
University of Maryland College ParkInstitute for Advan
ed Computer Studies TR{2003{90Department of Computer S
ien
e TR{4522
Memory Leaks in Derived Types Revisited�G. W. StewartyAugust 2003ABSTRACTIn a note in the Fortran Forum, Markus des
ribes a te
hnique for avoid-ing memory leaks with derived types. In this note, we show by a simpleexample that this te
hnique does not work when the obje
t in question isa parameter in nested subprogram invo
ations. A �x is proposed and il-lustrated with 
ode from MATRAN, a Fortran 95 pa
kage for performingmatrix manipulations.

�This report is available by anonymous ftp from thales.
s.umd.edu in the dire
tory pub/reportsor on the web at http://www.
s.umd.edu/�stewart/.yDepartment of Computer S
ien
e and Institute for Advan
ed Computer Studies, University of Mary-land, College Park, MD 20742 (stewart�
s.umd.edu). This work was supported in part by the NationalS
ien
e Foundation under grant CCR0204084.





Memory Leaks in Derived Types RevisitedG. W. StewartABSTRACTIn a note in the Fortran Forum, Markus des
ribes a te
hnique for avoid-ing memory leaks with derived types. In this note, we show by a simpleexample that this te
hnique does not work when the obje
t in question isa parameter in nested subprogram invo
ations. A �x is proposed and il-lustrated with 
ode from MATRAN, a Fortran 95 pa
kage for performingmatrix manipulations.In a note in the Fortran Forum, Markus (2003) des
ribes a te
hnique for avoidingmemory leaks with derived types. Su
h leaks may o

ur when a temporary type isgenerated in the 
ourse of evaluating an expression. For example, suppose we have aderived type Rmat implementing a matrix stored in a real re
tangular pointer array andwe have overloded + and = so thatC = A + B
omputes the matrix sum of A and B and assigns it to C. The fun
tion implementing +will 
reate a temporary Rmat to hold the sum pending assignment. Fortran will removethis temporary after the assignment, but it will not deallo
ate the storage for the matrix.Hen
e the memory leak.Markus's solution to this problem is to augment the de�ned type in question witha logi
al 
omponent:logi
al :: tmp = .false.The fun
tion implementing + sets the tmp 
omponent of the result to .true.. Thesubroutine implementing the assignment tests the 
omponent and if it is .true. deal-lo
ates the storage for the matrix. (Markus also points out that this dodge will not bene
essary in Fortran 2000, where de�ned types 
an have allo
atable 
omponents.)Unfortunately, this simple solution does not work when nested subprogram invo
a-tions are involved. For example, 
onsider what happens when Markus's pro
edure isused in the following 
ode fragment.type Rmat :: A, B, C
all foo(A + B, C)... 3



4 subroutine foo(X, Y)type Rmat intent(in) :: Xtype Rmat intent(inout) :: YY = XY = X + Y...A

ording to Markus's pro
edure, in the subroutine foo the parameter X is 
agged astemporary, sin
e the a
tual parameter is the result of evaluating an expression. Hen
e,the pointer array for X will be deallo
ated by the subroutine implementing the assign-ment Y = X, and foo will fail trying to 
omputeY = X + YThus any solution to the problem of temporaries must take into a

ount nested invo
a-tions of subroutines and fun
tions.In this note we present the solution used in MATRAN (pronoun
ed MAYtran),a Fortran 95 wrapper that implements matrix operations and de
ompositions usingthe BLAS and LAPACK. (Stewart, 2003. A preliminary version of MATRAN 
anbe obtained via the author's home page www.
s.umd.edu/~stewart.) The idea is tomaintain a 
ounter that tra
ks the depth of subprogram invo
ations.Here is the type Rmat from MATRAN.type Rmatreal(wp), pointer & ! The matrix array:: a(:,:) => null() !integer :: nrow = 0 ! Number of rows in the matrixinteger :: n
ol = 0 ! Number of 
olumns in the matrixinteger :: narow = 0 ! Number of rows in the arrayinteger :: na
ol = 0 ! Number of 
olumns in the array
hara
ter(2) & ! Type of matrix:: tag = 'GE' !logi
al :: adjustable =.true. ! Adjustable arrayinteger, pointer & ! Intermediate value:: temporary => null()end type RmatThe 
omponent we are interested in is the integer pointer temporary. It is initialized tonull(), whi
h indi
ates that the Rmat is question is not a temporary. We will explainin a moment why we use an integer pointer rather than an integer.The status of temporary 
an be set using the following subroutine.



5subroutine SetTemp(A)type(Rmat), intent(inout) :: Aif(.not.asso
iated(A%temporary)) &allo
ate(A%temporary)A%temporary = 1end subroutine SetTempWhen a subroutine or fun
tion is invoked, one exe
utes the following subroutine forea
h Rmat that is possibly a temporarysubroutine GuardTemp(A)type(Rmat) :: Ainteger, pointer :: tif(asso
iated(A%temporary)) thent=>A%temporaryt = t + 1end ifend subroutine GuardTempThis subroutine simply in
reases the depth 
ount by one. Just before returning one
alls the following subroutine, on
e for ea
h Rmat for whi
h GuardTemp was 
alled.subroutine CleanTemp(A)type(Rmat) :: Ainteger, pointer :: treal(wp), pointer :: s(:,:)if(asso
iated(A%temporary)) thent=>A%temporaryif(t > 1) t = t - 1if (t == 1) thens=>A%adeallo
ate(s)deallo
ate(t)end ifend ifend subroutine CleanTempIf A is temporary, the depth 
ount is de
reased by one (if it is not already one). If, afterde
rementation, the depth 
ount is one, the pointers in A are deallo
ated. Note that ifthere is only one level of nesting, the 
all to GuardTemp 
an be skipped, though it is notre
ommended pra
ti
e.



6 The reason for using an integer pointer for the depth 
ount is that in subprogramsimplementing operations and assignments, some of the parameters must be spe
i�ed ashaving intent(in). As it turns out, some 
ompilers are quite assiduous in tra
kingdown violations of intent. However, while it is not permitted to 
hange a pointer
omponent of a parameter with intent(in), it is permissible to 
hange the obje
t thatit points to.To illustrate the use of these routines, here is the subroutine that implements matrixassignments in MATRAN.subroutine RmEqualsRm(A, B)type(Rmat), intent(inout) :: Atype(Rmat), intent(in) :: B
all GuardTemp(B)
all ReshapeAry(A, B%nrow, B%n
ol)A%a(1:A%nrow, 1:A%n
ol) = B%a(1:B%nrow,1:B%n
ol)A%tag = B%tag
all CleanTemp(B)end subroutine RmEqualsRmThe subroutine is straightforward. After the 
all to GuardTemp, the 
all to ReshapeArymakes sure that A has enough storage allo
ated to re
eive B. Then B's array is 
opiedto A's, and A inherits B's tag 
omponent, whi
h tells whether the matrix is general,triangular, symmetri
, et
. CleanTemp then deallo
ates B, if ne
essary.This s
heme for avoiding memory leaks has been tested on a number of di�erent
ompilers and appears to work satisfa
torily.I would like to thank John Reid for his useful 
orresponden
e on this topi
. Part ofthis work was performed as fa
ulty appointee at the Mathemati
al and ComputationalS
ien
es Division of the National Institute for Standards and Te
hnology.Referen
esA. Markus. Avoiding memory leaks with derived types, Fortran Forum 22:2 (2003) 1{6.G. W. Stewart. MATRAN: A Fortran 95 Matrix Wrapper, University of Maryland,Department of Computer S
ien
e Te
hni
al Report 4522 (2003).


