yielded (8.10)-(8.11), we can invoke
Corollary 4.9 to get another set of conditions under which this comparison will hold.

Corollary 8.3. Let « and 8 be two integrable {1,2,...}-valued rvs, each indepen-
dent of the sequences of i.id. rvs {X,, n = 1,2,...} and {Y,, n = 1,2,...}. If
a <rr-st B and if both conditions X <pgp-—st ¥ and m(X) = m(Y) hold, then
(8.10)—(8.11) hold true.

Proof. The proof is identical with the proof of Corollary 8.2 up to (8.14), but this
time (8.15) follows from Corollary 4.9.

||
VIII1.2. Superposition

Consider now two independent sequences of ii.d. rvs {X,, n = 1,2,...} and
{Ya, n = 1,2,...} with common distribution F and G in D, respectively. The
corresponding synchronous renewal processes Nx and Ny are thus independent. The
superposition of the two renewal processes Nx and Ny is the synchronous point

process Nx + Ny defined by

Nx + Ny =) (s, +61,). (8.17)

n=0
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The inter-event distribution F' @ G of the stationary version of the point process
Nx + Ny is given [3, pp. 18-19] by

FoG(z)= m(F?S.Frzl(G)O —(1—-F())(1 = G(z)))
(8.13)
M@ e
s (L~ -GN - F@)), =0

The following result paves the way to a stability result of the order <pg_4: under
superposition operation (8.18).

Lemma 8.3 For distributions F' and G in D, we have the representation

FaG)=1-(1-F@)1-Gx), z>0 (3.19)

Proof. The result is an immediate consequence of the expression (8.18) of the forward
recurrence time distribution associated with F @ G.

Now consider another pair of independent synchronous renewal processes Ny
and Ny with inter-renewal time distributions H and K in D. As before H ® K is the
inter—event time distribution of the staionary version of the superposition Ny + Ny
of the renewal processes Ny and Ny.

Theorem 8.4. For distributions F', G, H and K in D, if F <pp_qs H and G <pRr_st
K, then F® G <pp-, HD K.

Proof. Under the enforced assumptions, we have 1 ~F(z) <1-H(z)and 1-G(z) <
1 — K(z) for all £ > 0, and the result now follows from Lemma 8.3.
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