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A vast amount of the statistical literature deals with a single sample coming

from a distribution where the problem is to make inferences about the distribution

by estimation and testing procedures. Data fusion is a process of integrating multi-

ple data sources in the hope of getting more accurate inference than that provided

by a single data sources, the expectation being that fused data are more informative

than the individual original inputs. This requires appropriate statistical methods

which can provide inference by using multiple data sources as input. The Density

Ratio Model is a model which allows semiparametric inference about probability

distributions from fused data. In this dissertation, we will discuss three different

types of problems based on the Density Ratio Model. We will discuss the situation

where there is a system of sensors, each producing data according to some prob-

ability distribution. The parametric connection between the distributions allows

various hypothesis tests including that of equidistribution, which are very helpful in

detecting abnormalities in mechanical systems. Another example of a data fusion

problem is the small area estimation where borrowing strength occurs by using all



data from all areas where information is available. Real data can be fused with

other real data, or even with artificial data. Thus, a given sample can be fused with

computer-generated data giving rise to the concept of out of sample fusion(OSF).

We will see that this approach is very helpful when estimating a small threshold

exceedance probability when the sample size is not large enough and consisting of

values below the threshold.

This dissertation is organized as follows: In Chapter One, an overview of the

Density Ratio Model will be given. Chapter Two discusses applications of the data

fusion idea in mechanical quality control. Chapter Three discusses the small area

estimation problems where we propose a new way to estimate small area quantiles.

Chapter Four gives an overview of Extreme Value Theory. Chapter Five describes

the ideas of Out of Sample Fusion (OSF) and Repeated Out of Sample Fusion

(ROSF). Chapter Six gives a new iteration method to estimate small threshold

exceedance probability.
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1.6.2 Asymptotic Theory for Ĝ . . . . . . . . . . . . . . . . . . . . 9

1.7 Goodness of Fit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Semiparametric Quality Control 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A Semiparametric Method . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Application to Motor Testing . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Application to Ball Bearing Testing . . . . . . . . . . . . . . . . . . . 24
2.5 Goodness of Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 ∆n statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 In statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



2.5.3 Goodness of Fit Applied to Motor and Bearing Data . . . . . 28
2.6 The Bivariate Extension . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Bivariate Normal Example . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Likelihood Considerations . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Diagnostic Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.11 Application to Ball Bearing Testing . . . . . . . . . . . . . . . . . . . 37
2.12 Application to Motor Testing . . . . . . . . . . . . . . . . . . . . . . 41
2.13 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Small Area Estimation 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Small Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Density Ratio Models in Small Area Estimation . . . . . . . . . . . . 48
3.4 Dealing with missing data . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Missing covariates . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Missing variable of interest . . . . . . . . . . . . . . . . . . . . 51

3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 LANDSAT data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Extreme Value Theory 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Block Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Peaks Over Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Out of Sample Fusion and Repeated Out of Sample Fusion 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Out of Sample Fusion in Estimation of Threshold Probabilities . . . . 62
5.3 Repeated Out of Sample Fusion . . . . . . . . . . . . . . . . . . . . . 63

6 Iterative Method 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 A Note about Extremes . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 ROSF and the B-Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.1 Getting Upper Bounds by Data Fusion . . . . . . . . . . . . . 75
6.5 Capturing a Point on the B-Curve . . . . . . . . . . . . . . . . . . . . 79

6.5.1 Illustrations of an Iterative Process . . . . . . . . . . . . . . . 81
6.5.1.1 Lognormal(1,1) . . . . . . . . . . . . . . . . . . . . . 82
6.5.1.2 Lognormal(0,1) . . . . . . . . . . . . . . . . . . . . . 84
6.5.1.3 Mercury . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.1.4 Lead Intake . . . . . . . . . . . . . . . . . . . . . . . 87

6.5.2 Explaining the Convergence . . . . . . . . . . . . . . . . . . . 90

vi



6.6 Comparison: ROFS vs POT . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1 Comparison Tables . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Simulation Description 101

Bibliography 103

vii



List of Tables

2.1 BadX275 versus GoodX098 . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 BadX279 versus GoodX098 . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 GoodX098 versus GoodX098 . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Three Healthy Signatures . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 A Single “Bad” Signature . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Two “Bad” Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Simulation 1, m=10, N=100, fused with Norm(0,1) with size nk . . . 52
3.2 Simulation 2, m=10, N=100, fused with Norm(0,1) with size nk . . . 53
3.3 Simulation 3, m=10, N=100, fused with Norm(0,1) with size nk . . . 53
3.4 Quantile estimates for Corn in 12 Iowa Counties . . . . . . . . . . . . 54
3.5 Quantiles estimates for Soybeans in 12 Iowa Counties . . . . . . . . . 54

6.1 X0 ∼ t(1) : p = 1 − G(T ) = 0.001, T = 631.8645, X1 ∼ Unif(0,800),
n0 = n1, h(x) = (x, log x). p-increment 0.0001. . . . . . . . . . . . . . 94

6.2 X0 ∼ Weibull(1, 2) : p = 1 − G(T ) = 0.001, T = 13.81551, X1 ∼
Unif(0,16), n0 = n1, h(x) = (x, log x). p-increment 0.00005. . . . . . . 94

6.3 X0 ∼ Pareto(1, 4) : p = 1 − G(T ) = 0.001, T = 5.623413, X1 ∼
Unif(1,8), n0 = n1, h(x) = (x, log x). p-increment 0.0001. . . . . . . . . 94

6.4 X0 ∼ Gamma(3, 1) : p = 1 − G(T ) = 0.001, T = 11.22887, X1 ∼
Unif(0,20), n0 = n1, h(x) = (x, log x). p-increment 0.00005. . . . . . . 94

6.5 X0 ∼ F(2, 12) : p = 1−G(T ) = 0.001, T = 12.97367, X1 ∼ Unif(0,16),
n0 = n1, h(x) = (x, log x). p-increment 0.00005. . . . . . . . . . . . . . 95

6.6 X0 ∼ IG(2, 40) : p = 1 − G(T ) = 0.001, T = 3.835791, X1 ∼
Unif(0,8), n0 = n1, h(x) = (x, log x). p-increment 0.00005. . . . . . . . 95

6.7 X0 ∼ IG(4, 5) : p = 1−G(T ) = 0.001, T = 28.95409, X1 ∼Unif(0,35),
n0 = n1, h(x) = (x, log x). p-increment 0.00005. . . . . . . . . . . . . . 95

6.8 X0 ∼ LN(0, 1) : p = 1 − G(T ) = 0.001, T = 21.98218, X1 ∼
Unif(1,60), n0 = n1, h(x) = (x, log x). p-increment 0.00005. . . . . . . 95

6.9 X0 ∼ LN(1, 1) : p = 1 − G(T ) = 0.001, T = 59.75377, X1 ∼
Unif(1,140), n0 = n1, h(x) = (x, log x). p-increment 0.0001. . . . . . . 96

6.10 X0 ∼ Mercury : p = 1 − G(T ) = 0.001, T = 22.41, X1 ∼ Unif(0,50),
n0 = n1, h(x) = (x, log x). p-increment 0.0001. . . . . . . . . . . . . . 96

viii



6.11 X0 ∼ Lead Intake : p = 1 − G(T ) = 0.001, T = 25, X1 ∼ Unif(0,30),
n0 = n1, h(x) = (x, log x). p-increment 0.0001. . . . . . . . . . . . . . 96

6.12 X0 ∼ URX3TB : p = 1 − G(T ) = 0.001, T = 9.50, X1 ∼ Unif(0,12),
n0 = n1, h(x) = (x, log x). p-increment 0.0001. Data source for
URX3TB - 2,4,6-trichlorophenol (ug/L): https://wwwn.cdc.gov/nchs/nhanes 96

6.13 X0 ∼ F(2, 12) : p = 1 − G(T ) = 0.0001, T = 21.84953, X1 ∼
Unif(0,25), n0 = n1, h(x) = (x, log x). p-increment 0.00001. . . . . . . 97

6.14 X0 ∼ LN(0, 1) : p = 1 − G(T ) = 0.0001, T = 41.22383, X1 ∼
Unif(1,60), n0 = n1, h(x) = (x, log x). p-increment 0.00001. . . . . . . 97

6.15 X0 ∼ Mercury : p = 1−G(T ) = 0.0001, T = 39.60, X1 ∼ Unif(0,80),
n0 = n1, h(x) = (x, log x). p-increment 0.00001. . . . . . . . . . . . . . 97

ix



List of Figures

2.1 Different histograms corresponding to identical autocorrelations from
a first order autoregressive process with normal noise (z) and t-noise
(zT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Three healthy signatures. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 One bad signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Two bad signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Distribution of ∆n and In, motor data. . . . . . . . . . . . . . . . . . 29
2.6 Distribution of ∆n and In, ball bearing data. . . . . . . . . . . . . . . 30
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2.13 Case-control plots of Ĝi vs. G̃i, i = 1, 2, BadX279 versus GoodX098

for h(x) = (x, y)′ and h(x) = (x2, x, y2, y, xy)′. . . . . . . . . . . . . . 40
2.14 ACF plots corresponding to GoodA1, FaultyA1, FaultyA2. . . . . . . 43
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Chapter 1: The Density Ratio Model

1.1 Biased Sampling Models

The origin of the Density Ratio Model (DRM) can be traced back at least to

Vardi’s length - biased sampling models [36]. In Vardi’s study, the length of an object

is assumed to be distributed according to the cdf G, and the selection probability

for any particular object is proportional to its length. Then the distribution of the

length of sampled objects is given by the following model,

F (y) =
1

µ

∫ y

0

xdG(x), y ≥ 0

where µ =
∫∞

0
xdG(x) < ∞ is the normalization constant. Here the cdf G is

unknown. The cdf F is the length-biased distribution corresponding to G. It can

be seen as a weighted version of G in terms of the weight function x. Gilbert et al.

(1999) [18] later generalized the two sample model to allow for s+ 1 different biased

samples:

Fi(y) = Wi(G)−1

∫ y

−∞
wi(x)dG(x), i = 1, . . . , s

where the wi’s are given nonnegative selection bias weight function and

Wi(G) =

∫ ∞
−∞

wi(x)dG(x)

A simple way to estimate G is to use the empirical distribution of the reference sam-

1



ple X0 only. This approach ignores the rest s samples. Vardi (1985) [35] developed a

methodology for obtaining a nonparametric maximum likelihood estimate (NPMLE)

by using all the n = n0 +n1 + · · ·+ns observations from the s+ 1 samples. In Vardi

(1985) [35], the weight functions were assumed completely known. However, in the

real data application, this assumption is unrealistic. To address this problem, we

can assume that the weight function comes from a parametric family. In this situ-

ation, we need to estimate two parts in the model. First is the unknown reference

distribution G and second is the parameters in the weight function. These types of

models are called biased sampling semiparametric models, one typical example of

these model is the logistic regression model in case-control studies.

1.2 Logistic Regression Model in Case-Control Studies

Case-control studies are common used methods to study risk factors in epi-

demiological observational study. Logistic regression models is the most commonly

used models. Let D = 0 be the control, D = 1 be the case, x = (x1, . . . , xp) be the

regression covariates, and let P (D = i | x) denote the probability that individual

with covariates x develops disease D = i. The logistic regression model can be

expressed as:

P (D = i | x) =
exp(αi + β′ix)

1 + exp(α1 + β′1x)
, i = 0, 1 (1.1)

let p(x) be the marginal distribution of x, and let πi = P (D = i) (note that∑1
i=0 πi = 1). Then by Bayes’ Rule, we have:

P (x | D = i) =
P (D = i | x)p(x)

πi
, i = 0, 1

2



Therefore,

P (x | D = 1)

P (x | D = 0)
=
π0

π1

P (D = 1 | x)

P (D = 0 | x)
(1.2)

By substituting (1.1) into (1.2) and letting α0 = β0 = 0, we get the density ratio

model:

P (x | D = 1)

P (x | D = 0)
= exp(α∗1 + β′1x)

where α∗1 = log(π0/π1) + α1.

If we let gi(x) denote the conditional density function P (x | D = i), i = 0, 1,

then we can rewrite the previous formula as:

g1(x) = exp(α∗1 + β′1x)g0(x)

hence the case distribution becomes a weighted version of the control distribution.

This is a tilt density ratio model. The exponential function is the weight, x is called

the distortion function, and the function g0(x) is regarded as the density of the

reference (control) sample.

1.3 Density Ratio Models

Motivated by either biased sampling models or case-control studies, density

ratio models were developed and elaborated in Qin and Lawless (1994) [32], Qin and

Zhang (1997) [31], Fokianos et al. (2001) [11], Kedem et al. (2008) [20], Voulgaraki

et al. (2012) [34], Zhou (2013) [39] , Pan (2016) [29], Yu (2017) [37]. For the

two-sample case:

3



X0 = (x01, . . . , x0n0)
′ ∼ g0(x)

X1 = (x11, . . . , x1n1)
′ ∼ g1(x),

so that the density ratio model is:

g1(x)

g0(x)
= eα+β′h(x) (1.3)

where we call h(x) the tilt function, which can be regarded as a distortion of the

X1’s pdf relative to the reference X0’s pdf. Now let’s consider two exponential cases.

1.3.1 When both g0(x,θ) and g1(x,θ) come from the same exponen-

tial family {Pθ : θ ∈ Θ},Θ ⊂ Rk:

Pθ = p(x,θ) = d(θ)S(x) exp

[
k∑
j=1

Cj(θ)Tj(x)

]
, x ∈ X ⊂ Rq

where C1, . . . , Ck and d are real-valued functions of θ, and the real valued functions

T1, . . . , Tk and S have their supports in Rq. Then:

g1(x)

g0(x)
=

d(θ1)

d(θ0)
exp

{
k∑
j=1

[
Cj(θ1)− Cj(θ0)

]
Tj(x)

}

= exp

{
k∑
j=1

[
Cj(θ1)− Cj(θ0)

]
Tj(x) + log

d(θ1)

d(θ0)

}
= exp

{
α + β

′
h(x)

}
where

α = log
d(θ1)

d(θ0)

β = (C1(θ1)− C1(θ0), . . . , Cj(θ1)− Cj(θ0), . . . , Ck(θ1)− Ck(θ0))
′
, j = 1, . . . k

h(x) = (T1(x), . . . , Tj(x), . . . , Tk(x))
′
, j = 1, . . . , k
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Here is a list of one to one correspondences between the tilt functions h(t) and

common pdf’s:

h(t) distribution

h(t) = t g(x) ∼ exp(λ)

h(t) = (t, t2)
′

g(x) ∼ N(µ, σ2)

h(t) = (t, log(t))
′

g(x) ∼ Γ(k, λ)

h(t) = (log(t), log(1− t))′ g(x) ∼ Beta(α, β)

1.3.2 When g0(x,θ) and g1(x,θ) come from different exponential

families with the same support:

g1(x)

g0(x)
=

d1(θ1)S1(x)

d0(θ0)S0(x)
exp

{
k∑
j=1

[
C1j(θ1)T1j(x)− C0j(θ0)T0j(x)

]}

= exp

{
k∑
j=1

[
C1j(θ1)T1j(x)− C0j(θ0)T0j(x)

]
+ log

d1(θ1)

d0(θ0)
+ log

S1(x)

S0(x)

}
= exp{α + φ(x,β)}

where

α = log
d(θ1)

d(θ0)

φ(x,β) =
k∑
j=1

[
C1j(θ1) · T1j(x)− C0j(θ0) · T0j(x)

]
+ log

S1(x)

S0(x)

1.4 Semiparametric Density Ratio Models

The semiparametric density ratio model establishes relationships between a

reference distribution and its tilted versions. The multiple sample semiparametric
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density ratio model describes the following m+ 1 independent samples:

X0 = (x01, . . . , x0n0)
′ ∼ g(x)

X1 = (x11, . . . , x1n1)
′ ∼ g1(x)

...

Xm = (xm1, . . . , xmnm)′ ∼ gm(x)

where gj(x) is the probability density of the jth sample of size nj. We call X0 the

reference sample. Its cumulative distribution G(x) is assumed to be unknown. To

estimate g and G, we assume there are additional samples from related distributions.

The density ratio model assumes that the reference distribution g(x) and its

tilted versions gj(x) are related by the ratios,

g1(x)

g(x)
= exp(α1 + β

′

1h(x))

... (1.4)

gm(x)

g(x)
= exp(αm + β

′

mh(x))

This gives the tilt model:

gj(x) = eαj+β′jh(x)g(x), j = 1, . . . ,m

where the βj are p×1 parameter vectors, the αj are scalar parameters, and h(x) is a

vector valued distortion or tilt function. The probability densities g, g1, ... , gm and

the parameters α’s and β’s are unknown, h is assumed to be a known function. The

relationship (1.4), called the density ratio model. The density ratio model allows

semiparametric inference about all the parameters and distributions from the fused

m+ 1 sample,
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t = (t1, ..., tn)′ = (X
′

0,X
′

1, ...,X
′

m)
′

(1.5)

of size n = n0 +n1 + ...+nm. Since n0 < n, the reference G, under (1.4), is estimated

with all the data. For a thoroughly explanation of the semiparametric inference

under (1.4), see, for example, Fokianos et al. (2001) [11], Fokianos (2004) [12], Lu

(2007) [26], and Qin and Zhang (1997) [31]. A general reference is the recent book

by Kedem et al. (2017) [21].

1.5 Estimation

Maximum likelihood estimates for all the parameters and G(x) can be obtained

by maximizing the empirical likelihood over the class of step cumulative distribution

functions with jumps at the observed values t1, ..., tn. See Owen (2001) [28]. The

estimate of the reference distribution function G is supported at all the n observed

values t1, ..., tn and not just at the n0 values from the reference sample X0. Thus, if

we let pi = dG(ti) be the mass at ti, for i = 1, ..., n, the empirical likelihood becomes

L(θ,G) =
n∏
i=1

pi

n1∏
j=1

exp(α1 + β
′

1h(x1j))× · · · ×
nm∏
j=1

exp(αm + β
′

mh(xmj)), (1.6)

where α = (α1, ..., αm)
′
, β = (β

′
1, ...,β

′
m)
′
, and θ = (α

′
,β
′
)
′
. We maximize L(θ,G)

subject to the constraints
∑n

i=1 pi = 1 and
n∑
i=1

pi[w1(ti)− 1] = 0, ...,
n∑
i=1

pi[wm(ti)− 1] = 0

where wj(x) = exp(αj + β
′
jh(x)), j = 1, ...,m. We obtain the desired estimates

through the method of Lagrange multipliers. First we set up the objective function

logL(θ,G)− λ0(1−
n∑
i=1

pi)− λ1

n∑
i=1

pi[w1(ti)− 1]− · · · − λm
n∑
i=1

pi[wm(ti)− 1],

to obtain λ0 = n and λj = nj j = 1, . . . ,m and

7



pi =
1

n0

· 1

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
,

where ρj = nj/n0, j = 1, ...,m. Next we substitute the pi’s into L(θ,G) to get the

profile log likelihood as a function of θ only:

`(θ) = −n log n0 −
n∑
i=1

log[1 + ρ1w1(ti) + · · ·+ ρmwm(ti)]

+

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·

+
nm∑
j=1

(αm + β′mh(xmj)).

Then, we differentiate the objective function log ` with respect to the αi and βi to

get the score equations:

∂l

∂αj
= −

n∑
i=1

ρjwj(ti)

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
+ nj = 0

∂l

∂βj
= −

n∑
i=1

ρjh(ti)wj(ti)

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
+

nj∑
i=1

h(xji) = 0

The solution of the score equations, which is found numerically, gives the maximum

likelihood estimators α̂, β̂ and consequently by substitution:

p̂i =
1

n0

· 1

1 +
∑m

j=1 ρj exp(α̂j + β̂′jh(ti))
. (1.7)

In particular, the maximum likelihood estimate Ĝ of G is given in (1.8) for relative

sample sizes ρj = nj/n0:

Ĝ(t) =
1

n0

n∑
i=1

I(ti ≤ t)

1 + ρ1ŵ1(ti) + ...+ ρmŵm(ti)
(1.8)

where ŵj(x) = exp(α̂j + β̂
′
jh(x)), j = 1, ...,m, and I(ti ≤ t) equals one for ti ≤ t

and is zero otherwise. Similarly, Ĝj can be estimated by accumulating exp(α̂j +

β̂′jh(ti))dG(ti).
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1.6 Asymptotic Results for θ̂ and Ĝ

The asymptotic behavior of the parameter estimators α̂, β̂ and the estimator

for the reference cdf Ĝ are studied in Qin and Zhang (1997) [31] and Zhang (2000)

[38] for the two sample case. The multiple sample case was discussed by Lu (2007)

[26] using the same strategy.

1.6.1 Asymptotic Theory for θ̂

Let θ0 = (α0,β0) be the true value of (α,β). Then under the density ratio

model, as n→∞,

√
n

α̂− α0

β̂ − β0

⇒ N(0,S−1VS−1)

where:

V ≡ Var

[
1√
n
∇`(α,β)

]
, S ≡ lim

n→∞

[
− 1

n
∇∇′`(α,β)

]
Note that V,S are (1 + p)m× (1 + p)m matrices.

The strong consistency of θ̂ as the estimator of the true parameter θ0 has been

established in Lu (2007) [26], where more details are given.

1.6.2 Asymptotic Theory for Ĝ

The multiple sample asymptotic behavior of Ĝ was also obtained by Lu (2007)

[26], from which we obtain semiparametric (SP) confidence intervals by using the

covariance matrix given below.
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Aj(t) =

∫
wj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

Bj(t) =

∫
wj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

Ā(t) = (A1(t), ..., Am(t))
′

, B̄(t) = (B′1(t), ..., B′m(t))′

ρ = diag{ρ1, . . . , ρm}m×m, 1p = (1, ..., 1)′

Then the asymptotic distribution of Ĝ(t) for m ≥ 1 is given by the following two

theorems, assuming that all moments with respect to the reference distribution are

finite.

Theorem 1.1. The process
√
n(Ĝ(t)−G̃(t)) converges weakly to a zero-mean Gaus-

sian process W with continuous sample paths in the space of real right continuous

functions, and the covariance matrix is determined by

Cov
{√

n(Ĝ(t)− G̃(t)),
√
n(Ĝ(s)− G̃(s))

}
=

m∑
k=0

ρk

m∑
j=1

ρjAj(t ∧ s))

−
(
Ā′(t)ρ, B̄′(t)(ρ⊗ 1p)

)
S−1

 ρĀ(s)

(ρ⊗ 1p)B̄(s)


Theorem 1.2. The process

√
n(Ĝ(t)−G(t)) converges weakly to a zero-mean Gaus-

sian process in the space of real right continuous functions, with covariance matrix

given by

Cov
{√

n(Ĝ(t)−G(t)),
√
n(Ĝ(s)−G(s))

}
= (

m∑
k=0

ρk)(G(t ∧ s)−G(t)G(s)−
m∑

j=1

ρjAj(t ∧ s))

+

(
Ā′(s)ρ, B̄′(s)(ρ⊗ 1p)

)
S−1

 ρĀ(t)

(ρ⊗ 1p)B̄(t)


where 1p is the p × p identity matrix, G̃(t) = 1

n0

∑n0

i=1 I[x0i < t] is the empirical

distribution of the reference sample X0 only, and ⊗ denotes the Kronecker product.
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The complete derivation of the theorems can be found in Lu (2007) [26]. The

immediate application of Theorem 1.1 is in the construction of pointwise symmetric

confidence intervals for G(t) for any given t.

1.7 Goodness of Fit Tests

Goodness of fit tests are needed to justify the applicability of the density ratio

model. Let Ĝ(t) be the estimated reference cdf and G̃(t) be the empirical cdf of the

reference sample. Most goodness of fit tests measure the discrepancy between Ĝ(t)

and G̃(t). A simple graphical method is to plot Ĝ(t) versus G̃(t). See Voulgaraki

et al. (2012) [34]. A numerical method is proposed in Qin and Zhang (1997) [31].

Define the difference between Ĝ(t) and G̃(t) as:

∆n(t) =
√
n |Ĝ− G̃|, ∆n = sup

−∞<t<∞
∆n(t)

then ∆n can be used to measure the departure from the assumption of the semi-

parametric density ratio model. Theorem 1.1 shows that
√
n(Ĝ(t)− G̃(t)) converges

weakly to a Gaussian process W . Let wα denote the α-quantile of the distribution

of sup−∞<t<∞ |W (t)|. By Theorem 1.1,

lim
n→∞

P (∆n ≥ w1−α) = lim
n→∞

P ( sup
−∞<t<∞

√
n |Ĝ− G̃| ≥ w1−α)

= P ( sup
−∞<t<∞

√
n |W (t)| ≥ w1−α) = α

The density ratio model is rejected at level α if ∆n ≥ w1−α. However, there is no

analytic expression available for the distribution of the supremum of a Gaussian

process W (t) and its corresponding quantile function. Ofter, a bootstrap procedure

is applied to simulate the distribution of sup−∞<t<∞ |W (t)| and its quantiles.
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Yu (2017) [37] discussed a goodness-of-fit test based on the discrepancy be-

tween ĝ estimated under the density ratio model from the entire fused data t, and

g̃ estimated from the reference sample x0 only. For a given kernel K with a fixed

bandwidth b, we can construct density estimators as follows:

ĝ(t) =

∫
K(t− y)dĜ(y)

g̃(t) =

∫
K(t− y)dG̃(y).

Yu (2017) [37] defined a new test statistic in terms of the Hellinger distance

In = nb

∫ L

−L
(
√
ĝ(t)−

√
g̃(t))2dt

where [−L,L] is a closed and bounded interval. A detailed theoretical derivation of

the asymptotic distribution of In can be found in Yu (2017) [37].
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Chapter 2: Semiparametric Quality Control

This chapter discusses an application of the Density Ratio Model to mechanical

quality control. Two real data problems will be included in this chapter.

2.1 Introduction

Acceleration data obtained from machine vibration are used routinely in qual-

ity control, particularly in deciding “normal” versus “faulty” or “good” versus “bad”

mechanical systems such as electric motors and car engines, or mechanical compo-

nents such as ball bearings and tires (Concettoni et al. 2012, Cristali et al. 2006,

Goyal and Pabla 2016) [4, 5, 17]. The purpose of this chapter is to illustrate the

semiparametric statistical method applied in the analysis of accelerometer data for

the purpose of quality control. The method is based on fusion of records from sev-

eral sampled signatures, be they normal or faulty (Kedem et al. 2017) [21], and

seems to be highly effective.

Given two or more vibration signatures, the idea is to obtain a great data

reduction and use only representative random samples from each signature. Since

in general the original signals are much larger than any sample, the analysis can

be repeated by redrawing many additional random samples for quality assurance
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purposes.

An advantage of the method is the fact that it is based on probability distri-

butions and not spectral quantities. Spectral methods are in general very effective;

however in extreme cases it is possible for signals to have the exact same spectrum

but very different distributions. This is exemplified by two first order autoregressive

processes

zt = φzt−1 + εt,

one with normal noise, εt ∼ N(0, 1), and the other with normalized t-distributed

noise, εt ∼ t(3)/
√

3, and both with the same parameter, say φ = 0.8. In that case the

autocorrelation functions, and hence also the corresponding spectral densities, are

identical but the marginal distributions are markedly different. This is illustrated

in Figure 2.1 in terms of estimated quantities.

For illustrative purposes, we shall deal here with ball bearing and electric mo-

tor accelerometer data. The semiparametric method works as follows. A benchmark

signature, usually “good”, is chosen and is sampled randomly to produce a refer-

ence sample. This reference random sample is distributed according to an unknown

reference distribution. In the present application, once a reference random sample

is obtained from some unknown reference probability distribution, the method is

very sensitive to deviations from the reference distribution as expressed by very low

p-values, essentially close to zero, meaning a different statistical behavior. On the

other hand, when equality of distributions (equidistribution) occurs, the p-values

are unusually high, meaning similar statistical behavior. Hence, the method is an
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Figure 2.1: Different histograms corresponding to identical autocorrelations from a

first order autoregressive process with normal noise (z) and t-noise (zT).
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additional tool useful in detecting abnormalities in quality control.

Detecting differences among probability distributions can be approached via

the so called density ratio model along with the appropriate semiparametric statis-

tical inference discussed briefly in the next section and in Chapter 1.

2.2 A Semiparametric Method

The density ratio model allows statistical inference about unknown probabil-

ity distributions representing many sources by fusing samples obtained from each

source. The only assumption is a connection between the distributions.

We follow the construction proposed in a recent general reference (Kedem, et

al. (2017) [21]). An earlier reference along the same lines in terms of data from two

radars is in Kedem et al. (2004) [22]. Additional related references are Fokianos et

al. (2001) [11], Gilbert at al. (1999) [18], Qin and Zhang (1997) [31], and Vardi

(1982,1985) [35,36]. We summarize the essence of the method in what follows. More

details are given in Chapter 1.

Assume there are m + 1 data sources from which we obtain, respectively,

random samples x0,x1, ...,xm, where xj is of size nj and is governed by a probability

density gj(x). This is expressed as,

xji ∼ gj(x), j = 0, 1, ...,m, i = 1, ..., nj,

and we let g0(x) = g(x) be the reference probability density function (pdf). The

samples are fused or combined in a long vector of size n = n0 + n1 + · · ·+ nm,

t = (t1, ..., tn)′ ≡ (x′0,x
′
1, ...,x

′
m).
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Our semiparametric statistical inference uses the entire fused data t in the estimation

of the probability densities (“distortions”) g1, ..., gm and the reference g0 = g. Thus,

for example, g1 is estimated from the entire fused data t and not just from x1, and g2

is estimated from the entire fused data t and not just from x2, and so on. Since the

fused data are larger than any individual sample, this gives more precise statistical

inference than any inference based on any particular sample.

For a given tilt function h(x) (which could be a vector or a scalar), it is

assumed that the m distortions of the reference g satisfy the density ratio model,

gj(x) = exp{αj + β
′

jh(x)}g(x), j = 1, ...,m. (2.1)

We wish to test hypotheses about the p-dimensional parameters βj, and in particular

test distribution equality (equidistribution or equal statistical behavior),

H0 : β1 = ... = βm = 0.

Notice that βj = 0 implies αj = 0, in which case gj = g. Hence, under H0 all the

densities “agree”, g = g0 = g1 = · · · = gm, and we have equidistribution. That is,

all sources behave alike statistically. To test the hypothesis H0 of equidistribution

we use the likelihood ratio test discussed briefly in what follows.

Following the development in Qin and Zhang (1997) [31], let G be the reference

cumulative distribution function corresponding to g and let pi = dG(ti), i = 1, ..., n.

Then the semiparametric likelihood becomes,

L(α,β, p1, ..., pn) =
n∏
i=1

pi

n1∏
j=1

w1(x1j) · · ·
nm∏
j=1

wm(xmj) (2.2)
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where wj(t) = exp{αj+β′jh(t)}. The maximum likelihood estimator can be obtained

from equation (1.7) and the estimate of the reference cdf G from the entire fused

data t is

Ĝ(x) =
n∑
i=1

p̂iI(ti ≤ x) (2.3)

where I(B) denotes the indicator function of event B. The estimate of the reference

distribution G from the reference sample only, x0 = (x01, . . . , x0n0), is the empirical

distribution G̃,

G̃(t) =
1

n0

n0∑
i=1

I(x0i ≤ t). (2.4)

If ` denotes the resulting log-likelihood, which is now a function of α’s and β’s, then

the likelihood ratio test for testing H0 uses the statistic

LR ≡ −2[`(0,0)− `(α̂, β̂)] (2.5)

and H0 is rejected for large values of LR, using the fact that LR is asymptotically

distributed as χ2 with pm degrees of freedom. For more details, see Kedem et al.

(2017) [21].

It should be noted that the equidistribution hypothesisH0 goes well beyond the

widespread analysis of variance where the problem is to test equality of means under

the normal assumption (Fokianos et al. 2001 [11]). Here, we test distribution equality

(not just moments) and the only distributional assumption is expressed in terms

of the relationships between distributions (2.1), bypassing the normal assumption.

Interestingly, (2.1) also holds in the very special case when the samples are normal

for any combination of means and variances.
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2.3 Application to Motor Testing

The following is a generic problem which illustrates a semiparametric approach

to motor testing for the purpose of quality control.

From three acceleration signals A,B,C, we sampled three independent random

samples x0,x1,x2, respectively. The vibration data and their retrieval are described

in detail in Concettoni et al. (2012) [5]. For illustrative purposes, we shall assume

that the three signals represent three locations A,B,C, on a motor, and that signal

A is a “normal” or “good” signature serving as a benchmark. The motor is deemed

healthy if the hypothesis of equidistribution (see below) is accepted.

Each sample is of size 500, and the data are fused in the long vector

t = (t1, ..., t1500)′ ≡ (x′0,x
′
1,x

′
2).

Our original signals are far longer corresponding to about 3 seconds worth of accel-

eration signatures sampled at the rate of 25.6KHz. Hence, samples of size 500 bring

about a huge data reduction.

The density ratio model stipulates that xj ∼ gj(x) for j = 0, 1, 2, and that

g0(x) = g(x), corresponding to location A (“good”), is chosen as the reference pdf.

For a given tilt function h(x), there are 2 possible distortions of the reference g,

namely,

gj(x) = exp{αj + β′jh(x)}g(x), j = 1, 2. (2.6)

Accordingly, if the hypothesis of equidistribution H0: β1 = β2 = 0 (implying g =

g0 = g1 = g2) is accepted, then the three signatures agree and the motor is considered
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healthy. Observe again that when βj = 0 then also αj = 0.

To continue we need the tilt function h(x). The goodness-of-fit test of Qin

and Zhang (1997) [31] and Yu (2017) [37] applied to numerous motor signatures

points to h(x) = x (a scalar) as a reasonable choice and we use it here. We have

discussed goodness-of-fit in Section 1.7; the results of goodness-of-fit are applied to

motor data in Section 2.5.

Again, “equidistribution” means the same statistical behavior. In general,

when the hypothesis H0 of equidistribution holds true, the cumulative distribution

functions (cdf’s) and the corresponding probability density functions (pdf’s), rep-

resenting here motor behavior, are very close; see Figure 2.2. A discrepancy is

observed when the hypothesis H0 of equidistribution is rejected; see Figures 2.3 and

2.4. Thus, hypothesis testing is done here both analytically as well as graphically.

In other words, we provide the quality control user both analytical and graphical

means or ways for deciding “good” versus “bad”.

The likelihood ratio test (2.5) applied to five different triplets of A,B,C sam-

ples, respectively, from three healthy signatures gave the following p-values:

0.8645, 0.7230, 0.4979, 0.4075, 0.4849,

the hypothesis H0 of equidistribution is accepted quite convincingly in each case.

That is, the method was applied first to three samples from locations A,B,C giving

a p-value of 0.8645. The method was applied again to different A,B,C samples

for which the p-value was 0.7230, and so on five times, giving consistently high p-

values as we would expect from healthy signatures. Figure 2.2 shows the results
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Figure 2.2: Three healthy signatures.
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Figure 2.3: One bad signature.
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Figure 2.4: Two bad signatures.
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corresponding to the p-value of 0.4849. We see that the estimated cdf’s and pdf’s

are quite close to each other in support of H0.

On the other hand when a single “bad” signature replaced a healthy one from

location B, the p-values (again from five different trials) were reduced dramatically

to

1.7673e−8, 7.0701e−9, 3.5749e−14, 1.2521e−12, 6.9477e−9,

and H0 is rejected strongly in each case, pointing to the sensitivity of the method.

Figure 2.3 is a graphical manifestation of the test results corresponding to a p-value

of 1.2521e−12 where H0 is rejected strongly. We observe that the first panel in Figure

2.3 is completely different from that in Figure 2.2.

When two “bad” signatures replaced healthy signatures from locations B and

C, the p-values were again very small consistently,

8.8753e−10, 1.4755e−13, 2.3208e−7, 5.2199e−11, 2.3648e−14,

and H0 is rejected strongly again in each trial. Figure 2.4 shows graphical results

corresponding to the p-value of 2.3648e−14 where H0 is strongly rejected. Again the

first panel in Figure 2.4 is very different from the one in Figure 2.2 which depicts

equidistribution.

2.4 Application to Ball Bearing Testing

The Case Western Reserve University Bearing Data Center website

https://csegroups.case.edu/bearingdatacenter/home provides access to mo-

tor bearing test data for normal and faulty bearings.
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Bearings were seeded with faults ranging from 0.007 to 0.040 inch in diameter

and reinstalled into a test motor. Vibration data were recorded for motor loads

of 0 to 3 horsepower (speed of 1797 to 1720 rpm). For illustration, we will com-

pare here the following fan end (FE) bearing accelerometer data collected at 12 KHz:

GoodX098, hp=1, rpm = 1772.

BadX275, hp=1, rpm = 1772, fault diameter = 0.014 inch.

BadX279, hp=1, rpm = 1772, fault diameter = 0.007 inch.

In the present application we test “normal” versus “faulty” using two independent

random samples x0,x1 sampled from the pairs GoodX098, BadX275 and GoodX098,

BadX279, using x0 from GoodX098 as the reference sample. Again, goodness-of-fit

testing discussed in Section 2.5 suggests the scalar h(x) = x.

In the present application each of the two samples is of size 1000, and the data

are fused in the long vector

t = (t1, ..., t2000)′ ≡ (x′0,x
′
1).

The original bearing signals are by far longer corresponding to at least 10 seconds

worth of acceleration signatures sampled at the rate of 12KHz. Hence, we have a

data reduction resulting in faster computation.

The density ratio model form = 1 reduces to x0 ∼ g0(x) = g(x), corresponding

to a “good” or “normal” signature, is chosen as the reference pdf, and x1 ∼ g1(x).
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For the tilt function h(x) = x we have

g1(x) = exp{α1 + β1x}g(x). (2.7)

Accordingly, the hypothesis of equidistribution reduces to H0: β1 = 0 (implying

g1 = g). If the hypothesis is accepted then the second signature is “normal” as well,

otherwise it is “faulty”. As before, the test can be repeated multiple times with

different samples to make sure the results are noncontradictory.

BadX275 versus GoodX098: The p-values from the likelihood ratio test in five

different trials are very small,

6.8319e−5, 0.00156, 2.1500e−5, 5.6884e−9, 2.2204e−15

so that BadX275 is faulty with high confidence.

BadX279 versus GoodX098: Again, the p-values from the likelihood ratio test in

five different trials are very small,

1.8902e−5, 2.6968e−7, 4.8627e−5, 0.001204, 9.1552e−5

so that BadX279 is also faulty with high confidence.

On the other hand, when both x0 and x1 are both from the normal vibration

GoodX098, the p-values jump dramatically upward as they should,

0.9509, 0.9765, 0.6105, 0.9252, 0.9940.

As in the previous example, we see that the p-values are unusually low or

unusually high, a fact which points to the potential of the semiparametric method

in effective discrimination between normal and faulty bearings.
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2.5 Goodness of Fit Test

The semiparametric method requires the tilt function h(x). The following

goodness-of-fit tests can help in validating the usefulness of a chosen tilt function.

We note that in many cases different tilt functions lead to similar hypothesis testing

results; see Kedem et al. (2004) [22].

2.5.1 ∆n statistic

Let Ĝ(t) be the estimated reference cdf from the entire fused data t under the

density ratio model, and let G̃(t) be the corresponding empirical cdf estimated from

the reference sample x0 only where no model is assumed. Most goodness of fit tests

measure the discrepancy between Ĝ(t) and G̃(t), or equivalently, the discrepancy

between the corresponding pdf’s, in model validation. We use a useful numerical

method proposed by Qin and Zhang (1997) [31]; see Section 1.7.

Define the difference between Ĝ(t) and G̃(t) as:

∆n(t) =
√
n |Ĝ− G̃|, ∆n = sup

−∞<t<∞
∆n(t).

Then ∆n can be used to measure the departure from the semiparametric density

ratio model with a specified h(x).

The density ratio model is rejected for large values of ∆n, whereas small values

of ∆n lend support to the choice of h(x). Obtaining the analytical distribution of

∆n needed for hypothesis testing is problematic. However, good approximations

can be obtained by computer simulations. In the present application, this can be

27



readily done by sampling repeatedly from the vibration signatures, which typically

are quite long.

2.5.2 In statistic

Another goodness-of-fit method is based on the discrepancy between ĝ esti-

mated under the density ratio model from the entire fused data t, and g̃ estimated

from the reference sample x0 only. A particular measure is defined in terms of the

Hellinger distance by Yu (2017) [37]

In = nb

∫ L

−L
(
√
ĝ(t)−

√
g̃(t))2dt

Again, in the present application, the distribution of In can be approximated

by sampling repeatedly from the vibration signatures. However, this method is more

involved than the previous one which is based on cdf’s

2.5.3 Goodness of Fit Applied to Motor and Bearing Data

Fortunately, since the motor data is large, we can sample from it many times to

simulate the distributions of ∆n and In. We obtained the approximate distributions

of ∆n and In, shown in Figure 2.5 from 1000 applications of the density ratio model

using three healthy motor signatures and h(x) = x. All samples were of size 500.

To demonstrate that h(x) = x is a reasonable choice, we obtained from three

additional healthy signatures the following results. ∆n,obs = 0.7273, and a rather

large p-value P (∆n ≥ 0.7273) = 0.673, and In = 0.0247, and again a rather large

p-value of 0.659.
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Figure 2.5: Distribution of ∆n and In, motor data.
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A similar analysis using the ball bearing data with sample sizes of 1000, two

“normal” (good) signatures, and h(x) = x, gave ∆n,obs = 0.5186, and a rather large

p-value P (∆n ≥ 0.5186) = 0.835, while In = 0.000276 giving also a rather large

p-value of 0.827, again lending support to the choice of h(x) = x. Figure 2.6 shows

the distributions of ∆n and In where h(x) = x for the bearing case.
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Figure 2.6: Distribution of ∆n and In, ball bearing data.

2.6 The Bivariate Extension

The previous setup can be easily generalized to multivariate data. The mul-

tivariate density ratio method provides a way for determining and quantifying the

differences between two or more multivariate distributions based on the joint behav-

ior of many variables. This is very important in mechanical quality control where
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the autocorrelation of mechanical time series is often very strong, and we need to

include lagged variables to obtain better discriminant power. As the general mul-

tivariate case is entirely analogous to the somewhat simpler bivariate case, it is

convenient to focus on the bivariate situation.

2.7 Bivariate Normal Example

Suppose we have m+ 1 two-dimensional data sets,

(xji, yji) ∼ gj(x, y), j = 0, 1, ...,m, i = 1, ..., nj,

where gj(x, y) is the probability density of N(µj ,Σ), with

µj =

µjx
µjy

 , Σ =

σxx σxy

σxy σyy

 , j = 0, 1, ...,m.

Then, choosing g0(x, y) as a reference density we have

gj(x) = exp[(µj − µ0)
′
Σ−1x− 1

2
(µ
′

jΣ
−1µj − µ

′

0Σ
−1µ0)]g0(x),

where x = (x, y)
′
. We see that is a special case of the general form

gj(x) = exp{αj + β
′

jh(x)}g0(x)

where

αj = −1

2
(µ
′

jΣ
−1µj − µ

′

0Σ
−1µ0)

βj =

βj1
βj2

 = Σ−1(µj − µ0)
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h(x) = x = (x, y)
′

If we consider the ratio of two bivariate normal densities with unequal covariance

matrices, we could use the model

gj(x) = exp{αj + β
′

jh(x)}g0(x)

where

βj = (βj1, βj2, βj3, βj4, βj5)
′
and h(x) = (x2, x, y2, y, xy)

′
.

2.8 Likelihood Considerations

Suppose we have m+ 1 two-dimensional data sets,

(xji, yji) ∼ gj(x, y), j = 0, 1, ...,m, i = 1, ..., nj.

for a given tilt function h(x), the two dimensional density ratio model is expressed

as

gj(x) = exp{αj + β
′

jh(x)}g(x), j = 1, ...,m

with reference g ≡ g0, and x = (x, y)
′
. The βj are p× 1 parameter vectors, the αj

are scalar parameters and h(x) is a vector valued distortion or tilt function.

The previous results carry over to the two-dimensional case quite readily. We

begin by first defining the combined data,

t = (x
′

01, ...,x
′

0n0
,x
′

11, ...,x
′

1n1
, ...,x

′

m1, ...,x
′

mnm
)
′
= (t

′

1, t
′

2, ..., t
′

n)
′
.

where ti = (tix, tiy)
′
. Let G be the reference cumulative distribution function corre-

sponding to g. To obtain the maximum likelihood estimator of G(x, y), we optimize
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over the class of two dimensional step function with jumps pi at t1, ..., tn,

pi = G(tix, tiy)−G(ti−1,x, tiy)−G(tix, ti−1,y) +G(ti−1,x, ti−1,y), i = 1, ..., n.

Defining α = (α1, ..., αm)
′
, and β = (β

′
1, ...,β

′
m)
′
, then the empirical likelihood is

given by,

L(α,β, p1, ..., pn) =
n∏
i=1

pi

n1∏
j=1

w1(x1j) · · ·
nm∏
j=1

wm(xmj)

where wj(t) = exp{αj + β
′
jh(t)}. The likelihood is maximized with respect to the

parameters subject to the constraints

n∑
i=1

pi = 1,
n∑
i=1

pi[w1(ti)− 1] = 0, . . . ,
n∑
i=1

pi[wm(ti)− 1] = 0

in two steps. First, for fixed α’s and β’s, the likelihood is maximized with respect

to the pi to yield

pi ≡ pi(α,β) =
1

n0

· 1

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
(2.8)

where the ρj are relative sample sizes with respect to n0,

ρj = nj/n0, j = 1, ...,m.

Hence, the optimal pi are functions of the α’s and β’s. Substituting the pi back

into the likelihood gives a function of the α’s and β’s only, from which we obtain

maximum likelihood estimates denoted by α̂, β̂. Therefore,

p̂i = pi(α̂, β̂),

and the estimate of the reference cdf G from the entire fused data t is

Ĝ(x) =
n∑
i=1

p̂iI(−∞,x](ti)
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where (−∞,x] = (−∞, x]× (−∞, y] for x = (x, y). Note that IA(ω) = 1 for ω ∈ A

and IA(ω) = 0 otherwise. The equidistribution hypothesis H0 : β1 = β2 = ... =

βm = 0 can be tested by means of the likelihood ratio (LR),

LR ≡ −2[`(0,0)− `(α̂, β̂)]

Under H0, the likelihood ratio is approximately distributed as χ2 with pm degrees

of freedom, and H0 is rejected for large values.

2.9 Diagnostic Plots

Graphical evidence of goodness-of-fit can be obtained from the plots of Ĝi ver-

sus the corresponding empirical multivariate distribution function G̃i, i = 0, 1, ...,m,

evaluated at some selected two-dimensional points as to obtain two dimensional

plots. Figures 2.7 - 2.9 in the next section are examples of this. We refer to these

plots as diagnostic plots. See Voulgaraki et al. (2012) [34].

2.10 Simulation

In this section, we simulate three cases of the bivariate normal distributions

with either equal covariance matrices or unequal covariance matrices. In the present

simulation study, m = 1 and g0 denotes the reference distribution.

1. g0 ∼ N((0, 0)′,Σ), g1 ∼ N((0, 0)′,Σ) with Σ =

 4 2

2 3

 , n0 = 100, n1 = 80.
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2. g0 ∼ N((1, 4)′,Σ), g1 ∼ N((0, 0)′,Σ) with Σ =

 4 2

2 3

 , n1 = 100, n1 = 80.

3. g0 ∼ N((0, 0)′,Σ0), g1 ∼ N((0, 0)′,Σ1) with Σ0 =

 6 1

1 10

 ,Σ1 =

 4 2

2 3

 ,

n0 = 100, n1 = 80.

The bivariate normal distribution with the same covariance matrices follows the

density ratio model with h(x) = (x, y)′, but this is not true for the bivariate

normal distribution with unequal covariance matrices. The bivariate normal dis-

tribution with unequal covariance matrices follows the density ratio model with

h(x) = (x2, x, y2, y, xy)′. Hence we expect to see straight lines in the diagnostic

plots in cases (1) and (2) for h(x) = (x, y)′. On the other hand, we expect to see

deviations from straight lines in the diagnostic plots in case (3) for h(x) = (x, y)′.

We should see straight lines in the diagnostic plots in cases (1),(2) and (3) for

h(x) = (x2, x, y2, y, xy)′.

Figures 2.7 - 2.9 show the estimated Ĝ1 and Ĝ2 versus the empirical cdf G̃1

and G̃2, respectively, all obtained from one run of the simulated data and evaluated

at selected points in R2. As expected, in cases (1) and (2), there is almost a perfect

agreement between Ĝi versus G̃i, i = 1, 2 with h(x) = (x, y)′ , whereas the density

ratio model with h(x) = (x, y)′ is not appropriate for the data from case (3). The

density ratio model with h(x) = (x2, x, y2, y, xy)′ works well for all cases (1), (2)

and (3).
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Figure 2.7: Case-control plots of Ĝi vs. G̃i, i = 0, 1, simulations (1) for h(x) =

(x, y)′ and h(x) = (x2, x, y2, y, xy)′.
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Figure 2.8: Case-control plots of Ĝi vs. G̃i, i = 0, 1, simulations (2) for h(x) =

(x, y)′ and h(x) = (x2, x, y2, y, xy)′.
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Figure 2.9: Case-control plots of Ĝi vs. G̃i, i = 0, 1, simulations (3) for h(x) =

(x, y)′ and h(x) = (x2, x, y2, y, xy)′.

2.11 Application to Ball Bearing Testing

The Ball Bearing data have strong autocorrelation patterns; see Figure 2.10.

We shall apply the bivariate paradigm discussed above. Such a bivariate analysis

could address dependence of the ball bearing data. It should give a better perfor-

mance when deciding good vs faulty.

In practice, we sample pairs of data from (xt, xt−1) where each sample is of size

100. We have seen for the density ratio model with h(x) = x that when each sample

is of size 1000 works well. Here we decrease the sample size to 100. In this case, the

density ratio model with h(x) = x may not work well anymore. However, we find

that the bivariate density ratio model works well. This indicates higher power for

the bivariate density ratio model when discriminating between normal and faulty

bearings.

The histograms of the ball bearing data are approximately normal as can be
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seen in Figure 2.11. This leads us to use the density ratio model with h(x) = (x, y)′

and h(x) = (x2, x, y2, y, xy)′. As Figure 2.12-2.13 show, the density ratio model

with h(x) = (x2, x, y2, y, xy)′ is a suitable model for the Ball Bearing data. There

is almost perfect agreement between the plots of the semiparametric Ĝi and the

corresponding empirical G̃i, i = 1, 2. However the density ratio model with h(x) =

(x, y)′ does not preform as well as the model with the quadratic h.

We apply the density ratio model with h(x) = x, h(x) = (x, y)′ and h(x) =

(x2, x, y2, y, xy)′ in five different trials. Table 2.1 shows the p-values from the like-

lihood ratio test for BadX275 versus GoodX098. The density ratio models with

h(x) = x or h(x) = (x, y)′ sometimes fail to discriminate between normal and

faulty bearings. However, the density ratio model with h(x) = (x2, x, y2, y, xy)′

works very well. Table 2.2 shows the p-values from the likelihood ratio test for

BadX279 versus GoodX098. We observe similar situation as in Table 2.1.

One the other hand, when both samples are from the normal vibration GoodX098,

the p-values jump dramatically upward as they should. See Table 2.3.

We see that, by bringing in dependence of the ball bearing data, we obtain

better performance when deciding good vs faulty, which points to the potential of

the semiparametric method in effective discrimination between normal and faulty

bearings when the sample sizes are not large enough.
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Figure 2.10: ACF plots corresponding to GoodX098, BadX275, BadX279.
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Figure 2.11: Histograms corresponding to GoodX098, BadX275, BadX279.

Table 2.1: BadX275 versus GoodX098

p-values Tilt Function 1 2 3 4 5

Univariate h(x) = x 0.30749 0.008468 0.20958 0.59889 0.25928

Bivariate h(x) = (x, y)′ 0.43202 0.007888 0.02413 0.08903 0.04803

Bivariate h(x) = (x2, x, y2, y, xy)′ 0 0 0 0 0
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Figure 2.12: Case-control plots of Ĝi vs. G̃i, i = 1, 2, BadX275 versus GoodX098

for h(x) = (x, y)′ and h(x) = (x2, x, y2, y, xy)′.
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Figure 2.13: Case-control plots of Ĝi vs. G̃i, i = 1, 2, BadX279 versus GoodX098

for h(x) = (x, y)′ and h(x) = (x2, x, y2, y, xy)′.
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Table 2.2: BadX279 versus GoodX098

p-values Tilt Function 1 2 3 4 5

Univariate h(x) = x 0.004542 0.65365 0.01377 0.26823 0.39945

Bivariate h(x) = (x, y)′ 0.005668 0.10939 0.04706 0.50404 0.33879

Bivariate h(x) = (x2, x, y2, y, xy)′ 0 0 0 0 0

Table 2.3: GoodX098 versus GoodX098

p-values Tilt Function 1 2 3 4 5

Univariate h(x) = x 0.91614 0.92374 0.54844 0.70672 0.54905

Bivariate h(x) = (x, y)′ 0.73661 0.46588 0.82990 0.77055 0.60365

Bivariate h(x) = (x2, x, y2, y, xy)′ 0.95975 0.53210 0.45631 0.97805 0.69764

2.12 Application to Motor Testing

The Motor data have strong autocorrelation patterns. See Figure 2.14. We

apply the Bivariate paradigm to the Motor data. Such a bivariate analysis could

bring in dependence of the Motor data. It should give better performance when

deciding good vs faulty.

In practice, we sample pairs of data from (xt, xt−1) where each sample is of

size 100. We have seen for the density ratio model with h(x) = x, and each sample

is of size 500, the DRM works well for Motor data. Here we decrease the sample

size to 100, in this case, the density ratio model with h(x) = x may not work well

anymore, however, we find that the bivariate density ratio model works well. This

indicates higher power for the bivariate density ratio model when discriminating

between normal and faulty motors.
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As Figures 2.15-2.16 show, the density ratio model with h(x) = (x2, x, y2, y, xy)′

is a suitable model for the Motor data. There is almost a perfect agreement between

the plots of the semiparametric Ĝi and the corresponding empirical G̃i, i = 1, 2, 3.

The density ratio model with h(x) = (x, y)′ also works pretty well, but does not

perform as well as the previous one.

We apply the density ratio model with h(x) = x, h(x) = (x, y)′ and h(x) =

(x2, x, y2, y, xy)′ in five different trials. Table 2.4 shows the p-values from the like-

lihood ratio test for three healthy signatures. The large p-values indicate the hy-

pothesis H0 of equidistribution is accepted quite convincingly in each case.

On the other hand, when a single “bad” signature replaces a healthy one, the

p-values were reduced dramatically as they should; see Table 2.5. Density ratio

model with h(x) = x, h(x) = (x, y)′ sometimes fail to discriminate between normal

and faulty motors. However, density ratio model with h(x) = (x2, x, y2, y, xy)′

works very well.

When two “bad” signatures replaced healthy signatures, the p-values were

again very small. Table 2.6 shows the p-values from the likelihood ratio test for two

“bad” signatures. We observe similar situation as in Table 2.5.

We see that, by bringing in dependence of the motor data, we obtain bet-

ter performance when deciding good vs faulty, which points to the potential of

the semiparametric method in effective discrimination between normal and faulty

motors when sample size is not large enough.
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Figure 2.14: ACF plots corresponding to GoodA1, FaultyA1, FaultyA2.
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Figure 2.15: Case-control plots of Ĝi vs. G̃i, i = 1, 2, 3, A Single “Bad” Signature

for h(x) = (x, y)′ and h(x) = (x2, x, y2, y, xy)′.

Table 2.4: Three Healthy Signatures

p-values Tilt Function 1 2 3 4 5

Univariate h(x) = x 0.92311 0.78235 0.84094 0.54022 0.58041

Bivariate h(x) = (x, y)′ 0.42933 0.29146 0.76423 0.52217 0.47945

Bivariate h(x) = (x2, x, y2, y, xy)′ 0.30640 0.47171 0.40879 0.12281 0.88390
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Figure 2.16: Case-control plots of Ĝi vs. G̃i, i = 1, 2, 3, Two “Bad” Signatures for

h(x) = (x, y)′ and h(x) = (x2, x, y2, y, xy)′.

Table 2.5: A Single “Bad” Signature

p-values Tilt Function 1 2 3 4 5

Univariate h(x) = x 0.003426 0.301305 0.000900 0.006887 0.000131

Bivariate h(x) = (x, y)′ 0.000761 0.181557 0.000728 0.006724 6.61e-05

Bivariate h(x) = (x2, x, y2, y, xy)′ 1.34e-08 6.62e-07 5.85e-08 3.15e-06 1.08e-09

Table 2.6: Two “Bad” Signatures

p-values Tilt Function 1 2 3 4 5

Univariate h(x) = x 0.006587 0.196054 0.000985 0.003143 0.000137

Bivariate h(x) = (x, y)′ 0.004379 0.147094 0.000893 0.002989 0.000105

Bivariate h(x) = (x2, x, y2, y, xy)′ 4.13e-13 7.04e-11 3.95e-13 8.21e-11 6.88e-12
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2.13 Discussion

We have illustrated a semiparametric approach to monitoring the operating

conditions of vibrating machines based on the fusion or integration of several samples

from different acceleration signals. It has been shown that the semiparametric fusion

method was quite effective in testing equidistribution, giving high p-values when the

hypotheses were accepted, and extremely low p-values when the hypotheses were

rejected. Hypothesis tests actually defines a distance between distributions, which

is potentially useful in clustering analysis based on distributions.
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Chapter 3: Small Area Estimation

3.1 Introduction

Sample surveys are widely used to estimate population attributes, such as

totals, means and other parameters of finite populations by obtaining data from a

subset of a population. In many applications, the same information is also desired

for small sub-populations such as individuals in small geographical area such as a

county or particular demographic within an area. Often, the surveys are carried out

for the population as a whole (for example, a nation or similarly high levels). The

sample size within many subpopulations of interest can be very small or even without

sampling units due to the random nature of probability sampling. Estimating these

subpopulations attributes with good accuracy is a interesting problem. To deal with

this problem, it could use additional data (such as census records) that exist for these

small areas in order to obtain estimates. Most existing methods have focused on

estimating small area means. There are fewer discussion in estimating small are

quantiles. In this Chapter, we assume the small area population distributions have

a linear structure with error terms satisfying the density ratio model (DRM). That

is, the small area error distributions are all tilted distributions relative to a common

base distribution. We choose the basis or reference distribution as the distribution
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of computer generated data provided the DRM passes a goodness of fit test. That

is, we fuse the real data and artificial data. This approach allows us to give a

distribution estimation of the small area population. And by fusing appropriate

artificial data, we can increase the sample size (making the small area into a big

area) and control the common base distribution to get better estimates. We also

suggest estimators for population attributes of subpopulations with no sampling

units.

3.2 Small Area Estimation

We consider the nested-error unit level regression model (NER) of Battese et

al. (1988) [1]. The whole population consists of m+ 1 small areas and nk sampling

units are obtained from the k-th area (k = 0, 1, 2, ...,m). Under this model, the

response variable y and the covariates satisfy the following formula:

ykj = xτkjβ + vk + εkj, j = 1, 2, . . . , nk (3.1)

where vk ∼ N(0, σ2
v) is the random effects in each small area and εkj ∼ N(0, σ2) is

the random errors for each observation. Under this model, the regression coefficient

β remains the same. Therefore, samples from all areas can be used to estimate β.

Hence, when the whole population sample size
∑
nk is increasing, an estimate β̂ of

β can be obtained with any precision. Suppose the area totals Xk are known, then,

a direct estimate of the k-th area total would be Ŷk = Xτ
k β̂. Various estimation

strategies have been proposed based on model (3.1). Most existing methods focus

on estimating small area totals or means. There are fewer discussions about small
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area medians or quantiles. Some discussions are based on quantile regression. A

general reference about quantile regression is [25]. In this Chapter, we construct

median and quantile estimators by using the density ratio model.

3.3 Density Ratio Models in Small Area Estimation

Assume that we have a random sample from the target finite population with

nk units from the k-th small area, and that there are m small areas in the population.

Chen and Liu (2015) [6] suggest that

ykj = xτkjγk + εkj (3.2)

Some specifications of this model are as follows. First, we allow a more flexible

linear relationship with area specific regression coefficient γk, but forgo the area

specific random effect in model (3.1). To avoid excessive numbers of parameters in

this model, we need to seek a way to link γk to some auxiliary information. There

are many potential choices, Chen and Liu (2015) [6] suggest that

γk = γ + aX̄k (3.3)

for some vector γ and scalar a, where the X̄k’s are known area specific means of

covariates. Second, regard εkj, for each k, as a random sample from some distribution

Gk. Chen and Liu (2015) [6] postulate a density ratio model such that for k =

1, 2, ...,m

log{dGk(t)/dG0(t)} = αk + β′kh(t) (3.4)
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This idea occurred first in Kedem et al.(2008) [20]. We choose the base distribution

G0 by computer generated data provided model (3.4) passes a goodness of fit test.

Observe that we fuse real and artificial data. By fusing the real data with appro-

priate artificial data, we can increase the sample size (making the small area into a

big area) and control the common base distribution G0 to get better estimates of

the DRM.

Given (ykj,xkj) for k = 1, ...,m and j = 1, ..., nk, we can estimate (γ, a) in

(3.3) through least squares. That is, let

(γ̂, â) = argmin
γ,a

∑
k,j

{ykj − xτkj(γ + aX̄k)}2. (3.5)

Hence, the residuals (k = 1, ...,m; j = 1, 2, ..., nk) are given by

ε̂kj = ykj − xτkj(γ̂ + âX̄k). (3.6)

Then we can follow the estimation method which was discussed in Section 1.5 by

using ε̂kj. The corresponding estimated distorted cdfs of the residuals are given by,

Ĝk(ε) =
n∑
i=1

exp(α̂k + β̂
′
kh(ti))p̂iI(ti ≤ ε) k = 1, 2, . . . ,m, (3.7)

where t = (t1, ..., tn)′ = (ε
′
0, ε̂

′
1, ..., ε̂

′
m)
′
, ε0 is a vector of computer generated data

provided model (3.4) passes a goodness of fit test.

The availability of Ĝk provides a new tool for small area estimation. If the

small area mean ȳk is the parameter of interest, we can estimate it by

ˆ̄yk = X̄τ
k γ̂k +

∫
εdĜk(ε) (3.8)

= X̄τ
k (γ̂ + âX̄k) +

∫
εdĜk(ε) (3.9)
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Following Kedem et al. (2008) [20], the small area distribution of y can be compre-

hensively estimated as

F̂k(y) = P̂ (yk ≤ y) (3.10)

= P̂ (xτkγk + εk ≤ y) (3.11)

= P̂ (εk ≤ y − xτkγk) (3.12)

= Ĝk(y − xτkγk) (3.13)

≈ Ĝk(y − X̄τ
k{γ̂ + âX̄k}) (3.14)

We may hence estimate the small area quantiles by those of F̂k(y).

3.4 Dealing with missing data

The random nature of the probability sampling can result in no sampling

units from many subpopulations of interest. From our original model (3.2), we are

supposed to know ykj and xkj. In reality, sometimes we don’t know the values of

ykj or of xkj. Without loss of generality, we assume we have missing values in the

m-th area.

3.4.1 Missing covariates

If the covariates xkj are missing, we can apply model (3.2) to the rest of the

m − 1 areas, and get Ĝk for k = 1, 2, ...,m − 1. We suggest to estimate the small
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area distribution of y in the m-th area by the average

F̂m(y) = (m− 1)−1

m−1∑
k=1

Ĝk(y − Ȳm) (3.15)

Then we may estimate the small area mean or quantiles for the m-th area from

F̂m(y).

3.4.2 Missing variable of interest

If the variable of interest ykj is missing, we can apply model (3.2) to the rest

of the m− 1 areas, and get γ̂k. Then we can create the estimated ŷmj = xτmjγ̂k. We

suggest estimating the small area distribution of y in the m-th area by

F̂m(y) = (m− 1)−1

m−1∑
k=1

Ĝk(y − ¯̂
Ym) (3.16)

The small area mean or quantiles for the m-th area can be estimated from F̂m(y).

3.5 Simulation

In this section, we do several numerical simulations to investigate the perfor-

mance of the estimator (3.14) for small area quantiles. We take the 10%, 25%, 50%,

75% and 90% small area quantiles as the parameters of interest. We simulated data

from three models where the number of small areas is m = 10. In each case, the

small area sample size is nk = 2, 10, 50 or 100. The tilt function h(t) in (3.4) is set

to t. We use several GOF tests to verify h(t) = t is an appropriate tilt function.

The process is repeated independently N = 100 times. Let Yk denote the theoretical

small area quantiles for the k-th area, and let Ŷ i
k denote the estimated small area
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quantiles for the k-th area in the i-th repetition. We report the average mean square

error (AMSE) defined as

AMSE = (Nm)−1

m∑
k=1

N∑
i=1

(Ŷ i
k − Yk)2

next, we specify three models used in this simulation. In these models, the covariates

x and response value y are linked as follows,

ykj = xτkjβ + εkj (3.17)

ykj = xτkj(β + X̄k/2) + εkj = xτkjβ + xτkjX̄k/2 + εkj (3.18)

ykj = xτkj(β + X̄k/2) + µk + εkj = xτkjβ + xτkjX̄k/2 + µk + εkj (3.19)

where the first component of xkj is 1, the other two components of xkj are k, k+ 1.

β = c(1, 1,−1), εkj and µk are standard normal.

The simulation results on average mean square errors of the estimators for

small area quantiles are presented in Tables 3.1, 3.2 and 3.3. we can observe that as

the small area sample size nk increasing, the average mean square error is decreasing.

Table 3.1: Simulation 1, m=10, N=100, fused with Norm(0,1) with size nk

AMSE 10% 25% 50% 75% 90%

nk=2 0.7122751 0.5649076 0.5134292 0.5847592 0.7784737

nk=10 0.1260628 0.1136636 0.112306 0.1126443 0.1267265

nk=50 0.02514846 0.02370558 0.02368818 0.02371201 0.02732065

nk=100 0.01313619 0.01213875 0.01154132 0.01148632 0.01266889
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Table 3.2: Simulation 2, m=10, N=100, fused with Norm(0,1) with size nk

AMSE 10% 25% 50% 75% 90%

nk=2 0.7682328 0.6058363 0.5576685 0.6234982 0.8191698

nk=10 0.1236161 0.1130988 0.1127212 0.1141786 0.1260709

nk=50 0.02397778 0.02317001 0.02258742 0.02315008 0.02611703

nk=100 0.01347736 0.01198986 0.01172397 0.01225897 0.01309221

Table 3.3: Simulation 3, m=10, N=100, fused with Norm(0,1) with size nk

AMSE 10% 25% 50% 75% 90%

nk=2 0.8054222 0.5962571 0.5080348 0.5842774 0.8079982

nk=10 0.1337086 0.1151482 0.1047073 0.1103459 0.133382

nk=50 0.02745751 0.02374751 0.02318081 0.02481688 0.02942381

nk=100 0.01376919 0.01150948 0.01076977 0.0112752 0.01268921

3.6 LANDSAT data

We use the LANDSAT data (Battese et al. 1988 [1]). The initial survey data,

in which farmers reported the area they had growing either corn or soybeans, was

compared to estimates obtained from satellite mapping of the farms. The landsat

data.frame in R is a compilation of survey and satellite data. It consists of data on

36 segments under corn and soybeans for 12 counties in north-central Iowa; some of

the counties consist only one segment. A segment is about 250 hectares. We report

the quantile estimates for corn and soybeans in 12 Iowa counties in Table 3.4 and

3.5.
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Table 3.4: Quantile estimates for Corn in 12 Iowa Counties

10% 25% 50% 75% 90% mean

Cerro 153.7719 161.8645 165.6329 171.5009 173.7787 165.7600

Hamilton 85.10395 92.17552 96.32000 101.19181 105.81617 96.3200

Worth 69.83421 69.83421 72.74402 76.08000 86.76514 76.0800

Humboldt 132.8490 143.4972 149.3294 162.2817 163.3996 150.8900

Franklin 147.9525 151.0414 158.2226 159.7092 173.4468 158.6233

Pocahontas 90.35912 98.45173 102.22017 108.08812 110.36598 102.5233

Winnebago 100.3369 103.7099 116.9083 119.6163 126.3191 112.7733

Wright 130.0451 141.9561 143.4922 151.4154 154.3395 144.2967

Webster 106.3251 114.6170 117.5411 122.4129 127.0373 117.5950

Hancock 96.28048 101.68602 113.37087 115.55984 122.26265 109.3820

Kossuth 98.15091 98.26412 110.90732 118.79528 127.80509 110.2520

Hardin 111.2013 112.3192 120.9320 125.9133 131.2021 120.0540

Table 3.5: Quantiles estimates for Soybeans in 12 Iowa Counties

10% 25% 50% 75% 90% mean

Cerro -1.026404 2.550684 6.191728 17.060427 18.694347 8.09000

Hamilton 95.96467 101.24946 105.08107 114.06589 115.68542 106.03000

Worth 85.67646 100.02291 105.30771 110.08824 118.12413 103.60000

Humboldt 22.86738 28.80660 34.78524 44.99331 47.68262 35.14500

Franklin 38.86547 38.86547 53.31749 59.34619 66.41038 52.47333

Pocahontas 105.6021 111.8626 122.1129 124.3886 125.9242 118.69667

Winnebago 79.05056 84.48561 85.87976 92.39021 102.10850 88.57333

Wright 79.53198 86.62884 102.87018 104.94914 114.45423 97.80000

Webster 99.93526 105.82442 116.03249 118.72180 120.25743 112.98000

Hancock 107.2181 109.1863 115.3553 126.2630 134.2117 117.47800

Kossuth 99.5183 115.4981 117.5771 127.0822 133.0074 117.84400

Hardin 93.25324 96.83033 100.47137 111.18308 112.73422 101.83400
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3.7 Discussion

The small area estimation of population quantiles is not fully discussed in the

literature. The currently used models for small area estimation are not suitable as

platforms for addressing this issue. We can use density ratio models for the purpose

of small area quantile estimation. We choose the reference distribution as that of

computer generated data provided the DRM passes a goodness of fit test. And by

fusing real data with appropriate artificial data, we can increase the sample size

(making the small area big area) and control the base distribution to get better

estimates. We also suggest estimators for population attributes of subpopulations

with no sampling units.
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Chapter 4: Extreme Value Theory

4.1 Introduction

Often, it is required to estimate the probability of rare and hazardous events

in many disciplines, including structural engineering, earth sciences, geological en-

gineering and traffic prediction etc. Extreme Value Theory (EVT) is a branch of

statistics that deals with extreme deviations from the median of probability distri-

butions. This chapter briefly reviews the Extreme Value Theory (EVT), two wildly

used methods in modeling extreme values will be discussed: the block maxima ap-

proach and the peaks over threshold approach. The purpose of this Chapter is to

review traditional methods in estimation of tail probabilities which will later serve

as benchmarks to assess the performance of semiparametric methods. More rigor-

ous and thorough treatment of EVT can be found in Beirlant et al.(2004) [2], Coles

(2001) [7], Haan and Ferreira (2006) [9], Leadbetter et al. (1983) [27], and Resnick

(1987) [33]. Section 4.2 provides model formulation. We discuss the Block Maxima

approach in Section 4.3, and the peaks over threshold approach is given in Section

4.4. The notations are adopted from Coles (2001) [7].
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4.2 Model Formulation

Consider a sequence of independent and identically distribution (i.i.d.) random

variables X1, ..., Xn with common distribution function F . The extreme value model

focuses on the statistical behavior of

Mn = max{X1, ..., Xn},

which is the maximum of the sequence of random variables. Determining which dis-

tribution Mn follows is the essential problem in EVT. Theoretically, the distribution

of Mn can be derived exactly, given that the distribution function F of Xi is known:

P (Mn ≤ z) = P (X1 ≤ z, ..., Xn ≤ z) = P (X1 ≤ z)...P (Xn ≤ z) = (F (z))n. (4.1)

However, this approach is not useful in practice. First, the distribution function F

is unknown in general. One possible approach is estimating F by a kernel density

estimate. Another approach is assuming that the Xi’s come from a particular distri-

bution. Then the estimated F is raised to the power of n to obtain the distribution

function of Mn. Small discrepancies in the estimates of F can lead to substantial

discrepancies in F n. Alternatively, a family of distributions F n that approximate

any unknown F may be found. The Fisher–Tippett–Gnedenko theorem provides an

asymptotic result. (Fisher and Tippett (1928) [14], Gnedenko (1948) [16])

Theorem 4.1. Let Xn be a sequence of i.i.d. random variables. If there exist

constants an > 0, bn ∈ R and some non-degenerate distribution function G such

that

Mn − bn
an

d−→ G,
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then G belongs to one of the three standard extreme value distributions: Gumbel,

Fréchet, or Weibull distributions.

This is the first EVT result (also known as the Fisher-Tippett-Gnedenko The-

orem [14] [16]) which characterizes the asymptotic distribution of the sample max-

imum. The theorem states that the asymptotic distribution G of the maximum of

a sample of i.i.d. random variables, after proper renormalization, can converge in

distribution to only one of three possible types of distributions: Gumbel, Fréchet,

or Weibull. The three types of distributions correspond to the different tail behav-

iors for the distribution of the original population. Gumbel is related to light-tailed

distributions such as normal, gamma or exponential distributions. Fréchet is re-

lated to heavy-tailed distributions such as Pareto, Cauchy or Student-distribution

and Weibull is related to distributions with finite upper bound such as Uniform

and Beta. These three classes of distributions are termed as the extreme value

distribution (EVD).

A reformulation of Theorem 4.1 combines the three distributions into a single

family of models called the generalized extreme value (GEV) distribution.

Theorem 4.2. Let Xn be a sequence of i.i.d. random variables. If there exist

constants an > 0, bn ∈ R and some non-degenerate distribution function G such

that

Mn − bn
an

d−→ G,

then G a member of the GEV family:

G(z) = exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ}
(4.2)
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defined on {z : 1 + ξ(z − µ)/σ > 0} where −∞ < µ <∞ is the location parameter,

σ > 0 the scale and ξ 6= 0 the shape parameter.

4.3 Block Maxima

The Block Maxima approach considers the maximum the variable takes in

successive observations. More precisely, a sample is divided into sub-samples or

blocks first. Then, the largest observation in each block (block maximum) is taken

as an extreme data point which will be used for fitting the GEV distribution. There

are several practical issues when we apply the block maxima approach in a real

situation. In the real data application, it is very common that the sample size is not

large enough, so that the estimates of the unknown distribution parameters are not

reliable. The point estimate and confidence interval come from the block maxima

approach don’t make any practical sense in this situation.

4.4 Peaks Over Threshold

The peaks over threshold (POT) method is an alternative approach in EVT. It

considers all observations above a certain threshold value as extreme observations.

The conditional distribution functions of values of x above the threshold u is denoted

as Fu. The we need to estimate this conditional excess distribution function. The

second EVT result (Pickands-Balkema-de Haan Theorem [3] [30]) provides a very

helpful theoretical results that gives the asymptotic distribution of the conditional

excess distribution.
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Theorem 4.3. Let Xn be a sequence of i.i.d. random variables with common dis-

tribution function F and let

Mn = max(X1, ..., Xn).

Suppose that F satisfies Theorem 4.1, so that for large n, Mn−bn
an

d−→ G, where

G(z) = exp
{
−
[
1 + ξ

(z − µ
σ

)]−1/ξ}
Then, for large enough u, the distribution function Fu of X − u, conditional on

X > u, is approximately

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

defined on {y : y > 0 and (1 + ξy)/σ̃ > 0} where σ̃ = σ + ξ(u− µ).

The family of distributions determined by H is called the generalized Pareto

distribution (GPD). Theorem 4.3 states that, if the limiting distribution ofmax(X1, ..., Xn)

approximates the GEV distribution G, then the threshold exceedances could be ap-

proximated by the generalized Pareto distribution for sufficiently large threshold u.

When we apply the POT approach in a real data application, it is important to

choose a proper threshold u. If u is too small, a biased sample is obtained. Obser-

vations that is not extreme values would be included in the sample and violate the

model assumption. On the other hand, if this value is chosen too large, the sample

size would be too small. This will cause improper estimation of the parameters in

the unknown distribution.
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Chapter 5: Out of Sample Fusion and Repeated Out of Sample Fu-

sion

5.1 Introduction

Often, it is required to estimate the probability that a quantity such as mer-

cury, lead, toxicity level, plutonium, temperature, rainfall, damage, wind speed,

wave size, risk, etc., exceeds an unsafe high threshold. The probability in question

is then very small. To estimate such a probability, information is needed about large

values of the quantity of interest. However, in many cases, the data only contain

values below or even far below the designated threshold, let alone exceedingly large

values. This chapter briefly reviews the Out of Sample Fusion method (OSF) and

Repeated Out of Sample Fusion method (ROSF) (Zhou 2013 [39], Katzoff et al.

2014 [24], L. Pan 2016 [29], Kedem et al. 2016 [23]). It is shown that by repeated

fusion of the data with externally generated random data, more information about

small tail probabilities is obtained with the aid of certain new statistical functions.

This provides short, yet reliable interval estimates based on moderately large sam-

ples.
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5.2 Out of Sample Fusion in Estimation of Threshold Probabilities

Let X0 denote an i.i.d. sample from some given population:

X0 = (x01, ..., x0n0)
′ ∼ g(x)

The distribution function G(x) of X0 is assumed to be unknown, and the threshold

exceedance probability p = 1 − G(t) for some fixed threshold t is of interest. X0

is referred to as the reference sample. Let Xj denote a computer generated i.i.d.

sample with sample size nj, j = 1, ...,m

Xj = (xj1, ..., xjnj
)
′ ∼ gj(x)

The computer generated samples Xj will be referred to as the fusion samples. Then

under the density ratio model, we have

gj(x)

g(x)
= exp(αj + β

′

jh(x)), j = 1, ...,m

where αj is a scalar parameter, βj is a p × 1 parameter vector, and h(x) is a

known p × 1 vector valued distortion or tilt function. Semiparametric statistical

inference about all the parameters and probability distribution of the reference X0

can be obtained from the combined data from the m+1 samples X0, X1, ..., Xm. The

combined data now has the size of n = n0 + n1 + ...+ nm. Therefore. the reference

distribution function G is estimated from the fused data with n observations and not

just from the reference sample itself with n0 observations. The estimated threshold

exceedance probability is:

p̂ = P̂ (X0 > t) = 1− Ĝ(t) = 1− 1

n0

n∑
i=1

I(ti ≤ t)

1 + ρ1ω̂1(ti) + ...+ ρmω̂m(ti)
(5.1)
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where ω̂j(x) = exp(α̂j + β̂
′

jh(x), j = 1, ...,m.

For a large threshold T , the 100(1−α)% confidence intervals for p = 1−G(T )

can be constructed based on the asymptotic results from Theorem 1.2:

(
1− Ĝ(t)− z1−α/2

√
V̂ (t), 1− Ĝ(t) + z1−α/2

√
V̂ (t)

)
(5.2)

where V̂(t) denotes the estimated variance of Ĝ(t) as given in Theorem 1.2.

5.3 Repeated Out of Sample Fusion

Repeated Out of Sample Fusion (ROSF) is an extension of OSF to estimate

tail probabilities and their confidence intervals where a given reference sample is

fused or combined repeatedly with computer generated data. The implementation

of ROSF is given in the following.

We want to estimate a small threshold exceedance probability p > 0 for a

random sample X0 from some distribution. We call X0 the reference sample. A

fusion sample X1 is then generated by the computer and fused together with the

reference sample. The point estimate p̂1 and the confidence interval [0, B1] are then

obtained through the semiparametric density ratio model as described in the OSF

method. The same reference sample is then fused with another computer generated

sample (from the same distribution of the previous artificial sample and independent

of it) to obtain another p̂2 and confidence interval [0, B2] in the same manner as

before. This process is repeated nr times to produce a sequence of point estimates

p̂i and confidence intervals [0, Bi], i = 1, ..., nr. Conditional on X0, the sequence of

upper bounds Bi is independent and identically distributed from some distribution

63



FB(·) = FB(·|X0). Denote the empirical distribution of Bi’s by F̂B. By the Glivenko-

Cantelli theorem, F̂B converges to FB almost surely uniformly as nr increases. Since

the process may be repeated many times, a very close approximation of FB can be

obtained. In other words, as the number of fusions becomes very large, F̂B is almost

the exact FB.

The final point estimates of the threshold exceedance probability from the ROSF

algorithm is the average of p̂i’s from nr OSF runs:

p̂ = P̂ (X0 > t) =
1

nr

nr∑
i=1

p̂i, i = 1, ..., nr,

and the associated 100(1− α)% confidence interval is

[0, F−1
B (α1/N)],

where N is a large enough positive integer. More can be found in Kedem et al.

(2017) [21], Zhou (2013) [39], Pan (2016) [29] and Kedem et al. (2016) [23].

The length of the confidence interval depends on the choice of N . Here, N

serves as a tuning parameter. Intuitively, as the number of fusions increases, the

number of Bi’s grows and the confidence interval [0,max(Bi)] covers p with proba-

bility close to one. That is, as nr →∞.

P (B(nr) > p)→ 1.

In practice, the exact CDF of B’s FB is unknown. So the corresponding empirical

distribution F̂B is estimated based on Bi’s obtained from nr OSF repetitions. As

nr →∞, F̂B → F̂B uniformly almost surely. Therefore, as we control the number of

repetitions nr, FB is practically known. In Pan (2016) [29], a comparison of ROSF
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with a method from extreme values theory (Peaks over Threshold, or POT) points

to the merit of this approach.

Similarly, we can get lower bounds A1, A2, ..., Anr for p = 1 − G(T ). Since

we can fuse as many times as we wish, we practically know the cdf FA from the

Glivenko-Cantelli Theorem (uniform convergence):

F̂A → F (A)

The associated 100(1− α)% confidence interval is

[F−1
A (1− α1/M), 1]

where M is a large enough positive integer.

Theorem 5.1. Let p̂i and Ai be the sequence of point estimates of the tail probabil-

ities and its lower confidence bounds obtained by ROSF. Let FA denote the distribu-

tion function of the A’s. Under the condition

P (A ≤ p) = FA(p) > 0

there exists M0 such that for all M > M0, the confidence interval for the tail prob-

ability p, [F−1
A (1− α1/M), 1] gives at least 100(1− α)% coverage.

Proof. For an i.i.d. sample A1, ..., AM , denote the minimum by A(1) = min(Ai). It

follows that

P (A(1) ≤ p) = 1− (1− FA(p))M

If P (A ≤ p) = FA(p) > 0, then from the above equation, the probability that the

minimum lower bound covers the desired tail probability increases as the tuning
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parameter M increases. Conditional on the given sample X0, for all M > M0, we

have the following inequality:

1− (1− FA(p))M ≥ 1− α

for some M0 sufficiently large. The inequality can be rewritten by inverting the

distribution function:

F−1
A (1− α1/M) ≤ p ≤ 1

The above relationship implies that the interval [F−1
A (1 − α1/M), 1] covers the true

tail probability p with at least 100(1− α)% confidence for sufficiently large M .

Together with the maximum B(N) from the upper bounds B1, ..., BN , we have

with high confidence:

F−1
A (1− 0.051/M) ≤ p ≤ F−1

B (0.051/N)

In practice, due to computational difficulties, we find that the lower bounds obtained

by ROSF may be less than 0. So there is fewer advantages for using the lower bounds

to construct a precise confidence interval.
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Chapter 6: Iterative Method

6.1 Introduction

It is shown that by repeated fusion of the data with externally generated

random data, more information about small tail probabilities is obtained with the

aid of certain new statistical functions. In this Chapter, a small tail probability

is identified with a point on a certain monotone curve. The point on the curve

is approached by an iterative procedure against the backdrop of repeated fusion of

real and “fake” data. In many cases, this brings about surprisingly precise estimates

for small tail probabilities, using moderately large samples. A comparison of the

approach with a method from extreme values theory (Peaks over Threshold, or

POT), using both artificial and real data, points to the merit of the approach. A

preliminary version of our work can be found in Kedem et al. (2018) [19]

6.2 Motivation

We wish to estimate a small tail probability p of exceeding a high threshold

T from a moderately large random sample X1, ..., Xn0 . This is done by fusing or

combining the sample repeatedly with computer generated uniform samples. The

67



number of fusions can be as large as we wish. For example 10,000 or 100,000 or

1,000,000 or more fusions. Throughout the Chapter the sample size n0 is moderately

large (100, 120, or 200), and, since in many cases the data only contain values below

or even far below the designated threshold, it is assumed that the measurements Xi

are all below T .

Fusing a given sample repeatedly with computer generated data is referred to

as repeated out of sample fusion (ROSF). Unlike the bootstrap, additional informa-

tion is sought repeatedly outside the sample.

The large number of fusions results in what is called a B-curve defined in

Section 6.4. The B-curve is monotonically increasing and it contains a point whose

ordinate is very close to p with a high probability. In fact, as the number of fusions

increases, the ordinate of that point essentially coincides with p. The goal is to

“capture” that point.

Estimating p is equivalent to “capturing” the said point on the B-curve, and

this Chapter provides an iterative algorithm for doing so. The consequent interval

estimates of p are quite precise. A comparison with peaks-over-threshold (POT)

from extreme value theory indicates that ROSF can bring about a substantial gain

in reliability as well as in precision across a fairly wide range of tail behavior, given

moderately large samples X0.

The question then is how to tie or connect the real data and the generated

random data to obtain useful reliable interval estimates for small tail probabilities.

Connecting the real and artificial data can be approached by means of their respec-

tive distributions under the so called density ratio model framework. This Chapter
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describes ROSF together with an iterative method (IM) in the estimation of small

tail probabilities against the backdrop of the density ratio model.

6.3 A Note about Extremes

The estimation of small tail probabilities has been around for a long time, at

least since the celebrated work of Fisher and Tippett (1928) [14] on the extremes

of random samples. Of the various statistical methods dealing with this estima-

tion problem, the block maxima (BM) and peaks-over-threshold (POT) are two

widespread methods discussed, for example, in Beirlant et al. (2004) [2] and more

recently in Ferreira and de Haan (2015) [10], among many others.

BM and POT might not be sufficiently reliable when the data sets are not

large enough because both approaches entail a reduction in the number of observa-

tions. Specifically, by the POT method only observations above a sufficiently high

threshold are used, and by the BM method the data are first divided into blocks

and only the maximum from each block is used in estimation. Thus, if the data size

is not large to begin with, a further data reduction might reduce considerably the

reliability of the estimation results.

ROSF is of an entirely different nature in that it is not based on extreme value

theory. It is an augmentation method where a reference sample is combined many

times with additional data, albeit “fake” artificial data. Hence, unlike BM and POT

there is no loss of observations.

ROSF has been introduced and applied in the estimation of small tail proba-
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bilities in connection with food safety in Kedem et al. (2016) [23]. A large number

of experiments show that ROSF accommodates a fairly wide range of tail behav-

ior, including that of gamma, lognormal, inverse Gaussian, Pareto, and Weibull, and

that of environmental variables whose distributions possess very long tails, including

lead intake, mercury, and chlorophenol compounds.

The special case where only a single fusion with artificial data occurs is dubbed

in Zhou (2013) [39] and in Katzoff et al. (2014) [24] as out of sample fusion (OSF). In

connection with importance sampling, Fokianos and Qin (2008) [13] use this idea in

estimating the normalizing constant of a parametric probability distribution. Sim-

ilarly, Fithian and Wager (2015) [15] study heavy-tailed distributions given a rela-

tively small sample, and a much larger background sample from another distribution

assuming that the tails of the two distributions are connected by an exponential tilt

model.

The relative efficiency of BM and POT has been discussed in Ferreira and de

Haan (2015) [10] and references therein. Under certain conditions the two methods

are quite similar. In this Chapter we shall compare ROSF together with its IM

companion to POT only, using moderately large samples.

6.4 ROSF and the B-Curve

We are in pursuit of a small tail probability p. It is shown how to construct a

curve which contains with a high probability a point whose ordinate is p.

Let X0 denote a given reference sample x1, ..., xn0 from some reference dis-
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tribution G, and suppose we wish to estimate a small tail probability p of that

distribution. The variable X ∼ g could represent quantities such as earthquake

magnitude, radioactive contamination, claim amounts, financial returns, poverty

levels, wealth, temperature, and so on, and the interest is in the tail probability

p = P (X > T ) for some relatively high threshold T . Further, suppose we have a

way to fuse or combine the reference sample X0 with a computer-generated sample

X1. Then X0 can be fused again with another independent computer generated

sample which we again denote by X1 (X1 is used generically), and so on. All these

X1 samples are independent and are generated in an identical manner and all have

the same size n1. We refer to these computer-generated samples as fusion samples.

Observe that the fused or combined samples all have size n0 + n1.

Here is how B-curves are constructed. We fuse the given reference sample

X0 with a computer-generated fusion sample X1 from g1 and obtain a confidence

interval [0, B1] for the small tail probability p. Since p is small we take the lower

bound to be 0, and compute the upper bound B1. We fuse the given reference

sample X0 again with another artificial fusion sample X1 from g1 and get in the

same manner as before another confidence interval [0, B2] for p. This process is

repeated many times to produce a long sequence of confidence intervals [0, Bi],

i = 1, 2, ..., n. Conditional on X0, the sequence of upper bounds B1, B2, ..., Bn is

then an independent and identically distributed sequence of random variables from

some distribution FB. It is assumed that

P (B1 > p) = 1− FB(p) > 0. (6.1)
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Let B(1), B(2), ..., B(n) be the sequence of order statistics from smallest to largest.

Then, as n → ∞, B(1) decreases and B(n) increases. Hence, as the number of

fusions n increases the plot consisting of the pairs

(1, B(1)), (2, B(2)), ..., (n,B(n)) (6.2)

contains a point whose ordinate is p with probability approaching 1. It follows that

as n → ∞, there is a B(j) which essentially coincides with p. The plot of points

consisting of the pairs (j, B(j)) in (6.2) is referred to as the B-curve. Typical B-curves

corresponding to the tail probability p = P (X > T ) = 0.001 for various reference

samples X0 from the indicated distributions or data are shown in Figure 6.1. Notice

that to get p = 0.001, in each case the threshold T must change accordingly, and

that in each plot there is a B(j) nearest or closest to p = 0.001.

A key fact of the present approach is that since the fusions can be repeated

indefinitely we can approximate the distribution of the B upper bounds arbitrarily

closely.

Let F̂B be the empirical distribution obtained from the sequence of upper

bounds B1, B2, ..., Bn. Then from the Glivenko-Cantelli Theorem, F̂B converges to

FB almost surely uniformly as n increases. Since the fusion process can be repeated

as many times as we wish, our key idea, FB is known for all practical purposes.

Assume then that FB was obtained from numerous fusions, for example 10, 000

fusions. Then, under (6.1), from a random sample B1, ..., BK , the probability that

the maximum B(K) exceeds p,

P (B(K) > p) = 1− FK
B (p) (6.3)
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Figure 6.1: Typical B-Curves from B(1), ..., B(10,000) containing a point correspond-
ing to p = 0.001. Clockwise from top left: Gamma(1,0.01), LN(1,1), Lead exposure,
Mercury. T=690.7755, 59.7538, 25.00, 22.41, respectively, n0 = n1 = 100. His-
tograms representing the distributions are shown in Figure 6.2.
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Figure 6.2: Histograms representing distributions with long right tails.
The lead intake data are discussed in Kedem et al. (2016) [23].
The mercury data source is NOAA’s National Status and Trends Data
https://products.coastalscience.noaa.gov/nsandt data/data.aspx
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increases with K. It follows that for all K > K0, for some sufficiently large K0, we

have for a small α > 0 the inequality

1− FK
B (p) ≥ 1− α (6.4)

or

0 < p ≤ F−1
B (α1/K). (6.5)

The interval (6.5) covers p with at least 100(1 − α)% confidence, and it has been

applied in food safety in Kedem et al. (2016) [23]. Experimental results indicate

that in many cases K = 100 is a conservative choice and that at times a much

smaller K suffices. However, when max(X0) is small relative to T , a larger K is

needed, for example K = 300 or even larger.

6.4.1 Getting Upper Bounds by Data Fusion

Clearly, the preceding argument is quite general, and the effectiveness of the

procedure will depend on the quality of the [0, Bi] confidence intervals. In this section

we describe a particular way of generating these confidence intervals, which amounts

to data fusion of the real and computer-generated data (“augmented reality” as it

were) under the density ratio model.

In general, by “fusion” or “data fusion” we mean the combined data from

m + 1 sources where each source is governed by a probability distribution. In the

spirit of augmented reality, random data generating computer algorithms are per-

fectly legitimate data sources. Using the combined data, semiparametric statistical
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inference can be ensued under the density ratio model assumption (Kedem, et al.

2017) [21].

Recall that the reference random sample X0 of size n0 follows an unknown

reference distribution with probability density g, and let G be the corresponding

cumulative distribution function (cdf).

Let

X1, ...,Xm,

be additional computer-generated random samples where Xj ∼ gj, Gj, with size nj,

j = 1, ...,m. For now m ≥ 1 but later we specialize to m = 1 only. We refer to the

vector

t = (t1, . . . , tn)′ = (X ′0,X
′
1, . . . ,X

′
m)′, (6.6)

of size n = n0 + n1 + · · · + nm as the fused data. We further assume the density

ratio model (Qin and Zhang 1997 [31])

gj(x)

g(x)
= exp(αj + β′jh(x)), j = 1, . . . ,m, (6.7)

where βj is a p × 1 parameter vector, αj is a scalar parameter, and h(x) is a

p× 1 vector valued distortion or tilt function. Clearly, to generate the Xj samples

we must know the corresponding gj. However, beyond the generating process, we

do not make use of this knowledge. Thus, by our estimation procedure, none of

the probability densities g, g1, ..., gm and the corresponding Gj’s, and none of the

parameters α’s and β’s are assumed known, but, strictly speaking, the so called tilt

function h must be a known function.
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Since all the probability distributions are connected by the density ratio model

(6.7), each distribution pair gj, Gj is estimated from the entire fused data t and not

just from Xj only. The same holds for the reference pair g,G. Thus, for example,

the reference G is estimated from the entire fused data t with n observations and

not just from the reference sample X0 with n0 << n observations.

Under the assumption that the density ratio model (6.7) holds, the maximum

likelihood estimate of G(x) based on the fused data t is given in (1.8) in Section 1.5,

along with its asymptotic distribution described in Theorem 1.1 and Theorem 1.2.

From the theorem we obtain confidence intervals for p = 1−G(T ) for any threshold

T using (5.2). In addition, from (5.1) we get the point estimate p̂ as well.

Obviously, the density ratio model per se need not hold, and even if it does for

some tilt function h, the validity or goodness of an arbitrary choice of h is uncertain.

Furthermore, if max(X0) is much smaller than the threshold T , then p̂ from (5.1)

could be just too small. However, for the implementation of ROSF, the density

ratio model need not hold precisely and any reasonable choice of h suffices, as long

as (6.1) holds, which is a mild requirement. Experience shows that the “gamma

tilt” h(x) = (x, log x) is a sensible choice for skewed data similar to those shown in

Figure 6.2. Similarly, the “lognormal tilt” h(x) = (log x, (log x)2) is another useful

choice.

Our strategy then is to obtain interval estimates for small p = 1−G(T ) for a

relatively large T using numerous upper bounds from (5.2), obtained by ROSF, call

the upper bounds Bi, and take the lower bounds as 0. This is the method referred

to in the previous section by which we obtain the [0, Bi] confidence intervals. When
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assumption (6.1) holds, many of the Bi will be greater than p as their number

increases, but some will not. Hence, the ordered B(i) engulf or surround p with

probability approaching one as the number of fusions increase. This is illustrated in

Figure 6.1 with 10,000 fusions.

Thus, [0, B1] is obtained from the first fusion of X0 with a set of m computer-

generated samples. Then [0, B2] is obtained by fusing X0 again but with a different

independent set of m computer-generated samples, and so on. From each fusion we

obtain a point estimate p̂ = 1− Ĝ(T ) using (5.1) and an upper bound Bi from (5.2).

Since this fusion process is repeated numerous times, we obtain both numerous

point estimates p̂’s and numerous upper bounds Bi’s. In general, as the number of

fusions increases, the set of pairs (j, B(j)) engulfs the desired point on the B-curve

with probability approaching one. That is, with a large number of fusions the ordered

B(j) engulf p with a high probability. This, in general, cannot be said about the

ordered p̂’s unless the number of fusions is exceedingly large. See Section 6.5.1.2 for

a case where the p̂’s from (5.1) are too small.

In this Chapter m = 1 only, and the fusion samples are uniform random

samples supported over a wide range which covers T . But why uniform? First, when

the density ratio model holds for some g and g1, then it also holds approximately

by taking g1 as a uniform density supported over a sufficiently wide range. Second,

and more to the point, ROSF requires only the mild assumption (6.3). Experience

shows that assumption (6.3) holds well when fusing X0 with uniform samples using

the tilt function h(x) = (x, log x) across a wide range of tail types. Evidently, the

B-curves used in this Chapter provide further support for the validity of assumption
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(6.3).

To summarize, under assumption (6.3), the B-curves are constructed from

ordered upper bounds B(j) (5.2) for p = P (X > T ) obtained from a large number

of repeated fusions of X0 with random uniform samples X1 where the upper limit

of the uniform distribution exceeds T . Throughout the Chapter, max(X0) < T and

h = (x, log x).

6.5 Capturing a Point on the B-Curve

Due to a large number of fusions n, FB is known for all practical purposes and

with probability close to 1

B(1) < p < B(n). (6.8)

In general, even for n = 1, 000, B(1,000) is much larger than the true p and B(1) is

very close to 0. The goal is to find B(j) close to p.

It follows, by the monotonicity of the B-curve and (6.8), that as j decreases

(for example from n = 10, 000), the B(j) approach p from above so that there is a

B(j) very close to p. Thus, the B-curve establishes a relationship between j and p.

From a basic fact about order statistics [8] it is known that

P (B(j) > p) =

j−1∑
k=0

(
n

k

)
[FB(p)]k[1− FB(p)]n−k. (6.9)

Therefore, as (6.9) is monotone decreasing, the smallest p which satisfies the in-

equality

j−1∑
k=0

(
n

k

)
[FB(p)]k[1− FB(p)]n−k ≤ 0.95 (6.10)
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provides another relationship between j and p. Note that if “>” is used instead of

“≤” in (6.10) then the solution of (6.10) is p = 0. This is so since (6.9) is a steep

monotone decreasing step function of the type shown in Figures 6.3, 6.4. Replacing

0.95 by 0.99 in (6.10) gives similar results.

Iterating between these two monotone relationships is what was referred to

earlier as the iterative method (IM). The iterative method provides our p estimates.

In general, the iteration process could start with a sufficiently large j suggested by

the B-curve. With that j ≡ j1 we look for the smallest p ≡ pj1 satisfying (6.10).

Next we find a B(j2) on the B-curve closest to pj1 . This gives a new j ≡ j2 and the

previous steps are repeated until convergence occurs and we keep getting the same

p. This is our point estimate from the iteration process and it is different than p̂

obtained from (5.1).

In symbols, with B(jk)’s from the B-curve, and p(jk)’s the smallest p’s satisfying

(6.10) with j = jk, and B(jk+1) closest to p(jk), k = 1, 2, ...,

B(j1) → p(j1) → B(j2) → · · ·B(jk) → pjk → B(jk+1) → pjk → B(jk+1) → pjk · · ·

so that pjk keeps giving the same B(jk+1) (and hence the same jk+1) and vice versa.

This can be expressed more succinctly as,

j1 → p(j1) → j2 → p(j2) → · · · jk → pjk → jk+1 → pjk → jk+1 → pjk · · ·

As will be illustrated in Section 6.5.1, under some computational conditions this

iterative process results in a contraction in a neighborhood of the true p. In a small

neighborhood of the true p the B(jk) can move either up or down, an example of

which is given in the lead example in Section 6.5.1.4.
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Computationally, the iteration process depends on n and the increments of p

at which (6.10) is evaluated. In practice, due to computational limitations of large

binomial coefficients the iteration is done as follows. After FB is obtained from a

large number of fusions, 1000 B(j)’s are sampled from, say, n = 10, 000 B(j)’s to

obtain an approximate B-curve. Next, the binomial coefficients
(
n
k

)
are replaced by(

1000
k

)
. We then iterate between an approximate B-curve and approximate (6.10)

with n = 1000 (as in (6.11) below) until convergence occurs, in which case an

estimate for p is obtained. This procedure can be repeated many times by sampling

repeatedly many different sets of 1000 B(j)’s to obtain many point estimates from

which interval estimates can then be constructed. This iteration process is illustrated

next.

6.5.1 Illustrations of an Iterative Process

The following illustrations deal with two lognormal and two real data examples.

The four cases underscore the fact that ROSF is used with a gamma tilt function

while the data, at least in the lognormal cases, are not gamma distributed. Running

10,000 fusions takes about 5 minutes in R which translates to about 8 hours for

1,000,000 fusions. In what follows the p-increments at which (6.11) is evaluated are

chosen mostly as O(B̄). In all cases the maxima of the approximate B-curves were

larger than the true p.
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6.5.1.1 Lognormal(1,1)

In this example X0 is a LN(1,1) sample where max(X0) = 25.17781. With

T = 59.75377 the true tail probability to be estimated is p = 0.001, using n0 = n1 =

100 and h = (x, log x). The generated fusion samples X1 are from Unif(0,100),

100 > T , and FB was obtained from 10,000 fusions.

We first sample 1000 from 10,000 B(j)’s to get an approximate B-curve, and

then iterate between it and the smallest p such that

j−1∑
k=0

(
1000

k

)
[FB(p)]k[1− FB(p)]n−k ≤ 0.95 (6.11)

evaluated at increments of p = 0.0001 (B̄ = 0.00060). Starting with j = 1000, the

sequence (j, pj) is

1000 → 0.0035 → 996 → 0.0028 → 985 → 0.0022 → 968 → 0.0019 → 951 →

0.0017 → 937 → 0.0016 → 929 → 0.0015 → 915 → 0.0014 → 905 → 0.0013 →

888→ 0.0012→ 871→ 0.0012 · · ·

so that convergence occurs at p̂ = 0.0012 as 0.0012 gives j = 871 again and again.

This also suggests K = 20 in (6.5) which gives 0.0012 as an upper bound for p. The

left side of (6.11) for j = 871 is the step function shown in Figure 6.3.

Repeating this with a different LN(1,1) reference sampleX0 such that max(X0) =

28.27287, and fusing 10,000 times with X1 from Unif(0,80), 80 > T , gives with p-

increments of 0.0002 (B̄ = 0.00031) the (j, pj) sequence,
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1000 → 0.003 → 995 → 0.0024 → 991 → 0.002 → 986 → 0.0018 → 977 →

0.0016→ 965→ 0.0014→ 954→ 0.0012→ 941→ 0.001→ 923→ 0.001 · · ·

so that p̂ = 0.001 is equal to the true p.

Now, convergence might be problematic when max(X0) is small relative to T .

In that case an augmentation of the data is helpful. Thus, repeating the previous

illustration with a LN(1,1) sample where max(X0) = 16.92843, the latter is some-

what small relative to T = 59.75377. Indeed, n0 = n1 = 100 and p-increments of

0.0001 (although B̄ = 4.661× 10−5, 0.00005 was not useful), gave an imprecise p̂ for

the true tail probability p = 0.001:

1000 → 0.001 → 999 → 0.0008 → 995 → 0.0006 → 992 → 0.0005 → 989 →

0.0005 · · ·

Augmenting the sample with 20 additional LN(1,1) observations resulted in a larger

max(X0) = 31.7835 and n0 = n1 = 120. We have with X1 from Unif(0,100),

100 > T , and p-incremnt=0.0001 (now B̄ = 0.0003211)

1000 → 0.0038 → 998 → 0.0031 → 995 → 0.0028 → 991 → 0.0024 → 987 →

0.0022 → 980 → 0.0019 → 970 → 0.0016 → 959 → 0.0014 → 951 → 0.0013 →

946→ 0.0012→ 938→ 0.0011→ 932→ 0.001→ 926→ 0.001 · · ·
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so that with the augmented data p̂ = 0.001 has been rendered precise.
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Figure 6.3: Step function (6.11) from X0 ∼ LN(1, 1) fused with X1 ∼ Unif(0, 100)

data for j = 871 and containing a point corresponding to p̂ = 0.0012.

6.5.1.2 Lognormal(0,1)

HereX0 is a LN(0,1) sample where max(X0) = 5.77902, which is small relative

to T = 21.98218. Instead of addition of more data, we opt for more fusions.

In this example (6.11) is evaluated as a function of p using increments of 0.0002.

The true tail probability is p = 0.001, and FB was obtained from 1,000,000 fusions

of X0 with X1 from Unif(0,40), 40 > T . Again n0 = n1 = 100 and h = (x, log x).

In this example the largest point estimate of p from one million point estimates

(obtained from (5.1) in Section 1.5) was only 0.0004186, much lower than the true

p, and the reason why we use the Bj upper bounds. Again, first 1000 B(j)’s were

84



sampled at random from 1,000,000 B(j)’s to get an approximate B-curve with 1000

points (j, B(j)). Starting with the maximum j = 1000 the sequence (j, pj) along

p-increments of 0.00002 (B̄ = 0.000065) is:

1000→ 0.001→ 1000→ 0.001→ 1000→ 0.001 · · ·

so that the convergence gives the exact p = 0.001. This suggests K = 2100 in

(6.5) giving an upper bound of 0.0011. Note that K is large as max(X0) is small

relative to T .

Repeating this with 100,000 fusions, max(X0) = 7.510843, and X1 from

Unif(0,30), 30 > T , gives the (j, pj) sequence along p-increments of 0.0002 (B̄ =

0.00014)

1000 → 0.0016 → 998 → 0.0014 → 997 → 0.0012 → 994 → 0.001 → 991 →

0.001 · · ·

which again converges to the exact p = 0.001. This suggests K = 300 in (6.5),

giving an upper bound of 0.0011.

6.5.1.3 Mercury

Here X0 is a sample of size n0 = 100 from the mercury data whose histogram

is shown in Figure 6.2. Again n1 = 100 and h = (x, log x). The mercury data
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consist of 8266 observations for which T = 22.41 gives p = 0.001088797 ≈ 0.001.

We have max(X0) = 9.09, X1 ∼ Unif(0, 40), 40 > T , and FB was obtained from

1,000,000 fusions. Sampling 1000 B(j)’s from 1,000,000 B(j)’s, the (j, pj) sequence

along p-increments of 0.0002 (B̄ = 0.00096) is:

1000 → 0.0052 → 996 → 0.0046 → 991 → 0.0042 → 981 → 0.0038 → 966 →

0.0034 → 949 → 0.0032 → 942 → 0.0030 → 911 → 0.0026 → 895 → 0.0024 →

879 → 0.0022 → 851 → 0.0020 → 829 → 0.0018 → 801 → 0.0016,→ 768 →

0.0014→ 732→ 0.0014 · · ·

converging to p̂ = 0.0014, exactly what we get with K = 10 in (6.5).

Starting with a B(j) closer to the true p = 0.001 we get an upward convergence,

637→ 0.001→ 651→ 0.001

.

In a different run with only 10,000 B(j), max(X0) = 11, X1 ∼ Unif(0, 50),

50 > T , and sampling 1000 B(j)’s from 10,000 B(j)’s, the (j, pj) sequence along p-

increments of 0.0001 (although B̄ = 0.001331) is:

745 → 0.0019 → 722 → 0.0017 → 695 → 0.0015 → 657 → 0.0013 → 634 →

0.0012→ 617→ 0.0011→ 606→ 0.001→ 589→ 0.001 · · ·
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Consider the higher probability p = 0.01004113 corresponding to T = 9.375,

and a mercury sample X0 of size n0 = 100 where max(X0) = 7.77 < T , and

X1 ∼ Unif(0, 20), 20 > T , n1 = 100. Out of 10,000 fusions with h(x) = (x, log x),

giving a different FB than the previous one, the maximum probability estimate (out

of 10,000) using (5.1) is 0.003738044, far below the true p = 0.01004113, and the

maximum likelihood estimate based on X0 only is 0. On the other hand, sampling

1000 B(j)’s from 10,000 B(j)’s, the ROSF iterative (j, pj) sequence along p-increments

of 0.001 (B̄ = 0.002686784) is:

1000→ 0.011→ 1000→ 0.011 · · ·

while starting from B(999) yields

999→ 0.01→ 996→ 0.01 · · ·

so that p̂ ≈ p. K = 800 in (6.5) gives 0.0102 as an upper bound.

6.5.1.4 Lead Intake

HereX0 is a sample of size n0 = 100 from the lead intake data whose histogram

is shown in Figure 6.2. Again n1 = 100 and h = (x, log x). The lead data consist of

3000 observation for which T = 25 gives p = 0.001. We have max(X0) = 11.55768,

X1 ∼ Unif(0, 40), 40 > T , and FB was obtained from 10,000 fusions. Again 1000

B(j)’s were sampled from 10,000 B(j)’s and the (j, pj) sequence was observed along

p-increments of 0.0001. In this example the iteration process starts with j = 400

giving p400 not far from the true p = 0.001. We have:
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400 → 0.0017 → 371 → 0.0016 → 351 → 0.0015 → 327 → 0.0014 → 302 →

0.0013→ 278→ 0.0012→ 252→ 0.0011→ 229→ 0.0011 · · ·

Thus, the sequence pj converges to p̂ = 0.0011. This corresponds to K = 2 in

(6.5).

Figure 6.4 shows the step function (6.9) for n = 1000 when convergence occurs

at j = 229. Observe that p̂ = 0.0011 is the smallest p satisfying (6.11), giving a

point on the cord corresponding to the pair (0.0011, 0.3648204).

Now, let us see what happens in neighborhood of true p=0.001. We have:

201→ 0.001→ 203→ 0.001 · · ·

and the convergence is upward. With

205→ 0.001→ 203→ 0.001 · · ·

the convergence is downward. This shows that in a neighborhood of the true p the

B(jk) can change course to lock on the true, or approximately true, p from above or

from below.

Consider the higher probability p = 0.01 corresponding to T = 10, and a

lead intake sample X0 of size n0 = 100 where max(X0) = 6.875607 < T , and

X1 ∼ Unif(0, 20), 20 > T , n1 = 100. Out of 10,000 fusions with h(x) = (x, log x),

giving FB, the maximum probability estimate (out of 10,000) using (5.1) is 0.003550,

far below the true p = 0.01, and the maximum likelihood estimate based on X0 only
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Figure 6.4: Step function (6.11) from lead intake X0 fused with X1 ∼ Unif(0, 40)

data for j = 229 and containing a point corresponding to p̂ = 0.0011 whose ordinate

is 0.3648204 < 0.95.
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is 0. On the other hand, sampling 1000 B(j)’s from 10,000 B(j)’s, the IM iterative

(j, pj) sequence along p-increments of 0.001 (B̄ = 0.003516579) is:

1000→ 0.01→ 999→ 0.009→ 998→ 0.009 · · ·

so that p̂ = 0.009. We note that K = 5000 in (6.5) gives 0.01.

6.5.2 Explaining the Convergence

Clearly, the pj sequence need not converge to a point in a neighborhood of the

true p. However, as we have seen from the previous illustrations, iterating between

the two monotone relationships, the B-curve and (6.11) along certain p-increments,

we do get in many cases p estimates in neighborhoods of the true p. This can be

explained as follows.

From the previous illustrations we observe that when starting with a suffi-

ciently large j1 we have a monotone decreasing sequence,

Bj1 > Bj2 > Bj3 · · · ,

and suppose that, for some j, B(j) lands in a neighborhood of the true p. As n→∞,

the B(j)’s become ever more dense so that the absolute difference
∣∣B(j±k) −B(j)

∣∣
becomes arbitrarily small for B(j±k) in that neighborhood. Therefore, the smallest

p’s in that neighborhood, along certain p-increments, which satisfy (e.g. as in (6.11))

P (B(j) > p) ≤ 0.95 (6.12)

are equal or nearly equal for entire stretches of adjacent B(j)’s, thus increasing the

probability that two successive pj’s in the iteration process are equal, in which case
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convergence occurs in a neighborhood of the true p.

This can be illustrated with X0 ∼ LN(0, 1), max(X0) = 9.274283, X1 ∼

Unif(0, 30), 30 > T = 21.98218, p = 0.001, n0 = n1 = 100, p-increments of 0.0001

(B̄ = 0.000414989), and 30,000 Bj. Sampling 1000 Bj, successive B(j) in a neigh-

borhood of p = 0.001 give:

For 957 ≤ j ≤ 950, the smallest pj which satisfies (6.11) is 0.0011.

For 949 ≤ j ≤ 938, the smallest pj which satisfies (6.11) is 0.0010.

For 937 ≤ j ≤ 924, the smallest pj which satisfies (6.11) is 0.0009.

Hence, over the stretch j = 957 to j = 924 there are 34 consecutive pj’s which

are markedly close to the true p = 0.001. As a result, in this stretch, starting with

j = 957 along increments of 0.0001 the next j in the iteration process is j = 950

and we have two equal successive pj,

957→ 0.0011→ 950→ 0.0011,

whereas starting with j = 949 the next j’s in the iteration process are j = 937 and

j = 926, and again there are two equal successive pj,

949→ 0.001→ 937→ 0.0009→ 926→ 0.0009.

Thus, entering a neighborhood of the true p, the iteration method (IM) produces

further p’s which, as n increases, tend to stay in that neighborhood leading to

convergence. We have seen this tendency throughout the previous illustrations, and

we see more of it from the tables in the next section.
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6.6 Comparison: ROFS vs POT

Against the background provided in the previous sections, we compare two

very different ways to obtain interval estimates for small tail probabilities: POT

based on extreme value theory, and an iterative process based on repeated fusion

of a given reference sample with external computer-generated uniformly distributed

samples. The comparison is based on confidence interval coverage, width, and on

the mean absolute error (MAE) which measures the discrepancy between p̂ and the

true tail probability p. In Tables 6.1 to 6.12, p is relatively small, p = 0.001, whereas

in the last three tables 6.13, 6.14, 6.15, p is smaller, p = 0.0001.

Throughout the comparison the sample sizes are n0 = n1 = 100 or n0 = n1 =

200, and h(x) = (x, log x). Thus, in the present comparison the reference X0 and

the fusion samples X1 have size n0 = 100 or n0 = 200.

To save computation time, in each case of the iteration process FB was ob-

tained from 1000 fusions, and the starting j is such that B(j) is approximately equal

to the 3rd quartile of the observed 1000 B’s.

Remark: Starting at the 3rd quartile is computationally sensible as the corre-

sponding B(j) is usually in a neighborhood above p. In most cases subsequent B(j)

do enter a neighborhood of p and convergence occurs, as explained earlier. Starting

too low might lead to convergence to a point lower than the true p.

The following tables are the result of 500 runs. In each run the iteration method
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(IM) was repeated 500 times.

From the mean residual life (MRL) plots we obtained the thresholds u needed for

the POT method. In all cases reported in the tables, the MRL plots suggest the use

of the largest 20% of the reference data X0 for fitting the generalized Pareto (GP)

distribution. We have noticed a deterioration in the POT results when using 30%,

15% or 10% of X0. The simulation details are given in Appendix A.

An interesting picture emerges from Tables 6.1 to 6.15. For moderately large sample

sizes of n0 = 100 and n0 = 200, regardless of the tail type, as N , the number of p̂’s

used in forming the CI for the true p, grows the iteration process gives reliable and

relatively narrow confidence intervals, whereas the POT gives unacceptable cover-

age and in many cases wider CI’s as well. The POT coverage increases significantly

going from n0 = 100 to n0 = 200, however, it seems that for the method to “fire up”

larger samples are needed. Regarding ROSF, the choice of N = 50 (N is defined

above and in Appendix A) seems prudent across all cases, and with n0 = 200 shorter

CI’s achieve coverage similar to that from n0 = 100. In all cases the MAE from the

iteration process is much smaller than that obtained from POT.

6.6.1 Comparison Tables

The following tables compare ROSF and POT for p = 0.001 and p = 0.0001.
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Table 6.1: X0 ∼ t(1) : p = 1 − G(T ) = 0.001, T = 631.8645, X1 ∼ Unif(0,800),
n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 63.2% 0.00372 0.00149 72.1% 0.00292 0.00122

5 47.2% 0.00098 0.00061 54.1% 0.00079 0.00051
10 57.2% 0.00107 - 68.5% 0.00093 -
25 74.3% 0.00148 - 87.2% 0.00125 -

ROSF & IM 50 98.2% 0.00213 - 100% 0.00193 -
100 100% 0.00264 - 100% 0.00241 -
300 100% 0.00321 - 100% 0.00303 -

Table 6.2: X0 ∼ Weibull(1, 2) : p = 1 − G(T ) = 0.001, T = 13.81551, X1 ∼
Unif(0,16), n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 82.7% 0.00431 0.00131 87.8% 0.00333 0.00083

5 43.2% 0.00040 0.00068 52.4% 0.00042 0.00051
10 65.2% 0.00083 - 72.7% 0.00091 -
25 84.2% 0.00159 - 85.6% 0.00154 -

ROSF & IM 50 92.5% 0.00287 - 92.8% 0.00231 -
100 100% 0.00381 - 100% 0.00321 -
300 100% 0.00506 - 100% 0.00402 -

Table 6.3: X0 ∼ Pareto(1, 4) : p = 1−G(T ) = 0.001, T = 5.623413, X1 ∼ Unif(1,8),
n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 81.8% 0.00419 0.00121 84.5% 0.00337 0.00070

5 59.1% 0.00068 0.00052 62.4% 0.00066 0.00041
10 66.7% 0.00093 - 74.8% 0.00091 -
25 84.1% 0.00154 - 86.1% 0.00148 -

ROSF & IM 50 96.2% 0.00232 - 97.8% 0.00231 -
100 100% 0.00272 - 100% 0.00269 -
300 100% 0.00397 - 100% 0.00377 -

Table 6.4: X0 ∼ Gamma(3, 1) : p = 1 − G(T ) = 0.001, T = 11.22887, X1 ∼
Unif(0,20), n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 77.3% 0.00410 0.00096 86.1% 0.00321 0.00081

5 41.2% 0.00057 0.00054 47.1% 0.00056 0.00043
10 49.6% 0.00093 - 56.6% 0.00092 -
25 73.2% 0.00137 - 82.8% 0.00129 -

ROSF & IM 50 93.4% 0.00188 - 94.5% 0.00175 -
100 100% 0.00256 - 100% 0.00248 -
300 100% 0.00338 - 100% 0.00315 -
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Table 6.5: X0 ∼ F(2, 12) : p = 1 − G(T ) = 0.001, T = 12.97367, X1 ∼ Unif(0,16),
n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 83.1% 0.00372 0.00111 87.0% 0.00292 0.00082

5 43.1% 0.00066 0.00051 46.1% 0.00058 0.00031
10 54.2% 0.00094 - 58.1% 0.00088 -
25 78.5% 0.00136 - 83.5% 0.00131 -

ROSF & IM 50 96.1% 0.00217 - 98.6% 0.00189 -
100 100% 0.00289 - 100% 0.00277 -
300 100% 0.00344 - 100% 0.00323 -

Table 6.6: X0 ∼ IG(2, 40) : p = 1 − G(T ) = 0.001, T = 3.835791, X1 ∼ Unif(0,8),
n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 69.6% 0.00324 0.00123 82.3% 0.00316 0.00092

5 59.4% 0.00098 0.00047 85.6% 0.00091 0.00041
10 76.9% 0.00147 - 96.3% 0.00133 -
25 89.9% 0.00255 - 100% 0.00147 -

ROSF & IM 50 100% 0.00289 - 100% 0.00206 -
100 100% 0.00332 - 100% 0.00313 -
300 100% 0.00401 - 100% 0.00371 -

Table 6.7: X0 ∼ IG(4, 5) : p = 1 − G(T ) = 0.001, T = 28.95409, X1 ∼ Unif(0,35),
n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 84.3% 0.00412 0.00123 88.9% 0.00339 0.00103

5 76.3% 0.00106 0.00052 80.4% 0.00087 0.00041
10 89.2% 0.00148 - 87.1% 0.00127 -
25 97.5% 0.00217 - 98.9% 0.00172 -

ROSF & IM 50 100% 0.00265 - 100% 0.00225 -
100 100% 0.00345 - 100% 0.00259 -
300 100% 0.00372 - 100% 0.00291 -

Table 6.8: X0 ∼ LN(0, 1) : p = 1 − G(T ) = 0.001, T = 21.98218, X1 ∼ Unif(1,60),
n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 81.5% 0.00451 0.00111 85.2% 0.00392 0.00103

5 81.5% 0.00121 0.00047 83.6% 0.00108 0.00039
10 88.7% 0.00169 - 90.4% 0.00141 -
25 95.3% 0.00191 - 98.1% 0.00173 -

ROSF & IM 50 100% 0.00234 - 100% 0.00199 -
100 100% 0.00267 - 100% 0.00244 -
300 100% 0.00301 - 100% 0.00283 -
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Table 6.9: X0 ∼ LN(1, 1) : p = 1−G(T ) = 0.001, T = 59.75377, X1 ∼ Unif(1,140),
n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 81.4% 0.00435 0.00117 86.8% 0.00399 0.00099

5 43.7% 0.00078 0.00069 53.2% 0.00071 0.00052
10 56.9% 0.00109 - 68.1% 0.00099 -
25 79.6% 0.00143 - 89.7% 0.00121 -

ROSF & IM 50 89.1% 0.00187 - 100% 0.00164 -
100 100% 0.00199 - 100% 0.00192 -
300 100% 0.00243 - 100% 0.00234 -

Table 6.10: X0 ∼ Mercury : p = 1 − G(T ) = 0.001, T = 22.41, X1 ∼ Unif(0,50),
n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 85.3% 0.00455 0.00130 88.6% 0.00398 0.00122

5 54.5% 0.00073 0.00048 49.9% 0.00063 0.00045
10 66.7% 0.00095 - 76.7% 0.00096 -
25 84.9% 0.00157 - 96.7% 0.00145 -

ROSF & IM 50 97.5% 0.00215 - 100% 0.00197 -
100 100% 0.00259 - 100% 0.00238 -
300 100% 0.00337 - 100% 0.00313 -

Table 6.11: X0 ∼ Lead Intake : p = 1 − G(T ) = 0.001, T = 25, X1 ∼ Unif(0,30),
n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 84.7% 0.00555 0.00142 87.7% 0.00536 0.00125

5 51.1% 0.00095 0.00066 49.6% 0.00088 0.00058
10 69.3% 0.00151 - 78.1% 0.00153 -
25 88.4% 0.00189 - 93.7% 0.00179 -

ROSF & IM 50 100% 0.00247 - 100% 0.00229 -
100 100% 0.00289 - 100% 0.00268 -
300 100% 0.00346 - 100% 0.00317 -

Table 6.12: X0 ∼ URX3TB : p = 1 − G(T ) = 0.001, T = 9.50, X1 ∼ Unif(0,12),
n0 = n1, h(x) = (x, log x). p-increment 0.0001. Data source for URX3TB - 2,4,6-
trichlorophenol (ug/L): https://wwwn.cdc.gov/nchs/nhanes

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 81.1% 0.00433 0.00143 87.1% 0.00376 0.00123

5 38.9% 0.00078 0.00055 42.6% 0.00071 0.00044
10 54.3% 0.00094 - 61.8% 0.00092 -
25 72.1% 0.00131 - 81.7% 0.00125 -

ROSF & IM 50 89.1% 0.00179 - 96.9% 0.00177 -
100 100% 0.00241 - 100% 0.00235 -
300 100% 0.00264 - 100% 0.00259 -
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Table 6.13: X0 ∼ F(2, 12) : p = 1−G(T ) = 0.0001, T = 21.84953, X1 ∼ Unif(0,25),
n0 = n1, h(x) = (x, log x). p-increment 0.00001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 71.4% 0.00062 0.00052 81.6% 0.00053 0.000045

5 45.2% 0.00021 0.00022 49.1% 0.00017 0.000019
10 67.2% 0.00033 - 77.1% 0.00026 -
25 88.5% 0.00045 - 89.3% 0.00037 -

ROSF & IM 50 95.2% 0.00059 - 96.3% 0.00052 -
100 100% 0.00082 - 100% 0.00069 -
300 100% 0.00105 - 100% 0.00087 -

Table 6.14: X0 ∼ LN(0, 1) : p = 1−G(T ) = 0.0001, T = 41.22383, X1 ∼ Unif(1,60),
n0 = n1, h(x) = (x, log x). p-increment 0.00001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 72.1% 0.00064 0.00045 82.6% 0.00047 0.000039

5 55.2% 0.00021 0.00021 69.1% 0.00017 0.000017
10 77.2% 0.00033 - 89.1% 0.00020 -
25 98.5% 0.00041 - 99.3% 0.00034 -

ROSF & IM 50 100% 0.00066 - 100% 0.00057 -
100 100% 0.00083 - 100% 0.00079 -
300 100% 0.00113 - 100% 0.00094 -

Table 6.15: X0 ∼ Mercury : p = 1 − G(T ) = 0.0001, T = 39.60, X1 ∼ Unif(0,80),
n0 = n1, h(x) = (x, log x). p-increment 0.00001.

n0 = 100 n0 = 200

Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 62.4% 0.00059 0.00049 73.4% 0.00051 0.000042

5 53.1% 0.00019 0.00023 64.2% 0.00016 0.000019
10 71.8% 0.00025 - 79.8% 0.00021 -
25 88.3% 0.00037 - 91.5% 0.00033 -

ROSF & IM 50 95.2% 0.00056 - 100% 0.00054 -
100 100% 0.00083 - 100% 0.00079 -
300 100% 0.00113 - 100% 0.00094 -
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6.7 Discussion

The numerous number of fusions of a given reference sample with computer

generated samples gives rise to different observables including the upper bounds for

a tail probability p that were used in the Chapter. The upper bounds, obtained from

the combined real and artificial data, were mostly much larger than p, some were

less than p, but some among the multitude of upper bounds essentially coincided

with p and they were identified to a reasonable degree of approximation using an

iteration procedure.

We have illustrated that repeated fusion of a sample with generated uniform

random data allowed us to gain information about the tail behavior beyond the

threshold using the notion of B-curves coupled with a well known formula from

order statistics.

The following example summarizes our ideas. Consider the B-curve in Figure

6.5. It was obtained from a LN(1,1) sample of size n0 = 200, fused 10,000 times

with independent computer generated Unif(0,100) samples each of size n1 = 200.

The curve contains a point whose ordinate is the tail probability p = 0.001 which

we wish to estimate. From the curve we see immediately that B(1) < p < B(10,000)

or, approximately, 0 < p < 0.003. That is, ROSF gives a useful and fast interval

estimate for p. In most cases, the iteration method (IM) refines this estimate. To

see this in the present case, starting with j = 1, 000, the IM convergence results

from ten different B(j)-samples of size 1,000 obtained from 10,000 B(j)’s were 0.002,

0.0009, 0.001, 0.001, 0.0012, 0.0007, 0.0009, 0.001, 0.002, 0.001 with an average of
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0.00117, not far from p = 0.001, and a standard deviation of 0.00045. This example

points to the fact that IM can be repeated many times with different B(j)-samples

to produce tail probability estimates and their precision.

In this dissertation, we have discussed three different types of data fusion

based on the Density Ratio Model. We have seen by integrating multiple data

sources, we can produce more accurate, and useful information than that provided

by individual data source. In the small area problem, some natural extensions could

consider in the future research. They include improving the model structure, more

flexibility of the linear component in the model assumption, and fusing with different

type of error distribution. The ideas presented in the tail probability estimation

can also be extended in a number of ways. For example, using “fake” data from

distributions other than uniform, and using different fusion mechanisms other than

the semiparametric method. Estimating K in (6.5) is another possible extension.
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Figure 6.5: B-Curve containing a point corresponding to p = 0.001, obtained from a

reference LN(1,1) sample fused 10,000 times with independent Unif(0,100) samples.

h(x) = (x, log x),max(X0) = 25.46234, T = 59.7538, n0 = n1 = 200.
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Appendix A: Simulation Description

The following steps were followed. There were 500 runs. In each run the iter-

ation method (IM) was repeated 500 times.

First, a reference X0 was obtained.

POT:

The POT procedure was applied to get both an estimate p̂ and a confidence interval

(CI). The MRL plots suggest the use of the largest 20% of the reference data X0

for fitting the generalized Pareto (GP) distribution.

ROSF/IM:

X0 was fused with X1 1000 times (ROSF) to get FB and then p̂ (IM).

X0 was fused again with different X1 1000 times to get FB and p̂.

This was repeated 500 times.

The iterative method thus gave 500 p̂’s. We then chose at random N p̂’s from

500 p̂’s to construct a CI for the true p as (min(p̂),max(p̂)).

101



This is run 1.

The above steps were repeated, for both POT and ROSF/IM each time with a

different X0, 500 times (runs) to obtain coverage and average CI length. In the

tables, CI length is an average length from 500 intervals.

Since there are 500 runs, POT gave 500 p̂’s. Regarding IM, a single p̂ was cho-

sen at random (out of 500 p̂’s) from each of the 500 runs. The mean absolute

error (MAE) was obtained in both cases from the mean of 500 absolute differences∑
(|p̂i − p|)/500, where p = 0.001 or p = 0.0001. In the iterative method, in each

table the MAE is reported once on the line corresponding to N = 5.
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