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PLAYTHROUGH ring performance is studied with self-similar traffic
patterns. Measurements made by others on local networks connected to the
Internet have shown that TCP traffic is self-similar. Self-similar traffic can be
generated using heavy-tailed distributions. In particular, others have shown
that the Weibull distribution provides a good fit for TCP connection
interarrival times. The Weibull distribution, with specific parameters measured
in real networks, is used to simulate the operation of the PLAYTHROUGH ring
under self-similar traffic.

Simulation results reveal that the mean waiting time performance of the
PLAYTHROUGH ring under self-similar traffic is markedly worse than that of

hitherto assumed traffic patterns using the exponentially distributed interarrival



times and geometrically distributed message lengths. Furthemore, it appears
that, in general, mean waiting times are significantly greater for
PLAYTHROUGH under exponential interarrival times and Weibull-distributed
message lengths than in the case when message interarrival times and message
lengths are assumed to be Weibull-distributed and geometrically distributed,
respectively.

An analytical model is derived for various PLAYTHROUGH ring
performance metrics under the assumption of exponential interarrivals and
Weibull-distributed message lengths, including the moments of the number of
minipackets, control frame round trip time, transmission time, service time,
blocking duration, and waiting time. When Weibull interarrival times are
assumed, finding an analytical model for waiting times is a seemingly
intractable problem because the Laplace transform of the Weibull distribution
does not have a closed form. However, it is shown that, under heavy loads,
mean waiting times under the assumption of exponentially distributed
interarrival times and geometrically distributed message lengths are, in general,
a lower bound on mean waiting times under the assumption of Weibull
interarrivals and geometrically distributed message lengths. Moreover, under
heavy loads, mean waiting times under the assumption of exponentially
distributed interarrival times and Weibull message lengths are, in general, upper
bounds on mean waiting times under the assumption of Weibull interarrivals
and geometrically distributed message lengths.

This work provides the first analytical approxiamtion that predicts the
performance of PLAYTHROUGH ring under self-similar traffic. In fact, no
prior analytical model exists for any ring network under self-similar traffic,

including TOKEN ring.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview of Ring Networks

The ever increasing and widespread use of the Internet, the World Wide Web,
and other distributed computer systems for real-time computations and
multimedia applications requires high speed and reliable data transmission.
One way of achieving fast data transmission rates is through the use of optical
fibers. Optical fibers have several advantages over copper media. In particular,
security, reliability, and performance are all enhanced with the use of optical
fibers. They have low attenuation and as such can be used for communications
over a long distance. In addition, optical fibers have a high bandwidth. Optical
fibers do not emit electrical signals and, therefore, cannot be tapped, unlike
copper media, which can be tapped easily, allowing access to the data that is
being transmitted in the medium. Moreover, fiber is immune to electrical
interference from radio frequency interference and electromagnetic interference.
All these features make optical fiber a very attractive medium for data
communications and computer networks. However, low loss optical signal
splitting is difficult to perform effectively, so most practical optical links involve
point-to-point connections. This prevents an easy fiber optic implementation for
bus network configurations. On the other hand, ring networks are very suitable

for fiber optics communications. Stations are arranged in a circle. Each station



receives data from the station on its left, and transmits data to the station on
its right. In ring networks, the links between stations are point-to-point links
and they can take advantage of the high throughput, the efficiency and the high
performance of optical fibers. Because of their ability to take advantage of the
superior performance provided by optical fibers, the study of ring networks is
important and of great interest.

Several types of rings networks have been proposed, including token rings,
slotted rings, register insertion rings, and circuit-switched rings.

The Token ring (e.g., Farmer and Newhall Loop [FN69], IEEE Token
ring [Ins85], Fiber Distributed Data Interface (FDDI) [Ros86]) uses a token that
is passed from station to station. A station must await the token before it can
transmit its message. When a station is finished transferring its message, it
releases the token to the next station. Packets are circulated around the ring
until they reach their destination, using stations between their source and their
destination as repeaters. After reaching their destination, packets must travel
back to their source and be removed. Consequently, only one station may
transmit at a time on token ring.

On slotted rings (e.g., Pierce Loop [Pie72], Distributed Computing System
(DCS) [FFH*73], Cambridge Ring [WWT79]), the ring is divided into an integer
number of fixed-size segments called slots. Each slot is marked as either
containing data or emptly. The slots are circulated perpetually around the ring.
When a station wishes to transfer a packet, it fragments the packet into
minipackets that can fit into slots and waits for the passing of an empty slot by
the station. Upon seeing an empty slot, the station inserts a minipacket into
the empty slot. At its arrival at the destination, the minipacket is copied into

the destination buffer. On slotted rings, either source removal or destination



removal of transferred packets can be used. But typically packets are removed
by the source.

Register (or buffer) insertion rings (e.g., DLCN [Liu78], [LB77], [BLP77],
MetaRing [CO93]) provide concurrent transfer of multiple variable length
packets. Two shift registers are used: an insertion register for packets sourced
at this station, and a variable length delay buffer (register) to temporarily store
incoming message bits while the station inserts its own data packet onto the
ring.

Circuit-switched rings (e.g., Jafari’s New Loop [JLS80], Leventis New
Loop [LPK82|, Parallelring [QLL92], Pipeline ring [WY94], PLAYTHROUGH
ring [WS79], [WS80a], [Sil86a], [GSSW88], [SGP92|, [CS95]) use virtual or
dedicated circuits for packet transfer. When a source station wishes to transmit
to a destination station, a virtual circuit is established between the two
stations. All links and stations in between the source and the destination
station are dedicated for the duration of the packet transfer, after which time
the circuit is destroyed. On circuit-switched rings, multiple packets can be
transferred simultaneously over contiguous, non overlapping ring segments. The
ability for multiple packets to be transmitted simultaneously on circuit-switched
rings is called spatial reuse and represents an important advantage over simple
token rings. As a result of spatial reuse, throughput is increased on
circuit-switched rings. With a physical layer based on fiber optics,
circuit-switched rings can achieve very high throughput and be a very attractive
solution for high speed and multimedia applications.

The PLAYTHROUGH protocol is a circuit-switched medium access control
protocol that has been specified [Ste91], [SS92] to operate with the physical

layer specification of the commercially available fiber implementation of the



FDDI token ring network. Chai [CS94], [CS95], [Cha95] completed a
performance analysis of the PLAYTHROUGH ring carrying multimedia traffic
and demonstrated the PLAYTHROUGH ring’s suitability for modern network
applications. The PLAYTHROUGH ring therefore deserves further research.
The following is a brief description of the PLAYTHROUGH ring. A control
frame, comprising a leading FLAG character, a variable number of control
messages, and a trailing GO character, circulates perpetually around the ring.
START and STOP control messages are inserted into the control frame, just
ahead of the GO character, for the initiation and destruction of virtual circuits
using a form of fixed-length register insertion. While packet data is removed
from the ring by the packet’s destination station, control messages circulate

once around the entire ring and are removed by their source stations.

1.2 Objective

The performance of the PLAYTHROUGH ring has been studied

extensively [Sil85], [Sil86b], [SW87], [SG88a], [SG88b], [YSG89], [GS89],
[Gha89] [CS95], [CS94], [Cha95], [Hen98]. However, all prior studies have used
Markovian assumptions for traffic patterns, whereby the interarrival times
between packets follow an exponential distribution and packet lengths are
exponentially distributed or geometrically distributed. However, it has been
shown that Markovian assumptions are not consistent with self-similar traffic.
Self-similar traffic displays high variability at all time scales, which is not
observed in Markovian-type traffic [LTWW94|, [PF95]. Heavy-tailed
distributions such as the Weibull, the Pareto, and the Lognormal distribution
can be used to model self-similar traffic because of their high variability over

many time scales. Anja Feldmann [Fel00] showed through measurements on real



network traffic that TCP traffic connection interarrivals can best be modelled
with the Weibull distribution. Deng [Deng96| also independently showed that
the Weibull distribution gives a good fit for Web connection interarrivals. It has
also been shown that the reliable transfer of files whose sizes are drawn from
heavy-tailed distributions generates self-similar traffic [PKC00], [PKC96a]. Our
goal in this research is to study the performance of the PLAYTHROUGH ring
under self-similar traffic. We use discrete event simulations and we find
analytical models for performance metrics of the PLAYTHROUGH that will
ease the study of the performance of PLAYTHROUGH ring.

1.3 Contribution

This research makes original contributions in several areas. First, the
performance of PLAYTHROUGH rings under self-similar traffic is simulated
and compared with the performance of PLAYTHROUGH rings under
Markovian assumptions. This provides understanding as to how self-similar
traffic affects the performance of PLAYTHROUGH ring and it reveals the
shortcomings of prior models. Second, analytical models are developped for
various performance metrics of the PLAYTHROUGH ring under self-similar
traffic. Simulations of the performance of the PLAYTHROUGH ring under
self-similar traffic requires an extensive amount of time. Analytical models
provide a much faster way to study the performance of PLAYTHROUGH ring
under self-similar traffic. This is especially important in the context of
self-similar traffic because the high variability of self-similar traffic implies that
simulations take a long time to reach steady state. An analytical model is
provided for various performance metrics of the PLAYTHROUGH ring,

including mean waiting times, when it operates under exponential interarrival



times and Weibull message lengths. Finding an analytical model for waiting
times on the PLAYTHROUGH ring when it operates under Weibull message
interarrival times and geometric message lengths is seemingly intractable
because the Laplace transform of the Weibull distribution does not have a
closed form. Nonetheless, we provide heavy-loads upper and lower bounds for
message waiting times when PLAYTHROUGH ring operates under Weibull

interarrival times and geometric metric lengths.

1.4  Organization of the Dissertation

In Chapter 2, we give an overview of the PLAYTHROUGH ring and its
operation. We subsequently discuss the topic of self-similar traffic. We describe
self-similar traffic and present evidence and causes for this type of traffic from
the literature. In addition, we discuss work done on the characterization of
self-similar traffic. In particular, we describe the work reported by Anja
Feldmann [Fel00] on the characterization of TCP connection interarrivals.
Feldmann’s work shows that TCP connection arrivals are self-similar and can
best be modelled using the Weibull distribution.

In Chapter 3, based on the results of Feldmann, we present simulation
results for message mean waiting times when the PLAYTHROUGH ring
operates with TCP-like message traffic, whereby the message interarrival
process is self-similar and can be modelled using the Weibull distribution. We
complement those results with simulations of the PLAYTHROUGH ring under
exponential interarrival times and Weibull message lengths, motivated by the
work of Paxon, Kim, and Crovella showing that the reliable transfer of files

whose sizes are drawn from a heavy-tailed distribution causes self-similar

traffic [PKC96a|, [PKC96b].



In Chapter 4, we give analytical models for many performance metrics of
PLAYTHROUGH ring under exponential interarrival times and Weibull
distributed message lengths. In particular, we find a tight upper bound for the
mean number of round trips of the control frame. Approximations for the
second and third moments of the number of round trips of the control frame are
also found. Subsequently, we give an analytical model for the moments of
transmission time and the moments of service time. An elaborate model for
blocking duration is presented, and mean waiting time is derived.

In Chapter 5, we show that, at heavy load, mean waiting time for messages
in PLAYTHROUGH rings under Weibull message interarrival times and
geometric message lengths has as upper bound mean waiting time for
PLAYTHROUGH ring under exponential interarrival times and Weibull
message lengths. We also show that mean waiting time for messages in
PLAYTHROUGH ring under Weibull message interarrival times and geometric
message lengths has as lower bound mean waiting time for PLAYTHROUGH

ring under exponential interarrival times and geometric message lengths.



CHAPTER 2

LITERATURE REVIEW

2.1 PLAYTHROUGH Ring

A PLAYTHROUGH ring allows stations to transfer messages concurrently.
Multiple messages can be transmitted simultaneously over contiguous but
nonoverlapping ring segments. A station participates in a PLAYTHROUGH
ring through its ring interface unit (RIU). There are three classes of messages in
a PLAYTHROUGH ring having varying priorities. From the lowest to highest
priority these classes are data messages, the synchronizing token (called GO),
and update control messages. Update control messages include START /STOP
messages and acknowledgement messages. Data messages are user data to be
sent at a particular node. The token and update control messages are used to
implement the PLAYTHROUGH protocol. A message with a higher priority
can preempt, i.e. insert itself ahead of, a message with a lower priority.

At any given time, the status of a station in a PLAYTHROUGH ring can
either be a source, a destination, a bridge (i.e. a repeater) or an idle station.
Messages travel from a source to a destination and stations between a source
and a destination are called bridges. An idle station is neither a source nor a
destination nor a bridge. In a ring made of N stations, stations are number
consecutively from 0 to N-1, and a station’s position number is called its

address. Each station’s RIU maintains two registers, a status register and a



range register. The status register is used to keep the status of a station, either
source, destination, bridge, or idle. A given station keeps another station’s
address in its range register if all stations between the two are idle; in other
words, if the links between the two stations are free. A station can send a data
message to any station within the range specified by its range register. At ring
start up, all stations are idle and each station’s range register includes all other
stations by having its own address in its range register.

A control frame bracketed by a leading FLAG and a trailing GO symbol is
circulated perpetually around the ring, and each station receives the FLAG
character at regular time intervals. When a station has a message to transmit,
it first checks its range register to ensure that the destination of the message is
in its range. If it is, the station waits for the GO symbol. When GO arrives,
the station inserts an update control message in front of it. The update control
message includes the station’s own address, (the source of the message), the
destination station’s address, and a START command to initiate a virtual
circuit between the source and the destination. The GO symbol preceded by
the control message continues to circulate around the ring until it reaches the
destination station, updating status and range registers of the stations on its
path and establishing a virtual circuit between the source and the destination.
At the destination, the START control message is changed into an
acknowledgement message and continues to travel around the ring back to the
source, updating registers on its path. When the acknowledged START control
message arrives back at the source, the source removes the control message and
continues sending the data message characters to the destination right after GO
departs the station. The destination station is in charge of removing the data

message from the ring when it receives it. After all characters of the data



message have been transmitted, the source node waits for the return of GO.
When it arrives, the source station transmits a STOP control message to inform
all downstream stations that it is releasing the virtual path dedicated to the
data transfer. When the STOP control message arrives at the destination, it is
changed into an acknowledgement message and sent back to source, updating
registers on its path. Upon receipt of the STOP control message, the source
removes it from the ring.

In our study of the PLAYTHROUGH ring, several performance parameters
are of interest to us, including data message waiting time, service time, and
transmission time, and blocking duration. The waiting time or queuing time is
measured from the time a message arrives at a particular station’s RIU until
the time its RIU receives the GO character and inserts a START message to
begin the transmission of the message. The transmission time is measured from
the insertion the START message until the time the last bit of the data message
is sent. The service time is measured from the insertion of the START message

until the return of the STOP message to the source for removal.

2.2  Self-similar Traffic

A self-similar phenomenon displays structural similarities across a wide range of
time scales. Objects that possess the self-similar property are sometimes
referred to as fractals. In the context of networking, self-similarity refers to a
process that displays high variability (or burstiness) at all time scales. The
work of Leland, Taqqu, Willinger, and Wilson [LTWW94] on the self-similar
nature of network traffic spurred an explosion of work on this phenomenon. In
particular, work has been done in the area of measurement-based traffic

modeling and in the area of physical modeling. In the area of
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measurement-based traffic modeling, traffic traces from physical networks have
been collected and analyzed to detect, identify, and quantify traffic
characteristics. They have shown that scale-invariant burstiness or
self-similarity is a widespread phenomenon found in local-area networks,
wide-area networks, IP and ATM protocol stacks, copper and fiber optical
communications. Leland, Taqqu, Willinger, and Wilson [LTWW94| showed
self-similarity in a LAN environment (Ethernet); PAXON and Floyd [PF94],
[PF95] demonstrated self-similar burstiness in Wide Area Network Internet
Protocol (IP) traffic. Crovella and Bestavos [CB96] showed self-similarity in
World Wide Web (WWW) traffic. Feldmann [Fel00] showed that TCP
connection arrival processes are self-similar. In addition, Feldmann [Fel00]
showed that distributions with heavy-tails give a better fit for connection
interarrival times than Markovian distributions. Prior to the explosion of work
on traffic self-similarity, Markovian assumptions were the paradigm for studying
the performance of voice and data traffic in communications systems. One of
the reasons why Markovian models have been cherished in the communications
and the performance analysis community is that they have the advantage of
tractability and are sometimes amenable to exact analysis. Indeed, queueing
theory involving Markovian inputs is a very mature area. Closed-form solutions
exist for many queuing problems involving Markovian distributions. Many local
area networks and wide area networks have been studied extensively and
modeled using Markovian assumptions. The problem with these models is that
they are not consistent with self-similar traffic.

In the area of physical modeling, attempts have been made at explaining the
physical causes of self-similarity in network traffic based on network

mechanisms and empirically established properties of distributed systems. For
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example, one cause of self-similarity has been attributed to the reliable transfer
of files drawn from heavy-tailed distributions [PKC96a]|, [PKC96b]. This causal
relationship is important because there is strong empirical evidence based on

file system measurements that UNIX file systems sizes are heavy-tailed.
2.2.1 Self-similarity and Burstiness

Self-similar traffic is bursty across a wide range of time scales. The traffic
measure in question can be packet interarrival times, throughput, etc. The
burtiness of self-similar traffic over many time scales implies high variability
over many times scales. Examinations have shown that Internet traffic is highly
variable over a wide range of time scales [PF94], [PF95]. The variability over
wide time scales means that bursts do not average out over long enough time
scales. This is in sharp contrast with what is obversed in the case of Markovian
traffic, where bursts average out over long enough time scales. Figure 2.1, taken
from [WP98|, compares the self-similar behavior of Internet traffic arrivals to
that of voice (Poisson) traffic arrivals. It shows a comparison between
Markovian traffic and self-similar traffic. The fact that bursts do not average
out implies that, unlike voice networks, the Internet cannot be engineered to
reduce ill-effects such as packet loss below any desired threshold, since bursts

occur at all time scales.

2.3 Characteristics of TCP Connection Arrivals and Its Impact

2.3.1 Packet Arrival Process

The observation of self-similar traffic at the packet level dates as far back as the
work of Leland et al. [LTWW94], in which they showed that on a local-area
network (LAN) the packet arrival process shows self-similar behavior. Paxson

and Floyd [PF95] subsequently showed self-similarity at the packet level in
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Poisson Measured

Figure 2.1: Self-similarity of Internet Traffic (Measured) vs Poisson Traffic
(Ordinary Telephone Traffic).
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wide-area networks. Willinger et al. [WTSW95] explain self-similarity at the
packet level observed on Ethernet traffic as the result of a superposition of
many on/off sources, where the lengths of the on and off periods are drawn

from heavy-tailed distributions.
2.3.2 Connection Arrival Process

Although packets are the basic unit of the Internet, most operations involve
more than one packet and user experience is usually based on a set of packets,
rather than a single packet [Fel00]. Network operations such as error control
and congestion control are done on a set of packets. In fact, operating on single
packets can lead to unstable solutions [Fel00]. For this reason, studying
networks from the point of view of a set of packets is important and of great
interest in the networking community. At the edge of the internet, TCP
provides the abstraction of a connection, which represents a set of packets
related to the same message (example: HTTP connection) or user session
(example: telnet). For applications running on top of TCP, resources are
typically allocated on a per-connection basis, or on the time scale of a
connection. For example, at the beginning of a TCP communication between a
sender and a receiver, the receiver sets the window size, which is the maximum
amount data the client can send per transmission. The receiver does so based on
the availability of its resources (buffer and CPU) and the round trip time in the
medium, which depends on the bandwidth. The window size for the connection
is adjusted dynamically by the receiver, depending on the availability of its
resources and the medium bandwidth usage. Anja Feldmann [Fel00] did an
extensive study of the characteristics of TCP connection interarrivals. The

study revealed that the TCP connection interarrival process is self-similar
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(bursty). In addition, the study revealed that heavy-tailed distributions such as
the Pareto, the lognormal and the Weibull distribution provide a better fit for

the TCP connection interarrival process than does the exponential distribution.
2.3.3 Impacts of the Burstiness of TCP Connections

The burstiness of TCP connection interarrivals impacts the signaling, routing
and resource allocation for web servers. Signaling deals with connection
admission and rejection. Connection interarrival burstiness requires a higher
performance from a router’s CPU to perform algorithms necessary for
connection admission or rejection. Dynamic routing, which is a goal in the
Internet, may not be possible at the connection level if connection arrivals are
too bursty. Web servers that allocate resources on a per-connection basis may

not perform well if connection interarrivals are too bursty.

2.4 Network Traces Used By Feldmann to Characterize TCP Connection
Interraval Times

Feldmann’s study [Fel00] of TCP connection interarrival times was based on
traces collected on three different Ethernet segments at Carnegie Mellon
University (CMU), ATT Bell Laboratories, and ATT Labs-Research.

The first set of data, collected on an Ethernet segment of the School of
Computer Science at CMU, is one of 18 Ethernet segments. The second traffic
data set was collected on an Ethernet segment at ATT Bell Laboratories. The
third traffic data set was collected on the same segment shortly after the split of
ATT Bell Laboratories into ATT Labs-Research and Lucent Bell Laboratories.
The second traffic data set was collected using a workstation connected to the
internal network of ATT Bell Laboratories; whereas, the third traffic data set

was collected using a workstation connected to an Ethernet segment outside
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ATT’s firewall. For this reason, the second trace is referred to as the internal

trace, whereas the third trace is referred to as the external trace.

2.5 Connection Arrival Process Self-Similarity

Prior to the work of Feldmann, Paxon and Floyd [PF95] had pointed out that
arrival processes of FTP DATA and SMTP connection arrvals are not consitent
with Poisson processes. Feldmann [Fel00] showed that TCP connection
interarrival times, in general, are self-similar. He attributes this in part to the
fact that the World Wide Web is now the dominant application on the Internet.
According to Feldmann, a user is likely to download several Web pages during a
Web session, since each web page can consist of several embedded

images [BC98|. This results in self-similar traffic. Figure 2.2, taken from [Fel00],
depicts the number of connection arrivals over time for HT'TP traffic on three
different time scales for the external ATT trace. The plot shows that the
burstiness of the connection arrivals does not decrease as the time resolution is
increased, which indicates self-similarity for the arrival process of HT'TP

connection arrivals.

2.6 Characterization of Connection Interarrival Times

Felmann modeled the cumulative distribution functions of the CMU, the
external ATT, and the internal ATT traces using the exponential distribution
and three heavy-tailed distributions: the Weibull distribution, the lognormal
distribution, and the Pareto distribution. Feldmann considered all interarrival
times, application specific interarrival times, application specific interarrival
times over a shorter time periods, and interarrival times for specific sources. In

all cases, the Weibull distribution fit the data better than did all other
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Figure 2.3: Empirical and fitted cumulative interarrival time distributions of
one CMU and one external ATT dataset [Fel00].

distributions. Figure 2.3, taken from [Fel00], shows the empirical and the fitted
cumulative interarrival time distributions of one CMU and one external ATT
dataset for all interarrival times. The figure shows that Weibull distribution
gives a better fit than all other distributions. Feldmann also showed that the
Weibull distribution gave a good fit for specific applications, including http,
telnet, and smtp. In particular, the Weibull distribution provides an excellent

fit for http connection interarrival times. Feldmann also shows that the Weibull
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Figure 2.4: The empirical and fitted cumulative distributions of TCP traffic
from 2 different sources [Fel00].

distribution provides a good fit for all time periods that are long enough to
allow sufficient observation. Figure 2.4, taken from [Fel00], shows that the
Weibull distribution also provides a superior fit if traffic from specific sources is

aggregated.

2.7 Heavy-tailed Distribution

2.7.1 Definitions

Let F(z) be the cumulative distribution function (cdf) of a random variable X
and let F¢(X) =1— F(X) be its complementary cdf (ccdf). The cdf F(X) is

said to heavy-tailed (also known as long-tailed or fat-tailed) if the ccdf F¢(X)

decays more slowly than exponentially, i.e., if:
e"F¢(r) 00 as x—oo forall a>0 (2.1)

An interpretation of the definition of heavy-tailed distributions is that the
probability of large events is nonnegligeable.
The cdf F(X) is said to short-tailed if the cedf F°(X) decays exponentially,
i.e., if there exists some a > 0 such that:
e"F(r) =0 as 1 — o0 (2.2)
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Power-tailed distributions are a subclass of heavy-tailed distributions. The
cdf F(X) is said to be power-tailed if its cumulative density function F(z)

satisfies the equation :

Fé(z) ~ az™" as  x — 00, (2.3)

b2

where v and [ are positive constants and the notation “f(z) ~ g(x)” means
that f(z)/g(z) = 1 as x — oo.
An example of a power-tailed distribution is the Pareto distribution, whose

ccdf is defined as:
Fé(z) = (1+bx)™ where a,b>0 (2.4)

Heavy-tailed distributions have high or even infinite variance and therefore
show extreme variability over all time scales. More intuitively, heavy-tailed
distributions show a wide range of values, including very large ones, even if
almost all values are small. For this reason, heavy-tailed distributions are
appropriate for the modeling of self-similar processes.

Some studies [AW96], [CB96], [Ir193], [PF94] have shown that distributions
with heavy-tails such as the Weibull, the Pareto and the lognormal distribution
yield better models for file size in file systems. Other studies [PKC96a),
[PKC96b], [PKC97], [PKC00] have shown that the TCP transfer of files drawn
from heavy-tailed distributions, such as the Weibull and the Pareto
distribution, causes self-similarity in network traffic. And, as mentioned before,
heavy-tailed distributions, and the Weibull distribution in particular, have been

shown to provide good fit for TCP connection interarrivals [Fel00].

2.7.2 The Weibull Distribution

In our study of PLAYTHROUGH ring we will use the Weibull distribution

extensively, based on work performed by Feldmann [Fel00] that shows that
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Weibull distribution provides a good fit for TCP connection arrival times. The
Weibull distribution is a 2-parameter distribution whose cumulative distribution

function F'(z) is given by:

F(z) = N (2.5)
0, <0

where @ is a positive number called the scale parameter and c is a positive
number called the shape parameter of the Weibull distribution. When ¢ < 1 the
Weibull distribution is heavy-tailed, but not power-tailed. As the value of ¢
decreases the probability of longer, as well as shorter, values increases, which
results in an increase of burstiness [Fel00].

The probability density function of the Weibull distribution is given by:

or

f@y=4 B (2.7)

And its mean and second moment are given by:

+o0 +o0 x° e 1
E[X] = / o f (z)dz = / ey = al(1 + 1) (2.8)
—00 0 a¢ C
and
+oo +o0o $c+1 e 9
E[X? = / 2 f(x)dx = / c— e & de =T (1 + E)’ (2.9)
—00 0
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where, I" refers to the gamma function. It is defined by:

[(z) = / t* e tdt (2.10)
0
Generally, the n'® moment of the Weibull distribution is given by:
EIX" = a"T(1+ 1) (2.11)
c

2.8 Notation

2.8.1 Operators

Throughout this dissertation, the operator & designates addition modulo N,
where N is the number of stations on the ring. Let us consider station 7 on a
PLAYTHROUGH ring, where ¢ € {0,---, N}. The station distance j
downstream from station ¢ is station ¢ & j. The operator & is commutative,
that is 2+ @ j = 7 @ ¢. The operator © designates subtraction modulo N. The
operators @ and © are additive inverses, that is, ¢ @ y © y = « for all integers x
and y.

The unitary factorial operator ! is defined recursively as:

1 n=20,1
n! = (2.12)
n[(n—1)1] n=23,4,...,
where n is a non-negative integer.

The binomial coefficient, denoted (Z), where n and k£ are two nonnegative

integers, k < n, is given by:

n n!
e —— 2.13
(k) (n— k)lk! ( )
2.8.2 Stochastic Notation

Let £ be an event and let X be a continuous random variable. Throughout this

dissertation, the probability of the event £ is denoted Pr [£]. The probability
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distribution function of X, denoted Fx(z) is given by:
Fx(z) = Pr[X <z (2.14)

The probability density function of X, denoted fx(z), is given by:

de($)

fx(@) = ———. (2.15)

For any function g(X) of the random variable X, the expected value of g(X),
denoted E'[g(X)], is given by:
B¥) = | g@fxla)ds (216)
In particular, the n'* moment of the random variable X, denoted E [X"] is the
expected value of the function g(X) = X™ and is given by:
BIX"] = / " fy () de. (2.17)
The first moment, also called mean or expected value, of the random variable X
is denoted E[X] and is given by:
BIX] = / 2 fx(2)da (2.18)

The variance of the random variable X, denoted o2, is given by:
o’ =E[X?] - E[X]? (2.19)

The Laplace-Stieltjes transform of the density fx(x), which is often also
referred to as the Laplace-Stieltjes transform of the random variable X, is

denoted X*(s) and given by:

X*(s) = E[e*]

= /00 e fx(z)dx; (2.20)



Abbreviation Meaning

LST Laplace-Stieltjes transform

pdf probability density function
PDF probability distribution function
PGF probability generating function
pmf probability mass function

.. random variable

Table 2.1: Abbreviations.

We designate by X*(™(s) the n* derivative with respect to s of X*(s).
Let Y be a discrete random variable with probability mass function
gk = Pr[Y = k]. The probability generating function of Y, denoted Y (z), is
Y(2) = > agd®. (2.21)
k=—00
We designate by Y(")(z) the n'* derivative with respect to z of the probability

generating function Y (2).
2.8.3 Abbreviations
Table 2.1 lists abbreviations used in this dissertation and their meanings.

2.9 Conclusions

In this chapter, an overview of PLAYTHROUGH ring operation was given. The
phenomenon of self-similar traffic as it relates to network traffic was discussed.
Evidence and causes of self-similar traffic were presented. The work of Anja
Feldmann on the characterization of TCP connection arrivals was discussed. It
revealed that the arrival process for TCP traffic is self-similar. In addition,
Feldmann showed that the Weibull distribution with specific parameters
provides a best fit for TCP connection arrivals. We also brought to light the
work of Paxon, Kim, and Crovella, which reveals that the reliable transfer of

files whose sizes are drawn from a heavy-tailed distribution causes self-similar
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traffic. Heavy-tailed distributions, which include the Weibull distribution, were
defined and discussed. Particular attention was given to the Weibull
distribution.

In Chapter 3, we will provide a detailed description of the operation of the
PLAYTHROUGH ring. Motivated by the work of Feldmann, we will give
simulation resuts for the PLAYTHROUGH ring when it operates under Weibull
message interarrival times and geometric message lengths. We will compare
those results to the results obtained under previously used assumptions, that is
exponential message interarrivals and geometric message lengths. In light of the
causal relationship between heavy-tailed file size and self-similarity, we will also
provide simulation results for PLAYTHROUGH ring when it operates under
exponential message interarrivals and Weibull message lengths. We will
compare those results to results obtained using exponential message

interarrivals and geometric message lengths.
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CHAPTER 3

SIMULATIONS OF THE PERFORMANCE OF PLAYTHROUGH RINGS
UNDER SELF-SIMILAR TRAFFIC

3.1 Ring Operation

Figure 3.1 shows a simplex PLAYTHROUGH ring network. It consists of N
stations in a ring configuration. Each station consists of a host, or attached
component, and a ring interface unit (RIU). Figure 3.2 depicts a ring interface
unit, RIU. To identify the consecutive stations on the ring, a unique
one-character ring-relative station address in the range [0... N — 1] is assigned
to each station at ring initialization. A station i’s RIU possesses a transmitter,
denoted Tz;, and a receiver, denoted Rz;. Station ¢’s transmitter, Tz;, feeds
into station i @ 1’s receiver, Rz;q;, where the operator @ refers to addition
modulo N. Transmitters and receivers are therefore connected in a
point-to-point fashion, making the ring suitable for a fiber optics physical layer.

We refer to station 7 @ 1 as the downstream neighbor of station ¢; similarly,
we refer to station 7 as the upstream neighbor of station 7 @ 1. Given two
stations with addresses ¢ and 7, modulo N, where j > i, the distance between %
and 7 is j — 4, modulo N. It is the number of “hops” that must be made when
going from station ¢ to station j in the direction of transmission. For example,
the distance between station ¢ and station 7 @ j on a simplex ring is j. We

denote the path from station 7 to station ¢ @ j as ©+ — ¢ @ j. It is the set of RIUS

26



G\ﬁ
10

@ N - STATION @
_ - RING z
. Link
) e' RIU - Ring [nterface Unit Egl-@

v \ T - Transmitter B
Q, R - Receiver
AC - Attached Component @
B - Bypass Switch l ~
&
®

Figure 3.1: An N station simplex ring.

in between station 7 and station i @ j.

Traffic passing through the ring experiences several delays. As characters
pass through the RIU of station 7, they are delayed by a nominal latency of kg
character times by the station i’s RIU receive buffer. The link from station 4’s
upstream neighbor to station ¢ adds an additional propagation delay of £,
character times. The total nominal latency for station ¢ is denoted 7;. It

includes the upstream link propagation delay k7, and the nominal latency kg.
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Figure 3.2: A PLAYTHROUGH Ring Interface Unit.
It is given by:
T, = kTi + kR. (31)

The total nominal ring latency 7 is obtained by summing all the N stations
nominal latencies on the ring. It is the nominal time required to make a round

trip across the ring and it is given by:

i

T = ;. (3.2)

i

Il
)

The transmission of a message from one station to another includes M
message characters and h header characters. The M message characters are
supplied by the source host to be delivered to the destination host; the A header
characters are a constant number of overhead characters used for message
integrity checks, network routing, or other protocol-related function. In
previous works on PLAYTHROUGH ring, the term packet was used to refer to
the logical unit of data transmitted from one host to another, consisting of M
message characters and h header characters. We prefer not to use the term

packet here because in this work, we think of the transmission of a message as
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generally corresponding to a connection (for example a TCP connection)
between the source and the destination. Messages sourced by station ¢ are
buffered at the queue within station 7’s RIU until they may be transmitted
across the ring to the destination station. The queue in each station RIU is
assumed to be infinitely long. Messages are served from the RIU’s queue in
First-In, First-Out (FIFO) order. The message at the head of the queue is
termed the head of the line (HOL) message.

A virtual circuit is constructed along the path ¢ — ¢ @ j in order for the
transfer of a message and its header to take place. The transmitters along the
path ¢ — ¢ @ j are dedicated to this virtual circuit during the transmission of
the message and its header. When the transfer of the message and its header is
completed, the virtual circuit is destroyed and the transmitters along the path
1 — 1 @ j become available for another message transfer.

The PLAYTHROUGH protocol uses destination removal. This means that
the destination RIU that receives the message and its header removes them
from the ring. This is in constrast to source removal used in IEEE Token ring,
where the source RIU that sends data also removes the data from the ring.
Source removal of data implies that all transmitters on the ring must participate
in the transmission of every data message. This limits the ring to the service of
at most one message at a time. With destination removal, only the transmitters
on the transferred data path must be dedicated to the data transmission. This
leaves the other transmitters on the ring available for additional data transfers,
if no two simultaneous data transfers require the use of the same transmitters.
The ability of PLAYTHROUGH ring to support simultaneous data transfers on
different paths on the ring is knows as spatial reuse.

The transmission of data on PLAYTHROUGH ring is accomplished through

29



the transmission of control a frame. At any given time on the ring, exactly one
control frame and possibly several data frames are present, distributed in delay
buffers and along transmission links. The control frame circulates continuously
as it is passed from station to station.

The control frame uses control messages of fixed size kp characters to
establish and destroy virtual circuits on the ring, and to control the global state
of the ring. It is delimited at its start by a unique character denoted FLAG,
and at its end by a unique character denoted GO. Control messages are inserted
into the control frame by an RIU through a register insertion mechanism
employing the RIU’s insertion-delay buffer (id_buffer), and are removed by the
same RIU using a source removal protocol.

Control messages are inserted immediately before the GO delimiteer at the
end of the control frame, following any control messages already present in the
frame. When the control message returns to its sending RIU it immediately
follows the initial FLAG delimiter because any control messsages present in the
frame when the control message was inserted are already removed. To send a
control message, an RIU fills its id_buffer with the desired message, waits for
GO to arrive, and switches the id_buffer into the transmission circuit, inserting
the control message into the control frame. Upon returning exactly 7 + kp
character times later, the control message will be completely contained within
the id_buffer buffer where it originated. The RIU then switches the id_buffer
out of the transmission circuit, removing the message from the ring. Each
station can send at most one control message per control frame, as each station
has only one id_buffer . Hence, at most /N control messages are present in any
given control frame. The size of a control frame varies with the number of

control messages it contains. An empty control frame has kg characters of
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delimiters and physical layer overhead bits. Each control message adds kp
characters to the size of the control frame, resulting in a maximum size of
ka + Nkp characters for the control frame.

Delimiting the data frame at its start is the end of the control frame
(marked by GO). Each data frame consists of exactly one minipacket, a unit of
data of fixed size m = 7 — kg characters. The data frame may contain up to m
characters of message data and message overhead, padded at the end with
IDLE characters, if necessary, to completely fill the minipacket. When
transmitting data, the RIU automatically fragments the data message and its
overhead into minipackets of fixed size m characters. The final minipacket is
filled with IDLFEcharacters if the total size of the message and its overhead is
not a multiple of m. Hence, the transfer of every data message results in the
transmission of an integral number of minipackets of size m.

At any given time, the global state of the ring is maintained in the RIU’s
internal registers. Each station’s RIU updates the global state of the ring
through the passing of control messages. Each control message transmitted on
the ring passes through every RIU since it is removed by its source. This allows
each RIU to update its internal registers. Many control messages have been
specified for PLAYTHROUGH ring, including control messages used to support
packet transmission with multiple levels of priority, control messages used for
broadcast transmissions to multiple simultaneous destinations, and control
messages for management functions at ring startup. In this dissertation,
however, we restrict our attention to the START and the STOP control
messages. Detailed specifications for all control messages are provided by
DelCoco [Del88]. Every control message consists of three characters: a

command character specifying the type of control message and containing
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control and status bits; a one-character source station address that indicates the
RIU sending the control message; and a one-character destination address that
indicates the destination RIU for the control message. Both the START and
the STOP control message contain an acknowlegment bit, which is transmitted
as zero by the source station and changed to one by the destination station.

When station 7 wants to send a message to station 7 @ j, the START control
message sent by station 4 to station i & j establishes a virtual circuit for the
path ¢ — ¢ @ j. All stations between 7 and 7 @ 7 become engaged as repeaters, if
the outbound distance j is two or greater. A station engaged as repeater simply
repeats verbatim all data frames to its downstream neighbor, and processes
control frames normally. When the destination station i @ j receives the START
control message, it sets the acknowledgment bit in the command character and
gets ready to receive minipackets from source station i. Station 7 @ j removes
each received minipacket from the ring. Unless station ¢ & j is concurrently
transmitting its own minipackets, it replaces each minipacket with a minipacket
filled with IDLE characters.

Station ¢ continues to fill data frames with consecutive m-character pieces of
data as long as its current HOL message contains more data to be tranmitted.
After completing the transmission of the minipacket containing the last
characters of the HOL data message, the source station sends a STOP control
message in the control frame, which marks the end of its data transfer.

Upon receiving the STOP control message, the repeating stations are
released from the virtual circuit. The acknowledgment bit of the STOP
command character is set by the destination station. In addition, the
destination station forwards the received data to its host and updates its

internal registers.
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The internal registers of each station’s RIU include a status register and a
range register. The status register of a station’s RIU keeps the status of the
station, which can be a source, a bridge, a destination, both a source and
destination, or idle. A station is a source if it is sending a message to another
station on the ring. A station is a bridge is it is in the path of another station’s
message transfer, in which case it is simply repeating the data in transmission.
A station is a destination if it is the receiving station of a message sent by
another station on the ring. Finally, a station is idle if it is neither a source, nor
a destination, nor a bridge. A station’s RIU range register records the farthest
downstream station to which it can transmit a message. Station ¢ @ 7, 7 > 1, is
in station ¢’s range register if there is a free path from station ¢ to station ¢ & j
and station 7 @ j is a source. In the event that no station on the ring is currently
transmitting, station ¢’s range register contains the ring-relative address of
station i itself. Let us suppose that station 7 wants to send a message to station
1@ j. This is only possible if station 7’s status register indicates that it is idle
and if station ¢ @ j is an upstream neighbor to the station contained in station’s
1’s range register. Station ¢ waits for the passing of the control frame preceded
by the leading FLAG character and followed by the GO character in its receive
register. Station ¢ inserts a START control message immediately ahead of GO .
The START control message contains the address of source station ¢ and the
address of destination station 7 & j. The START control message preceded by
the leading FLAG character and followed by GO continues to travel around the
ring, causing all the stations on the ring ring to update their status and range
registers. Stations on the path of station ¢’s message transfer become bridges.
Station 7 @ j becomes a destination and, of course, station i is a source. Other

stations on the ring can insert a START control message on the ring after
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station i’s START control message and before GO . START control messages
are removed by their source stations in the order in which they were inserted.
When the destination station receives the START control message it sets the
acknowledgment bit in START control message. The START control message
continues on its way around the ring to its source station, where it is removed.
The source station ¢ can now begin the transmission its message. After station ¢
has transmitted the last character of its message, it waits for GO and inserts a
STOP control message immediately ahead of GO which it sends to the
destination station ¢ @ j. The STOP message contains both the source and the
destination address. The destination station, upon receiving the STOP
message, sets the acknowledgment bit and the STOP message makes its way
back to the source station. As the STOP message passes through the other
stations, they update their status and range registers.

The PLAYTHROUGH ring uses single-character ring-relative source and
destination addresses ranging from zero to one less than the number of stations.
Because the station addresses are consecutive, they allow for proper
computation of station to station distances and they keep address lengths short,
which makes control message transmission efficient. In addition to ring-relative
station addresses chosen at ring initialization, a permanent absolute address is
used, which provides a unique identity for each station. This absolute address
typically consists of six characters. The host provides the source and
destination absolute addresses to the RIU and the RIU converts these absolute
addresses into ring-relative addresses. When two PLAYTHROUGH rings are
connected together via a bridge, the source and destination addresses are
included in the h header characters. Messages destined to another ring are sent

to the bridge’s ring-relative address. The bridge determines the ring-relative

34



address of the destination station on the other ring using the absolute addresses
in the header and forwards the message to its destination.

The PLAYTHROUGH ring was designed to allow the use of FDDI’s
physical layer in the specification of the PLAYTHROUGH media access control
layer protocol given by DelCoco [Del88]. Accordingly, the FLAG character is
defined as FDDI’s unique JK symbol. The GO character consists of a leading T
symbol, a nominal number of IDLE bits for elastic buffer adjustment, and a
trailing T symbol. The nominal size of an empty control frame with no IDLE
bits is kg = 2 characters. This is assumed throughout this dissertation for
simulations and analytical results. Minipacket are padded with FDDI IDLE
symbols if they empty or partially full. Each station transmits data at the same
nominal bit rate.

In addition to the simplex ring configuration described thus far, the
PLAYTHROUGH ring supports a counter-rotating double ring version. As
shown in Figure 3.3, a double PLAYTHROUGH ring comprises an inner ring
and an outer ring. Each of the N RIU’s contains a pair of transmitters and
receivers, one set connected to the inner ring and one set connected to the outer
ring. Transmitters and receivers are connected differently on the inner and
outer ring. On the inner ring, transmitters and receivers are connected in the
same way as for simplex rings, that is the transmitter of station ¢ is connected
to the receiver of station ¢ @ 1. One the outer ring, transmitters and receivers
are connected in the opposite direction, that is RIU ¢’s transmitter is connected
to RIU 7 © j’s receiver, where the operator & designates subtraction modulo N,
the number of stations. As a result, transmission on the outer ring occurs in the
direction opposite transmissions on the inner ring, in the direction of decreasing

host number. The distance between two stations can be measured along either
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Figure 3.3: An N station double ring.

the inner or the outer ring. When measured along the inner ring, station ¢ @ j is
a distance j away from station 2. When measured along the outer ring, station
1@ j is a distance N — j away from station ¢. Messages arriving at host ¢ for
transmission to host 72 @ 7 can be routed along either the inner or outer ring.
The double PLAYTHROUGH ring makes use of a routing protocol to
determine which ring will carry the message. Shortest distance to destination
routing is usually assumed in double ring models. In shortest distance to
destination, a message sourced by station ¢ and destined to station ¢ @ j will be

placed into the inner ring queue if j < N/2, and into the outer ring queue if
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j > N/2. In the event that the number of stations on the ring is even, station
i@ N/2 is equidistant from station i when measured along either the inner ring
or the outer ring. In this case, messages of outbound distance N/2 are placed
randomly with equal probability into the queue for either ring.

The double PLAYTHROUGH ring considerably improves the reliability of
the ring. The loss of a link or RIU on one of the rings can be detected, and this
information coupled with simple additional switching circuits at each RIU can
be used to isolate the failed station or bypass the failed link by reconfiguring
the ring to maintain communications on what appears to be a single ring,
providing graceful degradation in service.

In addition to improving the reliability of single PLAYTHROUGH ring,
double PLAYTHROUGH ring improves the throughput of simple
PLAYTHROUGH ring. On a single ring with uniform and symmetric traffic,
the average outbound distance traveled by a message is N/2. Thus, two message
transmissions can proceed concurrently on average with spatial reuse. On a
double ring with uniform and symmetric traffic, a message transfer on the inner
ring or outer ring has a maximum outbound distance of N/2, and travels an
average distance of roughly N/4. Therefore, with spatial reuse, four messages
may be transferred concurrently on average per ring, with a total of eight
messages on the entire ring. This ability of double ring PLAYTHROUGH ring
to quadruple the throughput of a simplex ring with only twice the hardware

cost of the simplex ring makes double PLAYTHROUGH ring very attractive.

3.2 Traffic Assumptions

In this dissertation, all data lengths such as packet lengths and token sizes are

in characters, and all time units are in character times. We designate by C; ;q;
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the class of traffic sourced by station ¢ with outbound distance 7, 0 <¢: < N —1
and 1 < j < N — 1. Each of the N stations is allowed to transmit to any of the
N — 1 remaining stations, yielding a maximum of N (/N — 1) classes of traffic on
a PLAYTHROUGH ring. Packets belonging to the different classes of traffic
Ciigj, 0 <1< N —-1,1<j35 <N —1, are assumed to arrive at each station
according to arrival rate \;;q; and are mutually independent.

Each message of class C; ;g; is made up of a constant header of length
hiie; > 0 and a variable-size payload of length M ;e ;.

Unless otherwise stated, we assume uniform and symmetric traffic (UST).
With this type of traffic, messages belonging to all the traffic classes €; g,
0<i<N-1,1<j <N —1, have identical statistical characteristics and each
station transmits the same amount of traffic to every other station.

We define certain message events on the PLAYTHROUGH ring as follows.
We denote by 7; e, the event that station ¢ transmits a message to station ¢ @ 7,
and by T; = U;V:_ll Tiie; the event that station 4 transmits a packet of arbitrary
outbound distance. We denote by R; the event that station ¢’s transmitter is
engaged as a repeater, and let us designate by Rig;; the event that station i ® j
sources packets that must be repeated by station ’s transmitter; let Z;q;; be
the event that station ¢ & j sources packets that are independent of station ¢’s
transmitter (i.e., are not repeated by station ¢). Traffic sourced by station i @ j
(event Tig;) can be divided into traffic requiring the use of station i as a
repeater (event R;q;;) and traffic independent of station i (event Zg;;).
Therefore, Tig; = Rigji U Lig;i- In addition, traffic that uses transmitter Tz;q;
can be divided into two disjoint sets: traffic repeated by station i & j (event

Rigj = iv:—; Rigjor,ia;), and traffic originating at station i @ j (event Tg;).
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3.3 Simulations of the Performance of PLAYTHROUGH Under Weibull
Connection Interarrivals and Geometric Message Lengths

In this section, we present the simulation results for PLAYTHROUGH rings
using the assumptions stated below. The purpose of these simulations is to gain
insight into the performance of PLAYTHROUGH rings under self-similar
connection interarrivals, to later explain them, and to validate analytical results.
The queueing discipline assumed is First-in, First-out (FIFO). In order to gain
understanding of how the PLAYTHROUGH ring performs under Weibull
interarrivals and geometric message lengths, an earlier C++ simulation model
for PLAYTHROUGH [Hen98] was modified. Sample means and moments for
waiting time, message service time, message transmission time, and other
parameters were collected on a simulated sample of 1,000,000 messages

transferred on the ring for each nominal arrival rate applied to the ring.
3.3.1 Traffic Characteristics

Messages of each class C; ;o are assumed to arrive at station i’s queue according
to a Weibull process with scale parameter a;;q; and shape parameter c; ;q;. In
addition, the arrival processes for different message classes are assumed to be
independent. The probability distribution function of message interarrival times
for messages of class C; ;q; is given by:

(t )iiej

F(t)=1—¢ ‘Fie) " (3.3)

The arrival rate for messages of class C;;q; is the inverse of the mean
interarrival time for messages of class C;;q;, which is the mean of the message

interarrival time distribution and is given by:
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1
ai,i@jf(l + L )

Cii®j

(3.4)

Aii@j =

The aggregate message arrival rate to station i’s queue is denoted \; and
comprises all the N — 1 classes of traffic {C;;q1,. .., Cigv—1)} that arrive at
station 7. We show that the confluence of independent Weibull arrival processes
results in a Weibull process.

Let X, X5 - - X be K independent Weibull distributed interarrival times
r.v.’s with the same scale parameter ay and the same shape parameter c¢y. The
aggregation of the K independent random variables results in the random
variable Y = min(Xy, Xy - - - Xi), where min designates the minimum among

the K random variables. We have:

PlY >yl = P[X;>y--- X, >y]

= P[X; >y - P[X) >y

— @O )
= o HG@H (3.5)
As a result, we have:
PlY <y|=1-e ") (3.6)

Therefore, the aggregation of K independent Weibull distributed interarrival

time streams with scale parameter aq and shape parameter cq results in a

ag

= and

Weibull distributed interarrival time stream with new scale parameter -

shape parameter cy.
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Because we assume uniform and symmetric traffic (UST), we let:

Qije; = G, and (3.7)

Ci,i@j = C, (38)

for all i,j € {0,..., N — 1}

Hence, the arrival rate of the aggregate stream sourced by station 7 is given

by:
)\.:NZ:I ..@.:75]\[_1 (3.9)
(] : 1,10] a,F(l + l)
J=1 ¢
and the overall arrival rate on the ring is given by:
N-1
vVN —1vN
A=Y N=Ny= YN —1VN (3.10)

al'(1+1)

Il
)

i
Each message of class C; ;q; comprises a constant-size header of discrete
length A > 0 and a variable-size payload of length M, ;q;, a discrete random
variable satisfying M, o; > 1. M, ;e; is assumed to be geometrically distributed

with parameter 3;,qs; and probability density function
P’f’ [Mi,ieaj = k] = (]_ — Bi’i@j)kilﬁi,i@j; k = ]_, 2,3, ‘e (311)

We assume uniform symmetric traffic (UST), which means that each station

transmits an equal amount of traffic to every other station, and all message

A

lengths are identically distributed. Under these circumstance, \; = ok

A.
Aiios = gy and Biie; = B

3.3.2 Simulations and Comparison With Prior Assumptions

Plots in this section show of the average waiting time of messages in the
PLAYTHROUGH ring under Weibull interarrival times and geometric message
lengths. The average waiting time of messages in the PLAYTHROUGH ring
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under exponential interarrival times and geometric message lengths is also
included for comparison purposes.

Two sets of plots are presented. The first set of plots includes
Figures 3.4-3.18, in which the value of the shape parameter of the Weibull
interarrival times distribution is ¢ = 0.6. The second set of plots includes
Figures 3.19-3.32, in which the value of the shape parameter of the Weibull
interarrival times distribution is ¢ = 0.4.

For each data point shown on the plots, a Weibull distribution with scale
parameter a and shape parameter c is applied to the ring, resulting in an overall

ring arrival rate A given by:

1
A= ———~ (3.12)
1
al' (1+1)
The arrival rate \; of messages arriving at station 7 is given by \; = c—\;\ﬁ and
the arrival rate for messages of class €, ig; is given by A;ig; = \C/% Message

lengths for each data point are geometrically and identically distributed with
average common mean length equal to E [M].

The average waiting time F [W] is plotted versus the measured offered load
AE [M], which is the result of the measured arrival rate A times the measured
average message length E'[M]. The measured arrival rate A is the mean number

of messages that arrive to the ring per character time.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.4: Mean message waiting time E [WW] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 3 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.4 shows the simulated average wating time on an N = 3-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.265.
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Figure 3.5: Mean message waiting time F [WW] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 3 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.5 shows the simulated average wating time on an N = 3-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.250.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.6: Mean message waiting time E [WW] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 3 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 100 characters.

Figure 3.6 shows the simulated average wating time on an N = 3-station
ring, with 100 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.104.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.7: Mean message waiting time F [WW] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 10 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.7 shows the simulated average wating time on an N = 10-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.354.
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Mean Waiting Time vs Offered Load
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Figure 3.8: Mean message waiting time E [WW] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 10 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.8 shows the simulated average wating time on an N = 10-station
ring, with 1000 character mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.325.
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Figure 3.9: Mean message waiting time E [WW] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 10 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 100 characters.

Figure 3.9 shows the simulated average wating time on an N = 10-station
ring, with 100 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both case is reached at AE [M] = 1.064.
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Figure 3.10: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 20 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.10 shows the simulated average wating time on an N = 20-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.410.
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Figure 3.11: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 20 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.11 shows the simulated average wating time on an N = 20-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both case is reached at AE [M] = 1.360.
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Simulations of Mean Waiting Time vs Offered Load

9
20-station playthrough ring

81 ¢=.6; E[M]=100; max. num. of packets: 16 b
.. Exponential interarrivals and geometric

m message lengths N
*: Weibull interarrivals and geometric *

6 message lengths B

E[W] in (log10 scale)
N
T
|

0 0.5 1 15
Load lambdaE[M]

Figure 3.12: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 20 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 100 characters.

Figure 3.12 shows the simulated average wating time on an N = 20-station
ring, with 100 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 0.96.
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Figure 3.13: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 30 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 10000 characters.

Figure 3.13 shows the simulated average wating time on an N = 30-station
ring, with 10000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.44.
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Figure 3.14: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 30 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.14 shows the simulated average wating time on an N = 30-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.43.

93



Simulations of Mean Waiting Time vs Offered Load

9 T T
30-station playthrough ring
81 c=.6; E[M]=1000; max. num. of packets: 16 5 I
.. Exponential interarrivals and geometric
m message lengths * N
*: Weibull interarrivals and geometric
6 message lengths * s
T gL * i
3 x * *.
ion 4r % * * * . .
\E * * *.*. .0
S 3f x ok FXT T .
oL % .%. |
¥
1 - -
0 - -
_1 1 1
0 0.5 1 15

Load lambdaE[M]

Figure 3.15: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 30 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.15 shows the simulated average wating time on an N = 30-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.36.
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Figure 3.16: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 50 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 10000 characters.

Figure 3.16 shows the simulated average wating time on an /N = 50 station
ring with 10000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.460.
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Figure 3.17: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 50 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.17 shows the simulated average wating time on an N = 50 station
ring with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.456.
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Figure 3.18: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.6 and exponential interarrival
times. N = 50 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.18 shows the simulated average wating time on an /N = 50 station
ring with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is higher than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.352.
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The greater the number of stations, the more time is required to obtain
simulation results because of the fact that the number of events to be simulated
is increased. For practical reasons we did not simulate PLAYTHROUGH ring
performance for N > 50. In addition, we believe simulating PLAYTHROUGH
ring for 3 < N < 50 gives us a wide enough range of stations to be able to
determine trends. For N = 10, and N = 20, we used the same average message
lengths as were used for N = 3, that is 100, 1000, and 5000 characters. However,
100 character is in fact a small average of message length for an N = 20-stations
PLAYTHROUGH ring. Indeed, for N = 20, and E [M] = 100, the number of
control frame round trips needed to transfer an average-size message would be
approximately % ~ 1.7. This would render PLAYTHROUGH ring ineffecient
for average transfers and result in a waste of bandwidth, given that at least two
overhead round trips are required to transfer the payload on PLAYTHROUGH
ring. We nonetheless simulate the performance of PLAYTHROUGH ring for
N =20, and E'[M] =100 to be able to compare it with the performance of
PLAYTHROUGH ring for N = 3, E[M] =100 and N =10, E [M] =100 on a
consistent basis. For N = 30 and N = 50, we use F [M| = 1000, E [M] = 5000,
and E [M] = 10000. These are adequate average message lengths for this
number of stations. For example, an average message length of 1000 characters
on a 30-station PLAYTHROUGH ring results in an average number of control
frame round trips approximately equal to % ~ 11.1. An average message
length of 1000 characters on a 50-station PLAYTHROUGH ring results in an
average number of control frame round trips approximately equal to % ~ 6.7.

From Figures 3.6-3.18 we can make several observations. First,the average

message waiting time on PLAYTHROUGH ring under Weibull interarrival

times and geometrically distributed message lengths appears to always be

o8



greater than average message waiting time on PLAYTHROUGH ring under
exponential interarrival times and geometrically distributed message lengths.

Second, waiting times on PLAYTHROUGH ring saturate at approximately
the same offered load under the assumptions of either Weibull interarrival times
or exponential interarrival times, both with geometrically distributed message
lengths.

We now consider the effect of the shape parameter on average waiting time
under the assumption of Weibull interarrival times. In Figures 3.6-3.18, the
Weibull distribution shape parameter was chosen to be 0.6. In

Figures 3.21-3.32, we choose ¢ = 0.4
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Figure 3.19: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 3 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.19 shows the simulated average wating time on an N = 3-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.265.
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Figure 3.20: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 3 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.20 shows the simulated average wating time on an N = 3-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.25.
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Figure 3.21: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 3 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 100 characters.

Figure 3.21 shows the simulated average wating time on an N = 3-station
ring, with 100 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached at AE [M] = 1.104.
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Figure 3.22: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 10 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.22 shows the simulated average wating time on an N = 10-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.35.
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Figure 3.23: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 10 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.23 shows the simulated average wating time on an N = 10-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.32.
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Figure 3.24: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 20 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.24 shows the simulated average wating time on an N = 20-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 1.40.
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Figure 3.25: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 20 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.25 shows the simulated average wating time on an N = 20-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.36.
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Figure 3.26: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 20 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 100 characters.

Figure 3.26 shows the simulated average wating time on an N = 20-station
ring, with 100 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at AE [M] = 0.96.
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Figure 3.27: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 30 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 10000 characters.

Figure 3.27 shows the simulated average wating time on an N = 30-station
ring, with 10000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.44.
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Figure 3.28: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 30 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.28 shows the simulated average wating time on an N = 30-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.43.
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Figure 3.29: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 30 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.29 shows the simulated average wating time on an N = 30-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached at AE [M] = 1.36.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.30: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 50 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 10000 characters.

Figure 3.30 shows the simulated average wating time on an N = 50-station
ring, with 10000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.46.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.31: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 50 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 5000 characters.

Figure 3.31 shows the simulated average wating time on an N = 50-station
ring, with 5000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.45.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.32: Mean message waiting time E [W] vs. offered load AE [M] for
Weibull interarrival times with parameter ¢ = 0.4 and exponential interarrival
times. N = 50 station, simplex PLAYTHROUGH ring, uniform and symmetric
traffic (UST), and geometrically distributed message lengths with mean

E [M] = 1000 characters.

Figure 3.32 shows the simulated average wating time on an N = 50-station
ring, with 1000 characters mean message lengths. The average waiting time for
PLAYTHROUGH under Weibull message interarrival times and geometrically
distributed message lengths is greater than the average waiting time under

exponential message interarrival times and geometrically distributed message

lengths. Saturation in both cases is reached approximately at A\E [M] = 1.35.
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By inspecting plots from Figures 3.4-3.18 and those from Figures 3.19-3.32
we can make the following observations.

Average waiting times in Figures 3.19-3.32 are greater than corresponding
waiting times in Figures 3.4-3.18. The lower value of the shape parameter
¢ = 0.4 used in Figures 3.4-3.18 has the effect of worsening the performance of
PLAYTHROUGH ring than the shape parameter of ¢ = 0.6 used in
Figures 3.4-3.18. A lower value of the shape parameter ¢ results in increased
variability of message interarrival times. The plots therefore suggest that
increased variability of message interarrival times worsens the performance of
PLAYTHROUGH Ring.

The saturation point of PLAYTHROUGH Ring under Weibull message
interarrival times is the same as the saturation point of PLAYTHROUGH Ring
under exponential message interarrival times.

3.4 Simulations of the Performance of PLAYTHROUGH Under Exponential
Connection Interravals and Weibull Message Lengths

In this section, simulations of the performance of PLAYTHROUGH ring under
exponential message interarrival times and Weibull message lengths are
presented. We assume that messages are served by PLAYTHROUGH ring with
a FIFO queueing discipline. To be able to simulate the performance of
PLAYTHROUGH ring under exponential message interarrival times and
Weibull message lengths, an earlier simulation model written by Henry [Hen98]
was modified. Sample means and moments for waiting times and other
performance metrics were collected on a simulated sample of one million
messages transferred on the ring for each nominal arrival rate applied to the
ring.

For each measured parameter Y, let n denote the number of samples, E[Y]

74



denote the sample mean, and SD[Y| denote the sample standard deviation.
Approximate 95% confidence intervals were calculated (and are plotted in
Chapter 4) as

E[Y]+1.96(SD[Y]/v/n) [KobT78], (3.13)

which form the upper (+) and lower (-) confidence limits, respectively. In our

simulations, n=1,000,000.
3.4.1 Traffic Characteristics

Messages of each class C; ;o; are assumed to arrive at station :’s queue according
to a Poisson arrival process with rate \; ;o; arrivals per character time. The
arrival processes of different message classes are assumed to be independent.
Hence, the probability p;;a;(k,t) that k£ new messages of outbound distance j
arrive at station ¢’s queue during a time interval of duration ¢ character times is

given by

/\“‘ T k L
pz,z@](kat) — %6_/\1,1@]? (314)

Let A\; be the aggregate message arrival rate to station ¢’s queue. The aggregate
message arrival process to station ¢’s queue comprises the sum of all the N — 1
independent classes of traffic {C; g1, ..., Ciev_1)} Which arrive at station 4.
Since the N — 1 different Poisson arrival processes are independent, the
aggregation of these arrivals is a Poisson arrival stream [Kle75] with rate equal

to the aggregate arrival rate \;.
)\i = )\i,ieaj- (315)

Let p;(k,t) be the probability that £ new messages of any outbound distance

arrive at station #’s queue during a time interval of duration ¢ character times.
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We have:

()\Zt)k —)\it'

The aggregate arrival rate to the entire ring, denoted A, is the sum of the arrival

rates for each of the N stations.
A= Y= A (3.17)

The fraction f;,q; of messages of outbound distance j sourced by station ¢ is

given by:

Aijio
fijoj = )’\_@J- (3.18)

Each message of class C; ;g; is made up of a constant-size header of discrete
length A > 0 and a variable-size payload of length M, ;q;, a 7.v. which satisfies
M;;e; > 1. M; e, is assumed to be Weibull distibuted with parameters a; ;q;

and c; ;. We have:

_( T )Ci,i@j

Pr [Mm'@j S .’E] = 1—¢e %0 (319)

We assume uniform and symmetric traffic (UST), which means that each
station transmits an equal amount of traffic to every other station, and all
message lengths are identically distributed. Under these circumstance, \; = %,
Nijes = T, Giieg = G Cijaj = C.

3.4.2 Simulations and Comparison With Prior Assumptions

Plots in this section show of the average waiting time of messages in the
PLAYTHROUGH ring under the assumption of exponential interarrival times
and Weibull message lengths. The average waiting time of messages in the
PLAYTHROUGH ring under the assumption of exponential interarrival times

and geometric message lengths is also included for comparison purposes.
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Two sets of plots are presented. The first set of plots includes
Figures 3.33-3.47, in which the value of the shape parameter of the Weibull
message lengths distribution is ¢ = 0.6. The second set of plots includes
Figures 3.48-3.62, in which the value of the shape parameter of the Weibull
message lengths distribution is ¢ = 0.4.

For each data point shown on the plots, an exponential interarrival times
distribution and a Weibull message length distribution with scale parameter a
and shape parameter c are applied to the ring, resulting in an overall ring

arrival rate A and an average message length E [M] given by:

1
E[M]= ey (3.20)

The arrival rate )\; of messages arriving at station 7 is given by \; = % and
the arrival rate for messages of class €, ;g; is given by \;;q; = %

The average measured waiting time E [W] is plotted versus the measured
offered load AE [M], which is the result of the measured arrival rate A times the

measured average message length F [M]. The measured arrival rate \ is the

number of messages that arrive to the ring per character time.
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.33: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.33 shows the simulated average waiting time on an N = 3-station
ring, with 5000 characters mean message lengths. In Figure 3.33, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.226) than it does

under geometrically distributed message lengths (at 1.265).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.34: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.34 shows the simulated average wating time on an N = 3-station
ring, with 1000 characters mean message lengths. In Figure 3.34, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.212) than it does

under geometrically distributed message lengths (1.250).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.35: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 100 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.35 shows the simulated average wating time on an N = 3-station
ring, with 100 characters mean message lengths. In Figure 3.35, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 60% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.066) than it does

under geometrically distributed message lengths (1.104).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.36: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.36 shows the simulated average wating time on an N = 10-station
ring, with 5000 characters mean message lengths. In Figure 3.36, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 125% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.286) than it does

under geometrically distributed message lengths (at 1.35).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.37: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.37 shows the simulated average wating time on an N = 10-station
ring, with 1000 characters mean message lengths. In Figure 3.37, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.25) than it does under

geometrically distributed message lengths (at 1.32).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.38: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 100 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.38 shows the simulated average wating time on an N = 10-station
ring, with 100 characters mean message lengths. In Figure 3.38, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 80% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.008) than it does

under geometrically distributed message lengths (at 1.0646).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.39: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.39 shows the simulated average wating time on an N = 20-station
ring, with 5000 characters mean message lengths. In Figure 3.39, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 150% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.345) than it does

under geometrically distributed message lengths (at 1.40).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.40: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.40 shows the simulated average wating time on an N = 20-station
ring, with 1000 characters mean message lengths. In Figure 3.40, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.30) than it does under

geometrically distributed message lengths (at 1.35).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.41: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 100 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.41 shows the simulated average wating time on an N = 20-station
ring, with 100 characters mean message lengths. In Figure 3.41, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 60% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 0.911) than it does

under geometrically distributed message lengths (at 0.966).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.42: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 10000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.42 shows the simulated average wating time on an N = 30-station
ring, with 10000 characters mean message lengths. In Figure 3.42, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.38) than it does under

geometrically distributed message lengths (at 1.44).

87



Simulations of Mean Waiting Time vs Offered Load
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Figure 3.43: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.43 shows the simulated average wating time on an N = 30-station
ring, with 5000 characters mean message lengths. In Figure 3.43, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.37) than it does under

geometrically distributed message lengths (at 1.43).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.44: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.44 shows the simulated average wating time on an N = 30-station
ring, with 1000 characters mean message lengths. In Figure 3.44, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 135% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.31) than it does under

geometrically distributed message lengths (at 1.36).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.45: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 10000 characters, N = 50 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.45 shows the simulated average wating time on an N = 50-station
ring, with 10000 characters mean message lengths. In Figure 3.45, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 130% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.41) than it does under

geometrically distributed message lengths (at 1.46).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.46: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 50 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.46 shows the simulated average wating time on an N = 50-station
ring, with 5000 characters mean message lengths. In Figure 3.46, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 150% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.40) than it does under

geometrically distributed message lengths (at 1.45).
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Simulations of Mean Waiting Time vs Offered Load
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Figure 3.47: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 50 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.47 shows the simulated average wating time on an N = 50-station
ring, with 1000 characters mean message lengths. In Figure 3.46, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 80% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.302) than it does
under geometrically distributed message lengths (at 1.35).

From Figures Figure 3.33-Figure 3.47 we can make several observations.
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First,the average message waiting times on PLAYTHROUGH ring under
exponentially distributed interarrival times and Weibull distributed message
lengths are generally greater than the average message waiting times on
PLAYTHROUGH ring under exponentially distributed interarrival times and
geometrically distributed message lengths.

Second, PLAYTHROUGH ring generally saturates earlier under
exponentially distributed interarrival times and Weibull distributed message
lengths than it does under exponentially distributed interarrival times and
geometrically distributed message lengths

We now consider the effect of a smaller shape parameter ¢ on waiting times
in PLAYTHROUGH ring under the assumption of exponentially distributed
message interarrival times and Weibull distributed message lengths. In
Figure 3.33-Figure 3.47, the shape parameter of the Weibull distribution was

chosen to be ¢ = 0.6. In Figure 3.48-Figure 3.62, it is chosen to be ¢ = 0.4.
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Mean Waiting Time vs Offered Load
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Figure 3.48: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.48 shows the simulated average wating time on an N = 3-station
ring, with 5000 characters mean message lengths. In Figure 3.48, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 530% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.196) than it does

under geometrically distributed message lengths (at 1.265).
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Figure 3.49: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.49 shows the simulated average wating time on an N = 3-station
ring, with 1000 characters mean message lengths. In Figure 3.49, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 530% at medium range). Furthermore, PLAYTHROUGH ring saturates
earlier under a Weibull message length distribution (at 1.181) than it does

under geometrically distributed message lengths (1.250).
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Figure 3.50: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 100 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.50 shows the simulated average wating time on an N = 3-station
ring, with 100 characters mean message lengths. In Figure 3.50, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 400% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.03) than it does under

geometrically distributed message lengths (1.104).

96



Mean Waiting Time vs Offered Load
9 T T

10-station playthrough ring

¥ K Rolops

~8r * simulated result for exp. interarr. and Weib. msg. length —
[<5]
©
3 c=.4; E[M]=5000
o
‘EO»' 7 . simulated result for exp. interarr. and geom. msg. length * 1
$ E[M]=5000
= *
': 6 * N
3]
= *
e **
© *
F] *
O5F x * * 1
*
£ O
— * ¥ *
E *x * * * *
(1] 5 ¥ * ¥ *
o 4+ * _
£ 5 ¥ *x ¥
'_
o * *
£ *
® 3 * i
=
§ *
s [
24 |

*

*¥*

t

1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14

Load lambdaE[M]

Figure 3.51: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.51 shows the simulated average wating time on an N = 10-station
ring, with 5000 characters mean message lengths. In Figure 3.51, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 400% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.20) than it does under

geometrically distributed message lengths (at 1.35).
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9 T T
10-station playthrough ring
~8r * simulated result for exp. interarr. and Weib. msg. length —
[<5]
2 .
3 c=.4; E[M]=1000 .
3 *
=2 7 . simulated result for exp. interarr. and geom. msg. length * —
$ E[M]=1000
=
6l _
o} *
5]
@
@ *
<
O5fF « ¥ .
£ *
= o ¥ ¥
2 w ¥ ¥
L % * *x ¥
v 4 * B
+ * ¥ * ¥
o * %
*

£ % * ¥
= % ¥
© 3 * —
= x ¥
§ *
s | * .

2r . N

pk
1£ 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14

Load lambdaE[M]

Figure 3.52: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.52 shows the simulated average wating time on an N = 10-station
ring, with 1000 characters mean message lengths. In Figure 3.52, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 300% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.18) than it does under

geometrically distributed message lengths (at 1.32).
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Figure 3.53: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 100 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.53 shows the simulated average wating time on an N = 10-station
ring, with 100 characters mean message lengths. In Figure 3.53, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 400% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 0.94) than it does under

geometrically distributed message lengths (at 1.0646).
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Figure 3.54: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.54 shows the simulated average wating time on an N = 20-station
ring, with 5000 characters mean message lengths. In Figure 3.54, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 200% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.26) than it does under

geometrically distributed message lengths (at 1.40).
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Figure 3.55: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.55 shows the simulated average wating time on an N = 20-station
ring, with 1000 characters mean message lengths. In Figure 3.55, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 150% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.21) than it does under

geometrically distributed message lengths (at 1.35).
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Figure 3.56: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E [M] = 100 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.56 shows the simulated average wating time on an N = 20-station
ring, with 100 characters mean message lengths. In Figure 3.56, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 150% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 0.85) than it does under

geometrically distributed message lengths (at 0.966).
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Figure 3.57: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 10000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.57 shows the simulated average wating time on an N = 30-station
ring, with 10000 characters mean message lengths. In Figure 3.57, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 130% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.29) than it does under

geometrically distributed message lengths (at 1.44).

103



Mean Waiting Time vs Offered Load

9 T T
5[ % i
g . _ *
3 30-station playthrough ring
o
‘EO»' 7 * simulated result for exp. interarr. and Weib. msg. length —
2 ¢=.4; E[M]=5000 "
=
F6r . simulated result for exp. interarr. and geom. msg. length * B
2 *
& E[M]=5000 o *
2 ¥ *
O5F % * * m
£ g **

* ¥

E * ¥ * * *
L * % * *
v 4l wk¥¥ L -
g *** N
2 e
2 &
‘S 3 % i
=
c % .
8 -
= k-

2£ .

1 L !

0 0.5 1 15

Load lambdaE[M]

Figure 3.58: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.58 shows the simulated average wating time on an N = 30-station
ring, with 10000 characters mean message lengths. In Figure 3.58, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 200% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.29) than it does under

geometrically distributed message lengths (at 1.44).
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Figure 3.59: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.59 shows the simulated average wating time on an N = 30-station
ring, with 1000 characters mean message lengths. In Figure 3.59, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 200% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.23) than it does under

geometrically distributed message lengths (at 1.36).
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Figure 3.60: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 10000 characters, N = 50 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.60 shows the simulated average wating time on an N = 30-station
ring, with 10000 characters mean message lengths. In Figure 3.60, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 100% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.33) than it does under

geometrically distributed message lengths (at 1.44).
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Figure 3.61: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 50 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.61 shows the simulated average wating time on an N = 50-station
ring, with 5000 characters mean message lengths. In Figure 3.61, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 150% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.32) than it does under

geometrically distributed message lengths (at 1.45).
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Figure 3.62: Mean message waiting time E [W] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 50 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

Figure 3.62 shows the simulated average wating time on an N = 50-station
ring, with 1000 characters mean message lengths. In Figure 3.62, the average
waiting times under Weibull distributed message lengths are greater than the
average waiting times under geometrically distributed message lengths (by
about 80% at medium range). Furthermore, PLAYTHROUGH ring saturates

earlier under a Weibull message length distribution (at 1.22) than it does under

geometrically distributed message lengths (at 1.35).
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From Figures 3.33-3.47 and Figures 3.48-3.62 we can make the following
observations.

Average waiting times in Figures 3.48-3.62 are greater than corresponding
average waiting times in Figures 3.33-3.47. The smaller value of the shape
parameter ¢ = 0.4 used in Figures 3.48-3.62 has the effect of worsening the
performance of PLAYTHROUGH ring than when the shape parameter is
s = 0.6 as used in Figures 3.33-3.47. A lower value of the shape parameter ¢
results in increased variability of message lengths. The plots suggest that
increased variability of message lengths worsens the performance of
PLAYTHROUGH Ring, using mean waiting times versus load as the
performance measure.

Under Weibull distributed message lengths, PLAYTHROUGH ring generally
saturates at a lesser value of average load than it does under geometrically

distributed message lengths.

3.5 Conclusions

In this section, simulation results for PLAYTHROUGH Ring under Weibull
message interarrival times, on the one hand, and under Weibull message
lengths, on the other hand, were presented. Simulation results for
PLAYTHROUGH Ring under Weibull interarrival times were presented for
values of the shape parameter of the Weibull interarrival times distribution
equal to 0.6 and 0.4. Those values correspond to values measured on actual
networks by Anja Feldmann [Fel00]. The simulation results reveal that the
average waiting time performance of PLAYTHROUGH ring under Weibull
message interarrival times is worse than the performance of PLAYTHROUGH

ring under the hitherto assumed exponential message arrival times. The
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simulation results also showed that the saturation point is approximately the
same for PLAYTHROUGH ring under exponential message interarrival times
and under Weibull message interarrival times.

Consistent with simulations of PLAYTHROUGH Ring under Weibull
interarrival times, shape parameters of values 0.6 and 0.4 were used to simulate
PLAYTHROUGH Ring under Weibull distributed message lengths. Simulation
results showed that mean average waiting times on PLAYTHROUGH Ring
under Weibull message lengths are generally greater than waiting times under
exponential message lengths. PLAYTHROUGH ring generally saturates at a
lesser value of average load under Weibull distributed message lengths than it
does under geometrically distributed message lengths.

Although simulations are a good tool to study PLAYTHROUGH Ring
under self-similar traffic, they require a long time to perform. Analytical models
would provide a much faster way to study and obtain the performance
parameters of PLAYTHROUGH Ring.

Obtaining an analytical model of PLAYTHROUGH Ring under Weibull
interarrival times appears to be an intractable problem because the Laplace of
the Weibull distribution does not have a closed form expression. Solutions have
been proposed for obtaining the Laplace transform of the Weibull
distribution [Fel96], [Fel98]. But those solutions are numerical and only
approximative.

Predicting mean waiting times for PLAYTHROUGH ring under the
assumptions of Weibull message lengths and Poisson arrivals appears to be
more amenable to an analytical solution. In the next chapter, we obtain an
analytical model for PLAYTHROUGH Ring under exponential interarrivals and

Weibull message lengths. Its predictions are in agreement with simulation

110



results over a wide range of number of stations and average message lengths.
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CHAPTER 4

ANALYTICAL MODELING OF THE PERFORMANCE OF
PLAYTHROUGH RINGS UNDER SELF-SIMILAR TRAFFIC

4.1 Minipacket Statistics

Let us consider an arbitrary message comprising M charaters and h header
characters, where M is a discrete positive random variable (r.v) and h is a fixed
discrete nonnegative constant. In order to transmit the M+h characters, an
integral number ng of minipackets of size m characters is required. Each round

trip conveys at most m = 7 — kg characters such that

ng = [Mnf: ’ﬂ | (4.1)

We assume h < m and we seek the probability mass function

Pring=%k] = Prlk—1<ng<Kk]
M+ h

= Pr[k—1< §k]

= Prim(k—1) < M+ h <mk]

= Prim(k—1)—h< M <mk—h]. (4.2)

In addition, we seek the moments of ng. In particular, the first three
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moments of ng are given by:
Elng]
Elng]

Elng]

i kPrng = k|, (4.3)
i k*Prng = k], (4.4)
io: k*Prng = k]. (4.5)

The cumulative distribution function of Weibull distributed messages of

length y is given by

F,(Y) = (4.6)
0, y<0
Thus,
M+ h
Pring =1] Pr [0< il gl}
m
Pri0 < M+ h<m)|
Pr[—h < M < m— hj
Pri0 <M <m—hj
(1—e (™), (4.7)
and
M+ h
Pring=k = Pr|(k—1) <" <}

m

= Pri(k—1)m—h <M < km— h

_ (1 _ e_(kma—h)c) - (1 _ e_((k—lc)l"YL—h)c)

(k—1)m

ze*( a

e e

e_( (k_lim_h)c _ 6_(kmafh)c

assuming that h << 7. (4.8)

We seek the probability generating function of ng in order to calculate its
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moments.

ng(z) = szPr[ngzk]

= szPr [ng = k| + zPrng = 1]

k=2
o0

%

The first moment of ng is given by

Elng] = ng'(1)

= YK +1)(e ) =3 k(e ) + (1 - e ),

K=1 k=2
ad K h
= 2 (&) 4 Z e 4 (1 — e )
K=1
nd K
~ 1+e @) 4 Z e (5, assuming that h << 7.
K=1

Let us prove that Y %_, e~ 5y converges.

Let:
Qg = € (K‘Tm)c,
then
,((K+1)m)c
K41 = € a
Let:
_ Or+41
ag '
We have
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sz(ef((kfal)m)c - ef(kTm)c) +2(1 - e (),
k=2

(4.9)

where K=k+1

(4.10)

(4.11)

(4.12)

(4.13)



(K+1)
— (=)

e (K+1)°7 a®
- [7] | (4.14)

Because the shape parameter c is greater than 0, the following inequality
holds

e_(K+1)C
<1. (4.15)

e K°
Thus we have r < 1and > %, e converges, according to the ratio test for
positive series [EG94a].

The infinite summation Y x_, e~ (52" is not practical for computations and

we would like to find an upper bound for it so that we can determine a worst

case for the number of minipackets. To that end, first we prove that

o X [o's)
Ze_(Tm)c < / e d, (4.16)
K=1 0

and

o] o] c—1,.c
/ e~ e < / c (m lx ) e~ dr. (4.17)
0 0 ac”

We begin by proving that Equation 4.16 is true. Let us consider the

partition P = [0,1),[1,2),[2,3),...,[n,n+ 1), ... of the interval [0,00) and the

xz

function f(z) = e~(%*)°. For every interval [K, K41) of the partition P, we

(K+1)m

< e &) for i € [K, K +1). Therefore, e=("a ) is the

(K+1)
have e~ & )°

minimum value of f(z) in [K, K + 1).
The lower Riemann sum of the function f(z) associated with the partition

P is defined in [EG94b] as: Lf(P) = >_.° myAy, where my is the minimum
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value of f(z) in [k, k + 1) and Ay, = (k+ 1) — k = 1. Thus the sum
P e=("a)° is the lower sum L;(P) of the function f(z) = e~(%a")° associated

with the partition P. Therefore, we have [EG94b]:

LyP) =3 e < / G dy (4.18)
K=1 0
Thus, we have proven that Equation 4.16 is true.

We now turn our attention to Equation 4.17 and prove its validity. We have:

f'e) c—1..c o} c—1,.c—1
0+ 0t

Let u(r) = 7, v(z) = 1 — e~ (%)°. We have: v/(z) = 1 and

v'(z) =c (mc_lxc_l) e~(“a")°. Using integration by parts, we have:

/0:0 e (%) e dy = /Oio u(@)v'(z)dz = [U(w)v(ﬁ)]é’i—/: u'(z)v(z)dx.
(4.20)

From Equation 4.19 and Equation 4.20 we have:

00 c—1,.c 0
/ c (m ° ) e Caldy = [z(1- e’(%)c)}zi - / (1—e G dg
0 0

aC—l

+ +
= [z]§% + [z ) L - [2le + /+ e dr
rm\c rm CO o rm \c
= — lim (ze” %) 4 lim (ze~ ) )+/ e~ da.
T—00 —0+ o+
(4.21)
We have:
lim ze (&)° = lim f;
T—00 T—00 e(T)C
T—00 Zn:O a -
= 0. (4.22)

Thus, Equation 4.21 becomes:

00 c—1,.c *
/ c (m ” > e~ dy = lim (ze~(5)°) +/ e dx. (4.23)
0 0

+ a1 z—0+
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We have lim,_,o+(ze~ (%)) > 0. Therefore,

/ e—(T)CdaES/ e () dr 4+ lim (ze” () (4.24)
0 0

+ + z—0+

and

o0 00 c—1,.c
/ e~ dr < / c (m 1:5 ) e d. (4.25)
o+ o+ ac”

Hence, we have proven that Equation 4.17 is true. As a result, we have,

S 00
K=1 0 a

_ al'(1 + %)
B m
_ EM]
om
< E[M]. (4.26)
So the following is true:
Elng] = 2@ + Z e ) 4 (1 — e ("))
K=1

H

< 2@ L EM]+ (1 —e (57

= 2O L al'(1+1/c)+ (1— e ("a7))

= Upperbound.. (4.27)

In Figure 4.1, Figure 4.2, and Figure 4.3, an approximation of E[ng], the

mean number of minipackets, evaluated using Equation 4.10 with K terms in

the summation Y %_; e~("a")° is plotted versus E[M] = al'(1 + 1/c), the mean

message length, for various values of K and for various numbers of stations.

Figure 4.1 reveals that the upper bound found in Equation 4.27 is not a tight

upper bound. Given that E[ng| converges, we seek a tighter bound for E[ng]|.
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Mean number of minipackets

11

10

mean number of minipackets vs. E[M]

E—
Upper bound — > Upper bound/6

K=10"

Figure 4.1: Mean number of minipackets vs. mean message length E[M] for
N = 3 station PLAYTHROUGH ring, uniform and symmetric traffic (UST),
and Weibull distributed message length.

The number of minipackets required to send a message of length E[M]

appears to always be bounded tightly by

EM]

SN -1 (4.28)

Intuitively, this can be explained by the fact that the control frame goes
through N — 1 buffers of length kr = 3 before GO returns to the source station.
[M]

We can show analytically that 35\]—71) is a tighter upper bound on the
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Mean number of minipackets

11

10

mean number of minipackets vs. E[M]

N=10, c=0.6

Upper bound/27

Upper bound

Figure 4.2: Mean number of minipackets vs. mean message length E[M] for
N =10 station PLAYTHROUGH ring, uniform and symmetric traffic (UST),
and Weibull distributed message length.

expression for E[ng] from Equation 4.10 than Upperbound. We must show to

that:
Elng] < 3 (?V'[A_ﬂ ] < Upperbound.
(4.29)
We have:
E[M]
v —1) < FIML (4.30)

119

11



Mean number of minipackets

mean number of minipackets vs. E[M]

11 T T T T T T T

10 N=20, c=0.6

Upper Bound Upper bound/57

K=10

1 | | | | | | |

3 4 5 6 7 8 9 10
E[M]

Figure 4.3: Mean number of minipackets vs. mean message length E[M] for
N = 20 station PLAYTHROUGH ring, uniform and symmetric traffic (UST),
and Weibull distributed message length.

Therefore,

E[M]
3(N—1)

< 2e~(@ L B[M] + (1 — e "2, (4.31)

The expression on the right side of Equation 4.31 is Upperbound. So we

have,
E[M]

V=1 < Upperbound. (4.32)
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We now prove that E[ng| < N ]1) We have:
Elng] = 2¢™@ + 3 () 4 (1 — = (*57), (4.33)
K=1
Since h < m, we have e~ ("5 > (B . Therefore,
Elng) < e™(&7 414 ) e 5, (4.34)

K=1

SN (Kmye >  _(em M] E[M]
1+ e < / Dyemte=(my gy = 1+ M _ . (4.
+)> e <1+ i :rc(a) e +t— +3N—2 (4.35)

Hence we have:

Elng] < 1+e @)+ 3]3]\,[—]\_4]2
Elng] < NZ27F (3J\; - 2_)62“73” + B[M] (4.36)
In the typical case where M >> m = 3N — 2, we have:
3N — 2+ (3N —2)e~ (%) + E[M] . ElM] | (4.37)
3N -2 3N —2
and
Elng] < ﬁf[M]B (4.38)

This upper bound would hold for any value of ¢ since the mean of ng
depends only on mean message length and on the data frame size m. Similarly,
we will calculate the second moment of the number of minipackets required to
send a message of size M and we will find an upper bound for that second
moment. The second moment of ng can be obtained from the probability

generating function of ng as follows:

Bln%] = ig"(1) + ' (1) (4.39)
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We have:

(1) = Do —k) [ (55— ()]
k=2
= Z [kQG ((k_al)m)c — k26_(kTm)C — ke_((k_al)m)c + ke_(kTm)c]
k=2
= S+ 1) () o3 ke () -3 (k4 1)e ()
K=1 k=2 K=1
+ Zke*(kTm)c, where K = k+1
k=2
= Z KQG_(Kaim) + Z 2Ke_(KT)C —+ Z 6_(Kaim)c
K=1 K=1 K=1
SR S 4 1B 4 3 pe ()
k=2 K=1 k=2
G S R () S e ()
K=1 k=2
= 20 (8) 423 ke (%) (4.40)
k=2
Thus,
Elng] = ng"(1) +76'(1)
— 2 (2) 4 QZke_(kTm)C +2e (@) 4 Z e () (1- e’(m;H)C)
k=2 K=1
= 46_(%)0 + QZke_(kTm)c + Z 6_(IiTm)c + (1 _ e_(m;H)C)_
k=2 K=1
(4.41)

In Figure 4.4, an approximation of the second moment of the number of

minipackets required to send Weibull distributed messages of mean length E[M]

and shape parameter ¢ = 0.6 on a 15-station PLAYTHROUGH
)" and Y€

a

using K terms in the summations 2.7, ke (

Equation 4.41. It appears to always be bounded tightly by

(sivn)
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ring is plotted

a

m

(4.42)



number of minipackets second moment

18

16

14

12

10

number of minipackets 2nd moment vs. E[M]

15-station playthrough ring ' I | |

c=0.6

upperbound=4*(M/(3(N-1)))?

fnipackets: K=1d

ment of # of minipackets: K=1¢

Figure 4.4: Second moment of minipackets vs. mean message length E[M] for
N =15 station PLAYTHROUGH ring, uniform and symmetric traffic (UST),
and Weibull distributed message length.

We give an analytical justification for the factor 4 that appears in the upper
bound formulation in the case where ¢ = 0.6. In addition, we give a generalized

formula for the upper bound on the second moment of the number of round

trips that applies for any value of ¢. The first and second moments of a Weibull
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distributed random variable X are given by:
1
E[X] = al'(1+ E)’ and

E[X? = a2F(1+%),

respectively.

We have

EM] = ol'(1+ %),

E[M?] = &’I'(1+5),

and

i = o[[2]

Thus,

Elng]
Elng]>? ~— (EMP

a’I(1+2)
m2

c1.21"(1—|—%)2
m?2

(1+32)

In the specific case where ¢ = 0.6 the expression

r(1+2)

evaluates to
(14 2) N
I'(1+%)?
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(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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Mess. length

Ratio

e E[n2 E[n3
Distribution E[Zl(f]]z E[E?&L
geometric 2 6

wetbull, ¢ =1 2

wetbull, ¢ = 0.6 | 4.0908 35.2322
wetbull, c=0.4 | 10.865 382.354

E[ng]
E[ng]t

Table 4.1: Ratio

and we have
A
Elngl? ~

Using a similar argument, we can obtain an upper bound on the third

moment of the number of minipackets, ng

Elngl  “w
E[ng]? ~— (EMP

ar(1+32)
m3

aT(141)3
m3

I'(1+2)

In the case where ¢ = 0.6 the expression

I(1+2)
L(1+1)3
evaluates to
r+3
(7i6) ~ 35.2322,
1+ 3)3
and we have
E[ng]
~ 35.2322.
Elngl®
Table 4.1 contains the ratio 2l

Elng]t

is considerably greater for Weibull distributed message lengths than for
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L1+ 13

for various values of the Weibull parameter c.

for + = 2,3. It is clear that the ratio

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

Elng]
Elng]*




geometrically distributed message lengths. For Weibull distributed message

lengths, the ratio 5[[:3]]1- grows quite rapidly as 7 increases. For example, for
_ Elngl _ Elng] _ . _ Blng] _
c=0.6, Blned — 506.106 and Fned = 10743.3; for ¢ = 0.4, Flnell = 29748 and
Emng] _
Fak = 4.21942¢ + 06.

4.2 Basic Transmission and Service Time

A message sourced by station ¢ and destined to station ¢ @ j requires ng; ig;
minipackets of size m to be transmitted to its destination. In the absence of
control message interruptions, the time the message spends in transmission is
denoted Ti,i@j and the time the message spends in service is denoted S’i,i@j. The
basic transmission time is defined as the amount of time from the time a start
message is inserted into the control message to initiate message transmission to
the time the last character of the message is transmitted. The basic service time
includes the transmission time plus the time for the STOP message to be
transmitted and for GO to return. Recalling that kp is the length of a control

message in character times (kp = 3), wehave :

ii®j = MNGie;T T kD (4.56)

v

Sije; = Tiiej+7+kp. (4.57)
The moments of the basic transmission time are given by:
E [ntlieaj] = E [(nGi,iEBjT + kD)n]

> (1) (n)k]

k=0

|
&

- Y\ n— n—
_ (k>7 kE [nGif@j] K. (4.58)
0

=

The moments of the basic service time are given by:
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E [‘§Zi®j] = F -(,fi,i@j +7+ kD)n}

= F [(nGi,WT + 7+ QkD)"]

- F Z(Z) (nGi,i@jT)"—k(m%D)k]

| k=0
_ ~ (n n—k n—k k
= (k)T E [nGin (1 + 2kp)". (4.59)

k=0

1%

The product A; ;g F [Ti,i@j} is the fraction of time the ring spends
transmitting messages sourced by station ¢ and destined to station ¢z & j. It is

denoted pr, ;. We write:

PT;50; = Nijojb [Ti,i@j} (4.60)

The total traffic intensity sourced by station 7 is denote given by:

pr; = ﬁTi,iij' (4'61)

The sum of all traffic intensities on the ring is denoted pr and is given by

=2
L

pro= 3 bn. (4.62)

i

Il
)

If we designate by ﬁ’%“ the total traffic intensity sourced by station i @ k

that is independent of station i, we have:

N—k
'blTieak,i = ZﬁTieBk,ieBkij; (4.63)

7j=1
If we designate by ﬁ%@ki the total traffic intensity sourced by station i & k

that uses station ¢ as a repeater, we have:
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'B%@k,i = lei(Bk - ﬁITi@k,i- (4.64)

4.3 Control Message Interruption Rate

In the absence of control message interruptions, the control frame circulates
around the ring with round trip duration 7. Each control message of size kp
adds kp character times to the duration of the control frame round trip time.
Because the transmission of every message generates two control messages, a
START and a STOP control message, the total delay of the control frame due
to the transmission of a message is 2kp character times.

Let us designate by v; ;e; the rate at which messages of class €, ;q; are
interrupted by control messages. We are interestered in investigating how the
the control message interruption rate is affected by the transmission of Weibull
distributed messages. Previous works done on control message interruption rate
assumed that message lengths were geometrically distributed or exponentially
distributed.

The simplest and earliest attempt to approximate the control message
interruption rate was done by Ghafir [Gha89]. According to Ghafir’s model, the

control message interruption rate is given by:
N—-1N—k

Viioj = ZZZ)\i@k,i@k@E- (4.65)

k=j £=1

Ghaffir’s model of control message interruption rate would be unaffected by
heavy-tailed distributed message lengths because the control message
interruption rate depends exclusively on arrival rate of messages whose path
does not overlap with the path of the message of class €, jg; in transmission.

Ghaffir's model was found to give a low approximation by Chai [Cha95],

who improved Ghaffir’'s model by including the quantity 1 — 2Akp in the

128



denominator. Chai’s model gave a better estimate of control message
interruption rate. Chai’s model would not be affected by heavy-tailed
distributed message lengths either, given that it depends only on the arrival
rate of messages whose path does not overlap with the path of the message of
class €; ;q; in transmission and on the aggregate arrival rate on the ring.

Henry [Hen98] improved on both previous models by using a conditional
argument, which increased the control message interruption rate. Henry’s
derivation of his model for control frame round trip time was based on the
following reasoning. The transmission of a message of class €, ;o; is considered.
Messages that interrupt the transmission of the message of class C; ;q; are
messages whose transmission does not overlap with the transmission of a
message of class C; jq;. Such messages are of class Cigk igrae for j <k < N -1
and 1 < /¢ < N — k. The transmission of each of those messages generates two
control messages, a START control message and a STOP control message, that
delay the tranmission of the message of class €, ;q;. Let us designate by 7, ;q;
the event that station ¢ transmits a message to station ¢ ® j. If events A and B
are mutually independent, the following is true.

Pr[A]

Pr[A|B] T=PriB]

(4.66)

We designate by Cigp igree for j <k <N —-1and 1 </ < N —k a class of
messages whose transmission does not overlap with the transmission of the
messages of class C; g, and by Cigg imgen @ class of messages that overlap the
transmission of the message of class €, ;q;. Because event 7, o, implies event

7-i@g,i@g@h, the following approximation is made.

Pr [E@k,i@k@e | 72,1‘697’] ~ Pr [ﬁ@k,i@k@e | T'ieag,i@g@h]
Pr [Tiok okt
1 — Pr(Tiggioqon]

(4.67)
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If we designate by F'(i, j, k) the total traffic intensity of class Ciggimgan that

overlaps with the transmission of the message of class C;;q;, we have:

Pr [Teak zealceae]

Pr[Tigkoree | Tiios) = 1= F(i.j, k) (4.68)
So,
N-1N—k
2)‘z®k z@k@z .69
iy = Y3 e (169
k=j (=1 ‘7’
The total traffic intensity of class C;gq ipgen 1S given by:
j—1
P
,L j’ Tigg,iok + Z pTz@g i Z Tigg,idk" (470)
9=1 g=k+2
Therefore,
N-1N-k
2Niokiokae
Viiej

1 v YR -
k=j =1 1 (Z] 1 pclewze)g iDk + Z =7 pTl@g i Zg k+2 Tzﬂ)g,iﬂ}k)
(4.71)

It is clear from the above derivation and the resulting equation for control
message interruption rate that the control message interruption rate obtained

by Henry is not affected by the heavy-tailed distributed message lengths.

4.4 Control Frame Round Trip Time

As stated earlier, the insertion of control messages adds to the duration of the
control frame round trip time. In the absence of control message interruptions,
the duration of the control frame round trip time is simply 7. Each control
message of size kp characters adds kp character times to the duration of the
control frame round trip time. Let Sgo designate the duration of the control
frame round trip time for a control frame containing n control messages. S¢go is
given by:

SGO =T+ 7’]]{31), (472)
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where kp is the duration of a control message. The first three moments of the

control frame round trip time were found by Henry [Hen98| and they are given

by:
-
= 4.

E[S¢o] . (4.73)

+ Tvkp + vk?
E[S2 ] = T T D 4.74
[SGO] <1—1/kp) ( 1— 2%k )’ (4.74)

and
3v2k3, + 3112 k?
B[Sh] = B [s50] (2A2t 3700
vkp(k% + 37kp + 37%) 73

+ F [SG()] ( 11— V?’k% + 1_ l/?’k% . (475)

These three moments were derived assuming exponentially distributed
message interarrival times and are independent of the message lengths

distribution.

4.5 Message Transmission and Service Time

In the presence of control message interruptions, transmission and service times
are increased. The transmission time in the presence of control message
interruptions, denoted 7; ;g;, is found by replacing 7, the empty control frame
round trip time duration, by Sgo in the expression for basic transmission time.
The service time, denoted S; g, is equal to the transmission time plus the time

for the STOP message to be transmitted and for GO to return. We have:
Tiiej = NGii0;560i0; T kb (4.76)
and

Sijoj = Tiiej +7+ kp. (4.77)
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Messages sourced by station ¢ and destined to station 7 @ j arrive at station
©’s queue with arrival rate \;;; messages per character time and have an
average transmission time equal to E [T} ;4,;] character times. The product
Misioi B [T;ie;] is then the fraction of time the ring spends transmitting messages
of class € ;e;, and is known as transmission traffic intensity, denoted pr, .., and
is given by:

PT;0; = /\i,iGBJ'E [Tz‘,i@j] : (4'78)

The total transmission traffic sourced by station 7 is denoted p7, and is given by:

N-1 N-1
PT; = Z PTii0; = Z )‘i,i@jE [Ti,i@j]' (479)
7j=1 7j=1

The fraction of time the ring spends serving messages of class € g, known

as traffic intensity, is denoted p;;e; and is given by:
Piioj = MijioiE [Siiej] - (4.80)
The total traffic intensity p; sourced by station ¢ is given by:
N-1 N-1
pi= Y Piiei = Y MiasE [Siieg] (4.81)
7j=1 7j=1
Finally, the total traffic intensity p on the ring is:
N—1
P = Z Pi- (4.82)
=0
4.6 Blocking Duration

A message of class C; ;; at the head of the line (HOL) of station ¢’s queue and
destined to station i & j will experience blocking if there is another message
that is using the path ¢+ — ¢ @ j. Let us suppose that the message using the

path ¢ — 1 ® j is of class Ciggiggen. We denote by BL; ;q; the duration of
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blocking experienced by the message sourced by station ¢ of outbound distance
J- The use of the path ¢ — 7 @ j while the message of class C;;q; is at the head
of the line of station 7’s queue constitutes a blocking event whose duration is
the residual time of service of the message of class Ciggi@¢en in transmission.
We denote by Rgigg,imgen the residual service time of a message of class
Ciggimgon- Messages that block the message of class C;;q; are messages whose
transmission overlaps the path ¢ — 7 @ 7. Such messages can be divided into
four regions as shown in Figure 4.5: Messages sourced by a station in the path
0 — 7 © 1 that use station ¢ as a repeater (region (1)), messages whose source
and destination are in the path ¢ — 7 @ j (region (2)), messages whose source is
in the path i — ¢ @ j and that use station i @ j as a repeater (region (3)), and
finally messages whose source is in the path i 7 — N — 1 and that use station
i as a repeater (region (4)).

We recall that p;gg iagen denotes the traffic intensity of messages of class
Ciggimgan- It is the probability that a message of class Cigg ipgen is being

transmitted. Traffic in region (1) occurs with probability:

Neol Nel

pbl Z Z Pidg,i®gdh- (483)

g=N6&i h=Nog®l
Traffic in region (2) occurs with probability:

Jjol Nogdj

pbl _Z Z Pidg,idgdh- (4.84)

9= 1 h=1
Traffic in region (3) occurs with probability:

Jjel Nol

Pz(;?)—z Z Picdg,idgdh- (4.85)

9=1 h=Negajel
Traffic in region (4) occurs with probability:

Neoiol Nel

pbl Z Z Pidg,i®g®h- (486)

9=j h=Nog®l

133



Source and
Destination
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Region (1) Region (2)

Repeater
i
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i® ] Pj
Repeater

Source
Region (3) Region (4)

Figure 4.5: Regions of messages that overlap the path i1 — 7 & j.

The total traffic intensity pj; for messages that block the message of class

Gi,i@j 1S:

1 2 3 4
Piioj = pl()l) + pl(vl) + pl()l) + Pz(n)

Nol Nel jol Nogdj
= E E Piwg i@goh T E E Pisg,idgoh
joel Nol Noiol Nol
+ E E Pidg,i®gdh + E E , Piwg,idgdh-
g9=1 h=Nogdj®l 9=j h=Nog®l

The probability that a message of class Cigg imgen blocks the path ¢ — i ® j
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given that the path ¢ — 7 @ j is blocked is ’”fﬁ’iﬂ, The blocking duration of

b1%,5DJ

the message of class C;;g; is obtained by averaging over all possible blocking

events and we have:

Nol Nol o
_ 1Dg,iDgDh
BLi,iGBj - Z Z T ‘Rsz'eag,ieageah
g=NGi h=Noga1 Pbiiio]
jo©l Nogdj

Pidg,i®gh
+ E E —5—— Bsiegiogen
g=1 h=1 Phlisidj

jol1 Nol

Pidg,ivgdh
+ E E ——— Rsigg.ieqah

Pigiicg
g=1 h=Nogaje1 b1t
Neiel Nel

Pidg,i®gdh
+ Z Z fRSiéBg,ieageBh- (4.87)
9=j h=Nog®l blt,1DJ

The Laplace-Stieltjes Transform of BL;;q; is given by:

BL:

Loy (5) = Ble *Phsei] (4:88)

The first three derivatives of the Laplace-Stieltjes transform of BL; ;g ;(s) are

given by:
BL % ;0: (8) = —E[BLj jq e "B 401 (4.89)
BL % ; (s) = E[BL? e~ "B 101 (4.90)
BL *;',}@j (s) = —E[BL} 5 e *BFoi#i], (4.91)

and the first three moments of the Laplace-Stieltjes transform of BL, ;e;(s) are

given by:
E[BLijgj] = —BLj;(0) (4.92)
E[BL};5;] = BL;;(0) (4.93)
E[BL?,i@j] = _BL;I,Ii@j(O)- (4-94)
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Because of the linearity property of the Laplace-Stieltjes transform [Kle75], we

have:

Nol  Nel p
_ 1Dg,iDgDh
BLig(s) = E — 17— Rsiggimgan(s)
g=Noi h=Nog®l Poiiyied
j©l1 Nogdj

pz@g,l@geah
+ E —=—= Rsiag,iwgoh(s)
g=1 h=1 pblz (452

jo1 Nol

pi@g,i@g@h
+§ : E : = Rsiggivgen(s)

9=1 h=Nogajo1 Fblii®d
Neoiol Neotl

Pidg idgdh
* Z fRsz'@g,ieag@h(S)- (4.95)
g=j h=Noge1 Fblt*®I

Thus, the mean of the blocking duration is given by:

Nol Nol p
*! — 10g,1DgDh s’
E[BLi’i®j] =—BL; D] (O) - Z T -R z‘eag,ieawh(o)
jel Negdj
szBg i®gdh 0
- Szeag,zeag@h( )
=1 h—1 Piyiij
jol Nol 0
- Z Z . - R iog,iwgon(0)
Neiol Nol p
1Dg,1Dgdh
- Z o - R3S iggiogan(0).
9=j h=Nog®l blt,e D)
(4.96)
So,
Noel Nol 0
_ 1Dg,iDgDdh
E|BLije;] = Z T E[Rsiggiogen)
9=NGi h=Noge1 Pbiiie]
j©l Nogdj p
z@g,z@g@h
+ Z E[RSzeag,zeBgeah]
=1 h=1 Phi io
jo1 Nol

LYY et )

=1 h=Nogmje1 FulHi®s
Neiol Nel

+ Y Pio9i99%h Bl Reiogiogon).  (4.97)
par i A
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Likewise, we have:

Nol  Nol )
* — 1Dg,1DgDh H+'!
E[BL} gl = BLy;g;(0) = — 7R igg,izgen(0)
g=N©Si h=Nog®dl Phiiiej
jol Nogaj

Pzeag,zeageah W
+ E — RS iagiwgon(0)
g=1 h=1 pblZ (A2

jol Nol P
1Dg,iDgDh "
+Y . Y, R egieen(0)
9=1 h=Negajol Pbiii®]
Neicl Nel

Pidg,idgdh s
+ § : T S iGBg,i@g@h(O)-

9= h=Nogel Pbiii®i
(4.98)
Thus,
Nol Nol P
2 1Dg,iDgDh
E[BL; zEB]] Z 7E[R5i®g,i®g@h]
g=Noiol h:Neg@l Piyiicsj
1€9g,zeageah
+ Z E[R%ieg,iogon)
9=1 h=1 pblZ i)
jol Nol p
1Bg,iDgDh 2
t Z Z fE[RSiGBg,i@g@h]
9—1 h=Nogmjol Pbliid
Neiel Nel P
1Dg,iDgdh
+ Z 7E[R5i®g,i®g®h]-
9=j h=Nogal Phiisicj
(4.99)

In Equation 4.97 and Equation 4.99, Rgigg ieeen is the residual service time

and its nth moment is given by:

1
E[ Zgrg z@g@h]

(n + 1)E[Rsiagiagon]

E[RS?EBg,iGBgGBh] = (4'100)

Thus the first and second moments of the residual service time of a message

of class Cigqimgon and of service time duration Sigg ipeen are given by:

E [Sf@g;ieﬂ@h} (4101)

2F [Sigg imeanl

E [RSieag,iGBgeah] =
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and

3E [Sieag,i@geah]

Figures 4.6-4.26 show the analytical results for blocking duration plotted

E [Riogiogon] =

versus the load AF [M]. The first set of plots includes Figures 4.6-4.17, where
the shape parameter c is assumed to be equal 0.6. The second set of plots
includes Figures4.18-4.27, where the shape parameter c is assumed to be equal
0.4. For comparison purposes, mean blocking duration under the assumption of
exponential message interarrival times and geometric message lengths is also

included.
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Mean Blocking Duration vs Offered Load
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Figure 4.6: Mean blocking duration F [BL] vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.7: Mean blocking duration F [BL] vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.8: Mean blocking duration F [BL] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 100 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.9: Mean blocking duration F [BL] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.10: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.11: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 100 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

144



Mean Blocking Duration vs Offered Load
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Figure 4.12: Mean blocking duration F [BL] vs. offered load AFE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.13: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.14: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 100 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.15: Mean blocking duration F [BL] vs. offered load AFE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 10000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.16: Mean blocking duration F [BL] vs. offered load AFE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 5000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.17: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.6; mean msg. length E'[M] = 1000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.18: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.19: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

152



Mean Blocking Duration vs Offered Load
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Figure 4.20: Mean blocking duration F [BL] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 100 characters, N = 3 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.21: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.22: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.23: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 100 characters, N = 10 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.24: Mean blocking duration F [BL] vs. offered load AFE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.25: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 1000 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.26: Mean blocking duration F [BL| vs. offered load A\E [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 100 characters, N = 20 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.
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Mean Blocking Duration vs Offered Load
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Figure 4.27: Mean blocking duration F [BL] vs. offered load AE [M] for
geometric and Weibull distributed message (msg.) lengths with parameter

¢ = 0.4; mean msg. length E'[M] = 5000 characters, N = 30 station simplex
PLAYTHROUGH ring, uniform and symmetric traffic (UST), and exponential
msg. interarrival times.

4.7 Waiting Time

Let us consider a PLAYTHROUGH ring consisting of N stations numbered
0,1,...,N — 1. Messages of outbound distance d arrive at station 7 according to
independent Poisson arrival processes with rate \; jqq, d € {1,2,..., N — 1} and
the probability of k arrivals at station i is p;(k,t) = %e"‘it. The total arrival
rate at station 7 is \; = Zfiv;ll Aiiod- The fraction of the total number of
messages arriving at station ¢ that have outbound distance d is f; ;14 = ﬁ

Throughout this section, we designate by S igq the service time of an outbound
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distance d message at station ¢'s HOL, and by BL; ;qq the blocking duration
experienced by station i’s HOL message of outbound distance d. Because the
derivation of models in this section are made with respect to station ¢, we write
Sa = Siigd, BLg = BL; g4, and fq = fiiga-

We model the queue at station 7 using a two-state embedded Markov chain.
Messages are assumed to arrive at station ¢ using the FIFO queueing discipline.
The VS state is the Virtual Service state, during which a head of the line
(HOL) message at station i is possibly blocked and subsequently serviced. The

G state is the Go state, during which station ¢ has no message at HOL and
must wait for the arrival of GO. We recall that Sgo denotes the round trip time
of GO. Let us designate by BL, the blocking duration experienced by a HOL
message of outbound distance d at station 7 and by Sy the service time of a
HOL message of outbound distance d. The system remains in state VS for
BL; + S, character times and in state G for Sgo character times.

Let us designate by a4 4 the probability that & new messages arrive during a
VS epoch of duration S; + BL, given a distance d HOL message, and by i the
probability that k£ new messages arrive during a Go epoch of duration Sgo. We

have:

ak,d = F [p,(k, Sd + BLd)] . (4103)

B E [pi(k, Sco)] - (4.104)
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The probability generating function Ag4(z) of Qiq 1S given by:
Ad(Z) = szak,d
k=0

- i Z"E [pi(k, Sq + BLy)]

k=0
= szE |: Sd + BLd)) e /\i(Sd+BLd):|
k!
= FE|e”

k!

Ai(Sq+BLg) Z (2Ai(Sa + BLd)k)]

k=0
- E [efAi(H)(SﬁBLd)}

= (Sq¢+ BLa)*(Ni(1 — 2)); (4.105)

where (Sy + BLg4)* is the Laplace-Stieljes transform of the r.v. Sy + BLy
evaluated at \;(1 — 2). In a similar fashion the probability generating function
B(2) of B is given by:

B(z) = Sgo(M(1 = 2)). (4.106)

Averaging the generating functions Ad(z) across outbound distance d, we

obtain:

=

Az) = 3 fada(2). (4.107)

1

Ay(z) and B(z) have the following derivatives.

a
I

Ay (2) = =XN(BLg+S)"N(1—=2) ; Ag (1) = MNE[(BLs+S,)].

Ad (2) = N(BLi+S)"(M(1—2) : A, (1) = NE[(BLy+ 57

Ag () = “N(BLa+S)™" (M(1—2)) ; A4 (1) = MNE[(BLq+ S0

B'(z) = —XNSio(N(l-2) . B'(1) = \E[Seol.

B'(z) = MSgo(hi(l—2) . B'(1) = XNE[(Seo).

B"(z2) = —ASgo(hi(l—2) . B"(1) = XNE[(Seo0)¥.
(4.108)
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Let j, be the number of customers in the system at the begining of the n®
epoch and let j,,1 be the number of customers in the system at the end of the
h epoch. Let 7T] ¢ designate the steady-state probability of a Virtual Service
epoch with j customers at the beginning of the epoch, where d is the outbound

distance of station ¢’s HOL message. Moreover, let WJS be the steady-state
probability of a Go epoch. The Virtual Service epoch cannot start without a
HOL message. Therefore, Wg‘g = 0. In addition, 7rjS =0 for j > 1, since the
presence of any HOL message must initiate a Virtual Service epoch. The
probability density 7; of being in one of the states {G, VS} with j customers in

queue is:
T, = 7r}}8+7rj9. (4.109)

Because the total probability of being in one of the valid states must be equal

to one, we have:

=y (7 +ad) =1 (4.110)

j: _7:0

There are two ways a Go epoch can be started.

1. if no new message have arrived at the end of a Go epoch.

2. if the last message of outbound distance [ in the queue was served during
the prior Virtual Service epoch, and no new messages have arrived, which

occurs with probability aq.
Thus,
T = (ao,emy’s) + Borry. (4.111)

A Virtual Service epoch that starts with j > 1 messages in queue and a HOL

message of outbound distance d may be entered in one of two ways:
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1. the prior epoch was a Go epoch (which occurs with probability 7r§), J new
arrivals have entered station i’s queue in time Sgo (which occurs with
probability f;), the new HOL message has outbound distance d (which

occurs with probability fy);

2. the prior epoch was a Virtual Service epoch with £ messages in queue
(1 <k<j+1) and a message of outbound distance ¢ at HOL (which
occurs with probability W,K? ), the previous HOL message has departed and
j — k + 1 new arrivals have entered station i’s queue in time BL, + S,

(which occurs with probability o;_x11,e)-

At the end of a Virtual Service or Go epoch with a non-zero number of
customers in queue, the outbound distance of the HOL message takes the value

d with probability f;. Hence,

VS
Tid = fdﬁﬂg

Jj+1 N-1

+ Z fa i: (0j kir,emr?)

k=1 =1

= faBjmy

j+1 N-1

+ fa Z Z (%—kﬂ,ﬂﬁi‘g) . (4.112)

k=1 ¢=1

The probability generating function for 7} is given by:
o
VS VS i
j=1

o0
> faBim§d
j=1

j+1 N—1

o
VS
+ E :fd E : § :aj—k+1,£7rk,zzj

j=1 k=1 {=1

Using results from Section A.3 of Appendix A, the probability generating
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VS

function for 7/ is computed:

Let:
J(2)
G(z)
We have:
where
Let:

o
_ Z VS i
=1

o
= Y faBmi?
j=1

j+1 N—-1

o
VS i
+ E Jfa E E QG 1Ty

j=1 k=1 ¢=1
fa|B(2) = Bo| 7§

N-1

+ 1o 3 {7 AR () - ool |

=1

N—-1
faB(2)m§ + faz ™) Au(2)7)5(2)

=1

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)



We have:

i) = Y AERE) = Y A2 )
. Aq(2)Ra(2)G(2)
= H(2)G(2)
— H(2) {z—lj(z) + [B(z) - 1} wg} . (4.119)

7y (4.120)

J(z) = 3. (4.121)

Gz) = 2'J(2)+ [E(z) - 1] e
H(2) [B(z) - 1}

= z e B(2) — 1| xf
- oG [5G = 1]
2 1H(z) .
= ng’. (4.122)
1—2"1H(2)

We now express the probability generating function for the probability density

7; found in Equation 4.109 in terms of a new auxiliary variable L(z).

=

T(z) = 2 [73°(2)] + g
- : [Rd(z)(z)] G(z) + 8. (4.123)
Let: _
L(z) = E[Rd(z)}. (4.124)
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#(z) = L(2)G(z) + 7§
- B(z) -1

— P ﬂ.S 7r9

= U )1—z—1f1(z) o

_ i B(z) -1 _

— {L( )—1_z—1ﬁ1(z) +1} ;. (4.125)

7(z) is the transform of a probability density. Therefore, we must have:

lim, ,, 7(z) = 1.

lim#(z) = limay {1+ IA/(Z)L_A1
z—1 z—1 1— Z_IH(Z)

= 7§ {1+i(1)m%}. (4.126)

. B(z)-1 1-1
lim - =
e 1, Lf(z) 11

N g (4.127)

Using L’Hospital’s rule, we have:

. B(z)-1
lim#(z) = limzy <1+ L(Z)LA
z—1 z—1 1 — Z—IH(Z)
B(z) -1
= 2314 b1y im BB =
=11 — 271H(2)
291+ L(1) lim O )
=1 —2=1H'(2) + 272H(z)
L(1C'(
= w§{1+ - 1) f,) }:1 (4.128)
(1) - H'(1)
Hence, the steady state probability Wg of being in the Go state is
1-H(1
Ty = - ( ) —; (4.129)
1-H'(1)+ L(1)C'(1)
where (from Appendix B)
N-1
H1) = 3 da)Ra(1); (4.130)
d=1



and

L(1) = [Rda)} . (4.131)

Let us designate by Wﬁf the conditional probability of the event that ;7 messages
are in queue at the end (completion) of an epoch e, given that e was a Virtual
Service epoch and the served message had outbound distance d. Furthermore,
let 7129,{1 designate the conditional probability of the event that £ messages are in
queue at the start (initiation) of an epoch e, given that the epoch e is a Virtual

Service epoch and the HOL message has outbound distance d. We have:

Jj+1

Wﬁf = Zﬁk‘s’]‘iaj_k+1,d; (4.132)

k=1
where o;_j41,4 is the probability of the event that j — £ + 1 new messages arrive
in the queue during the virtual service of a message of outbound distance d. 73}
is the steady-state probability of the event that j messages are in queue at the
initiation of an epoch and the current epoch is a Virtual Service epoch and the

HOL message has outbound distance d. Hence,
Vs Vs
ST Tk,d Tk,d
T = : = ——. (4.133)
b PRy 7T£§,d Ty (1)

From Equation 4.132 and Equation 4.133, we have:

j+1
J+ ]

k,d
Td = D [”T(l)] O —ht1,d; (4.134)

k=1L ¢

and the probability generating function of Wﬁf is given by:

= ! ] 2t Ay(2)7Y5 (). (4.135)



Let @5 be the number of messages in queue at the service completion of a

message of outbound distance d. The mean or first moment of Q5 is given by:

o0
E[QF"] = Y jmiy
7=0

= @ (1), (4.136)

B = o] {7 [0 () + A0r0)]
AT | (1137)

BT = | R0+ AwmEw - )
= [E) s am - (4.135)

Let us designate by SY° the virtual service time of a message of outbound
distance d and by WY the duration between the time a message arrives in

queue and the time it enters into virtual service. From Little’s result [Kle75],
E[Q"] = N(E W] +E[S)%]); (4.139)

Solving Equation 4.139 for E[W)5], we have:
E Q"] - \E [Si°]

E[W;/®] =
[ d ] \i
1 [ ~r
= [mF @ - 4]
1 [#y%'(1) o
- B+ A -1 - A
1 ”VS’(1) }
= — |= -1 (4.140)
A [7y5(1)
From Equation 4.116, Equation 4.117, and Equation 4.122
15(z) = Ra(2)G(2)

(
= (Y(f;) ; (4.141)



where we define the auxiliary variables X (z) and Y (z) as:

X(z) = (f)(B(z) —1). (4.142)

V(z) = 1—2z'H(2). (4.143)

The derivatives associated with the auxiliary variables X (z) and Y'(z) can be

found in Appendix B. We have: X (1) = Y(1) = 0. Therefore,

: X(z) 0
yS _ 5 v
7,°(1) = ,IZI_I,I{WO ) 5 (4.144)

and the use of L’Hospital’s rule is required to find #Y5(1).

X
75(1) = nmg?é?
Z—r 2
' X’
L lim 7§ = (2)
z—1 Y’(z)
- " (4.145)
Y'(1)
ol X' (2)Y(2) = X(2)Y'(2
Zi)s(z) = 7r§ () ([2()2() () (4.146)
Y(z
We have: lim,_,1 #;*'(2) — §. Therefore, L’Hospital’s rule must be applied once
again.
7vs' : X' (2)Y (2) — X(2)Y' (2
7E(1) = limng (2) ([2()2() (2)
Y(z
! ' Y _ X YII
U o, 2 (V@) = XEV ()
z2—1 2Y(Z)Y’ (z)
Lg{ 7T§ lim X'H(Z) (Z) + " (Z)YI(Z) _ X’(Z)Y” (22 _ X(Z)Ym (z)
z—1 2?(2)}7”(2) + 9 |:A,( )

Wy (1), (4.147)
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From Equation 4.140,

~VS

2 [Y’(1)] Y'(1)
_ (XY ) -XmyT) q
2X'(1)Y"(1)
B [X"(n ~ 9% (1)} Y1) - X'(1)Y" (1)
B 2X'(1)Y" (1)
_ (Xf'“) _1) _¥rm (4.149
2X'(1) 27" (1)

From Appendix B,

= ; (4.149)

and

= =Yy, (4.150)
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We now have:

NEWYS] = X"(1) 4 - Y (1)
e 2X'(1) 27" (1)
_ (f{"(l) _1> LEY
2X'(1) 2 [1 - ﬁ’(1)}
_ B ﬁ”(}) , (4.151)
2B'(1) o [1 —H’(l)}
where (from Appendix B)
H(@1) = A(Q) (4.152)
H'(1) = A"(1). (4.153)
We recall that:
A1) = ME[BL+S]
A'(1) = NE[(BL+S)?
B'(1) = ME[Sgo]
B(1) = NE[S%].
Therefore,
s1_ ME[Scol ME[(BL+5)?]
NE W] = 2E[S%,] ' 2[1 — NE[BL+ S]]’
and,
E[WYS] = E[Sgol NE [(BL + S)?] (4.154)

C2E[S%4,]  2[1-NE[BL+S]
WY$ is the duration between the time a message of outbound distance d arrives
at station 7’s queue and the time it possibly experiences blocking at HOL by the
transmission of another message. The actual waiting time of a message of
outbound distance d in station i’s queue is the duration between the time it

arrives at station i’s queue and the time it goes into service after experiencing
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blocking. Let W, denote the actual waiting time of a message of outbound

distance d at station 7’s queue. We have:

Wy =W} + BL,. (4.155)
So,
E Wy =E [W)°] + E[BLy). (4.156)
Hence,
EW,] = % E[BL,] + Q[iiﬂ(%[;sfgn. (4.157)

The average waiting time E [W] for a message of arbitrary outbound distance is

obtained by averaging F [W,] over the outbound distance d. Therefore,

N-1

EW] = Z faE (W]

E[Sco] ME [(BL + 5)?)
2E[5%,] T Z JaB\BLal+ 50— BRI + o1
E[W] QZ[;GOO]] +E([BL] + 3 ﬁf [A(ffEL[;LSfLH (4.158)

In Equation 4.158, the first term is the mean residual round trip time of GO.
The second term is the mean blocking duration experienced by a message of
arbitrary outbound distance at HOL. The third term is the expression of
waiting time in an M/G/1 queue with arrival rate \; and service time BL + S.
Figures 4.28-4.42 show the analytical results for mean waiting time in
Equation 4.158 along with simuated results plotted versus the load AE [M].
Each simulated data point is the average E [Wy;y,] of n = 1,000,000 simulated
samples Wy;, corresponding to a load AE [M] applied to the ring. The 95%

confidence interval shown in Figures 4.28-4.42 is calculated as:

E[W,im] £ 1.96(SD[W,im] /v/12) [Kob78], (4.159)
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Mean Waiting Time vs Offered Load
10 T

3-station playthrough ring
81 c=.6; E[M]=5000; max. num. of packets: 16
Waiting time for exp. interarr. and Weibull mess. length

—: Analytical result (uppen bound)

.. simulated result

E[W] in (log10 scale)
N
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Load lambdaE[M]

Figure 4.28: Mean message waiting time E [W] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 5000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

where SD[Wg;,] is the standard deviation of the samples Wy, from their mean
E[Wgin]. Figure 4.28 shows the analytical and simulation results of average
waiting time on a 3-station PLAYTHROUGH ring with exponential message
interarrival times and Weibull distributed message lengths with mean 5000.
The analytical model overestimates the simulated mean waiting time. Except
for very light loads, the analytical model is outside the confidence interval. The

analytical model saturates at AE [M] = 0.785, whereas the simulation results

saturate at AE [M] = 1.265.
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Mean Waiting Time vs Offered Load

10 T T
3-station playthrough ring
81 ¢=.6; E[M]=1000; max. num. of packets: 1§ ]
Waiting time for exp. interarr. and Weibull mesg. length
—: Analytical result (upper bound)
61 .. simulated result i
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Figure 4.29: Mean message waiting time E [W] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 1000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.29 shows the analytical results of average waiting time on a
3-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 1000. The simulation
results are included on the same plot. The plot shows that the analytical model
is in good agreement with the simulations at light load but overpredicts the
simulated waiting time for the rest of the load range. The analytical model

saturates at AF [M] = 0.812, whereas the simulation results saturate at

AE [M] = 1.250.
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Mean Waiting Time vs Offered Load

10 T T
3-station playthrough ring
81 ¢=.6; E[M]=100; max. num. of packets: 16 ]
Waiting time for exp. interarr. and Weibull mess. length
—: Analytical result (upper bound)
61 .. simulated result i

E[W] in (log10 scale)
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Figure 4.30: Mean message waiting time E [W] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 100 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.30 shows the analytical results of average waiting time on a
3-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 100. The simulations
results are included on the same plot. The plot shows that the analytical model
is in good agreement with the simulations at light and moderate loads. The

analytical model saturates at AE [M] = 0.785, whereas the simulation results

saturate at AE [M] = 1.104.
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Mean Waiting Time vs Offered Load
10 T T

10-station playthrough ring

81 c=.6; E[M]=5000; max. num. of packets: 16

Waiting time for exp. interarr. and Weibull mess. length
red: Analytical result (upper bound)

green: simulated result

E[W] in (log10 scale)
N
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Load lambdaE[M]

Figure 4.31: Mean message waiting time E [W] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 5000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.31 shows the analytical results of average waiting time on a
10-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 5000. The simulations
results are included on the same plot. The plot shows that the analytical model
is in good agreement with the simulations at light and medium loads, remaining
within the confidence interval until it saturates. The analytical model saturates

at AE [M] = 1.129, whereas the simulation results saturate at AE'[M] = 1.35.

The analytical waiting time gives a rather good prediction of the simulated
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Mean Waiting Time vs Offered Load

10 T T
10-station playthrough ring
81 ¢=.6; E[M]=1000; max. num. of packets: 1§ ]
Waiting time for exp. interarr. and Weibull mess. length
—: Analytical result (upper bound)
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Figure 4.32: Mean message waiting time E [W] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M] = 1000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

waiting time over a very wide range of values. Figure 4.32 shows the analytical
results of average waiting time on a 10-station PLAYTHROUGH ring with
exponential message interarrival times and Weibull distributed message lengths
with mean 1000. The simulation results are included on the same plot. The
analytical model saturates at AE [M] = 1.107, whereas the simulation results
saturate at AE [M] = 1.32. The analytical model gives a rather good prediction

of the simulated waiting time at light load and appears to be close to the

simulated waiting time at moderate and heavy loads. Figure 4.33 shows the
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Mean Waiting Time vs Offered Load

10 T T
10-station playthrough ring
81 ¢=.6; E[M]=100; max. num. of packets: 16 ]
Waiting time for exp. interarr. and Weibull mess. length
—: Analytical result (upper bound)
61 .. simulated result i
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Figure 4.33: Mean message waiting time E [W] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 100 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

analytical results of average waiting time on a 10-station PLAYTHROUGH ring
with exponential message interarrival times and Weibull distributed message
lengths with mean 100. The simulation results are included on the same plot.
The analytical results saturate at AF [M] = 1.083, whereas the simulation
results saturate at AE [M] = 1.064. The analytical waiting time saturates at
slightly heavier load than the simulated waiting time. The analytical model

gives a very good prediction of the simulated waiting times for light loads and

moderate loads, but underpredicts the simulated results at heavy load.
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Mean Waiting Time vs Offered Load
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20-station playthrough ring
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Figure 4.34: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 5000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.34 shows the analytical results of average waiting time on a 20-station
PLAYTHROUGH ring with exponential message interarrival times and Weibull
distributed message lengths with mean 5000. The simulation results are
included on the same plot. The plot shows that the analytical model is in good
agreement with the simulations at light load, moderate load, and heavy load,
but it saturates at lighter load than the simulated waiting time. Saturation is

reached at AE [M] = 1.34 for the simulated waiting times and at \E [M] = 1.27

for the analytical waiting time.
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Mean Waiting Time vs Offered Load

10 T T
20-station playthrough ring
81 ¢=.6; E[M]=1000; max. num. of packets: 1§ ]
Waiting time for exp. interarr. and Weibull mess. length
—: Analytical result (upper bound)
61 .. simulated result i
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Figure 4.35: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M] = 1000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.35 shows the analytical results of average waiting time on a
20-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 1000. The simulations
results are included on the same plot. The analytical waiting time tracks the
simulated waiting times very well, even at moderate load, where the confidence

intervals appear to be very slim. Saturation is reached at AE'[M] = 1.30 for the

simulated waiting times and at AE [M] = 1.25 for the analytical waiting time.
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Mean Waiting Time vs Offered Load
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20-station playthrough ring
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Figure 4.36: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 100 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.36 shows the analytical results of average waiting time on a
20-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 100. The simulation results
are included on the same plot. Despite the fact that the analytical waiting time
saturates at heavier loads than the simulated waiting times, it gives a very good
prediction of the simulated waiting before saturation. Saturation is reached at

AE [M] = 0.90 for the simulated waiting times and at AE [M] = 0.93 for the

analytical waiting time.
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Mean Waiting Time vs Offered Load
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Figure 4.37: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean F [M]| = 10000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.37 shows the analytical results of average waiting time on a
30-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 10000. The simulations
results are included on the same plot. The analytical results are in very good
agreement with the simulations until saturation. Saturation is reached at

AE [M] = 1.38 for the simulated waiting times and at AE [M] = 1.33 for the

analytical waiting time.
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Mean Waiting Time vs Offered Load
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Figure 4.38: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 5000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.38 shows the analytical results of average waiting time on a
30-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 5000. The simulation
results are included on the same plot. As in Figure 4.37, the analytical waiting
time shows impressively good agreement with the simulations. Saturation is

reached at AE [M] = 1.37 for the simulated waiting times and at AE [M] = 1.33

for the analytical waiting time.
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Mean Waiting Time vs Offered Load
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Figure 4.39: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M] = 1000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.39 shows the analytical results of average waiting time on a
30-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 1000. The simulations
results are included on the same plot. The analtical waiting time is virtually
identical to the simulated mean waiting time, remaining within the confidence

interval for all loads. Saturation is reached at AE [M] = 1.31 for the simulated

waiting times and at AE [M] = 1.32 for the analytical waiting time.
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Mean Waiting Time vs Offered Load

10 T T
50-station playthrough ring
81 ¢=.6; E[M]=10000; max. num. of packets; 16 ]
Waiting time for exp. interarr. and Weibull mess. length "
—: Analytical result (upper bound) | '
61 .. simulated result A |
//

—~~ =
) A
© T
] pu=
2]
2 TT T+
—
8 ar |
s L
E 7
= L

2 -

0 = -

_2 1 1
0 0.5 1 15

Load lambdaE[M]

Figure 4.40: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean F [M]| = 10000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.40 shows the analytical results of average waiting time on a
50-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 10000. The simulation
results are included on the same plot. The analytical waiting time tracks the
simulated waiting times very well. Saturation is reached at A\E [M] = 1.41 for

the simulated waiting times and at AE [M] = 1.38 for the analytical waiting

time.
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Mean Waiting Time vs Offered Load
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Figure 4.41: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M]| = 5000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.41 shows the analytical results of average waiting time on a
50-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 5000. The simulation
results are included on the same plot. The analytical waiting time is identical to
the simulated waiting times for all loads, giving a very accurated prediction. In
addition, the analytical results remain within the 95% confidence interval at all

values. Saturation is reached at AE [M| = 1.40 for the simulated waiting times

and at AE [M] = 1.39 for the analytical waiting time.
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Mean Waiting Time vs Offered Load
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Figure 4.42: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and exponential interarrival times, Weibull distributed message lengths
with parameter ¢ = 0.6 and mean E [M] = 1000 characters. Comparison with
simulated mean waiting times under exp. interarrival times and Weibull
message lengths.

Figure 4.42 shows the analytical results of average waiting time on a
50-station PLAYTHROUGH ring with exponential message interarrival times
and Weibull distributed message lengths with mean 1000. The simulation
results are included on the same plot. The analytical waiting time slightly
underpredicts the simulated waiting times at heavy loads but gives a very good
prediction at light loads and moderate loads. Saturation is reached at

AE [M] = 1.30 for the simulated waiting times and at AE [M] = 1.37 for the

analytical waiting time.
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From Figures 4.28-4.42, we can make the following observations. Except for
the limiting case where the number of stations /V is equal to 3, the analytical
model for average waiting time gives a very good prediction of the simulated
waiting time for a wide range of loads. The analytical prediction of the
simulated results appears to improve for a large range of average message

lengths as the number of stations increases.

4.8 Conclusions

In this chapter, a tight upper bound of the mean number of minipackets
required to send a message on PLAYTHROUGH ring under exponentially
distributed message interarrival times and Weibull distributed message lengths
was found. From that upperbound, analytical expressions for higher moments
of the number of minipackets nessary to transmit a message were obtained.
Approximate control frame round trip time, transmission time, service time,
and blocking duration were given. An analytical model for waiting time was
derived. The analytical model was shown to provide very good predictions of
the simulated mean waiting times for a wide range of number of stations and
loads. As the number of stations increases, the analytical predictions improve
for a wide range of average message lengths.

We did not provide an analytical model for waiting time under Weibull
message interarrival times and geometric message lengths. This case is less
amenable to analysis because the Laplace transform of the Weibull distribution
does not exists. In the next chapter, we will show that at heavy load, the mean
waiting time for PLAYTHROUGH ring under exponentially distributed
interarrival times and Weibull message lengths is greater than the mean waiting

time for PLAYTHROUGH ring under Weibull interarrival times and geometric
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message lengths when identical mean message interarrival times and mean
message lengths are used. In addition, we show that at heavy load, the mean
waiting times for PLAYTHROUGH ring under Weibull interarrival times and
geometric message lengths are greater than mean waiting times for
PLAYTHROUGH ring under exponentially distributed interarrival times and

geometric message lengths.
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CHAPTER 5

PERFORMANCE OF PLAYTHROUGH RINGS UNDER WEIBULL
INTERRARIVAL TIMES AND GEOMETRIC MESSAGE LENGTHS

5.1 The Heavy Traffic Approximation for the G/G/1 Queue.

Let us consider a queueing system with one server, an arbitrary distribution for
the interarrival time random variable £, an arbitrary distribution for the service
time S. The mean waiting time for this G /G/1 queueuing system is given

by [Kle75]:
E[W] — O-Z + O-g + (%)2(1 B p)2 _ E
B 2t(1 — p) oI’

(5.1)

where o2 is the variance of the interarrival times distribution , o} is the
variance of the service times distribution S, f is the mean interarrival time
E [ﬂ, p= %g]’ T is the mean idle time, and I? is the second moment of idle
time. The idle time is defined as the interval of time from the departure of a
customer (in our context a message) that leaves the system until the next

arrival. At heavy load, we have:

I2
i — 0, (5.2)

#2101 -p)?=~0. (5.3)

As a result, we obtain the following heavy traffic approximation:
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E[W] ~ Oat 0oy
T2t(1—p)

(5.4)

In the rest of this chapter, we will apply the heavy traffic approximation in
many instances. To be concise, we will refer to exponentially distributed
interarrval times as exponential interarrival times and Weibull distributed
interarrival times as Weibull interarrival times. In addition, we will refer to
geometrically distributed message lengths as geometric message lengths and
Weibull distributed message lengths as Weibull message lengths.

The notation exp/geom/1 will be used to refer to a single queue in which
messages arrive according exponentially distributed interarrival times and have
geometrically distributed message lengths. The notation exp/weib/1 will be
used to refer to a single queue in which messages arrive according to
exponentially distributed interarrival times and have Weibull message lengths.
The notation weib/geom/1 will be used to refer to a single queue in which
messages arrive according to Weibull distributed interarrival times and have
geometrically distributed message lengths.

5.2 Comparison of Waiting Time for Two Queueing Systems, One with an
exp/geom/1 queue, and the other with a weib/geom/1 queue.

We consider a queueing system comprising a computer station at which
messages arrive according to exponential interarrival times and have geometric
message lengths and another queuing system comprising a computer station at
which messages arrive according to Weibull interarrival times and have
geometric message lengths. We assume that the mean interarrival times and the
mean service times are the same for the two queueing systems. The mean

waiting time E[W;] for the first queueing system comprising message arriving
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with exponential interarrival times and geometric message lengths is given by:

ol ot + ()’ (L —p1)® I}
2t,(1 — py) oI,

E[Wy] = (5.5)

where aa% is the variance of the interarrival times distribution %, abf is the

variance of the service time distribution Si, ¢; is the mean interarrival time,

p1= Egl], I, is the mean idle time, and 1_12 is the second moment of the mean

idle time.

At heavy traffic, Equation 5.5 can be approximated by:

2 2

E[Wy] ~ Ze1 001 (5.6)
2t1(1 = p1)

The mean waiting time E[W5] for the second queueing system comprising

message arriving with Weibull interarrival times and geometric message lengths

is given by: B B
ay + v + (12)° (L= p2)* I3
2t5(1 — po) oI,

E[Ws] = (5.7)

where 0,1% is the variance of the interarrival times distribution %o, abg is the

variance of the service time distribution Sy, ¢, is the mean interarrival time,

p2 = Egﬂ, I, is the mean idle time, and 1_22 is the second moment of the mean

idle time.

At heavy traffic, Equation 5.7 can be approximated by:

2 2
E[W,] ~ Ze2 %2 (5.8)
2t5(1 — p2)
We have:
2 2 2 2
E[WQ] _ E[Wl] ~ 00.2 + Ub? _ aal + abl (59)

2t5(1 = p2)  28:(1 = p1)
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In addition,

ti =t =1,
p1 = P2 =P,
E[gl] = E[gﬂ;
Ob% = Ubg-

So,
2

E[W;] — E[W;] ~

00;2 - O-al

2%(1— p)

(5.10)

(5.11)

Let a and ¢ be the parameters of the Weibull interarrival times distribution

of the second queueing system. We have:

1 _
tg—ar(l-f-z):tl =1
So,
. t
CT(1+13)
and

We plot the ratio:
r(1+2)
I(1+4 1)
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(5.12)

(5.13)

(5.15)

(5.16)



as a function of ¢ for ¢ < 1. We have:

(1+2
—L—%l: (5.17)
L1+ 1)?
and as shown in Figure 5.1, the ratio % is a decreasing function for
0 < ¢ < 1. Hence, we have:
D(1+2
(716)22 for 0<e<1. (5.18)
L1+ ;)2
Therefore,
L (T(1+2) _
=07 o5 — 1) > (> 5.19
=0 (s ip 1) 2@ (519
And since
0.t = ()% (5.20)
we have
Oas — 043 > 0. (5.21)
So,
E[W,] — E[W;] > 0. (5.22)

5.3 Comparison of Waiting Time for Two Queueing Systems, One With a
weib/geom/1 Queue and the Other With an exp/weib/1 queue.

We now consider a queueing system comprising a computer station at which
messages arrive according to Weibull interarrival times and have geometric
message lengths and another queuing system comprising a computer station at
which messages arrive according to exponential interarrival times and have
Weibull message lengths. We assume that the mean interarrival time and the
mean service time for the two queueing systems are the same. As stated before,

the mean waiting time E[Wj;] for the first queueing system comprising messages
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Figure 5.1: plot of the ratio from Equation 5.16 as a function of c.

arriving with Weibull interarrival times and geometric message lengths is given

by:
a2 2 )2(1 — 2 ﬁ
E[W,] = 722 tont+ (B (1 —p) (5.23)
2t5(1 — po) 21,
At heavy traffic, Equation 5.23 can be approximated by:
2 2
E[Wy] ~ Ze2 %2 (5.24)
2t5(1 = p2)

The mean waiting time E[Wj3] for the second queueing system comprising
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messages arriving with exponential interarrival times and Weibull message
lengths is given by:

o+ o3+ (1) (1—ps)* I3
2t3(1 — p3) 213’

E[W;] = (5.25)

where 0,3 is the variance of interarrival times distribution t3, 033 is the

variance of the service time distribution Sj, 3 is the mean interarrival time,

p3 = Eg3], I5 is the mean idle time, and 1_32 is the second moment of the mean

idle time.

At heavy traffic, Equation 5.25 can be approximated by:

E[W,] ~ Ze3t 0w (5.26)
2t3(1 — p3)
We have:
E[W;] — E[Wa) ~ Oa3+ 0V a3+ 05 (5.27)
231 — p3)  2t2(1 — po)
At heavy traffic, we have:
Elfy] ~ E[S)),
Elts] ~ B[S].
If we assume
E|[S3] > E[S,], (5.28)
we have
Opa > Ops, (5.29)

because a Weibull distributed r.v. w having a mean greater or equal to the
mean of an exponential distribution € has a greater variance than the
exponential distribution e.

In addition, as a consequence of the assumption E[S5] > E[S,], we have:

Elts] > Elts],
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since E[ty] ~ E[S,], and El[ts] ~ E[S;]. Using an argument similar to the one

used to justify Equation 5.29 we have:

Tas > 045 (5.30)

5.4 Comparison of waiting time for PLAYTHROUGH ring under two different
schemes, One with an exp/geom/1 queues, and the other with a
weib/geom/1 queues.

We now turn our attention to the comparison of the waiting time for
PLAYTHROUGH ring under two different assumptions. We seek to compare
the waiting time for a PLAYTHROUGH ring in which message interarrival
times are exponentially distributed and message lengths are geometrically
distributed to the waiting time for a PLAYTHROUGH ring in which message
interarrival times are Weibull distributed and message lengths are geometrically

distributed.

5.4.1 Waiting Time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths.

Using a line of reasoning similar to that used to obtain Equation 4.158, a model
for PLAYTHROUGH ring operating under exponential interarrival times and
geometric message lengths can be obtained. According to that model, the mean
waiting time for PLAYTHROUGH ring under exponential interarrival times

and geometric message lengths is given by the expression:

E [Weap/geom] = E[Rgo]+ E|[BL]
NE (S + BL)?
2(1 — NE[S + BL))

(5.31)
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In this expression, the first term is the mean residual time for GO to return
to the station. The second expression is the mean blocking duration for a
message at the head of the queue at a given station, the third term can be
recognized as the expression for waitng time for an M/G/1 queue in which

blocking is included as part of service time.

5.4.2 Waiting time for PLAYTHROUGH ring under Weibull interarrival times
and geometric message lengths.

In a similar way, the waiting time for the PLAYTHROUGH ring under Weibull
interarrival times and geometric message lengths can be modeled as the sum of
3 components. The first one being the mean residual time for GO, the second
being the mean blocking duration for a message at the head of the queue at a
given station, the third term being the waiting time time for a G/G/1 queue in

which blocking is included as part of service time. So we can write:

E [Wweib/geom] = F [RGO] +E [BL] + Wg/m/l' (532)

5.4.3 Comparison of waiting time for PLAYTHROUGH ring under
exponential interarrival times and geometric message lengths to waiting
time under Weibull interarrival times and geometric message lengths.

In Equation 5.31 and Equation 5.32, mean residual round trip time for GO and
mean blocking duration are the same. However, as shown previously in this
chapter, at heavy traffic, waiting time for a queue with Weibull interarrival
times and exponential service times is greater than waiting time for a queue
with exponential interarrival times and geometric message lengths. Therefore,

at heavy load, we have:

E [Wweib/geom] > FE [Wewp/geom} - (533)
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5.5 Comparison of waiting time for PLAYTHROUGH ring under two different
schemes, One with an weib/geom/1 queues, and the other with a
exp/weib/1 queues.

We now seek to compare the waiting time for a PLAYTHROUGH ring in which

message interarrival times are Weibull distributed and message lengths are

geometrically distributed to the waiting time for a PLAYTHROUGH ring in
which message interarrival times are exponentially distributed and message

lengths are Weibull distributed.

5.5.1 Waiting time for PLAYTHROUGH ring under Weibull interarrival times
and geometric message lengths.

As stated in the previous section, waiting time for the PLAYTHROUGH ring
under Weibull interarrival times and geometric message lengths can be written

as:
E [Wweib/geom] = FE [RGO] +FE [BL] + E[Wg/m/l] (534)

5.5.2 Waiting time for PLAYTHROUGH ring under exponential interarrival
times and Weibull message lengths.

The mean waiting time for PLAYTHROUGH ring under exponential
interarrival times and Weibull message lenghs was found in Equation 4.158 and
it is given by:

E [Wezp/weib] = E [RGO] +FE [BL]

NE[(S + BL)?]
21— NE[S + BL))

(5.35)
5.5.3 Comparison of waiting time for PLAYTHROUGH ring under Weibull

interarrival times and geometric message lengths to waiting time under
exponential interarrival and Weibull message lengths.

At heavy load, E[W,/n/1] in Equation 5.32 can be written as [Kle75]:
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)\i (O-t%z + O-g'g—i—BLQ)

EW, mil = E|R E |BL . 5.36
[ g/ /1] [ GO]+ [ 2]+1_)\ZE[SQ+BL2] ( )
If we neglect the mean residual time E [Rgo], we can write:
Ai(02 + 0%, 1 p1,)
E[W,y/m1] =~ E[BL Ao 5.37
The expression:
JE (S + BL)?

2(1-NE[S + BL))

in Equation 5.35 is the mean waiting time in an M/G/1 queue with arrival rate

A; and mean service time E[S + BL|. At heavy load, we have [Kle75]:
MNE[(S+BLY?] Mo} +0%,51)

R~ 5.39
20— NE[S+BL)) 1-—XNE[S+ BL]’ ( )
and Equation 5.35 can be rewritten as:
Ni(0F + 0%, pr,)
E [Wepjwein) = E[R E[BL fs___ToiPsl 5.40
If we neglect the mean residual time E [Rgo], we can write:
Ni(0Z + 0%, pr,)
E [Wopn/weis] ~ E[BL L B e A 5.41
Weanjoeis] 7 B I TR B8, 1 BLy (541)
From equations Equation 5.37 and Equation 5.41, we have:
Ai(02 + 0%, 1 pr,)
E W — E weeom| A E[BL ts__ " SotBls
[Wewp/wezb] [Wwezb/g } [ 3] + 1_ )\zE [Sg T BLg]
(02 + o2
—E [BL2] B ( to SQ+BL2)
1— NE|[S; + BL,|
= FE[BL;] — E [BL]
)\i (O-t?:,’ + 0.%3—1—3[43) _ )\Z (0-152; + O-.%Q—I—BLQ)
1—NE[S3+ BLs] 1— NE|[Sy+ BLy]
(5.42)

We have:



In addition, because we are considering heavy traffic intensities, we have:

E[f;] = E[S:+ BL), (5.43)

E[t;] = FE[Ss+ BLs]. (5.44)

The blocking probabilities E' [BLy| and E [BL3| are given by:

E[BLy] = E[5,], (5.45)
and
E[55]
F |BL;3| = A4
respectively.

Because the service time Sy is Weibull distributed, we have from

Appendix C:
E[S3]
E A4
and since E'[Ss] = E [Ss], we have:
E[BLs) > E[BL) (5.48)

The random variables BLs of blocking duration and the random variable Ss
of service time are independent variables because they are generated by
independent events. Likewise, the random variables BL, of blocking duration

and the random variable Sy of service time are independent variables. Hence,

we have:
O%iB, = 08 + Ohiy (5.49)
O%inL, = O +O0nL, (5.50)
We have:
0%, > 0%, (5.51)
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because S; is Weibull distributed, S, is exponentially distributed and
E [5’3] =F [5'2] We have:
~ 3-
efs] s

S; 2
0%, = E[BL}] - E[BL; = 4 3
3E [53 2E [53}

> E [sﬂ . (5.52)

02, = E[BIY -E[BLff=—-"1=F [522] . (5.53)

Because we have

E [t3] = E[Ss + BL3] > 2E[S3],

E [t3] = E[S2 + BLy) = 2E[S],
at heavy load, it follows that

E [t3] > 2E[S;] = E[S; + BLy],

) [Sg + BL3] >F [SQ + BLQ] =F [{2} ,
since E [S3] > E[Sy] and E [BL3] > E[BL,]. Because £3 and S, + BL, are both
exponentially distributed and £, and S5 + BL3 are Weibull distributed, we have:

2 2
0%, > 08,4 BLy>

081 pLs > Or - (5.54)
In addition, we have:
1—NE[S;+ BL3]) <1— NE Sy + BLy]. (5.55)
Therefore, we have:
E [Weapjweis] > E [Waein/geom) - (5.56)

Figures 5.2-5.30 show comparisons of mean waiting times for

PLAYTHROUGH ring under 3 different assumptions: exponential interarrival
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Figure 5.2: Mean message waiting time E [WW] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

times and geometric message lengths, Weibull interarrival times and geometric
message lengths, exponential interarrival times and Weibull message lengths.
Figure 5.2, Figure 5.3, and Figure 5.4 depict the average mean waiting times for
PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths, Weibull interarrival times and geometric message lengths, and
exponential interarrival times and Weibull message lengths for an N = 3-station
PLAYTHROUGH ring with average message lengths of 5000, 1000, and 100

characters. The shape parameter ¢ of the Weibull distribution is assumed to be

equal to 0.6. The plots show that at heavy loads the average message waiting
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Figure 5.3: Mean message waiting time E [WW] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

time for PLAYTHROUGH ring with exponential interarrival times and Weibull
message lengths is greater than the average waiting time for PLAYTHROUGH
ring with Weibull interarrival times and geometric message lengths. In addition,
at heavy loads, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be greater than the
average waiting time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths. In fact, only at light load does average

waiting time for the PLAYTHROUGH ring under Weibull interarrival times

and geometric message lengths appear to be greater than average waiting times
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Figure 5.4: Mean message waiting time E [WW] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 100 characters. Comparison for
different assumptions.

for the PLAYTHROUGH ring under exponential interarrival times and Weibull
messge lengths in Figure 5.2, Figure 5.3, and Figure 5.4. There is a small
segment of Figure 5.4 where, after saturation, mean waiting times for
PLAYTHROUGH ring under Weibull interarrival times and geometric message
lengths look as if they were greater than mean waiting times for
PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths. But this is solely due to the fact that the solid line that

connects simulated mean waiting times of the PLAYTHROUGH ring under

exponential interarrival times and geometric message lengths is very coarse in
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Figure 5.5: Mean message waiting time E [W] vs. offered load AE [M] for
N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.
that segment. The actual simulated mean waiting times for PLAYTHROUGH
ring under exponential interarrival times and geometric message lengths are
lower than the simulated mean waiting times for PLAYTHROUGH ring under
Weibull interarrival times and geometric message lengths.

Figure 5.5, Figure 5.6, and Figure 5.7 show the average mean waiting times
for PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths, Weibull interarrival times and geometric message lengths, and

exponential interarrival times and Weibull message lengths for an

N = 10-station PLAYTHROUGH ring with average message lengths of 5000,
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Figure 5.6: Mean message waiting time E [WW] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

1000, and 100 characters. The shape parameter ¢ of the Weibull distribution is
assumed to be equal to 0.6. As in Figure 5.2, Figure 5.3, and Figure 5.4, at
heavy loads, the average message waiting time for PLAYTHROUGH ring with
expontial interarrival times and Weibull message lengths is greater than the
average waiting time for PLAYTHROUGH ring with Weibull interarrival times
and geometric message lengths. In addition, at heavy loads, the average waiting
time for PLAYTHROUGH under Weibull interarrival times and geometric

message lengths appears to be greater than the average waiting time for

PLAYTHROUGH ring under exponential interarrival times and geometric

208



Mean Waiting Time vs Offered Load
8 T T

10-station playthrough ring

~
T
|

... simulated result for exp. interarr. and Weibull mess. length

c=.6; E[M]=100

2]
T

——— simulated result for Weibull interarr. and geom. mess. length”

¢=.6; E[M]=100

[¢)]
T

__simulated result for exp. interarr. and geom. mess. length . B

E[M]=100 /

S

Mean Waiting Time E[W] in Character Times (log10 scale)
w

N

0 0.2 0.4 0.6 0.8 1 1.2 14
Load lambdaE[M]

Figure 5.7: Mean message waiting time E [WW] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 100 characters. Comparison for
different assumptions.

message lengths. There is a small segment of Figure 5.7 where, after saturation,
mean waiting times for PLAYTHROUGH ring under Weibull interarrival times
and geometric message lengths look as if they were greater than mean waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths. This due to the fact that the solid line that
connects simulated mean waiting times of the PLAYTHROUGH ring under
exponential interarrival times and geometric message lengths is very coarse in

that segment. The actual simulated mean waiting times for PLAYTHROUGH

ring under exponential interarrival times and geometric message lengths are
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Figure 5.8: Mean message waiting time E [WW] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

lower than the simulated mean waiting times for PLAYTHROUGH ring under
Weibull interarrival times and geometric message lengths.

Figure 5.8, Figure 5.9, and Figure 5.10 show the average mean waiting times
for PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths, Weibull interarrival times and geometric message lengths, and
exponential interarrival times and Weibull message lengths for an
N = 20-station PLAYTHROUGH ring with average message lengths of 5000,
1000, and 100 characters. The shape parameter ¢ of the Weibull distribution is

assumed to be equal to 0.6. At heavy loads, the average message waiting time
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Figure 5.9: Mean message waiting time E [WW] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

for PLAYTHROUGH ring with expontial interarrival times and Weibull
message lengths is greater than the average waiting time for PLAYTHROUGH
ring with Weibull interarrival times and geometric message lengths. In addition,
at heavy loads, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be greater than the
average waiting time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths. In Figure 5.10 the average waiting times

for PLAYTHROUGH ring under exponential interarrival times and Weibull

message lengths appear to be nearly equal to the average waiting times under
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Figure 5.10: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 100 characters. Comparison for
different assumptions.

Weibull interarrival times and geometric message lengths at light and medium
loads. Near saturation the mean average waiting times for PLAYTHROUGH
ring under exponential interarrival times and Weibull message lengths becomes

greater than the mean average waiting times for PLAYTHROUGH ring under

Weibull interarrival times and geometric message lengths.
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Figure 5.11: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 10000 characters. Comparison for
different assumptions.

Figure 5.11, Figure 5.12, and Figure 5.13 show the average mean waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths, Weibull interarrival times and geometric message
lengths, and exponential interarrival times and Weibull message lengths for an
N = 30-station PLAYTHROUGH ring with average message lengths of 10000,
5000, and 1000 characters. The shape parameter ¢ of the Weibull distribution is
assumed to be equal to 0.6. At heavy loads, the average message waiting time

for PLAYTHROUGH ring with expontial interarrival times and Weibull

message lengths is greater than the average waiting time for PLAYTHROUGH
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Figure 5.12: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

ring with Weibull interarrival times and geometric message lengths. In addition,
at heavy loads, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be greater than the
average waiting time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths. In fact, the average message waiting time
for PLAYTHROUGH ring with expontial interarrival times and Weibull
message lengths appears to be strictly greater than the average waiting time for

PLAYTHROUGH ring with Weibull interarrival times and geometric message

lengths for all load values in Figure 5.11, Figure 5.12, and Figure 5.13.
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Figure 5.13: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

Moreover, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be strictly greater
than the average waiting time for PLAYTHROUGH ring under exponential

interarrival times and geometric message lengths for all loads in Figure 5.11,

Figure 5.12, and Figure 5.13.
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Figure 5.14: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 10000 characters. Comparison for
different assumptions.

Figure 5.14, Figure 5.15, Figure 5.16 show the average mean waiting times
for PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths, Weibull interarrival times and geometric message lengths, and
exponential interarrival times and Weibull message lengths for an
N = 50-station PLAYTHROUGH ring with average message lengths of 10000,
5000, and 1000 characters. The shape parameter ¢ of the Weibull distribution is
assumed to be equal to 0.6. At heavy loads, the average message waiting time

for PLAYTHROUGH ring with expontial interarrival times and Weibull

message lengths is greater than the average waiting time for PLAYTHROUGH
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Figure 5.15: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

ring with Weibull interarrival times and geometric message lengths. In addition,
at heavy loads, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be greater than the
average waiting time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths. In fact, the average message waiting time
for PLAYTHROUGH ring with expontial interarrival times and Weibull
message lengths appears to be strictly greater than the average waiting time for

PLAYTHROUGH ring with Weibull interarrival times and geometric message

lengths for all load values in Figure 5.14, Figure 5.15, and Figure 5.16.
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Figure 5.16: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.
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Figure 5.17: Mean message waiting time E [W] vs. offered load AE [M] for
N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

Figure 5.17, Figure 5.18, and Figure 5.19 depict the average mean waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths, Weibull interarrival times and geometric message
lengths, and exponential interarrival times and Weibull message lengths for an
N = 3 PLAYTHROUGH ring with average message lengths of 5000, 1000, and
100 characters. The shape parameter ¢ of the Weibull distribution is assumed to
be equal to 0.4. The plots show that at heavy loads the average message waiting

time for PLAYTHROUGH ring with exponential interarrival times and Weibull

message lengths is greater than the average waiting time for PLAYTHROUGH
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Figure 5.18: Mean message waiting time E [W] vs. offered load AE [M] for

N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

ring with Weibull interarrival times and geometric message lengths. In addition,
at heavy loads, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be greater than the
average waiting time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths. In fact, only at light load does average
waiting time for the PLAYTHROUGH ring under Weibull interarrival times
and geometric message lengths appear to be greater than average waiting times

for the PLAYTHROUGH ring under exponential interarrival times and Weibull

messge lengths in Figure 5.17, Figure 5.18, and Figure 5.19.
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Figure 5.19: Mean message waiting time E [W] vs. offered load AE [M] for
N = 3 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 100 characters. Comparison for
different assumptions.
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Figure 5.20: Mean message waiting time E [W] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

Figure 5.20 and Figure 5.21 show the average mean waiting times for
PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths, Weibull interarrival times and geometric message lengths, and
exponential interarrival times and Weibull message lengths for an N = 10
PLAYTHROUGH ring with average message lengths of 5000, 1000, and 100
characters. The shape parameter ¢ of the Weibull distribution is assumed to be
equal to 0.4. The plots show that at heavy loads the average message waiting

time for PLAYTHROUGH ring with exponential interarrival times and Weibull

message lengths is greater than the average waiting time for PLAYTHROUGH
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Figure 5.21: Mean message waiting time E [W] vs. offered load AE [M] for

N =10 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

ring with Weibull interarrival times and geometric message lengths. In addition,
at heavy loads, the average waiting time for PLAYTHROUGH under Weibull
interarrival times and geometric message lengths appears to be greater than the
average waiting time for PLAYTHROUGH ring under exponential interarrival
times and geometric message lengths. In fact, only at light load does average
waiting time for the PLAYTHROUGH ring under Weibull interarrival times
and geometric message lengths appear to be greater than average waiting times

for the PLAYTHROUGH ring under exponential interarrival times and Weibull

messge lengths in Figure 5.20 and Figure 5.21.
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Figure 5.22: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

Figure 5.22, Figure 5.23, and Figure 5.24 show the average mean waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths, Weibull interarrival times and geometric message
lengths, and exponential interarrival times and Weibull message lengths for an
N = 20-station PLAYTHROUGH ring with average message lengths of 5000,
1000, and 100 characters. The shape parameter ¢ of the Weibull distribution is
assumed to be equal to 0.4. The plots show that at heavy loads the average

message waiting time for PLAYTHROUGH ring with exponential interarrival

times and Weibull message lengths is greater than the average waiting time for
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Figure 5.23: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

PLAYTHROUGH ring with Weibull interarrival times and geometric message
lengths. In addition, at heavy loads, the average waiting time for
PLAYTHROUGH under Weibull interarrival times and geometric message
lengths appears to be greater than the average waiting time for
PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths. In fact, only at light load does average waiting time for the
PLAYTHROUGH ring under Weibull interarrival times and geometric message

lengths appear to be greater than average waiting times for the

PLAYTHROUGH ring under exponential interarrival times and Weibull messge
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Figure 5.24: Mean message waiting time E [W] vs. offered load AE [M] for

N = 20 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 100 characters. Comparison for
different assumptions.

lengths in Figure 5.22, Figure 5.23, and Figure 5.24. At heavy load, the
discrepency between the average waiting time for PLAYTHROUGH under
Weibull interarrival times and geometric message and the average message
waiting time for PLAYTHROUGH ring with exponential interarrival times and
Weibull message lengths is larger than that observed in Figure 5.8, Figure 5.9,

and Figure 5.10, where the shape parameter was assumed to be 0.6.
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Figure 5.25: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 10000 characters. Comparison for
different assumptions.

Figure 5.25, Figure 5.26, and Figure 5.27 show the average mean waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths, Weibull interarrival times and geometric message
lengths, and exponential interarrival times and Weibull message lengths for an
N = 30-station PLAYTHROUGH ring with average message lengths of 10000,
5000, and 1000 characters. The shape parameter ¢ of the Weibull distribution is
assumed to be equal to 0.4. The plots show that at heavy loads the average

message waiting time for PLAYTHROUGH ring with exponential interarrival

times and Weibull message lengths is greater than the average waiting time for
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Figure 5.26: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

PLAYTHROUGH ring with Weibull interarrival times and geometric message
lengths. In addition, at heavy loads, the average waiting time for
PLAYTHROUGH under Weibull interarrival times and geometric message
lengths appears to be greater than the average waiting time for
PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths. At heavy load, the discrepency between the average waiting
time for PLAYTHROUGH under Weibull interarrival times and geometric
message and the average message waiting time for PLAYTHROUGH ring with

exponential interarrival times and Weibull message lengths is larger than that
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Figure 5.27: Mean message waiting time E [W] vs. offered load AE [M] for

N = 30 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

observed in Figure 5.11, Figure 5.12, and Figure 5.13, where the shape

parameter was assumed to be 0.6.
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Figure 5.28: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 10000 characters. Comparison for
different assumptions.

Figure 5.25, Figure 5.26, and Figure 5.27 show the average mean waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths, Weibull interarrival times and geometric message
lengths, and exponential interarrival times and Weibull message lengths. The
number of stations N on the PLAYTHROUGH ring is assumed to be 50 and
the average message lengths are 10000, 5000, and 1000 characters. The shape
parameter ¢ of the Weibull distribution is assumed to be equal to 0.4. The plots

show that at heavy loads the average message waiting time for

PLAYTHROUGH ring with exponential interarrival times and Weibull message
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Figure 5.29: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 5000 characters. Comparison for
different assumptions.

lengths is greater than the average waiting time for PLAYTHROUGH ring with
Weibull interarrival times and geometric message lengths. In addition, at heavy
loads, the average waiting time for PLAYTHROUGH under Weibull interarrival
times and geometric message lengths appears to be greater than the average
waiting time for PLAYTHROUGH ring under exponential interarrival times
and geometric message lengths. At heavy load, the discrepency between the
average waiting time for PLAYTHROUGH under Weibull interarrival times and
geometric message and the average message waiting time for PLAYTHROUGH

ring with exponential interarrival times and Weibull message lengths is larger
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Figure 5.30: Mean message waiting time E [W] vs. offered load AE [M] for

N = 50 station simplex PLAYTHROUGH ring, uniform and symmetric traffic
(UST), and mean message length E'[M] = 1000 characters. Comparison for
different assumptions.

than that observed in Figure 5.14, Figure 5.15, and Figure 5.16, where the

shape parameter was assumed to be 0.6.
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5.6 Conclusions

In this chapter, we proved analytically that at heavy loads mean waiting times
for PLAYTHROUGH ring under Weibull interarrival times and geometric
message lengths can be bounded. We showed that mean waiting times for
PLAYTHROUGH ring under exponential interarrival times and Weibull
message lengths are upper bounds to mean waiting times for PLAYTHROUGH
ring under Weibull interarrival times and geometric message lengths at heavy
load, with the same mean interarrival times and the same mean message
lengths. Furthermore, we showed that mean waiting times for PLAYTHROUGH
ring under exponential interarrival times and geometric message lengths are
lower bounds to mean waiting times for PLAYTHROUGH ring under Weibull
interarrival times and geometric message lengths at heavy load, with the same

mean interarrival times and the same mean message lengths.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Summary of Contributions

This research made contribution in many areas. The first contribution, found in
Chapter 3, is the simulations of message waiting time in PLAYTHROUGH ring
under self-similar traffic. The second contribution, found in Chapter 4, is a
suite of analytical approximations for various parameters of PLAYTHROUGH
ring under exponential interarrival times and Weibull message lengths. No prior
analytical models for PLAYTHROUGH ring under self-similar traffic have been
presented. The third contribution, found in Chapter 5, is the establishment of
upper and lower bounds for waiting times in PLAYTHROUGH ring under
Weibull interarrival times and geometric message lengths. Queueing problems
involving Weibull interarrival times have been shown to be very difficult to
solve. This work represents an original way of bounding waiting time for
PLAYTHROUGH ring under Weibull interarrival times and geometric message
lengths.

The first contribution made by this work is the simulation of the
performance of PLAYTHROUGH ring under self-similar traffic. Self-similar
traffic can be generated using heavy-tailed distributions. Feldmann made
measurements on local networks which revealed that the Weibull distribution

with shape parameters ranging from 0.4 to 0.6 was most suitable for modeling
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TCP connection interarrival times. Park, Kim and Crovella showed that the
reliable transfer of files whoses sizes are drawn from heavy-tailed distributions
causes self-similar traffic. Based on those works, simulation results for message
waiting times in PLAYTHROUGH ring under Weibull interarrival times and
geometric message lengths were presented. In addition, simulation results for
message waiting times in PLAYTHROUGH ring under exponential interarrival
times and Weibull message lengths were presented. Those simulation results
show waiting times that are worse than those obtained for PLAYTHROUGH
ring under exponential interarrival times and geometric message lengths, which
had always been assumed prior to this work.

The second contribution of this research is a suite of analytical
approximations for various performance parameters in PLAYTHROUGH ring
when it operates under exponential interarrival times and Weibull message
lengths. The average number of round trips of GO required to transmit a
message is approximated. A tight upper bound for the average number of round
trips of GO required to transmit a message was found. This tight upper bound
of the average number of round trips of GO required to transmit a message was
used to approximate the average number of round trips of GO. Higher moments
of the number of round trips of GO were found. An approximation for the
moments of basic transmission time and basic service time were found using the
moments of the number of round trips of GO. It was shown that prior models
for the control frame interruption rate are applicable when message interarrival
times are exponentially distributed and message lengths are Weibull
distributed. An approximation was given for the control frame round trip time.
Models were presented for transmission and service time. A new and elaborate

model was given for the first and second moment of blocking duration. A model
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for average message waiting time was derived based on the operation of
PLAYTHROUGH ring.

The third contribution achieved by this research was the establishment of
analytical bounds for mean message waiting time for PLAYTHROUGH ring
under Weibull interarrival times and geometric message lengths at heavy loads.
The fact that the Laplace transform of the Weibull distribution does not have a
closed form renders the problem of finding an analytical model for waiting times
in PLAYTHROUGH ring under Weibull interarrival times and geometric
message lengths highly intractable. We expect the waiting time in a queueing
system to become unstable at heavy loads. Thus, finding analytical bounds at
heavy loads on the mean message waiting time in PLAYTHROUGH ring under
Weibull interarrival times and geometric message lengths is a very significant
result. We showed that at heavy loads, the waiting time of PLAYTHROUGH
ring under exponential interarrival times and Weibull message lengths is an
upper bound to the waiting time of PLAYTHROUGH ring under Weibull
interarrival times and geometric message lengths. We also showed that waiting
times for PLAYTHROUGH ring under exponential interarrival times and
geometric message lengths are lower bounds to the waiting time for
PLAYTHROUGH ring under Weibull interarrival times and geometric message
lengths at heavy loads. These analytical proofs were validated by simulation

results.

6.2 Suggestions for Further Research

Throughout this dissertation, we considered uniform and symmetric traffic.
Uniform traffic implies that each station transmits the same amount of traffic.

Symmetric traffic means that each station transmits to any other station on the
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ring with the same probability. Often, a server, which transmits more traffic
than other stations, may be present on the ring. This would result in
asymmetric traffic. In addition, all stations on the ring may not have the same
mean message lengths and the same arrival rates. The results presented in this
dissertation may be extendable to nonuniform or asymmetric traffic.

In Chapter 5 we showed analytically that at heavy loads waiting times for
messages in PLAYTHROUGH ring under Weibull message interarrival times
and geometric message lengths are less than mean waiting times for messages in
PLAYTHROUGH ring under exponential interarrival times and Weibull
message lengths. We also showed analytically that, at heavy loads, waiting
times for messages in PLAYTHROUGH ring under Weibull message interarrival
times and geometric message lengths are greater than mean waiting times for
PLAYTHROUGH ring under exponential interarrival times and geometric
message lengths. It might be possible to achieve more precision as to where
those results holds. In addition, it might be possible to determine the
conditions under which those results hold for all loads, not just heavy loads.

Finding solutions to queueing problems involving Weibull interarrival times
is a topic of ongoing research. With new findings in this area, it may be
possible to find more precise analytical approximations for waiting times in
PLAYTHROUGH ring under Weibull interarrival times and geometric message
lengths.
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APPENDIX A

STOCHASTIC IDENTITIES

Some useful stochastic identities are listed in the following sections.

A.1 Probability Identities

Let A and B be two mutually exclusive events, where AN B = (. The

conditional probability that A occurs given B does not occur is
Pr[ANE]
Pr [B}
Pr|A]
Pr [B]
Pr|A]
1— Pr(B]

Pr[A|B] =

A.2 Transform Identities

We give some transform identities that were presented by Kleinrock [Kle75].
Let X be a random variable with probability distribution function
Fx(z) = Pr X < z] and Laplace-Stieltjes transform X*(s). The moment

generating property of the Laplace-Stieltjes transform is given by:

B =
= (=1)"X*™(0). (A.2)

If X is a discrete random variable with probability mass function

gr = Pr[X = k] and probability generating function X (z), the following
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identities are true.

X1) =1 (A.3)
X'(1) = E[X] (A.4)
X'1) = E(X(X-1)]=E[X? - E[X] (A.5)

X'(1) = EX(X-1)(X-2)]=E[X°] -3E[X?| +2E[X] (A.6)

XM1) = FX(X-1)(X-2)---(X—n+1)], n=4,56,... (A.7)
A.3 Generating Function Identities

The following identities involving probability generating functions are derived.

Y fidd = f(z) - fo. (A.8)

j=1 k=1 k=1 j=k
- (Zot) (2 1)
k=1 j—k=0
= f(2)[9(2) — g0] - (A.9)
oo j+1 . o] 0 .
SN fiwngd = )Y fickaged — fom
j=1 k=1 k=1 j=k—1

I
N
M2

N

kzk) ( Z fjk+12j_k+1> — fog

= Z_lf(z) [9(2) — go] — fog (A.10)
2.2 fiwngd = 27 () [9(2) - gl (A.11)
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APPENDIX B

DERIVATIVE CALCULATIONS FOR WAITING TIME MODEL

The following are derivatives of some variables used in Chapter 4 Section 4.7.

i) = fu (B.1)
R = o (.2
R)(z) = o. (B.3)
Ri) = fu (B4
R,(1) = 0. (B.5)
R,(1) = 0. (B.6)
H(z) = - Aq(2)Ry4(2) (B.7)
B = Y [Ad2)Ri(o) + ARz B3
1'(2) = 3 [AdDRA) + 20BN + LoR)] . (B9)
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(B.10)

(1)(fd) =L

(B.11)

—~~
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| — |
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N
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—~
—
N
T
<
+ T
—~~ ~
) —_
/D.:m.a /(,m
; s
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= +
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_ ~
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(B.13)

(B.14)

(B.15)
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i

L = 3 |k
ro = Y[R
_ 0
L'y = Y[R
- 0.

X(2) = [fd [B) 1]

X)) = fB@)
') = [fB'(2)
X() = [f][BO)-1

= fll-1]=0.
X(1) = B
X)) = [fB'(1)
= 1-2"'H(2)
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APPENDIX C

MEAN RESIDUAL TIME OF A WEIBULL DISTRIBUTED RANDOM

VARIABLE

Let X be a Weibull distributed random variable with shape parameter ¢ and

scale parameter a. The mean residual time of the random variable X is given

by:

E[X?]
2F [X]
ok + B[X]’

2F [X]

ok ENXT
2F [X]  2F[X]
E[X’]-E[X]"  E[X]

2F [X] 2
?T(1+2)-T2(1+1) F[X]
2aT(1+ 1) 2

a?(2M2(1+ 1) —T2(1+1)  E[X]

20T (14 %) 2
E(X]  E[X]
2 2
E[X],

where we use the inequality:

I(1+2)
r(1+1)

5> >2 for 0<c<1

E[x?]

from Equation 5.18. Hence, 77~ > E [X].

' 2E[X]
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