
Compiler and Runtime Support for Programming in AdaptiveParallel Environments1Guy Edjlali, Gagan Agrawal,Alan Sussman, Jim Humphries,and Joel SaltzUMIACS and Dept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742, USAfedjlali,gagan,als,humphrie,saltzg@cs.umd.eduAbstractFor better utilization of computing resources, it is important to consider parallel pro-gramming environments in which the number of available processors varies at runtime. Inthis paper, we discuss runtime support for data parallel programming in such an adaptiveenvironment. Executing programs in an adaptive environment requires redistributing datawhen the number of processors changes, and also requires determining new loop bounds andcommunication patterns for the new set of processors. We have developed a runtime libraryto provide this support. We discuss how the runtime library can be used by compilers ofHPF-like languages to generate code for an adaptive environment. We present performanceresults for a Navier-Stokes solver and a multigrid template run on a network of workstationsand an IBM SP-2. Our experiments show that if the number of processors is not variedfrequently, the cost of data redistribution is not signi�cant compared to the time requiredfor the actual computation. Overall, our work establishes the feasibility of compiling HPFfor a network of non-dedicated workstations, which are likely to be an important resourcefor parallel programming in the future.1 IntroductionIn most existing parallel programming systems, each parallel program or job is assigned a �xednumber of processors in a dedicated mode. Thus, the job is executed on a �xed number ofprocessors, and its execution is not a�ected by other jobs on any of the processors. This simplemodel often results in relatively poor use of available resources. A more attractive model wouldbe one in which a particular parallel program could use a large number of processors when noother job is waiting for resources, and use a smaller number of processors when other jobs needresources. Setia et al. [15, 20] have shown that such a dynamic scheduling policy results in betterutilization of the available processors.There has been an increasing trend toward using a network of workstations for parallelexecution of programs. A workstation usually has an individual owner or small set of userswho would like to have sole use of the machine at certain times. However, when the individual1This work was supported by ARPA under contract No. NAG-1-1485 and by NSF under grant No.ASC 9213821. The authors assume all responsibility for the contents of the paper.1

users of workstations are not logged in these workstations can be used for executing a parallelapplication. When the individual user of a workstation returns, the application must be adjustedeither not to use the workstation at all or to use very few cycles on the workstation. The ideais that the individual user of the workstation does not want the execution of a large parallelapplication to slow down the processes he/she wants to execute.We refer to a parallel programming environment in which the number of processors avail-able for a given application varies with time as an adaptive parallel programming environment.The major di�culty in using an adaptive parallel programming environment is in developingapplications for execution in such an environment. In this paper, we address this problem fordistributed memory parallel machines and networks of workstations, neither of which supportshared memory. In these machines, communication between processors has to be explicitlyscheduled by a compiler or by the user.A commonly used model for developing parallel applications is the data parallel programmingmodel, in which parallelism is achieved by dividing large data sets between processors and havingeach processor work only on its local data. High Performance Fortran (HPF) [13], a languageproposed by a consortium from industry and academia and being adopted by a number ofvendors, targets the data parallel programming model. In compiling HPF programs for executionon distributed memory machines, two major tasks are dividing work or loop iterations acrossprocessors, and detecting, inserting and optimizing communication between processors. To thebest of our knowledge, all existing work on compiling data parallel applications assumes thatthe number of processors available for execution does not vary at runtime [5, 12, 23]. If thenumber of processors varies at runtime, runtime routines need to be inserted for determiningwork partitioning and communication during the execution of the program.We have developed a runtime library for developing data parallel applications for executionin an adaptive environment. There are two major issues in executing applications in an adaptiveenvironment:� Redistributing data when the number of available processors changes during the executionof the program and,� Handling work distribution and communication detection, insertion and optimization whenthe number of processors on which a given parallel loop will be executed is not known atcompile-time.Executing a program in an adaptive environment can potentially incur a high overhead. Ifthe number of available processors is varied frequently, then the cost of redistributing data canbecome signi�cant. Since the number of available processors is not known at compile-time, workpartitioning and communication need to be handled by runtime routines. This can result in asigni�cant overhead if the runtime routines are not e�cient or if the runtime analysis is appliedtoo often. 2

Our runtime library, called Adaptive Multiblock PARTI (AMP), includes routines for han-dling the two tasks we have described. This runtime library can be used by compilers for dataparallel languages or it can be used by a programmer parallelizing an application by hand. Inthis paper we describe our runtime library and also discuss how it can be used by a compiler. Werestrict our work to data parallel languages in which parallelism is speci�ed through parallel loopconstructs, like forall statements and array expressions. We present experimental results on twoapplications parallelized for adaptive execution by inserting our runtime support by hand. Ourexperimental results show that if the number of available processors does not vary frequently,the cost of redistributing data is not signi�cant as compared to the total execution time of theprogram. Overall, our work establishes the the feasibility of compiling HPF-like data parallellanguages for a network of non-dedicated workstations.The rest of this paper is organized as follows. In Section 2, we discuss the programmingmodel and model of execution we are targeting. In Section 3, we describe the runtime librarywe have developed. We brie
y discuss how this runtime library can be used by a compiler inSection 4. In Section 5 we present experimental results we obtained by using the library toparallelize two applications and running them on a network of workstations and an IBM SP-2.In Section 6, we compare our work with other e�orts on similar problems. We conclude inSection 7.2 Model for Adaptive ParallelismIn this section we discuss the programming model and model of program execution our runtimelibrary targets. We call a parallel programming system in which the number of available proces-sors varies during the execution of a program an adaptive programming environment. We referto a program executed in such an environment as an adaptive program. These programs shouldadapt to changes in the number of available processors. The number of processors available toa parallel program changes when users log in or out of individual workstations, or when theload on processors change for various reasons (such as from other parallel jobs in the system).We refer to remapping as the activity of a program adjusting to the change in the number ofavailable processors.We have chosen our model of program execution with two main concerns:� We want a model which is practical for developing and running common scienti�c andengineering applications and,� We want to develop adaptive programs that are portable across many existing parallelprogramming systems. This implies that the adaptive programs and the runtime supportdeveloped for them should require minimal operating system support.We restrict our work to parallel programs using the Single Program Multiple Data (SPMD)model of execution. In this model, the same program text is run on all the processors and3

Real A(N,N), B(N,N)Do Time step = 1 to 100Forall(i = 1:N, j = 1:N)A(i,j) = B(j,i) + A(i,j)EndForall...More Computation involving A & BEnddoFigure 1: Example of a Data-Parallel Programparallelism is achieved by partitioning data structures (typically arrays) between processors.This model is frequently used for scienti�c and engineering applications, and most of the existingwork on developing languages and compilers for programming parallel machines uses the SPMDmodel [13]. An example of a simple data parallel program that can be easily transformed intoa parallel program that can be executed in SPMD mode is shown in Figure 1. The only changerequired to turn this program into an SPMD parallel program for a static environment would beto change the loop bounds of the forall loop appropriately so that each processor only executeson the part of array A that it owns and then to determine and place the communication betweenprocessors for array B.We are targeting an environment in which a parallel program must adapt according to thesystem load. A program may be required to execute on a smaller number of processors becausean individual user logs in on a workstation or because a new parallel job requires resources.Similarly, it may be desirable for a parallel program to execute on a larger number of processorsbecause a user on a workstation has logged out or because another parallel job executing in theparallel system has �nished. In such scenarios, it is acceptable if:� The adaptive program does not remap immediately when the system load changes and,� When the program remaps from a larger number of processors to a smaller number ofprocessors, it may continue to use a small number of cycles on the processors it no longeruses for computation.This kind of
exibility can signi�cantly ease remapping of data parallel applications, withminimal operating system support. If an adaptive program has to be remapped from a largernumber of processors to a smaller number of processors, this can be done by redistributingthe distributed data so that processors which should no longer be executing the program do4

not own any part of the distributed data. The SPMD program will continue to execute onall processors. We refer to a process that owns distributed data as an active process and aprocess from which all data has been removed as a skeleton process. A processor owning anactive process is referred to as an active processor and similarly, a processor owning a skeletonprocess is referred to as a skeleton processor. A skeleton processor will still execute each parallelloop in the program. However, after evaluating the local loop bounds to restrict execution tolocal data, a skeleton processor will determine that it does not need to execute any iterationsof the parallel loop. All computations involving writing into scalar variables will continue to beexecuted on all processors. The parallel program will use some cycles in the skeleton processors,in the evaluation of loop bounds for parallel loops and in the computations involving writing intoscalar variables. However, for data parallel applications involving large arrays this is not likelyto cause any noticeable slowdown for other processes executing on the skeleton processors. Thismodel substantially simpli�es remapping when a skeleton processor again becomes available forexecuting the parallel program. A skeleton processor can be made active simply by redistributingthe data so that this processor owns part of the distributed data. New processes do not needto be spawned when skeleton processors become available, hence no operating system supportis required for remapping to start execution on a larger number of processors. In this model,a maximal possible set of processors is speci�ed before starting execution of a program. Theprogram text is executed on all these processors, though some of these may not own any portionsof the distributed data at any given point in the program execution. We believe that this is nota limitation in practice, since the set of workstations or processors of a parallel machine thatcan possibly be used for running an application is usually known in advance.In Figure 2 we have represented three di�erent states of �ve processors (workstations) ex-ecuting a parallel program using our model. In the initial state, the program data is spreadacross all �ve processors. In the second state, two users have logged in on processors 0 and 2,so the program data is remapped onto processors 1,3 and 4. After some time, those users logo� and another user logs in on processor 1. The program adapts itself to this new con�gurationby remapping the program data onto processors 0,2,3 and 4.If an adaptive program needs to be remapped while it is in the middle of a parallel, muche�ort may be required to ensure that all computations n restart at the correct point on all theprocessors after remapping. The main problem is ensuring that each iteration of the (parallel)loop is executed exactly once, either before or after the remapping. Keeping track of which loopiterations have been completed before the remapping, and only executing those that haven'talready been completed after the remapping, can be expensive. However, if the program isallowed to execute for a short time after detecting that remapping needs to be done, the remap-ping can be substantially simpli�ed. Therefore, in our model, the adaptive program is markedwith remap points. These remap points can be speci�ed by the programmer if the program isparallelized by hand, or may be determined by the compiler if the program is compiled from5

Time t1
P0 P1 P2 P3 P4

user 2

Time t2
P0 P1 P2 P3 P4

user 3

Time t0 P0 P1 P2 P3 P4

3 different states of workstations and program

Active Process

Skeleton Process

User Process

user 1

Figure 2: An Adaptive Programming Environmenta single program speci�cation (e.g. using an HPF compiler). We allow remapping when theprogram is not executing a data parallel loop. The local loop bounds of a data parallel loop arelikely to be modi�ed when the data is redistributed, since a processor is not likely to own exactlythe same data both before and after remapping. We will further discuss how the compiler candetermine placement of remap points in Section 4.At each remap point, the program must determine if there is a reason to remap. We assume adetection mechanism that determines if load needs to be shifted away from any of the processorswhich are currently active, or if any of the skeleton processors can be made active. This de-tection mechanism is the only operating system support our model assumes. All the processorssynchronize at the remap point and, if the detection mechanism determines that remapping isrequired, data redistribution is done.Two main considerations arise in choosing remap points. If the remap points are too farapart, that is if the program takes too much time between remap points, this may not be6

acceptable to the users of the machine(s). If remap points are too close together, the overheadof using the detection mechanism may start to become signi�cant.Our model for adaptive parallel programming is closest to the one presented by Proutty etal. [19]. They also consider data parallel programming in an adaptive environment, including anetwork of heterogeneous workstations. The main di�erence in their approach is that the respon-sibility for data repartitioning is given to the application programmer. We have concentrated ondeveloping runtime support that can perform data repartitioning, work partitioning and com-munication after remapping. Our model satis�es the three requirements stated by Proutty et al.,namely withdrawal (the ability to withdraw computation from a processor within a reasonabletime), expansion (the ability to expand into newly available processors) and redistribution (theability to redistribute work onto a dynamic number of processors so that no processor becomesa bottleneck).3 Runtime SupportIn this section we discuss the runtime library we have developed for adaptive programs. Theruntime library has been developed on top of an existing runtime library for structured andblock structured applications. This library is called Multiblock PARTI [2, 21], since it wasinitially used to parallelize multiblock applications. We have developed our runtime support foradaptive parallelism on top of Multiblock PARTI because this runtime library provides much ofthe runtime support required for forall loops and array expressions in data parallel languages likeHPF. This library was also integrated with the HPF/Fortran90D compiler developed at SyracuseUniversity [1, 3, 5]. We discuss the functionality of the existing library and then present theextensions that were implemented to support adaptive parallelism. We refer to the new library,with extensions for adaptive parallelism, as Adaptive Multiblock PARTI (AMP).3.1 Multiblock PARTIThis runtime library can be used in optimizing communication and partitioning work for HPFcodes in which data distribution, loop bounds and/or strides are unknown at compile-time andindirection arrays are not used. Consider the problem of compiling a data parallel loop, suchas a forall loop in HPF, for a distributed memory parallel machine or network of workstations.If all loop bounds and strides are known at compile-time and if all information about thedata distribution is also known, then the compiler can perform work partitioning and can alsodetermine the sets of data elements to be communicated between processors. However, if allthis information is not known, then these tasks may not be possible to perform at compile-time.Work partitioning and communication generation become especially di�cult if there are symbolicstrides or if the data distribution is not known at compile-time. In such cases, runtime analysiscan be used to determine work partitioning and generate communication. The Multiblock PARTI7

library has been developed for providing the required runtime analysis routines.In summary, the runtime library has routines for three sets of tasks:� De�ning data distribution at runtime; this includes maintaining a distributed array de-scriptor (DAD) which can be used by communication generation and work partitioningroutines.� Performing communication when the data distribution, loop bounds and/or strides areunknown at compile-time and,� Partitioning work (loop iterations) when data distribution, loop bounds and/or strides areunknown at compile-time.A key consideration in using runtime routines for work partitioning and communication is tokeep the overhead of runtime analysis low. For this reason, the runtime analysis routines mustbe e�cient and it should be possible to reuse the results of runtime analysis whenever possible.In this runtime system, communication is performed in two phases. First, a subroutine is calledto build a communication schedule that describes the required data motion, and then anothersubroutine is called to perform the data motion (sends and receives on a distributed memoryparallel machine) using a previously built schedule. Such an arrangement allows a schedule tobe used multiple times in an iterative code.To illustrate the functionality of the runtime routines for communication analysis, considera single statement forall loop as speci�ed in HPF. This is a parallel loop in which loop boundsand strides associated with any loop variable cannot be functions of any other loop variable [13].If there is only a single array on the right hand side, and all subscripts are a�ne functionsof the loop variables, then this forall loop can be thought as copying a rectilinear section ofdata from the right hand side array into the left hand array, potentially involving changes ofo�sets and strides and index permutation. We refer to such communication as a regular sectionmove [11]. The library includes a regular section move routine, Regular Section Move Sched,that can analyze the communication associated with a copy from a right hand side array to lefthand side array when data distribution, loop bounds and/or strides are not known at compile-time.A regular section move routine can be invoked for analyzing the communication associatedwith any forall loop, but this may result in unnecessarily high runtime overheads for both ex-ecution time and memory usage. Communication resulting from loops in many real codes hasmuch simpler features that make it easier and less time-consuming to analyze. For example, inmany loops in mesh-based codes, only ghost (or overlap) cells [10] need to �lled along certaindimension(s). If the data distribution is not known at compile-time, the analysis for communica-tion can be much simpler if it is known that only overlap cells need to be �lled. The MultiblockPARTI library includes a communication routine, Overlap Cell Fill Sched, which computes a8

Real *A, *B, *TempDAD *D DAD for A and BSCHED *SchedNum Proc = Get Number of Processors()D = Create DAD(Num Proc, ...)Sched = Compute Transpose Sched(D)Lo Bnd1 = Local Lower Bound(D,1)Lo Bnd2 = Local Lower Bound(D,2)Up Bnd1 = Local Upper Bound(D,1)Up Bnd2 = Local Upper Bound(D,2)Do Time step = 1 to 100Data Move(B, Temp, Sched)Forall(i = Lo Bnd1:Up Bnd1,j = Lo Bnd2:Up Bnd2)A(i,j) = Temp(i,j) + A(i,j)EndForall...More Computation involving A & BEnddoFigure 3: Example SPMD Program Using Multiblock PARTIschedule that is used to direct the �lling of overlap cells along a given dimension of a distributedarray. The schedules produced by Overlap Cell Fill Sched and Regular Section Move Sched areemployed by a routine called Data Move that carries out both interprocessor communication(sends and receives) and intra-processor data copying.The �nal form of support provided by the Multiblock PARTI library is to distribute loopiterations and transform global distributed arrays references into local references. In distributedmemory compilation, the owner computes rule is often used for distributing loop iterations [12].Owner computes means that a particular loop iteration is executed by the processor owning theleft-hand side array element written into during that iteration. Two routines, Local Lower Boundand Local Upper Bound, are provided by the library for transforming loop bounds (returning,respectively, the local lower and upper bounds of a given dimension of the referenced distributedarray) based upon the owner computes rule.An example of using the library routines, to parallelize the program from Figure 1 is shown inFigure 3. The library routines are used for determining work partitioning (loop bounds) and for9

determining and optimizing communication between the processors. In this example, the datadistribution is known only at runtime and therefore, the distributed array descriptor (DAD) is�lled in at runtime. Work partitioning and communication is determined at runtime using theinformation stored in the DAD. The function Compute Transpose Schedule() is shorthand for acall to the Regular Section Move Sched routine, with the parameters set to do a transpose fora two-dimensional distributed array. The schedule generated by this routine is then used bythe Data Move routine for transposing the array B and storing the result in the array Temp.Functions Local Lower Bound and Local Upper Bound are used to partition the data parallelloop across processors, using the DAD. The sizes of the arrays A, B and Temp on each processordepend upon the data distribution and are known only at runtime. Therefore, arrays A, B andTemp are allocated at runtime. The calls to the memory management routines are not shown inthe �gure. The code could be optimized further by writing specialized routines to perform thetranspose operation, but the library routines are also applicable to more general forall loops.The Multiblock PARTI library is currently implemented on the Intel iPSC/860 and Paragon,the Thinking Machines CM-5, the IBM SP1/2 and the PVM message passing environment for anetwork of workstations [8]. The design of the library is architecture independent and thereforeit can be easily ported to any distributed memory parallel machine or any environment thatsupports message passing (e.g. Express).3.2 Adaptive Multiblock PARTIThe existing functionality of the Multiblock PARTI library was useful for developing adaptiveprograms in several ways. If the number of processors on which a data parallel loop is tobe executed is not known at compile-time, it is not possible for the compiler to analyze thecommunication, and in some cases, even the work partitioning. This holds true even if all otherinformation, such as loop bounds and strides, is known at compile-time. Thus runtime routinesare required for analyzing communication (and work partitioning) in a program written foradaptive execution, even if the same program written for static execution on a �xed number ofprocessors did not require any runtime analysis.Several extensions were required to the existing library to provide the required functionalityfor adaptive programs. When the set of processors on which the program executes changes atruntime, all active processors must obtain information about which processors are active andhow the data is distributed across the set of active processors. To deal with only some of theprocessors being active at any time during execution of the adaptive program, the implementa-tion of Adaptive Multiblock PARTI uses the notion of physical numbering and logical numberingof processors. If p is the number of processors that can possibly be active during the executionof the program, each such processor is assigned a unique physical processor number between 0and p � 1 before starting program execution. If we let c be the number of processors that areactive at a given point during execution of a program, then each of these active processors is10

assigned a unique logical processor number between 0 and c� 1. The mapping between physicalprocessor numbers and logical processor numbers, for active processors, is updated at remappoints. The use of a logical processor numbering is similar in concept to the scheme used forprocessor groups in the Message Passing Interface Standard (MPI) [7].Information about data distributions is available at each processor in the Distributed Ar-ray Descriptors (DADs). However, DADs only store the total size in each dimension for eachdistributed array. The exact part of the distributed array owned by an active processor can bedetermined using the logical processor number. Each processor maintains information aboutwhat physical processor corresponds to each logical processor number at any time. The map-ping from logical processor number to physical processor is used for communicating data betweenprocessors.In summary, the additional functionality implemented in AMP over that available in Multi-block PARTI is as follows:� Routines for consistently updating the logical processor numbering when it has been de-tected that redistribution is required.� Routines for redistributing data at remap points and,� Modi�ed communication analysis and data move routines to incorporate information aboutthe logical processor numbering.The communication required for redistributing data at a remap point depends upon thelogical processor numberings before and after redistribution. Therefore, after it has been decidedthat remapping is required all processors must obtain the new logical processor numbering. Thedetection routine, after determining that data redistribution is required, decides upon a newlogical processor numbering of the processors which will be active. The detection routine informsall the processors which were either active before remapping or will be active after remapping ofthe new logical numbering. It also informs the processors which will be active after remappingabout the existing logical numbering (processors that are active both before and after remappingwill already have this information). These processors need this information for determining whatportions of the distributed arrays they will receive from which physical processors.The communication analysis required for redistributing data was implemented by modifyingthe Multiblock PARTI Regular Section Move Sched routine. The new routine takes both thenew and old logical numbering as parameters. The analysis for determining the data to be sentby each processor is done using the new logical numbering (since data will be sent to processorswith the new logical numbering) and the analysis for determining the data to be received is doneusing the old logical numbering (since data will be received from processors with the old logicalnumbering). 11

Compute Initial DAD, Sched and Loop BoundsDo Time step = 1 to 100If Detection() then Remap()Data Move(B, Temp, Sched)Forall(i = Lo Bnd1:Up Bnd1,j = Lo Bnd2:Up Bnd2)A(i,j) = Temp(i,j) + A(i,j)EndForall...More Computation involving A & BEnddoRemap()Real *New A, *New BNew NProc = Get No of Proc and Numb()New D = Create DAD(New NProc)Redistribute Data(A, New A, D, New D)Redistribute Data(B, New B, D, New D)D = New D; A = New A; B = New B ;Sched = Compute Transp Sched(D)Lo Bnd1 = Local Lower Bound(D,1)Lo Bnd2 = Local Lower Bound(D,2)Up Bnd1 = Local Upper Bound(D,1)Up Bnd2 = Local Upper Bound(D,2)EndFigure 4: Adaptive SPMD Program Using AMP12

Modi�cations to the Multiblock PARTI communication functions were also required forincorporating information about logical processor numberings. This is because the data dis-tribution information in a DAD only determines which logical processor owns what part of adistributed array. To actually perform communication, these functions must use the mappingbetween logical and physical processor numberings.Figure 4 shows the example from Figure 3 parallelized using AMP. The only di�erencefrom the non-adaptive parallel program is the addition of the detection and remap calls at thebeginning of the time step loop. The initial computation of the loop bounds and communicationschedule are the same as in Figure 3. The remap point is the beginning of the time-step loop. Ifremapping is to be performed at this point, the function Remap is invoked. Remap determinesthe new logical processor numbering, after it is known what processors are available and createsa new Data Access Descriptor (DAD). The Redistribute Data routine redistributes the arrays Aand B, using both the old and new DADs. After redistribution, the old DAD can be discarded.The new communication schedule and loop bounds are determined using the new DAD. We havenot shown the details of the memory allocation and deallocation for the data redistribution.4 Compilation IssuesThe examples shown previously illustrate how AMP can be used by application programmers todevelop adaptive programs by hand. We now brie
y describe the major issues in compiling pro-grams written in an HPF-like data parallel programming language for an adaptive environment.We also discuss some issues in expressing adaptive programs in High Performance Fortran. Aswe stated earlier, our work is restricted to data parallel languages in which parallelism is spec-i�ed explicitly. Incorporating adaptive parallelism in compilation systems in which parallelismis detected automatically [12] is beyond the scope of this paper.In previous work, we successfully integrated the Multiblock PARTI library with a prototypeFortran90D/HPF compiler developed at Syracuse University [1, 3, 5]. Routines provided by thelibrary were inserted for analyzing work partitioning and communication at runtime, whenevercompile-time analysis was inadequate. This implementation can be extended to use AdaptiveMultiblock PARTI and compile HPF programs for adaptive execution. The major issues incompiling a program for adaptive execution are determining remap points, inserting appropriateactions at remap points and ensuring reuse of the results of runtime analysis to minimize thecost of such analysis.4.1 Remap PointsIn our model of execution of adaptive programs, remapping is considered only at certain pointsin the program text. If our runtime library is to be used, a program cannot be remappedinside a data parallel loop. The reason is that the local loop bounds of a data parallel loop are13

determined based upon the current data distribution, and in general it is very di�cult to ensurethat all iterations of the parallel loop are executed by exactly one processor, either before orafter remapping.There are (at least) two possibilities for determining remap points. They may be speci�edby the programmer in the form of a directive, or they may be determined automatically bythe compiler. For the data parallel language HPF, parallelism can only be explicitly speci�edthrough certain constructs (e.g.. forall statement, forall construct, independent statement [13]).Inside any of these constructs, the only functions that can be called are those explicitly markedas pure functions. Thus it is simple to determine, solely from the syntax, what points in theprogram are not inside any data parallel loop and therefore can be remap points. Making allsuch points remap points may, however, lead to a large number of remap points which may occurvery frequently during program execution, and may lead to signi�cant overhead from employingthe detection mechanism (and synchronization of all processors at each remap point).Alternatively, a programmer may specify certain points in the program to be remap points,through an explicit directive. This, however, makes adaptive execution less transparent to theprogrammer.Once remap points are known to the compiler, it can insert calls to the detection mechanismat those points. The compiler also needs to insert a conditional based on the result of thedetection mechanism, so that, if the detection mechanism determines that remapping needsto be done, then calls are made both for building new Distributed Array Descriptors and forredistributing the data as speci�ed by the new DADs. The resulting code looks very similarto the code shown in the example from Section 3, except that the compiler will not explicitlyregenerate schedules after a remap. The compiler generates schedules anywhere they will beneeded, and relies on the runtime library to cache schedules that may be reused, as describedin the next section.4.2 Schedule Reuse in the Presence of RemappingAs we discussed in Section 3, a very important consideration in using runtime analysis is theability to reuse the results of runtime analysis whenever possible. This is relatively straightfor-ward if a program is parallelized by inserting the runtime routines by hand. When the runtimeroutines are automatically inserted by a compiler, an approach based upon additional runtimebookkeeping can be used. In this approach, all schedules generated are stored in hash tables bythe runtime library, along with their input parameters. Whenever a call is made to generate aschedule, the input parameters speci�ed for this call are matched against those for all existingschedules. If a match is found, the stored schedule is returned by the library. This approach wassuccessfully used in the prototype HPF/Fortran90D compiler that used the Multiblock PARTIruntime library. Our previous experiments have shown that saving schedules in hash tablesand searching for existing schedules results in less than 10% overhead, as compared to a hand14

implementation that reuses schedules optimally [1].This approach easily extends to programs which include remapping. One of the parameters tothe schedule call is the Distributed Array Descriptor(DAD). After remapping, a call for buildinga new DAD for each distributed array is inserted by the compiler. For the �rst execution ofany parallel loop after remapping, no schedule having the new DADs as parameters will beavailable in the hash table. New schedules for communication will therefore be generated. Thehash tables for storing schedules can also be cleared after remapping to reduce the amount ofmemory used by the library.4.3 Relationship to HPFIn HPF, the Processor directive can be used to declare a processor arrangement. An intrinsicfunction, Number of Processors, is also available for determining the number of physical proces-sors available at runtime. HPF allows the use of the intrinsic function Number of Processors inthe speci�cation of a processor arrangement. Therefore it is possible to write HPF programs inwhich the number of physical processors available is not known until runtime. The Processordirective can appear only in the speci�cation part of a scoping unit (i.e. a subroutine or mainprogram). There is no mechanism available for changing the number of processors at runtime.To the best of our knowledge, existing work on compiling data parallel languages for dis-tributed memory machines assumes a model in which the number of processors is staticallyknown at compile-time [5, 12, 23]. Therefore, several components of our runtime library arealso useful for compiling HPF programs in which a processor arrangement has been speci�edusing the intrinsic function Number of Processors. HPF also allows Redistribute and Realigndirectives, which can be used to change the distribution of arrays at runtime. Our redistributionroutines would be useful for implementing these directives in an HPF compiler.5 Experimental ResultsTo study the performance of the runtime routines and to determine the feasibility of using anadaptive environment for data parallel programming, we have experimented with a multiblockNavier-Stokes solver template [22] and a multigrid template [17]. The multiblock template wasextracted from a computational
uid dynamics application that solves the thin-layer Navier-Stokes equations over a 3D surface (multiblock TLNS3D). The sequential Fortran77 code wasdeveloped by Vatsa et al. at NASA Langley Research Center, and consists of nearly 18,000 linesof code. The multiblock template, which was designed to include portions of the entire codethat are representative of the major computation and communication patterns of the originalcode, consists of nearly 2,000 lines of F77 code. The multigrid code we experimented withwas developed by Overman et al. at NASA Langley. In earlier work, we hand parallelizedthese codes using Multiblock PARTI and also parallelized Fortran 90D versions of these codes15

No. of Time per Cost of Remapping toProcs. Iteration 12 procs. 8 procs. 4 procs. 1 proc.12 2213 - 3024 3740 67578 2480 3325 - 3715 94004 3242 2368 2755 - 64201 8244 2548 5698 5134 -Figure 5: Cost of Remapping (in ms.): Multiblock code on Network of Workstationsusing the prototype HPF/Fortran 90D compiler. In both these codes, the major computationis performed inside a (sequential) time-step loop. For each of the parallel loops in the majorcomputational part of the code, the loop bounds and communication patterns do not changeacross iterations of the time-step loop when the code is run in a static environment. Thuscommunication schedules can be generated before the �rst iteration of the time-step loop andcan be used for all time steps in a static environment.We modi�ed the hand parallelized versions of these codes to use the Adaptive MultiblockPARTI routines. For both these codes, we chose the beginning of an iteration of the time-step loop as the remapping point. If remapping is done, the data distribution changes and theschedules used for previous time steps can no longer be used. For our experiments, we usedtwo parallel programming environments. The �rst was a network of workstations using PVMfor message passing. We had up to 12 workstations available for our experiments. The secondenvironment was a 16 processors IBM SP-2.In demonstrating the feasibility of using an adaptive environment for parallel program exe-cution, we considered the following factors:� the time required for remapping and computing a new set of schedules, as compared tothe time required for each iteration of the time-step loop,� the number of time steps that the code must execute after remapping to a greater numberof processors to e�ectively amortize the cost of remapping, and� the e�ect of skeleton processes on the performance of their host processors.On the network of Sun workstations, we considered executing the program on 12, 8, 4 or 1workstations at any time. Remapping was possible from any of these con�gurations to any othercon�guration. We measured the time required for one iteration of the time-step loop and the16

No. of Time per Cost of Remapping toProcs. Iteration 16 procs. 8 procs. 4 procs. 2 procs. 1 proc.16 59.2 - 33 49 86 1598 91.5 34 - 54 88 1564 139.5 47 53 - 96 1602 215.8 78 85 95 - 1711 526.8 143 152 156 173 -Figure 6: Cost of Remapping (in ms.): Multiblock code on IBM SP-2
No. of Time per Cost of Remapping toProcs. Iteration 8 procs. 4 procs. 2 procs. 1 proc.8 93.9 - 14 20 364 134.4 18 - 22 292 206.6 19 23 - 291 308.4 33 33 36 -Figure 7: Cost of Remapping (in ms.): Multigrid code on IBM SP-217

No. of No. of Time-steps for AmortizingProc. when remapped to12 proc. 8 proc. 4 proc. 1 proc.12 - - - -8 12.4 - - -4 2.3 3.6 - -1 0.4 1.1 1.0 -Figure 8: No. of Time-steps for Amortizing Cost of Remapping: Multiblock code on Networkof Sun Workstationscost of remapping from one con�guration to another. The experiments were conducted at a timewhen none of the workstations had any other jobs executing. The time required per iterationfor each con�guration and the time required for remapping from one con�guration to anotherare presented in the Figure 5. In this table, the second column shows the time per iteration,and columns 3 to 6 show the time for remapping to 12, 8, 4 and 1 processor con�guration,respectively. The remapping cost includes the time required for redistributing the data and thetime required for building a new set of communication schedules. The speed-up of the templateis not very high because it has a high communication to computation ratio and communicationusing PVM is relatively slow. These results show that the time required for remapping for thisapplication is at most the time required for 4 time steps.Note that on a network of workstations connected by an Ethernet, it takes much longer toremap from a larger number of processors to a smaller number of processors than from a smallnumber of processors to a large number of processors. e.g. the time required for remappingfrom 8 processors to 1 processor is signi�cantly higher than the time required for remappingfrom 1 processor to 8 processors. This is because if several processors try to send messagessimultaneously on an Ethernet, contention occurs and none of the messages may actually besent, leading to signi�cant delays overall. Instead, if a single processors is sending messages tomany other processors, no such contention occurs.We performed the same experiment on a 16 processor IBM SP-2. The results are shown arein Figure 6. The program could execute on either 16, 8, 4, 2 or 1 processors and we consideredremapping from any of these con�gurations to any other con�guration. The templates obtainssigni�cantly better speed-up and the time required for remapping is much smaller. The super-linear speed-up noticed in going from 1 processor to 2 processors because on 1 processor, alldata cannot �t into the main memory of the machine. In Figure 7, we show the results from the18

multigrid template. Again, the remapping time for this routine is reasonably small.Another interesting tradeo� occurs when additional processors become available for runningthe program. Running the program on a greater number of processors can reduce the timerequired for completing the execution of the program, but at the same time remapping theprogram onto a new set of processors causes additional overhead for moving data. A usefulfactor to determine is the number of iterations of the time-step loop that must still be executedso that it will be pro�table to remap from fewer to a greater number of processors. Using thetimings from Figure 5, we show the results in Figure 8. This �gure shows that if the programwill continue run for a several more time-steps, remapping from almost any con�guration to anyother larger con�guration is likely to be pro�table. Since the remapping times are even smalleron the SP-2, the number of iterations required for amortizing the cost of remapping will be evensmaller.In our model of adaptive parallel programming, a program is never completely removedfrom any processor. A skeleton process steals some cycles on the host processor, which canpotentially slow down other processes that want to use the processor (e.g. a workstation userwho has just logged in). The skeleton processes do not perform any communication and do notsynchronize, except at the remap points. In our examples, the remap point is the beginning ofan iteration of the time-step loop. We measured the time required per iteration on the skeletonprocessors. Our experiments show that the execution time on skeleton processers is always lessthan 10% of the execution time on active processers. For the multiblock code, the time requiredper iteration for the skeleton processors was 4.7 ms. and 30 ms. on the IBM SP-2 and Sun-4workstations, respectively. The multigrid code took 11 ms. per iteration on the IBM SP-2. Weexpect, therefore, that a skeleton process will not slow down any other job run on that processorsigni�cantly (assuming that the skeleton process gets swapped out by the operating system whenit reaches a remap point).6 Related WorkIn this section, we compare our approach to other e�orts on similar problems.Condor [14] is a system that supports transparent migration of a process (through check-pointing) from one workstation to another. It also performs detection to determine if the userof the workstation on which a process is being executed has returned, and also looks out forother idle workstations. However, this system does not support parallel programs; it considersonly programs that will be executed on a single processor.Several researchers have addressed the problem of using an adaptive environment for execut-ing parallel programs. However, most of these consider a task parallel model or a master-slavemodel. In a version of PVM called Migratable PVM (MPVM) [6], a process or a task running ona machine can be migrated to other machines or processors. However, MPVM does not provideany mechanism for redistribution of data across the remaining processors when a data parallel19

program has to be withdrawn from one of the processors.Another system called User Level Processes (ULP) [18] has also been developed. This systemprovides light-weight user level tasks. Each of these tasks can be migrated from one machineto another, but again, there is no way of achieving load-balance when a parallel program needsto be executed on a smaller number of processors. Piranha [9] is a system developed on top ofLinda [4]. In this system, the application programmer has to write functions for adapting to achange in the number of available processors. Programs written in this system use a master-slavemodel and the master coordinates relocation of slaves. There is no clear way of writing dataparallel applications for adaptive execution in all these systems.Data Parallel C and its compilation system [16] have been designed for load balancing on anetwork of heterogeneous machines. The system requires continuous monitoring of the progressof the programs executing on each machine. Experimental results have shown that this involvesa signi�cant overhead, even when no load balancing is required [16].7 Conclusions and Future WorkIn this paper we have addressed the problem of developing applications for execution in anadaptive parallel programming environment, meaning an environment in which the numberof processors available varies at runtime. We have de�ned a simple model for programmingand program execution in such an environment. In the SPMD model supported by HPF, thesame program text is run on all the processors, remapping a program to include or excludeprocessors only involves remapping the (parallel) data used in the program. The only operatingsystem support required in our model is for detecting the availability (or lack of availability)of processors. This makes it easier to port applications developed using this model onto manyparallel programming systems.We have presented the features of Adaptive Multiblock PARTI, which provides runtimesupport that can be used for developing adaptive parallel programs. We described how theruntime library can be used by a compiler to compile programs written in HPF-like data parallellanguages for adaptive execution. We have presented experimental results on a hand parallelizedNavier-Stokes solver template and a multigrid template run on a network of workstations andan IBM SP-2. Our experimental results show that adaptive execution of a parallel program canbe provided at relatively low cost, if the number of available processors does not vary frequently.AcknowledgementsWe would also like to thank V. Vatsa and M. Sanetrik at NASA Langley Research Center forproviding access to the multiblock TLNS3D application code. We will also like to thank Johnvan Rosendale at ICASE and Andrea Overman at NASA Langley for making their sequentialand hand parallelized multigrid code available to us.20

References[1] Gagan Agrawal, Alan Sussman, and Joel Saltz. Compiler and runtime support for structured andblock structured applications. In Proceedings Supercomputing '93, pages 578{587. IEEE ComputerSociety Press, November 1993.[2] Gagan Agrawal, Alan Sussman, and Joel Saltz. E�cient runtime support for parallelizing blockstructured applications. In Proceedings of the Scalable High Performance Computing Conference(SHPCC-94), pages 158{167. IEEE Computer Society Press, May 1994.[3] Gagan Agrawal, Alan Sussman, and Joel Saltz. An integrated runtime and compile-time approachfor parallelizing structured and block structured applications. IEEE Transactions on Parallel andDistributed Systems, 1995. To appear. Also available as University of Maryland Technical ReportCS-TR-3143 and UMIACS-TR-93-94.[4] R. Bjornson. Linda on Distributed Memory Multiprocessors. PhD thesis, Yale University, 1991.[5] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M.-Y. Wu. Compiling Fortran 90D/HPFfor distributed memory MIMD computers. Journal of Parallel and Distributed Computing, 21(1):15{26, April 1994.[6] Jeremy Casas, Ravi Konuru, Steve W. Otto, Robert Prouty, and Jonathan Walpole. Adaptive loadmigration systems for PVM. In Proceedings Supercomputing '94, pages 390{399. IEEE ComputerSociety Press, November 1994.[7] Message Passing Interface Forum. MPI: A message-passing interface standard. Technical ReportCS-94-230, Computer Science Dept., University of Tennessee, April 1994. Also appears in theInternational Journal of Supercomputer Applications, Volume 8, Number 3/4, 1994.[8] Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 user's guideand reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, May1993.[9] David Gelernter and David Kaminsky. Supercomputing out of recycled garbage: Preliminary expe-rience with Piranha. In Proceedings of the Sixth International Conference on Supercomputing, pages417{427. ACM Press, July 1992.[10] Michael Gerndt. Updating distributed variables in local computations. Concurrency: Practice andExperience, 2(3):171{193, September 1990.[11] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis.IEEE Transactions on Parallel and Distributed Systems, 2(3):350{360, July 1991.[12] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMDdistributed-memory machines. Communications of the ACM, 35(8):66{80, August 1992.[13] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance FortranHandbook. MIT Press, 1994.[14] M.Litzkow andM.Solomon. Supporting checkpointing and process migration outside the Unix kernel.Usenix Winter Conference, 1992.[15] Vijay K. Naik, Sanjeev Setia, and Mark Squillante. Performance analysis of job scheduling policiesin parallel supercomputing environments. In Proceedings Supercomputing '93, pages 824{833. IEEEComputer Society Press, November 1993.[16] N.Nedeljkovic and M.J.Quinn. Data-parallel programming on a network of heterogeneous worksta-tions. Concurrency: Practice and Experience, 5(4), 1993.21

[17] Andrea Overman and John Van Rosendale. Mapping robust parallel multigrid algorithms to scalablememory architectures. In Proceedings of 1993 Copper Mountain Conference on Multigrid Methods,April 1993.[18] R.Konuru, J.Casa, R.Prouty, and J.Walpole. A user-level process package for PVM. In Proceedings ofthe Scalable High Performance Computing Conference (SHPCC-94), pages 48{55. IEEE ComputerSociety Press, May 1994.[19] R.Prouty, S.Otto, and J.Walpole. Adaptive execution of data parallel computations on networks ofheterogeneous workstations. Technical Report CSE-94-012, Oregon Graduate Institute of Scienceand Technology, 1994.[20] Sanjeev Setia. Scheduling on Multiprogrammed Distributed Memory Parallel Machines. PhD thesis,University of Maryland, Aug 1993.[21] Alan Sussman, Gagan Agrawal, and Joel Saltz. A manual for the multiblock PARTI runtime prim-itives, revision 4.1. Technical Report CS-TR-3070.1 and UMIACS-TR-93-36.1, University of Mary-land, Department of Computer Science and UMIACS, December 1993.[22] V.N. Vatsa, M.D. Sanetrik, and E.B. Parlette. Development of a
exible and e�cient multigrid-based multiblock
ow solver; AIAA-93-0677. In Proceedings of the 31st Aerospace Sciences Meetingand Exhibit, January 1993.[23] Hans P. Zima and Barbara Mary Chapman. Compiling for distributed-memory systems. Proceedingsof the IEEE, 81(2):264{287, February 1993. In Special Section on Languages and Compilers forParallel Machines.

22

