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Many of the pavement distresses such as pot holes and surface cracks are caused by 

moisture damage, which is due to the destruction of adhesive bond between aggregate 

and the binder in the presence of moisture. These distresses can cause excessive 

pavement roughness that might necessitate replacement of the entire pavement layer. 

Hydraulic conductivity has traditionally been used to characterize the moisture transport 

in asphalt pavements. However, laboratory or field measured unidirectional hydraulic 

conductivity only provides information about the flow in one direction and does not 

represent flow in other directions. Numerical modeling of fluid flow within the pores of 

asphalt pavements is a viable alternative to characterize the directional hydraulic 

conductivity as well as pore pressures and viscous shear stresses. 

Three-dimensional lattice Boltzmann (LB) fluid flow models were developed and 

validated using analytical solutions and laboratory experiments.  An excellent agreement 



was observed with second order accuracy. Three-dimensional real pore structures of the 

specimens were generated using X-ray CT technique and used as an input in the LB 

models. Numerous steady and unsteady fluid flow simulations were conducted on 

different asphalt specimens to study the moisture transport characteristics. Analysis of 

hydraulic conductivity tensor indicated that the asphalt specimens are isotropic 

comparing two horizontal directions and anisotropic comparing horizontal and vertical 

directions. Therefore, it is recommended that a new field testing standard be developed to 

account for this anisotropy. Analysis of hydraulic conductivity at different depths 

revealed a rapid decrease in the hydraulic conductivity as the analysis depth was 

increased. The decrease was more pronounced when compaction effort was increased; 

therefore, the field compaction effort could be adjusted to control the depth of water 

penetration. Local pressure gradients and shear stresses at constrictions during steady 

fluid flow were up to one order of magnitude higher than their average values. Unsteady 

flow simulations revealed that dynamic hydraulic conductivities of asphalt specimens 

were relatively close to their steady values. The pressure gradients and viscous shear 

stresses due to dynamic flow were much higher at the surface as compared to their steady 

values and the dynamic effect decreased with increasing depth.  
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1 CHAPTER 1   INTRODUCTION 

Hydraulic conductivity of an asphalt pavement is one of the most important 

parameters that have a direct influence on its design life. Moisture damage caused by the 

destruction of cohesive bond within the asphalt binder or the destruction of the adhesive 

bond between the aggregate and the asphalt binder decreases the life of asphalt 

pavements. Stripping of the aggregates from the binder as a result of moisture damage 

can cause cracks, and excessive deflections that might necessitate replacement of the 

entire pavement layer. There are numerous studies that indicated the susceptibility of 

asphalt pavements to moisture damage (McCann et al. 2005, Castelblanco et al. 2005). 

Understanding the relationship between pore structure and fluid transport is critical in 

determination of moisture damage in asphalt pavements.  

Hydraulic conductivity has been commonly used to characterize the fluid transport 

properties of asphalt pavements. Laboratory or field measured unidirectional hydraulic 

conductivity is usually assumed to be constant in all directions. Since asphalt pavements 

usually have an anisotropic and heterogeneous internal pore structure (Masad et al. 1999), 

measured unidirectional hydraulic conductivity may not accurately provide the three-

dimensional moisture transport characteristics in the field. Furthermore, it is impractical 

to measure the longitudinal (x-direction) and transverse (y-direction) hydraulic 

conductivities due to the difficulties associated with the specimen preparation and the 

cost of operation There are several semi-analytical equations exist (Kozeny-Carman 

1956, Walsh and Brace 1984, Al-Omari et al. 2002) for estimation of the hydraulic 

conductivity of porous media and they are generally applicable to isotropic pore 

structures. Derivations of these analytical models are usually based on the approximation 
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of pore structure with simpler geometries, such as tubes and cones, and often the 

accuracy of these models is questionable. Additionally, these techniques do not consider 

pore channel shape and connectivity, which are critical in fluid flow modeling and the 

estimation of hydraulic conductivity in asphalt pavements. Numerical modeling of fluid 

flow within the pores of asphalt pavements with the aid of X-ray Computed Tomography 

(CT) imaging technique is a viable alternative to characterize the directional hydraulic 

conductivity. X-ray CT technique can be used to acquire real three-dimensional pore 

structures of the asphalt specimens eliminating the potential errors that might stem from 

idealized pore structure assumptions used by past researchers (Pilotti 2003, Wang 2003). 

Considerable progress has been made in the area of computational fluid dynamics 

in recent years and one of the most reliable methods, the lattice Boltzmann (LB) 

approach, have been increasingly used in various engineering applications in modeling 

the flow of both single and multi-component fluids (Rothman and Zaleski 1998, Chopard 

and Droz 1998, Kandhai et al. 1999, Chen and Doolen 2001, Succi 2001, Hazi 2003). 

The main advantages of the LB method include easy implementation of boundary 

conditions and computational efficiency by allowing parallel computing. The method 

also accommodates boundary conditions such as a pressure drop across the interface 

between two fluids and wetting effects at the fluid-solid interface (Martys et al. 2001). It 

has proven to be very accurate in simulating isothermal, incompressible flow at low 

Reynolds numbers (Succi 2001); however, information is lacking about its application to 

granular geomaterials used in civil engineering construction, such as asphalt pavements.  

The objectives of this research can be summarized as follows: 
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• To investigate the characteristics of internal pore structure parameters (e.g. 

porosity, pore connectivity, specific surface area and tortuosity) of different 

asphalt mixtures by using their three dimensional X-ray CT images. 

• To investigate the influence of different pore structure and mix design parameters 

on the unidirectional laboratory hydraulic conductivity of asphalt pavements. 

• To evaluate the accuracy of semi-analytical hydraulic conductivity equations 

developed for homogeneous porous structures in predicting hydraulic 

conductivity of asphalt pavements. 

• To develop a three dimensional image-based LB model that is capable of 

simulating single-phase, Newtonian and incompressible fluid flow within any 

pore geometry and confirm its accuracy in predicting hydraulic conductivity of 

asphalt pavements. 

• To investigate the hydraulic conductivity of asphalt pavements in three different 

directions; longitudinal (kxx), transverse (kyy) and vertical (kzz).  

• To study the relation between vertical hydraulic conductivity (kzz), and 

longitudinal (kxx) and transverse (kyy) hydraulic conductivities. 

• To investigate the hydraulic conductivity variation in different depths of asphalt 

pavements, which is expected to characterize the vulnerability of different zones 

within asphalt pavements to moisture damage.  

• To study of the pore constrictions in asphalt pavements and their relation to the 

hydraulic conductivity in different directions. 
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• To investigate the pore pressure and viscous shear stress variation during a 

steady-state fluid flow in pore structures of asphalt pavements, which may 

potentially have a direct influence on the binder stripping problem. 

• To study the effect of dynamic (pulsatile) vehicle loading on the moisture 

transport characteristics of asphalt pavements. 

• To investigate the (frequency dependent) dynamic hydraulic conductivity of 

asphalt pavements and its relation to (steady) hydraulic conductivity.  

To meet these objectives, two- and three-dimensional fluid flow models were 

developed using the LB technique. The models were validated using well-known 

analytical equations and laboratory experiments on granular materials. Three dimensional 

pore structures of the specimens were generated using X-ray CT technique and used as an 

input in the LB models. The geometrical parameters of the specimens, i.e. porosity, pore 

connectivity, specific surface area and tortuosity were determined using image analysis 

algorithms developed as a part of this study. The relation of these parameters to the 

laboratory hydraulic conductivities of asphalt specimens was investigated. Numerous 

steady and unsteady (pulsatile) fluid flow simulations were conducted on different 

asphalt specimens to study a number of moisture transport characteristics such as 

hydraulic conductivity tensor, pore pressure and viscous shear stresses. 

A detailed literature review about the LB method and existing analytical and 

numerical methods of estimating hydraulic conductivity of asphalt pavements are 

presented in Chapter 2. Chapter 3 provides a detailed explanation of the theory of LB 

method. Validation of both two- and three- dimensional LB models is presented in 

Chapter 4. Chapter 5 describes the theory of operation of X-ray CT technique and the 
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developed image analysis algorithms. Chapter 6 discusses the measured pore structure 

parameters of different asphalt mixtures and their relation to laboratory measured 

hydraulic conductivities. The results of three-dimensional fluid flow simulations in 

different asphalt specimens are presented in Chapter 7. Chapter 8 includes the results of 

pulsatile flow simulations on asphalt pavements. Summary and conclusions are given in 

Chapter 9. 
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2 CHAPTER 2 LITERATURE REVIEW 

2.1 LATTICE BOLTZMANN METHOD IN MODELING FLUID FLOW 

Among various techniques in fluid flow modeling, lattice Boltzmann (LB) method 

has been gaining wide acceptance due to its ease of implementation of boundary 

conditions and numerical stability in wide variety of flow conditions with various 

Reynolds numbers. It has evolved from the Lattice Gas Automata (LGA) (Buick 1997). 

Various difficulties experienced in LGA were overcome by the introduction of the LB 

method. It was first introduced by McNamara and Zanetti (1988) to eliminate the 

statistical noise in the LGA. Since then, it has been implemented and improved by 

various researchers in variety of disciplines. Early applications of the LB method to 

porous media largely focused on the feasibility of the method. Succi et al. (1989) used 

LB method to simulate flow through random pack of blocks and demonstrated the 

adherence to Darcy’s law. Various researchers (Maier et al.1996, Zou and He 1997, Guo 

et al. 2002, La Fuente et al. 2003) improved the LB method by introducing a variety of 

new boundary conditions for the solid boundaries. Some of selected boundary conditions 

for the solid walls are described in detail in Chapter 3.  

Maier et al. (1997) implemented a three dimensional LB model (D3Q19) to 

simulate flow through bead packs and compared with the Kozeny-Carman prediction for 

the sphere packing. Kim (2002) utilized a two dimensional (D2Q9) LB method to 

simulate flow through rock fractures and compared with the analytical equations that 

assumes the rock fracture composed of set of parallel plates. Martys et al. (2002) 

successfully applied LB method to simulate a multiphase flow through Fontainebleau 
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sandstone. The hydraulic conductivities determined from the model were compared with 

those based on laboratory measurements.. Hornero et al. (2004) measured the 

performance of a two dimensional LB model for simulating soil flow in a simple erosion 

model and compared the results to those predicted by an analytical solution. Tang et al. 

(2004) successfully implemented LB method to simulate gas flow through 

microchannels. 

Flow through fibrous materials such as papers, random fiber webs and woven 

fabrics also have been the interest of researchers using LB method. Koponen et al. (1998) 

modeled the hydraulic conductivity of three-dimensional random fiber webs using LB 

method and found a good agreement with the experimental measurements. Filippova 

(1997) used a three-dimensional LB method to model gas-particle flow through filters 

and successfully simulated filtration phenomenon. Clague (2000) modeled hydraulic 

conductivity of bounded and unbounded fibrous media using the LB method. 

Artoli et al. (2002) presented a detailed analysis on the accuracy of the LB method 

in simulating pulsatile flow in a 2D channel and a 3D tube. They studied the accuracy of 

the lattice Boltzmann BGK method in recovering the Womersley solution for pulsatile 

flow in a rigid tube with a sinusoidal pressure gradient. They concluded that the LB 

method successfully predicts the velocity profiles in parallel plates and circular tubes 

subjected to oscillating pressure gradients. 
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2.2 SEMI-ANALYTICAL AND NUMERICAL METHODS FOR 

CHARACTERIZATION OF MOISTURE TRANSPORT IN ASPHALT 

PAVEMENTS 

Hydraulic conductivity has traditionally been the only parameter for 

characterization of moisture transport in asphalt pavements. Various models were 

developed to estimate hydraulic conductivity of asphalt pavement, most of which were 

semi-analytical. These semi-analytical models are usually based on the approximation of 

the pore structure into simpler geometries such as tubes and cones, where it is possible to 

derive an analytical solution from main differential equations of fluid flow (Navier-

Stokes Equations).  Kozeny-Carman equation is one of the commonly used semi-

analytical equations to estimate the hydraulic conductivity of porous structures which has 

also been used to estimate hydraulic conductivity of asphalt pavements. The derivation of 

the Kozeny-Carman equation is based on the assumption that the pore structure of a 

material can be represented by capillary tubes and the hydraulic radius theory applies. 

The equation can be written as follows; 

22

3 1
)1( ae

e

Sn
Cn

k
−

=
µ
γ       (2. 1) 

where k  is  the hydraulic conductivity, C  is a  shape  factor (= 1/180  for spherical 

particles), aS  is the specific surface area defined as the ratio of the surface area of the 

pores to the total volume of the specimen, en  is the effective porosity,  γ is  the unit 

weight of the fluid (water at 20oC), and  µ is fluid viscosity and is equal to 10-3 kg/(m-s)  

for  water.  
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Walsh and Brace (1984) also defined an semi-analytical equation for estimation of 

hydraulic conductivity of porous structures. It has more sophisticated structure than the 

Kozeny-Carman equation, and includes tortuosity, which is a measure of the tortuous 

pathways that the fluid travels. The equation has the following form: 

22

3 1

a

e

SbT
n

k
µ
γ

=      (2. 2) 

where k  is  the hydraulic conductivity, en  is the effective porosity,  γ and µ are the unit 

weight and viscosity of fluid, respectively, b is a constant given as 2 for perfectly circular 

pore structure and 3 for rough texture on the pore surface, T  is the tortuosity defined as 

the ratio of the total length of path followed by a fluid particle to the shortest distance 

from inflow to the outflow, and aS  is the specific surface area. It should be noted that, all 

the pore parameters ( en , T and aS ) in this equation are calculated for only interconnected 

(effective) pores. Isolated pores are not considered. 

Al-Omari et al. (2002) proposed an empirical formula based on their laboratory 

studies on asphalt mixes, which can be written as follows: 

23 a

m
a

S
V

k
µ
γ

=      (2. 3) 

where k  is  the hydraulic conductivity, aV  is the percent total air voids in an asphalt mix,  

γ and µ are the unit weight and viscosity of water, respectively, S is the specific surface 

area, and m is a regression coefficient. 
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Masad et al. (2003) proposed a revised version of Equation (2.3) where they 

replaced the specific surface area with the surface area of aggregates. Their equation has 

following form: 

t
gga

m
a

Sc
Vk

µ
γ

=      (2. 4) 

where ggaS is the surface area of the aggregates in an asphalt mixture and c, m and t are 

regression coefficients that were determined by statistical data fitting to the laboratory 

measurements of hydraulic conductivity. Their statistical analysis revealed that the 

constant m ranged from 4 to 6.9 in different asphalt mixtures, and constants c and t found 

to be 5 and 1, respectively. They concluded that the constant m was significantly affected 

by the method of hydraulic conductivity measurement. 

There has been attempts to use commercially available finite-element and finite 

difference softwares (such as SEEP/W and FLAC) to estimate the macroscopic fluid flow 

patterns within asphalt pavements (Masad et al. 2003, Hunter and Airey 2005). These 

modeling approaches usually assumed the asphalt pavement as a homogeneous and 

isotropic media with a constant hydraulic conductivity value in all directions. Masad et 

al. (2003) utilized a two-dimensional finite-element model (SEEP/W) to investigate the 

influence of the vertical gradient of porosity on water flow patterns. They divided the 

pavement thickness into 10 mm sublayers and assigned a hydraulic conductivity value to 

each sub-layer. The hydraulic conductivity of each sub-layer was calculated using 

Equation 2.4 using the different porosity values obtained from the X-ray CT images of an 

asphalt specimen. They assumed that the hydraulic conductivity of each layer to be 
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constant in both x- and y-directions. Their analysis concluded that the hydraulic 

conductivity decreased in the vertical direction, and as a result, most the fluid flow 

occurred in the horizontal direction. 

Hunter and Airey (2005) utilized a finite difference model to investigate the 

validity of the assumption that the flow is vertical during hydraulic conductivity 

measurements in the field permeameters. They indicated that this assumption is 

inaccurate and the magnitude of error in the hydraulic conductivity value depends on the 

depth of the pavement layer and the diameter of the field permeameter. They concluded 

that the error exceeds one order of magnitude when the diameter of the permeameter is 

small (e.g. 50 mm) and the pavement layer is thick (e.g. >250 mm). 

Little work has been done on the microscopic fluid flow modeling within pores of 

the asphalt pavements. Al-Omari and Masad (2004) utilized a semi-implicit method for 

pressure-linked equations (SIMPLE) finite difference scheme to estimate the hydraulic 

conductivity of asphalt pavements. They compared their vertical hydraulic conductivity 

estimations based on their numerical model with the Kozeny-Carman equation (Equation 

2.1) and found reasonably good agreement. 

More recently, Kringos and Scarpas (2005) introduced a modeling technique to 

understand the physical processes and mechanics causing debonding of the mastic from 

the aggregates due to the fluid flow in asphalt pavements. In their preliminary analysis, 

they included the diffusion, desorption and dispersion as the fundamental processes 

causing raveling. A two dimensional idealized circular aggregate coated with a mastic 

film was utilized in their study. Then the diffusion of water into the mastic film and 

desorption of mastic from the aggregate was modeled. They assumed arbitrary diffusion 
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and desorption coefficients for asphalt mastic film and indicated that there is an ongoing 

experimental research for more realistic values of these coefficients. 

2.3 UNSTEADY (DYNAMIC) FLOW MODELING IN POROUS MEDIA 

Unsteady flow has been in the interest of many researchers due its importance in 

human health (McDonald 1974). Cardiovascular diseases are considered as the main 

causes of death throughout the world and it is believed that understanding the viscous 

shear stresses due to the dynamic blood flow play a dominant role in diagnosis and 

treatment of such diseases (Artoli et al. 2002). Therefore, there has been tremendous 

effort in modeling unsteady flow in arteries (McDonald 1974).On the other hand, there 

has been relatively less attempts in modeling dynamic flow in porous media encountered 

in engineering. Sheng and Zhou (1988) presented the frequency dependent permeability 

in porous media for a variety of microstructures. They showed that when the dynamic 

permeability is scaled by its static value and the applied angular velocity scaled by a 

characteristic angular velocity particular to the microstructure, the resulting function 

exhibits universal behavior. Sheng and Zhou (1989) further evaluated the dynamic 

permeability constant and derived formulations for the dynamic permeability of circular 

tubes. They extended their analyses by studying different idealized pore throat 

(constriction) shapes in which they investigated effect of the characteristic length (i.e., 

constriction diameter) and porosity on the dynamic permeability behavior. Their analysis 

was limited to symmetrical geometries such as uniformly packed glass beads and did not 

include random or anisotropic pore geometries. Duarte et al. (1992) studied the dynamic 

permeability of relatively more complex porous media where they placed circular 

obstacles of a given size between two parallel plates and modeled dynamic flow using a 
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two-dimensional cellular automata model. They found that increasing number of circles 

significantly increased the number of time steps for stabilization.  

2.4 SYNTHESIS OF THE PREVIOUS WORK AND MOTIVATION FOR THE 

CURRENT STUDY 

The lattice Boltzmann method has emerged as a versatile alternative to traditional 

finite element and finite difference Navier-Stokes solvers in variety of flow conditions. It 

has proven to be very accurate in modeling isothermal, incompressible flow at low 

Reynolds numbers (Succi 2001) especially in the case of flow through porous media. It 

was summarized in Section 2.1 that several studies utilized LB method to model fluid 

flow. However, information is lacking about its application to granular geomaterials, such 

as asphalt pavements. 

Several efforts have been made in recent years to estimate the hydraulic 

conductivity of asphalt pavements (Al-Omari et al. 2002, Masad et al. 2003, and Masad 

et al. 2004). Most of these studies utilized empirical analytical equations to relate certain 

pore parameters such as porosity to the hydraulic conductivity. The analytical equations 

utilized in previous studies were primarily developed for a relatively homogeneous and 

isotropic media such as cohesionless soils. Therefore, the calculated hydraulic 

conductivity value was naturally assumed to be constant in any direction in the field. 

However, majority of asphalt pavements have an anisotropic and heterogeneous internal 

pore structure (Masad et al. 1999), which has a direct influence on the magnitude of the 

hydraulic conductivities in different directions. Macro-scale numerical studies (Masad et 

al. 2003, Hunter and Airey 2005) concluded that the most of fluid flow is in horizontal 

direction in asphalt pavements. Therefore, the magnitude of horizontal hydraulic 
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conductivities (i.e., longitudinal (kxx) and transverse (kyy) hydraulic conductivity) may 

have significant effect on moisture transport through asphalt pavements. Directional 

hydraulic conductivity of porous structures has been studied by several researchers 

(Latini 1967, Moore 1979); however, their analyses were limited to cohesionless soils. 

Information is lacking on the horizontal hydraulic conductivity of asphalt pavements 

primarily due to the difficulties associated with field and laboratory measurements. 

Most of the previous studies utilized only the hydraulic conductivity value as a 

mean to characterize the moisture induced damage in asphalt pavements. Pore pressure 

and shear stress distributions at the pore-solid interfaces in an asphalt pore structure due 

to the fluid flow, which could have significant negative contribution to binder stripping 

problem, have never been investigated. Furthermore, the variation in pore pressure and 

shear stress due to unsteady fluid flow caused by the repeated tire loading on the 

saturated pavement needs to be well understood in order to accurately characterize the 

moisture damage in the field. The critical values of shear stresses and pore pressures 

caused by both steady state and dynamic flow are also very important parameters that 

should be included as an input for microscale raveling studies characterizing the 

debonding of mastic from the aggregate (e.g., Kringos and Scarpas 2005). 

To respond this need, three-dimensional lattice Boltzmann (LB) fluid flow models 

were developed to study the moisture transport characteristics of asphalt pavements such 

as hydraulic conductivity tensor, pore pressure and viscous shear stress. Numerous steady 

and unsteady fluid flow simulations were conducted on different asphalt specimens to 

study these characteristics. The analyses of asphalt pavements included field cores and 

laboratory prepared specimens that were fabricated to study a number of mixture 
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variables which are likely to affect the pore structure (e.g., NMAS, aggregate gradation 

and compaction effort). Three-dimensional real pore structures of the specimens were 

generated using X-ray CT technique and used as an input in the LB models. 
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3 CHAPTER 3 LATTICE BOLTZMANN METHOD 

The lattice Boltzmann (LB) method is a numerical method for simulation of 

viscous fluid flow. The LB method approximates the continuous Boltzmann equation by 

discretizing a physical space with lattice nodes and velocity space on a set of microscopic 

velocity vectors (Maier et al. 1997).  A lattice corresponds to a set of nodes that 

represents the discrete phase of a physical space, where each node corresponds to either a 

void or a solid. The binary image of an aggregate structure is given in Figure 3.1a as an 

example to present the discretization of the physical space with black and white pixels.  

The lattice nodes are created at the center of each pixel as shown in Figure 3.1b.  In the 

LB method, fluid particles travel on these nodes following the main LB equations, which 

ultimately satisfy the Navier-Stokes equations. 

Conventional simulations of fluid flow such as finite difference, finite element, 

finite volume and spectral methods generally start from the nonlinear partial difference 

equations (Navier-Stokes equations) and solve these equations by using various 

numerical methods. This type of approach is called ‘top-down’ approach (Figure 3.2) 

(Wolf-Gladrov 2000). On the other hand, LB method utilizes a ‘bottom-up’ approach to 

reach the solution of differential equations. It has been shown by performing Chapman-

Enskog expansion that LB method evolves according to the Navier-Stokes equations 

(Chin et al. 2002). Error resulting from truncation of Taylor series when going from 

differential to finite difference, and numerical instabilities are some of the disadvantages 

experienced in the former ‘top-down’ approach. These problems were not experienced in 

the ‘bottom-up’ approach. The studies conducted by numerous researchers  
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Figure 3.1 (a) Binary image of aggregates, black area representing aggregates 
and white area representing the pores, (b) creation of lattice nodes at the center 
of each white pixel  
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Figure 3.2 Top-down versus bottom-up approach in fluid flow simulation. 
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(Yoshino et al. 2004) comparing these two approaches concluded that LB method is 

comparable to traditional methods in relatively high Reynolds numbers and superior in 

low Reynolds numbers especially in the case of flow through porous media. 

The basic idea of LB method comes from the kinetic theory of fluids. LB method 

considers a representative volume element of fluid (a node in the lattice) composed of 

particles that are defined in terms of a particle velocity distribution function, ),(F ti x  

(Martys and Hagedorn 2002). This function is a discrete function that has Q number of 

components, where Q is the number of microscopic velocity directions (ei) around a 

lattice node (Figure 3.3). Each component of the function (Fi, i= 1, 2 …Q) represents a 

fraction of the total number of particles at each node with a microscopic velocity ei 

(Figure 3.3). The fluid particles travel on the lattice nodes through the use of distribution 

function which determine the macroscopic flow parameters, i.e., density and macroscopic 

velocity of fluid at each lattice node.   

 Various LB models exist for numerical solution of various fluid flow scenarios, 

where each model has different way of characterizing microscopic movement of the fluid 

particles. The LB models are usually denoted as DxQy where x and y corresponds to the 

number of dimensions and number of microscopic velocity directions (ei), respectively 

(Table 3.1). For example, D2Q9 represents a two-dimensional geometry with nine 

microscopic velocity directions. Figure 3.3 shows microscopic velocity directions of 

D2Q9 and D3Q19 LB models which were implemented in this study. 

 
 
 
 



 20

 

e1=[1,0] 

e5=[1,1] e2=[0,1] e6=[-1,1] 

e3=[-1,0] 

e7=[-1,-1] e4=[0,-1] e8=[1,-1] 

e9=[0,0] 

 
(a) 

 

 

e15=[0,1,1]

e11=[1,0,1]

e7=[1,1,0]
e3=[0,1,0]

e14=[-1,0,1]
e5=[0,0,1]

e1=[1,0,0]

e12=[1,0,-1]

e10=[1,-1,0]
e4=[0,-1,0]

e9=[-1,-1,0]

e2=[-1,0,0]

e8=[-1,1,0]

e18=[0,-1,1]

e13=[-1,0,-1]

e17=[0,-1,-1]

e6=[0,0,-1]

e16=[0,1,-1]

e19=[0,0,0]

x 

z 

y 

 
(b) 

 
 

Figure 3.3 (a) D2Q9 and (b) D3Q19 lattice microscopic velocity directions. 
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Table 3.1 Properties of various LB models 

Model 
Name 

Lattice 
Speed of 
Sound, 

(cs
2) 

Weight 
Factors 

Velocity 
Directions 

D1Q3 1/3 
4/6 (1) 
1/6 (2) 

  

D1Q5 1 

6/12 (1) 
2/12 (2) 
1/12 (2) 

 
 

D2Q9 1/3 

16/36 (1) 
4/36 (2) 
1/36 (3) 

  

 

D3Q15 1/3 
16/72 (1) 
8/72 (2) 
1/72 (3) 

 

 

D3Q19 1/3 
12/36 (1) 
2/36 (2) 
1/36 (3) 

 

 
 

Note: Weight factors for; (1) rest particle, (2) face-connected 
neighbors, (3)   edge-connected neighbors 
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3.1 BASIC THEORY: FROM BOLTZMANN EQUATION TO LATTICE 

BOLTZMANN METHOD 

Generalized form of Boltzmann equation is given as (Chapman and Cowling 1970, 

Cercignani 1975): 

)( fff
t
f

Ω=
∂
∂

⋅+
∂
∂

⋅+
∂
∂

u
F

x
u    (3. 1) 

where f is the distribution function, u  is the velocity, F is the body force per unit mass, x 

is the vector coordinates of the fluid molecule and )( fΩ  is the collision function. 

Collision function is given in an integral form, which transforms the incoming velocities 

into outgoing velocities of the fluid particles (Succi 2000) through a collision operation. 

Due to its complex structure, integral form of the collision function will not be presented 

here. Instead, a discrete form of the simplified collision function is given in the following 

paragraphs. The distribution function, f, is a statistical function from which that the 

macroscopic properties of the fluid can be found. The complexity of Boltzmann equation 

makes it impractical to be solved directly for macroscopic flow problems. To simplify it, 

physical space is discretized into a set of uniformly spaced nodes (lattice) that represents 

the voids and the solids (Figure 3.1) and discrete set of (microscopic) velocities are 

defined for each node (Figure 3.3). A common way of accomplishing the discrete phase 

of physical space is the utilization of centers of pixels obtained from its digital image as 

seen in Figure 3.1b. Then, discrete velocity directions are defined such that each direction 

points to a neighboring node as seen in Figure 3.3a and Figure 3.3b, for two dimensional 

and three dimensional cases, respectively. The discrete form of Boltzmann equation can 

be written for each discrete (microscopic) velocity direction (ei), as follows: 
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∂
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F

x
e     (3. 2) 

where fi is the distribution function in the ith microscopic velocity direction and iΩ  is the 

collision function.  

The relation of the time derivative of fi, measured at a fixed position (i.e., using 

Eulerian variables) with the one measured while following the particle (i.e., using 

Lagrangian variables) can be defined by using the substantial derivative as follows  

(Panton 1996): 

x
e

∂
∂

⋅+
∂
∂

= i
i

ii f
t
f

Dt
Df

    (3. 3) 

Note that, left hand side (LHS) of Equation (3.3) is in Lagrangian viewpoint, 

whereas, right hand side (RHS) is in Eulerian viewpoint. Discrete phase of substantial 

derivative in Lagrangian viewpoint (i.e. as measured while on a moving particle) can be 

written in the following form after integrating over time and neglecting higher order 

terms (He and Luo 1997): 

),()1,( tFtF
Dt

DF
iii

i xex −++=    (3. 4) 

Combining equations (3.2), (3.3) and (3.4) for discrete space (lattice) reveals: 

Fiiii BtFtF −Ω+=++ ),()1,( xex    (3. 5) 

where Fi is the (discrete) particle distribution function at lattice node x, at time t, and BF  

is the body force. Note that, the third component of the LHS of Equation (3.1) is referred 
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to as BF in here for simplicity. Among the various forms of BF, the following form 

(Martys et al. 1998) was used in this study: 

 ( )pe ∇⋅−= i
s

i
F c

w
B 2     (3. 6)  

where wi is the weight factor for each direction around a node, ei are the lattice velocity 

directions, 2
sc  is a constant called lattice speed of sound (see Table 3.1) and p∇  is the 

pressure gradient. Weight factors vary in different LB methods as seen in Table 3.1. For 

example, weight factors (wi) for D2Q9 LB method are: w9 =4/9 for rest particle, wi=1/9 

( 41 ≤≤ i ) for particles streaming to the face-connected neighbors and wi=1/36 

( 85 ≤≤ i ) for particles streaming to the edge-connected neighbors. 

The collision function, iΩ , can be simplified by assuming that the distribution 

functions relax to their equilibrium state at a constant rate (also called Bhatnagar-Gross-

Krook (BGK) approximation (Bhatnagar et al. 1954)). Then the collision function takes 

the following form: 

τ

eq
ii

i
FF −

−=Ω     (3. 7) 

where eq
iF  is the equilibrium distribution function and τ is the relaxation time which is a 

function of viscosity of the fluid. Equilibrium distribution functions for different models 

were derived by He and Luo (1997). The function is given in the following form for 

D2Q9 and D3Q19 models: 
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where eq
iF  is the equilibrium distribution function, ρ  is the density, u is the macroscopic 

velocity of the node. The relaxation time relates to viscosity of fluid (ν ) as follows: 

)
2
1(2 −= τν sc      (3. 9) 

The macroscopic properties, density and velocity, of the nodes are calculated using 

the following relations: 

∑
=

=
Q

i
1i

Fρ      (3. 10) 

ρ

i

Q

ie
u

∑
== 1i

F
    (3. 11) 

where ρ  and u  are the macroscopic density and velocity of the fluid each node of 

lattice. 

3.2 STEPS OF THE LATTICE BOLTZMANN ALGORITHM  

There are three basic phases in a typical LB algorithm. Figure 3.4 summarizes the 

sequence of the algorithm implemented in this study. In the first phase, initial conditions 

of the simulation were set.   The second phase was the propagation of fluid particles to 

the neighboring nodes followed by the calculation of new density and macroscopic 

velocity of each node for the next time step. The third phase involved prescribing 

boundary conditions and calculation of new equilibrium distribution functions.  
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Figure 3.4 Flow chart of LB algorithm implemented in this study. 
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The phases two and three were repeated until the difference in average velocities of the 

domain calculated in the previous time and current time steps was less than a threshold 

value, which confirmed the onset of steady-state flow. 

3.2.1 Phase I-Initialization 

As a part of the first phase, densities and velocities of the lattice nodes were set to 

an initial value. Then, initial equilibrium distribution functions of all nodes were 

calculated by using the following equation: 

( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅+⋅+= uuueue

2
3

2
931F 2

iii
eq
i w ρ   (3. 12) 

where eq
iF = )0,(F =teq

i x is the equilibrium distribution function; ρ = )0,( =txρ and u= 

)0,( =txu  are initial density and macroscopic velocity of the node x, respectively; ei is 

the lattice velocity direction, and wi is the weight factor for the component i. The 

microscopic velocity directions and weight factors vary for different LB models, as seen 

in Table 3.1. The non-equilibrium distribution function ( iF ) was initially set to be equal 

to the equilibrium distribution function: 

)0,(F)0,(F =←= tt eq
ii xx     (3. 13) 

3.2.2 Phase II-Propagation of Fluid to the Neighboring Nodes and Calculation of 

Distribution Function, Density and Velocity at Each Node 

 

Figure 3.5a shows the orientation of the equilibrium distribution function 

components at time=t ( ),(F teq
i x ), where each component points towards a microscopic 

velocity direction, ei.  These components at each node propagate to the neighboring nodes 
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Figure 3.5 (a) Orientation of components of equilibrium distribution 
function calculated in the previous time step, (b) illustration of non-
equilibrium distribution function calculated in Step II. 
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and produce the non-equilibrium distribution function for the next time step of the 

neighboring node ( )1,(F ++ tii ex ). The propagation was performed using the following 

equation: 

[ ]),(F),(F1),(F)1,(F tttt eq
iiiii xxxex −−=++

τ
   (3. 14) 

where ),(F ti x  and )1,(F ++ tii ex   are  the non-equilibrium distribution functions in the 

ith lattice direction at node x, at time t, and at node iex +  at time t+1,  respectively; τ is 

the relaxation time which is a function of viscosity of the fluid ( 6/)12(ˆ −= τν ), and 

),(F teq
i x  is the equilibrium distribution function. Undefined components of the 

distribution function at the solid wall boundaries and at inlet and outlet were calculated 

using appropriate boundary conditions which are described in Boundary Conditions 

section.  

To increase the computational efficiency, Equation 3.14 was further simplified 

into the following form by setting the relaxation time to unity (i.e., τ=1): 

),(F)1,(F tt eq
iii xex =++     (3. 15) 

Figure 3.5b illustrates how non-equilibrium distribution function components 

migrate from neighboring nodes and accumulate at the center node. After colliding at the 

center node, these components define the density and macroscopic velocity of the node. 
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where )1,( +txρ  and )1,( +txU  are the density and the momentum of node x, at 

time=t+1. Macroscopic velocity ( )1,( +txu ) of each node was calculated using the 

following relation: 

)1,(
)1,()1,(
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=+
t
tt

x
xUxu

ρ
     (3. 18) 

3.2.3 Phase III- Boundary Conditions and Calculation of the New Equilibrium 

Distribution Functions 

In this phase of the algorithm, boundary conditions were imposed at the 

boundaries of the domain. Then, the new values of the equilibrium distribution function 

were computed for each lattice node at time step t+1 using Equation 3.12.   The phases II 

and III were repeated until the steady state flow conditions were satisfied.  

3.3 BOUNDARY CONDITIONS 

3.3.1 Boundary Conditions near Solid Nodes  

3.3.1.1 No-Slip Boundary Condition 

In particle propagation step of the algorithm, all components of non-equilibrium 

distribution function were computed at each node except at nodes neighboring to solid 

nodes (Figure 3.6a). At those nodes, certain components of the distribution function that  
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Figure 3.6 Illustration of (a) two types of no-slip boundary conditions; full bounce back and half-way bounce back, and (b) 
unknown components of the distribution function streaming from outside the boundaries 
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are expected to be migrating from the solid node were unknown. In this case, a wall 

boundary condition was used to calculate the missing components. Most commonly used 

technique for scattering of the distribution function at nodes located near the solid nodes 

is the no-slip boundary condition (Maier et al. 1996).  It is also referred to as the bounce-

back scheme, in which the distribution function components heading towards the solid 

nodes scatter directly back to the node. Two kinds of no-slip boundary conditions exist as 

illustrated in Figure 3.6a.  The first one, named as full bounce-back, assumes that the wall 

is located at the solid nodes whereas the second one, named as half-way bounce-back, 

assumes that the wall is located half-way between the pore and solid nodes. The solid and 

dashed lines in Figure 3.6a show the wall boundaries for full bounce-back and half-way 

bounce-back scheme, respectively.  It has been shown that full bounce-back provides a 

first order accuracy, whereas, half-way bounce-back provides a second order accuracy 

(Ziegler 1993). Second-order accurate half-way bounce back wall boundary condition 

was used in the current simulations to calculate the missing components of the 

distribution function at nodes neighboring to solid walls. 

3.3.1.2 Slip Boundary Condition  

Slip boundary condition is applicable only to extremely smooth surfaces where 

negligible friction is applied to the fluid (Succi 2001). A comparison of no-slip and slip 

boundary conditions is illustrated in Figures 3.7a and 3.7b, respectively. 

3.3.1.3 Extrapolation 

Extrapolation scheme was first proposed by Chen et al. (1996). It is assumed that there is 

one additional imaginary layer of sites at the wall nodes (filled squares in Figure 3.7c). At  
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Figure 3.7 Comparison of three different boundary conditions at solid nodes: (a) 
No-slip boundary condition, (b) slip boundary condition, and (c) extrapolation 
scheme. 
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each time step, before the particle propagation (step II of algorithm), the distribution 

functions emanating from the imaginary layer (layer C in Figure 3.7c) are calculated 

using a second order extrapolation, based on the value of the distribution function on the 

layer A and layer B. The following condition is enforced to calculate the components of 

the distribution function at wall nodes streaming into the fluid nodes: 

A
i

B
i

C
i FFF −= 2     (3. 19) 

where superscripts, A, B and C represents the layers shown in Figure 3.7c. For example, 

the 2nd component of the distribution function emanating from the solid node is 

calculated as follows (Figure 3.7c): 

),(),(2),( 22222 texFtxFtexF +−=−   (3. 20) 

3.3.2 Boundary Conditions at Domain Boundaries 

 In addition to the nodes near solid nodes, certain components of distribution 

function of the nodes located at the boundaries of the domain; i.e. inlet, outlet, top and 

bottom nodes are also unknown as seen in Figure 6b. These components (e.g. F1, F5, F8 at 

inlet nodes) can be calculated from the known components (e.g. F9, F2, F4, F3, F6 and F7 at 

inlet nodes) and by setting at least two constraints such as prescribing two components of 

macroscopic velocity (i.e., ux, uy).  Another set of alternative constraints can also be the 

density and one component of the macroscopic velocity (i.e., ρ, ux) at those nodes. This 

approach creates a continuous momentum at the boundaries which is transported 

throughout the domain generating the flow. For example, given the two components of 

the macroscopic velocity, the density and unknown distribution function components at 

those nodes can be calculated using the relationships given in Table 3.2. These 



 35

Table 3.2 Relations for the unknowns at the boundaries for D2Q9 model. 
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Table 3.3 Relations for the unknowns at the boundaries for D3Q19 model. 
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relationships were derived using density (Eq. 3.16) and momentum (Eq. 3.17) equations, 

and their derivations are provided in Appendix A. The unknown components of the 

distribution function given in Table 3.2 were calculated by assuming that the bounce-

back scheme is valid for the non-equilibrium part of the particle distribution function 

(Zou and He 1997).  

Since the cylindrical asphalt specimens tested in the laboratory for this study were 

confined by the membranes, only the unknown distribution functions at the inlet and the 

outlet were of interest. Therefore, relations similar to the ones given in Table 3.2 for 

D2Q9 model were derived for the three dimensional D3Q19 model only for inlet and 

outlet faces and provided in Table 3.3. It should be noted that the relations given in Table 

3.3 are derived based on the given constraints that velocity parallel to the inlet and outlet 

face are zero (i.e., ux=0 and uy=0) and density at these nodes are known.   

Use of periodic boundary conditions is another technique to eliminate unknown 

components of the distribution function of the nodes at the boundaries of the domain. In 

this case, components of the distribution function exiting from outlet nodes are treated as 

entering from the inlet nodes as illustrated in Figure 3.8. This way there is not any 

missing component of the distribution function at those boundary nodes. 

 

3.3.3 Other Techniques to Create Flow in LB Models 

3.3.3.1 Density Gradient 

Practical laboratory flow experiments employ constraints such as fixed pressure at 

inlet and outlet to create flow (e.g. constant head permeability test). This kind of flow 

experiments can easily be simulated by using LB model. A very important characteristic  
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Figure 3.8 Illustration of periodic boundary conditions where 
components exiting from one end of the boundary are treated as 
entering from the other end. 
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of LB models is that the pressure is proportional to the density which is defined by the 

equation of state (Maier et al. 1997, Zou and He 1997): 

ρ2
scP =     (3. 21) 

where P and ρ  are pressure and density, respectively, and sc  is a constant called lattice 

speed of sound.  Therefore, the flow can be triggered in a LB model by setting certain 

densities at the inlet and outlet nodes to produce a density gradient which is consistent 

with the desired pressure gradient.  This method creates flow from high density (pressure) 

inlet nodes towards low density (pressure) outlet nodes. 

3.3.3.2 Body Force 

A different approach to trigger the flow is the application of a constant force at 

each node along with the periodic boundary conditions. This force, referred to as body 

force, is added to the main propagation equation as follows: 

[ ] i
eq
iiiii gtttt −−−=++ ),(F),(F1),(F)1,(F xxxex

τ
  (3. 22) 

where gi is the body force term for ith component.  Among the various forms of body 

force term, the following form given by Martys and Hagedorn (2002) was utilized in this 

study. 

( )pe ∇⋅−= iii wg 3     (3. 23) 

where wi  and ei are the weight factor and microscopic velocity, respectively, and p∇  is 

the pressure gradient.   
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4 CHAPTER 4 DEVELOPMENT AND VALIDATION OF THE LB 

ALGORITHM 

4.1 ALGORITHM DEVELOPMENT 

LB algorithms were implemented using Matlab programming language and named 

as LB-D2Q9 and LB-D3Q19, for 2D and 3D models, respectively. An innovative way of 

programming was developed in Matlab which utilized only matrix manipulations without 

using loops, taking advantage of the fact that Matlab is very powerful in matrix 

manipulations. Traditional LB programs generally use a series of “for loops” which visit 

every node in the lattice and perform the lattice Boltzmann operations such as particle 

propagation, density and velocity calculation, equilibrium distribution function 

calculation, and applying boundary conditions. A different approach was used in this 

study to fully utilize the Matlab’s build-in functions, most of which are optimized for the 

best performance (least expensive in terms of computational time and least computer 

memory usage). The algorithms were implemented in such a way that geometry of the 

domain of interest can directly be input to the algorithm by reading the digital image of 

the domain for 2D analysis or reading the image stacks of the domain for 3D analysis. 

This allows the three dimensional D3Q19 LB algorithm to more easily handle X-ray 

Computed Tomography image stacks of a geomaterial in 3D flow simulations. The 

algorithms LB-D2Q9 and LB-D3Q19 are given in Appendix B and their sequence are as 

follows: 

I. The image of the domain is read and a coordinate matrix, X, of size Nx2 in LB-

D2Q9 and Nx3 in LB-D3Q19 is created where N is the total number of lattice points 

corresponding to pores. First and second columns represent the x, y coordinates in 
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both LB-D2Q9 and LB-D3Q19 algorithms and third column in LB-D3Q19 represent 

the z coordinate of each pore point. 

II. The row indices of the conjugate nodes for each microscopic velocity direction are 

computed using coordinate matrix X. Conjugate of a node herein corresponds to a 

neighboring node that is one microscopic velocity direction (ei) away from the 

node. 

III. A velocity matrix, V, of size Nx2 in LB-D2Q9 and Nx3 in LB-D3Q19 is created. 

For example for 3D geometry; first, second and third columns of any given row 

correspond to ux, uy and uz, respectively, of the pore that has the coordinates given 

in the same row of coordinate matrix, X.  

IV. A density matrix, p, of size Nx1 is created where each row has the density value of 

pore point whose coordinates is given in the same row in the coordinate matrix, X. 

V. Initial velocity and density values are assigned based on the desired initial boundary 

conditions. 

VI. A matrix, Feq, defining the equilibrium distribution function of each node is created. 

It has the size of Nx9 in LB-D2Q9 and Nx19 in LB-D3Q19 algorithm. Each row in 

this matrix has the equilibrium distribution function values of the point whose 

coordinates given in the same row of coordinate matrix. Each column in a given 

row represents the equilibrium distribution function value of a microscopic velocity 

direction (Figure 4.1a). Then initial equilibrium distribution function values are 

computed using Equation 3.12.  



 42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Equilibrium and nonequilibrium distribution function matrices 
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VII. A matrix, F, defining the non-equilibrium distribution function of each node is 

created as the Feq. Initial values of the non-equilibrium distribution function are 

assumed to be the same of Feq. 

VIII. Particle propagation step is carried out by replacing the cells of matrix F with the 

new values computed for the next time step. For each column in matrix F, which 

represents one microscopic velocity direction (ei), the non-equilibrium distribution 

function value in each row is replaced by its new value computed using Equation 

3.14. This is accomplished by using the corresponding row indices (computed in 

step II) of a node and its conjugate node for a given microscopic velocity direction 

(ei). 

IX. New density and velocity matrices are calculated using Equations 3.16 and 3.17. 

X. Boundary conditions are imposed by replacing density or velocity values wherever 

necessary, and computing unknown components of the non-equilibrium distribution 

function at boundaries. 

XI. New equilibrium distribution function values are computed using Equation 3.12. 

Steps VIII, IX, X and XI are repeated using a “while loop” until the steady state 

flow is achieved. 

4.2 VALIDATION OF TWO DIMENSIONAL D2Q9 MODEL 

4.2.1 Flow between parallel plates 

First and simplest level of verification of a fluid flow model is to compare it with 

the analytical solution of velocity profile of a fluid flowing between infinitely long 

parallel plates. The analytical solution of a parabolic velocity profile of flow between 

parallel plates is given as: 
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u x
x −

∇
=

µ
    (4. 1) 

where xu  is the velocity in the direction of pressure gradient , xP∇ = pressure gradient, 

µ =dynamic viscosity,  B is the width of channel, and y is the distance from the bottom 

plate as shown in Figure 4.2a. To verify the accuracy of the D2Q9 LB model and its 

sensitivity to the number of lattice sites (i.e. spatial resolution), flow between two parallel 

plates separated with a distance of 5 mm was modeled using four different number of 

lattice points (Ny): 5, 10, 20 and 40 pixels. A pressure gradient of 6.4x10-7 )sec/( 22mmg  

was applied in the x-direction to create a flow field with a corresponding Reynolds 

number of 0.01. A body force together with the periodic boundary conditions in x 

direction was used to apply pressure gradient. Half-way bounce back boundary condition 

is used at the walls. The velocity profiles computed from LB simulations at different 

number of lattice sites (given as Ny in figure) together with the analytical solution 

(Equation 4.1) are presented in Figure 4.2a. An excellent agreement between the 

analytical solution and LB simulations is clearly visible in all lattice resolutions. The LB 

algorithm successfully modeled the flow even at very low resolutions (e.g. Ny =5). An 

error analysis was performed to evaluate the magnitude of the error and the order of 

accuracy of the current LB model. The error, measuring the difference between analytical 

and LB model was computed in two ways as follows: 
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Figure 4.2 (a) Velocity profiles computed by LB simulation using different 
number of lattice sites, (b) error analysis: Square represents percent error, and 
circles represent the RMS of error. 
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where RMS and %ε  are the root mean square error and the percent error, respectively, 

yN  is the number of lattice sites, A
xu  and LB

xu  are velocities calculated from analytical 

equation and LB model, respectively. The bracket  represents the mean value.  Figure 

4.2b shows the RMS of error (circles, right axis) and percent difference (squares, left 

axis) between analytical and LB model results in four different resolutions. As seen in 

Figure 4.2b, the error ranges from 0.03 % (RMS of 0.0042 x10-7 mm/s) to 2 % (RMS of 

0.2668x10-7 mm/s).Furthermore, the error decreases four times as the number of lattice 

sites increased twice, illustrating the second order accuracy of the LB-D2Q9 algorithm. 

4.2.2 Wannier Flow  

Accuracy of the D2Q9 model was also verified by comparing with the analytical 

solution of Stokes flow around a circular cylinder in the vicinity of a moving plate. An 

analytical solution for this flow case was derived by Wannier (1950). A cylinder of 20 

mm diameter was placed 35 mm from the moving plate as seen Figure 4.3a. Streamlines 

and velocity vectors were calculated from the analytical equation given by Wannier 

(1950) for a window of 70 mm by 70 mm around the cylinder. Analytical solution for the 

streamlines has given in Appendix C. Herein, a streamline is defined as a line that is 

tangent to the velocity vectors everywhere in space.  
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Figure 4.3 (a) Streamlines computed by the LB simulation and 
analytical solution, (b) error analysis; square points represent RMS 
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Three separate simulations were carried out with a varying number of lattice nodes: 

70x70 (∆x=1), 140x140 (∆x=0.5), and 280x280 (∆x=0.25), to demonstrate the effect of 

number of lattice points on the accuracy of the LB model. A velocity of ux=10-7 mm/s was 

prescribed at the bottom boundary. In all other boundaries, analytical solution of the 

velocity was prescribed. Missing components at the boundaries were calculated using the 

relations given in Table 3.2.  

Figure 4.3a compares the streamlines computed from the LB simulations using 

280x280 lattice resolution with the streamlines computed from the Wannier (1950) 

analytical equation. The figure clearly indicates that an excellent agreement exists 

between the analytical solution and the LB-based results, which confirms the validity of 

the D2Q9 model for predicting a well-known flow scheme. To investigate the order of 

accuracy of the LB model, an error analysis was performed for the three lattice 

resolutions.  The error, measuring the difference between analytical and a LB model 

solution was computed as follows: 
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where RMS is the root mean square error, Nx and Ny are the horizontal and vertical 

number of lattice sites, respectively, ux and uy are the velocities in horizontal and vertical 

directions, respectively. Figure 4.3b shows the results of error analysis where error 
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decreases four times as the number of lattice sites increased twice, illustrating the second 

order accuracy of the present methodology.  

4.3 VALIDATION OF THE D3Q19 LB MODEL  

4.3.1 Poiseuille Flow  

 Assuming laminar flow of water, the velocity of flow through a single circular 

tube can be calculated using Poiseuille’s Law.  The analytical solution of the velocity 

distribution in a circular tube with diameter D is given by the following equation: 

)
416

( 
22

z
rDPu z −

∇
=

µ
    (4. 6) 

where zu is the velocity in the vertical direction (z-direction), zP∇ is the pressure 

gradient, µ is the dynamic viscosity,  D is the diameter of the tube, and r is the distance 

from the centerline of the tube in radial direction. Flow through a 10 mm diameter 

circular tube was simulated using the D3Q19 LB model. A pressure gradient of 10-6 

g/mm2-sec2 was applied to the system to trigger the flow using the technique described in 

section 3.3.3.1. Velocity values at the inlet and outlet were computed using relations 

given in Table 3.3. Simulations were carried out at three different resolutions: 10, 20, and 

40 lattice points along the diameter (ND). Figure 4.4a shows the velocity profiles 

computed using Equation 4.6 and the velocities based on the LB simulations. Figure 4.4a 

clearly indicates that an excellent agreement exists between the results based on 

Poiseuille’s Law and the D3Q19 model.  In addition to the RMS of error, a second 

parameter was introduced for the error analysis: 
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Figure 4.4 Flow in a circular tube: (a) Velocity profiles 
computed with different resolutions (b) error analysis. 
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where %ε  is the percent error, and A
zu  and LB

zu  are the velocities in the z-direction 

computed from Equation 4.6 and from LB simulations, respectively. As seen in Figure 

4.4b, the RMS and %ε are quite low and range from 5 x 10-6 to 7.5 x 10-5 and 0.2 to 1%, 

respectively.  Both parameters decrease with increasing resolution (number of lattice 

nodes).  These comparisons confirm the validity of the three-dimensional LB technique 

(D3Q19 model) for predicting tubular flow. 

4.4 LABORATORY HYDRAULIC CONDUCTIVITY TESTS  

A series of laboratory hydraulic conductivity tests were conducted on compacted 

geomaterials to further confirm the validity of the D3Q19 lattice Boltzmann model in 

simulating the three-dimensional flow.  Aggregates with average equivalent diameters of 

9.5 mm, 4.75 mm and 2.36 mm were selected as the geomaterials and named as AG1, 

AG2 and AG3, respectively.  The aggregates were placed in specially fabricated molds of 

100 mm in diameter and 130 mm in height and subjected to hydraulic conductivity tests 

using the constant head method in accordance with ASTM D 2434. 

Before the hydraulic conductivity tests, the three-dimensional images of the 

aggregates placed in the molds were captured using the X-ray Computed Tomography 

(CT). The X-ray CT is a powerful non-destructive imaging technique to analyze the 

interior structure of materials, using their X-ray attenuation characteristics. Chapter 5  
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Figure 4.5 (a) 3D reconstructed X-ray CT image of AG1, (b) 
streamlines of a vertical section computed by D3Q19 LB model.  
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provides more detailed description of the X-ray CT technique. Figure 4.5a presents the 

three-dimensional structure of AG1 generated using X-Ray CT technique.  Grayscale 

images of the aggregates were converted to binary images by morphological 

thresholding, where black areas (pixel values of 0) represent solid and white areas (pixel 

values of 1) represent voids.  In image processing, selecting the appropriate threshold 

value to create a binary image in complex geometries is generally cumbersome; however 

since the X-ray CT technique is based on the density differences within the material, the 

discrimination of the pores from the solid phase was not difficult (i.e., air has a very low 

density as opposed to aggregates). After obtaining the binary images, lattice nodes were 

generated at the centers of each pixel. A pressure gradient in the range of 5.34 x 10-3 to 

3.6 x 10-5 g/mm2-sec2 was applied to the system to initiate the flow during the LB 

simulations. The velocities at the inlet and outlet nodes were calculated using the 

Equations 10 and 11, respectively. 

Streamlines of a random section within AG1 computed by LB method is presented 

in Figure 4.5b, where the flow path of the fluid particles from inlet to outlet is clearly 

visible. After the simulations, hydraulic conductivities of the specimens were calculated 

using Darcy’s law: 

Ai
qk
h

=      (4. 8) 

where k is the hydraulic conductivity,  q is the average flow rate computed from LB 

simulations, hi  is the applied hydraulic gradient ( hi γ/P∇= ), and A is the specimen 

cross sectional area perpendicular to the direction of pressure gradient. The hydraulic 

conductivities of the aggregates based on LB simulations and laboratory measurements is 
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plotted in Figure 4.6. A relatively good agreement was observed between the two sets of 

data.  The laboratory-based hydraulic conductivities are 1.4 to 1.9 times lower than those 

predicted by the lattice Boltzmann technique. The difference can be attributed to the 

difficulty of achieving a complete saturation due to presence of air bubbles which may 

have blocked the flow pathways within the pores. Another reason could have been due to 

the difficulty experienced while maintaining very low hydraulic gradients during the 

laboratory tests since the aggregates had very high hydraulic conductivity values. This 

might have affected the assumption that the flow regime was laminar during the LB 

simulations. 
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Figure 4.6 The hydraulic conductivities of the aggregates based 
on LB simulations and laboratory measurements 
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5 CHAPTER 5 IMAGE ACQUISITION AND ANALYSIS  

5.1 X-RAY COMPUTED TOMOGRAPHY IMAGING 

X-ray computed tomography (CT) is a completely nondestructive technique for 

visualizing features in the interior of opaque solid objects to obtain digital information on 

their 3-D geometry and properties. It is also known as computerized axial tomography, 

computed assisted tomography, or CAT scanning. An illustration of a typical X-ray CT 

system is given in Figure 5.1. The system is composed of an X-ray source, a collimator 

(window), and a detector. The system specifications of the X-ray CT system used in this 

study is provided in Table 5.1. In principle, planar X-rays are directed towards the 

specimen, and the specimen absorbs some portion of the X-rays. Unabsorbed portion is 

detected by an array of detector cells in the detector. The ratio of unabsorbed X-rays to 

the X-rays coming from the source gives a CT number (Figure 5.1b). As the specimen is 

rotated, CT numbers are collected from various different directions. After a full 360-

degree rotation, a set of CT numbers collected for all directions generates an image slice. 

Then, the specimen is shifted vertically by a certain amount and entire process is repeated 

to obtain additional slices. The amount of vertical shift was determined by the thickness 

of the detector aperture, td; i.e. the specimen is shifted at an interval of td so the image of 

the entire specimen can be captured. As a result, the total number of image slices for a 

specimen is the height of the specimen divided by td. A three dimensional image of the 

specimen can be generated by stacking these image slices (Figure 5.2). The dimensions 

of the images are directly related to the number of detector cells in the detector. For 

example, a detector with 512 detector cells (also called detector channels) 
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Figure 5.1 Illustration of (a) a typical X-Ray CT system, and (b) acquiring CT number. 
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Table 5.1 The Specifications of the X-Ray CT System used in this study 

X-RAY SOURCE   420 keV continuous source 

X-RAY DETECTOR   512 channels linear array detector   

SLICE THICKNESS  0.1 mm – 5mm 

IMAGE SIZE   256 x 256, 512 x 512, or 1024 x 
1024 pixels  

RESOLUTION   50 µm for small specimens 

200 µm for large specimens 
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Figure 5.2 Illustration of generation of 3D structure from X-Ray CT 
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produces an image slice of 512 by 512 pixels. Larger images can be generated from the 

X-ray CT equipment; however, those images are generated by interpolation of the 

original 512 by 512 data and do not represent the exact image resolution.  

The spatial calibration, i.e., finding the resolution of the X-ray CT images is 

relatively straightforward. The number of pixels is counted for a known distance (e.g., the 

diameter of the specimen in Figure 5.3) and dimensions of each pixel (i.e. the resolution) 

were determined by ratio of the known distance in units of millimeters to the number of 

pixels counted from the image.  

The pixel intensities of an X-ray CT image are directly related to the X-ray 

absorption characteristics of the material located at each pixel. This usually depends on 

the density and/or atomic number of the material. In principle, dense regions in the 

specimen are represented by bright pixels in the image. The 8-bit grayscale images have a 

range of pixel intensities from 0 (pure black) to 255 (pure white). A sample image slice 

of a concrete specimen is shown in Figure 5.3 to present this phenomenon, where high-

density aggregates have brighter color than the cement mortar. The air voids in the image 

are shown in pure black (pixel intensity of 0), since they have much lower densities 

compared to the solid regions (asphalt mastic). 

The magnitude of X-rays sent to the specimen should be carefully selected during 

scanning. If too much X-rays are sent to a low density material, CT number shown in 

Figure 5.1b will be very high, i.e., most of the X-rays will pass through the material. This 

may lead to poor contrast within different regions in a test specimen. Therefore, before 

scanning the entire specimen, preliminary scans were conducted at different X-ray levels 

until the best contrast was achieved.  
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Figure 5.3 Calibration of an X-ray CT image 
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5.2 IMAGE ANALYSIS ALGORITHMS 

The geometrical properties of the specimens (i.e., porosity, pore connectivity, 

specific surface area and tortuosity) were determined using different image analysis 

algorithms developed in Matlab. The 3D binary (black and white) images of the 

specimens that are necessary for those algorithms were processed using morphological 

thresholding technique. The developed algorithm (IMAGETHRESHOLD) is given in 

Appendix B. 

5.2.1 Porosity Algorithm (POROSITYFIND) 

This algorithm calculates the porosity of each specimen. After obtaining the binary 

images of the grayscale X-ray CT images, the number of white pixels was counted which 

gives the pore volume in voxels. Then this number was converted to the world units as 

follows; 

zyxVV pp ∆∆∆= ˆ       (5. 1) 

where pV  and pV̂  are pore volume in world units (mm3) and lattice units (voxels), 

respectively, and x∆ , y∆  and z∆  are the resolutions (in mm/pixel) in x, y and z 

directions respectively. It should be noted that x∆  and y∆  usually have the same value 

since the X-ray CT images have the same number of pixels in both directions (usually 

512 by 512). Then the porosity was calculated by dividing pV  by the total volume of the 

specimen. 
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5.2.2 Pore Connectivity Algorithm (PORECON) 

The algorithm PORECON groups the interconnected pores. Algorithm first labels 

the interconnected white pixels by using a build-in connected components function which 

is embedded in Image Processing Toolbox of Matlab. Connected components function 

basically groups the connected pixels based on a neighborhood criteria. Neighborhood 

criteria can be 4 or 8 in 2D and can be 6, 18 or 26 in 3D. For example, a neighborhood 

criterion of 4 (also called four-connected neighborhood) suggests that only four 

neighboring pixels which are above, below, right and left of a pixel should be considered 

connected. An example of grouping pixels using a four-connected neighborhood criterion 

is illustrated in Figure 5.4. In the 3D asphalt images captured in this study, 18 connected 

neighborhood criterion was used during labeling. After the labeling was complete, the 

labeled groups that are not connected to both ends of specimen (top and bottom) were 

eliminated. This produced a pore channel that has a connection to both ends of the 

specimen. 

5.2.3 Specific Surface Area Algorithm (SSA) 

Specific surface area is another pore geometry characteristic which is defined as the 

ratio of the surface area of the pores to the total volume of the specimen (Walsh and 

Brace, 1984) and defined as follows:  

V
A

S s
a =      (5. 2) 

where Sa is the specific surface area , As is the total surface area of the pores and V is the 

total volume of the specimen. The surface area of the pores of a specimen was calculated  
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Figure 5.4 Labeling of white pixels based on the four-connected neighborhood 
criterion 
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(a)

 

(b)

 

Figure 5.5 (a) Original image of specimen 25C75 and (b) same image with 
perimeters of pores are shown 
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by first calculating the perimeter of pores in each image slice. A build-in function of 

Matlab, “bwperim”, was utilized to obtain the perimeter. An illustration of perimeter 

pixels is given in Figure 5.5. After calculating the total perimeter of the pores in each 

slice ( iP̂ ) in terms of pixels, surface area ( iA ) was determined as follows: 

 

)()ˆ( zxPA ii ∆∆=       (5. 3) 

where x∆  and z∆  are horizontal and vertical resolutions, respectively. Cumulative 

summation of  iA  over all slices of the specimen yielded the total surface area of the 

pores: 

∑
=

=
N

i
is AA

1
      (5. 4) 

where As and N are the total surface area of the pores and the number of image slices, 

respectively. 

5.2.4 Tortuosity Algorithm (TORT3D) 

Tortuosity is defined as the ratio of the longest path traveled by the fluid particles 

(Le) to the shortest distance between two ends of a specimen (L), i.e.  

L
L

T e=       (5. 5) 

where T is the tortuosity and Le and L are shown in Figure 5.6a. Although Figure 5.6a 

illustrates the tortuosity in a very simplistic manner, it is usually very difficult to  
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Figure 5.6 (a) Illustration of the longest flow path and shortest distance for tortuosity 
calculation, (b) various flow paths estimated by the TORT3D algorithm in the pore 
structure of an asphalt specimen.  
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calculate the tortuosity of pore geometry without conducting a tracer test (Walsh and 

Brace, 1984). In a 3D pore space, there are various possible paths that fluid can travel. 

These paths were estimated as follows: After obtaining the interconnected pore structure 

using PORECON, isolated pore cross sections were grouped in each image slice and 

centroid of each group was connected to the centroid of the closest pore cross sectional 

area in the next image slice. For each line connecting two pore cross sections, a tortuosity 

was calculated by dividing the length of the connecting line to the vertical distance 

between two slices. Lines illustrating the various possible flow paths estimated by the 

TORT3D algorithm in the pore structure of an asphalt specimen are provided in Figure 

5.6b. After obtaining a set of tortuosity values for each consecutive image slice, an 

average tortuosity was calculated for the whole specimen.  
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6 CHAPTER 6 PORE STRUCTURE CHARACTERIZATION AND 

LABORATORY HYDRAULIC CONDUCTIVITY OF ASPHALT 

PAVEMENTS  

6.1 MATERIAL PROPERTIES 

6.1.1 Laboratory Compacted Specimens 

A set of laboratory specimens of different asphalt mix designs was prepared to 

investigate the moisture transport characteristics of different asphalt pavements. 

Specimens were fabricated to study a number of mixture variables that are likely to affect 

the pore structure. The selected variables included NMAS (Nominal Maximum 

Aggregate Size), compaction energy (number of gyrations in the gyratory compactor) and 

gradation shape. Of the 36 specimens prepared for this study, 24 were Superpave 

mixtures and 12 were SMA (Stone Matrix Asphalt) mixtures. For the Superpave 

mixtures, two different gradations from NMASs of 9.5 mm, 12.5 mm, 19 mm and 25 mm 

were selected. SMA gradations were selected from three different NMASs: 9.5 mm, 12.5 

mm and 19 mm. Figures 6.1 and 6.2 shows the aggregate gradations used in this study. 

Mix designs of Superpave mixtures were performed according to the AASHTO PP28-03 

“Standard Practice for Superpave Volumetric design for Hot-Mix Asphalt (HMA)”. 

Gyration level for mix design was selected as 100, as it covers a wide range of traffic 

categories in the AASHTO PP28-03. Table 6.1 and 6.2 shows mix design properties of 

the Superpave and SMA mixtures, respectively. 
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Figure 6.1 Gradations of (a) NMAS 9.5 mm and (b) NMAS 12.5. MDL= 
Maximum Density Line 
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Figure 6.2 Gradations of (a) NMAS 19 mm and (b) NMAS 25. MDL= 
Maximum Density Line 
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Table 6.1 Properties of the dense asphalt specimens 

S
pe

ci
m

en
 

N
o  

S
pe

ci
m

en
 

ID
  

N
M

A
S

 
(m

m
) 

N
um

be
r o

f 
G

yr
at

io
ns

 

 
 
 
 

Gradation 

 
Opt. 

Binder 
Content 

(%) 

 
Max 

Specific
Gravity 
of Mix 

 
(Gmax) 

 
(g/cm3) 

 
Bulk 

Specific 
Gravity 
of Mix 

 
(Gmm) 

 
(g/cm3) 

 
Porosity  

 
 
 
 

(CoreLok) 
  

(%) 
1 9.5F25 Fine 4.85 2.72 2.47 9.19% 

2 9.5C25 
25 

Coarse 4.76 2.72 2.42 10.88% 

3 9.5F50 Fine 4.85 2.72 2.50 8.28% 

4 9.5C50 
50 

Coarse 4.76 2.72 2.53 7.05% 

5 9.5F75 Fine 4.85 2.72 2.57 5.71% 

6 9.5C75 

9.5 

75 
Coarse 4.76 2.72 2.58 5.32% 

7 12.5F25 Fine 4.75 2.73 2.58 5.41% 

8 12.5C25 
25 

Coarse 5.32 2.71 2.55 5.75% 

9 12.5F50 Fine 4.75 2.73 2.61 4.2% 

10 12.5C50 
50 

Coarse 5.32 2.71 2.57 5.12% 

11 12.5F75 Fine 4.75 2.73 2.64 2.77% 

12 12.5C75 

12.5 

75 
Coarse 5.32 2.71 2.61 3.61% 

13 19F25 Fine 4.51 2.74 2.52 8.11% 

14 19C25 
25 

Coarse 4.85 2.74 2.43 11.35% 

15 19F50 Fine 4.51 2.74 2.55 6.79% 

16 19C50 
50 

Coarse 4.85 2.74 2.51 8.34% 

17 19F75 Fine 4.51 2.74 2.69 1.7% 

18 19C75 

19 

75 
Coarse 4.85 2.74 2.60 5.0% 

19 25F25 Fine 4 2.76 2.50 9.45% 

20 25C25 
25 

Coarse 4.63 2.75 2.43 11.89% 

21 25F50 Fine 4 2.76 2.57 6.81% 

22 25C50 
50 

Coarse 4.63 2.75 2.50 9.35% 

23 25F75 Fine 4 2.76 2.60 5.74% 

24 25C75 

25 

75 
Coarse 4.63 2.75 2.48 9.91% 

Note: NMAS=Nominal Maximum Aggregate Size. 
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Table 6.2 Properties of the SMA specimens 
 

Sample 
No 

  

 
Sample 

ID 
  N

M
A

S
 

(m
m

) 

N
um

be
r o

f 
G

yr
at

io
ns

  
Binder 

Content 
(%) 

Porosity 
(%) 

1 9.5SMA-A1 5.5 14.7 

2 9.5SMA-A2 
50 

5.5 16.3 

3 9.5SMA-B1 5.5 21.6 

4 9.5SMA-B2 

9.5 

25 
5.5 16.8 

5 12.5SMA-A1 5.5 16.2 

6 12.5SMA-A2 
75 

5.5 22.4 

7 12.5SMA-B1 5.5 12.5 

8 12.5SMA-B2 

12.5 

50 
5.5 18.5 

9 19SMA-A1 5.5 14.7 

10 19SMA-A2 
25 

5.5 16.6 

11 19SMA-B1 5.5 14.0 

12 19SMA-B2 

19 

75 
5.5 18.1 

Note: NMAS=Nominal Maximum Aggregate Size. 
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6.1.2 Field Cores 

Field cores were obtained from the current testing sections of the Accelerated 

Loading Facility (ALF) at the Turner Fairbank Highway Research Center (TFHRC) of 

Federal Highway Administration (FHWA). There are currently 12 test sections at the 

ALF site and 150 mm diameter specimens were collected from the sections 1 to 7. Mix 

design of each lane is provided in Table 6.3 and aggregate gradations used in the lanes 

are given in Figure 6.3.  

 

6.2 ANALYSIS OF PORE STRUCTURE OF ASPHALT SPECIMENS 

6.2.1 Porosity Variations within Each Specimen 

Inhomogeneities in the geometry of an asphalt specimen not only affect its 

hydraulic conductivity, but affect its long term field performance as well. Segregation of 

both aggregates and air voids might lead to poor performance. In this study, the air void 

segregation was analyzed since the segregation of aggregates in asphalt pavements was 

beyond the scope of this project. In order to investigate the air void segregation during 

laboratory compaction by gyratory compactor and during field compaction by roller 

compactor, air void distribution of the specimens were analyzed using their X-Ray CT 

images. The percentage of air voids in the specimens is equal to using porosity (n), which 

is defined as: 
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Table 6.3 Mix design properties of ALF lanes 

 
Lane(s) 

 
Binder 

Designation 

 
Binder

PG   

 
Gradation(1)

 
Binder 

Content  
(%) 

 
Design

Air 
Voids 
(%) 

1 AZ-CR 60-28 B 7.1 5.5 

2  PG 70-22 73-23 A 5.3 5 

3  Air Blown 75-28 A 5.3 4.1 

4  SBS LG 71-29 A 5.3 4.2 

5 TX-TBCR 77-28 A 5.3 4.6 

6  Terpolymer 76-30 A 5.3 4.9 

7 Polyester Fiber 73-23 A 5.3 4.8 

Note : (1) Gradations A and B are provided in Figure 6.3. PG=performance grade. 

 

.



 76

0.075 0.6  1.18 2.36 4.75 9.5  12.5 19   25   
0

10

20

30

40

50

60

70

80

90

100

Sieve Size (mm)

P
er

ce
nt

 P
as

si
ng

 (%
)

FHWA 0.45 Power Chart
19 mm Nominal Maximum Size

Gradation A 

Gradation A
MDL
Restricted Zone
Control Points

 

0.075 0.6  1.18 2.36 4.75 9.5  12.5 19   
0

10

20

30

40

50

60

70

80

90

100

Sieve Size (mm)

P
er

ce
nt

 P
as

si
ng

 (%
)

FHWA 0.45 Power Chart
12.5 mm Nominal Maximum Size

Gradation B 

Gradation B
MDL
Restricted Zone
Control Points

 

Figure 6.3 Two gradations used in the current testing sections in the 
Accelerated Loading Facility (ALF) of FHWA
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V
V

n p=       (6. 1) 

where pV  and V  are the volume of the air voids (pores) and total volume of the 

specimen, respectively.  

First, change in porosity with depth was analyzed. As mentioned in Chapter-5, X-

ray CT provides (cross sectional) slice images of the specimens. Figure 6.4 illustrates a 

sample image stack constructed by stacking slice images of the same specimen. Each 

slice has a thickness of 1 mm which is the aperture of the linear detector of the X-Ray CT 

equipment. Before computing porosity, grayscale images were converted to binary (black 

and white) images by morphological thresholding, where black areas (pixel values of 0) 

represent solid and white areas (pixel values of 1) represent air voids. Porosity of each 

slice was computed using a simple image analysis algorithm written in Matlab 

(POROSITYFIND in Appendix B) which computes the fraction of the white pixels in the 

binary image. Figures 6.5 through 6.7 present the porosity versus depth relationship of 

the all specimens. It can clearly be observed from the figures that the porosity values are 

higher at the two ends of the specimen. This indicates that the air voids are segregated at 

the two ends, which is consistent with the findings of previous studies (Masad et al. 

2000). The porosities at the surface and the bottom of the specimens ranged from 20 to 

30 %, whereas this value ranged from 1 to 10% in the mid-depths for the coarse gyratory 

specimens (Figure 6.5). In fine graded specimens, the porosities in the mid-zone were  
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Figure 6.4 Image stacks of 25C75 obtained from X-Ray CT. 
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Figure 6.5 Porosity versus depth relationships of coarse Superpave mixtures 
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Figure 6.6 Porosity versus depth relationships of fine Superpave mixtures 
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Figure 6.7 Porosity versus depth relationships of SMA specimens and field core
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smaller where it ranged from 0.5 to 7% (Figure 6.6), whereas the surface and bottom 

porosities were similar in magnitude to the coarse graded specimens. The porosities of 

the SMA specimens were much higher than the fine and course graded gyratory 

specimens (Figure 6.7). Minimum porosities in the mid-zone ranged from 8 to 20%, and 

the porosities at the surface and bottom of the specimens ranged from 40 to 60%. The 

porosity variation in field cores was similar to the porosity variation of coarse graded 

gyratory specimens. The mid-zone porosities were ranged between 4 and 8%, and surface 

and bottom porosities ranged from 12 to 25%. The Figures 6.5 and 6.6 also indicates the 

effect of compaction energy on the porosity distribution of the specimens. The specimens 

compacted at larger number of gyrations (higher compaction effort) generally exhibited 

smaller porosities along the depth than the ones compacted at lower number of gyrations. 

This phenomenon is visible in depths between 10 and 60 mm.  

In order to investigate the porosity variation in horizontal direction, porosities in 

radial variation were determined. The image stack of each specimen was divided into 

concentric cylinders with varying diameters, as illustrated in Figure 6.8. The diameters of 

the cylinders were 150, 135, 120, 105, 90, 75, 60, 45 and 30 mm. The total porosity of 

each cylindrical section was calculated using an image processing algorithm developed in 

Matlab (RADIALPORE in Appendix B). The algorithm starts with the largest diameter 

(150 mm) which covers the whole specimen and calculates its porosity. Then, the 

algorithm goes to the next smaller diameter and clears all the pores outside the cylinder 

of that given diameter and calculates the porosity of the inner part of cylindrical 

boundary. This procedure is repeated for ten different selected diameters. Porosities 

calculated for each diameter were plotted in Figures 6.9 through 6.11 for all laboratory
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(a) 
(b) 

 

Figure 6.8 (a) Plan view and (b) perspective view of 25C75 that shows the cylindrical sections for radial porosity analysis 
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Figure 6.9 Porosity change in radial direction for coarse laboratory mixtures 
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Figure 6.10 Porosity change in radial direction for fine laboratory mixtures 
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Figure 6.11 Porosity change in radial direction for SMA specimens and field core
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prepared asphalt specimens and for the field cores. The figures indicate that most of the 

specimens did not exhibit significant change in porosity in the radial direction. The 

exceptions to this were the specimens 25C25, 25C50, 25C75, 12.5F25, 12.5F50, 12.5F75 

and 25F25, for which an increase in porosity was observed with increasing diameter. This 

means that, in those specimens, most of the air voids were accumulated at the outer 

edges. Unlike the variation in porosity with depth (higher values at the two ends of the 

specimens) a consistent trend is not evident in the radial direction. Increase in porosity in 

radial direction for some of the specimens can be attributed to the inhomogeneous mixing 

in the laboratory before placing into the compaction mold. The relatively small variation 

of porosity in radial direction indicates that, unlike the vertical direction (z-direction, in 

Figure 6.4), the specimens may be considered homogeneous throughout the horizontal 

direction (x- and y- directions).  

6.2.2 Effect of Compaction Energy and Gradation Shape on the Total Porosity of 

the Specimens 

The total porosities of the specimens were calculated using Eq. 6.1. Figure 6.12, 

which shows the total porosity of each specimen compacted at different number of 

gyrations (compaction levels) clearly indicates that the compaction level affects the total 

porosity of the specimens. In most of the specimens, the porosity decreases as the number 

of gyrations increased, except in the 25C75 (75 gyrations), which has slightly higher 

porosity than the 25C50 (50 gyrations). Two possible reasons might have led to higher 

porosity in 25C75. First, the large aggregates (with sizes greater than 25mm) in 25C75 

might have been stacked on the top of each other preventing efficient compaction.  
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Figure 6.12 Total porosities of laboratory mixtures grouped based on the 
compaction efforts and NMAS 
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Figure 6.13 Illustration of cracks formed in 25C75 during compaction in 
gyratory compactor. 
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Second, the stacked large aggregates might have cracked due to the high forces exerted 

by the gyratory compactor. Figure 6.13 shows the cracks observed in 25C75 as an evident 

of the compaction force effect. It is believed that a combination of both factors affected 

the porosity change in 25C75.  

Figure 6.12 also indicates the differences in the total porosities between the coarse 

graded (e.g., 25C) and fine graded specimens (e.g., 25F). Comparing the ones that has 

same NMAS and gyration level (e.g., 25C75 versus 25F75), larger porosities were 

observed for coarse specimens as compared to the fine specimens. 

6.3 METHODS OF LABORATORY HYDRAULIC CONDUCTIVITY TESTS 

A number of devices have been developed to measure the hydraulic conductivity of 

geomaterials.  These devices are usually classified based on the type of specimen 

confinement (such as rigid wall and flexible wall permeameters) and based on the flow 

boundary conditions (such as constant head and falling head tests). For asphalt 

pavements, specially designed field falling head permeameters have been generally used 

(Mogawer et al. 2002, Gogula et al. 2003). These permeameters are usually placed 

directly on the pavements and infiltration of water into the pavement is measured by 

noting the differences in the water elevations in the reservoirs of the permeameters. A 

hydraulic conductivity value is computed using the Darcy’s well-known falling head 

permeability equation. The computed hydraulic conductivity value is assumed to 

represent the hydraulic conductivity in all directions. As a result, asphalt pavements are 

assumed to be homogeneous and isotropic. This assumption is highly questionable as the 

pore structure of the asphalt pavements may significantly vary in different directions, 

especially in z-direction (i.e., with depth) as shown in previous section. Similar 
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observations on pore structure heterogeneity were also made by Masad et al. (1999).  

Furthermore, falling head hydraulic conductivity equation assumes that the flow is 

occurring in one direction. However, in the field, water can move in any direction after it 

exits from the permeameter. Other potential problems of field permeameters include the 

uncontrolled saturation and boundary conditions. Therefore, the comparisons of field 

measured hydraulic conductivities are generally poorly correlated to the hydraulic 

conductivity measured in the laboratory (Gogula et al. 2003). 

Many laboratory permeameters are designed to measure hydraulic conductivity of 

sandy soils (e.g., rigid wall permeameter) or clayey soils (e.g., flexible wall 

permeameter). Their applicability to asphalt pavements is questionable as their structures 

differ from the commonly encountered geomaterials. Preliminary work was required to 

find the appropriate permeameter for asphalt specimens. Initial tests conducted in rigid-

wall permeameters using a constant-head approach produced unreasonably high 

hydraulic conductivity values primarily due to the sidewall leakage. Another shortcoming 

of the rigid-wall permeameter was that it was not possible to apply very low hydraulic 

gradients to keep the flow laminar in highly permeable specimens. Another set of tests 

were conducted using a flexible wall permeameter. However, the flexible wall 

permeameter also did not perform well for the highly permeable asphalt specimens used 

in this study. The flexible wall permeameters are mainly designed to measure the 

hydraulic conductivity of clayey and dense graded geomaterials (k < 10-4 mm/s) and as a 

result the diameters of their inflow and outflow tubes are very small. Therefore, hydraulic 

conductivity measurements can greatly be affected by these connections. When highly 
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porous asphalt specimens were placed in these devices unreasonably low hydraulic 

conductivities were observed.  

In order to overcome the problems mentioned above, a flexible wall permeameter 

was specially designed for measuring hydraulic conductivity of 150 mm diameter asphalt 

specimens. Figure 6.14 shows the schematic drawing of the so called “Bubble Tube 

Constant Head Permeameter”. It was designed to accommodate high flow rates 

associated with testing highly permeable asphalt specimens. The unique design 

eliminates the use of valves, fittings and smaller diameter tubings, all which contribute to 

head losses that interfere with the test measurements. As shown in Figure 6.14, 

permeameter was placed in a tub, which was used to maintain constant tail water 

elevation. The tub rim is located a few millimeters above the specimen top. As water 

flows out of the reservoir tube through the specimen, air bubbles emerge from the bottom 

of the bubble tube. The total head difference through the specimen (H), which is constant 

during the test, is the height difference between the bottom of the bubble tube and the top 

of the tub (Figure 6.14). The hydraulic gradient is calculated as follows: 

L
Hih =       (6. 2) 

where hi  is the hydraulic gradient,  H is shown in Figure 6.14 and L the length of the 

specimen. Then the hydraulic conductivity was calculated using Eq. 4.8. The total flow 

rate through the specimen (i.e., q) was determined by noting the water elevation drop in 

the reservoir tube and multiplying it with the inner area of the reservoir tube minus the 

outer area of the bubble tube. A photograph of the Bubble Tube Constant Head 

Permeameter is given in Figure 6.15. 
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Figure 6.14 Bubble tube constant head permeameter 
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Figure 6.15 The photo of upper and lower portions of the bubble tube 
constant head permeameter 
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Advantages of the bubble tube constant head permeameter are: (1) very low 

hydraulic gradients can be applied, (2) high flow rates can be accommodated, (3) 

sidewall leakage is minimized due to the membrane and (4) almost no head loss exists in 

the inflow and outflow.  

Procedures followed to conduct hydraulic conductivity tests using the bubble tube 

constant head permeameter are given in Appendix D. 

6.4 EFFECT OF PORE GEOMETRY AND MIXTURE CHARACTERISTICS 

ON THE HYDRAULIC CONDUCTIVITY OF ASPHALT SPECIMENS 

Analytical hydraulic conductivity prediction models usually use various pore 

geometry parameters, such as effective porosity, surface area of pores and tortuosity of 

the pore channels. These three parameters were determined for the asphalt specimens 

using digital image analysis and correlated to the laboratory based hydraulic conductivity 

measurements. The same parameters were also plotted against NMAS and the number of 

gyrations (compaction level) to investigate the effect of mixture characteristics on the 

hydraulic conductivity.  

6.4.1 Effect of Porosity on the Hydraulic Conductivity 

The total porosity and effective porosity versus hydraulic conductivity relationships 

of all specimens were plotted in Figures 6.16a and 6.16b, respectively. Effective porosity 

herein corresponds to the ratio of the volume of the pores that contributes to the fluid 

flow to the total volume of the specimen.  It only includes the pores that are connected 

from top of the specimen to the bottom of the specimen (isolated pores were eliminated). 

Effective porosity was calculated using the PORECON algorithm described in Chapter  
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Figure 6.16 (a) Total porosity and (b) effective porosity versus hydraulic 
conductivity relationships. 
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5.2.2 which uses 3D binary images of the specimens obtained from the X-Ray CT. Even 

though fine-graded mixtures had total porosities in the range of 5.8% to 9.5%, only two 

of them (19F25 and 25F25) had interconnected pores, the rest of the specimens had very 

low effective porosities which were not within the detection limits of X-ray CT. The 

laboratory tests yielded low hydraulic conductivities (ranging from 6x10-4 to 8.9 x10-3 

mm/s) for the specimens which had very low effective porosity, which supported the 

image based observations. It should be noted that the resolution of the X-Ray CT images 

was 0.317 mm/pixel, i.e., it is not possible to detect the pores less than 0.317 mm in size, 

which can be referred to as the micro-scale pores. Low hydraulic conductivities of the 

fine-graded mixtures having very low effective porosity were possibly due to the flow in 

the micro-scale pores. Figures 6.16a and 6.16b shows that hydraulic conductivities 

increase in as both total and effective porosities increase, however, a better relationship 

(with less scatter in data) is seen between the effective porosity and hydraulic 

conductivity. 

6.4.2 Effect of Specific Surface Area on the Hydraulic Conductivity 

Specific surface area of each specimen was calculated using the SSA algorithm 

described in Section 5.2.3. Figure 6.17a presents the specific surface area versus 

hydraulic conductivity relationship for the specimens that have interconnected pore 

structure. There is a slight increase in hydraulic conductivity as the surface area 

increases. This is somewhat surprising since larger surface area indicates higher frictional 

shear stress that is applied to the fluid.  However, larger surface area may also mean 

higher porosity which in turn indicates larger voids for fluid to travel. In order to  
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Figure 6.17 Relationships between hydraulic conductivity and (a) 
specific surface area and (b) specific surface area normalized by the 
effective porosity. 
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overcome this dual effect, specific surface area is normalized by the effective porosity 

and plotted against laboratory hydraulic conductivity data. The hydraulic conductivity 

generally decreases with the increasing normalized surface area.  

6.4.3 Effect of Tortuosity on the Hydraulic Conductivity 

Tortuosities of the specimens were calculated using the TORT3D algorithm 

described in Section 5.2.4. Figure 6.18 presents the relationship between hydraulic 

conductivity and the average tortuosity calculated within each specimen. As seen in 

Figure 6.18, hydraulic conductivity increases with the increasing tortuosity of the 

specimen, which is somewhat surprising, since one would expect that hydraulic 

conductivity should decrease as the tortuosity increases. Further research is needed to 

investigate this phenomenon. 

6.4.4 Effect of Mix Design Parameters on the Hydraulic Conductivity 

Figures 6.19a and 6.19b present the relationships between hydraulic conductivity 

and NMAS and compaction level (number of gyrations), respectively. A clear trend was 

not observed between the hydraulic conductivity and these variables. In fact these 

variables along with the binder content and gradation shape determine the pore structure 

parameters (e.g. porosity and specific surface area). Therefore, the effects of NMAS and 

compaction level on the asphalt hydraulic conductivity are embedded in the pore 

structure parameters. 

The amount of fines (i.e., soil passing 2.36 mm sieve) in an asphalt mixture can 

have a direct effect on the reduction of pore space. Larger amount of fines, when mixed 

with binder, can quickly close the spaces between the larger aggregates. To investigate 
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the effect of fines on the hydraulic conductivity, fraction of the fines in each asphalt 

mixture were plotted against the laboratory measured hydraulic conductivity in Figure 

6.20.  The plots were created by grouping the specimens that were compacted at the same 

number of gyrations, as it could have a significant effect on the pore space reduction. 

Figure 6.20 clearly indicates that the hydraulic conductivity decreases exponentially as 

the percent fines increased, where the exponential best fit lines produced R2s of 0.45, 

0.58 and 0.68, for 75, 50 and 25 number of gyrations. Best correlation was observed in 

the 25 gyrations, and the correlation decreased as the number of gyrations increased. This 

phenomenon was expected, because when the specimen is compacted more, the 

orientation and connectivity of pores can change and the effect of amount of fines on the 

pore structure can diminish.  
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Figure 6.19 Relationship between hydraulic conductivity and (a) NMAS and (b) 
Number of gyrations 
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Figure 6.20 Effect of amount of fine graded soil in the mixture (% passing 2.36 
mm sieve) on the hydraulic conductivity. 
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7 CHAPTER 7 NUMERICAL MODELING OF FLUID FLOW 

THROUGH ASPHALT PAVEMENTS USING LATTICE 

BOLTZMANN METHOD 

7.1 SIMULATION OF LABORATORY HYDRAULIC CONDUCTIVITY TEST  

7.1.1 Geometry Input 

First input needed for the fluid flow simulation using LB method was the 3D 

geometry of the asphalt specimens. The 3D geometry of the asphalt specimens were 

generated from the X-ray CT images which were acquired at the radiography laboratory 

of Turner-Fairbank Highway Research Center (TFHRC) of FHWA. After obtaining the 

image slices of each specimen, an additional processing was needed to achieve a uniform 

pixel resolution in horizontal and vertical directions. Since the dimensions of acquired 

images were 512 by 512 pixels, the resolutions in two horizontal directions ( x∆  and y∆ ) 

were identical. These resolutions were determined using the known diameter of the 

specimens, whereas the vertical resolution ( z∆ ) was always constant due to the constant 

thickness of the X-ray CT detector aperture. For example, Figure 7.1a shows an X-ray 

CT image slice of an asphalt specimen. Measuring the distance (in pixels) from the 

image, horizontal resolution was computed as follows: 

    
i

w

D
D

yx =∆=∆       (7. 1) 

where Dw is the diameter in units of millimeters. On the other hand, the vertical 

resolution of the images (i.e. slice thickness of each image) was registered by the aperture  
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(b) 

Figure 7.1 (a) X-ray CT slice of an asphalt specimen, (b) illustration of inlet, 
outlet and the membrane confinement in LB simulations. 
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of the linear detector of the X-ray CT device, which is 0.8 mm. Therefore, the vertical 

resolution (∆z) was 0.8 mm/pixel in all specimens. To achieve a uniform resolution in all 

directions (x, y and z), image slices were resized by using bilinear interpolation so that 

the horizontal resolutions are equivalent to the vertical ones.   

After achieving same resolution in all directions, images were converted to binary 

(black and white) images using morphological thresholding technique, where black areas 

(pixel values of 0) represent solid and white areas (pixel values of 1) represent air voids. 

Selection of appropriate threshold value is critical in correct determination of the pore 

structure. In principal, the lowest pixel values in an X-ray CT image should give the air 

voids as their density is the lowest. Therefore, a pixel intensity that is close to zero is 

generally used as the threshold value. However, in small isolated pores or the pore throats 

(constrictions) where the size of the pores are close to the resolution of the images, the 

built-in algorithm of the X-ray CT equipment may compute elevated pixel intensities of 

these pores. In those cases, higher threshold values are needed to capture these pores. 

However, selecting higher threshold value may also widen the boundaries of the larger 

pores in other locations. To minimize the possible errors due to this tradeoff, several trial 

threshold values were used at each specimen and a threshold value that includes most of 

the small pores without excessively widening the larger pores was visually determined. 

This relatively inaccurate technique may have caused slight deviations from the actual 

pore structure and the LB simulation results should be interpreted accordingly.   

 After obtaining the three dimensional pore geometry defined by the white voxels, 

isolated pores were eliminated using the PORECON algorithm, producing a 3D image of 

the interconnected pore structure. It is important to mention that this step is not required 
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for the LB simulations; however, the isolated pores were eliminated solely to speed up 

the simulation at each time step. Furthermore, decreasing the number of nodes reduced 

the total number of time steps to reach steady state flow condition. Finally, lattice nodes 

were generated at the center of each voxel (3D equivalent of a pixel) within the 3D 

image.  

7.1.2 Boundary Conditions 

To simulate the pressure boundary conditions of the laboratory bubble tube 

constant head hydraulic conductivity test, certain pressure (i.e., density) values were set 

at the inlet and the outlet of the specimen during the LB simulations. The curved face of 

the cylindrical specimens was confined by the solid walls, which simulates the membrane 

confinement around the specimen, as shown in Figure 7.1b. Applied pressure gradient, 

densities and the resolution of each specimen are provided in Table 7.1. The densities of 

all nodes were initially assigned to such values that the magnitude of the density 

decreases linearly from inlet nodes to the outlet nodes. Lastly, the macroscopic velocities 

at all nodes were set to zero.  

7.1.3 Calculation of Hydraulic Conductivity Tensor 

Hydraulic conductivity is usually computed using the Darcy’s well-known 

equation given in Eq. 6.3, which can be rewritten in the following form: 
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z

z
zz i

AQ
k

)/(
=      (7. 2) 

where kzz is the hydraulic conductivity, Qz is the measured flow rate, iz is the applied 

hydraulic gradient ( γ/zz Pi ∇= ) in z-direction shown in Figure 7.1b, and A is the 

specimen cross sectional area perpendicular to the direction of pressure gradient. Another 

form of the Eq. 7.2 can be obtained by replacing Qz /A with the Darcy’s velocity (uc
z) and 

replacing the hydraulic gradient (iz) with γ/zP∇  

uc
z = kzz γ/zP∇     (7. 3) 

Equation 7.3 is a simplified form of the Darcy’s equation. The general form of the 

Darcy’s equation for any pore structure has a more complicated structure and given as 

(Dullien, 1992): 
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where the tensor Kij is called the intrinsic permeability tensor, µ is the dynamic viscosity,  

ux, uy and uz are the average (seepage) velocities in x-, y- and z-directions, respectively 

and xP∇ , yP∇  and zP∇  are the pressure gradients in x-, y- and z-directions, respectively. 

In laboratory hydraulic conductivity test, the pressure gradient is usually applied only in 

z-direction (i.e. xP∇ =0 and yP∇ =0), which reduces Eq. 7.4 to the following: 
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ux = - (Kxz zP∇ / µ)    (7. 5) 

uy = - (Kyz zP∇ / µ)    (7. 6) 

uz = - (Kzz zP∇ / µ)    (7. 7) 

Darcy’s velocity vector (uc) in Eq. 7.2 relates to the seepage velocity vector (u) as 

follows (Das, 2001): 

uc
 = u  neff    (7. 8) 

where neff is the effective porosity of the medium. Combining Equations 7.3, 7.5-7.7 and 

7.8 reveal the following set of equations for the hydraulic conductivity tensor:  

kxz = - γ neff (ux / zP∇ )    (7. 9) 

kyz = - γ neff (uy / zP∇ )    (7. 10) 

kzz = - γ neff (uz / zP∇ )    (7. 11) 

7.1.4 Results of Simulations and Comparison with the Experimental 

Measurements 

The LB fluid flow simulations were run until a steady-state flow condition was 

achieved. The steady-state flow criterion was set such that the difference in the overall 

mean velocity in z-direction (uz) between two consecutive time steps is less than a 

threshold value. This threshold was selected as the 0.001% of the mean velocity of the 

current time step. Figure 7.2 shows a typical change in mean velocity over time steps  
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Table 7.1 The input that are used in LB simulations of laboratory hydraulic 
conductivity test. 

 
Specimen 

ID 

 
LB 

Method 

 
Flow 

Method

Lattice  
Resolution

(∆x) 
(mm/pixel) 

Length of 
the 

Specimen
(mm) 

 
Pressure  
Gradient 
( zP∇ ) 

(g/mm2-s2) 
9.5C25 D3Q19 DG 0.4 70.4 8.79E-04 

12.5C25 D3Q19 DG 0.4 68.8 1.00E-06 
19C25 D3Q19 DG 0.8 74 1.00E-03 
19C50 D3Q19 DG 0.8 73.6 1.00E-03 
19C75 D3Q19 DG 0.8 71 1.00E-03 
25C25 D3Q19 DG 0.8 72 1.37E-04 
25C50 D3Q19 DG 0.8 70.4 1.00E-06 
25C75 D3Q19 DG 0.8 76.8 1.37E-05 
19F25 D3Q19 DG 0.8 70.1 1.00E-03 
25F25 D3Q19 DG 0.8 72.3 1.00E-03 

9.5SMA-A1 D3Q19 DG 0.8 80 1.00E-03 
9.5SMA-A2 D3Q19 DG 0.8 80 1.00E-03 
9.5SMA-B1 D3Q19 DG 0.8 79.5 1.00E-03 
9.5SMA-B2 D3Q19 DG 0.8 79 1.00E-03 
12.5SMA-A1 D3Q19 DG 0.8 81 1.00E-03 
12.5SMA-A2 D3Q19 DG 0.8 77.5 1.00E-03 
12.5SMA-B1 D3Q19 DG 0.8 81 1.00E-03 
12.5SMA-B2 D3Q19 DG 0.8 81 1.00E-03 
19SMA-A1 D3Q19 DG 0.8 81 1.00E-03 
19SMA-A2 D3Q19 DG 0.8 78 1.00E-03 
19SMA-B1 D3Q19 DG 0.8 76 1.00E-03 
19SMA-B2 D3Q19 DG 0.4 77 1.00E-03 

L2 D3Q19 DG 0.4 47 9.97E-07 
L4 D3Q19 DG 0.4 47 9.97E-07 
L5 D3Q19 DG 0.4 35 1.00E-06 

Note: 9.5C25 represents the specimen with an NMAS of 9.5mm and 
compacted at 25 gyration level. L2 is the field core taken from lane 2 of 
accelerated loading facility at the TFHRC. DG=density gradient. D3Q19= 
three dimensional LB model with 19 microscopic velocity directions. 
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Figure 7.2 Change in mean velocity over time steps during LB fluid flow 
simulation in specimen 25C75. 
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Figure 7.3 Change in (a) mean velocity, (b) pressure and (c) pore cross sectional area with depth. 
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during a LB simulation. In this particular case (specimen 25C75), the steady state flow is 

observed after approximately 52,000 time steps. It was observed that the number of time 

steps required for flow stabilization varied from 1000 to 150,000, depending on the 

angularity of the internal pore structure. Less number of time steps was required for 

system stabilization for specimens with less angular pore-solid interface. Similar 

observations were also reported by Duarte et al. (1992) in their 2D Cellular Automata 

(CA) based model of flow through cylindrical obstacles placed between parallel plates. 

A typical velocity and pore water pressure profile at the end of a LB simulation is 

provided in Figure 7.3a and Figure 7.3b, respectively. Each data point in Figures 7.3a and 

7.3b corresponds to the mean velocity and mean pressure at a given depth, respectively. 

In addition, the change of pore cross sectional area with depth was also provided in 

Figure 7.3c. As seen in Figure 7.3, the maximum velocity and pressure gradient occur at 

a depth of 58 mm. This depth also corresponds to a point where the pore cross sectional 

area reaches its lowest value (i.e. the constriction). Furthermore, the pressure gradient 

(slope of the curve in Figure 7.3b) observed at the constriction zone is significantly 

higher than the overall average pressure gradient. This may lead to high shear stresses at 

the constriction zone, which in turn might cause stripping of the binder from the 

aggregate and damage to the asphalt matrix. Further discussions on shear stresses at 

constrictions are given in Section 7.4.2. Figure 7.4 shows the streamlines computed at the 

end of LB simulation for specimen 25C75. Flow streamlines in Figure 7.4 clearly 

indicates the preferential flow pathways, where only a portion of the pores are utilized in 

the flow after certain depth.  
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Figure 7.4 Streamlines computed at the end of LB simulation for specimen 25C75. 
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Table 7.2 Summary of the hydraulic conductivities based on laboratory measurements 
and based on LB simulations. 

kzz (mm/s) 

Sample 
No 

Id
en

tif
ic

at
io

n 

Sample 
ID 

Total 
Porosity, 

n (%) 

Effective 
Porosity, 
neff (%) Laboratory  

Test 

Lattice 
Boltzmann 

Model 

1 9.5C25 12.3 8.18 0.2290 0.3560 

2 9.5C50 8.5 NA 0.0200 NC 

3 9.5C75 6.9 NA 0.0137 NC 

4 12.5C25 7.2 1.13 0.0195 0.0300 

5 12.5C50 6.5 NA 0.0014 NC 

6 12.5C75 5.0 NA 0.0014 NC 

7 19C25 14.7 6.56 0.2200 0.2785 

8 19C50 11.5 5.00 0.2210 0.4000 

9 19C75 10.0 5.78 3.5000 7.1300 

10 25C25 15.4 10.82 0.3100 0.2800 

11 25C50 11.7 8.51 0.1700 0.1750 

12 

C
oa

rs
e 

G
ra

de
d 

G
yr

at
or

y 
S

pe
ci

m
en

s 

25C75 12.5 8.85 0.5450 0.3600 

13 9.5F25 9.8 NA 0.0022 NC 

14 9.5F50 8.8 NA 0.0006 NC 

15 9.5F75 5.6 NA 0.0011 NC 

16 12.5F25 5.5 NA 0.0075 NC 

17 12.5F50 4.1 NA 0.0082 NC 

18 12.5F75 2.8 NA 0.0089 NC 

19 19F25 9.4 3.67 0.0250 0.100 

20 19F50 8.0 NA 0.0057 NC 

21 19F75 1.7 NA 0.0400 NC 

22 25F25 11.3 6.35 0.0258 0.0225 

23 25F50 8.7 NA 0.0011 NC 

24 

Fi
ne

 G
ra

de
d 

G
yr

at
or

y 
S

pe
ci

m
en

s 

25F75 7.8 NA 0.0006 NC 
Note: NC refers to the specimens with no interconnected macro pores (i.e. minimum size 
greater than 0.3 mm) between two opposite faces of a specimen. NA: Effective porosity 
was not available due to lack of interconnected pore structure. The hydraulic 
conductivities observed in these specimens are possibly due to the flow in micro pores 
whose size is less than 0.3 mm. This size is not observable by the X-ray CT technique.
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Table 7.2 (cont’d) Summary of the hydraulic conductivities based on laboratory 
measurements and based on LB simulations. 

kzz (mm/s) 

Sample 
No 

Id
en

tif
ic

at
io

n 

Sample 
ID 

Total 
Porosity, 

n (%) 

Effective 
Porosity, 
neff (%) Laboratory  

Test 

Lattice 
Boltzmann 

Model 

25 9.5SMA-A1 20.1 18.90 2.4233 3.408 

26 9.5SMA-A2 17.1 11.16 2.3600 4.86 

27 9.5SMA-B1 21.6 17.70 4.8300 11.5 

28 9.5SMA-B2 16.8 11.44 5.1650 3.1100 

29 12.5SMA-A1 16.2 12.17 2.9000 3.25 

30 12.5SMA-A2 23.1 17.97 12.6700 20.3600 

31 12.5SMA-B1 12.5 7.63 4.0300 4.260 

32 12.5SMA-B2 18.5 13.17 4.6400 5.48 

33 19SMA-A1 14.7 11.02 3.2600 7.5600 

34 19SMA-A2 16.6 12.48 10.5100 7.2000 

35 19SMA-B1 14.0 8.22 2.8600 3 

36 

SM
A 

M
ix

tu
re

s 

19SMA-B2 18.1 10.60 3.84 3.2500 

37 L1 8.3 NA 0.0065 NC 

38 L2 9.6 6.70 0.1290 0.2100 

39 L3 5.6 NA 0.0028 NC 

40 L4 6.2 1.33 0.0567 0.0380 

41 L5 7.4 1.653 0.0223 0.0210 

42 L6 7.9 NA 0.0029 NC 

43 

Fi
el

d 
C

or
es

 

L7 5.5 NA 0.0158 NC 
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Figure 7.5 Comparison of laboratory-based hydraulic conductivity with those 
produced by (a) the LB method and (b) two analytical equations. 

SMA 
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A summary of the hydraulic conductivities based on LB simulations and laboratory 

measurements is given in Table 7.2. Table 7.2 also includes the total and effective 

porosities of the 43 specimens employed in the testing program. It should be recalled that 

the effective porosities were calculated using the image analysis algorithm PORECON. 

The analyses revealed that 18 specimens had no interconnected macro pores (i.e. 

minimum size greater than 0.3 mm) between two opposite faces of a specimen. 

Therefore, the effective porosities of those specimens are denoted with “NA”. The 

magnitudes of the laboratory–based hydraulic conductivities in those specimens are one 

to three orders of magnitude lower as compared to the specimens with positive effective 

porosities. The low hydraulic conductivities measured in the laboratory were possibly due 

to the flow in micro pores whose size is less than 0.3 mm. It should be noted that the best 

resolution that can be obtained by the X-ray CT technique for a 150 mm diameter 

specimen was 0.3 mm/pixel. Therefore, X-ray CT technique was not able to capture the 

micro pores in the specimens. For the specimens with interconnected macro pores, the 

hydraulic conductivities were higher which is usually governed by the macro pores. 

Therefore, LB fluid flow simulations were performed on the specimens who have pores 

connected to their two opposite faces. After LB simulations, the computed steady-state 

velocities were used to calculate the hydraulic conductivities of the specimens using Eq. 

7.11. Computed hydraulic conductivities based on LB simulations were plotted against 

the hydraulic conductivities based on laboratory measurements in Figure 7.5a. Figure 

7.5a clearly indicates that estimations of LB simulations are in a very good agreement 

with the laboratory based results. Most of the specimens were within the variability limits 

indicated by the error bars. The error bars were computed based on the variations in the  
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Table 7.3 Permeability predictions of two analytical models compared with the laboratory 
measurements. 

Note: Sa is the specific surface area, T is the tortuosity and ne is the effective porosity.

kzz (mm/s) 

Specimen 
ID 

Sa 
(mm-1) T ne 

(%) 
Kozeny-
Carman 
(Eq. 2.1) 

b=3 

Walsh & 
Brace 

(Eq. 2.2) 
C=1/180 

Laboratory 
Test 

9.5C25 0.14 1.96 8.2 1.5 22.8 0.2290 

12.5C25 0.02 1.84 1.1 0.3 4.8 0.0195 

19C25 0.03 1.44 6.6 21.8 626.3 0.2200 

19C50 0.02 2.25 5.0 19.6 231.4 0.1200 

19C75 0.07 2.53 5.78 4.8 43.6 3.5000 

25C25 0.12 2.56 10.8 4.8 43.6 0.3100 

25C50 0.08 2.04 8.5 5.1 72.9 0.1700 

25C75 0.08 2.38 8.9 5.7 60.3 0.5450 

19F25 0.07 1.77 3.7 0.6 10.7 0.0250 

25F25 0.13 1.85 6.4 0.8 14.5 0.0258 

9.5SMA-A1 0.16 3.21 18.9 14.8 83.2 2.4233 

9.5SMA-A2 0.14 2.94 11.2 4.0 27.1 2.3600 

9.5SMA-B1 0.19 3.45 17.7 8.3 40.7 4.8300 

9.5SMA-B2 0.14 2.79 11.4 4.3 32.7 5.1650 

12.5SMA-A1 0.12 3.04 12.2 6.5 41.4 2.9000 

12.5SMA-A2 0.17 3.38 18.0 11.4 58.2 12.6700 

12.5SMA-B1 0.09 2.93 7.6 2.8 19.2 4.0300 

12.5SMA-B2 0.15 3.12 13.2 5.4 32.5 4.6400 

19SMA-A1 0.09 3.10 11.0 8.2 50.4 3.2600 

19SMA-A2 0.11 3.27 12.5 9.7 53.7 10.5100 

19SMA-B1 0.096 3.4059 8.2 3.3 17.0 2.8600 

19SMA-B2 0.11 3.52 10.6 5.6 26.7 3.8400 

L2 0.12 2.35 6.7 15.4 1.161 0.1500 

L4 0.02 1.53 1.3 6.0 0.287 0.027 

L5 0.031 2.16 1.7 2.4 0.257 0.0205 
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laboratory test, where multiple tests were conducted on various specimens and average 

variability was computed as 31%. This variability was attributed to the saturation 

problems during testing and problems associated with the membrane confinement. A 

tradeoff existed on selection of appropriate magnitude of cell pressure applied on the 

membrane. Applying too little cell pressure caused sidewall leakage, whereas applying 

too much pressure caused the membrane fill in the voids connected to the surface which 

might have caused flow reduction. 

The estimations of two commonly used analytical hydraulic conductivity equations 

(Kozeny-Carman, Eq. 2.1 and Walsh & Brace, Eq. 2.2) were plotted against the 

laboratory based measurements in Figure 7.5b. The pore structure parameters (i.e., Sa, T 

and ne) of the asphalt specimens, which were used in the analytical equations, are 

summarized in Table 7.3. It can be seen from Figure 7.5b that the estimations of 

analytical equations were relatively accurate at high hydraulic conductivities (i.e., kzz>1 

mm/s), whereas, at low hydraulic conductivities (i.e., kzz<1 mm/s), their estimations were 

up to two order of magnitude higher than the laboratory measurements. In general 

Kozeny-Carman performed better than the Walsh & Brace’s equation. It should be noted 

that the constants C and b in Equations 2.1 and 2.2 can have a significant affect on the 

estimation of hydraulic conductivity. Using the reported values of these constants (i.e. 

C=1/180 and b=3) revealed a biased estimation at low hydraulic conductivities. These 

empirical constants can be adjusted to for a better estimation; however, the new constants 

do not necessarily represent all asphalt pavements. On the other hand, these equations can 

provide relatively good qualitative comparison between different asphalt specimens.  
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7.2 DIRECTIONAL HYDRAULIC CONDUCTIVITY OF ASPHALT 

PAVEMENTS 

7.2.1 Method of Calculating Components of the Hydraulic Conductivity Tensor  

Generalized Darcy’s formula given in Eq. 7.4 can be rewritten by using the 

hydraulic conductivity tensor as follows: 

⎥
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n
u
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1   (7. 12) 

Simple relations (Equations 7.9-7.11) were derived in Section 7.1.3 for the last 

column of the hydraulic conductivity tensor given in Eq. 7.12, by setting the pressure 

gradients in the horizontal directions to zero (i.e. xP∇ =0 and yP∇ =0).  Simulations were 

performed by applying a pressure gradient only in z-direction to compute the three 

components of the hydraulic conductivity tensor (i.e. kxz, kyz, and kzz). A similar approach 

was undertaken to compute the other components of the hydraulic conductivity tensor. 

Prior to the simulations, a cubical sample was extracted from the X-ray CT images of the 

cylindrical specimens as shown in Figure 7.6. Initially, a pressure gradient in x-direction 

was applied and the pressure gradients in other directions were set to zero (i.e. zP∇ =0 

and yP∇ =0).  The first column of the hydraulic conductivity tensor was computed using 

the following set of equations:  
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Figure 7.6 A typical 3D image extracted from X-ray CT image of a 
cylindrical asphalt concrete specimen. 
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kxx = - γ neff (ux/ xP∇ )    (7. 13) 

  kyx = - γ neff (uy / xP∇ )    (7. 14) 

  kzx   = - γ neff (uz/ xP∇ )    (7. 15) 

 

Lastly, a pressure gradient in y-direction was applied while keeping pressure 

gradients in other directions zero (i.e. zP∇ =0 and xP∇ =0) and the second column of the 

hydraulic conductivity tensor was computed using the following equations: 

kxy = - γ neff (ux/ yP∇ )    (7. 16) 

kyy = - γ neff (uy / yP∇ )    (7. 17) 

 kzy   = - γ neff (uz/ yP∇ )     (7. 18) 

Table 7.4 summarizes the simulations performed for calculating the hydraulic 

conductivity tensor components. Total 60 simulations were performed to compute all 

nine components of the hydraulic conductivity tensor. Each simulation provided three 

components; therefore at least three simulations were necessary for each specimen. Table 

7.3 also includes the number of time steps required for steady-state flow condition which 

ranged from 1200 to 164000 time steps for different specimens. 
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Table 7.4 Summary of simulations performed for calculating the components of the 
hydraulic conductivity tensor  

Simulation  
No Specimen 

D
ire

ct
io

n Image 
Resolution 
(mm/pixel) 

Applied  
Pressure 
Gradient 
g/mm2-s2 

Number of  
Time Steps 

to reach 
Steady-State 

Flow 

Computed 
Variables 

1 x 0.4 1.00E-08 51618 kxx, kyx, kzx 
2 y 0.4 1.00E-08 50990 kxy, kyy, kzy 
3 

9.5C25 
z 0.4 1.00E-08 68400 kxz, kyz, kzz 

4 x 0.4 1.00E-08 163800 kxx, kyx, kzx 
5 y 0.4 1.00E-08 53100 kxy, kyy, kzy 
6 

12.5C25 
z 0.4 1.00E-08 9900 kxz, kyz, kzz 

7 x 0.8 1.00E-08 123300 kxx, kyx, kzx 
8 y 0.8 1.00E-08 117000 kxy, kyy, kzy 
9 

19C25 
z 0.8 1.00E-08 18980 kxz, kyz, kzz 

10 x 0.8 1.00E-08 152700 kxx, kyx, kzx 
11 y 0.8 1.00E-08 148800 kxy, kyy, kzy 
12 

19C50 
z 0.8 1.00E-08 75300 kxz, kyz, kzz 

13 x 0.8 1.00E-08 1340 kxx, kyx, kzx 
14 y 0.8 1.00E-08 1240 kxy, kyy, kzy 
15 

19C75 
z 0.8 1.00E-08 41400 kxz, kyz, kzz 

16 x 0.4 1.00E-08 18290 kxx, kyx, kzx 
17 y 0.4 1.00E-08 38090 kxy, kyy, kzy 
18 

25C25 
z 0.4 1.00E-08 11380 kxz, kyz, kzz 

19 x 0.4 1.00E-08 11000 kxx, kyx, kzx 
20 y 0.4 1.00E-08 11720 kxy, kyy, kzy 
21 

25C50 
z 0.4 1.00E-08 15170 kxz, kyz, kzz 

22 x 0.4 1.00E-08 42360 kxx, kyx, kzx 
23 y 0.4 1.00E-08 24300 kxy, kyy, kzy 
24 

25C75 
z 0.4 1.00E-08 63600 kxz, kyz, kzz 

25 x 0.8 1.00E-08 22200 kxx, kyx, kzx 
26 y 0.8 1.00E-08 27600 kxy, kyy, kzy 
27 

9.5SMA-A1 
z 0.8 1.00E-08 19200 kxz, kyz, kzz 

28 x 0.8 1.00E-08 31200 kxx, kyx, kzx 
29 y 0.8 1.00E-08 31200 kxy, kyy, kzy 
30 

9.5SMA-A2 
z 0.8 1.00E-08 25800 kxz, kyz, kzz 

31 x 0.8 1.00E-08 17700 kxx, kyx, kzx 
32 y 0.8 1.00E-08 18600 kxy, kyy, kzy 
33 

9.5SMA-B1 
z 0.8 1.00E-08 15600 kxz, kyz, kzz 

Note: 9.5C25 represents the specimen with an NMAS of 9.5mm and compacted at 
25 gyration level. 9.5-SMA-A1 represents the SMA specimen with an NMAS of 
9.5 mm.  
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Table 7.4 (cont’d) Summary of simulations performed for calculating the components 
of the hydraulic conductivity tensor  

Simulation  
No Specimen 

D
ire

ct
io

n Image 
Resolution 
(mm/pixel) 

Applied  
Pressure 
Gradient 
g/mm2-s2 

Number of  
Time Steps 

to reach 
Steady-State 

Flow 

Computed 
Variables 

34 x 0.8 1.00E-08 25500 kxx, kyx, kzx 
35 y 0.8 1.00E-08 25800 kxy, kyy, kzy 
36 

9.5SMA-B2 
z 0.8 1.00E-08 21000 kxz, kyz, kzz 

37 x 0.8 1.00E-08 27000 kxx, kyx, kzx 
38 y 0.8 1.00E-08 27600 kxy, kyy, kzy 
39 

12.5SMA-A1 
z 0.8 1.00E-08 22200 kxz, kyz, kzz 

40 x 0.8 1.00E-08 18000 kxx, kyx, kzx 
41 Y 0.8 1.00E-08 18300 kxy, kyy, kzy 
42 

12.5SMA-A2 
Z 0.8 1.00E-08 14700 kxz, kyz, kzz 

43 X 0.8 1.00E-08 48600 kxx, kyx, kzx 
44 y 0.8 1.00E-08 34200 kxy, kyy, kzy 
45 

12.5SMA-B1 
z 0.8 1.00E-08 42280 kxz, kyz, kzz 

46 x 0.8 1.00E-08 34200 kxx, kyx, kzx 
47 y 0.8 1.00E-08 35400 kxy, kyy, kzy 
48 

12.5SMA-B2 
z 0.8 1.00E-08 28800 kxz, kyz, kzz 

49 x 0.8 1.00E-08 33900 kxx, kyx, kzx 
50 y 0.8 1.00E-08 35400 kxy, kyy, kzy 
51 

19SMA-A1 
z 0.8 1.00E-08 27300 kxz, kyz, kzz 

52 x 0.8 1.00E-08 32700 kxx, kyx, kzx 
53 y 0.8 1.00E-08 34200 kxy, kyy, kzy 
54 

19SMA-A2 
z 0.8 1.00E-08 26700 kxz, kyz, kzz 

55 x 0.8 1.00E-08 87600 kxx, kyx, kzx 
56 y 0.8 1.00E-08 56100 kxy, kyy, kzy 
57 

19SMA-B1 
z 0.8 1.00E-08 33900 kxz, kyz, kzz 

58 x 0.8 1.00E-08 37800 kxx, kyx, kzx 
59 y 0.8 1.00E-08 123300 kxy, kyy, kzy 
60 

19SMA-B2 
z 0.8 1.00E-08 47100 kxz, kyz, kzz 
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Figure 7.7 (a) The relationship between (a) vertical (i.e. kzz) and horizontal 
(i.e., kxx and kyy) hydraulic conductivities, and (b) two horizontal hydraulic 
conductivities (i.e., kxx versus kyy) 
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7.2.2 Relationship between Vertical and Horizontal Hydraulic Conductivities 

It was mentioned in Chapter 2 that there are several semi-analytical formulas to 

estimate the hydraulic conductivity of asphalt pavements. These formulas are usually 

applicable to granular and sandy soils and assume that the pore structure is homogeneous 

and isotropic. The pore structure analyses of the different asphalt specimens in Chapter 6 

raised some questions about the validity of these assumptions for asphalt pavements. It 

was shown that the porosity decreases with depth, which implied the possible existence 

of constrictions; whereas, the porosity did not significantly vary in the radial direction 

implying the isotropy in horizontal directions (i.e., x- and y- directions). The results of 

fluid flow simulations in various asphalt specimens supported the findings of the pore 

structure analyses performed in Chapter 6. In order to investigate the isotropy of asphalt 

specimens, the relationship between the vertical (i.e. kzz) and horizontal (i.e., kxx and kyy) 

hydraulic conductivities was plotted in Figure 7.7a. It can clearly be seen that the 

horizontal hydraulic conductivities are higher than the vertical hydraulic conductivity, 

where, in some specimens, the difference is up to two orders of magnitude. Whereas, the 

ones in two horizontal (i.e., kxx and kyy) are close to each other. A plot of kxx versus kyy 

provided in Figure 7.7b confirms that the hydraulic conductivities in two horizontal 

directions are comparable within a 50% confidence interval. These observations indicated 

that the asphalt specimens are isotropic comparing two horizontal directions (x- and y-

directions) and anisotropic comparing horizontal and vertical directions.  

In order to further investigate the cause of the relatively lower hydraulic 

conductivity values in z-direction, the variation of pore cross-sectional area (PCSA) in 

three different directions was plotted in Figure 7.8 for specimen 25C75. The plots for the  
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Figure 7.8 Variation in pore cross-sectional area in (a) z-, (b) x- and (c) 
y-directions in specimen 25C75 
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Figure 7.9 The relationship between the minimum porosity and 
the hydraulic conductivity for three different directions 
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rest of the specimens can be found in Appendix E. As seen in Figure 7.8a, the minimum 

PCSA in z-direction is about one order of magnitude less than that of the other directions 

(Figure 7.8b and 7.8c), which leads to a lower hydraulic conductivity in z-direction.  

7.2.3 Effect of Constrictions on the Hydraulic Conductivity Tensor  

The findings summarized in the previous subsection indicated that the 

constrictions (i.e., low PCSA) in the direction of flow have a profound effect on the 

hydraulic conductivity. In order to further investigate the effect of constrictions on the 

flow, minimum porosity on the plane perpendicular to the direction of applied pressure 

gradient are plotted in Figure 7.9 against the hydraulic conductivity in the same direction. 

The minimum porosity herein corresponds to the ratio of minimum PCSA to the total 

cross sectional area of the specimen. Figure 7.9 shows that the relationship between the 

minimum porosity and hydraulic conductivity varies in different directions. Relatively 

good relationship was observed (with an R2 of 0.89) when the minimum porosity in z-

direction ( znmin ) was plotted against the hydraulic conductivity in the same direction 

(Figure 7.9a). However, the degrees of correlation between the horizontal hydraulic 

conductivities (i.e., kxx and kyy) and the minimum porosities in the two horizontal 

directions (i.e., xnmin  and ynmin ) were much lower (R2=0.34 and 0.44 in x- and y-directions, 

respectively). This phenomenon was attributed to the differences in the pore structure 

variation in different directions, as shown in Figure 7.8. Figure 7.8 indicates that there is 

only one location where the PCSA is minimal in z-direction (at a depth of 66 pixels). The 

constriction controlling the hydraulic conductivity in that direction most likely located at 

this location. However, in x- and y- directions (Figures 7.8b and 7.8c), low PCSAs can be 

seen at different locations (e.g., at 50, 100 and 180 pixels in x-direction and at 100, 200 
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and 260 pixels in y-direction) where different constrictions might be located. Therefore, it 

is difficult to relate the hydraulic conductivity in x- and y-directions to only one variable. 

7.2.4 The Relationship between the Normal and Shear Components of the 

Hydraulic Conductivity Tensor 

Physical meaning of the hydraulic conductivity of a porous medium is that it relates 

the pore water pressure gradient to the resulting fluid velocity in the voids. For example, 

Eq. 7.11 simply implies that kzz (herein called “normal component” in z-direction) is a 

ratio of the average velocity to the applied pressure gradient in z-direction. Similarly, the 

“shear components” (i.e., kxz and kyz) of the hydraulic conductivity tensor in z-direction 

relate the pressure gradient in z-direction to the velocities in other directions (Figure 

7.10). 

Figure 7.11 shows three field cases where components of the hydraulic 

conductivity tensor can be used to calculate the fluid velocities. Case-1 illustrates a 

pavement laying on a flat surface.  In this case, the flow can be triggered by a rain event 

creating a pressure gradient in z-direction. The velocities in different directions can easily 

be computed by using only three components of the hydraulic conductivity tensor. Case-2 

illustrates a pavement on a slope. In this case, the pressure gradients are present in two 

directions; therefore, six components of the hydraulic conductivity tensor are needed to 

calculate the fluid velocities. Case-3 illustrates a pavement on a curvature and going 

downhill, which could create pressure gradients in all three directions. In this case, all 

nine components of the hydraulic conductivity tensor are needed to compute the 

velocities. These three cases illustrates the significance of the components of the 
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Figure 7.10 Illustration of physical meaning of the hydraulic conductivity 
tensor components. 
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0>∇ zP ,  xP∇ =0 , yP∇ =0 
ux = - kxz zP∇ / γ neff 
uy = - kyz zP∇ / γ neff 
uz = - kzz zP∇ / γ neff 
 
 

Case-1: Gravity 

  
0>∇ zP ,  xP∇ >0 , yP∇ =0 

ux = - (kxx xP∇ +kxz zP∇ ) / γ neff 
uy = - (kyx xP∇ +kyz zP∇ ) /γ neff 
uz = - (kzx xP∇ +kzz zP∇ ) / γ neff 

Case-2: Gravity and slope 

 0>∇ zP ,  xP∇ >0 , yP∇ >0 
ux = - (kxx xP∇ + kxy yP∇ +kxz zP∇ ) / γ neff 
uy = - (kyx xP∇ + kyy yP∇ +kyz zP∇ ) /γ neff 
uz = - (kzx xP∇ + kzy yP∇ +kzz zP∇ ) / γ neff 
 

Case-3: Gravity, slope and curve 
 

Figure 7.11 Three different cases where the components of the hydraulic 
conductivity tensor are used in engineering design. 
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hydraulic conductivity tensor to calculate the fluid velocities in the pore structure of 

asphalt pavements.  

Figure 7.12 shows the relationship between the normal and shear components of 

the hydraulic conductivity tensor in three different directions. In all three directions, the 

shear components (e.g., kxz and kyz for z-direction) of the hydraulic conductivity is one to 

three orders of magnitude lower than the normal components (e.g. kzz for z-direction), 

however, the range of the difference varies for different directions. For example, in z-

direction (Figure 7.12a) the data are closer to the line of equality than x- and y-directions, 

which indicates that the difference between the normal and shear components are less in 

z-direction. The shear components are generally expected to be significantly lower than 

the normal components, as the flow is forced in the direction of applied pressure gradient. 

However, in z-direction, the normal component was relatively close to shear components. 

This was attributed to the fact that, as a pressure gradient was applied in z-direction (e.g., 

Case-1 in Figure 7.11), the constrictions in that direction blocks the flow and forces fluid 

to move towards the other two directions (i.e., x and y), leading to  relatively higher kxz 

and kyz. Therefore, it can be concluded that, for a pavement shown in Case-1 of 

Figure7.11, flow velocities in x- and y-directions could be close to the velocity in z-

direction, for given a pressure gradient applied in z-direction. This phenomenon was 

further supported by the shear components of the hydraulic conductivity in x- and y-

directions. Figures 7.12b and 7.12c show that the shear components pointing z-direction 

(i.e. kzx and kzy) are in general lower than the shear components pointing other directions 

(i.e. kyx and kxy), indicating that flow is prevented in z-direction and diverted towards the 

other directions.  
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Figure 7.12 The relationship between the normal and shear 
components of the hydraulic conductivity tensor. 
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7.3 CHANGE IN HYDRAULIC CONDUCTIVITY WITH DEPTH 

It may be imperative to know the variation of the hydraulic conductivity at different 

depths within asphalt pavements to predict the possible flow directions during a rain 

event. This would aid in estimation of depth of water penetration and in turn 

characterization of the vulnerability of different zones within the asphalt layer to the 

moisture damage. In order to investigate the hydraulic conductivity at different depths, 

the specimens were divided into four layers; top-10mm, top-20 mm, top 40 mm and the 

entire depth, as shown in Figure 7.13.  It should be noted that all these layers are 

specified such that the depth of water penetration from the surface of the pavement could 

be characterized. They do not simulate a laboratory process where the specimens are cut 

into multiple layers and the hydraulic conductivity of each layer is tested independently. 

In such a process, each layer would exhibit different hydraulic conductivity values, as the 

pore connectivity of each layer may be different than that of the layers specified in Figure 

7.13. Therefore, care should be taken while interpreting the hydraulic conductivity of the 

layers specified in Figure 7.13.  

More than 100 LB fluid flow simulations were performed to compute the hydraulic 

conductivity of each layer of different specimens. The resulting hydraulic conductivities 

(kzz) were plotted versus depth in Figures 7.14 and 7.15. A rapid decrease in the hydraulic 

conductivity was observed in most of the specimens. In most of the specimens shown in 

Figure 7.14a, the decrease was one order of magnitude when the analysis depth was 

doubled (e.g., 10
zzk  versus 20

zzk ). Figures 7.14 and 7.15 also show the effect of compaction 

effort on the change in the hydraulic conductivity with depth.  The specimens compacted 

at higher compaction effort (i.e. higher number of gyrations) generally exhibited a more  
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Figure 7.13 Imaginary sectioning of an asphalt specimen for analysis of hydraulic 
conductivity throughout the depths. 
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Figure 7.14 The variation of hydraulic conductivity with depth in z- direction for 
specimens with NMASs of (a) 9.5 mm, (b) 12.5 mm, (c) 19mm and (d) 25mm. 
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Figure 7.15 The variation of hydraulic conductivity with depth in z- direction for the 
SMA specimens with NMASs of (a) 9.5 mm, (b) 25 mm, (c) 19 mm and (d) field cores. 
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rapid decrease in hydraulic conductivity than those prepared with lower compaction 

effort (e.g. 9.5C75 versus 9.5C25). It can be concluded that increasing the compaction 

effort in the field can significantly reduce the depth to which the water can penetrate, thus 

limit the possible moisture damage only to the surface of the pavement. For example, in 

Figure 7.14a, the maximum depth that water can penetrate in specimen 9.5C75 

(compacted with 75 gyrations) was approximately 19 mm; whereas, this value was about 

55 mm for 9.5C25. 

7.4 PORE WATER PRESSURE AND SHEAR STRESS VARIATIONS AT THE 

PORE-SOLID INTERFACE 

7.4.1 Pore Pressure Variation 

It should be noted that fluid flow in a porous structure is usually caused by a 

pressure difference (i.e. pressure gradient) applied between its two opposite boundaries. 

For a specimen with a homogeneous and isotropic pore structure (e.g. uniformly packed 

glass beads), the pressure decrease from one end to the other end is linear, as illustrated 

with a dashed line in Figure 7.16a. On the other hand, the pressure decrease curve is 

usually nonlinear in the case of asphalt specimens. In order to illustrate the observed 

phenomena, the trends for 9.5C50 are given in Figure 7.16a as an example. Pore water 

pressure stays relatively constant within the upper 45mm portion of the specimen. A 

sharp decrease in pressure was observed between 45 and 65mm, which was followed by a 

nearly constant pressure for the remaining depths. 

In order to quantify the decrease in pressure throughout a direction, a local pressure 

gradient (slope of the pressure decrease line) was computed as follows: 
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Figure 7.16 Variation of (a) pore water pressure, (b) pressure gradient and (c) porosity with depth for specimen 9.5C50
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where iP∇ is the local pressure gradient within the ith slice, l∆ is the slice thickness 

1−iP and 1+iP are the mean pressure values of previous and next slices, respectively. Figure 

7.16b shows the local pressure gradient variation within 9.5C50. In the previous sections, 

it was shown that the existence of pore constrictions in the direction of flow has a 

profound effect on the flow regime. Similarly, the constrictions also affected the variation 

of the local pressure gradient. The pore cross sectional area variation of specimen 9.5C50 

is plotted in Figure 7.16c, which shows a constriction zone about 60 mm depth. At this 

depth, the local pressure gradient (Figure 7.16b) was much higher than the gradient at 

other depths as well as the overall average pressure gradient within the entire specimen. 

Considering the conservation of mass and momentum principles, high pressure gradient 

is meaningful at constrictions. For example, when fluid particles are forced to pass 

through a constriction where the area available for moving fluid particles decreases 

significantly, the velocities must be very high to conserve the mass and momentum 

between the inlet (large area)  and outlet (small area) of the constriction (which looks like 

a funnel shape). These high velocities can only be created by large pressure gradients at 

this zone. 

In order to further investigate the relation between the constriction zone and the 

local pressure gradient, two ratios were defined; (1) pressure gradient ratio ( rP∇ ) and (2) 

area ratio ( rA ): 
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r =     (7. 21) 

where aveA  and minA  are  the average and minimum pore cross sectional areas, 

respectively, and maxP∇  and aveP∇  are the maximum and average pressure gradients, 

respectively (see Figures 7.16b and 7.16c). 

Figure 7.16 shows the pressure gradient ratio versus area ratio relationship of all 

asphalt specimens. It can clearly be seen from the Figure 7.17a that the pressure gradient 

ratio generally increases with increasing area ratio. Such a trend was expected since the 

area ratio increases when the gap between the average and the minimum pore cross 

sectional area increases. This large gap can cause large pressure differences, thus large 

local pressure gradients. Furthermore, a linear curve best fit to the observed data 

produced an R2 of 0.68 (Figure 7.17b).  

Figure 7.17 also shows that in most of the specimens, the pressure gradient ratio 

was between 1.2 and 5, indicating that the maximum pressure gradients in most of the 

specimens were 1.2 to 5 times higher than the average pressure gradient. However, 

pressure gradient ratios up to 15 are also visible where the maximum pressure gradient is 

more than one order of magnitude higher than the overall average pressure gradient. 
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Figure 7.17 (a) Pressure gradient ratio versus area ratio relationship, and (b) 
best fit to the observed data.  
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7.4.2 Shear Stress Variation 

Large local pressure gradients at the constriction zones can cause the fluid to move 

much faster. High velocities at these zones directly affect the magnitude of the force 

acting on the pore-solid interface, which is directly related to the magnitude of the 

velocity gradient. The following equation defines the fluid force acting on a surface 

(Panton, 1996): 

 

ijii TR η=     (7. 22)  

where Ri is the surface force per unit area, iη  is the unit normal vector of the surface and 

ijT  is the stress tensor. The physical meaning of the stress tensor is that a component of 

the stress tensor ijT  is equal to the stress in direction j on a plane with a unit normal 

vector in direction i. Eq. 7.22 is given in index notation and a more explicit form can be 

rewritten as follows:  
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Eq. 7.23 implies that the force acting on a surface can simply be calculated by 

multiplying the stress tensor with the unit normal vector of a surface. In the current study, 

the unit normal vectors of each voxel surface in 3D images of asphalt specimens were 

orthogonal to each other, which facilitated the computations. For example, for a given 
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plane with unit normal iη = [1, 0, 0] (Figure 7.18), the components of the surface force 

can be calculated as follows: 

zjyjxjj TTTR 001 ++=  

then the surface force components become: 

 xxx TR =   xyy TR =   xzz TR =   (7. 24) 

Figure 7.18 also presents the surface force components acting on different faces of 

a cubical voxel. It can clearly be seen from the Figure 7.18 that surface force components 

acting in shear are actually the shear components of the stress tensor (i.e., ijT  with ji ≠ ), 

which indicates that these components can directly be used for computing shear stresses. 

The stress tensor can be decomposed into two parts: pressure term and viscous term 

(Panton, 1996): 

ijijij PT τ+δ−=      (7. 25) 

where ijδ  is called Kronecker delta (i.e. ijδ =1 when i=j, ijδ =0   when ji ≠ ), P is the 

pore water pressure and  ijτ  is the viscous stress tensor. The matrix form of Eq. 7.25 can 

be written as: 
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Figure 7.18 The components of a surface force acting on different faces of a cubical 
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The pressure term in Eq. 7.25 ( ijPδ ) is directly linked to the pore water pressure, 

whereas, the viscous term ( ijτ ) is caused by the viscous fluid movement. The pressure 

term does not have a direct influence on the shear components of the stress tensor. 

Therefore: 

ijijT τ=   when  ji ≠   (7. 27) 

 The viscous stress tensor components were computed using following formulas 

(Panton, 1996): 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

=τ=τ
x

u
y

u yx
yxxy µ    (7. 28) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
=τ=τ

y
u

z
u zy

zyyz µ    (7. 29) 

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+

∂
∂

=τ=τ
z

u
x

u xz
xzzx µ    (7. 30) 

where µ  is the kinematic viscosity of the fluid. The partial differentiations in Eqs. 7.28-

7.30 were computed numerically at the end of LB simulations. Figures 7.19 and 7.20 

shows the shear stress components computed at the lattice nodes. The color code  



 149

 

 

Figure 7.19 Viscous stress tensor components: (a) xzzx τ=τ , and (b) zyyz τ=τ . 
Dimensions on axes are in pixels and pixel resolution is 0.8 mm/pixel.

(a) 

(b) 
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Figure 7.20 Viscous stress tensor components:  yxxy τ=τ . Dimensions on axes 
are in pixels and pixel resolution is 0.8mm/pixel. 
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represents the magnitude, whereas, x, y and z axes indicates the spatial location of the 

pore. The zones of high shear stresses, thus the possible location of binder stripping, are 

clearly visible in the Figures 7.19 and 7.20 for specimen 19SMA-B2. 

In order to study the variation of the shear stresses throughout the specimen, mean 

value of shear stress tensor components at each depth were computed and plotted versus 

the depth. An example plot for 9.5C50 is given in Figure 7.21. At a depth of about 60 

mm, all three components of shear stress tensor exhibited a jump. It was evident from 

Figure 7.15c that the pore cross sectional area is lowest at this depth. This is meaningful 

since at this zone the pressure gradient is highest (Figure 7.15b) leading to high 

velocities, thus shear stresses. Similar observations were made in all asphalt specimens. 

The variation of shear stress tensor components with depth is provided for all specimens 

in Appendix G. 

Similar to the ratio defined in previous section for the pressure gradient (i.e. rP∇ ), 

shear stress ratios were defined to investigate the effect of minimum pore area on shear 

stress components: 
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Figure 7.21 Shear stress tensor components: (a) Txy, (b) Tyz, and (c) Tzx
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    (7. 33) 

where r
ijΤ  is the shear stress ratio, max

ijΤ  and ave
ijΤ  are the maximum and average values of 

shear stress components, respectively (see Figure 7.21). The shear stress ratios were 

plotted against the area ratio ( rA ) in Figures 7.22 and 7.23. The figures suggest that a 

linear relationship exists between the shear stress ratios and the area ratio. The R2 ranged 

from 0.70 to 0.87 for the best fit curves. It can also be seen from the figures that the stress 

ratios in the direction of applied pressure gradient (i.e. r
yzΤ  and r

zxΤ ) are better correlated 

with the area ratio. 
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Figure 7.22 Shear stress ratios r
xyΤ and r

yzΤ versus area ratio relationship. 

 



 155

 

 

 

 

 

 

0

5

10

15

0 3 6 9 12 15

y = 0.75654 + 0.59696x   R2= 0.87357 

 A
r

T
zx

r

 

Figure 7.23 Shear stress ratio r
zxΤ  versus area ratio relationship. 
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8 CHAPTER 8 DYNAMIC FLOW SIMULATIONS IN ASPHALT 

PAVEMENTS 

8.1 VALIDATION OF LB ALGORITHMS FOR DYNAMIC (UNSTEADY) 

FLOW 

The validation of LB algorithms was performed in Chapter 4 for steady flows. In 

order to investigate the stability and accuracy of developed LB algorithms for unsteady 

flow conditions, pulsatile flow through a circular tube was simulated and compared with 

the analytical solution. The analytical solution of the velocity profile in a tube subject to 

an oscillating pressure gradient of tia
zz ePP ϖ∇=∇  is given as (McDonald, 1974); 

ti
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     (8. 34) 

where uz is the velocity in z-direction, a
zP∇  is the amplitude of the oscillating pressure 

gradient, ϖ  is the angular velocity ( fπ=ϖ 2 , where f = frequency), i is the complex 

number, R is the radius of the tube,  0J  is the Bessel function of the first kind of order 

zero, y is the normalized distance to the centerline (y=r/R, where r= distance to 

centerline), t is time and α is the dimensionless Womersley number. Womersley number 

is a non-dimensional parameter that characterizes the kinematic similarities in an 

oscillating fluid motion and given as (McDonald, 1974): 
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νϖ=α R      (8. 35) 

where ν  is the kinematic viscosity. 

The simulations were carried out by applying an oscillating pressure gradient 

through use of a body force given in Eq. 3.6, and periodic boundary conditions were 

applied in the z-direction. The amplitude of the oscillating pressure gradient ( a
zP∇ ) was 

10-8 g/mm2-s2 and the frequency was 1/6 s-1. A dynamic viscosity of 0.001 g/mm-s was 

applied to simulate the flow of water. The corresponding Womersley number of the 

simulated pulsatile flow was 9.72. Twenty lattice nodes were used along the diameter 

which provided a lattice resolution of 1 mm/pixel.  

Figure 8.1 shows the velocity profiles computed for a half cycle using analytical 

solution (straight lines) as well as the velocities computed after LB simulation (shown 

with a marker ‘+’). An excellent fit is clearly visible from Figure 8.1 indicating the 

validity of the LB method in simulating dynamic flow. It should be noted that a phase lag 

of 0.1 radians was observed between the applied pressure gradient and velocity.  

8.2 DYNAMIC FLOW SIMULATIONS IN ASPHALT PAVEMENTS 

8.2.1 Boundary Conditions 

Dynamic flow simulations were performed using similar boundary conditions that 

were applied at steady flow simulations. The boundary conditions at the solid walls and 

the domain boundaries were identical, which were described in Section 3.3. However, a 

different approach was used to trigger the flow at the inlet nodes, where a variable 

momentum influx with a shape of a half-sinusoid was applied. Past research  
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Figure 8.1 Oscillating flow through a circular tube; ‘+’ is the LB simulation, and 
straight lines are the analytical solution. 

 



 159

(Papagiannakis et al., 1996) showed that the shape of the pressure on the pavement 

caused by the tire of a moving vehicle was a half-sinus of power six (Figure 8.2). 

Therefore, the following momentum influx was applied at the inlet: 

)(0 tfUU inz =−      (8. 36) 

where inzU −  is the momentum influx at the inlet nodes, 0U  is the amplitude of the 

momentum influx and )(tf  is a function representing the shape of the pulse and given in 

Figure 8.2. Figure 8.2 illustrates two half-sinusoidal pulses with a wavelength λ and 

separated with a rest time of 2λ. The wavelength herein represents the time that tire has a 

contact with the pavement. In current simulations, the duration of tire contact (λ) was 

assumed to be 0.5 sec.  

 At inlet nodes, a momentum in z-direction was prescribed using Eq. 8.36 and the 

x- and y- direction momentum values were set to zero. Then, the density at the inlet 

nodes and the unknown components of the distribution function were computed using the 

relations given in Table 3.3. It should be recalled that these relations were derived based 

on the assumption that the bounce-back scheme is valid for the non-equilibrium part of 

the particle distribution function (Zou and He 1997). At outlet nodes, a constant pressure 

(i.e. density) was prescribed. Initially, velocities of all nodes were set to zero and 

densities were set to be same as the density prescribed at the outlet nodes. As the cycles 

of inlet momentum were applied, the density values at each node were computed and the 

resulting pressure values at each node were calculated using the equation of state (Eq. 

3.21).  
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8.2.2 Calculation of Dynamic Hydraulic Conductivity 

Frequency dependent permeability (i.e., )(ϖdK ) of porous media has been studied 

by several researchers (Sheng and Zhou 1988, Zhou and Sheng 1989 and Duarte et. al. 

1992). It was shown that for a given frequency of an oscillating pressure gradient, the 

permeability of a porous structure exhibits universal behavior and can be defined by the 

following equation (Sheng and Zhou 1988): 

)()(1)( ϖϖ
µ

ϖ ddd PKu ∇−=     (8. 37) 

where )(ϖdu is the flow velocity averaged over a cycle, )(ϖdK  is the dynamic 

permeability, )(ϖdP∇  is the applied dynamic pressure gradient and µ is the dynamic 

viscosity. Another form of Eq. 8.4 can be written for the dynamic hydraulic conductivity 

as follows: 

)()(1)( ϖϖ
γ

ϖ dd

eff

d

n
Pku ∇−=     (8. 38) 

where )(ϖdk  is the dynamic hydraulic conductivity, γ  is the unit weight of the fluid and 

effn is the effective porosity. Applying an oscillating pressure gradient in z-direction and 

keeping the pressure gradients in x- and y- directions equal to zero reveals the following 

equations for the shear and normal components of the dynamic hydraulic conductivity in 

z-direction:  

d
xzk = - γ neff ( d

xu  / d
zP∇ )   (8. 39) 
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Figure 8.2 The function representing the shape of the momentum influx applied in 
dynamic LB simulations. 
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d
yzk = - γ neff ( d

yu / d
zP∇ )   (8. 40) 

d
zzk = - γ neff ( d

zu / d
zP∇ )   (8. 41) 

where d
zP∇ is the mean pressure gradient and d

xu , d
yu , and  d

zu are the mean velocities in 

x-, y- and z-directions, respectively. The mean pressure gradient used in the dynamic 

hydraulic conductivity equations ( d
zP∇ ) was computed by subtracting outlet pressure at 

the outlet nodes (a pre-set boundary condition) from the inlet pressure observed at the 

peak of a cycle at the inlet nodes and dividing by the entire length of the specimen. 

Selection of an appropriate mean velocity was somewhat difficult because there was a 

phase lag between the applied pulse pressure and the resulting velocity. There were also 

phase lags (or delays) as the fluid travels through the deeper parts of the specimen, i.e., 

beginning and the end of cycles at different depths were not necessarily the same as the 

inlet nodes. Selection of one particular time instant and computing average velocities at 

each depth was not realistic because the peak average velocities at different depths 

occurred at different time instances. Therefore, a set of mean velocities occurred at the 

peak of cycles observed in different depths was computed, and then average of these 

mean velocities was used in the hydraulic conductivity equation.  

8.2.3 Results of Simulations 

8.2.3.1 Effect of Amplitude of Pressure Gradient 

In order to investigate the universal behavior of dynamic hydraulic conductivity at 

a given wavelength (i.e., frequency), a set of simulations were performed by keeping the 
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wavelength constant and varying the amplitude of the pressure gradient. Figure 8.3 shows 

the change in velocity and dynamic hydraulic conductivity over time steps of the 

simulations. It is visible that the mean velocity increases sharply as the pressure gradient 

increased. However, the dynamic hydraulic conductivities collapse on a single curve 

independent of the applied pressure gradient, confirming its universal behavior. The 

universal behavior of the dynamic permeability of the porous media was also shown by 

Sheng and Zhou (1988). 

8.2.3.2 Effect of Wavelength of Pressure Gradient on the Dynamic Hydraulic 

Conductivity  

It was shown in previous section that the dynamic hydraulic conductivity exhibits 

universal behavior at a given wavelength independent of the magnitude of the applied 

pressure gradient. A set simulations was performed at different wavelengths to 

investigate the effect of wavelengths on the magnitude of the dynamic hydraulic 

conductivity. Three different asphalt specimens were analyzed at wavelengths ranging 

from 0.2 sec/cycle to 32 sec/cycle. Corresponding Womersley numbers ranged from 1.3 

to 15.5. In order to calculate the Womersley number using Eq. 8.2, a characteristic radius 

(i.e., R) was needed. This radius was computed using the minimum pore cross sectional 

area ( minA ) as follows: 

π= minAR      (8. 42) 

Figure 8.4a shows the variation of dynamic hydraulic conductivity at different 

wavelengths. It is visible from the figure that the dynamic hydraulic conductivity 

increases with increasing wavelength. The logarithmic best fit lines produced excellent  
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Figure 8.3 (a) Velocities and (b) dynamic hydraulic conductivities computed at 
different pressure gradient amplitudes. 
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fits with R2 ranging from 0.981 to 0.999. Therefore, the hydraulic conductivity of a 

specimen at any desired wavelength can be computed by using these regression 

equations. Figure 8.4b shows the relation between the dynamic hydraulic conductivity 

and the Womersley number, where the hydraulic conductivity decreases with increasing 

Womersley number. It can be seen from the Eq. 8.2 that the Womersley number is 

directly related to the angular velocity ( ϖ ) which is inversely proportional to the 

wavelength. Therefore, the Figures 8.4a and 8.4b are identical; however, both of them 

were shown in here to present the range of wavelengths and Womersley numbers used. 

The numerical analysis of Sheng and Zhou (1988) on uniformly packed beads also 

showed a decrease in dynamic permeability with increasing angular velocity (i.e., 

increasing Womersley number); however, the rate of decrease in dynamic permeability in 

their analysis was larger than that observed in the current study. Relatively low rate of 

change of dynamic hydraulic conductivity in asphalt specimens was attributed to their 

pore structure variation where the porosity decreases with depth. Therefore, the impact of 

different frequencies of pressure at the inlet could have probably been dissipated at the 

surface, and relatively less dynamic effects were observed at greater depths within the 

specimens. As a result, the dynamic hydraulic conductivity of overall specimen was not 

significantly affected by the change in frequency. 

8.2.3.3 Dynamic Hydraulic Conductivities versus (steady) Hydraulic Conductivity 

Relationship 

Figure 8.5 shows the relationship between the dynamic hydraulic conductivities 

computed from dynamic flow simulations and hydraulic conductivities computed after a 

steady state flow. The observed trend is that the dynamic hydraulic conductivity increases  
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with increasing (steady) hydraulic conductivity. The points in the Figure 8.5 scatter 

around the line of equality indicating that the dynamic and steady hydraulic 

conductivities are relatively close. However, it may be difficult to quantitatively predict 

one from the other, as there is a wide variability in the data. Relatively less difference 

between the dynamic and steady hydraulic conductivities was expected due to the reasons 

described in the previous subsection, where the dynamic effects are usually confined to 

the surface of the pavements and less influence was observed on the overall hydraulic 

conductivity. 

8.2.3.4 Comparison of Pressure Gradients in Steady and Dynamic Flow Conditions  

In the previous chapter, it was shown that for a constant pressure difference 

between two ends of a specimen, which provides a steady-state flow, local pressure 

gradients at the constriction zones were much higher than the overall average pressure 

gradient. In order to investigate the change in the shape of the pressure gradient during an 

unsteady flow, the dynamic flow simulations were carried out so that the amplitude of the 

pressure at the inlet is the same as the inlet pressure applied during the steady flow 

simulations. The outlet pressures were also set to be equal for dynamic and steady flow 

cases. Figure 8.6a is given as an example to show the pressure gradient variation in z-

direction at the peak of a cycle for specimen 9.5SMA-B2. Figure 8.6a also includes the 

pressure gradient variation during the steady-state flow in the same specimen. The 

pressure gradient versus depth relationship for the steady and dynamic flow cases are 

given in Appendix H for the rest of the specimens. Figure 8.6a indicates that, in general, 

the pressure gradient curves of dynamic and steady flow conditions are similar in shape. 

However, the pressure gradient observed in dynamic flow at the surface is higher than  
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Figure 8.6 (a) Pressure gradient and (b) uz versus depth relationships of specimen 9.5SMA-B2. 



 170

that of steady flow and the difference decreases with increasing depth. This phenomenon 

supports the argument explained in the previous subsections, where dynamic effects were 

limited to the surface of the pavements due to the decreasing porosity with depth and 

possible constrictions in the mid-zone. This can easily be visualized by an analogy with a 

funnel filled with glass beads, where the pore area decreases with depth. In this case a 

dynamic fluid pressure at the surface will be dissipated and become relatively steady as it 

travels towards the constriction of the funnel, limiting the dynamic effects only to the 

surface. Similar observations can be made on the pressure gradient versus depth plots of 

other asphalt specimens (Appendix H), where the dynamic conditions produce higher 

pressure gradients in the upper parts ranging from top 10 to top 40 mm in different 

specimens. The impact of higher pressure gradient at the upper parts in case of dynamic 

flow is clearly shown in Figure 8.6b, where dynamic velocity in z-direction is much 

higher at the upper parts. This can cause higher shear stresses near the surface which 

were discussed in the next section. 

 The difference in the pressure gradients at the surface for dynamic and steady flow 

cases can be seen for different specimens in Figure 8.7. The pressure gradient at the 

surface is one to three orders of magnitude higher for the dynamic flow than that for the 

steady flow.   

8.2.3.5 Comparison of Shear Stresses in Steady and Dynamic Flow Conditions  

The variation of mean shear stress components with depth is shown in Figure 8.8 

for specimen 9.5SMA-B2 during both dynamic and steady flow. The curves for the rest 

of the specimens are available in Appendix I. Based on the indications of pressure 

gradient and velocity analyses in the previous section, high shear stresses were expected 
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Figure 8.7 Comparison of pressure gradients at surface for steady and dynamic flow 
cases.
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Figure 8.8 The comparison of shear stresses on the pore-solid interface of the internal pore structure of 9.5-SMA-B2 caused 
by the steady-state and dynamic flow conditions. 
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at the upper parts of the specimens during dynamic flow. Figure 8.8 clearly confirms 

these expectations where shear stresses observed at the surface of the specimen based on 

the dynamic flow simulations are much higher than the shear stresses during the steady 

flow. The difference is highest at the surface and decreases with depth, which also shows 

that the dynamic effects are limited to surface. Then, after approximately the same depth 

(approximately 40 mm) where the dynamic pressure gradient has fallen below steady 

pressure gradient (Figure 8.6a), the shear stresses under dynamic conditions fell below 

the shear stresses due to steady flow. Similar trend was observed in all of the specimens 

(Appendix I).  

To investigate the range of differences in viscous shear stresses due to dynamic and 

steady flow conditions, the surface shear stresses of all specimens were plotted in Figures 

8.9 and 8.10. The figures indicate that the dynamic shear stresses are one to two orders of 

magnitude higher than the steady shear stresses. The steady shear stresses at different 

specimens varies from 1.63x10-12 to 6.33 x10-11 kPa in Txy, 4.85 x10-12 to 1.76 x10-10 kPa 

in Tyz and from 4.77 x10-12 to 1.82 x10-10  kPa in Tzx, where the variation is greater than 

one order of magnitude. On the other hand, the variation in dynamic shear stresses is 

minimal, where dynamic shear stresses ranges from 3.15x10-10 to 7.10x10-10 kPa in Td
xy, 

3.50x10-10 to 6.66x10-10 kPa in Td
yz and from 3.44x10-10 to 6.40x10-10 kPa in Td

zx. This 

phenomenon can also be explained by the pore structure of the specimens where the 

porosities of the analyzed specimens at the surface were comparable. Since the dynamic 

effects were seen at the surface (as described in the previous subsections), the variation of 

surface shear stresses was minimal in different specimens due to similar pore structures at 

the surface.  
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Figure 8.9 Comparison of shear stresses at the surface caused by the steady-state and 
dynamic flow conditions: (a) Txy and (b) Tyz   
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Figure 8.10 Comparison of shear stresses at the surface caused by the 
steady-state and dynamic flow conditions  
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9 CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 

9.1 SUMMARY AND CONCLUSIONS  

Understanding fluid transport characteristics of asphalt pavements is critical in 

design life of these structures. The moisture penetrating into the pores of an asphalt 

pavement can quickly cause distresses such as frost cracks and pot holes due to the 

destruction of adhesive bond between the aggregates and the binders. Modeling fluid 

flow in these structures is challenging due to their complex pore structure. Simple 

analytical models were developed to estimate the hydraulic conductivity of these 

materials (Walsh and Brace 1984, Al-Omari et al. 2002). Derivations of these analytical 

models are usually based on the approximation of pore structure with simpler geometries, 

such as tubes and cones, and often the accuracy of these models is questionable. 

Additionally, most of these techniques do not consider pore channel shape and 

connectivity, which are critical in fluid flow modeling and the estimation of material 

hydraulic conductivity. Conversely, finite-difference and finite-element techniques can 

provide more accurate estimates of hydraulic conductivity; however, their 

implementation can be challenging, especially at the complex pore geometries such as 

asphalt pavements. There has been progress in the development of computational fluid 

dynamics methods based on cellular automata ideas to overcome these challenges. A 

relatively new method called the lattice Boltzmann (LB) has emerged as a versatile 

technique for the computational modeling of a wide variety of fluid flow problems. The 

technique is advantageous because of its ease in implementation of boundary conditions 

and the computational efficiency by allowing parallel computing. 
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Two different algorithms were developed for conducting the two- and three-

dimensional fluid flow simulations through the pores of the asphalt pavements using the 

LB technique. The accuracy of these algorithms was verified with the well-known 

analytical and theoretical solutions of simple geometries such as flow through parallel 

plates, flow past a circular cylindrical caused by a moving plate (Wannier flow) and flow 

through a circular tube (Poiseuille flow). An excellent agreement was observed between 

these solutions and the LB simulations. Furthermore, it was shown that the LB methods 

implemented herein have second order accuracy, i.e., doubling the number of lattice sites 

decreases the error four times. The performance of the three-dimensional LB model was 

further evaluated through laboratory hydraulic conductivity tests conducted on 

compacted aggregates commonly used in civil engineering construction. X-ray Computed 

Tomography and mathematical morphology-based techniques were used to analyze the 

pore structure of the aggregates and these pore structures were input into the LB model. 

A very good agreement was observed between the model predictions and the laboratory 

data where the laboratory-based hydraulic conductivities were 1.4 to 1.9 times lower than 

those predicted by the lattice Boltzmann technique. This difference was attributed to the 

difficulties associated with the application of low hydraulic gradients to keep the flow in 

laminar range and head losses due to the relatively small fittings of the traditional 

laboratory hydraulic conductivity device.  

The study of moisture transport in asphalt pavements included field cores and 

laboratory prepared specimens. Field cores were obtained from the current testing 

sections of the Accelerated Loading Facility (ALF) at the Turner-Fairbank Highway 

Research Center (TFHRC) of Federal Highway Administration (FHWA). The laboratory 
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specimens were fabricated to study a number of mixture variables that are likely to affect 

the pore structure. The selected variables included NMAS (Nominal Maximum 

Aggregate Size), compaction energy (number of gyrations in the gyratory compactor) and 

gradation shape. Three dimensional pore geometries of the asphalt specimens were 

obtained using X-ray Computed Tomography (CT) technique. X-ray CT is a 

nondestructive technique for visualizing features in the interior of opaque solid objects to 

obtain digital information on their 3-D geometry. The geometrical parameters of the 

specimens; i.e. porosity, pore connectivity, specific surface area and tortuosity were 

determined using different image analysis algorithms developed in Matlab. The relation 

of the pore structure and asphalt mix design parameters to the laboratory measured 

unidirectional hydraulic conductivity was investigated. A state-of-the-art flexible-wall 

permeameter, “Bubble Tube Constant Head Permeameter”, was utilized for measuring 

hydraulic conductivity of the asphalt specimens.  

Laboratory based validation of the LB model on asphalt specimens was done 

through performing various LB fluid flow simulations on different specimens, by 

assigning appropriate boundary conditions to simulate the laboratory hydraulic 

conductivity test (i.e., membrane confinement and inlet and outlet pressure conditions). 

Three-dimensional interconnected pore structures of the asphalt specimens, acquired 

using X-ray CT technique and processed through the PORECON algorithm, were used as 

an input to the LB model. A highly good agreement was observed between the LB results 

and laboratory based hydraulic conductivity measurements.  

All nine components of the hydraulic conductivity tensor for each specimen were 

computed after a separate set of simulations to study the directional hydraulic 
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conductivity of asphalt pavements. The magnitudes of the hydraulic conductivities in 

different directions were compared to study the isotropy of the asphalt specimens. Effect 

of pore constrictions on the hydraulic conductivities in different directions was analyzed. 

The shear stress and pore pressure distributions were computed for each direction and 

their relation to the constriction areas was investigated. Furthermore, the hydraulic 

conductivity variation at different depths of the asphalt pavements was studied.  

To study the effects of dynamic vehicle loading on the flow of water in the pore 

structure of asphalt pavements, unsteady flow simulations were performed. Pulse-shaped 

inlet boundary conditions were assigned to simulate the dynamic tire loading on the 

asphalt pavements. Dynamic hydraulic conductivities were computed as a result of 

unsteady flow and compared to the steady hydraulic conductivities.  Pore pressure and 

shear stress distribution due to dynamic flow was computed and compared to their 

corresponding values under steady conditions.  

The following conclusions were reached as a result of the activities performed: 

1. The analyses revealed that the pores are segregated at the top and bottom of the 

asphalt pavements, where much higher porosities were observed at these locations as 

compared to the porosities in the mid-depths.  In specimens with coarse and fine 

graded aggregate gradation, the surface porosities were comparable; however, mid-

depth porosities of the fine graded specimen were less than that of coarse graded 

specimens. The porosity variation with depth in field cores was similar to the trends 

observed in coarse graded specimens. The trends were similar for the SMA specimens; 

however, much higher porosities were observed in both mid-zone and at the top and 

bottom. On the other hand, porosity variation in radial direction was minimal in most 
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of the specimens, indicating less variability in lateral direction. Furthermore, lower 

porosities were observed in the specimens compacted at higher number of gyrations.  

2. Comparison of the laboratory based hydraulic conductivities to the pore structure 

parameters (i.e., total porosity, effective porosity, normalized specific surface area and 

tortuosity) revealed that, even though the trends in general are meaningful and 

comparable with previous studies, clear cut relationships between the individual 

parameters and the hydraulic conductivity are not visible. A trend was not visible 

when the hydraulic conductivities were compared to the mixture parameters such as 

NMAS and compaction effort (number of gyrations). On the other hand, a relatively 

good relationship between the amount of fines in each mixture and the hydraulic 

conductivity was observed, in which the hydraulic conductivity decreased 

exponentially as the percentage of fines increased. The trend was especially visible in 

the specimens compacted at low gyration level. Therefore, the hydraulic conductivity 

of the asphalt pavements could significantly be decreased by introducing additional 

amounts of fine graded soil in the mixture. 

3. Commonly used semi-analytical hydraulic conductivity equations for porous 

structures were evaluated by comparing their predictions to the laboratory based 

results for asphalt specimens. Results revealed that the estimations of analytical 

equations were relatively accurate at high hydraulic conductivities (i.e., kzz>1 mm/s), 

whereas, their estimations were up to two order of magnitude higher than those 

measured in the laboratory when low-hydraulic conductivity (i.e., kzz<1 mm/s) 

specimens are considered. Therefore, use of these equations is not recommended to 

estimate the hydraulic conductivity of dense graded asphalt specimens, which 
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typically have hydraulic conductivities less than 1 mm/s. However, Kozeny-Carman 

equation, which performed relatively well in predicting laboratory based hydraulic 

conductivities in highly porous SMA specimens, can be used for predicting hydraulic 

conductivities of porous asphalt pavements such as Open Graded Friction Course 

(OGFC).  

4. The three-dimensional fluid flow simulations through asphalt specimens using LB 

technique revealed accurate estimations of hydraulic conductivity. Furthermore, the 

simulations were able to produce exact flow pathways as well as the pore pressure 

distributions, which could be used by the engineers designing structures with complex 

pore geometries. The presented models can also provide accurate values of velocities 

and shear stresses during fluid flow in the pore channels. It is believed that the 

techniques implemented herein can be useful in developing future micro- and nano-

scale fluid flow models. 

5. Analysis of hydraulic conductivity tensor of the asphalt pavements revealed that 

the horizontal hydraulic conductivities (i.e., kxx and kyy) were up to two orders of 

magnitude higher than the vertical hydraulic conductivity (i.e., kzz). Whereas, the 

hydraulic conductivities in two horizontal directions (i.e., kxx and kyy) were comparable 

within a 50% confidence interval. It should be noted that this characteristic was 

observed in both laboratory compacted specimens and the field cores. These 

observations indicated that the asphalt pavements are isotropic comparing two 

horizontal directions (x- and y-directions) and anisotropic comparing horizontal and 

vertical directions. This property of asphalt specimens explains the differences 

encountered while comparing laboratory based and field measured hydraulic 
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conductivities of the asphalt pavements, where it is usually assumed that laboratory 

based unidirectional hydraulic conductivity is constant in all directions. However, 

higher hydraulic conductivities in the horizontal directions can quickly cause the water 

to flow in the horizontal direction during a field hydraulic conductivity test leading to 

false measurements. Unfortunately, current field hydraulic conductivity measurement 

methodologies do not account for this effect. Therefore, it is strongly recommended 

that a new field testing standard be developed. 

6. The degree of relationship between the minimum porosity and hydraulic 

conductivity varied in different directions. Relatively good relationship was observed 

when the minimum porosity in z-direction ( znmin ) was plotted against the hydraulic 

conductivity in the same direction. Therefore, znmin  could be used by the field 

engineers to predict the hydraulic conductivity in z- direction based on the regression 

lines produced in this study. Minimum porosity in z-direction can be approximated by 

cutting the specimens into layers and measuring the porosity in the mid-zones. On the 

other hand, the degrees of correlation between the horizontal hydraulic conductivities 

(i.e., kxx and kyy) and the minimum porosities in the two horizontal directions (i.e., xnmin  

and ynmin ) were much lower. This phenomenon was attributed to the differences in the 

pore structure variation in different directions, where there is usually one zone where 

the PCSA is minimal in z-direction. The constriction controlling the hydraulic 

conductivity in that direction most likely located at this particular zone. However, in 

x- and y- directions, low PCSAs may be observed at different locations where 

different constrictions might be located. Therefore, it is difficult to relate the hydraulic 

conductivity in x- and y-directions to one single variable. 
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7. The analysis of hydraulic conductivity at different depths revealed a rapid 

decrease in the hydraulic conductivity as the analysis depth was increased. In most of 

the specimens, the decrease was one order of magnitude when the analysis depth was 

doubled. The specimens compacted at higher compaction effort (i.e. higher number of 

gyrations) generally exhibited a more rapid decrease in hydraulic conductivity than 

those prepared with lower compaction effort. It can be concluded that increasing the 

compaction effort in the field can significantly reduce the depth to which the water can 

penetrate, thus limit the possible moisture damage only to the surface of the pavement 

8. It was observed during LB fluid flow simulations that the number of time steps 

required for a steady-state flow condition varies from 1000 to 150000 in different 

specimens. Generally, the specimens with less angular pore space reached to a steady 

state flow faster. The researchers using LB method can reduce their computation time 

by smoothing the surfaces of the solid boundaries within their domain.  

9. LB simulations revealed that when a constant pressure difference was applied 

between the inlet and the outlet of the asphalt specimens, a linear decrease in pressure 

was not observed, therefore, the pressure gradient was not constant. The pressure 

gradient varied greatly in different specimens depending on the existence of a pore 

constriction. The local pressure gradients at constrictions were up to one order of 

magnitude higher than the average pressure gradient, which created very high 

velocities at these locations. Two ratios, i.e., pressure gradient ratio ( rP∇ ) and area 

ratio ( rA ), were defined to investigate the degree of increase in pressure gradient in 

constriction zones and relate it to the minimum area observed at the constriction. It 

was observed that the pressure gradient ratio was between 1.2 and 5 in most of the 
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specimens, indicating that the maximum pressure gradients were 1.2 to 5 times higher 

than the average pressure gradient. However, pressure gradients ratios up to 15 were 

also observed where the maximum pressure gradient is more than one order of 

magnitude higher than the overall average pressure gradient. 

10. LB simulations showed that maximum shear stresses caused by the viscous fluid 

movement occurred at the constrictions where the porosity is minimal. The ratios of 

the maximum shear stresses observed at the constrictions to the overall average shear 

stress ranged from 1 to 13, indicating the high vulnerability of these zones to moisture 

induced binder stripping. 

11. Unsteady flow simulations revealed that the dynamic hydraulic conductivities of 

asphalt specimens were relatively close to the steady hydraulic conductivities. 

However, it may be difficult to quantitatively predict one from the other, as there is a 

wide variability in the data. 

12. The pressure gradient variation with depth in dynamic and steady flow conditions 

are similar in general, except at the surface, where the pressure gradient observed in 

dynamic flow is higher than that of steady flow. The difference is highest at the 

surface and decreases with increasing depth.  

13. The shear stresses observed at the surface of the specimen based on the dynamic 

flow simulations are much higher than the shear stresses during the steady flow under 

same pressure conditions, i.e., when pressure gradient amplitude in dynamic flow is 

the same as the average pressure gradient in steady flow. It was observed that the 

dynamic shear stresses at the surface are one to two orders of magnitude higher than 
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the steady shear stresses, indicating that moisture damage is more likely to occur in the 

upper zones of the pavements. 

9.2 PRACTICAL IMPLICATIONS OF THE FINDINGS 

The practical implications of the analyses conducted for characterization of 

moisture transport in asphalt pavements are summarized as follows: 

1. Based on the pore structure analyses, it was shown that mid-depth porosity can be 

decreased by increasing compaction energy. As a result, field engineers will have 

better understanding of the effect of compaction on the pore structure. Depth versus 

hydraulic conductivity analysis also revealed that the depth of water penetration can 

be decreased by increasing compaction effort. 

2. Hydraulic conductivity of asphalt pavements in z-direction have found to be 

significantly affected by the percent fines in the mixture. Therefore, it was concluded 

that the most effective way of reducing hydraulic conductivity would be adding more 

fines in the mixture. 

3. A new hydraulic conductivity testing standard is necessary for accurate 

characterization of moisture transport, since the hydraulic conductivities in horizontal 

directions were found to be much higher than the vertical hydraulic conductivity. The 

field kxx, kyy and kzz should be measured separately using specially designed field 

devices.  

4. Empirical hydraulic conductivity equations (e.g., Kozeny-Carman) which are 

typically used for granular materials do not apply to asphalt pavements with hydraulic 

conductivities less than 1 mm/s. Because the constriction usually play a key role on 

the reduction of flow instead of the overall pore structure in those pavements. 
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Therefore, use of these analytical equations to estimate hydraulic conductivity is not 

recommended as most of the asphalt pavements include dense mix design. 

Alternatively, these equations can be used for highly porous pavements such as open 

graded friction course. 

5. Developed LB model has shown to be able to produce pore pressures and shear 

stresses at the pore solid interfaces due to both steady state and dynamic flow cases. 

This model can be used by the researchers to estimate the critical values of pore 

pressures and shear stresses in certain asphalt types. These stresses can be utilized in 

the micro-level moisture damage modeling studies similar to those conducted by 

Kringos and Scarpas (2005). 

9.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

The following research topics are recommended to succeed the activities of this 

study: 

1. Even though this study included a wide variety of different asphalt pavement 

types with different mixture parameters such as aggregate gradation, NMAS and 

compaction level, the analyses can be extended to other asphalt pavement types with 

different mix designs (e.g., recycled asphalt pavement, open  graded HMAs).  

2. Different field cores with similar mixture parameters to the laboratory prepared 

specimens can be obtained to study the variability between the laboratory compacted 

mixtures and field cores. Directional hydraulic conductivity, pressure gradients and 

shear stresses can be compared for laboratory prepared and field compacted mixtures. 

3. Field instrumentation could be made to study the dynamic flow caused by the tire 

loading. The tire loading can be applied by using a Miniature Mobile Load Simulator 
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(MMLS) for more controlled loading conditions. The instrumentation can include load 

cells and piezometer tubes placed at different depths to measure the water heads and 

pressures caused by the dynamic tire loading. Then dynamic LB simulations can be 

performed to simulate the exact boundary conditions in the MMLS and the results can 

be used for field validation of the numerical model. 

4. Since the scope of dynamic flow modeling part of this study was to conduct 

preliminary analyses to investigate the differences between the dynamic and steady 

flow cases in asphalt pavements, current dynamic LB simulations were performed 

using relatively smaller pressures than those usually encountered during a car or truck 

loading. Using high pressure levels could cause turbulent flows of very high Reynolds 

numbers and the current LB model is under development to be suitable for solving 

turbulent and two phase flows (e.g., water and air). Therefore, turbulent flow within 

the pore structure due to large pressures as well as splash and spray above pavement 

shall be studied in the future. 

5. Micro-scale pores of the asphalt pavements can be obtained by using X-ray 

Microtomography technique, which requires smaller specimens. LB fluid flow 

simulations can be performed in fine graded specimens to estimate the hydraulic 

conductivities. The measured micro-pores can also be used to calculate diffusion 

coefficient of the asphalt mastic or asphalt binder to study the micro-scale flow within 

the binder or mastic. This could aid in-depth understanding of moisture damage or 

binder stripping problem. 
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APPENDIX A CALCULATION OF UNKNOWN COMPONENTS OF 
THE DISTRIBUTION FUNCTION 

 
The following relationships are given for density and momentum: 

∑
=

=
Q

1i
Fiρ

     (A1) 

∑
=

==
Q

1i
eFvU iiρ

      (A2) 

The momentum equation (A2) can also be written in the following form for the 
D2Q9 LB model (see Figure 6): 

)FFF(FFF 763851 ++−++=xvρ      (A3) 

)FFF(FFF 874652 ++−++=yvρ     (A4) 

Inlet Nodes 
 

Unknown components at the inlet nodes can be written in terms of known 
components as follows: 
 

)FFFFFF(FFF 763429851 +++++−=++ inρ    (A5) 
 

Combining Equations A3 and A5 eliminates the unknown components and 
provides the following equations: 

in
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ρ
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[ ])FFF(2FFF
1

1
763429

)(

+++++
−

=
inx

in v
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Given the velocity or density, the other can be calculated from Equation A6. The 
nremaining unknown components of the distribution function can be found by assuming 
the bounce-back rule to be valid for non equilibrium part of the distribution function, i.e., 

eq
33

eq
11 F-FFF =− .  



 189

( )⎥⎦
⎤

⎢⎣
⎡ +−++= 222

1 2
3

2
931

9
1F yxxx

eq vvvvρ     (A7) 
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Using the relationship eq
33

eq
11 F-FFF =− : 

xvρ
3
2FF 31 +=      (A10) 

Subtracting A4 from A3 gives: 

864231 F2F2)F(F-F-F +−−=− yx vv ρρ     (A11) 

Rearranging A11 and substituting in xvρ)3/2(FF 31 =−  gives:  
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2
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Adding A4 to A3 gives: 

574231 F2F2)F(F)FF( +−−+−−=+ yx vv ρρ    (A13) 

Rearranging A13 and substituting in xvρ)3/2(FF 31 =−  gives: 
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6
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2
1FF 4275 ++−−=     (A14) 

 
Outlet Nodes 

 
Similarly, density equation (A1) at outlet no reveals: 
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)FFFFFF(FFF 851429763 +++++−=++ outρ     (A15) 

Adding Equations A15 and A3 gives: 
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Rearranging equations A10, A12, and A14 gives the following relationships at 
outlet nodes: 

xvρ
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Bottom Nodes 

 
Similarly, density equation (A1) at bottom nodes reveals: 

)FFFFFF(FFF 874319652 +++++−=++ bottomρ     (A20) 

then from A20 and A4; 
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Similar to the calculation done at inlet nodes, equilibrium distribution functions 
are: 
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then given that eq
44

eq
22 F-FFF =− : 

yvρ
3
2FF 42 +=     (A25) 

Now F6 and F5 need to be calculated.  Subtracting A4 from A3 gives: 

864231 F2F2)F(F-F-F +−−=− yx vv ρρ     (A26) 

Rearranging A26 and plugging in yvρ)3/2(FF 42 =−  gives:  

xy vv ρρ
2
1

6
1)FF(

2
1FF 3186 −+−+=     (A27) 

Adding A4 to A3 gives: 

574231 F2F2)F(F)FF( +−−+−−=+ yx vv ρρ    (A28) 

Rearranging A28 and plugging in yvρ)3/2(FF 42 =−  gives;  
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Top Nodes 
 
Density equation (A1) at top nodes reveals: 
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)FFFFFF(FFF 562319874 +++++−=++ topρ     (A30) 

then adding Equations A30 and A4 gives: 
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Rearranging Equations A25, A27, and A29 gives the following relationships at top 
nodes: 
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APPENDIX B ALGORITHMS 
 
All the algorithms given below are developed in Matlab. 
 

LB-D2Q9 ALGORITHM 
 

% two dimensional nine microscopic velocity lattice Boltzmann algorithm. Two functions 
"Fa" and "numtostr" were used apart from the build in functions of Matlab. "Fa" and 
"numtostr" are provided at the end of the algorithm. 
 
clear all 
e(1,:)=[ 1  0]; 
e(2,:)=[ 0  1]; 
e(3,:)=[-1  0]; 
e(4,:)=[ 0 -1]; 
e(5,:)=[ 1  1]; 
e(6,:)=[-1  1]; 
e(7,:)=[-1 -1]; 
e(8,:)=[ 1 -1]; 
e(9,:)=[ 0  0]; 
 
% weight factors for each direction 
Wght(1:4)=1/9; 
Wght(5:8)=1/36; 
Wght(9)  =4/9; 
 
[filename, FilePath] = uigetfile('*.*', 'Select Image ...'); 
im=imread([FilePath,filename]); 
 
clear X Neq N V U 
 
SI=size(im,1);SJ=size(im,2); 
[X(:,2) X(:,1)]=find(im); 
Iin=find(X(:,1)==1); 
Iout=find(X(:,1)==SJ); 
     
% % ----------------------------------------------- 
% % ------------------OTHER INPUTS 
result=inputdlg({'ax','ay',... 
                'Enter density at inlet nodes: ',... 
                'Enter density at outlet nodes: ',... 
                'Termination time',... 
                'Max tolerance for termination',... 
                'tao'},... 
                'OTHER INPUT','1',... 
                {'0', '0','1e-6','1e-7','550000','0.000001','1'}) 
F(1,1)=str2num(result{1});F(2,1)=str2num(result{2});  
pin=str2num(result{3}); 
pout=str2num(result{4}); 
tend=str2num(result{5}); 
TOL=str2num(result{6}); 
TAO=str2num(result{7}); 
 
 
 
L=SI-2; 
 
% dPz=pin*F(3,1); 
dPz=(1/3)*(pin-pout)/SJ; 
result=inputdlg({'Pressure gradient (dPz) in mass/(pixel2time2) 
(=density*acceleration):',... 
                 'Delta z (dz) :',... 
                 'Unit weight of water (gamma) in g/(mm2sec2) :',... 
                 'Kinematic Viscosity (mm^2/sec):',... 
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                 'Total area of specimen (A) in (pixel^2) :'},... 
                 'Input for permeability calculation ...',1,... 
                 {num2str(dPz),'1','9.81','1',num2str(L)}) 
    
dPz=str2num(result{1});                   
dz=str2num(result{2});  
gamma=str2num(result{3}); 
visc_k_w=str2num(result{4});  
L=str2num(result{5});  
 
 
 
 
fid=fopen([FilePath '\Input-' filename '.txt'],'w'); 
fprintf(fid,'%-50s \n', ['Simulation of Fluid Flow Using Lattice Boltzmann Equation']); 
fprintf(fid,'%-50s \n', ['Type:D2Q9 Lattice']); 
fprintf(fid,'%-50s \n', ['Program By: Muhammed Emin Kutay']);  
fprintf(fid,'%-50s \n', ['----------------------------------------------------------']); 
fprintf(fid,'%-35s %20s \n', 'Simulation Date: ', date); 
fprintf(fid,'%-35s %20s \n', 'Description: ', FilePath); 
fprintf(fid,'%-35s %20s \n', 'Image Name:', filename); 
fprintf(fid,'%-35s %20s \n', 'Image size in x direction :', num2str(SI)); 
fprintf(fid,'%-35s %20s \n', 'Image size in y direction :', num2str(SJ)); 
fprintf(fid,'%-35s %20s \n', 'Inlet Density : ', num2str(pin)); 
fprintf(fid,'%-35s %20s \n', 'Outlet Density: ', num2str(pout)); 
fprintf(fid,'%-35s %30s \n', 'Acceleration body force vector:',['[' num2str(F') ']' ]); 
fprintf(fid,'%-35s %20s \n', 'Termination time: ', num2str(tend)); 
fprintf(fid,'%-35s %20s \n', 'Max tolerance for termination: ', num2str(TOL)  ); 
fprintf(fid,'%-35s %20s \n', 'TAO: ', num2str(TAO)  ); 
fclose(fid); 
 
 
tic 
for i=1:8 
i     
Xp=[X(:,1)-e(i,1) X(:,2)-e(i,2)]; 
 
[C, IA, IB]=intersect(X, Xp,'rows'); 
 
[C, Io]=setdiff(Xp, X,'rows'); %in Xp but not in X 
 
 fid=fopen([FilePath '\IA-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IA, 'double'); 
 fclose(fid); 
  
  fid=fopen([FilePath '\IB-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IB, 'double'); 
 fclose(fid); 
  
  fid=fopen([FilePath '\Io-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, Io, 'double'); 
 fclose(fid); 
  
El_Time_Ind=toc 
end 
clear C IA IB Io 
 
 
for i=1:8 
   i  
 fid=fopen([FilePath '\IA-' num2str(i) '.bin'],'r'); 
 IA(i).v=fread(fid, 'double'); 
 fclose(fid); 
  
  fid=fopen([FilePath '\IB-' num2str(i) '.bin'],'r'); 
 IB(i).v=fread(fid, 'double'); 
 fclose(fid); 
  
  fid=fopen([FilePath '\Io-' num2str(i) '.bin'],'r'); 
 Io(i).v=fread(fid, 'double'); 
 fclose(fid); 
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end 
t=1; 
p=pin-(pin-pout)/(SJ)*X(:,1) 
% dPz=pin*F(3,1); 
Lp=size(p,1)/SJ; 
dPz=(1/3)*(pin-pout)/SJ; 
Ones41=ones(4,1); 
Ones4sp=ones(4,size(p,1)); 
Ons31=ones(3,1); 
% % break 
visc_k_l=(2*TAO-1)/6; 
dt=dz^2*(visc_k_l)/(visc_k_w); 
gamma=gamma*dz^2*dt^2; 
while t < tend%------------------------------------------------------------------------- 
 
 %**************************Beginning of propogation ************** 
 
 if t==1 
        Neq(:,1:4 )=1/9*(p*ones(1,4));  
        Neq(:,5:8)=1/36*(p*ones(1,4)); 
        Neq(:,9)  =4/9 *p; 
         
        N=Neq; 
%         U=Neq*zeros(9,2); 
%         V(:,1)=U(:,1)./p;  
%         V(:,2)=U(:,2)./p;  
    end 
     
 for a=1:8 
%         BF=3*Wght(a)*p(IA(a).v)*(e(a,:)*F); 
%         BF=3*Wght(a)*p(IA(a).v).*(e(a,:)*F-
V(IA(a).v,:)*F+3*(V(IA(a).v,:)*e(a,:)').*(e(a,:)*F)); 
        N(IB(a).v,a)=N(IA(a).v,a)-1/TAO*(N(IA(a).v,a)-Neq(IA(a).v,a)) + 
3*Wght(a)*p(IA(a).v)*(e(a,:)*F);%BF; 
         
%         BF_w=3*Wght(Fa(a))*p(Io(a).v)*(e(Fa(a),:)*F); 
%         BF_w=3*Wght(Fa(a))*p(Io(a).v).*(e(Fa(a),:)*F-
V(Io(a).v,:)*F+3*(V(Io(a).v,:)*e(Fa(a),:)').*(e(Fa(a),:)*F)); 
        N(Io(a).v,a)=N(Io(a).v,Fa(a))-1/TAO*(N(Io(a).v,Fa(a))-Neq(Io(a).v,Fa(a)))+ 
3*Wght(Fa(a))*p(Io(a).v)*(e(Fa(a),:)*F);%BF_w;   
         
    end 
    N(:,9)=N(:,9)-1/TAO*(N(:,9)-Neq(:,9)); 
     
    %Density 
    p(:,1)=sum(N,2); 
     
     %%Velocities 
    U=(N*e); 
    V(:,1)=U(:,1)./p;  
    V(:,2)=U(:,2)./p; 
     
     %Boundary conditions Zou and He (1997) 
    p(Iin,1)=pin; 
    p(Iout,1)=pout; 
     
 %-----------Calculate velocity at the inlet and the outlet nodes---- 
 V(Iin,2)=0;   
    V(Iout,2)=0; %set uy=0 
 %---For Inlet  
 Ia1=[9,2,4]'; 
 Ia2=[3,6,7]'; 
  
 V(Iin,1)=1-(N(Iin,Ia1)*Ons31+2*(N(Iin,Ia2)*Ons31))/pin; 
 %---For Outlet 
 Ia2=[1,5,8]'; 
 V(Iout,1)=-1+(N(Iout,Ia1)*Ons31+2*(N(Iout,Ia2)*Ons31))/pout; 
 %------------Calculate missing components of the distribution function 
     
    N(Iin,1)= N(Iin,3)+(2/3)*pin*V(Iin,1); 
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    N(Iin,5)= N(Iin,7)-(1/2)*(N(Iin,2)- N(Iin,4))+(1/6)*pin*V(Iin,1); 
    N(Iin,8)= N(Iin,6)+(1/2)*(N(Iin,2)- N(Iin,4))+(1/6)*pin*V(Iin,1); 
     
    N(Iout,3)= N(Iout,1)-(2/3)*pout*V(Iout,1); 
    N(Iout,7)= N(Iout,5)+(1/2)*(N(Iout,2)- N(Iout,4))-(1/6)*pout*V(Iout,1); 
    N(Iout,6)= N(Iout,8)-(1/2)*(N(Iout,2)- N(Iout,4))-(1/6)*pout*V(Iout,1); 
     
     
     
    %Calculate new Neq 
    Neq=Neq'; 
    U(:,1)=V(:,1).*p;  
    U(:,2)=V(:,2).*p;  
     
 Neq(1:4,:) =1/9*((Ones41*p')+3*e(1:4,:)*U'+9/2*(e(1:4,:)*U').^2-
3/2*(Ones41*sum(U.*U,2)')); 
    Neq(5:8,:)=1/36*((Ones41*p')+3*e(5:8,:)*U'+9/2*(e(5:8,:)*U').^2-
3/2*(Ones41*sum(U.*U,2)')); 
    Neq(9,:)  =4/9*(p'-3/2*sum(U.*U,2)'); 
 
 Neq(1:4,:) =1/9*(Ones4sp+3*e(1:4,:)*V'+9/2*(e(1:4,:)*V').^2-
3/2*(Ones41*sum(V.*V,2)')); 
 Neq(5:8,:)=1/36*(Ones4sp+3*e(5:8,:)*V'+9/2*(e(5:8,:)*V').^2-
3/2*(Ones41*sum(V.*V,2)')); 
 Neq(9,:)  =4/9*(1-3/2*sum(V.*V,2)'); 
 
      Neq=Neq.*(ones(9,1)*p');      
%   
     
%     %%Neq fom Munk 
%   Neq(1:4,:) =1/9*((Ones41*p')+3*e(1:4,:)*U'); 
%   Neq(5:8,:)=1/36*((Ones41*p')+3*e(5:8,:)*U'); 
%   Neq(9,:)  =4/9*p'; 
          
    Neq=Neq'; 
 
    pause (0.0001) 
    t=t+1; 
   
%-----------------------------------END OF MAIN CALCULATIONS-----------------------------
---- 
\ 
 
%-------Plot graphs------------- 
 if t/50==round(t/50) 
          disp(['t= ' num2str(t) ' , el_time per step= ' num2str(toc) ' sec'])  
          tic 
%        V2=U/mean(p); 
        Kint2=mean(U(:,1))/(6*dPz); 
        k2=(1/visc_k_l)*(9.81e3)*(dt)*Kint2*(Lp/L); 
%       permeability from flowrate 
  Utot=norm(mean(U)); 
        Q=Utot/mean(p)*Lp; 
        k3=Q/L*gamma/dPz * (dz/dt); 
         
        fid=fopen([FilePath '\Vav.txt'],'a'); 
  fprintf(fid,'%6.0f %12.3e %12.3e \n',[t, mean(U/mean(p))]); 
  fclose(fid); 
         
        fid=fopen([FilePath '\k.txt'],'a'); 
  fprintf(fid,'%6.0f %12.6e %12.6e %12.6e\n',[t k2 k3 Kint2]'); 
  fclose(fid); 
         
       figure(1) 
%      subplot(2,1,1), plot(t,mean(U(:,1)/mean(p)),'.'), hold on,title('Vx (pixel/time)') 

subplot(2,1,1),plot(t,k2,'r+',t,k3,'kx'), hold on, title('k (mm/s)'), 
legend('k2=6*(9.81e3)*(dt)*Kint2*(Lp/L)','k3=Q/L*gamma/dPz*(dz/dt)') 

       subplot(2,1,2), plot(t,Kint2,'r.'), hold on,title('K (pixel^2)') 
    end 
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    if round(t/50)==t/50 
%        save([FilePath '\data']) 
%    for j=1:size(X,1) 
%    P(X(j,2),X(j,1))=p(j); 
% %    Vy(X(j,2),X(j,1))=V(j,2); 
% %    Vx(X(j,2),X(j,1))=V(j,1); 
%    end 
%    close (figure(2)) 
%    figure(2), subplot(2,1,1),contourf(P,20),title(['P, time= ' 
num2str(t)]), axis ij 
%             saveas(gcf,[FilePath 'P-' numtostr(t) '.bmp'],'bmp') 
%              
         figure(2) 
        visc_d_l=mean(p)*visc_k_l; 
        W=size(Iin,1); 
        z=[0.5:W-.5]'; 
        Vanal=dPz/(2*visc_d_l)*z.*(W-z); 
        Vlb=U(Iin,1)/mean(p); 
        Perc_Err=mean(abs(Vlb-Vanal)./Vanal*100); 
%       C_err=[C_err; [t,Perc_Err]] 
        subplot(2,1,1),plot(t,Perc_Err,'g.'),title('Average Percent Error'), hold on 
        subplot(2,1,2),plot(Vanal,'b-'),hold on, 
        subplot(2,1,2),plot(Vlb,'b.:'),   
        legend('Analytical', 'Lattice Boltzmann'), hold on 
         
         
        fid=fopen([FilePath '\TAO-' numtostr(TAO) '.txt'],'a'); 
  fprintf(fid,'%6.0f %12.6e \n',[t Perc_Err]'); 
  fclose(fid); 
 
     end 
end  
 
function nega=Fa(a) 
switch a 
     
case 1 
    nega=3; 
case 2 
    nega=4; 
case 3 
    nega=1; 
case 4 
    nega=2; 
case 5 
    nega=7; 
case 6 
    nega=8; 
case 7 
    nega=5; 
case 8 
    nega=6; 
    case 9 
    nega=9; 
end 
 
function j=NumToStr(n) 
 
if n<10, j=['00' num2str(n)];, end 
if n>=10, j=['0' num2str(n)];, end 
if n>=100, j=num2str(n);, end 
 

LB-D3Q19 ALGORITHM 

 
clear all 
cwd=pwd; 
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% cd('G:') 
 
% % directional velocity vectors 
e(1,:)=[ 1  0  0]; 
e(2,:)=[-1  0  0]; 
e(3,:)=[ 0  1  0]; 
e(4,:)=[ 0 -1  0]; 
e(5,:)=[ 0  0  1]; 
e(6,:)=[ 0  0 -1]; 
e(7,:)=[ 1  1  0]; 
e(8,:)=[-1  1  0]; 
e(9,:)=[-1 -1  0]; 
e(10,:)=[1 -1  0]; 
e(11,:)=[ 1  0  1]; 
e(12,:)=[ 1  0 -1]; 
e(13,:)=[-1  0 -1]; 
e(14,:)=[-1  0  1]; 
e(15,:)=[ 0  1  1]; 
e(16,:)=[ 0  1 -1]; 
e(17,:)=[ 0 -1 -1]; 
e(18,:)=[ 0 -1  1]; 
e(19,:)=[ 0  0  0]; 
 
% % weight factors for each direction 
Wght(1:6)=1/18; 
Wght(7:18)=1/36; 
Wght(19)  =1/3; 
 
%------------------load image data 
[filename, FilePath] = uigetfile('*.*', 'Select First Image to open ...'); 
im=imread([FilePath,filename]); 
cd(cwd); 
ImgBaseName=filename(1:size(filename,2)-7); 
Ext=filename(size(filename,2)-3:size(filename,2)); 
tifs=dir([FilePath '*' Ext]); 
result=inputdlg({'Image Base Name: ', ... 
                'Extension', ... 
                'First image number to start: ',... 
                ['Number of Files (Total ' num2str(size(tifs,1)) ' files)'],... 
                'Output folder:'},... 
                'Input Image Information ',1,... 
                {ImgBaseName,Ext,'1',num2str(size(tifs,1)), FilePath,}) 
ImgBaseName=result{1}; 
Ext=result{2}; 
StartImage=str2num(result{3}); 
NumFiles=str2num(result{4}); 
fldout=result{5}; 
clear tifs 
 
% % R=5;%mm 
res=inputdlg({'Enter the resolution, dz (mm/pixel)','Pressure Gradient, dPz 
(g/(mm2s2))','Tao'},... 
            'Resolution',1,{'0.4','1e-6','1'}); 
 
dz=str2num(res{1});%mm/pixel 
dPz_w=str2num(res{2});%g/(mm2s2) 
tao=str2num(res{3}); 
 
 
clear p N Neq V U  
EndImage=NumFiles+StartImage-1; 
cancelButton=0; 
h = waitbar(0,' ', ... 
    'Position',[ 243   343   270    93],... 
    'Name','Finding Indices...',... 
    'CreateCancelBtn','cancelButton = 1;closereq;' ); 
for k=StartImage:EndImage 
Z=k-(StartImage)+1; 
waitbar((Z)/NumFiles,h,['Reading Images, image ' num2str(Z) ' of ' num2str(NumFiles)]);if 
cancelButton==1, break, end 
im(:,:,Z)=imread([FilePath ImgBaseName NumToStr(k) Ext]); 
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pause (0.0001) 
end 
close(h) 
X=findn(im); 
SI=size(im,1);SJ=size(im,2); 
% Ai=squeeze(sum(sum(double(im)/max(max(max(double(im))))))); 
disp('Will Start in 2 sec') 
pause(2) 
tic 
[IA, IB, Io]=find_ind_n3(X,e,FilePath,SI,SJ,NumFiles); 
% [IA, IB, Io]=find_ind_n3_periodic(X,e,FilePath,SI,SJ,NumFiles);%may take longer time to 
run 
toc 
save([FilePath '\LBdata-DensityGrad']) 
 
%      
Iin=find(X(:,3)==1); 
Iout=find(X(:,3)==NumFiles); 
 
SK=NumFiles; 
% % I1=find(X(find(X(:,3)==1),2)==SJ/2); 
% % I10=intersect(find(X(:,3)==.1*SK),find(X(:,2)==round(SJ/2))); 
% % I20=intersect(find(X(:,3)==.2*SK),find(X(:,2)==SJ/2)); 
% % I30=intersect(find(X(:,3)==.4*SK),find(X(:,2)==SJ/2)); 
% % I40=intersect(find(X(:,3)==.7*SK),find(X(:,2)==SJ/2)); 
% % I50=intersect(find(X(:,3)==.9*SK),find(X(:,2)==SJ/2)); 
t=1; 
Ones61=ones(6,1); 
Ones121=ones(12,1); 
 
 
 
p_w=0.001;%g/mm3 
v_w=1;%mm2/s 
mu_w=0.001;%g/mm-s 
grav_accel=9.81e3;%mm/s2 
 
% % D_w=2*R; 
% % D_l=D_w/dz; 
p_l=p_w*dz^3 
v_l=(2*tao-1)/6; 
mu_l=v_l*p_l; 
dt=v_l*dz^2/v_w; 
dPz_l=dPz_w*dz^2*dt^2; 
gamma_w=p_w*grav_accel; 
 
pin=1.5*NumFiles*dPz_l+p_l 
pout=p_l-1.5*NumFiles*dPz_l 
 
F(3,1)=0;%dPz_l/p_l; 
 
% % f_w=1;%1/sec 
% % f_l=f_w*dt;%1/time 
 
% p(Iout,1)=p_l; 
 
p=pin-(pin-pout)/(NumFiles-1)*(X(:,3)-1); 
Neq(:,1:19 )=p*ones(1,19);  
clear X im 
 
tend=1e6; 
writetodisk%---------- 
tic 
c1=1/4; 
c2=1/6; 
 
Porosity=size(p,1)*dz^3/(pi*150^2/4*(SK*dz)) 
 
% % % % Amp=0.22988; 
% try 
% % % alfa=R/dz*sqrt(2*pi*f_l/v_l); 
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% % % aviobj = avifile([FilePath '-Re-' num2str(Re) '-alfa- ' num2str(alfa) ,'-A- ' 
num2str(Amp) '.avi']) 
% % % aviobj.Quality=100; aviobj.Compression='Cinepak' 
while t<tend 
     
 
% F(3,1)=Fmean*(1+Amp*cos(2*pi*f_l*(t-1))); 
 
%------------------------------------BEGINNING OF MAIN CALCULATIONS----------------------
--------     
 if t==1 
        V(Iin,1:2)=0; 
        V(Iin,3)=0;%*(1+Amp*sin(2*pi*f_l*(t-1))); 
        V(Iout,1:2)=0; 
        V(:,3)=0;%mean(Vpos_l);%Vin_l_av; 
         
  Neq=Neq'; 
  U(:,1)=V(:,1).*p;  
  U(:,2)=V(:,2).*p;  
  U(:,3)=V(:,3).*p; 
   
        Neq(1:6,:) =1/18*((Ones61*p')+3*ndmtimes(e(1:6,:), U')+... 
               9/2*ndmtimes(e(1:6,:), U').^2-... 
               3/2*(Ones61*sum(U.*U,2)')); 
            
  Neq(7:18,:)=1/36*((Ones121*p')+3*ndmtimes(e(7:18,:), U')+... 
               9/2*ndmtimes(e(7:18,:), U').^2-... 
               3/2*(Ones121*sum(U.*U,2)')); 
            
  Neq(19,:)  =1/3*(p'-3/2*sum(U.*U,2)'); 
        Neq=Neq'; 
        N=Neq; 
 
 end 
  
 for a=1:18 
%     N(IB(a).v,a)=Neq(IA(a).v,a) ; 
 N(IB(a).v,a)=N(IA(a).v,a)-1/tao*(N(IA(a).v,a)-Neq(IA(a).v,a))... 
                +3*Wght(a)*p(IA(a).v)*(e(a,:)*F); 
 
%     N(Io(a).v,a)=Neq(Io(a).v,Fa3D(a)); 
    N(Io(a).v,a)=N(Io(a).v,Fa3D(a))-1/tao*(N(Io(a).v,Fa3D(a))-Neq(Io(a).v,Fa3D(a)))... 
                +3*Wght(Fa3D(a))*p(Io(a).v)*(e((a),:)*F); 
 
    end 
    N(:,19)=Neq(:,19); 
     
    %Density 
    p(:,1)=sum(N,2); 
 
    %%Velocities 
    U=(N*e); 
    V(:,1)=U(:,1)./p;  
    V(:,2)=U(:,2)./p;  
    V(:,3)=U(:,3)./p; 
     
 
  
%  Inlet Nodes 
 p(Iin,1)=pin;%%*(1+Amp*cos(2*pi*f_l*(t-1))); 
 V(Iin,1:2)=0;  
 V(Iin,3)=1-(sum(N(Iin,1:4),2)+sum(N(Iin,7:10),2)+N(Iin,19)+... 
             2*(N(Iin,6)+sum(N(Iin,12:13),2)+sum(N(Iin,16:17),2)))./p(Iin,1); 
             
%     N(Iin,5)=   N(Iin,6)+1/3*p(Iin,1).*V(Iin,3); 
%     N(Iin,15)=  N(Iin,17)-c1*(N(Iin,3)-N(Iin,4))+c2*p(Iin,1).*V(Iin,3); 
%     N(Iin,18)=  N(Iin,16)+c1*(N(Iin,3)-N(Iin,4))+c2*p(Iin,1).*V(Iin,3); 
%     N(Iin,11)=  N(Iin,13)-c1*(N(Iin,1)-N(Iin,2))+c2*p(Iin,1).*V(Iin,3); 
%     N(Iin,14)=  N(Iin,12)+c1*(N(Iin,1)-N(Iin,2))+c2*p(Iin,1).*V(Iin,3);    
%     Uin=(N(Iin,:)*e); 
%     dU=(p(Iin,1).*V(Iin,3)./Uin(:,3)) 
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%  Outlet Nodes 
 p(Iout,1)=pout;%%*(1-Amp*sin(2*pi*f_l*(t-1))); 
 V(Iout,1:2)=0;  
  
 V(Iout,3)=-1+(sum(N(Iout,1:4),2)+sum(N(Iout,7:10),2)+N(Iout,19)+... 
               
2*(N(Iout,5)+sum(N(Iout,14:15),2)+N(Iout,11)+N(Iout,18)))./p(Iout,1); 
%     N(Iout,6)=   N(Iout,5)-1/3*p(Iout,1).*V(Iout,3); 
%     N(Iout,17)=  N(Iout,15)+c1*(N(Iout,3)-N(Iout,4))-c2*p(Iout,1).*V(Iout,3); 
%     N(Iout,16)=  N(Iout,18)-c1*(N(Iout,3)-N(Iout,4))-c2*p(Iout,1).*V(Iout,3); 
%     N(Iout,13)=  N(Iout,11)+c1*(N(Iout,1)-N(Iout,2))-c2*p(Iout,1).*V(Iout,3); 
%     N(Iout,12)=  N(Iout,14)-c1*(N(Iout,1)-N(Iout,2))-c2*p(Iout,1).*V(Iout,3);   
%      
   % %  Vdiff=Vin_l_av*(1+Amp*sin(2*pi*f_l*(t-1)))-mean(V(:,3)); 
  
% %  Inlet Nodes 
%  V(Iin,1:2)=0;  
%  V(Iin,3)= Vin(Iin,1);%mean(V(Iin,3))*(1+Amp*cos(2*pi*f_l*(t-1))); 
% % %  V(Iin,3)=Vin_l_av*(1+Amp*sin(2*pi*f_l*(t-1))); 
%  p(Iin,1)==1./(1-V(Iin,3)).*(sum(N(Iin,1:4),2)+sum(N(Iin,7:10),2)+N(Iin,19)+... 
%  2*(N(Iin,6)+sum(N(Iin,12:13),2)+sum(N(Iin,16:17),2))); 
%   
% %  Outlet Nodes 
%  V(Iout,1:2)=0; %%%%fix velocity in x and y directions to zero 
%  V(Iout,3)=Vin(Iin,1);%V(Iout,3)+Vdiff; 
%   
%  p(Iout,1)=1./(1+V(Iout,3)).*(sum(N(Iout,1:4),2)+sum(N(Iout,7:10),2)+N(Iout,19)+... 
%  2*(N(Iout,5)+sum(N(Iout,14:15),2)+N(Iout,11)+N(Iout,18))); 
 
%---Calculate new Neq 
    Neq=Neq'; 
    U(:,1)=V(:,1).*p;  
    U(:,2)=V(:,2).*p;  
    U(:,3)=V(:,3).*p; 
 Neq(1:6,:) =1/18*((Ones61*p')+3*ndmtimes(e(1:6,:), U')+... 
               9/2*ndmtimes(e(1:6,:), U').^2-... 
               3/2*(Ones61*sum(U.*U,2)')); 
 Neq(7:18,:)=1/36*((Ones121*p')+3*ndmtimes(e(7:18,:), U')+... 
               9/2*ndmtimes(e(7:18,:), U').^2-... 
               3/2*(Ones121*sum(U.*U,2)')); 
 Neq(19,:)  =1/3*(p'-3/2*sum(U.*U,2)'); 
    Neq=Neq'; 
 
%     pause (0.0001) 
    t=t+1;   
    disp(['t= ' num2str(t) ' , el_time per step= ' num2str(toc) ' sec'])  
    tic 
%-----------------------------------END OF MAIN CALCULATIONS-----------------------------
---- 
if round(t/1)==t/1 
 Re=mean(U(:,3))/mean(p)*(SI)/v_l; 
    Vmean_l=mean(U(:,3))/mean(p); 
    Vmean_w=Vmean_l*dz/dt; 
    Vdarcy_w=Vmean_w*Porosity; 
    k_w=Vdarcy_w/ (dPz_w/gamma_w); 
%      
%     MFR_l=U(:,3).*Ai(X(:,3)) 
    figure(1) 
     subplot(3,1,1),plot(t,k_w,'.'),hold on,ylabel('k (mm/s)') 
     title(['t= ' num2str(t-1) ', k= ' num2str(k_w)  ' mm/s, Re= ' num2str(Re)]);% ', 
alfa= ' num2str(alfa)]) 
%      subplot(3,1,2),hold on 
    
  subplot(3,1,3),newplot,plot(p,'r-'),title(['mean density= ', num2str(mean(p))]) 
   pause (0.0001) 
  
% frame = getframe(gcf); 
% aviobj = addframe(aviobj,frame); 
 end 
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    if round(t/10)==t/10 
 fid=fopen([FilePath '\k.txt'],'a'); 
 fprintf(fid,'%6.0f %12.6e %12.6e \n',[t k_w Vmean_w]'); 
 fclose(fid); 
    end 
    if round(t/1000)==t/1000 
        close 
    end 
 
    if round(t/300)==t/300 
         save([FilePath '\LBdata-5-DensityGrad']) 
     end 
%  break 
end 
% aviobj = close(aviobj); 
% catch 
% save(['c:\temp\LBdata-5-DensityGrad']) 
%  
% % %     close all 
% % %     aviobj = close(aviobj); 
%     errordlg(lasterr,'Error') 
% end 
%         
 
function nega=Fa3D(a) 
switch a 
     
case 1 
    nega=2; 
case 2 
    nega=1; 
case 3 
    nega=4; 
case 4 
    nega=3; 
case 5 
    nega=6; 
case 6 
    nega=5; 
case 7 
    nega=9; 
case 8 
    nega=10; 
case 9 
    nega=7; 
case 10 
    nega=8; 
case 11 
    nega=13; 
case 12 
    nega=14; 
case 13 
    nega=11; 
case 14 
    nega=12; 
case 15 
 nega=17; 
case 16 
    nega=18; 
case 17 
    nega=15; 
case 18 
    nega=16; 
case 19 
    nega=19; 
     
end 
    
 
function [IAt2, IBt2, Iot2]=find_ind_n3(X,e,FilePath,SI,SJ,NumFiles) 
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ZI=[0]; 
for i=1:NumFiles 
    I=find(X(:,3)==i); 
    ZI=[ZI;max(I)]; 
end 
 
ZI 
% periodic BC does not work in this algorithm 11/29/04 ( at least hard to implement) 
for i=1:18 
i, tic 
switch i 
case {1,2,3,4,7,8,9,10} 
    IAf=[]; 
    IBf=[]; 
    Iof=[]; 
    for z=2:NumFiles+1 
         
 Xp=[X(:,1)-e(i,1) X(:,2)-e(i,2) X(:,3)-e(i,3)]; 
 
 [C, IA, IB]=intersect(X(ZI(z-1)+1:ZI(z),:), Xp(ZI(z-1)+1:ZI(z),:),'rows'); 
  
 [C, Io]=setdiff(Xp(ZI(z-1)+1:ZI(z),:), X(ZI(z-1)+1:ZI(z),:),'rows'); %in Xp but 
not in X 
  
    IAf=[IAf;ZI(z-1)+IA]; 
 IBf=[IBf;ZI(z-1)+IB]; 
 Iof=[Iof;ZI(z-1)+Io]; 
 end 
 fid=fopen([FilePath '\IA-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IAf, 'double'); 
 fclose(fid); 
  
 fid=fopen([FilePath '\IB-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IBf, 'double'); 
 fclose(fid); 
  
 fid=fopen([FilePath '\Io-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, Iof, 'double'); 
 fclose(fid); 
     
case {6,12,13,16,17} 
    IAf=[]; 
    IBf=[]; 
    Iof=[]; 
    for z=2:NumFiles 
    Xp=[X(:,1)-e(i,1) X(:,2)-e(i,2) X(:,3)-e(i,3)]; 
  
 [C, IA, IB]=intersect(X(ZI(z)+1:ZI(z+1),:), Xp(ZI(z-1)+1:ZI(z),:),'rows'); 
  
 [C, Io]=setdiff(Xp(ZI(z-1)+1:ZI(z),:), X(ZI(z)+1:ZI(z+1),:),'rows'); %in Xp but 
not in X 
 
    IAf=[IAf;ZI(z)+IA]; 
 IBf=[IBf;ZI(z-1)+IB]; 
 Iof=[Iof;ZI(z-1)+Io]; 
    end 
    Iof=[Iof;[ZI(NumFiles)+1:ZI(NumFiles+1)]']; 
    fid=fopen([FilePath '\IA-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IAf, 'double'); 
 fclose(fid); 
  
 fid=fopen([FilePath '\IB-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IBf, 'double'); 
 fclose(fid); 
  
 fid=fopen([FilePath '\Io-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, Iof, 'double'); 
 fclose(fid); 
 
case {5,11,14,15,18} 
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    IAf=[]; 
    IBf=[]; 
    Iof=[]; 
    for z=3:NumFiles+1 
    Xp=[X(:,1)-e(i,1) X(:,2)-e(i,2) X(:,3)-e(i,3)]; 
 
 [C, IA, IB]=intersect(X(ZI(z-2)+1:ZI(z-1),:), Xp(ZI(z-1)+1:ZI(z),:),'rows'); 
  
 [C, Io]=setdiff(Xp(ZI(z-1)+1:ZI(z),:), X(ZI(z-2)+1:ZI(z-1),:),'rows'); %in Xp but 
not in X 
 
    IAf=[IAf;ZI(z-2)+IA]; 
 IBf=[IBf;ZI(z-1)+IB]; 
 Iof=[Iof;ZI(z-1)+Io]; 
    end 
    Iof=[[ZI(1)+1:ZI(2)]';Iof]; 
     
    fid=fopen([FilePath '\IA-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IAf, 'double'); 
 fclose(fid); 
  
 fid=fopen([FilePath '\IB-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, IBf, 'double'); 
 fclose(fid); 
  
 fid=fopen([FilePath '\Io-' num2str(i) '.bin'],'wb'); 
 fwrite(fid, Iof, 'double'); 
 fclose(fid); 
 
end 
toc 
end 
 
 
 
for i=1:18 
disp('Reading ...') 
 fid=fopen([FilePath '\IA-' num2str(i) '.bin'],'r'); 
 IAt2(i).v=fread(fid, 'double'); 
 fclose(fid); 
  
  fid=fopen([FilePath '\IB-' num2str(i) '.bin'],'r'); 
 IBt2(i).v=fread(fid, 'double'); 
 fclose(fid); 
  
  fid=fopen([FilePath '\Io-' num2str(i) '.bin'],'r'); 
 Iot2(i).v=fread(fid, 'double'); 
 fclose(fid); 
  
end 
 
    
function ind=findn(arr); 
 
%FINDN   Find indices of nonzero elements. 
%   I = FINDN(X) returns the indices of the vector X that are 
%   non-zero. For example, I = FINDN(A>100), returns the indices 
%   of A where A is greater than 100. See RELOP. 
%   
%   This is the same as find but works for N-D matrices using  
%   ind2sub function 
% 
%   It does not return the vectors as the third output arguement  
%   as in FIND 
%    
%   The returned I has the indices (in actual dimensions) 
% 
%   x(:,:,1)            x(:,:,2)            x(:,:,3) 
%       = [ 1 2 3           =[11 12 13        =[21 22 23 
%           4 5 6             14 15 16          24 25 26 
%           7 8 9]            17 18 19]         27 28 29] 
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% 
%   I=find(x==25) will return 23 
%   but findn(x==25) will return 2,2,3 
%    
%   Also see find, ind2sub 
 
%   Loren Shure, Mathworks Inc. improved speed on previous version of findn 
%   by Suresh Joel Mar 3, 2003 
 
in=find(arr); 
sz=size(arr); 
if isempty(in), ind=[]; return; end; 
[out{1:ndims(arr)}] = ind2sub(sz,in); 
% ind = cell2mat(out); 
ind(:,1)=out{:,1}; 
ind(:,2)=out{:,2}; 
ind(:,3)=out{:,3}; 
function z = ndmtimes(x, y) 
%NDMTIMES N-dimensional matrix multiply. 
% 
%   NDMTIMES(X, Y) is equivalent to X*Y except that the former is vectorized 
%   along higher dimensions (dimensions three and above). 
% 
%   NDMTIMES(X) is equlvalent to NDMTIMES(X, X). 
% 
%   Examples 
%   -------- 
%   In this example we want to multiply a matrix X with every page (2-D slice) 
%   of a 3-D array Y. 
% 
%      X = randn(4, 3); 
%      Y = randn(3, 5, 7); 
% 
%      % the way to do it with a loop 
%      Z1 = zeros(4, 5, 7); 
%      for i = 1:7 
%         Z1(:,:,i) = X(:,:) * Y(:,:,i); 
%      end 
% 
%      % this does it without a loop 
%      Z2 = ndmtimes(X, Y); 
% 
%   In the following example X is a 4-D array and Y is a 5-D array.  Every page 
%   in X is multiplied with the corresponding page in Y.  Scalar expansion is 
%   done along singleton dimensions (dimension 5 in X and dimension 4 in Y). 
% 
%      X = randn(4, 3, 6, 7, 1); 
%      Y = randn(3, 5, 6, 1, 5); 
% 
%      % the way to do it with a loop 
%      Z1 = zeros(4, 5, 6, 7, 5); 
%      for k = 1:5 
%         for j = 1:7 
%            for i = 1:6 
%               Z1(:,:,i,j,k) = X(:,:,i,j,1) * Y(:,:,i,1,k); 
%            end 
%         end 
%      end 
% 
%      % this does it without a loop 
%      Z2 = ndmtimes(X, Y);   % Z2 will be identical to Z1. 
% 
%   Notes 
%   ----- 
%   When X and Y are complex, the result might deviate a little from what a 
%   loop would give.  The reason for this is that each element is computed by 
%   scalar multiplication and addition rather than vector multiplication.  The 
%   effect can be seen in the example 
% 
%      N = 5; 
%      X = complex(randn(1, N), randn(1, N)); 
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%      Y = complex(randn(N, 1), randn(N, 1)); 
%      Z1 = sum(X(:) .* Y(:)): 
%      Z2 = X * Y: 
% 
%   The larger N is, the more frequently Z1 and Z2 will be different. 
% 
%   See also MTIMES. 
 
%   Author:      Peter J. Acklam 
%   Time-stamp:  2003-11-20 16:04:54 +0100 
%   E-mail:      pjacklam@online.no 
%   URL:         http://home.online.no/~pjacklam 
 
   nargsin = nargin; 
   error(nargchk(1, 2, nargsin)); 
 
   if (nargsin == 1) | isequal(x, y) 
 
      % 
      % We're computing the square of X, i.e., X * X. 
      % 
 
      % Get size of input arguments. 
      sx = size(x); 
      dx = ndims(x); 
 
      i = 1:sx(1); i = i(ones(1,sx(2)),:).'; 
      j = 1:sx(2); j = j(ones(1,sx(1)),:); 
 
      y = permute(x, [2, 1, 3:dx]); 
      z = reshape(sum(x(i,:,:) .* y(j,:,:), 2), sx); 
 
   else 
 
      % Get size of input arguments. 
      sx = size(x); 
      sy = size(y); 
      dx = ndims(x); 
      dy = ndims(y); 
 
      if dx == 2 
 
         % 
         % X is a 2D matrix. 
         % 
 
         if dy == 2 
 
            % 
            % X and Y are 2D matrices. 
            % 
 
            z = x * y; 
 
         else 
 
            % 
            % X is a 2D matrix and Y is a 3+D array. 
            % 
 
            ny = numel(y); 
            ytmp = reshape(y, [sy(1), ny/sy(1)]); 
            z = reshape(x*ytmp, [sx(1), sy(2:dy)]); 
 
         end 
 
      else 
 
         % 
         % X is a 3+D array. 
         % 
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         if dy == 2 
 
            % 
            % X is a 3+D array and Y is a 2D matrix. 
            % 
 
            nx = numel(x); 
            xtmp = permute(x ,[1 3:dx 2]); 
            xtmp = reshape(xtmp, [nx/sx(2), sx(2)]); 
            z = xtmp*y; 
            z = reshape(z, [sx([1 3:dx]) sy(2)]); 
            z = permute(z, [1 dx 2:dx-1]); 
 
         else 
 
            % 
            % X is a 3+D array and Y is a 3+D array. 
            % 
 
            % See if inner matrix dimensions agree. 
            if sx(2) ~= sy(1) 
               error('Inner matrix dimensions must agree.'); 
            end 
 
            % Pad the size vectors with trailing singleton dimensions (if 
            % necessary) so the vectors get the same length. 
            sx = [sx, ones(1, dy-dx)]; 
            sy = [sy, ones(1, dx-dy)]; 
 
            % See if higher dimensions are compatible, remembering that we 
            % allow expansion of singleton dimensions. 
            if any(   (sx(3:end) ~= sy(3:end)) ... 
                    & (sx(3:end) ~=     1    ) ... 
                    & (sy(3:end) ~=     1    )) 
               error('Incompatible higher dimensions.'); 
            end 
 
            % 
            % Now expand any singleton dimensions in either argument to 
            % match the size of the other argument. 
            % 
 
            % Compute the size of "z" and the number of dimensions. 
            sz = [sx(1), sy(2), max(sx(3:end), sy(3:end))]; 
            dz = length(sz); 
 
            % Replicate "x" along scalar dimensions. 
            xrep = sz(3:end); 
            xrep(sx(3:end) == sz(3:end)) = 1; 
            x = repmat(x, [1, 1, xrep]); 
 
            % Replicate "y" along scalar dimensions. 
            yrep = sz(3:end); 
            yrep(sy(3:end) == sz(3:end)) = 1; 
            y = repmat(y, [1, 1, yrep]); 
 
            % 
            % Now compute the product of "x" and "y". 
            % 
 
            % for speed (doesn't save much though) inline 
            % 
            %    [j, i] = meshgrid(1:sz(2), 1:sz(1)); 
            % 
            i = 1:sz(1); i = i(ones(1, sz(2)),:).'; 
            j = 1:sz(2); j = j(ones(1, sz(1)),:); 
 
            y = permute(y, [2, 1, 3:dz]); 
            z = reshape(sum(x(i,:,:) .* y(j,:,:), 2), sz); 
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         end 
 
      end 
 
   end 
 
 
function writetodisk 
 
 
fid=fopen([FilePath '\Input-' filename '.txt'],'w'); 
fprintf(fid,'%-50s \n', ['Simulation of Fluid Flow Using Lattice Boltzmann Equation']); 
fprintf(fid,'%-50s \n', ['Type: D3Q19 Lattice']); 
fprintf(fid,'%-50s \n', ['Program By: Muhammed Emin Kutay']);  
fprintf(fid,'%-50s \n', ['----------------------------------------------------------']); 
fprintf(fid,'%-35s %20s \n', 'Simulation Date: ', date); 
fprintf(fid,'%-35s %20s \n', 'Description: ', fldout); 
fprintf(fid,'%-35s %20s \n', 'Image Base Name:', ImgBaseName); 
fprintf(fid,'%-35s %20s \n', 'First image number to start: ', num2str(StartImage)); 
fprintf(fid,'%-35s %20s \n', 'Number of Images :', num2str(NumFiles)); 
fprintf(fid,'%-35s %20s \n', 'Image size in x direction :', num2str(SI)); 
fprintf(fid,'%-35s %20s \n', 'Image size in y direction :', num2str(SJ)); 
fprintf(fid,'%-35s %20s \n', 'Density at Inlet: ', num2str(pin)); 
fprintf(fid,'%-35s %20s \n', 'Density at Outlet: ', num2str(pout)); 
fprintf(fid,'%-35s %40s \n', 'Acceleration body force vector:', ['[ ' num2str(F') ' ]' 
]); 
% fprintf(fid,'%-35s %20s \n', 'Termination time: ', num2str(tend)); 
% fprintf(fid,'%-35s %20s \n', 'Max tolerance for termination: ', num2str(TOL)  ); 
fprintf(fid,'%-35s %20s \n', 'tao: ', num2str(tao)  ); 
fclose(fid); 
 

IMAGETHRESHOLD ALGORITHM 

 
%               THIS PROGRAM CONVERTS GRAYSCALE IMAGES TO BINARY  
%               (BLACK AND WHITE) IMAGES.  
%               PROGRAM LETS YOU SELECT A CIRCULAR REGION OF INTEREST 
%               OUTPUT BW IMAGES WILL BE CREATED IN FOLDER "C:\TEMP\(output folder)\" ' 
%               ************MUHAMMED EMIN KUTAY************* 
 
clear all,  
close all 
[filename, DirName] = uigetfile('*.*', 'Select First Image to open ...'); 
im=imread([DirName,filename]); 
 
ImgBaseName=filename(1:size(filename,2)-7); 
Ext=filename(size(filename,2)-3:size(filename,2)); 
tifs=dir([DirName '*' Ext]); 
result=inputdlg({'Image Base Name: ', ... 
                'Extension', ... 
                'First image number to start: ',... 
                ['Number of Files (Total ' num2str(size(tifs,1)) ' files)'],... 
                'Enter output folder (enter an existing folder): ',... 
                'Enter output filename: ',... 
                'Frame Rate: ',... 
                'Image Numbering Style (0 for image012, 1 for image12',... 
                'Gray Threshold Value (0-255):'},... 
                'Input Image Information ',1,... 
                {ImgBaseName,Ext,'1',num2str(size(tifs,1)),DirName, 'bw','1','0','255'}) 
FileName=result{1}; 
Ext=result{2}; 
StartImage=str2num(result{3}); 
NumFiles=str2num(result{4}); 
fldout=result{5}; 
fileout=result{6}; 
f=str2num(result{7}); 
NumbStyle=str2num(result{8}); 
Thresh=str2num(result{9}); 
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clear tifs 
 
 ButtonName=questdlg('Import region of interest data ?    ', ... 
                       'ROI', ... 
                       'Yes','No','No'); 
    
   switch ButtonName, 
     case 'Yes',  
       Qcontcir='Yes';  
             [filenameT, pathnameT] = uigetfile('*.txt', 'Select XY data file...'); 
            data=load([pathnameT, filenameT]); 
            D=load([pathnameT, 'D.txt']); 
            X=data(:,1); Y=data(:,2)+2; 
     case 'No', 
        Qcontcir='No '; 
   end % switch 
  
  
 
cancelButton=0; 
h = waitbar(0,'Please Wait', ... 
    'Position',[ 243   343   270    93],... 
    'Name','Please Wait',... 
    'CreateCancelBtn','cancelButton = 1;closereq;','visible','off' ); 
 
 
 
 
for k = 1:NumFiles 
 
 s1=f*k+StartImage-1; 
  if NumbStyle==0 
   j0=NumToStr(s1); 
  else 
            j0=num2str(s1); 
  end 
   
  if (Ext=='.ppm') | (Ext=='.pgm') |(Ext=='.pbm')  
  im = pnmread([DirName FileName j0 Ext]); 
  else 
  im = imread([DirName FileName j0 Ext]); 
  end 
         
        %for uint16 images---------- 
              if max(max(im))>255 
                    disp('This image is a 16 bit image and will be converted to 8 bit 
image') 
     maxval=double(max(max(im))); 
                    im=uint8(255*double(im)/maxval); 
              end 
               
%         im(:,:,2:3)=[]; 
         
        %--------Apply a median filter (3x3) 
%         im=medfilt2(im);       
        %---------------------------------- 
               
        if Qcontcir=='No ' 
            [im, D, X, Y] = CirRegOI(im); % select circular region of interest 
              Qcontcir=questdlg('Apply this region to all images ? (y/n) :', ... 
                       'Apply All', ... 
                       'Yes','No ','Yes'); 
        else 
          im2=roipoly(im,X,Y); 
          Qlogical=islogical(im2); 
             
%             if Qlogical==0 
                im2=immultiply(imcomplement(im2),255); 
                im=imadd(im,im2); 
%             else 
%                 im2=imcomplement(im2)*255; 
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%                 im=imadd(im,uint8(im2)); 
%             end 
             
        end 
         
         
im=imcomplement(im); %pores will be white in color, and rest will be black 
bw1=im2bw(im,Thresh/255); 
imwrite(bw1,[fldout fileout numtostr(k) '.tif'],'tif','compression','none') 
 
 
TotPoreArea2(k)=bwarea(bw1); 
TotPoreArea3(k)=sum(sum(bw1));       
         
 
 
set(h,'visible','on') 
waitbar(k/NumFiles, h,'Please wait while thresholding images...') 
if cancelButton==1, break, end 
end 
 
close(h) 
 
fid=fopen([fldout '\XY.txt'],'w') 
fprintf(fid,'%6.1f %12.1f \n',[X,Y]'); 
fclose(fid); 
 
fid=fopen([fldout '\D.txt'],'w') 
fprintf(fid,'%6.0f \n', D); 
fclose(fid); 
 
%-----------------Calculate Porosity----------------------- 
SurfArea=pi*D^2/4; 
Porosity2=TotPoreArea2/SurfArea*100;  
Porosity3=TotPoreArea3/SurfArea*100;  
avgpor2=mean(Porosity2);avgpor3=mean(Porosity3); 
y=[[1:size(Porosity2,2)];TotPoreArea2;Porosity2;TotPoreArea3;Porosity3]; 
fid = fopen([fldout '\' FileName '_Porosity.txt'],'w'); 
fprintf(fid,'%5s\t %9s\t %9s\t %9s\t %9s 
\n','Image','PoreArea','Porosity','PoreArea','Porosity' ); 
fprintf(fid,'%5s\t %9s\t %9s\t %13s\t %5s \n','     
','(bwarea)','(%)','(sum(sum(im))','(%)'); 
fprintf(fid,'%5.0f %15.0f %7.1f %15.0f %7.1f \n',y); 
fprintf(fid,'Average Porosity =  %5.3f %% \t \t \t %5.3f %%\n',avgpor2,avgpor3); 
fclose(fid); 
 
  break       
load handel; y=y(2500:5000);%to play music after threshold is done 
sound(y,Fs)%to play music after threshold is done 
 

 

POROSITYFIND ALGORITHM 

 
% ------------------load image data 
clear all 
% tic 
% while toc<36000 
cwd=pwd; 
% cd(['G:\0X-ray CT raw Images\']) 
[filename, FilePath] = uigetfile('*.*', 'Select First Image to open ...'); 
im=imread([FilePath,filename]); 
cd(cwd) 
ImgBaseName=filename(1:size(filename,2)-7); 
Ext=filename(size(filename,2)-3:size(filename,2)); 
tifs=dir([FilePath '*' Ext]); 
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k=0; 
for i=1:size(tifs,1), 
    SImg=size(ImgBaseName,2); 
    if size(tifs(i).name,2)>=SImg 
    if tifs(i).name(1:SImg)==ImgBaseName,  
        k=k+1; 
    end  
end 
end 
Ext=filename(size(filename,2)-3:size(filename,2)) 
def     = {ImgBaseName,Ext,'1',num2str(k),FilePath,'pi/4*490^2'}; 
result=inputdlg({'Image Base Name: ', 'Extension', 'First image number to start: ',... 
                 ['Number of Files (Total ' num2str(k) ' files)'],... 
                 'Output Folder:','Cross sectional area'},... 
                 'Input Image Information ',1,def) 
ImgBaseName=result{1} 
Ext=result{2} 
StartImage=str2num(result{3}) 
NumFiles=str2num(result{4}) 
fldout=result{5} 
Acs=str2num(result{6}) 
clear tifs 
 
EndImage=NumFiles+StartImage-1; 
cancelButton=0; 
h = waitbar(0,'Loading Images', ... 
    'Position',[ 243   343   270    93],... 
    'Name','Please wait ...',... 
    'CreateCancelBtn','cancelButton = 1;closereq;' ); 
 
for k=StartImage:EndImage 
     
    waitbar((k-StartImage+1)/NumFiles,h,['Reading Images, Current Image= ' num2str(k)]) 
    if cancelButton==1, break, end 
    im=imread([FilePath ImgBaseName NumToStr(k) Ext]); 
      if max(max(im))>1, im=im2bw(im,.00001);end 
        TotPoreArea2(k-StartImage+1)=bwarea(im); 
        TotPoreArea3(k-StartImage+1)=sum(sum(im)); 
    end 
close(h) 
 
%-----------------Calculate Porosity----------------------- 
        Porosity2=TotPoreArea2/Acs*100;  
        Porosity3=TotPoreArea3/Acs*100;  
        avgpor2=mean(Porosity2);avgpor3=mean(Porosity3); 
        y=[[1:size(Porosity2,2)];TotPoreArea2;Porosity2;TotPoreArea3;Porosity3]; 
  fid = fopen([fldout ImgBaseName '_Porosity.txt'],'a'); 
  fprintf(fid,'%5s\t %9s\t %9s\t %9s\t %9s 
\n','Image','PoreArea','Porosity','PoreArea','Porosity' ); 
        fprintf(fid,'%5s\t %9s\t %9s\t %13s\t %5s \n','     
','(bwarea)','(%)','(sum(sum(im))','(%)'); 
  fprintf(fid,'%5.0f %15.0f %7.1f %15.0f %7.1f \n',y); 
  fprintf(fid,'Average Porosity =  %5.3f %% \t \t \t %5.3f 
%%\n',avgpor2,avgpor3); 
  fclose(fid); 
         
err_draw_l(Porosity2') 
xlabel('Depth'),ylabel('Porosity (%)'),title(fldout) 
saveas(gcf,[fldout '\Porosity.emf'],'emf') 
 
 

PORECON ALGORITHM 

 
 
% %               PROGRAM FINDS CONNECTED PORES AND ELIMINATES THE REST 
% %               OUTPUT BW IMAGES WILL CONSIST OF ONLY CONNECTED PORES 
% %                ************MUHAMMED EMIN KUTAY************* 
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%  
clear all,  
close all 
[filename, FilePath] = uigetfile('*.*', 'Select First Image to open ...'); 
im=imread([FilePath,filename]); 
 
ImgBaseName=filename(1:size(filename,2)-7); 
Ext=filename(size(filename,2)-3:size(filename,2)); 
tifs=dir([FilePath '*.tif']); 
k=0; 
for i=1:size(tifs,1), 
    SImg=size(ImgBaseName,2); 
    if size(tifs(i).name,2)>=SImg 
    if tifs(i).name(1:SImg)==ImgBaseName,  
        k=k+1; 
    end  
end 
end 
 
result=inputdlg({'Image Base Name: ', ... 
                'Extension', ... 
                'First image number to start: ',... 
                ['Number of Files (Total ' num2str(k) ' files)'],... 
                'Diameter (for porosity calculation'},... 
                'Input Image Information ',1,... 
                {ImgBaseName,Ext,'1',num2str(k),'100'}) 
ImgBaseName=result{1}; 
Ext=result{2}; 
StartImage=str2num(result{3}); 
NumFiles=str2num(result{4}); 
D=str2num(result{5}); 
% cd(cwd) 
clear tifs 
 
for k=StartImage:StartImage+NumFiles-1 
        im=imread([FilePath ImgBaseName numtostr(k) Ext]); 
        if max(max(im))>1, im=im2bw(im,.00001);end 
        bw(:,:,k-StartImage+1)=im; 
        k 
end %k 
     
    tic; 
    disp('Labeling connected pores ...') 
 [L,Num] = bwlabeln(bw,18); 
 disp([' Labeling Complete in ' num2str(toc) ' seconds']) 
 L=uint32(L); 
 
I=regionprops(double(L),'BoundingBox'); 
 for j=1:Num,  ch(j,:)=I(j).BoundingBox;,    end 
 hist(ch(:,6),NumFiles), ylabel('Number of occurences of each depth'); 
xlabel('Depth (x0.8mm)') 
title([ImgBaseName]); fig1=gcf;     
%     fid = fopen(['c:\temp\porosities\' ImgBaseName '-Connectivity.txt'],'a'); 
%     fprintf(fid,'%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\n',ch'); 
%     fclose(fid); 
     
 
 
% break 
 
disp (' Started seperating pores ...') 
 
askeddepth=input('Enter channel depth   :  '); 
 
ind=find(ch(:,6)>=askeddepth); 
 
disp('Indices of the channels are:') 
disp([ind]) 
 
% ind=0 
% askedChannel=0 
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% askeddepth=96 
 
askedChannel=input('Channel to generate image (press ''0'' to for all channels found):  
'); 
if askedChannel ==0 
    n=1, NumChannels=size(ind,1); 
else 
    n=find(askedChannel);, NumChannels=n; 
end 
tic;  
% c=0; 
 
while n <= NumChannels 
    depth=0; 
    disp(['Searching for channel ' num2str(ind(n))])% ' of ' num2str(NumChannels)])          
      
        I=findn(L==ind(n)); 
    if isempty(I)==0 
        stDepth=min(I(:,3)); 
        enDepth=max(I(:,3)); 
        depth=enDepth-stDepth+1; 
        if depth>=askeddepth 
%             c=c+1; 
%             ChIndex(:,:,c)=I; 
            disp(['Channel ' num2str(ind(n)) ' that has a depth of ' num2str(depth) ' is 
being added to image matrix']) 
            for i=1:size(I,1) 
                E(I(i,1), I(i,2), I(i,3))=uint8(255); 
   end   
            disp('Done ...') 
            clear I 
        end 
     end 
    n=n+1; 
    
    if toc>100, break, end 
end %while 
E(size(E,1)+1,:,:)=0; 
E(:,size(E,2)+1,:)=0; 
 
 
[filename, pathname] = uiputfile('*.*', ['Pick a folder to write images for depth '  
num2str(depth)] ); 
for k=1:size(L,3) 
bw1=im2bw(E(:,:,k),0.0000000001); 
TotPoreArea2(k)=bwarea(bw1); 
TotPoreArea3(k)=sum(sum(bw1));       
imwrite(bw1,[pathname filename numtostr(k) '.tif'],'tif','compression','none') 
end 
 
 
%-----------------Calculate Porosity----------------------- 
SurfArea=pi*D^2/4; 
Porosity2=TotPoreArea2/SurfArea*100;  
Porosity3=TotPoreArea3/SurfArea*100;  
avgpor2=mean(Porosity2);avgpor3=mean(Porosity3); 
y=[[1:size(Porosity2,2)];TotPoreArea2;Porosity2;TotPoreArea3;Porosity3]; 
fid = fopen([pathname filename '_Porosity.txt'],'w'); 
fprintf(fid,'%5s\t %9s\t %9s\t %9s\t %9s 
\n','Image','PoreArea','Porosity','PoreArea','Porosity' ); 
fprintf(fid,'%5s\t %9s\t %9s\t %13s\t %5s \n','     
','(bwarea)','(%)','(sum(sum(im))','(%)'); 
fprintf(fid,'%5.0f %15.0f %7.1f %15.0f %7.1f \n',y); 
fprintf(fid,'Average Porosity =  %5.3f %% \t \t \t %5.3f %%\n',avgpor2,avgpor3); 
fclose(fid); 
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SSA ALGORITHM 

 
clear all,cd('f:\0X-ray CT raw Images') 
[filename, FilePath] = uigetfile('*.*', 'Select First Image to open ...'); 
ImgBaseName=filename(1:size(filename,2)-7) 
Ext=filename(size(filename,2)-3:size(filename,2)) 
tifs=dir([FilePath '*.tif']); 
k=0; 
for i=1:size(tifs,1), 
    SImg=size(ImgBaseName,2); 
    if size(tifs(i).name,2)>=SImg 
    if tifs(i).name(1:SImg)==ImgBaseName,  
        k=k+1; 
    end  
end 
end 
StartImage=1,%input('First image number to start ? : '); 
 
NumFiles=k,%input('Number of Files :'); 
dz=0.8,%input('Enter Vertical Resolution: '); 
PixRes=150/478,%input('Enter Horizontal Pixel Resolution (in mm/pixel) or press enter to 
determine:   ') 
if isempty(PixRes)==1 
    [filename2, FilePath2] = uigetfile('*.*', 'Select an Image ...'); 
   imshow(imread([FilePath2 filename2])) 
    [X, Y]=getline(gcf); 
    dist=round(sqrt((X(2)-X(1))^2+ (Y(2)-Y(1))^2)); 
    disp(['Distance = '  num2str(dist) ' pixels']) 
    Distmm=input('Enter distance in mm :   '); 
    PixRes=Distmm/dist; 
    disp(['Pixel Resolution is ' num2str(PixRes) ' mm/pixels']) 
else 
    Distmm=150,%input('Enter diameter of sample in mm :   '); 
end 
 
   
i=1;Perimeter=[]; 
while i~=NumFiles+StartImage 
  
        if i<10, j=['00' num2str(i)];, end 
        if i>=10, j=['0' num2str(i)];, end 
        if i>=100, j=num2str(i);, end 
        im=imread([FilePath ImgBaseName j Ext]); 
        area(i,1)=bwarea(im); 
  Pim=bwperim(im);Perimeter(i,1)=bwarea(Pim); 
i=i+1 
end %while 
Perimeter(:,2)= Perimeter(:,1) * PixRes; 
Perimeter(:,3)= Perimeter(:,2) * dz; 
area(:,2)=area(:,1) * (PixRes)^2; 
Si=sum(Perimeter(:,3)) 
V=(pi*Distmm^2/4) * NumFiles * dz 
 
S=Si/V 
 
% break 
 
[area Perimeter] 
y=[[1:size(area,1)];area'; Perimeter']; 
 
[filename, pathname] = uiputfile('*.*', 'Select data location to save ...'); 
 
fid = fopen([pathname filename],'w'); 
  fprintf(fid,'%10s\t %10s\t %15s\t %14s\t %14s %14s 
\n','Slice','Area','Area','Perimeter', 'Perimeter', 'SurfArea' ); 
        fprintf(fid,'%10s\t %12s\t %13s\t %14s\t %14s %14s \n','   
','(pixels)','(mm^2)','(pixels)', '(mm)' , '(mm^2)'); 
%   fprintf(fid,'%5.0f %7.1f %7.1f %9.1f %9.1f  %9.1f \n',y); 
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        fprintf(fid,'%10.0f %15.2f %15.2f %15.2f %15.2f %15.2f \n',y); 
 
        fprintf(fid,'%20s \t\t %5.1f \n', 'Total Surface Area of Pores (mm^2)   : ', Si); 
        fprintf(fid,'%20s \t\t %5.1f \n', 'Total Volume of Specimen (mm^3)      : ', V); 
        fprintf(fid,'%20s \t\t %5.6f \n', 'Specific Surface Area (1/mm)         : ', S); 
fclose(fid); 
disp(' All Done ...') 
 
open([pathname filename]) 
 
 

TORT3D ALGORITHM 

 
clear all, 
% cd('g:\X-ray CT raw Images') 
[filename, FilePath] = uigetfile('*.*', 'Select First Image to open ...'); 
ImgBaseName=filename(1:size(filename,2)-7) 
Ext=filename(size(filename,2)-3:size(filename,2)) 
tifs=dir([FilePath '*.tif']); 
k=0; 
for i=1:size(tifs,1), 
    SImg=size(ImgBaseName,2); 
    if size(tifs(i).name,2)>=SImg 
    if tifs(i).name(1:SImg)==ImgBaseName,  
        k=k+1; 
    end  
end 
end 
StartImage=1%input('First image number to start ? : '); 
NumFiles=k,%input('Number of Files :'); 
imdx=150/478,%input('Enter Horizontal Pixel Resolution (in mm/pixel) or press enter to 
determine:   ') 
imdy=150/478 
imdz=0.8,%input('Enter Vertical Resolution: '); 
SK=NumFiles; 
for i=1:SK-1 
        z=i+StartImage-1 
         
        im1=imread([FilePath ImgBaseName NumToStr(z) Ext]); 
        im2=imread([FilePath ImgBaseName NumToStr(z+1) Ext]); 
        if max(max(im1))>1, im1=im2bw(im1,.5);im2=im2bw(im2,.5);end 
        L=bwlabeln(im1,8); 
        Rpr=regionprops(L,'Centroid'); 
        for j=1:size(Rpr,1), ctr1(j,:)=Rpr(j).Centroid;end 
        L=bwlabeln(im2,8); 
        Rpr=regionprops(L,'Centroid'); 
        for j=1:size(Rpr,1), ctr2(j,:)=Rpr(j).Centroid;end 
         
        ct{i}=ctr1; 
        ct{i+1}=ctr2; 
        Ind=[]; 
        for j=1:size(ctr1,1) 
            dx=imdx*(ctr1(j,1)-ctr2(:,1)); 
            dy=imdy*(ctr1(j,2)-ctr2(:,2)); 
            dz=imdz*(1+0*ctr1(j,1)); 
            [D(j) I]=min(sqrt(dx.^2+dy.^2+dz.^2)); 
            Ind=[Ind;I]; 
             
        end 
        mn_T(i)=mean(D)/(1*imdz); % mean tortuosity in each slice, D=distance 
        cind{i}=Ind; 
 
end 
 
 
for z=1:SK-1 
    ctr1=ct{z}; 
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    ctr2=ct{z+1}; 
    Ind=cind{z}; 
    plot3(ctr1(:,1),ctr1(:,2),ctr1(:,1)*0+z,'r.'),hold on 
 for j=1:size(Ind,1), 
    plot3([ctr1(j,1);ctr2(Ind(j),1)],[ctr1(j,2);ctr2(Ind(j),2)], [z;z+1]), 
 end 
 
end 
TORT=mean(mn_T) 
TORT_s=sum(mn_T) 
FilePath 
cd(FilePath) 
save TortuosityData ct cind mn_T TORT TORT_s  
 
 

RADIALPORE ALGORITHM 

  
% ------------------load image data 
clear all, close all 
cd('f:\0X-ray CT raw Images') 
[filename, FilePath] = uigetfile('*.*', 'Select Grayscale Image ...'); 
im=imread([FilePath,filename]); 
%------------  
st='No '; 
while st~='Yes' 
    imshow(im);hold on; pixval on, axis on 
 [xi,yi]=getline(gcf); 
 D=norm([xi(2)-xi(1) yi(2)-yi(1)]); 
 jo=(xi(2)+xi(1))/2; io=(yi(2)+yi(1))/2; plot(jo,io,'+') 
 xs=jo-D/2; xe=jo+D/2; ys=io-D/2; ye=io+D/2 
 X=(0:D)'; Y=D/2-D/2*sin(acos((D/2-X)/(D/2))); %create a half circle 
 X=[X;max(X)-X]; Y=[Y;D-Y]; 
 X=X+xs; Y=Y+ys; 
 line(X,Y) 
    im2=roipoly(im,X,Y); 
    title(['D=' num2str(D)])  
    st=questdlg('OK?','Circle ok?','Yes','No ','Yes'); 
end 
cd(FilePath) 
[filename, FilePath] = uigetfile('*.*', 'Select Corresponding Binary Image...'); 
im=imread([FilePath,filename]); 
ImgBaseName=filename(1:size(filename,2)-7) 
tifs=dir([FilePath '*.tif']);k=0;for i=1:size(tifs,1),if 
tifs(i).name(1:size(ImgBaseName,2))==ImgBaseName, k=k+1;, end ,end 
disp(['Number of tif files :  ' num2str(size(tifs,1))]) 
Ext=filename(size(filename,2)-3:size(filename,2)) 
lines= 1; 
def     = {ImgBaseName,Ext,'1',num2str(k),FilePath}; 
result=inputdlg({'Image Base Name: ', 'Extension', 'First image number to start: ',... 
                 ['Number of Files (Total ' num2str(size(tifs,1)) ' files)'], 'Output 
Folder:'},... 
                 'Input Image Information ',lines,def) 
ImgBaseName=result{1} 
Ext=result{2} 
StartImage=str2num(result{3}) 
NumFiles=str2num(result{4}) 
fldout=result{5} 
clear tifs im2 
%  
%  
N=10; 
D=[N:-1:1]*D/N;%mm 
V=pi/4*D.^2*NumFiles;%mm3 
 
for i=1:N 
xs=jo-D(i)/2; xe=jo+D(i)/2; ys=io-D(i)/2; ye=io+D(i)/2; 
X=(0:D(i))'; Y=D(i)/2-D(i)/2*sin(acos((D(i)/2-X)/(D(i)/2))); %create a half circle 
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X=[X;max(X)-X]; Y=[Y;D(i)-Y]; 
X=X+xs; Y=Y+ys; 
xc{i}=X; 
yc{i}=Y; 
im2(:,:,i)=roipoly(im,X,Y); 
line(X,Y) 
end 
% break 
 
%----------     
EndImage=NumFiles+StartImage-1; 
cancelButton=0; 
h = waitbar(0,'Loading Images', ... 
    'Position',[ 243   343   270    93],... 
    'Name','Please wait ...',... 
    'CreateCancelBtn','cancelButton = 1;closereq;' ); 
 
for k=StartImage:EndImage 
    waitbar((k-StartImage+1)/NumFiles,h,['Current Image= ' num2str(k)]) 
    if cancelButton==1, break, end 
    Z=k-(StartImage)+1; 
    im(:,:,Z)=im2bw(imread([FilePath ImgBaseName NumToStr(k) Ext]),.5); 
end 
close(h) 
 
% break 
 
if max(max(max(im)))~=1, errordlg('Image Must Be Binary'), break, end 
pause(0.01) 
tic 
for j=1:N 
    for k=1:NumFiles 
    im(:,:,k)=double(im(:,:,k)).*double(im2(:,:,j)); 
%     Pdum(k)=bwarea(double(im(:,:,k))/255); 
 end 
%     Por(j)=sum(Pdum); 
    Por(j)=sum(sum(sum(im))); 
    disp(['Diameter=' num2str(D(j)), ',   time= ' num2str(toc)]) 
end 
 
dx=150/D(1); 
dz=0.8; 
% close, 
figure(2) 
set(figure(2),'position',[155   112   672   560]) 
V_w=V*dx^2*dz; 
D_w=D*dx; 
Por_w=Por*dx^2*dz; 
% subplot(2,2,1),plot(V_w,Por_w,'.-'),xlabel('Vol(mm^3)','fontweight','bold'), 
ylabel('Pore area (mm^3)','fontweight','bold') 
% subplot(2,2,2),plot(D_w,Por_w,'.-'),xlabel('Diameter(mm)','fontweight','bold'), 
ylabel('Pore area (mm^3)','fontweight','bold') 
% subplot(2,2,3),plot(V_w,Por_w./V_w*100,'.-'),xlabel('Volume 
(mm^3)','fontweight','bold'), ylabel('Porosity(%)','fontweight','bold') 
% subplot(2,2,4),plot(D_w,Por_w./V_w*100,'.-
'),xlabel('Diameter(mm)','fontweight','bold'), ylabel('Porosity(%)','fontweight','bold') 
% gtext(fldout,'fontweight','bold') 
NameFile=input(' Enter the output file name...: ','s') 
 
plot(D_w,Por_w./V_w*100,'.-'), xlabel('Diameter(mm)','fontweight','bold'), 
ylabel('Porosity(%)','fontweight','bold') 
title(fldout,'fontweight','bold') 
saveas(gcf,[fldout NameFile '.emf'],'emf') 
 
fid = fopen([fldout NameFile '.txt'],'w'); 
fprintf(fid,'%6f %6f \n', [D_w',Por_w'./V_w'*100]'); 
fclose(fid); 
 
% open([fldout NameFile '.txt']) 
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APPENDIX C WANNIER'S ANALYTICAL SOLUTION OF STOKES 
FLOW AROUND A CIRCULAR CYLINDER IN THE VICINITY OF 
A MOVING PLATE 

 
Analytical solution of the stream function ψ  is given as: 

 

22

22
222

222222

22

y)-(sx
)y)(slog(xy F )syE(x Dy

 
y)-(sx

y)-y(sC 
y)(sx

y)y(sB
y)-(sx

)y)(slog(xA y)ψ(x,

+
++

++++

+
+

+
++

+
+

+
++

=
 

where:  
 
 

 
s
vad

2
1 - 

)
s-d
sdlog(

V-dA
+

=  

B= 2 (d+s)
)

s-d
sdlog(

V
+

+ (d+s) a 
s
v  

C= 2(d-s)
)

s-d
sdlog(

V
+

+ (d-s) a 
s
v  

D= -V 
E= 0 

F= 
)

s-d
sdlog(

V
+

  

s= 22d a−  
 
 
Inputs; d, a, v and V are shown in Figure C-1 
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APPENDIX D PROCEDURES TO CONDUCT HYDRAULIC 
CONDUCTIVITY TESTS USING THE BUBBLE TUBE CONSTANT 
HEAD PERMEAMETER 

 

 
 
 
 
 
 
1. Place specimen on base.  (see 
comments below concerning 
trapping air beneath the specimen) 

 

 
 

 
 
 
 
 
 
 
2. Place membrane.  
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3. Place o-rings on membrane. 
The lower one to seal the 
membrane against the base tube, 
the upper one placed temporarily 
near the specimen top.  Roll the 
membrane down over the top o-
ring to expose the specimen top. 

 

  
 

  
 

 
 
 
4.   Place reservoir and 
confining tube on specimen.  Be 
sure to align the slots in the 
reservoir top plate with those in 
the base.  These slots need to be 
aligned before the membrane is 
place on the reservoir tube 
otherwise, the membrane will twist 
when trying to align the slots. 
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5. Roll membrane and o-ring up 
on the reservoir tube.  Roll 
membrane top down over top o-
ring so that it does not obstruct 
viewing the bubble tube bottom. 

 

    
 

 
 
 
 
 
 
 

6.   Slide confining chamber 
down and install clamping 
rods.  Tighten the top nuts 
first, (alternate tightening 
opposite pairs, keeping the 
rods pressed into their slots), 
then the nuts on the 
confining chamber. 
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7. Attach pressure hose and 

apply 5 to 10 psi pressure to 
the confining chamber and 
check for leaks.  Do not use 
pressure greater than 10 psi.   

 

 
 

 
 
 

8. Place assembly in tub.  Place 
a water tube into the bubble 
tube and fill the reservoir.  A 
vacuum source can be 
connected the top vent tube 
during filling to help de-air 
the filling water or to prevent 
it from flowing through the 
specimen to quickly.  Seal 
the area between the filling 
tube and bubble tube to make 
the vacuum effective. 

 
 
 

   
 

 
 

9. Check Bubble tube slip 
fitting.  The assembly 
consists of  (from bottom up) 
(2) o-rings; a top ferrule 
turned upside down, a 
Swagelok nut, and (2) spare 
o-rings.  The tube should be 
lubricated with vacuum 
grease.  Push the nut, ferrule 
and o-rings down onto the 
fitting, then hand tighten the 
nut so that the o-rings are 
squeezed to form a seal 
around the tube.  Loosen the 
nut slightly to slide the tube 
up or down to position it. 
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A few comments concerning the test are given below: 
 

1. Push the bubble tube until it rests on the specimen top.  Place tape or mark on 
the tube where it exits the top fitting.  This serves as a convenient reference.  
The distance between the mark and the fitting top is the distance between the 
bubble tube bottom and the specimen top.  The same can be accomplished by 
noting the distance between the top of the bubble tube and the reservoir top 
plate when the bubble tube rests on the specimen top.   
 

2. Air can be trapped beneath the specimen during setup and needs to be 
removed before testing.  This air can block or restrict flow if not removed.  
Placing the base in the tub of water with the water level above the specimen 
bottom before placing the specimen and membrane will eliminate trapping air.  
Otherwise, attach a vacuum source to bent tube placed through a base side 
port (long enough to reach the specimen bottom) and suck the air out. 
 

It is important that there are no air leaks into the space above the water in the 
reservoir tube.  Leaks can occur because of a faulty seal around the bubble tube or 
through the fitting for the vacuum hose.  To check for leaks, fill the reservoir with water, 
lower the bubble tube such that the bottom end is lower than the water in the tub, note the 
water level height in the reservoir, monitor it with time.  It should not drop.  Tighten the 
fittings or clamp valve if it does.  Note that small leaks can be tolerated if the leak rate is 
5 to 10 times less than the flow rate during testing. 

 
a. Loosen the lower hose clamp on the top coupling and remove the reservoir tube.  
b. Place test sample in the mold, level with a straight edge, place in the bucket 
c. Measure the diameter of both the reservoir tube and bubble tube, length of mold, 

L. 
d. Measure the distance between the top of the mold and top of bucket, H1 
e. Take the mold out of the bucket, place the reservoir tube back on the mold and 

tighten the clamps 
f. Measure the distance from the bottom of the bubble tube to the top of the mold, 

H2; the water head difference will be H2-H1 
g. Place permeameters in the bucket and fill slowly allowing water to saturate the 

sample from the bottom up 
h. When water overflows, open the upper and lower ports to allow water in the 

reservoir tube, keep the water overflowing the bucket 
i. Seal the top of the bubble tube, use vacuum, draw the water into the bubble tube 

so that the water level is between 20 and 25cm high as marked on the reservoir tube. 
Close the ports with clamps. Note the mark at which it starts 

j. Open the bubble tube and start the timer, end test when the water level drops to 
the bottom of the bubble tube, or stop after between 15 and 30 minutes. 
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APPENDIX E THE VARIATION IN PORE CROSS-SECTIONAL 
AREA IN THREE DIFFERENT DIRECTIONS FOR ALL 
SPECIMENS  
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APPENDIX F PORE PRESSURE AND PRESSURE GRADIENT VARIATION IN 
DIFFERENT DIRECTIONS 
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APPENDIX G VARIATION OF SHEAR STRESS TENSOR COMPONENTS OF ALL SPECIMENS 
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APPENDIX H PRESSURE GRADIENT VARIATION IN Z-
DIRECTION FOR STEADY AND DYNAMIC FLOW CONDITIONS 
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APPENDIX I THE VARIATION OF SHEAR STRESS 
COMPONENTS IN Z-DIRECTION FOR STEADY (STRAIGHT 
LINES) AND DYNAMIC (DASHED LINES) FLOW CASES 
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NOMENCLATURE 

A  :specimen cross sectional area perpendicular to the direction of pressure 
gradient 

sc   :lattice speed of sound  

D  :diameter of the tube 

ei  :microscopic velocity vector (e.g. e1=[1, 0] for D2Q9 model). 

),(F ti x  :non-equilibrium particle velocity distribution function at node x at time t 

),(F teq
i x  :equilibrium particle velocity distribution function at node x at time t 

ih  :hydraulic gradient (ih γ/P∇= ) 

i  :complex number 

k  :hydraulic conductivity (for isotropic pore structure, i.e. k=kzz=kxx=kyy) 

Nx  :number of lattice sites in x-direction 

Ny  :number of lattice sites in y-direction 

ND  :number of lattice sites along the diameter of a tube 

P  :pressure 

 r   :distance from the centerline of the tube in radial direction 

RMS   :root mean square error 

q  :average flow rate 

Q  :number of microscopic velocity vectors 

ux   :velocity in the x- direction 

uy   :velocity in the y- direction 

uz   :velocity in the z- direction 

)(inzu   :velocity in z-direction at the inlet nodes 

)(outzu   :velocity in z-direction at the outlet nodes 
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),( txU   :momentum of particles at node x, at time t 

),( txu   :macroscopic velocity at node x, at time t 

%ε   :percent error 

zP∇   :pressure gradient  

µ  :dynamic viscosity 

υ  :kinematic viscosity 

),( txρ  :density at node x, at time t 

τ  :relaxation time 

T :tortuosity 

Vp  :pore volume (in mm3) 

pV̂   :pore volume in lattice units (in pixel3) 

zandyx ∆∆∆ ,, : image (or lattice) resolution in x, y and z directions, respectively. 

V  :total volume of specimen 

Sa  :specific surface area  

As  :surface area of pores (mm2) 

iP̂   :perimeter of the pores in each slice in pixels 

Ai  :surface area of pores in each slice in mm2 

Le  :longest path traveled by the fluid (for tortuosity calculation) 

L  : shortest path between two ends of a specimen 

SMA  :stone matrix asphalt 

NMAS  :nominal maximum aggregate size 

HMA  :hot mix asphalt 

ALF  :accelerated loading facility 

FHWA  :Federal Highway Administration 
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TFHRC :Turner-Fairbank Highway research Center 

CT  :computed tomography 

PG  :binder performance grade 

MDL  :maximum density line 

n  :total porosity of a specimen 

ne  :effective porosity of a specimen 

td  : thichness of the X-ray CT detector aperture 
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