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Abstract

This paper modeled the proximate determinants of rice outputs and groundwater depths in 27 Indian
states during 1980-2010. Dynamic random effects models were estimated by maximum likelihood at
state and well levels. The main findings from models for rice outputs were that temperatures and
rainfall levels were significant predictors, and the relationships were quadratic with respect to rainfall.
Moreover, nonlinearities with respect to population changes indicated greater rice production with
population increases. Second, groundwater depths were positively associated with temperatures and
negatively with rainfall levels and there were nonlinear effects of population changes. Third, dynamic
models for in situ groundwater depths in 11 795 wells in mainly unconfined aquifers, accounting for
latitudes, longitudes and altitudes, showed steady depletion. Overall, the results indicated that
population pressures on food production and environment need to be tackled via long-term
healthcare, agricultural, and groundwater recharge policies in India.

Introduction

Human activity and industrialization over the last few
centuries have increased greenhouse gas emissions
leading to global warming that in turn affects many
dimensions of well-being. For example, high economic
growth rates in China and India have increased the
prevalence of chronic obstructive pulmonary diseases
[1, 2]. Moreover, simultaneous increases in popu-
lation levels and life expectancy raise the long-term
demand for land, water, energy and food [3]. While the
demand for food can be met in the medium term by
increased food production using better technologies
[4, 5], increases in living standards are accompa-
nied by improvements in diet quality reflected in
higher consumption of animal products that require
greater agricultural resources [6]. It is therefore impor-
tant to analyze the inter-relationships between climate
variables and agricultural outputs in countries such
as India that have achieved rapid economic growth.
Steady depletion of groundwater in north Indian
states [7] for meeting short-term demand can hamper
long-term goals such as providing sanitation for the
population [6].

Further, the problems in assessing impact of climate
variability on agricultural production and groundwa-
ter depletion need to address several conceptual and
methodological aspects. At a conceptual level, rice is an
attractive staple consumed by over three billion people
and can be easily mixed with nutrient-dense foods such
as vegetables, legumes, and meat for improving diet
quality in developing countries [8]. From a produc-
tion standpoint, transpiration efficiency of rice is low
[9], and evapotranspiration increases with tempera-
tures [10]. However, there is considerable heterogeneity
in rice production in India depending on rainfall levels,
surface water availability, and groundwater extraction
[11,12]. Such factors can be analyzed in empirical mod-
eling of the data on rice outputs. For example, it is
important to test if rice production in Indian states
has increased groundwater depletion using in situ data
from wells [13].

From a methodological standpoint, direct observa-
tions on agricultural production are feasible for small
numbers of farms where the data need to be compiled
for several years for investigating the effects of climate
variables [14]. Although agricultural data at the district
level in India can provide useful insights [15], data on
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inputs are typically available at the state level. While
it is simpler to conduct analyses of national averages
[11], such analyses cannot address the heterogeneity
in climates. Thus, a useful approach for understand-
ing the effects of climate variability would be to model
proximate determinants of rice outputs at the state level
and, where possible, augment the analyses with more
disaggregated data.

Second, it is important to assess the robustness of
results from state-level analyses in India for groundwa-
ter tables that are depleting in a heterogeneous manner.
Duetolowresolutions, data from GRACE satellites [ 16 ]
might not fullyreveal groundwater depletioninaquifers
inlatitude-longitude quadrangles covering sparsely and
densely populated areas. Thus, population pressures
on groundwater may be under-estimated and it would
be useful to augment state-level analyses with in situ
data from wells. Third, in modeling agricultural out-
put, there are likely to be nonlinearities with respect
to explanatory variables and interactions between the
variables. For example, many regions of large Indian
states face different climatic conditions in terms of
rainfall and temperatures. Such factors underscore the
need for modeling the relationships between agricul-
tural inputs and outputs using actual data rather than
relying on projections from statistical models. The
complexity of simulation models is increased in the
presence of nonlinearities and where some variables
may be jointly determined; confidence intervals for the
estimated parameters are likely to be much wider.

This paper modeled annual data on rice outputs
in 27 major Indian states during 1980-2010 using
five-yearly averages and employing dynamic random
effects models that accounted for unobserved hetero-
geneity. The models incorporated nonlinearities and
interactions with respect to explanatory variables and
investigated the effects of population changes. Further-
more, dynamic random effects models were estimated
for groundwater depths at the state level using in
situ data from 30796 wells; possible effects of exces-
sive rice production and changes in populations were
analyzed. Lastly, dynamic random effects models were
estimated using three-yearly averages on groundwa-
ter depths in 11795 wells. The geographic locations of
wells were approximated via a second degree polyno-
mialin latitudes, longitudes and altitudes, and thelinear
formulations commonly employed in the geodetic lit-
erature [17] were tested as special cases using likelihood
ratio statistics.

Materials and methods

The data on Indian states

India is a very heterogeneous country with respect to
climatic patterns comprising of 39 states and union ter-
ritories. Annual data on rice output, area cultivated for
rice, rainfall, and temperatures were available for 1980—
2010 for most states [15]; five-yearly averages were

W Letters

constructed for reducing missing observations. Data on
population from censusesin 1981, 1991,2001,and 2011
were merged with the database at six time points (1985,
1990, 1995, 2000, 2005, and 2010). Complete data for
were available for 27 states: Andhra Pradesh, Arunachal
Pradesh, Assam, Bihar, Dadra and Nagar Haveli, Delhi,
Gujarat, Haryana, Himachal Pradesh, Jammu and
Kashmir, Karnataka, Kerala, Madhya Pradesh, Maha-
rashtra, Manipur, Meghalaya, Mizoram, Nagaland,
Orissa, Puducherry, Punjab, Rajasthan, Sikkim, Tamil
Nadu, Tripura, Uttar Pradesh, and West Bengal.

In situ groundwater depth measurements

In situ data on groundwater depths were available for
1994-2016 covering 30796 wells [13]. Initially, small
numbers of wells were considered and additional wells
were added from 1996. The groundwater depths were
measured in four seasons. Approximately 87% of wells
were dug in unconfined aquifers [12] and average
groundwater depths were computed for the states for
1995, 2000, 2005, and 2010 by averaging the data over
the wells. For analyses of data on groundwater depths,
three-yearly averages for 1998, 2001, 2004, 2007, 2010,
2013, and 2016 were used. Lastly, data on latitudes and
longitudes of well locations were entered in ArcGIS [18]
for calculating altitudes. Figure 1 plots the quintiles for
water depths in wells in 2016. For example, wells repre-
sented by red dots had groundwater depths higher than
10.93 meters below ground level. Sample means of the
state-level variables are reported in table 1.

Empirical models for rice outputs and water
depths in Indian states

The model for logarithm of rice output in ith state in
time period t is given in equation (1):

In (Rice output);, = ay + a;In (Net areairrigated);
+a,[Change In (Population), ]

-+a5[Change In (Population);]> + a, In (Rainfall);,
+as[In (Rainfall);,]?> + a¢ In (Temperature),,

+a;[In (Temperature), ,]2 + ag In (Rice area cultivated);,

+ag[In (Net areairrigated) X In (Rainfall);,]
+a;oln (Rice output);,_; + u;,
(i=1,2,..,N;t=2,3,4,5,06). (1)

Here In represents natural logarithms and data on 27
states in six time periods were analyzed. The dynamic
model in equation (1) contained previous level of rice
output as an explanatory variable thereby enabling
a distinction between short and long run effects of
explanatory variables. Coefficients of explanatory vari-
ables in logarithms were the short run ‘elasticities’
(percentage change in dependent variable resulting
from 1% change in the explanatory variable). For exam-
ple, the short run elasticity of rice output with respect to
rice area cultivated was ag, whereas the long run elastic-
ity was [ag/(1—ajo)]. Note that changes in logarithms
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Figure 1. Geographical location of wells in India with quintiles for groundwater depths in 2016.

Table 1. Sample means and standard deviations of five-yearly averages of agricultural and climate variables for Indian states during

1985-2010.%
Year: 1985 1990 1995 2000 2005 2010
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Net area irrigated®, km? 2169 2946 — — — —
Population®, 1000’s 23859 26269 — — 29543 32640 35912 40133 — — 42186° 47708
Rice output, 1000s tons 2088 2488 2479 3130 2215 2737 2683 3405 2804 3826  3002° 4093
Rainfall, mm 1515 810 1562 905 1546 822 1533 813 1479 804 1508 727
Temperature, °C 21.70 6.74 21.85 6.80 21.76 6.76 22.00 6.66 22,18  6.60  22.45° 6.55
Rice area cultivated, km? 1486 1898 1524 1961 1573 1991 1597 1994 1387 1778 1417 1787
Groundwater depthd, mbgl — — 6.399 4.36 6.493 4.76 7453 499  7.855¢ 5.09

2 Longitudinal data on 27 Indian states were used; see text for the state names.

b Irrigation data were available after 2000 and were averaged over time.

¢ Population data from census were matched to the nearest time point.

4 Data on groundwater depths in meters below ground level were available from 1995.

¢ Changes from 1985-2010 were significant at 5% level using paired ¢-tests.

of population from 1981-2011 were approximations
for population growth in the states. Lastly, owing to
the modest number of states in India, two specifica-
tions were estimated for the model in equation (1), i.e.
where squared temperatures were included and where
this variable was dropped from the model.

The u;,’s were random error terms that can be
decomposed in a simple random effects fashion as:

Uy =06, + vy (2)

where §; were state-specific random effects that were
distributed with zero mean and constant variance, and
v;; were distributed with zero mean and constant vari-
ance. However, a more general formulation for the u;,

was employed and it assumed that u;, were drawings
from a multivariate normal distribution; the validity
of the special case in equation (2) was testing using
likelihood ratio statistics (see below).

The model for groundwater depths at the state level
is in equation (3):

In (Groundwater depth);; =

by + b;[Change In (Population);]

+b, [Change In(Population),]?

+ by In (Rainfall);, + b,[In (Rainfall),, >

+ bs In (Temperature);; + bgln (Rice output);,_;

+ b7 (Indicator period 5);, + bg(Indicator period 6);,
+byIn (Groundwater depth);,_; + u;,

(1 = 1, 2,..., N;t = 2, 3,4). (3)
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Note that indicator (or dummy) variables for time
periods were included in equation (3) for allowing vari-
ables to have different time means. Given data at four
time points, at most four such variables can be included.
However, the model in equation (3) contained an over-
all constant term and the initial observations on the
dependent variable were modeled by including a sepa-
rate constant term. Thus, a maximum of two indicator
variables (for time periods 5 and 6) were included to
ensure that the explanatory variables were not linearly
dependent, i.e. redundant variables were dropped prior
to the estimation. If, for example, indicator variables for
time periods 5 and 6 were estimated with positive and
significant coefficients, then the results would indicate
an increase in groundwater depths in 2005 and 2010,
respectively. Note that previous level of rice output
was included for assessing the effects of rice output on
groundwater depths.

Lastly, dynamic random effects model for ground-
water depths in wells, accounting for latitude, longitude
and altitude of location via a second degree polynomial
(Specification 1) is given by:

In (Groundwater depth);, = ¢ + ¢,

In (Latitude); + ¢,In (Longitude); + c3In (Altitude);
+¢,[In (Latitude),]> + ¢s[In (Longitude),]?

+celIn (Altitude),]* + ¢;[In (Latitude),

X In (Longitude), ]

+cg[In Latitude); X In (Altitude);]

+c9[In (Longitude); X In (Altitude);]

+co(Indicator period 3);,

+cy1 (Indicator period 4);; + ¢;,(Indicator period 5);
+cy3(Indicator period 6);; + c¢4(Indicator period 7);,
+cy51n (Groundwater depth);,_; + us;,
(i=12,..,N;t=2,3,4,5,6,7). 4)

Note that a linear specification (Specification 2) in lati-
tudes, longitudes and altitudes [17] was also estimated
for groundwater depths, i.e. where the geodetic coordi-
nates were included in a log-linear fashion. Likelihood
ratio tests were employed for testing the adequacy of
Specification 2; geographic variation in a large and het-
erogeneous country such as India was likely to be better
captured by the second degree polynomial in equation

(4).

Statistical and econometric methods

The dynamic random effects models for rice outputs
and groundwater depths were estimated by maxi-
mum likelihood methods [19]. The distribution theory
assumed that number of states (or wells) (N) was large
but number of time periods (T) was fixed. The estima-
tion techniques treated previous observations on rice
output as an ‘endogenous’ variable, i.e. correlated with
the errors u;,. Realizations of time varying explanatory
variables in different years were assumed uncorrelated
with the errors. The errors (u;,) were assumed inde-
pendent across states but were correlated over time.
For example, u;, were assumed to be drawings from a
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multivariate normal distribution with a symmetric pos-
itive definite dispersion matrix (€2). The decomposition
for u;, in equation (2) was a special case and its valid-
ity was tested using likelihood ratio statistics that were
distributed for large N as Chi-square variables with
[({T(T + 1)/2}-2] degrees of freedom. For example,
if the errors v, in equation (2) were serially corre-
lated, then likelihood ratio tests were likely to reject the
simple random effects decomposition and the results
were reported assuming the multivariate normal dis-
tribution for u;,. The numerical optimization routine
(E04 JBF) [20] was used in a FORTRAN program for
computing the maximum likelihood estimates. Asymp-
totic standard errors of the parameters were computed
by numerically approximating the second derivatives
of the maximized log-likelihood functions.

Results

Descriptive statistics

The sample means and standard deviations of five-
yearly averages for rice outputs, rainfall levels,
temperatures, area cultivated for rice, and groundwater
depths are presented in table 1; means of population at
four time points are reported in the nearest columns.
Using paired t-tests [21], there were statistically signif-
icant (P < 0.05) increases from 1985-2010 of 44% in
rice outputs, 77% in population, and 3.5% in tempera-
tures. Mean groundwater depths significantly increased
by 23% from 1995-2010.

Results from models for state-level rice outputs
Table 2 presents the maximum likelihood estimates of
parameters of models for state-level rice outputs. The
net area irrigated was a significant predictor (P < 0.05)
of rice outputs; interaction term between net area
irrigated and rainfall levels was significant indicating
substitution between alternative water sources. Second,
changesinlogarithm of population andits squared were
significant predictors showing increases in rice outputs
with higher population growth. The point of inflex-
ion with respect to population in logarithms was 7.0
that was less than mean change (15.7) during the sam-
ple period. Thus, rice outputs showed a decline before
reaching mean population level reflecting constraints
on production as the population increased.

Third, there were significant nonlinearities with
respect to rainfall, and rice outputs increased with
rainfall at a declining rate. The point of inflexion was
459 mm of rainfall that was lower than mean levels in
table 1. However, coefficients of temperature and its
square were not significant in Specification 1. Drop-
ping the squared temperatures in Specification 2 led to
short-run elasticity 0.047 of rice outputs with respect
temperature. Coefficient of previous rice outputs was
0.57 implying that long run effects of explanatory vari-
ables were approximately twice the short run impacts
reported in table 2.

4
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Table 2. Maximum likelihood estimates of dynamic random effects models for rice output in 27 Indian states using six five-yearly averages

during 1980-2010.%

Dependent variable:

In (Rice output), 1000s tons

In (Rice output), 1000s tons

Model: Specification 1° Specification 2
Explanatory variables: Coefficient SE Coefficient SE
Constant —4.103 0.575 —3.364 0.214
In (Net area irrigated), km? 0.1019 0.005 0.0834 0.024
Change In (Population), 1000s 0.118¢ 0.034 0.098¢ 0.029
[Change In (Population)]? —0.006¢ 0.001 —0.005¢ 0.001
In (Rainfall), mm 0.970¢ 0.068 0.815¢ 0.091
[In (Rainfall)]? -0.069¢ 0.004 -0.059¢ 0.006
In (Temperature), °C 0.002 0.103 0.047¢ 0.021
[In (Temperature)]? 0.010 0.025 —

In (Rice area cultivated), km? 0.4694 0.040 0.4664 0.026
In (Net area irrigated) X In (Rainfall)? -0.012¢ 0.007 —0.010¢ 0.004
In (Rice output);,_ 0.565¢ 0.037 0.570¢ 0.025
2 x Maximized log-likelihood function 913.63 913.53

Chi-squared (19) test random effects decomp*® 474354 575.20¢

2 Values are slope coefficients and asymptotic standard errors.

b Specification 1 included Temperature- squared variable, whereas Specification 2 dropped this variable.

¢ Chi-squared statistics for testing random effects decomposition as in equation (2) were distributed with 19 degrees of freedom.

4 P<0.05.

Fourth, the simple random effects model in equa-
tion (2) was rejected in favor of the multivariate normal
distribution for the errors u;, using likelihood ratio
statistics; the estimated parameters in tables 2 invoked
the multivariate normal distribution for ensuring con-
sistent parameter estimation. Lastly, three indicator
variables for last three time periods were also included
in the model though the coefficients of explanatory
variables in table 2 did not change noticeably.

Results from the model for state-level groundwater
depths
Table 3 presents the maximum likelihood estimates
from model for average state-level groundwater depths.
While the coefficient of population change was esti-
mated as —0.44, coefficient of its squared was 0.013.
Because the mean change in logarithm of population
was 15.7, the overall effect was positive after the point
of inflexion (17.35). Thus, higher population growth in
states was associated with higher groundwater depths.
By contrast, coefficient of the previous rice output
levels was not significant. These results suggest that
population growth was an important factor underlying
increases in groundwater depths (see Discussion).
Second, the coefficients of rainfall levels and
its square were both significant in the model for
groundwater depths. While groundwater depths were
negatively associated with higher rainfall, the point of
inflexion was 5432 mm that was greater than max-
imum rainfall so that groundwater depths decreased
with higher rainfall. By contrast, higher temperatures
were associated with higher groundwater depths and
the squared temperature variable was not significant.
Lastly, the coefficient of previous groundwater depths
was 0.96 implying that the long-run effects of explana-
tory variables were approximately 25 times as large.
Coefficients of indicator variables for the last two time
periods were positive and significant indicating an
increase in groundwater depths over time.

Table 3. Maximum likelihood estimates of dynamic random effects
models using four five-yearly averages for groundwater depths in 25
Indian states during 1995-2010.%

Dependent variable: In (Groundwater depths), mbgl

Explanatory variables: Coefficient SE
Constant 6.567 0.399
Change In (Population), 1000s —0.439¢ 0.041
[Change In (Population)]? 0.013 0.001
In (Rainfall), mm —0.774¢ 0.077
[In (Rainfall)]? 0.046¢ 0.006
In (Temperature), °C 0.117¢ 0.030
In (Rice output);,_; 0.004 0.012
Time period 3, 0-1 0.191¢ 0.059
Time period 4, 0-1 0.131¢ 0.054
In (Groundwater depth);,_; 0.959¢ 0.036
2 x log-likelihood function 384.36

Chi-squared [8] test random effects 37.22¢

decomposition °

2 Values are slope coefficients and standard errors.

b Chi-squared statistics for testing random effects decomposition were
distributed with 8 degrees of freedom.

¢ P<0.05.

Results from models for in situ groundwater depths
in wells
Table 4 presents the results from dynamic models for
in situ groundwater depths in 11795 wells accounting
for latitudes, longitudes, and altitudes. The results from
both specifications rejected the simple random effects
decomposition in equation (2), and the results are
reported assuming a multivariate normal distribution
for u;,. The likelihood ratio statistics for testing Speci-
fications 2 against the more general Specification 1 was
834.5 and it rejected the null hypothesis that the geode-
tic coordinates can be included in a log-linear fashion.
These results showed the importance of employing sec-
ond degree polynomials in latitudes, longitudes and
altitudes for capturing geographic variations affecting
groundwater depths in the wells in India.

Second, the estimated coefficient of previous
groundwater depths was 0.94 in Specification 1 and
coefficients of indicator variables for time periods 3—7
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Table 4. Maximum likelihood estimates of dynamic random effects models using seven three-yearly averages for groundwater depths in
11795 wells during 1995-2016 accounting for well latitudes, longitudes, and altitudes.”

Dependent variable:

In (Groundwater depth), mbgl

Model: Specification 1° Specification 2°
Explanatory variables: Coefficient SE Coefficient SE
Constant 4.382 0.041 —6.801 1.248
In (Latitude) 6.169¢ 0.033 —0.097¢ 0.019
In (Longitude) —6.421¢ 0.011 1.520° 0.282
In (Altitude) 0.413° 0.022 -0.018°¢ 0.004
[In (Latitude)]* 0.034° 0.006 —

In (Longitude)]? 1.262¢ 0.005 —

[ g

[In (Altitude)]? ~0.001¢ 0.0004 —
In (Latitude)In (Longitude) —1.468° 0.007 —
In (Latitude)xIn (Altitude) 0.007¢ 0.002 —
In (Longitude):In (Altitude) —0.094°¢ 0.005 —
Time period 3, 0-1 0.004¢ 0.001 0.006° 0.001
Time period 4, 0-1 0.044¢ 0.002 0.048° 0.001
Time period 5, 0-1 0.051¢ 0.002 0.041¢ 0.002
Time period 6, 0-1 0.044¢ 0.002 0.017¢ 0.004
Time period 7, 0-1 0.033¢ 0.002 —0.006 0.006
In (Groundwater depth);,_; 0.944¢ 0.004 1.334° 0.056
2 x log-likelihood function 291416.9 290582.4
Chi-squared [25] test random effects decomposition® 6348.6° 6404.2¢
Chi-squared [6] tests for Specific.1 vs 2¢ 834.5¢

2 Values are slope coefficients and standard errors.

b Specification 1 was the general model and Specifications 1 is its special case.

¢ Chi-squared statistics for testing random effects decomposition were distributed with 25 degrees of freedom.

4 Chi-squared statistics for testing Specifications 1 against Specification 2 was distributed with 6 degrees of freedom.

¢ P<0.05.

were all positive and significant. Thus, there was an
increase in groundwater depths and the large coef-
ficients of lagged dependent variable indicated that
groundwater depletion was likely to be a persistent phe-
nomenon (see Discussion). Lastly, partial derivatives of
groundwater depths in wells with respect to latitudes
and longitudes from Specification 1 are presented in
equations (5) and (6), respectively:

6.17 + 0.068 In (Latitude) — 1.47 In (Longitude)
+0.007 In (Altitude) (5)

and

—6.42 + 2.524 In (Longitude) — 1.47 In (Latitude)
—0.094 1n (Altitude). ()

These results were consistent with the data on ground-
water depths displayed for 2016 in figure 1. For
example, groundwater depths were higher as one
moved along a longitude to higher latitudes. By con-
trast, groundwater depths in wells located near the west
and east coasts were lower.

Discussion

This paper presented comprehensive analyses of the
proximate determinants of rice outputs and ground-
water depths at the state level in India; analyses of
in situ data from 11795 wells provided further insights
for groundwater depletion. The empirical models
showed greater rice outputs with rainfall levels and
population growth though at declining rates. Because

rice is an attractive staple in many Indian states, rice
consumption is likely to increase with incomes [8].
However, the results for rice outputs in table 2 indicated
that in states with high population growth, poor house-
holds may not be able to increase rice consumption
and might switch to cheaper alternatives. Disaggregated
analyses at the district and/or household levels can shed
turther light on these issues.

Second, models for groundwater depths showed
significant and positive associations between popu-
lation growth and groundwater depths. By contrast,
previous levels of rice outputs were not significantly
associated with groundwater depths. This may have
been due to different rice cultivation patterns in
flood plains versus farms utilizing groundwater. While
groundwater should be extracted at rates that maintain
stable depths over time, states experiencing high rainfall
have flexibility in recharging aquifers [22]. Moreover,
average groundwater depths were higher at the end of
the sample period in 2010; over-pumping of ground-
water for production of crops with low transpiration
efficiencies is often responsible for depletion. Thus, it
seems important to reduce electricity subsidies for agri-
culture in India [23] especially in states experiencing
groundwater depletion.

Third, the empirical model for groundwater depths
included the explanatory variables temperatures, rain-
fall, and changes in logarithms of population and
its square so that the estimated coefficients provide
insights into their relative magnitudes. For example,
the model predicted that an increase of 1% in temper-
atures would increase groundwater depths by 0.118%
in the short run and by 2.95% in the long run. Because
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there was a 3.5% increase in average temperatures from
1985-2010, the implied long run increase in ground-
water depth was 10.3% that is large. While higher
rainfall can recharge groundwater, changes in rain-
fall levels between 1980 and 2010 were statistically not
different from zero. Further, the quadratic relation-
ship between changes in population and groundwater
depths predicted higher depths in states where changes
inlogarithm of population were greater than 17.35. This
was the case for Bihar, Madhya Pradesh, Maharash-
tra, Rajasthan, Uttar Pradesh and West Bengal. While
the modest sample sizes available for the estimation
of nonlinear models complicated the computation of
confidence intervals, these results suggest that the long
run effects of increases in temperatures and population
for groundwater depths are likely to be large and should
be of concern to policy makers.

Fourth, the models for in situ groundwater depths
in wells provided further insights for managing water
resources in India. The groundwater depths increased
during 1996-2016 and the large coefficients of lagged
dependent variables implied that groundwater scarcity
is likely to become a chronic problem especially in
northern states that are located far from the coasts.
The fact that some of these states, namely, Bihar, Mad-
hya Pradesh, Rajasthan and Uttar Pradesh, experienced
high population growth during 1980-2010 underscores
the need for urgently tackling the problems of ground-
water depletion.

Fifth, while trade in agricultural commodities often
entails groundwater use [24], itis important to consider
agricultural production in a broader context. In coastal
regions with ample rainfall, it would be simplistic to
view rice exports as ‘water exports’ since opportunity
costs of water use are low. Instead, greater specializa-
tion in rice production and trade with other states
would be helpful. Efficient technologies for ground-
water conservation, recharge and management [9, 25],
taking into account demand for food, will be effica-
cious. Planting crops according to their transpiration
efficiencies and water availability are sound strategies
for maintaining groundwater levels. Moreover, taxes
on agricultural commodities can encourage harmoniz-
ing of agricultural outputs and groundwater resources
in India.

Finally, the 77% increase in population in India
during 1980-2010 significantly affected rice outputs
and groundwater depths at the state level. While it
has been suggested that the ‘demographic dividend’
from having a young labor force support older age
groups may be helpful for economic development, it
is important to consider the broader consequences
of population growth in countries with high popula-
tion densities [26]. Owing to poor access to healthcare
and family planning services especially in rural areas
of developing countries, many children are regarded
by their mothers as either being born earlier than
expected or were simply ‘unwanted’ [27, 28]. For exam-
ple, approximately a third of the children born in Bihar,
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Madhya Pradesh, Rajasthan and Uttar Pradesh were
regarded as ‘unwanted’ [3]. In the absence of access to
high quality healthcare and family planning services, it
is difficult for poor rural households to achieve their
‘desired’ family size and educate the children. Rapid
population growth creates simultaneous pressures on
food production systems and the environment. While
there is a need for replenishing groundwater via bet-
ter technologies [22], healthcare and family planning
services should be integral components of long-term
policies for mitigating the effects of climate variables.
Such policies are likely to be beneficial for other Asian
countries such as Indonesia, Pakistan and the Philip-
pines that are experiencing population growth and are
vulnerable to rising sea levels and uncertain monsoon
patterns [30].
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