University of Maryland College Park

Institute for Advanced Computer Studies TR-2003-90
Department of Computer Science TR-4522

Memory Leaks in Derived Types Revisited*

G. W. Stewart!
August 2003

ABSTRACT
In a note in the Fortran Forum, Markus describes a technique for avoid-
ing memory leaks with derived types. In this note, we show by a simple
example that this technique does not work when the object in question is
a parameter in nested subprogram invocations. A fix is proposed and il-
lustrated with code from MATRAN, a Fortran 95 package for performing
matrix manipulations.

*This report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports
or on the web at http://www.cs.umd.edu/~stewart/.

tDepartment of Computer Science and Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD 20742 (stewart@cs.umd.edu). This work was supported in part by the National
Science Foundation under grant CCR0204084.






Memory Leaks in Derived Types Revisited
G. W. Stewart

ABSTRACT

In a note in the Fortran Forum, Markus describes a technique for avoid-
ing memory leaks with derived types. In this note, we show by a simple
example that this technique does not work when the object in question is
a parameter in nested subprogram invocations. A fix is proposed and il-
lustrated with code from MATRAN, a Fortran 95 package for performing
matrix manipulations.

In a note in the Fortran Forum, Markus (2003) describes a technique for avoiding
memory leaks with derived types. Such leaks may occur when a temporary type is
generated in the course of evaluating an expression. For example, suppose we have a
derived type Rmat implementing a matrix stored in a real rectangular pointer array and
we have overloded + and = so that

C=A+8B

computes the matrix sum of A and B and assigns it to C. The function implementing +
will create a temporary Rmat to hold the sum pending assignment. Fortran will remove
this temporary after the assignment, but it will not deallocate the storage for the matrix.
Hence the memory leak.

Markus’s solution to this problem is to augment the defined type in question with
a logical component:

logical :: tmp = .false.

The function implementing + sets the tmp component of the result to .true.. The
subroutine implementing the assignment tests the component and if it is .true. deal-
locates the storage for the matrix. (Markus also points out that this dodge will not be
necessary in Fortran 2000, where defined types can have allocatable components.)

Unfortunately, this simple solution does not work when nested subprogram invoca-
tions are involved. For example, consider what happens when Markus’s procedure is
used in the following code fragment.

type Rmat :: A, B, C
call foo(A + B, C)



subroutine foo(X, Y)

type Rmat intent(in) :: X
type Rmat intent(inout) :: Y
Y=X

Y=X+Y

According to Markus’s procedure, in the subroutine foo the parameter X is flagged as
temporary, since the actual parameter is the result of evaluating an expression. Hence,
the pointer array for X will be deallocated by the subroutine implementing the assign-
ment Y = X, and foo will fail trying to compute

Y=X+Y

Thus any solution to the problem of temporaries must take into account nested invoca-
tions of subroutines and functions.

In this note we present the solution used in MATRAN (pronounced MAYtran),
a Fortran 95 wrapper that implements matrix operations and decompositions using
the BLAS and LAPACK. (Stewart, 2003. A preliminary version of MATRAN can
be obtained via the author’s home page www.cs.umd.edu/ stewart.) The idea is to
maintain a counter that tracks the depth of subprogram invocations.

Here is the type Rmat from MATRAN.

type Rmat

real(wp), pointer & ! The matrix array

i a(:,:) = null() !
integer :: nrow = 0 ! Number of rows in the matrix
integer :: ncol =0 ! Number of columns in the matrix
integer :: narow = 0 ! Number of rows in the array
integer :: mnacol =0 ! Number of columns in the array
character(2) & ! Type of matrix

: tag = ’GE’ !
logical :: adjustable =.true. ! Adjustable array
integer, pointer & ! Intermediate value

: temporary => null()
end type Rmat

The component we are interested in is the integer pointer temporary. It is initialized to
null (), which indicates that the Rmat is question is not a temporary. We will explain
in a moment why we use an integer pointer rather than an integer.

The status of temporary can be set using the following subroutine.



subroutine SetTemp(A)
type(Rmat), intent(inout) :: A
if (.not.associated(A)temporary)) &
allocate (A/temporary)
Al temporary = 1
end subroutine SetTemp

When a subroutine or function is invoked, one executes the following subroutine for
each Rmat that is possibly a temporary

subroutine GuardTemp(A)
type(Rmat) :: A
integer, pointer :: t
if (associated(AY%temporary)) then
t=>A%temporary
t=1t+1
end if
end subroutine GuardTemp

This subroutine simply increases the depth count by one. Just before returning one
calls the following subroutine, once for each Rmat for which GuardTemp was called.

subroutine CleanTemp(A)
type(Rmat) :: A
integer, pointer :: t
real(wp), pointer :: s(:,:)
if (associated(A%temporary)) then
t=>A%temporary
if(t>1) t=t-1
if (¢t == 1) then
s=>A%a
deallocate(s)
deallocate(t)
end if
end if
end subroutine CleanTemp

If A is temporary, the depth count is decreased by one (if it is not already one). If, after
decrementation, the depth count is one, the pointers in A are deallocated. Note that if
there is only one level of nesting, the call to GuardTemp can be skipped, though it is not
recommended practice



The reason for using an integer pointer for the depth count is that in subprograms
implementing operations and assignments, some of the parameters must be specified as
having intent (in). As it turns out, some compilers are quite assiduous in tracking
down violations of intent. However, while it is not permitted to change a pointer
component of a parameter with intent (in), it is permissible to change the object that
it points to.

To illustrate the use of these routines, here is the subroutine that implements matrix
assignments in MATRAN.

subroutine RmEqualsRm(A, B)
type(Rmat), intent(inout) :: A
type(Rmat), intent(in) :: B
call GuardTemp(B)
call ReshapeAry(A, BYnrow, Blncol)
A%ha(l:A¥%nrow, 1:A%ncol) = BY%a(l:BYnrow,1:Bjncol)
AYtag = Bltag
call CleanTemp(B)
end subroutine RmEqualsRm

The subroutine is straightforward. After the call to GuardTemp, the call to ReshapeAry
makes sure that A has enough storage allocated to receive B. Then B’s array is copied
to A’s, and A inherits B’s tag component, which tells whether the matrix is general,
triangular, symmetric, etc. CleanTemp then deallocates B, if necessary.

This scheme for avoiding memory leaks has been tested on a number of different
compilers and appears to work satisfactorily.

I would like to thank John Reid for his useful correspondence on this topic. Part of
this work was performed as faculty appointee at the Mathematical and Computational
Sciences Division of the National Institute for Standards and Technology.

References

A. Markus. Avoiding memory leaks with derived types, Fortran Forum 22:2 (2003) 1-6.

G. W. Stewart. MATRAN: A Fortran 95 Matrix Wrapper, University of Maryland,
Department of Computer Science Technical Report 4522 (2003).



