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ABSTRACT

Title of Dissertation: APPROXIMATE MATRIX DIAGONALIZATION

FOR USE IN DISTRIBUTED CONTROL

NETWORKS

George A. Kantor, Doctor of Philosophy, 1999

Dissertation directed by: Professor P.S. Krishnaprasad
Department of Electrical and Computer Engineering

Distributed control networks are rapidly emerging as a viable and important

alternative to centralized control. In a typical distributed control network, a num-

ber of spatially distributed nodes composed of “smart” sensors and actuators are

used to take measurements and apply control inputs to some physical plant. The

nodes have local processing power and the ability to communicate with the other

nodes via a network. The challenge is to compute and implement a feedback law

for the resulting MIMO system in a distributed manner on the network.

Our approach to this problem is based on plant diagonalization. To do this, we

search for basis transformations for the vector of outputs coming from the sensors



and the vector of inputs applied to the actuators so that, in the new bases, the

MIMO system becomes a collection of decoupled SISO systems. This formulation

provides a number of advantages for the synthesis and implementation of a feed-

back control law, particularly for systems where the number of inputs and outputs

is large. Of course, in order for this idea to be feasible, the required basis transfor-

mations must have properties which allow them to be implemented on a distributed

control network. Namely, they must be computed in a distributed manner which

respects the spatial distribution of the data (to reduce communication overhead)

and takes advantage of the massive parallel processing capability of the network

(to reduce computation time).

In this thesis, we present some tools which can be used to find suitable trans-

forms which achieve “approximate” plant diagonalization. We begin by showing

how to search the large collection of orthogonal transforms which are contained

in the wavelet packet to find the one which most nearly, or approximately, diag-

onalizes a given real valued matrix. Wavelet packet transforms admit a natural

distributed implementation, making them suitable for use on a control network.

We then introduce a class of linear operators called recursive orthogonal transforms

(ROTs) which we have developed specifically for the purpose of signal processing

on distributed control networks. We show how to use ROTs to approximately

diagonalize fixed real and complex matrices as well as transfer function matrices

which exhibit a spatial invariance property. Numerical examples of all proposed

diagonalization methods are presented and discussed.
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Chapter 1

Introduction

Economics often plays a deciding role in the design and implementation of a large

control system. In the past, communication was cheap compared to computational

power. As a result, centralized control became the norm, with one expensive

central computer reading the data directly from all of the sensors and sending

control inputs directly to all of the actuators.

Today, however, things are changing. Mass produced microprocessors now

provide continually increasing amounts of computational power at continually de-

creasing prices. In automotive applications, for example, the cost of installing and

maintaining the wiring required for a large centralized control system has exceeded

the cost of the computational equipment [38]. Additionally, the centralized con-

troller is difficult to reconfigure: adding a new sensor or actuator to the plant

requires the installation of a new set of wires connecting the new element to the

computer. Hence, it makes sense to investigate alternatives to centralized control.

Distributed control networks have emerged as a viable alternative to centralized

control. In such a network, “intelligent” sensors and actuators make control deci-

sions based on a combination of local information and digital commands from the
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network. Each node is also capable of sending commands and important sensor in-

formation to the other nodes on the network. For example, an “intelligent” motor

might receive a position command over the network, then use an on-board trajec-

tory planner, sensor, and PID controller to get to that position. Finally, when the

motor has reached its desired position, it would broadcast its new position to the

other sensors and actuators on the network.

Control networks have many advantages over centralized control. Less wiring is

required to connect the elements of the system together, making the network easier

and cheaper to install. The simplicity of the wiring scheme makes maintenance

much easier; with less wiring, there is less to go wrong. The on-board “intelligence”

of the sensors and actuators allows them to perform self diagnostics, a feature

which eases troubleshooting. The system is easily reconfigurable. New sensors and

actuators can easily be connected to the existing network. Obsolete nodes can be

replaced in the same way.

Much work has been done regarding control networks over the past few years.

Brockett has investigated the stabilization of a network of intelligent motors [9].

Wong and Brockett have studied the problems of state estimation and feedback

control for control networks with limited communication bandwidth [47] [46].

Hristu [24] has addressed the problem of finding stabilizing feedback laws for lin-

ear systems with limited communication. Wang and Mau [41] and Ooi, Verbout,

Ludwig, and Wornell [32] present some results on the characteristics of feedback

systems where the feedback data is subject to a communication delay. Many au-

thors have investigated the problem of modeling and controlling hybrid systems

[19] [5] [6] [7] [8]. Most of this work is motivated by the hybrid dynamics that re-

sult from the combination of continuous physical interaction and discrete network
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interaction that takes place in a control network.

There is a broad range of applications of control networks that are being put

into use today. Automated homes and offices use control networks to automatically

turn lights on and off, control temperature, manage security systems, and automate

a number of other operations [34]. An control network can provide a manufacturing

plant with an assembly line that is easily reconfigured to make different products.

Automobile manufacturers employ control networks to coordinate anti-lock brak-

ing, engine management, traction control, powered seats and windows, pollution

control, and a variety of other systems which reside on a modern car [38]. Oil

refineries and chemical plants use control networks with intelligent instrumenta-

tion capable of remote calibration and automated troubleshooting, minimizing the

control engineer’s visits to inhospitable or dangerous areas of the plant [25].

Here, we concentrate on applications of control networks where the number

of inputs and outputs is large and the interaction between them is linear. Our

interest in this problem is motivated by recent developments in the fields of micro–

electro–mechanical systems (MEMS) and smart structures. In the field of MEMS,

significant advances have been made in the construction of sensors and actuators

on a very small scale. For example, Bifano et.al. [3] have fabricated a MEMS mirror

array for optical image processing. The array fits 400 actuators onto an area of

less than 1 square centimeter. Since most MEMS devices are currently fabricated

in silicon, the idea of designing MEMS sensors and actuators with built–in local

microprocessors seems natural. In the field of smart structures, a large number of

sensors and actuators are incorporated into the natural structure of a mechanical

system. One such application has large number of piezoelectric actuators and

strain sensors embedded in a composite panel. The panel could then be a flight
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surface on an aircraft and the sensor actuator system would be used to control

its shape, limit vibrations, and monitor its health. With such a large number of

sensors and actuators involved, the implementation of a controller on a distributed

control network seems more feasible than the prospect of a centralized controller.

A similar panel could be placed in the interior of an aircraft or automobile and

the control network would be used to cancel noise and vibrations coming from

outside. Similar approaches have been proposed to damp vibrations and control

the flight surface of a helicopter blade. Another application uses “smart” actuators

composed of an underwater acoustic actuator and sensor. The SmartPanelTM

[17] and Composite Smart Material (CSM) Tile [45] are examples of two such

devices that are currently under development. Thousands of these “smart tiles”

will be mounted on the outside of the hull of a submarine, covering the entire hull.

This massive sensor/actuator array will then be used to actively reduce acoustic

radiation, cancel enemy sonar pulses, and perform acoustic sensing.

Clearly, there is a need to systematically address problems of this type. In

this thesis, we present some results to aid in the design and implementation of

feedback controllers for systems equipped with large distributed control networks.

The ideas here are designed to take advantage of the parallel processing capability

of the network while reducing the need for global communication.

1.1 Plant Diagonalization

The central theme of this thesis is what we call plant diagonalization. Here we

define the structure of the plants we will address. We then introduce the concept

of plant diagonalization and discuss the advantages that this idea presents in the

context of control networks.
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1.1.1 Plant Structure

In this thesis, we will consider plants of the form

y = Gu, (1.1)

where y is an n-dimensional vector containing the plant outputs, u is an m-dimen-

sional vector of plant inputs, andG is the n×mmatrix which defines the interaction

between the inputs and outputs. We call G the “plant matrix”.

In most of this thesis, we will consider plant matrices whose elements are con-

stant real or complex numbers. These types of matrices can be used to model two

types of systems: “quasi-static” systems and “fixed frequency” systems. The term

“quasi-static” is used to describe stable systems whose transients are negligible

compared to the DC response of the system. The plant matrix of a quasi-static

system is a constant real–valued matrix. A “fixed frequency” system is linear dy-

namic system whose inputs (and any disturbances) are assumed to be sinusoids

of a constant frequency. The plant matrix of a fixed frequency system is the

complex–valued matrix that results from evaluating the transfer function matrix

of the dynamical system at the input frequency. The (i, j)th element of the plant

matrix of a fixed frequency system is a complex number which represents the gain

and phase shift from the jth input to the ith output. Models of this type are useful

for systems which exhibit strong resonances as will be discussed in Section 2.4.2.

In addition to this basic structure, we assume that the inputs and outputs cor-

respond to actuators and sensors spatially distributed on a control network. The

network is composed of a number of nodes. Each node contains a combination of

sensors and actuators along with a microprocessor and the communication hard-

ware required to communicate with other nodes on the network. Each node has

access to its own data; it can read the outputs of the sensors it contains and it can
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apply inputs to the actuators it contains. It shares data with other nodes only by

communicating via the network.

1.1.2 Diagonalizing the Plant Matrix

The goal of this thesis is to find an efficient method of implementing output feed-

back control so that the closed loop system achieves some desired performance

criteria. Our approach to solving this problem is to diagonalize the plant matrix

G. To do this, we search for invertible basis transformations for the input and

output vectors so that, in the new bases, the transformed plant matrix appears

diagonal. Here, we call a matrix Σ diagonal if [Σ]ij = 0 whenever i 6= j. Using this

terminology, it makes sense to call a non–square matrix diagonal.

Consider the basis transformations ỹ = Q1y and ũ = Q2u. In these new bases,

the input/output behavior of the plant is described by the equation

ỹ = Q1GQ
−1
2 ũ. (1.2)

Hence, the problem of finding suitable basis transformations is equivalent to finding

Q1 and Q2 such that the matrix

Σ
4
= Q1GQ

−1
2 (1.3)

is diagonal.

Suppose it is possible to find suitable Q1 and Q2. The system in the new

coordinates can be written

ỹ = Σũ. (1.4)

Since Σ is diagonal, the interaction between ũi and ỹj is zero for i 6= j. The plant

has become a system of decoupled scalar subsystems,

ỹi = σiiũi, (1.5)
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for i = 1, 2, . . . ,min(n,m).

This representation has two major advantages, particularly when n and m

are large. First, the problem of MIMO controller synthesis is transformed to the

much easier problem of synthesizing a controllers for a number of decoupled SISO

systems. The other advantage is closely related. Since the systems are decoupled,

the feedback laws are also decoupled. Each ũi can be calculated based only on the

value of the corresponding ỹi. As a result, once ỹ is computed, ũ can be computed

quickly, in parallel, and with no additional communication.

To illustrate this, we compare the task of computing the linear feedback law

u = Ky in the original basis with the task of computing ũ = K̃ỹ in the transformed

basis. In the original basis, u is computed by multiplying the n–vector y by

the m × n matrix K. This calculation requires O(nm) (“on the order of nm”)

operations. Additionally, global communication is required; in order to compute ui,

the value of every element of y must be known. In the transformed basis, however,

the matrix K̃ is diagonal, so ũ can be computed in O(min(m,n)) operations. Due

to the decentralized nature of K̃, no additional communication is required to make

the calculations and the calculations can be easily performed in parallel on the

control network.

The computational and communication requirements of the transforms Q1 and

Q2 are very important. In addition to the cost involved in computing ũ from ỹ

we must also perform the coordinate transformations ỹ = Q1y and u = Q−1
2 ũ. If

these transforms are computationally intensive or require global communication,

then the advantages of the transformed basis are lost. In most cases, this means

that we will have to settle for transforms which “approximately” diagonalize the

plant matrix.
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In this thesis, we will implement the approximations of Q1 and Q2 by using

a series of alternating communication and computation steps. In the communi-

cation steps, a limited amount of data is shared between selected nodes. In the

computation steps, the nodes individually perform a simple manipulation of the

data they have access to. By their design, these approximations take advantage

of the distributed computing power available on the network while respecting the

communication constraints.

Distributed Controller Implementation

Now we are ready to describe how plant diagonalization can be applied to the

implementation of feedback on a distributed control network. In the proposed im-

plementation, the controller performs three basic tasks. First, it computes ỹ = Q1y

using a series of alternating communication and computation steps as described

above. The elements of the output vector y are the measurements of the sen-

sors that are distributed spatially over the network. Because of of the distributed

nature of our implementation of the transform Q1, the elements of the resulting

transformed vector ỹ are also distributed over the nodes of the network. The sec-

ond task of the controller is to compute the transformed output vector ũ based on

ỹ. The plant matrix is diagonal (or “approximately diagonal”) in the transformed

coordinates, so each ũi can be chosen based soley on the corresponding ỹi. This

means that each ũi can be computed on the node on which ỹi resides without

any additional communication. The third and final task of the controller imple-

mentation is to transfrom the vector ũ into the actual input vector u using the

transformation u = Q−1
2 ũ. Like Q1, Q

−1
2 is implemented in a distributed manner

using a series of communication and computation steps. After the third task is

8



completed, each element ui of the input vector will reside on the node containing

the actuator to which ui will be applied.

To summarize, the main goal of this thesis is to find linear coordinate trans-

formations Q1 and Q2 which meet the following criteria:

1. The matrix Q1GQ
−1
2 is diagonal or “approximately” diagonal

2. The transforms Q1 and Q2 can be implemented as a series of alternating com-

putation and communication steps. The computations necessary to perform

the transform can be easily distributed over the processors on the control

network, taking advantage of the network’s parallel processing capability.

The communication steps can be chosen to respect the spatial distribution

of the data, reducing communication overhead.

1.2 Preview of the Thesis

In the following pages, we present some methods of finding suitable transforms to

diagonalize or approximately diagonalize various types of plants. In Chapter 2, we

show how to approximately diagonalize a constant real or complex valued matrix

using transforms from the wavelet packet. The idea is inspired by the work of

Chou, Guthart, and Flamm [14], who proposed the use of the wavelet transform

in the spatial domain to simplify the required feedback for vibrating systems. The

work presented here uses an algorithm due to Wickerhauser [43][44] to find wavelet

packet transforms which approximate the SVD factors of the plant matrix. We

show that the resulting transforms have a natural implementation on a hierarchical

control network.

In Chapter 3, we introduce a class of transforms which we have designed specif-
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ically to be implemented on a control network. We begin by developing signal pro-

cessing schemes to be implemented on networks whose nodes are sensor/actuator

pairs. We then generalize these ideas to create a class of transforms suitable for

general control networks. We call these transforms recursive orthogonal trans-

forms, or ROTs. Recursive orthogonal transforms are the subject of the rest of the

thesis.

In Chapter 4 we consider the problem of finding an ROT which approximately

diagonalizes a fixed real or complex valued plant matrix. We first consider fixed

plant matrices which are real and symmetric. The approach we take is very sim-

ilar to Brockett’s work on diagonalizing symmetric matrices via gradient flows on

orthogonal matrices [10]. We then consider the problem of diagonalizing general

complex matrices. Here we extend the work of Helmke and Moore [21] to find ROTs

which most closely approximate the complex SVD factors of the plant matrix.

In Chapter 5, plant matrices which exhibit a spatial invariance property are

considered. This spatial invariance property is analogous to the time invariance

of LTI systems. Spatial invariance can be exploited to aid in the design and

implementation of feedback controllers. Our work here is motivated by a number of

authors, including El-Sayed and Krishnaprasad [16] and, more recently, Bamieh [1].

We show that all spatially invariant systems are exactly diagonalized by the discrete

Fourier transform. Armed with this knowledge, we seek to find an ROT capable

of diagonalizing any spatially invariant plant matrix.

Chapter 6 contains a quantitative comparison of the approximate matrix di-

agonalization methods presented in this thesis. We also make some concluding

remarks and give some suggestions for future work.
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Chapter 2

Approximate SVD Using Wavelet

Packet Transforms

In this chapter, we approach the problem of plant diagonalization by seeking

wavelet packet transforms which approximate the SVD factors of the plant matrix.

We consider systems whose plant matrix G is a fixed, real valued matrix. We also

assume that G is square and has full rank. Such a model is suitable for “quasi-

static” linear systems, i.e. stable linear systems whose transient response can be

neglected.

The idea of using wavelet transforms in the context of feedback for large control

networks comes from the work of Chou, Guthart, and Flamm [14]. These authors

have shown that for a special class of linear systems, the wavelet transform can be

used to transform the input and output vectors into bases which allow for the effi-

cient computation of a feedback control law. Further, the multiresolution property

of the wavelet transform leads to a natural implementation on a hierarchical con-

trol network. Motivated by this work, we seek to use transforms from the wavelet

packet as the basis transformations to achieve plant diagonalization.

11



We begin the discussion with the naive suggestion that the matrix factorization

technique of singular value decomposition can be used for plant diagonalization.

The SVD factors accomplish the task of diagonalization, but, as we will show,

they are not feasible to implement on a large control network because they are

computationally intensive and centralized.

We then move on to introduce some of the basic concepts of wavelet theory

with an eye toward using wavelet transforms for plant diagonalization. We con-

centrate on the implementation of transforms from the wavelet packet and show

that these transforms are computationally efficient and have a natural parallel

implementation on a control network.

Next, we show how to search the wavelet packet to find the transforms which

most closely diagonalize the plant matrix. These transforms are approximations

of the SVD factors. An algorithm to search the wavelet packet is borrowed from

Wickerhauser [43]. Motivated by this work, we develop a cost function suitable for

the purpose of matrix diagonalization. This cost function is then used to search

the wavelet packet for the SVD approximations.

Finally, we demonstrate this idea with two examples. In the first example,

wavelet packet transforms are used to approximately diagonalize the plant matrix

of a system composed of a flexible membrane driven by a linear array of electrostatic

actuators. The second example looks at the approximate diagonalization of the

plant matrix of a flexible beam driven at resonance.

2.1 Singular Value Decomposition

We wish to find basis transformations which diagonalize the real valued plant

matrix, G. This can be accomplished using the well known matrix factorization

12



technique of singular value decomposition (SVD). Here, we briefly discuss SVD

and demonstrate how it can be used in the context of our problem. A complete

description can be found in Strang [35].

Consider the real valued n × n matrix G. SVD states that G can be factored

such that

G = Q1ΣQ
T
2 , (2.1)

where

1. The columns of Q1 ∈ IRn×n are the eigenvectors of GGT .

2. The columns of Q2 ∈ IRn×n are the eigenvectors of GTG.

3. The n × n matrix Σ is diagonal, and values on the diagonal are the square

roots of the eigenvalues of GGT and GTG.

The matrices Q1 and Q2 are orthogonal, i.e. Q1Q
T
1 = Q2Q

T
2 = 1In, where 1In

is the n × n identity matrix. The set containing all n × n orthogonal matrices is

denoted O(n). Multiplying G by QT
1 on the left and Q2 on the right yields

QT
1GQ2 = Σ. (2.2)

In the present context, G is a plant matrix of an n-input, n-output system. In

other words,

y = Gu, (2.3)

where u is the n–dimensional input vector and y is the n–dimensional output

vector.

Consider the change of variables ỹ = QT
1 y and ũ = QT

2 u. Substitution into the

plant equation (Equation 1.1) yields

ỹ = QT
1 PQ2ũ

13



= Σũ. (2.4)

Hence, the ith element of the transformed input vector ũ affects only the ith

element of the transformed output vector ỹ for i = 1, 2, . . . , n. As a result, the

entire system can be controlled using local feedback, i.e. each input is determined

based solely on the value of its corresponding output. In other words, the SVD

factors achieve the stated goal of plant diagonalization.

Unfortunately, the transforms generated by SVD are computationally intensive

to implement; for an n dimensional output vector y, it takes O(n2) operations to

compute ỹ. Additionally, the value of every element of y is required to compute

each element of ỹ. This fact renders the decentralized nature of the resulting basis

meaningless. Fortunately, we can overcome these implementation issues by using

wavelet packet transforms to approximate the SVD factors. This is the subject of

the remaining part of this chapter. In the next section, we lay the groundwork for

this idea by reviewing some of the principles of wavelets and the wavelet packet.

2.2 Wavelets

Wavelets have been the subject of much work in recent years [36] [15]. A wavelet

is a localized function which, together with its dilations and translations, forms a

basis for a specified function space. In other words, if φ(t) is a suitable “mother”

wavelet for a given space, then any function f(t) belonging to that space can be

written as

f(t) =
∑
j,k∈ZZ

ajkφ(2jt− k) (2.5)

The associated wavelet transform is the map which takes a function from the

original space and returns the coefficients of the wavelet expansion, ajk, j, k ∈ ZZ.
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The wavelet transform simply gives us another way to represent the information

contained in the function f(t).

Wavelets have a large number of characteristics and applications. Below we

focus on a few that we will use. Since we will be using the wavelet transform on

discrete signals of finite length (vectors), the following discussion is limited to that

case.

2.2.1 The Fast Wavelet Transform

One of the most important features of wavelets is that the wavelet transform is

extremely easy and fast to implement for discrete spaces. In fact, for discrete

signals, the fast wavelet transform (FWT) can is implemented as an iterated bank

of two low order digital filters combined with a down sampling step. The FWT

is briefly described here. A complete discussion of wavelets and the connections

between wavelets and filter banks can be found in Strang and Nguyen [36].

The Haar wavelet transform can be implemented as an iterated bank of digital

filters as shown in Figure 2.1. This filter bank is called the “analysis bank”. The

the lowpass filter C and the highpass filter D are written in z-transform form as

C(z) =
1
√

2
+

1
√

2
z−1 (2.6)

D(z) =
1
√

2
−

1
√

2
z−1. (2.7)

The output of each filter is fed into a downsampling step, denoted in Figure 2.1

as ↓ 2. The output of the downsampler is the input vector with every other element

removed.

The output of the highpass channel of the filter bank is kept; these numbers

are part of the wavelet transform. The output of the lowpass channel is fed into
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Figure 2.1: Filter bank implementation of the fast wavelet transform.

another identical filter bank and the process is iterated until the desired resolution

is reached. In the case of a vector of dimension 2n, n iterations of the filter

bank completely transform the vector; the output of each rightmost highpass and

lowpass channel is a single real number so that no further filtering is possible.

2.2.2 The Wavelet Packet

The wavelet packet is a collection of orthogonal transforms which can be imple-

mented using filter banks. Where the fast wavelet transform is realized by repeat-

edly passing the output of the lowpass filter into another filter bank, the entire

wavelet packet is realized by repeatedly passing the outputs of both channels to

the next filter bank. This filtering process is represented in Figure 2.2. The packet

formed using the filter bank from the Haar wavelet transform is called the Haar-

Walsh Packet. For a vector of length n (an even power of two), this filtering process

is iterated log2(n) times so that the output of each filter at the end of the tree (the

right of the tree as depicted in Figure 2.2) is a single real valued number.

This tree of filters contains a large number of orthonormal representations of

the input vector. For example, the coefficients taken from the n filters at the end

of the tree provide a representation of the input in a basis analogous to the Short

Time Fourier Transform [36]. Additional bases can be found by “pruning” the tree,
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Figure 2.2: Filter bank implementation of the wavelet packet.

i.e. removing filter banks from the tree. The rule for this pruning is simple: a filter

bank block can only be removed if all banks which use the output of that bank have

already been removed. Associated with each basis is an orthogonal basis transform

which is realized by the resulting configuration of filter banks. The wavelet packet

is the collection of all such transforms.

Another useful representation of a wavelet packet for a finite length vector is

shown in Figure 2.3. Notice that each level of the tree has twice as many blocks

as the level before. The blocks, however, are each half as long, leaving the same

number of coefficients in each level. If we define a “graph” of blocks to be any

set of blocks in the tree such that any vertical line passes through exactly one

block, then the collection of coefficients from any graph gives a representation of

the input vector with respect to some orthonormal basis [43].

The wavelet packet provides a large library of orthonormal basis transforms.
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Figure 2.3: Tree representation of wavelet packet.

The entire packet can be computed in O(nlog(n)) operations, so it is feasible to

create such a library even for large n. Further, the resulting library is arranged

in a tree form. As we will see, this allows the library to be searched using fast

recursive algorithms.

2.2.3 Inverse Transforms

The FWT has an inverse which can also be implemented as an iterated bank of

filters, as shown in Figure 2.4. Since this filter bank reconstructs the original signal

it is called the “synthesis bank”. Here, the inputs are upsampled before they are

passed into the filters. Upsampling, denoted by ↑ 2, inserts a zero between every

element of the input vector. For the case of the Haar wavelet, the filters C∗ and

D∗ are written in z-transform form as

C∗(z) =
1
√

2
+

1
√

2
z−1 (2.8)
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Figure 2.4: Filter bank implementation of the inverse fast wavelet transform.
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Figure 2.5: Filter bank implementation of a wavelet packet transform along with

its inverse.

D∗(z) = −
1
√

2
+

1
√

2
z−1.. (2.9)

A similar synthesis bank can be used to invert any transform from the wavelet

packet. In this case, the synthesis filter bank must be a mirror image of the

analysis filter bank, with C, D, and ↓ 2 replaced by C∗, D∗, and ↑ 2, respectively.

An example of a wavelet transform and its inverse in filter bank implementation

is shown in Figure 2.5.
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2.2.4 Higher Order Filter Banks

The previous three sections show the filter bank implementation of the FWT,

wavelet packet transform (WPT), and their inverses for the Haar wavelet. There

are many other wavelets which can be implemented using the same filter bank

structure with wisely chosen FIR filters C, D, C∗ and D∗. Clearly, the filters

must be chosen so that the synthesis bank actually inverts the analysis bank. This

feature is sometimes referred to as “perfect reconstruction”. Other conditions,

such as orthogonality, can also be imposed on the filters to yield good wavelet

properties.

An important set of suitable filters has been introduced by Daubechies [15]. In

addition to perfect reconstruction, Daubechies’ filters are orthogonal and satisfy

the “maximum flatness” condition, which means that the frequency responses of

the filters are as flat as possible at ω = 0 and ω = π. Other choices of filters which

yield good wavelets are discussed by Strang and Nguyen [36].

2.2.5 FWT Implementation on a Control Network

The FWT or any other transform from the wavelet packet can be implemented

very efficiently on a distributed control network. The key to this is to exploit the

recursive nature of these transforms. At each filter bank iteration, only local in-

formation is used. This local information is processed (filtered) and the important

information is passed on. This process is repeated until the transform is complete.

We take advantage the locality of the information at any step in the transform to

distribute the necessary calculations over a control network connected to form a

hierarchy. We first discuss the implementation of the Haar-Walsh wavelet packet.

Then we discuss a possible extension to include more general wavelet packets.
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These ideas will be made more specific in an example in Section 2.4.

The Haar Wavelet

Here, we show how to use a hierarchical control network can be used to compute

the FWT for a vector of length 8 using the Haar wavelet. Once the transform is

understood for an 8-vector, extension to other vector lengths is trivial. Extensions

to other bases in the Haar-Walsh packet will be briefly discussed at the end of this

section and illustrated by the example in Section 2.4.

As we have already discussed, the FWT using the Haar wavelet can be imple-

mented using the filter bank in Figure 2.1 where the filters C and D are given by

Equations 2.6 and 2.7. After downsampling, the output of the lowpass part of the

first filter bank is

Cx =
1
√

2



x(2) + x(1)

x(4) + x(3)

x(6) + x(5)

x(8) + x(7)


. (2.10)

The output the first highpass filter after down sampling is

Dx =
1
√

2



x(2)− x(1)

x(4)− x(3)

x(6)− x(5)

x(8)− x(7)


. (2.11)

Note that each element of Cx and Dx rely on adjacent elements of x. The same

is true if we look at the outputs of the next filter bank:

C(Cx) =
1
√

2

 (Cx)(2) + (Cx)(1)

(Cx)(4) + (Cx)(3)

 (2.12)
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and

D(Cx) =
1
√

2

 (Cx)(2)− (Cx)(1)

(Cx)(4)− (Cx)(3)

 . (2.13)

Likewise, the outputs of the final filter bank are

C(CCx) =
1
√

2
[(CCx)(2) + (CCx)(1)] (2.14)

and

D(CCx) =
1
√

2
[(CCx)(2)− (CCx)(1)] . (2.15)

So the computation of C and D rely on adjacent elements of the previous filter

bank’s output at every level. This is the locality we will take advantage of with a

hierarchy.

Consider the tree depicted in Figure 2.6. The nodes at the bottom level contain

the elements of the input vector x. This information is passed up to the next level

where the individual elements of C and D are calculated separately. The elements

of Cx are then passed to the next level. The process is then repeated until we

reach the top of the tree. The transform is then given by the coefficients in Dx,

DCx, DCCx, and CCC(x).

The inverse FWT can be implemented on a hierarchy by using the same idea,

only in reverse. Here, we start at the top of the tree and work down, using the

filters C∗ and D∗ instead of C and D.

Implementing the FWT and its inverse on this hierarchy has two big advan-

tages. First, communication is kept to a minimum since each node receives only

the information it needs to compute its part of the transform. Also, the connection

scheme required is simple: each node needs to communicate with at most three

other nodes (its parent and its two children). Second, a large number of the neces-

sary computations are done in parallel, at the same time, on different processors.
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CCCx(1)
DCCx(2)

Figure 2.6: Tree implementation of the Haar wavelet transform.

For example, it takes a total of 12 operations to compute Cx (8 multiplications, 4

additions). Assuming each of these calculations takes one cycle to complete, this

means it would take a single processor 12 cycles to compute Cx. Consider instead

the hierarchy approach. It takes only 3 operations to compute 1 element of Cx.

Since each element of Cx is calculated on its own processor, all of the elements

can be computed simultaneously. Hence, in the hierarchy implementation, it takes

only 3 cycles to compute all of Cx.

For these reasons, we propose to implement the FWT on a control network

connected to form a hierarchy. Recall that each network node has its own processor,

so massive parallel processing capability exists. The data from a given node’s

onboard sensor, at any point in time, can be thought of as one element of the

input vector, x. Our goal is to create a control network which can emulate the

hierarchy discussed above.
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Figure 2.7: Connection scheme to realize hierarchy implementation of the Haar

wavelet transform using a distributed control network.

One such possibility is shown in Figures 2.7 and 2.8. Figure 2.7 depicts a

connection scheme for a linear array of eight nodes. This array could be, for

example, an array of intelligent strain sensors mounted along a flexible beam.

Figure 2.8 shows how this connection scheme can be used to implement the FWT.

This “hierarchy” uses a limited amount of communication and takes advantage of

its parallel processing abilities in computing the FWT.

A similar process can be used to implement any other basis transformation in

the Haar-Walsh packet. In this case, the computations are made as in the wavelet

transform case: each node can compute its elements of the filtered vector based

on information from its two children. The difference lies in the communication.

Instead of just passing the output of the lowpass filter up to the next level, it may

be necessary to pass the output of the highpass filter or the outputs of both filters.

Higher Order Wavelets

In the previous section we showed how to efficiently implement any transform in the

Haar-Walsh packet on a hierarchical control network. Since the Haar filters look at

two adjacent elements of the input vector at a time and the filter is followed by a

down sampling of two, a simple dyadic tree was the natural choice for the network

topology. For more general wavelets, such as the family of wavelets proposed
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Figure 2.8: Hierarchy implementation of Haar wavelet transform using a dis-

tributed control network.
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Figure 2.9: Multihierarchy required to realize hierarchy implementation of a dis-

crete wavelet transform with 4th order filter.

by Daubechies [15], the filters look at n adjacent elements of the input vector.

The resulting output is then downsampled by a factor of two. This leads to a

“multihierarchy” topology. Figure 2.9 shows the structure of such a hierarchy for

a wavelet filter with 4 coefficients.

2.3 Approximation of SVD Factors with Wavelet

Packet Transforms

In the previous two sections we have laid the groundwork for the main result of

this chapter. In Section 2.1 we showed that the SVD factors of the plant matrix

can be used to diagonalize the plant, but they are not feasible to implement on a

large control network. In Section 2.2 we showed that wavelet packet transforms

could be efficiently implemented on a control network, but we gave no indication

of how they could be used to diagonalize a plant matrix. Here, we combine these

two ideas. The approach is straightforward. The wavelet packet contains a large
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number of orthogonal transforms. Each SVD factor is also orthogonal. To find an

“approximate” SVD transform, we simply search the wavelet packet to find the

transform which is, in some sense, closest to the SVD factor.

This idea is borrowed from Wickerhauser [43], who proposed this approach to

perform principal component analysis on a set of random data vectors. Using

the fact that the Karhunen–Loève basis is the minimum entropy basis of a given

data set, Wickerhauser was able to devise a cost function which allowed for an

efficient, recursive search of the wavelet packet. A similar approach can be used

to approximate the SVD factors of the plant matrix.

2.3.1 The Cost Function

We assume that the plant matrix G ∈ IRn×n is square and full rank. Finding

a suitable SVD factor QT
1 is equivalent to finding the Θ ∈ O(n) such that ΘT

diagonalizes the symmetric matrix GGT . Towards this goal, we develop a cost

function J1(Θ) which is globally minimized when the matrix ΘGGTΘT is diagonal.

We begin by writing

G = [gc1, g
c
2, · · · , g

c
n] , (2.16)

where gc1, g
c
2, . . . , g

c
n are the columns of G. Now define

XΘ
4
= ΘG = [Θgc1,Θg

c
2, · · · ,Θg

c
n] . (2.17)

Let

MΘ
4
= ΘGGTΘT = XΘX

T
Θ. (2.18)

The ith diagonal element of MΘ is then given by

[MΘ]ii =
n∑
j=1

[XΘ]ij [X
T
Θ]ji
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=
n∑
j=1

(
Θgcj

)2

i
. (2.19)

Since both G and Θ are nonsingular, each [MΘ]ii is strictly positive. We now define

a cost function on O(n) by taking the product of the diagonal elements of MΘ:

J1(Θ)
4
=

n∏
i=1

[MΘ]ii

=
n∏
i=1

n∑
j=1

(
Θgcj

)2

i
. (2.20)

We justify that J1(Θ) is a suitable cost function to be minimized with the following

claim:

Claim 2.3.1 Let the matrix Q1 ∈ O(n) be a left SVD factor of the full rank matrix

G ∈ IRn×n, i.e. Q1 diagonalizes GGT . Then

J1(Q
T
1 ) ≤ J1(Θ) (2.21)

for all Θ ∈ O(n). Furthermore, J1(Q
T
1 ) = J1(Θ) if and only if ΘT diagonalizes

GGT .

In order to prove this claim, we require some matrix facts. We state these facts

without proof [35].

Fact 2.3.1

det


 A B

C D


 = det(A)det(D − CA−1B), (2.22)

where A is a square, invertible matrix, D is a square matrix, B and C are matrices

with dimensions compatible to A and D.

Fact 2.3.2 A symmetric A is positive definite if and only if every square sub-

matrix in the upper left corner of A has positive determinant.
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Now we are ready to prove the claim.

Proof of Claim:

First, we derive an expression for J1(Q
T
1 ). Note that

MQT1
= QT

1GG
TQ1

=



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
n


, (2.23)

where σ1, σ2, . . . , σn are the singular values of G. Since G is full rank, all of its

singular values are strictly positive. Now

J1(Q
T
1 ) =

n∏
i=1

[
MQT1

]
ii

=
n∏
i=1

σ2
i

= det(GGT ). (2.24)

Note that det(GGT ) = det(ΘGGTΘT ) = det(MΘ) for any Θ ∈ O(n). Hence, in

order to show that J1(Q
T
1 ) ≤ J1(Θ) it suffices to show that

det(MΘ) ≤
n∏
i=1

[MΘ]ii. (2.25)

Define Γn
4
= MΘ. Given Γk+1 ∈ IRk+1×k+1, define Γk ∈ IRk×k, bk+1 ∈ IRk and

γk+1 ∈ IR such that

Γk+1 =

 Γk bk+1

bTk+1 γk+1

 , (2.26)

for k = n − 1, n − 2, . . . , 2, 1. Note that Γ1 ∈ IR. Let γ1 = Γ1. Note that

γk = [MΘ]kk and each γk > 0. Since MΘ > 0, Fact 2.3.2 tells us that Γk > 0 for
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each k. Fact 2.3.1 then gives the following expression for det(Γk):

det(Γk) = det(Γk−1)det(γk − b
T
k Γ−1

k−1bk)

= det(Γk−1)(γk − b
T
kΓ−1

k−1bk), (2.27)

k = 2, 3, . . . , n. We can use this equation to recursively find the following expres-

sion for det(MΘ):

det(MΘ) = det(Γn)

= det(Γn−1)(γn − b
T
nΓ−1

n−1bn)

= det(Γn−2)(γn−1 − b
T
n−1Γ

−1
n−2bn−1)(γn − b

T
nΓ−1

n−1bn)

...

= det(Γ1)
n∏
k=2

(γk − b
T
k Γ−1

k−1bk)

= γ1

n∏
k=2

(γk − b
T
k Γ−1

k−1bk). (2.28)

Note that each bTkΓ−1
k−1bk ≥ 0 since Γk−1 > 0 ⇒ Γ−1

k−1 > 0. Using Equation 2.27

and the fact that det(Γk) > 0 for each k, we see that (γk − bTk Γ−1
k−1bk) > 0 for each

k = 2, 3, . . . , n. This gives the inequality

γ1

n∏
k=2

(γk − b
T
kΓ−1

k−1bk) ≤
n∏
k=1

γk. (2.29)

The positive definiteness of each Γ−1
k−1 guarantees that this inequality will be strict

unless all of the off-diagonal elements of MΘ are 0. Conversely, if all of the off-

diagonal elements of MΘ are zero, the the expression in Equation 2.29 becomes an

equality.

Hence, we can find a suitable QT
1 by searching O(n) for the global minimum of

J1. It is convenient to redefine J1 as

J1(Θ) =
n∑
i=1

log

(
n∑
j=1

(
Θgcj

)2

i

)
. (2.30)
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In a similar manner, we can define a cost function J2(Θ) which can be used to

search for QT
2 .

J2(Θ) =
n∑
i=1

log

(
n∑
j=1

(
Θgrj

)2

i

)
, (2.31)

where gr1, g
r
2, . . . g

r
n are the transposes of the rows of G.

2.3.2 Searching the Wavelet Packet

In this section we address the problem of searching the wavelet packet to find the

“best” approximations of the SVD factors Q1 and Q2. We find these approxima-

tions by minimizing the functions J1(Θ) and J2(Θ) for Θ ∈ L, where L denotes the

collection of orthogonal transforms contained in the wavelet packet. The Θ ∈ L

which minimizes J1 gives us the approximation Q̂T
1 while the Θ which minimizes

J2 yields the approximation Q̂T
2 . Q̂T

1 is the wavelet packet transform which most

nearly diagonalizes the matrix GGT and Q̂T
2 is the wavelet packet transform which

most nearly diagonalizes the matrix GTG. The algorithm used to search the packet

is due to Wickerhauser [43].

The transform Q̂T
1 is the solution of the minimization problem

min
Θ∈L

J1(Θ), (2.32)

where

J1(Θ) =
n∑
i=1

log

(
n∑
j=1

(
Θgcj

)2

i

)
. (2.33)

To understand the recursive search developed by Wickerhauser, we refer back to

the tree representation of the wavelet packet shown in Figure 2.3. Any transform

in the wavelet packet can be represented by a collection of blocks on the tree with

the property that any vertical line drawn through the tree intersects exactly one

block. Such a collection is called a graph. Let G be a given graph and let Θ be
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the associated wavelet packet transform. If the elements of a vector g are placed

in the top block (block 1, level 1), then the transformed vector Θg is given by

the coefficients located in the blocks of the graph G. The blocks in any graph

are independent of each other in the following sense: for any given block in the

graph, the other blocks in the graph can be changed to create a new graph without

affecting the coefficients contained in the original block.

Note that the ith component in the outer summation in the right hand side

of Equation 2.33 depends only on the ith element of each transformed column

of the plant matrix, Θgcj , j = 1, 2, . . . , n. This allows us to construct a tree of

costs. We begin by constructing a tree representation for each gcj , j = 1, 2, . . . , n.

We then square each element in each of these trees. Next, we add the n squared

trees together on an element by element basis to create one tree called the “sum

of squares” tree. Finally, the sum of squares tree is converted to the cost tree by

taking the logarithm and adding the resulting numbers within each block together.

The cost tree assigns a cost to each block in the tree representation of the

wavelet packet. Let Θ be a given wavelet packet transform and let G be the

associated graph. The cost of Θ can be computed by adding together the costs

associated with the blocks contained in G. The cost computed in this manner is

identical to the cost described by Equation 2.33.

Now the cost tree can be efficiently searched to find the wavelet packet trans-

form which yields the lowest cost. This is done by comparing the cost of each block

with the sum of the “best costs” of its two child blocks. Of course, finding the best

cost of each child block requires comparing the child to the child’s children, and

so on. This recursion terminates, and the collection of blocks that results gives

the wavelet packet transform that yields the lowest cost. The resulting transform
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is then used as the SVD factor approximation Q̂T
1 . The complexity of this search,

including the construction of the cost tree, is O(p2logp), where p is the number

of rows in the plant matrix. A more rigorous discussion of the properties of this

search can be found in [43].

A similar search using J2(Θ) is used to obtain the SVD factor approximation

Q̂T
2 .

2.4 Examples

Here we introduce two example systems to demonstrate approximate diagonaliza-

tion using wavelet packets. The first system is a simplified model of a flexible

membrane driven by a linear array of point forces. This example is motivated by

the MEMS mirror array developed by Bifano et.al. [3]. The second example is that

of a flexible cantilever beam driven at resonance. These examples will also be used

to demonstrate the effectiveness of other ideas which will be presented later in the

thesis.

2.4.1 Simplified Flexible Membrane

The system we consider has 32 inputs and 32 outputs. The inputs correspond

to electrostatic actuators, which we assume act as point forces on the membrane.

The actuators are evenly spaced over the length of the array. Let this interval

be denoted by ∆. The outputs correspond to the displacement of the mirror

measured at the positions of the 32 actuators. We assume that the displacement

yi due to the input ui is simply ui. To determine the displacement yj due to ui, we

assume that the deflection of the mirror at the positions ∆ to the left of the first
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Figure 2.10: Response of the membrane to the ith input.

actuator and ∆ to the right of the 32nd actuator is always zero. The displacement

changes linearly between the two end points and the position of the ith actuator

(see Figure 2.10). We also assume that the displacement at a given position is the

sum of the displacements due to each of the actuators so that the plant can be

represented by a matrix. The plant matrix G is depicted in Figure 2.11. Here, the

intensities of the pixels correspond to the values of the entries in the matrix.

We applied the method described in this chapter to find the transforms from

the Haar–Walsh packet which most closely diagonalize the plant matrix G. The

resulting “approximately diagonal” matrix is shown in Figure 2.12. The diagonal-

ization of the plant matrix using SVD is shown in Figure 2.13. Comparing the

two, we see that the approximately diagonalized matrix resembles the matrix di-

agonalized with SVD. A more quantitative discussion of these results can be found

in Chapter 6.

This example can be used to further illustrate the implementation of the wavelet

packet transforms. In the tree representation, the wavelet packet transform which

corresponds to the output transformation QT
1 is shown in Figure 2.14. In this

figure, the elements of the transformed data vector are contained in the solid black
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Figure 2.11: Plant matrix for flexible membrane.

Approximately Diagonalized Plant Matrix
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Figure 2.12: Approximately diagonalized membrane plant matrix using a transform

from the Haar–Walsh packet.
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Diagonalized Plant Matrix (Using SVD)
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Figure 2.13: Diagonalized membrane plant matrix using exact SVD factors.

boxes. A network hierarchy which could be used to implement this transform is

shown in Figure 2.15. The circles represent numbers, with the circles in the leftmost

column representing the elements of y. The solid circles represent elements of the

transformed output vector. A pair of circles with a box around them represents

a computation step. The node on which the computation step is performed is

indicated by the vertical position of the box; if the box is in the same row with yi,

then the corresponding computation step is executed on the ith node. In such a

computation step, the numbers x1 and x2 are transformed to yield (x1 + x2)/
√

2

and (−x1 +x2)/
√

2. The lines with arrows on them indicate the communication of

one number from one node to another. The transform proceeds from left to right

in the diagram.

The input transformation, which in this example happens to be the inverse of

the output transformation, is implemented by reversing this process. To visualize
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Figure 2.14: Tree representation of the wavelet packet basis which approximately

diagonalizes the plant matrix.

how the inverse transform can be implemented on a distributed control network we

again look to Figure 2.15. In this case, the numbers we start with are the elements

of ũ. The job of the transform is to transform ũ to the actual input vector u. The

elements of ũ are indicated in the figure by the solid circles. At the beginning of the

transform they are distributed among various nodes on the network. The transform

executes across the figure from right to left with the data transfers flowing against

the directions of the arrows. As in the output transformation figure, the boxes

represent a computation step performed on the specified node. In this case, the

numbers x1 and x2 are transformed to yield (x1 +x2)/
√

2 and (x1−x2)/
√

2. After

this computation is complete, the resulting numbers are then sent to the next

two blocks of nodes on the hierarchy. The sums are sent to the upper blocks and

the differences are sent to the lower blocks. When the transform is complete, the

elements of u are distributed on the network nodes with ui residing on the ith

node.
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Figure 2.15: Graphical depiction of the implementation of the wavelet packet trans-

form shown in Figure 2.14.
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2.4.2 Flexible Beam at Resonance

In this example we consider a flexible cantilever beam driven by PZT actuators

as described in Appendix B. Most of the energy in the response of the beam

lies within narrow bands in the frequency domain which correspond to the reso-

nant frequencies of the beam. Because the beam naturally rejects non–resonant

disturbances very well, the resonant frequencies are separated by relatively large

frequency bands where the gain is very small. In this sense, the resonances are

isolated from one another. In most applications where feedback control is used for

resonant systems, it is only necessary to apply contol in the resonant frequency

bands.

One method of rejecting near–resonant disturbances in a SISO flexible beam

is the so–called positive position feedback (PPF) method developed by Fanson

and Caughey [18]. This technique uses a bank of bandpass filters to seperate the

output into its resonances. Each resonance is then controlled independently. A

similar “resonance by resonance” approach can be taken for a MIMO beam. At

resonance (or at any fixed frequency) a MIMO beam can be modeled by a fixed

complex matrix, i.e.

y = Gcu. (2.34)

The matrix Gc is just the transfer function matrix of the beam evaluated at the

resonant frequency. The complex matrix Gc can be diagonalized using the same

basis transforms which diagonalize the corresponding magnitude matrix G, i.e. the

matrix containing the magnitudes of the elements of Gc. The complex elements

of the vectors y and u represent the magnitude and phase of a sinusiod at the

resonant frequency.

Here we consider a flexible beam with 32 inputs and 32 outputs at its 6th
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Figure 2.16: Plant matrix for flexible beam at 6th resonance.

resonant frequency. The magnitude plant matrix for this system is depicted in

Figure 2.16. The wavelet packet based approximate diagonalization of the magni-

tude matrix is depicted in Figure 2.17. The diagonalization generated using exact

SVD factors is shown in Figure 2.18.
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Figure 2.17: Approximately diagonalized plant matrix for flexible beam using a

transform from the Haar–Walsh packet.
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Figure 2.18: Diagonalized flexible beam plant matrix using exact SVD factors
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Chapter 3

Recursive Orthogonal Transforms

In this chapter we introduce a class of linear operators that are well suited to

being implemented in a distributed fashion on a control network. The operators we

present have two features which make them particularly useful for implementation

on a control network. First, the required computations are naturally distributed

to take advantage of the parallel processing capability of the network. Second, the

transforms can be chosen so that only nearest neighbor communication is required,

a fact which is important for systems with limited communication bandwidth.

We begin our discussion with a review of the necessary mathematical tools and

concepts that will be required here and in following chapters. We then move on

to an ad hoc discussion about implementing data transformations on the input

and output vectors of one and two dimensional arrays of sensor/actuator pairs.

We then generalize these ideas and define the main tool which will be used in the

remainder of the thesis: recursive orthogonal transforms (ROTs).
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3.1 Preliminaries

Here we present the mathematical tools and concepts necessary to develop the

discussion. We first review some basic properties of Lie groups and vector fields on

Lie groups. Next we turn to linear algebra for a brief discussion of singular value

decomposition and symmetric matrix diagonalization. Finally, we present some

miscellaneous matrix facts which will be required later in this document.

3.1.1 Vector Fields on Lie Groups

Here we present some requisite information on Lie groups and their associated

vector fields. A comprehensive treatment of this subject can be found in the

references [40], [20], [42], and [31]. A nice overview appears in the appendix of

[22]. We concentrate on the orthogonal group, O(n), the special orthogonal group,

SO(n), and the unitary group, U(n).

Smooth Manifolds

Formally, a smooth manifold is a Hausdorff topological space which is locally dif-

feomorphic to IRn around each point. An example of a smooth manifold is the

circle, S1 = {(x1, x2) ∈ IR2 : x2
1 + x2

2 = 1}. Around each point, a neighborhood of

the circle can be “flattened out” using a smooth, invertible mapping. Hence, the

circle is locally diffeomorphic to IR. With this intuition, we state a more rigorous

definition of a smooth manifold.

Definition 3.1.1 A smooth manifold is a topological Hausdorff space M along

with a collection of charts A = {(φα, Uα, Vα) : α ∈ A}. For each α ∈ A, Uα and

Vα are open subsets of M and IRn, respectively, and φα : Uα → Vα is a smooth,

invertible map. In addition, the charts must satisfy the following:
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1. M =
⋃
α∈A Uα, i.e. the charts cover M .

2. φβ ◦ φ−1
α : φα(Uα ∩ Uβ) ⊂ Vα → φβ(Uα ∩ Uβ) ⊂ Vβ is a diffeomorphism for

each α, β ∈ A, i.e. the charts are compatible where their domains intersect.

3. Any chart (φ, U, V ) which is compatible with every chart in A is also con-

tained in A, i.e. A is maximal.

The collection A is called an atlas. The integer n is called the dimension of the

manifold. The collection of charts allows us to represent an open neighborhood of

any point on the manifold as an open subset of IRn. This representation is referred

to as the local coordinate representation of M .

Lie Groups

Here we introduce Lie groups, which are a special type of smooth manifold.

Definition 3.1.2 A group is a set G along with an operation ◦ which has the

following properties:

1. g ◦ h ∈ G for all g, h ∈ G, i.e. the group is closed under the operation ◦.

2. (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) for all g1, g2, g3 ∈ G, i.e. the operation ◦ is

associative.

3. There exists e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G, i.e. the group

contains an identity element.

4. For each g ∈ G, there exists g−1 ∈ G such that g ◦ g−1 = e, i.e. each group

element has an inverse which is also contained in the group.

If H is a subset of G which is also a group, then H is called a subgroup of G.
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To simplify the notation, we will drop the use of the ◦ symbol so that g ◦ h will be

written gh.

Definition 3.1.3 A Lie group G is a smooth manifold with a group structure such

that the group operation ◦ : G× G→ G, (g, h) 7→ gh is a smooth map. If H is a

subgroup of G it is called a Lie subgroup.

We are most interested in the matrix Lie groups O(n), SO(n), and U(n). Here

we define these groups and state some of their basic properties without proof.

The Orthogonal Group, O(n):

Abstractly, the orthogonal group can be thought of as the set of rotations and

reflections in IRn. This group can be represented as the following matrix Lie

group:

O(n) =
{
Θ ∈ IRn×n|ΘTΘ = 1I

}
. (3.1)

O(n) is a smooth manifold with dimension n(n− 1)/2.

The Special Orthogonal Group, SO(n):

It is readily seen that each element of O(n) has determinant equal to either +1 or

−1. The subset of matrices in O(n) with determinant equal to +1 is also a Lie

group. This subgroup is called the special orthogonal group and is denoted SO(n).

The special orthogonal group can be thought as the set of rotations in IRn. SO(n)

has the same dimension as O(n).

The Unitary Group, U(n):

The unitary group is the generalization ofO(n) to complex valued matrices. Specif-

ically,

U(n) =
{
Θ ∈ ICn×n|ΘHΘ = 1I

}
. (3.2)

The real dimension of U(n) is n2. U(n) contains both O(n) and SO(n).
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Tangent Spaces and Vector Fields

At each point on a smooth manifold there is an associated vector space called the

tangent space. Intuitively, if we imagine an infinitely small object which moves

around on the manifold, the tangent space at a given point contains the set of all

possible velocities the object can attain at that point. The tangent space of M at

the point x is denoted TxM . In the example of the circle, the tangent space at a

given point x is the line tangent to the circle at x, or

TxS
1 =

{
y ∈ IR2|yTx = 0

}
. (3.3)

To define more rigorously what we mean by tangent vectors and tangent spaces,

we begin by defining the notion of a curve on the manifold. Specifically, a curve

through x ∈ M is a smooth function f : (−ε, ε) → M , some real ε > 0, with

f(0) = x. Let (φ, U, V ) be a coordinate chart with x ∈ U . Let Fx denote the set of

all possible curves at x. In a neighborhood of x, the curve f can be represented as

a curve in IRn using local coordinates, φ ◦ f : (−δ, δ)→ V ⊂ IRn for some δ > 0. If

we think of the argument of f as time, then the velocity of a point moving along

the curve at the point x is given in local coordinates by derivative of φ◦f at x = 0.

Define the set

[f ]x =

{
g ∈ Fx

∣∣∣∣ ddt(φ(g(t)))t=0 =
d

dt
(φ(f(t)))

}
. (3.4)

[f ]x is the equivalence class of all curves through x which have the same velocity

at x. This leads to the following definition:

Definition 3.1.4 A tangent vector to M at the point x is an equivalence class

[f ]x, where f ∈ Fx. The tangent space of M at x, TxM , is the set of all tangent

vectors to M at x. The tangent bundle of M , denoted TM , is the set containing
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the tangent spaces of every x ∈M ,

TM = {TxM |x ∈M} . (3.5)

An element of the tangent bundle is an ordered pair (x, p) where x is a point on

the manifold and p is a vector in TxM . There is a natural projection from the

tangent bundle to the manifold, π : TM → M ; (x, p) 7→ x. We are now ready to

define a vector field:

Definition 3.1.5 A vector field on a smooth manifold M is a map X : M → TM

with the condition that π ◦X is the identity map.

Hence, the vector field assigns a tangent vector px to each point on the manifold.

The flow of a vector field starting from the point x0 ∈ M is the curve x(·) :

IR→M that satisfies the differential equation

ẋ(t) = px, x(0) = x0. (3.6)

The Lie Bracket and Lie Algebras

Every Lie groupG has associated with it a vector space called a Lie algebra denoted

g.

Definition 3.1.6 A Lie algebra is a vector space V together with the Lie bracket

[·, ·] : V × V → V such that

1. [a, b] = −[b, a] for all a, b ∈ V .

2. [αa+ βb, c] = α[a, c] + β[b, c] for all α, β ∈ IR, a, b, c ∈ V .

3. [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 for all a, b, c ∈ V (The Jacobi Identity).
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The Lie algebra of a Lie group G is given by the tangent space at the identity,

g = TeG, together with an appropriate Lie bracket. The Lie algebras of O(n),

SO(n), and U(n) are denoted o(n), so(n), and u(n), respectively. They are

o(n) = so(n) =
{
Ω ∈ IRn×n|Ω = −ΩT

}
(3.7)

and

u(n) =
{
Ω ∈ ICn×n|Ω = −ΩH

}
. (3.8)

The Lie bracket for o(n), so(n), and u(n) is given by the matrix commutator,

[A,B] = AB −BA. (3.9)

One of the nice properties of Lie groups is that the tangent space at the identity

can be translated to the tangent space at g ∈ G via left multiplication by g. Hence,

for matrix Lie groups, the tangent space at g ∈ G can be written

TgG = {gΩ|Ω ∈ g} . (3.10)

Each vector Ω in the matrix Lie algebra naturally generates a vector field on the

Lie group via the definition XΩ : G→ TG; g 7→ (g, gΩ). Such a vector field is said

to be left invariant. Flows of XΩ are curves which satisfy

ġ = gΩ, g(0) = g0 ∈ G. (3.11)

On a matrix Lie group this equation is a linear time invariant matrix ODE. The

solution is given by

g(t) = g0e
Ωt (3.12)

where the matrix exponential is defined by the series

eA =
∞∑
k=0

Ak

k!
. (3.13)
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Riemannian Metrics, Directional Derivatives, and Gradient Flows

Each smooth function f : M → IR has associated with it a gradient ascent vector

field. At each point in M , the gradient vector field assigns a tangent vector which

points in the direction of “steepest ascent”, i.e. the direction in which f increases

the most. Following [22], we present the tools necessary to formalize this notion

in the setting of smooth manifolds.

Definition 3.1.7 A Riemannian metric on a manifold M is a collection of nonde-

generate inner products {〈·, ·〉x : TxM → IR} for each x ∈M where 〈·, ·〉x depends

smoothly on x. A manifold with such a specified collection is called a Riemannian

manifold.

For O(n) and SO(n), the tangent space at any given point is a subset of IRn×n. As

a result, the standard inner product on n × n real matrices, 〈A,B〉 = tr
(
ATB

)
,

provides a suitable Riemannian metric:

〈·, ·〉 : TgO(n)× TgO(n) → IR

(gΩ1, gΩ2) 7→ tr
(
ΩT

1 g
TgΩ2

)
= tr

(
ΩT

1 Ω2

)
, (3.14)

where Ω1,Ω2 ∈ o(n). Similarly, U(n) inherits a Riemannian metric from ICn×n:

〈·, ·〉 : TgU(n)× TgU(n) → IR

(gΩ1, gΩ2) 7→ retr
(
ΩH

1 g
HgΩ2

)
= retr

(
ΩH

1 Ω2

)
, (3.15)

where Ω1,Ω2 ∈ u(n) and retr (·) denotes the real part of the trace.
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Consider a smooth function f : M → IR. The directional derivative of f at a

point x ∈M is a map

Dfx : TxM → IR. (3.16)

We will use Dfx(ξ) to denote the directional derivative of f at x in the direction

ξ ∈ TxM .

Now we consider the gradient vector field of f , which is denoted as ∇f . The

gradient vector field is defined as the vector field which satisfies the following two

properties:

1. ∇f(x) ∈ TxM for all x ∈M .

2. Dfx(ξ) = 〈∇f(x), ξ〉 for all ξ ∈ TxM .

The first property states that the gradient vector is contained in the tangent space

of M at every point in M . The second property is a compatibility condition be-

tween the gradient and the directional derivative. For a given Riemannian metric,

the gradient vector field which has both properties is unique. The ascent direction

gradient flow from initial condition x0 ∈M is given by the solution to

ẋ = ∇f(x), x(0) = x0. (3.17)

In this document we will be interested in gradient flows which evolve on the

compact Lie groups SO(n) and U(n). Here we state some useful properties of a

gradient flow on a compact manifold without proof [22].

Proposition 3.1.1 Consider the gradient flow given by Equation 3.17 where the

manifold M is compact. Then for any x0 ∈M :

1. The solution x(t) exists for all time t ∈ IR.
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2. The function f(x(t)) is a nondecreasing function of t.

3. The solution x(t) converges to x∗ ∈M such that ∇f(x∗) = 0.

3.1.2 Matrix Facts

Here we present some facts about matrices which will be required for upcoming

calculations.

Fact 3.1.1 Any A ∈ ICn×n can be written as

A = S + Ω, (3.18)

where S is hermitian (S = SH) and (Ω) is skew–hermitian (Ω = −ΩH). Specifi-

cally, S and Ω are given by

S =
1

2

(
A+AH

)
(3.19)

Ω =
1

2

(
A−AH

)
. (3.20)

This fact can be easily verified by adding the expressions for S and Ω. Clearly,

this fact can be applied to A ∈ IRn×n by replacing the hermitian transpose with

the regular matrix transpose.

Fact 3.1.2 Let S = SH ∈ ICn×n and Ω = −ΩH ∈ ICn×n. Then retr (SΩ) = 0.

Proof:

We begin by computing

retr
(
(SΩ)H

)
= retr

(
ΩHSH

)
= retr (−ΩS)

= −retr (SΩ) . (3.21)
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Since retr (A) = retr
(
AH
)

for any complex matrix A, we then have retr (SΩ) =

−retr (SΩ). This can only be true if retr (SΩ) = 0.

Clearly, if S is a real valued symmetric matrix and Ω is real valued and skew–

symmetric, then tr (SΩ) = 0.

Fact 3.1.3 Let A ∈ ICn×n be written A = S + Ω where S = SH and Ω = −ΩH .

Let Λ = −ΛH ∈ ICn×n. Then retr (AΛ) = retr (ΩΛ).

This fact follows directly from Fact 3.1.1 and Fact 3.1.2.

3.2 Parallel Signal Processing on Control Net-

works

Here we provide an ad hoc discussion about the implementation of coordinate

transforms on the input and output vectors of a large control network. This dis-

cussion leads us to a collection of orthogonal transforms which have a special

structure which allows the transforms to be efficiently implemented on the sys-

tems we consider. We restrict the discussion to control networks whose nodes are

sensor/actuator pairs. We first investigate the case where the nodes are distributed

spatially along a linear array. We then address a similar control network whose

nodes are distributed on a rectangular array.

3.2.1 Implementation on 1–D Array

In this section we address the problem of implementing input and output data

transforms on a control network where n sensor/actuator pairs are distributed

spatially to form a one dimensional array. The sensor/actuator pairs, or nodes,

52



are indexed from left to right; the leftmost node has the index 1. For each i, the

ith node contains one sensor, whose output is yi, and one actuator, whose input

is ui. We assume that each node on the array can communicate with both of its

neighbors. At the endpoints of the array, it is assumed that the first node can

communicate with the last node. For i = 1, 2, . . . , n− 1 we say that the (i+ 1)th

node is to the right of the ith node and the ith node is to the left of the (i+ 1)th

node. Similarly, we say that the first node is to the right of the last node and the

last node is to the left of the first node. The presented data transformation method

requires only nearest neighbor communication and distributes the computations

required for the transforms in a natural way.

First we concentrate on the problem of transforming output vector y. The result

of this operation is the transformed output vector ỹ = Q1y, where the orthogonal

transform Q1 has a special structure. We address only the implementation of

Q1, we do not address what Q1 actually does to the data. This question will

be addressed in Chapter 4. We then show how a similar method can be used to

transform the input vector, yielding u = Q−1
2 ũ.

Transforming the Output Vector

Here we present a data transformation which can be easily applied to the output

vector of a control network. We call the transformed data vector ỹ and the data

transformation that results is denoted by Q1, so ỹ = Q1y. The sensors are dis-

tributed along a line and each sensor has its own microprocessor. There is also

an actuator paired with each sensor. The combination of sensor, actuator, and

microprocessor will be referred to as a node. The ith output yi is known only

to the ith node. The object is to compute ỹ = Q1y while limiting the required
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communication and distributing the required computation.

The implementation we propose consists of a sequence of steps or levels. We

will present these steps here without motivating our choices. Our reasoning should

become clear at the end of this section. Also, to simplify this presentation we

assume that n is even. The extension to odd n will be addressed when we generalize

these ideas in Section 3.3.

In the first level, each evenly indexed node passes the value of its output to the

node to its left. As a result, for each odd i, the ith node contains yi and yi+1. The

ith node then uses its local microprocessor to compute ai

ai+1

 = θ1
(i+1)/2

 yi

yi+1

 , (3.22)

where the matrix θ1
(i+1)/2 ∈ SO(2) for each odd i. The output of the first level is

the intermediate vector a, which can be written

a = Θ1y, (3.23)

where

Θ1 =



θ1
1 0 · · · 0

0 θ1
2 · · · 0

...
. . .

...

0 · · · 0 θ1
n/2


. (3.24)

When the first level is complete, the ith node, i odd, contains the numbers ai

and ai+1. To begin the second level, the ith node passes ai to the node to its left

and ai+1 to the node to its right. Recall that nth node is to the left of the first

node, so a1 gets sent to the nth node. With the exception of the nth node, the ith

node for each even i contains ai and ai+1. The nth node contains an and a1. Then
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each ith node, i = 2, 4, 6, . . . , n− 2, uses its local processor to compute bi−1

bi

 = θ2
i/2

 ai

ai+1

 . (3.25)

The nth node computes  bn−1

bn

 = θ2
n/2

 an

a1

 . (3.26)

The matrix θ2
i/2 ∈ SO(2) for each i = 2, 4, 6, . . . , n. The output of the second level

is the vector b, which can be written



b1

b2

...

bn


=



θ2
1 0 · · · 0

0 θ2
2 · · · 0

...
. . .

...

0 · · · 0 θ2
n/2





a2

a3

...

an

a1



=



θ2
1 0 · · · 0

0 θ2
2 · · · 0

...
. . .

...

0 · · · 0 θ2
n/2





0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 1

1 0 · · · 0 0





a1

a2

...

an


4
= Θ2Pea. (3.27)

Substituting Equation 3.23 into this expression yields

b = Θ2PeΘ1y. (3.28)

The matrix Pe is the permutation matrix which implements a circular left shift of

the vector a.
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When the second level is finished the ith node contains bi−1 and bi, for each

even i. To start the third level, the ith node (i even) sends bi−1 to the node on

its left and it sends bi to the node on its right. Recall that the first node is to the

right of the nth node, so bn gets sent to the first node. Like the first and second

steps, each oddly indexed node uses its local processor to rotate the elements of b

which it contains, yielding the vector c:



c1

c2

...

cn


=



θ3
1 0 · · · 0

0 θ3
2 · · · 0

...
. . .

...

0 · · · 0 θ3
n/2





bn

b1

b2

...

bn−1



=



θ3
1 0 · · · 0

0 θ3
2 · · · 0

...
. . .

...

0 · · · 0 θ3
n/2





0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0

...
...

. . .
...

...

0 0 · · · 1 0





b1

b2

...

bn


4
= Θ3Pob. (3.29)

Substituting Equation 3.28 into this expression yields

c = Θ3PoΘ2PeΘ1y. (3.30)

This process of local rotations and permutations is repeated for L levels, some

L > 0, and ỹ is defined to be the output of the Lth level,

ỹ = ΘLPL · · ·Θ2P2Θ1y, (3.31)
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Figure 3.1: Graphical description of parallel output processing on a 1–D array of

smart sensors. Data flows from the bottom up in the diagram.

where, for i = 2, 3, . . . , L,

Pi =

 Po for i odd

Pe for i even
(3.32)

This process is depicted graphically in Figure 3.1.

The resulting transform Q1 is of the form

Q1 = ΘLPL · · ·Θ2P2Θ1. (3.33)

Clearly, any orthogonal transform which has this structure can be implemented in

a manner which naturally distributes the necessary computations and eliminates

the need for global communication.
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Transforming the Input Vector

In the previous section we introduced an output vector transformation Q1 that

could be implemented on the network using a series of 2 × 2 decoupled rotations

and permutation steps. Here we consider the coordinate transformation for the

input vector, Q2. We start by assuming that, like Q1, Q2 is of the form

Q2 = ΦLPL · · ·Φ2P2Φ1, (3.34)

where the Φis are block diagonal rotation matrices of the same form as the Θis

which compose Q1. To simplify the discussion, we assume that the number of

levels, in the transform Q2 is L, the number of levels in the transform Q1. We also

assume that L is odd. The extension to more general cases will be considered in

Section 3.3.

In order to understand how the input transformation is implemented, we first

recall that the proposed controller implementation is based on plant diagonaliza-

tion. In this form, the controller performs three basic tasks: it transforms the data

vector y to ỹ, it chooses the transformed input vector ũ based on ỹ, and it trans-

forms ũ to create the actual input vector applied to the plant, u. At the end of the

output transformation step, each oddly indexed node contains two elements of the

transformed output vector ỹ. In particular, the ith node contains the transformed

outputs ỹi and ỹ(i+1).
1 As seen from the transformed input and output vectors,

the plant is diagonal. The controller matrix can then also be diagonal. Hence, each

ũi can be computed based solely on the corresponding ỹi. This means that the

controller can perform its second task, computing ũ, in a decentralized manner by

having the ith node, i odd, compute ũi and ũ(i+1) on its local processor. So at the

1Remember: we have assumed that L is odd; if L was even then the outputs would be

contained in the evenly indexed nodes and the ith node would contain ỹ(i−1) and ỹi.
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beginning of the input transformation step, the transformed inputs ũi and ũ(i+1)

are contained in the ith node for each odd i. The goal of the input transformation

step is to compute u = Q−1
2 ũ in a distributed manner on the network so that the

input ui is applied to the actuator on the ith node.

Now we are ready to describe the process used to transform ũ. The input we

wish to compute is

u = ΦT
1 P

T
2 ΦT

2 · · ·P
T
L ΦT

Lũ. (3.35)

Like the output transformation, the input transformation is computed in levels.

In the first level, the intermediate vector a = ΦT
Lũ is computed. The matrix ΦT

L

is block diagonal so a can be computed in a decentralized manner on the oddly

indexed nodes of the network. Next, the permutation matrix P T
L is realized using

nearest neighbor communication where each odd node sends one element of a to

each of its two evenly indexed neighbors. The vector b = ΦT
L−1P

T
L a can then be

computed in a decentralized manner on the evenly indexed nodes of the network.

This process is repeated until finally the expression

u = ΦT
1 P

T
2 ΦT

2 · · ·P
T
L ΦT

Lũ (3.36)

is realized. Operating under the assumption that L is odd, the elements of u will

be contained in the evenly indexed nodes, with the ith node containing u(i−1) and

ui. The final step of the input transformation process is for each evenly indexed

ith node to send the value of u(i−1) to the node on its left. The result is that u

has been computed and each ui resides on the ith node, ready to be applied as the

input to the ith actuator.
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3.2.2 Implementation on 2–D Array

In this section we show how to design specially structured orthogonal transforms

Q1 and Q2 to be implemented on a control network where the sensor/actuator

pairs are distributed spatially to form a two dimensional rectangular array. Let

nr be equal to the number of rows and nc be equal to the number of columns in

the array. To simplify the presentation, we assume that nc and nr are both even.

The nodes in the array are numbered left to right, top to bottom. The node in

the ith row and the jth column is numbered j + nc(i − 1). Depending on which

is more descriptive, we will refer to this node as either the (i, j)th node or the

(j + nc(i− 1))th node. The difference should be clear from context.

The (i, j)th node is said to be double odd if both i and j are odd. Likewise, the

(i, j)th node is said to be double even if both i and j are even.

The spatial arrangement of the array naturally divides the nodes on the array

into three classes: interior nodes, edge nodes, and corner nodes. As the name

implies, the corner nodes are at locations (1, 1), (1, nc), (nr, 1), and (nr, nc). Nodes

which are in the first row, last row, first column, or last column but are not corner

nodes are referred to as edge nodes. Specifically, we will refer to these edges as top

edge, bottom edge, left edge, and right edge, respectively. The remaining nodes

are interior nodes.

Array Connections

Here we assume that the nodes on the array are connected to form a torus. To

achieve this connection topology, imagine that the top and bottom edges of the

array are brought together so that the array forms a cylinder with the left and

right edges forming the circles at either end of the cylinder. The cylinder is then
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stretched and bent to bring the left and right edges (now circles) together, forming

a torus. Remember: this torus represents the topology of the connections; the

physical layout of the array has not changed.

Each node on the array has eight neighbors on the torus. For interior nodes, the

(i, j)th node has left and right neighbors (nodes (i, j−1) and (i, j+1), respectively),

upper and lower neighbors (nodes (i − 1, j) and (i + 1, j), respectively), and four

diagonal neighbors (nodes (i−1, j−1), (i−1, j+1), (i+1, j−1), and (i+1, j+1).

Because of toroidal connection topology, nodes on the edges and corners have

neighbors on the other side of the array. Modular division can be used to identify

the neighbors of a general element on the array. For the (i, j)th node, the eight

neighbors are

left neighbor (i, ((j − 2) mod nc) + 1)

right neighbor (i, ((j) mod nc) + 1)

upper neighbor (((i− 2) mod nr) + 1, j)

lower neighbor (((i) mod nr) + 1, j)

upper–left neighbor (((i− 2) mod nr) + 1, ((j − 2) mod nc) + 1)

upper–right neighbor (((i− 2) mod nr) + 1, ((j) mod nc) + 1)

lower–left neighbor (((i) mod nr) + 1, ((j − 2) mod nc) + 1)

lower–right neighbor (((i) mod nr) + 1, ((j) mod nc) + 1)

(3.37)

The data transformation method we present here requires each node to have a

two–way connection with a subset of its neighbors. In particular, each double odd

node shares a connection with its right neighbor, its lower neighbor, and each of

its four diagonal neighbors. This connection scheme is depicted in Figure 3.2.
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Figure 3.2: Required connections for 2–D array.

Transforming the Output Vector

Here we discuss the transformation of the output vector y on a 2–D array. The

resulting transformed output vector is denoted ỹ = Q1y, where Q1 is an orthogonal

transform with a special structure. The data vector y has dimension nrnc. Let

y†(i, j) denote the output of the sensor on the (i, j)th node. The output of the

sensor on the (i, j)th node is contained in the (j + nc(i − 1))th element of y, i.e.

y†(i, j) = y(j+nc(i−1)). Conversely, the kth element of y is

yk = y†
(⌊

k

nc

⌋
+ 1, ((k − 1) mod nc) + 1

)
, (3.38)

where bxc is the largest integer less than or equal to x.

As in the case of the 1–D array, the implementation we propose consists of a

sequence of levels. In the first level, each double odd node (i, j) receives the values

of the sensor outputs from its right neighbor (i, j + 1), left neighbor (i+ 1, j), and
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lower–right neighbor (i+1, j+1). As a result, each double odd node (i, j) contains

the following four elements of the output vector, y:

y†(i, j) = y(j+nc(i−1)) (3.39)

y†(i, j + 1) = y((j+1)+nc(i−1)) (3.40)

y†(i+ 1, j) = y(j+nci) (3.41)

y†(i+ 1, j + 1) = y((j+1)+nci) (3.42)

If we order the double odd nodes from left to right, top to bottom, then the (i, j)th

node is also the kth double odd node, where

k =
j + 1

2
+
nc
2

i− 1

2
. (3.43)

Define the intermediate data vector a such that the elements of y contained in the

kth double odd node are equal to a4(k−1)+1 through a4(k−1)+4. In simple language,

this means that the first four elements of a are the four outputs contained in

the first double odd node, the next four elements are the four outputs contained

in the second double odd node, and so on. The vector a is a permutation of

y. Let {e1, e2, e3, . . . , enrnc} denote the canonical basis vectors for IRn. Then we

can construct the permutation matrix P1 such that a = P1y using the following

algorithm:

for i = {1, 3, 5, . . . , nr − 1}

for j = {1, 3, 5, . . . , nc − 1}

let k = j+1
2

+ nc
2
i−1
2

let the (4(k − 1) + 1)th column of P1 be ej+nc(i−1)

let the (4(k − 1) + 2)th column of P1 be e(j+1)+nc(i−1)

let the (4(k − 1) + 3)th column of P1 be ej+nci

63



let the (4(k − 1) + 4)th column of P1 be e(j+1)+nci

end j loop

end i loop

This communication step is depicted graphically in Figure 3.3.

Next, using its local microprocessor, each double odd node k computes

b4(k−1)+1

b4(k−1)+2

b4(k−1)+3

b4(k−1)+4


= θ1

k



a4(k−1)+1

a4(k−1)+2

a4(k−1)+3

a4(k−1)+4


, (3.44)

where θ1
k ∈ SO(4), k = 1, 2, 3, . . . , ncnr/4. The intermediate vector b is the output

of the first level and can be written

b = Θ1P1y, (3.45)

where

Θ1 =



θ1
1 0 · · · 0

0 θ1
2 · · · 0

...
. . .

...

0 · · · 0 θ1
ncnr/4


. (3.46)

In the second level, the computations will take place on the double even nodes.

We number the double even nodes left to right, top to bottom so that the (i, j)th

node is the kth double even node, where

k =
j

2
+
nc
2

i− 2

2
. (3.47)

Note that the kth double even node is the lower–right neighbor to the kth double

odd node.
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At the beginning of the second level, each double even node receives one element

of b from each of its four diagonal neighbors, which are double odd nodes. As

depicted in Figure 3.3 this communication step creates the new intermediate data

vector c. Specifically, we set

c4(k−1)+1 = b4(kul−1)+4 (3.48)

c4(k−1)+2 = b4(kur−1)+3 (3.49)

c4(k−1)+3 = b4(kll−1)+2 (3.50)

c4(k−1)+4 = b4(klr−1)+1, (3.51)

Where kul, kur, kll, and klr are the positions of the double odd nodes which are,

respectively, the upper–left, upper–right, lower–left, and lower–right neighbors of

the kth double even node. Let (i, j) denote the coordinates of the kth double even

node. Then

kul = k (3.52)

kur =
j mod nc + 2

2
+
nc
2

i− 1

2
(3.53)

kll =
j

2
+
nc
2

i mod nr
2

(3.54)

klr =
j mod nc + 2

2
+
nc
2

i mod nr
2

(3.55)

The intermediate vector c is a permutation of b. The permutation matrix Pe which

satisfies c = Peb is given by the following algorithm:

for i = {2, 4, 6, . . . , nr}

for j = {2, 4, 6, . . . , nc}

let k = j
2

+ nc
2
i−2
2

let kul = k

let kur = j mod nc+2
2

+ nc
2
i−2

2
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let kll = j
2

+ nc
2
i mod nr

2

let klr = j mod nc+2
2

+ nc
2
i mod nr

2

let the (4(k − 1) + 1)th column of Pe be e4(kul−1)+4

let the (4(k − 1) + 2)th column of Pe be e4(kur−1)+3

let the (4(k − 1) + 3)th column of Pe be e4(kll−1)+2

let the (4(k − 1) + 4)th column of Pe be e4(llr−1)+1

end j loop

end i loop

Next, using its local microprocessor, each double even node k computes

d4(k−1)+1

d4(k−1)+2

d4(k−1)+3

d4(k−1)+4


= θ2

k



c4(k−1)+1

c4(k−1)+2

c4(k−1)+3

c4(k−1)+4


, (3.56)

where θ2
k ∈ SO(4) for each k. The intermediate vector d is the output of the second

level and can be written

d = Θ2PeΘ1P1y, (3.57)

where

Θ2 =



θ2
1 0 · · · 0

0 θ2
2 · · · 0

...
. . .

...

0 · · · 0 θ2
ncnr/4


. (3.58)

A third level can be computed in a similar manner. Here, the double even nodes

pass their data back to the double odd nodes which perform the 4D rotations. The
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output of the third level is the intermediate data vector

f = Θ3PoΘ2PeΘ1P1, (3.59)

where the permutation matrix Po is given by the following algorithm:

for i = {1, 3, 5, . . . , nr − 1}

for j = {1, 3, 5, . . . , nc − 1}

let k = j+1
2

+ nc
2
i−1
2

let kul = (j−2) mod nc+1
2

+ nc
2

(i−2) mod nr−1
2

let kur = j+1
2

+ nc
2

(i−2) mod nr−1
2

let kll = (j−2) mod nc+1
2

+ nc
2
i−1

2

let klr = k

let the (4(k − 1) + 1)th column of Pe be e4(kul−1)+4

let the (4(k − 1) + 2)th column of Pe be e4(kur−1)+3

let the (4(k − 1) + 3)th column of Pe be e4(kll−1)+2

let the (4(k − 1) + 4)th column of Pe be e4(llr−1)+1

end j loop

end i loop

The communication patterns for the first 3 levels are depicted in Figure 3.3.

The permutation matrices P1, Pe, and Po give us a mathematical representation

of these communication patterns.

Levels 2 and 3 can be repeated for L levels, some L > 0, and ỹ is defined to be

the output of the Lth level,

ỹ = ΘLPL · · ·Θ2P2Θ1P1y, (3.60)
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Figure 3.3: Communication patterns for first 3 levels of parallel output transfor-

mation on a 2–D array of smart sensors.

where, for i = 2, 3, . . . , L,

Pi =

 Po for i odd

Pe for i even
(3.61)

Hence, we have constructed a transform of the form

Q1 = ΘLPL · · ·Θ2P2Θ1P1 (3.62)

which is easily implemented in a distributed manner on a control network.

Transforming the Input Vector

Here we consider the problem of transforming the input vector on a 2–D array. We

begin by assuming that the input transformation Q2 is of the same form as Q1 in

the previous section, i.e.

Q2 = ΦLPL · · ·Φ2P2Φ1P1, (3.63)
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where the Φis are of the same form as the Θis in Q1. The number of levels in Q2

is equal to L, which is the same as the number of levels in Q1. We also assume

that L is odd. The task of this section is to compute the corresponding input

transformation u = Q−1
2 ũ on the network. As in the case of the 1–D array, Q−1

2

can be implemented on the 2–D array by reversing the steps used in the input

transformation.

To begin, recall that each element of the desired transformed input vector ũ

resides on the same node as the corresponding element of the transformed output

vector ỹ. As a result, ũ is distributed over the network with each double odd node

containing 4 elements of ũ (here we have assumed that L is odd). In the first level,

the intermediate data vector a = ΦT
Lũ is computed on the double odd nodes. Since

ΦT
L is a block diagonal matrix, a can be computed in a decentralized manner. Each

double odd node then passes one element of a to each of its diagonal neighbors

(the double even nodes), implementing

b = Pea (3.64)

= P T
o a (3.65)

= P T
L ΦT

Lũ. (3.66)

The double even nodes then use their local processors to compute

c = ΦT
L−1b (3.67)

= ΦT
L−1P

T
L ΦT

Lũ. (3.68)

This process is repeated until the desired input

u = P T
1 ΦT

1 P
T
2 ΦT

2 · · ·P
T
L ΦT

Lũ (3.69)

is achieved. The final permutation step P T
1 sends the elements of u to the nodes

on which they will be applied.
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3.3 Recursive Orthogonal Transforms

In the previous section we discussed two possible methods of performing data

transformations on the input and output vector of an array of smart sensors and

actuators. Here we provide some insight into our choices for these transforms.

We then generalize this notion to define what we call the recursive orthogonal

transform (ROT).

The output transforms from the previous section are all of the form

Q = ΘLPL · · ·Θ2P2Θ1P1 (3.70)

where, for i = 1, 2, . . . , L, the Θis are block diagonal matrices with orthogonal

blocks on the diagonal and the Pis are permutations of the identity matrix. The

Θi represent decoupled, local rotations of the data vector performed in a distributed

fashion on the control network. The permutation matrices represent a “shuffling”

of the data vector resulting from the exchange of information on the network.

The wavelet packet transforms discussed in the previous chapter can be written

in the form of Equation 3.70. To see this connection, consider the Haar wavelet

transform, Q, operating on a 4–dimensional vector y. It is easy to verify that

the wavelet transform can be written as the following matrix sequence of matrix

operations:

Qy =



1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1 0

0 0 0 1





1√
2

1√
2

0 0

0 0 1√
2

1√
2

− 1√
2

1√
2

0 0

0 0 − 1√
2

1√
2


y. (3.71)
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Employing a permutation matrix, this expression becomes

Qy =



1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1





1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2


y. (3.72)

The submatrix  1√
2

1√
2

− 1√
2

1√
2

 (3.73)

is orthogonal; it is a rotation in the plane by -45 degrees. Hence, the wavelet

transform is a special case of a transform of the form given by Equation 3.70. The

same is true for any transform in the wavelet packet.

Another connection to the this idea is the Euler angle representation of SO(3),

which can be thought of as the group of orientations of a rigid body in 3–dimen-

sional Euclidean space [30]. The ZYZ Euler angles tell us that any orientation can

be achieved by a rotation about the z axis by an angle α, followed by a rotation

about the new y axis by an angle β, followed by a rotation about the z axis by an

angle γ. The first rotation is represented by the matrix

Rz(α) =


cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1

 . (3.74)

This matrix is block diagonal, and the blocks on the diagonal are orthogonal. The

y axis rotation can be written

Ry(β) =


cos(β) 0 −sin(β)

0 1 0

sin(α) 0 cos(α)


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=


1 0 0

0 0 1

0 1 0



cos(β) −sin(β) 0

sin(α) cos(α) 0

0 0 1




1 0 0

0 0 1

0 1 0


4
= P3Rz(β)P2. (3.75)

Now any Θ ∈ SO(3) can be represented by the composition of the three Euler

rotations, i.e.

Θ = Rz(γ)Ry(β)Rz(α)

= Rz(γ)P3Rz(β)P2Rz(α) (3.76)

for some α, β, γ ∈ [0, 2π). Hence, we can represent any Θ ∈ SO(3) as a product of

block diagonal matrices and permutations of the identity.

Our idea is to extend the concept of Euler angles to higher dimensional groups.

This leads us to define the recursive orthogonal transform.

Definition 3.3.1 A recursive orthogonal transform (ROT) is a linear operator of

the form

Θ̃ = P1Θ1P2Θ2 · · ·PLΘL, (3.77)

for some L, where for each i = 1, 2, . . . , L,

1. The matrix Θi is of the form

Θi =



θi1 0 · · · 0

0 θi2 · · · 0

...
. . .

...

0 · · · 0 θimi


, (3.78)

θij ∈ SO(nij) (or θij ∈ U(nij)),

mi∑
j=1

nij = n, (3.79)
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and 0s represent appropriately dimensioned blocks of zeros.

2. The matrix Pi is a permutation of the n× n identity matrix.

The integer L is called the level of the ROT. The structure of the ROT is defined

by L, Pi, mi, and nij for i = 1, 2, . . . , L, j = 1, 2, . . . ,mi. These quantities are

called the ROT parameters. The Θi, i = 1, 2, . . . , L, are called the ROT variables.

In the remainder of this thesis, we will assume that the ROT parameters are

given and fixed. We will address the problem of finding the ROT variables so that

the resulting ROT most closely diagonalizes a given plant matrix.
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Chapter 4

Symmetric Matrix

Diagonalization and SVD using

ROT

In Chapter 1 we discussed the possibility of applying linear data transformations to

the input and output vectors of a MIMO system for the purpose of “diagonalizing”

the plant matrix. Such transformations would make the task of designing and

applying a feedback controller much easier because the MIMO system is reduced

to a set of decoupled SISO systems. This is particularly advantageous for systems

with large numbers of inputs and outputs. In the last chapter we introduced

recursive orthogonal transforms, a class of linear operators which are designed to

take advantage of the parallel processing capability of a control network while

eliminating the need for global communication. Here we begin to bring these two

ideas together by showing how to find ROTs which most closely diagonalize a

constant matrix. The problem of finding the appropriate ROT variables is solved

using a gradient flow which turns out to be closely related to the so called double
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bracket equation introduced by Brockett [10] and discussed in detail by Helmke

and Moore [22]. This is no coincidence since our work is heavily motivated by

these authors.

Here we assume that the ROT parameters are given and fixed. In Section

4.1 we show how find the ROT variables so that the resulting ROT most nearly

diagonalizes a given real–valued symmetric matrix. Section 4.2 describes how to

find ROT variables to approximate the SVD factors of a given complex–valued

matrix.

4.1 Diagonalization of Symmetric Matrices

The objective of this section is stated as follows: Given a symmetric n× n matrix

H0 and configuration parameters for the ROT

Θ̃ = P1Θ1P2Θ2 · · ·PLΘL, (4.1)

find Θ1,Θ2, . . . ,ΘL such that the matrix

H = Θ̃TH0Θ̃ (4.2)

is, in some sense, most closely diagonalized. Our first step toward solving this

problem is to find a “diagonalness” functional φ(H). Then we search for the

(Θ1,Θ2, . . . ,ΘL) which minimize φ by flowing along the gradient vector field ∇φ

on the configuation space of the Θi’s. This idea is motivated by Brockett [10], who

showed that the matrix diagonalization problem can be solved using by solving a

matrix ODE which evolves on the group of orthogonal matrices. As a result, we

begin this discussion with a review his work. We then return to our problem and

construct a gradient flow designed to find the appropriate ROT variables.
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4.1.1 Matrix Diagonalization via Flows on SO(n)

In 1988, Brockett showed that a number of interesting problems in linear algebra

and computer science could be solved by the use of dynamical systems defined on

matrix groups[10]. Following [22], we review his work on the diagonalization of

symmetric matrices.

Finding the Gradient Vector Field

Let H0 be a real valued, symmetric, n× n matrix. The goal is to find Θ in SO(n)

such that H = ΘTH0Θ is diagonal. Note that H is symmetric for every Θ ∈ SO(n)

since

HT = ΘTHT
0 Θ

= ΘTH0Θ

= H. (4.3)

Define

J(Θ) =
∥∥N −ΘTH0Θ

∥∥2
, (4.4)

where N is a diagonal matrix with distinct values on the diagonal and ‖·‖ is the

Frobenius norm, ‖A‖2 = tr
(
ATA

)
. Hence, J is the distance between ΘTH0Θ and

a fixed diagonal matrix. Intuitively, minimizing J makes H = ΘTH0Θ look as

much like N as possible. Since N is diagonal, the Θ which minimizes J should

diagonalize H. Simple matrix manipulation reveals

∥∥N −ΘTH0Θ
∥∥2

= ‖N‖2 +
∥∥ΘTH0Θ

∥∥2
− 2tr (NH) . (4.5)

The matrix N is constant, so ‖N‖2 is constant. The matrix H0 is constant and Θ

is orthogonal, so
∥∥ΘTH0Θ

∥∥2
= ‖H0‖

2 is also constant. As a result, the problem of

76



minimizing J(Θ) can be posed as the problem of maximizing the functional

φ(Θ) = tr
(
NΘTH0Θ

)
. (4.6)

Brockett’s idea is to search for the maximizing Θ by flowing along the gradient

vector field of φ on SO(n). Recall that the gradient vector field of φ on SO(n)

satisfies the following two properties:

1. ∇φ(Θ) ∈ TΘSO(n) for all Θ ∈ SO(n).

2. DφΘ(ξ) = 〈∇φ(Θ), ξ〉 for all ξ ∈ TΘSO(n).

As a result of the first property, ∇φ(Θ) must be of the form ΘΩ, where Ω ∈ so(n).

This means that ∇φ(Θ) can be written in the form

∇φ(Θ) = ΘΩ∇φ(Θ), (4.7)

where Ω∇φ(Θ) is skew–symmetric for each Θ ∈ SO(n). Combining this with the

second property gives

DφΘ(ΘΩ) =
〈
ΘΩ∇φ(Θ),ΘΩ

〉
= −tr

(
Ω∇φ(Θ)Ω

)
. (4.8)

Taking the directional derivative of φ,

DφΘ(ΘΩ) = tr
(
NΩTΘTH0Θ +NΘTH0ΘΩ

)
. (4.9)

Using the skew–symmetry of Ω and the fact that tr (AB) = tr (BA) we get

DφΘ(ΘΩ) = tr
((
NΘTH0Θ−ΘTH0ΘN

)
Ω
)

= tr
([
N,ΘTH0Θ

]
Ω
)
. (4.10)

Substituting this into 4.8 allows us to restate the second condition as

tr
([
N,ΘTH0Θ

]
Ω
)

= −tr
(
Ω∇φ(Θ)Ω

)
. (4.11)
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So the choice Ω∇φ(Θ) = −
[
N,ΘTH0Θ

]
satisfies the second condition. This is a

valid choice because the matrix
[
N,ΘTH0Θ

]
is skew–symmetric, which is easily

seen as follows:

[N,H]T = (NH −HN)T

= HTNT −NTHT

= HN −NH

= − [N,H] . (4.12)

As a result, the gradient vector field is given by the expression

∇φ(Θ) = −Θ
[
N,ΘTH0Θ

]
. (4.13)

The ascent direction gradient flow is then given by the ODE

Θ̇ = −Θ
[
N,ΘTH0Θ

]
, Θ(0) = Θ0. (4.14)

Convergence Properties

From the properties of a gradient flow on a compact manifold listed in Section 3.1.1

it is clear that the solution of Equation 4.14 exists for all time t > 0 and converges

to an equilibrium point for every Θ0 ∈ SO(n). Let Θ∗ be such an equilibrium

point and define H
4
= ΘT

∗H0Θ∗. Since Θ∗ is nonsingular, the matrix [N,H] must

be zero. The (i, j)th element of [N,H] is

[N,H]ij = (NH)ij − (HN)ij

=
n∑
k=1

NikHkj −
n∑
k=1

HikNkj. (4.15)

The matrix N is diagonal so [N ]ik = 0 for i 6= k. Let ni denote the ith diagonal

element of N and let hij denote the (i, j)th element of H. Then

[N,H]ij = nihij − hijnj
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= hij (ni − nj) . (4.16)

The diagonal elements of N are distinct, so for i 6= j, [N,H]ij = 0 only if hij = 0.

Therefore the matrix H must be diagonal.

4.1.2 Matrix Diagonalizing Flows for ROTs

Here we extend the results of Brockett [10] to find the recursive orthogonal trans-

form Θ̃ which most closely diagonalizes a real–valued symmetric matrix.

Preliminaries and Definitions

Let H0 be a real valued, symmetric, n × n matrix. This is the matrix we seek to

diagonalize.

Let

Θk =



θk1 0 · · · 0

0 θk2 · · · 0

...
. . .

...

0 · · · 0 θkmk


, (4.17)

for k = 1, 2, . . . , L, some L > 0, where θkj ∈ SO(nkj),

mk∑
j=1

nkj = n ∀k = 1, 2, . . . , L, (4.18)

and the 0s represent appropriately dimensioned blocks of zeros. In simple language,

each Θk is a block diagonal matrix where the blocks on the diagonal are orthogonal

matrices. Let Mk = SO(nk1) × SO(nk2) × · · · × SO(nkmk). Then Θk belongs to

the Lie subgroup Mk ⊂ SO(n).

Recall that the tangent space of SO(`) at the identity is the Lie algebra

so(`) = {Ω ∈ IR`×`|ΩT = −Ω}. (4.19)
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The Lie algebra of Mk is then

TeMk = so(nk1)⊕ so(nk2)⊕ · · · ⊕ so(nkmk). (4.20)

A vector in TeMk can then be written

Ωk =



ωk1 0 · · · 0

0 ωk2 · · · 0

...
. . .

...

0 · · · 0 ωkmk


. (4.21)

where ωkj ∈ so(nkj) for j = 1, 2, . . . ,mk. Hence the tangent space to Mk at the

point Θk is

TΘkMk = {ΘkΩk |Ωk ∈ TeMk } . (4.22)

Define Ψ ∈M = M1 ×M2 × · · · ×ML to be the ordered L–tuple of Θks,

Ψ = (Θ1,Θ2, . . . ,ΘL). (4.23)

Likewise, let X denote a vector in TΨM ,

X = (Θ1Ω1,Θ2Ω2, . . . ,ΘLΩL). (4.24)

For k = 1, 2, 3, . . . , L, Pk is a fixed permutation of the n × n identity matrix.

Each Pk is an element of the group O(n).

Finally, for k = 1, 2, . . . , L, we define two sequences of recursive orthogonal

transforms:

Θ̃k =
k∏
`=1

P`Θ`, (4.25)

Θ̆k =
n∏

`=k+1

P`Θ`. (4.26)
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Here the product symbol
∏

denotes multiplication with indices ascending from left

to right. Also,
∏b

k=a = 1I for b < a. We call Θ̃k the kth lower subtransform and

Θ̆k the kth upper subtransform. The ROT Θ̃ = Θ̃L is referred to as the complete

transform.

Constructing the Gradient Flow

The objective of this section is to approximately diagonalize the symmetric matrix

H0. This is done by finding Ψ = (Θ1,Θ2, . . . ,ΘL) such that the matrix

H(Ψ) = ΘT
LP

T
L · · ·Θ

T
2 P

T
2 ΘT

1 P
T
1 H0P1Θ1P2Θ2 · · ·PLΘL

= Θ̃TH0Θ̃ (4.27)

is “more diagonal” than it is for any other choice of Ψ.

Towards this goal, let N be a fixed diagonal n× n matrix. We can now define

a cost function using distance between H and N given by the Frobenius norm.

Simple matrix manipulation reveals

‖N −H(Ψ)‖2 = ‖N‖2 + ‖H(Ψ)‖2 − 2tr (NH(Ψ)) . (4.28)

Since N is fixed, ‖N‖2 is constant. SinceH0 is fixed and the matrix Θ̃ is orthogonal,

‖H‖2 =
∥∥∥Θ̃TH0Θ̃

∥∥∥2

is also constant. The Frobenius distance between H and N is

minimized when

φ(Ψ) = tr (NH(Ψ)) (4.29)

is maximized. The function φ : M → IR can be thought of as a “diagonalness”

functional.

The idea here is to search for the Ψ which maximizes φ by flowing along the

gradient vector field of φ on the manifold M . Recall that ∇φ(Ψ) on M is defined

by the following properties:
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1. ∇φ(Ψ) ∈ TΨM ∀Ψ ∈M .

2. DφΨ(X) = 〈∇φ(Ψ), X〉 ∀X ∈ TΨM .

The first property states that ∇φ(Ψ) in contained in the tangent space of M at

the point Ψ. This means that ∇φ(Ψ) must be of the form

∇φ(Ψ) =
(
Θ1Ω

∇φ
1 , . . . ,ΘLΩ

∇φ
L

)
, (4.30)

where Ω∇φk ∈ TeMk, k = 1, 2, . . . , L. For convenience of notation, we have sur-

pressed the fact that Ω∇φk depends on Ψ.

From the second property, we must have

DφΨ((Θ1Ω1, . . . ,ΘLΩL)) = 〈∇φ(Θ1, . . . ,ΘL), (Θ1Ω1, . . . ,ΘLΩL)〉

=
〈
(Θ1Ω

∇φ
1 , . . . ,ΘLΩ

∇φ
L ), (Θ1Ω1, . . . ,ΘLΩL)

〉
=

L∑
k=1

tr
(
(Ω∇φk )TΩk

)
. (4.31)

Finding an expression for DφΨ(X):

DφΨ(X) = tr

 L∑
k=1

N

((
k−1∏
`=1

P`Θ`

)
PkΘkΩk

(
n∏

`=k+1

P`Θ`

))T

H0

(
n∏
`=1

P`Θ`

)

+N

(
n∏
`=1

P`Θ`

)T

H0

(
k−1∏
`=1

P`Θ`

)
PkΘkΩk

(
n∏

`=k+1

P`Θ`

)
= tr

(
L∑
k=1

N
(
Θ̃kΩkΘ̆k

)T
H0Θ̃ +NΘ̃TH0Θ̃kΩkΘ̆k

)

= tr

(
L∑
k=1

NΘ̆T
kΩT

k Θ̃T
kH0Θ̃ +NΘ̃TH0Θ̃kΩkΘ̆k

)
. (4.32)

Using tr (AB) = tr (BA) and the skew–symmetry of Ωk we get

DφΨ(X) = tr

(
L∑
k=1

(
Θ̆kNΘ̃TH0Θ̃k − Θ̃T

kH0Θ̃NΘ̆T
k

)
Ωk

)
. (4.33)
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Using the fact that Θ̃ = Θ̃kΘ̆k for any k = 1, 2, . . . , L, we get

DφΨ(X) = tr

(
L∑
k=1

(
Θ̆kNΘ̆T

k Θ̃T
kH0Θ̃k − Θ̃T

kH0Θ̃kΘ̆kNΘ̆T
k

)
Ωk

)

= tr

(
L∑
k=1

[
Θ̆kNΘ̆T

k , Θ̃
T
kH0Θ̃k

]
Ωk

)
. (4.34)

For k = 1, 2, . . . , L, define

Hk = Θ̃T
kH0Θ̃k (4.35)

Nk = Θ̆kNΘ̆T
k . (4.36)

The matrices Hk and Nk are symmetric for each k. This means that the bracket[
Nk, Hk

]
∈ TeO(n). In order to get a valid gradient flow, each Ωk in Equation 4.34

must be multiplied on the left by (Ω∇φk )T , where Ω∇φk ∈ Te(Mk). To accomplish

this, we introduce a set of natural projection operators, Πk : TeO(n) → Te(Mk).

Πk projects from the set of skew–symmetric matrices to the set of block diagonal

skew–symmetric matrices by setting all off–diagonal blocks to zero.

Fact 4.1.1 Let A ∈ o(n) and let Ωi ∈ TeMi as defined in Equation 4.21. Then

tr
(
(ΠiA)TΩi

)
= tr

(
ATΩi

)
. (4.37)

Proof:

Looking at Equation 4.21 we see that the (j, k)th block of Ωi is

[Ωi]jk = ωijδ
j
k, (4.38)

where δjk is the Kronecker symbol. Partition A into blocks ajk so that the block

structure of A is compatible with that of Ωi. Then

tr
(
ATΩi

)
=

mi∑
j=1

mi∑
k=1

tr (ajk[Ωi]jk) (4.39)
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=
mi∑
j=1

mi∑
k=1

tr
(
ajkωijδ

j
k

)
(4.40)

=

mi∑
k=1

tr (akkωik) (4.41)

= tr
(
(ΠiA)TΩi

)
. (4.42)

In light of this fact,

DφΨ(X) =
L∑
k=1

tr
(
(−Πk

[
Nk, Hk

]
)TΩi

)
. (4.43)

If we let Ω∇φk = −Πk

[
Nk, Hk

]
, then ∇φ(Ψ) meets the conditions for a gradient

vector field outlined above. This yields

∇φ(Ψ) =
(
−Θ1Π1

[
N1, H1

]
,−Θ2Π2

[
N2, H2

]
, . . . ,−ΘLΠL

[
NL, HL

])
. (4.44)

The corresponding ascent direction gradient flow is then given by a system of

coupled matrix ODEs. This system is written as

Θ̇k = −ΘkΠk

[
Θ̆kNΘ̆T

K , Θ̃
T
kH0Θ̃k

]
, Θk(0) = Θk0, (4.45)

for k = 1, 2, . . . , L.

At this point it is natural to bring up the question of the convergence properties

of this gradient flow. From the properties of gradient flows on compact manifolds

listed in Section 3.1.1 we know that the solution to Equation 4.45 exists for all time

and converges to an equilibrium point for every set of initial conditions. Except

in a few special cases (see Appendix A) it is difficult to say more than this. The

numerical results we have obtained are promising, however, as is demonstrated by

the following example.
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Example

Here we show the results of applying this technique to approximately diagonalize a

16×16 symmetric matrix with random entries. Here we used the ROT structure for

a 1D array of sensor actuator pairs presented in Section 3.2.1. The original plant

matrix is shown in Figure 4.1. The approximately diagonalized plant matrix for

ROT levels 3,7,11, and 15 are shown in Figures 4.2, 4.3, 4.4, and 4.5, respectively.

Figure 4.6 show a plot of approximation error as a function of the number of levels

used in the approximating ROT. Here, the approximation error is defined to be

E(Θ̃) =

∥∥∥QTGQ− Θ̃TGΘ̃
∥∥∥

‖G‖
, (4.46)

where Q is a matrix whose columns are the unit eigenvectors of G.

The dimension of SO(n) is n(n−1)/2. The number of degrees of freedom in the

ROTs being considered is Ln/2, where L is the level of the transform. Intuitively,

when L = n−1 the ROT “should” have enough degrees of freedom to represent any

Θ in SO(n). These results seem to support this notion since the approximation

error gets very close to zero for L = 15.

4.2 Singular Value Decomposition

In Section 4.1 we addressed the problem of finding a recursive orthogonal transform

to diagonalize a real–valued symmetric matrix. In this section, we extend these

results to find approximations of the SVD factors which diagonalize a general

complex–valued matrix. In this case, given an n×m complex matrix H0 and ROT

configurations for Ũ ∈ U(m),

Ũ =

LU∏
i=1

PiUi, (4.47)
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Matrix to be diagonalized (H0)
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Figure 4.1: 16 × 16 random symmetric plant matrix.

Approximately diagonalized H0, L = 3
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Figure 4.2: Approximately diagonalized plant matrix using 3 level ROT.
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Approximately diagonalized H0, L = 7

2 4 6 8 10 12 14 16
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Figure 4.3: Approximately diagonalized plant matrix using 7 level ROT.

Approximately diagonalized H0, L = 11
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Figure 4.4: Approximately diagonalized plant matrix using 11 level ROT.
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Approximately diagonalized H0, L = 15
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Figure 4.5: Approximately diagonalized plant matrix using 15 level ROT.
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Figure 4.6: Plot of approximation error versus ROT level.
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and Ṽ ∈ U(n),

Ṽ =

LV∏
i=1

QiVi, (4.48)

we will search for the block diagonal Uis and Vis so that the matrix H ∈ ICn×n,

H = Ṽ HH0Ũ (4.49)

is most closely diagonalized. Recall that, according to our definition, a matrix A

is diagonal if [A]ij = 0 for all i 6= j. This definition applies to non–square matrices

as well as square ones.

As in the case of diagonalizing symmetric matrices, our approach is to search for

the best Uis and Vis by flowing along the gradient vector field of a “diagonalness”

functional. Here we are motivated by Helmke and Moore [21], who extended

Brockett’s work on symmetric matrices to perform SVD via a gradient flow on

U(m) × U(n). We begin this discussion with a review of their work. We then

return to the problem of SVD using recursive orthogonal transforms.

4.2.1 SVD via Flows on U(m)× U(n)

In 1992, Helmke and Moore [21] addressed the problem of finding the SVD fac-

tors of a complex–valued matrix by using gradient flows on the unitary group.

This work is an extension to the work or Brockett [10], which we reviewed in

Section 4.1.1. Here we present a brief summary of the work in [21].

Finding the Gradient Flows

GivenH0, N ∈ ICn×m, consider the task of finding U ∈ U(m), V ∈ U(n) to minimize

the squared Frobenius distance

∥∥N − V HH0U
∥∥2

= ‖N‖2 + ‖H0‖
2 − 2retr

(
NHV HH0U

)
. (4.50)
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N and H0 are constant, so minimizing the above norm is equivalent to maximizing

the functional

φ(U, V ) = 2retr
(
NHV HH0U

)
. (4.51)

If the matrix N is diagonal, then φ can be thought of as a “diagonalness” function

for the matrix V HH0U .

As in the case of Brockett’s work, the idea is to search for the U and V which

maximize φ by flowing along the gradient vector field of φ on the smooth Lie group

U(m)× U(n).

The Lie algebra of U(m) × U(n) is appropriately written as the direct sum

u(m) ⊕ u(n). Accordingly, a tangent vector at the point (U, V ) is a vector of the

form (UΩ, V Λ), where Ω ∈ u(m) and Λ ∈ u(n).

Recall the properites of the gradient flow:

1. ∇φ(U, V ) ∈ T(U,V ) (U(m)× U(n)) for all (U, V ) ∈ U(m)× U(n).

2. Dφ(U,V )(UΩ, V Λ) = 〈∇φ(U, V ), (UΩ, V Λ)〉 for all

(UΩ, V Λ) ∈ T(U,V ) (U(m)× U(n)).

The first property says that ∇φ(U, V ) is tangent to U(m) × U(n) at every point,

which means that ∇φ can be written

∇φ(U, V ) =
(
UΩ∇φ, V Λ∇φ

)
, (4.52)

where
(
Ω∇φ,Λ∇φ

)
∈ u(m)⊕u(n). For convenience of notation, we have surpressed

the fact that Ω∇φ and Λ∇φ depend on (U, V ). Writing ∇φ in this way, the second

property becomes

Dφ(U,V )(UΩ, V Λ) =
〈(
UΩ∇φ, V Λ∇φ

)
, (UΩ, V Λ)

〉
= −retr

(
Ω∇φΩ

)
− retr

(
Λ∇φΛ

)
. (4.53)
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Finding an expression for Dφ(U,V )(UΩ, V Λ):

Dφ(U,V )(UΩ, V Λ) = 2retr
(
NHΛHV HH0U +NHV HH0UΩ

)
= 2retr

(
NHV HH0UΩ− V HH0UN

HΛ
)

(4.54)

According to Fact 3.1.3, NHV HH0U and V HH0UN
H can be replaced with their

skew–hermetian components yielding

Dφ(U,V )(UΩ, V Λ) = 2retr

(
1

2

(
NHV HH0U − U

HHH
0 V N

)
Ω

−
1

2

(
V HH0UN

H −NUHHH
0 V
)
Λ

)
= retr

({
N, V HH0U

}
Ω +

{
NH , UHHH

0 V
}

Λ
)
, (4.55)

where

{·, ·} : ICp×q × ICp×q → u(q)

(A,B) 7→ AHB −BHA (4.56)

is the extended Lie bracket. Noting that
{
N, V HH0U

}
∈ u(m) and{

NH , UHHH
0 V
}
∈ u(n) and looking back at Equation 4.53, we see that both

properties of the gradient vector field are satisfied for the choices

Ω∇φ = −
{
N, V HH0U

}
(4.57)

Λ∇φ = −
{
NH , UHHH

0 V
}
. (4.58)

This results in the gradient vector field

∇φ(U, V ) =
(
−U

{
N, V HH0U

}
,−V

{
NH , UHHH

0 V
})
. (4.59)

The resulting gradient flows are then given by the coupled pair of matrix ODEs

evolving on U(m)× U(n). They are

U̇ = −
{
N, V HH0U

}
, U(0) = U0 ∈ U(m) (4.60)

V̇ = −
{
NH , UHHH

0 V
}
, V (0) = V0 ∈ U(n). (4.61)
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4.2.2 SVD Flows for ROTs

Here we extend the work of Helmke and Moore [21] to find the recursive orthogonal

transforms Ũ and Ṽ which most closely approximate the SVD factors of a given

matrix H0.

Preliminaries and Definitions

Let H0 ∈ ICn×m be the matrix to be decomposed. Let N be a fixed matrix in ICn×m.

Let

Ui =



ui1 0 · · · 0

0 ui2 · · · 0

...
. . .

...

0 · · · 0 uiki


, (4.62)

for i = 1, 2, . . . , LU , some LU > 0, where uij ∈ U(mij),

ki∑
j=1

mij = m ∀i = 1, 2, . . . , LU , (4.63)

and the 0s represent appropriately dimensioned blocks of zeros. Let

MU
i = U(mi1)× U(mi2)× · · · × U(miki). (4.64)

Then Ui belongs to the smooth, connected Lie subgroup MU
i ⊂ U(m). The Lie

algebra of MU
i is then

TeM
U
i = u(mi1)⊕ u(mi2)⊕ · · · ⊕ u(miki). (4.65)

We choose to write and element of TeM
U
i as a block diagonal skew–hermetian with
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the same block structure as Ui, i.e. Ωi ∈ TeMU
i will be written

Ωi =



ωi1 0 · · · 0

0 ωi2 · · · 0

...
. . .

...

0 · · · 0 ωiki


, (4.66)

where ωij ∈ u(mij) for j = 1, 2, . . . , ki. The tangent space of MU
i at the point Ui is

then

TUiM
U
i =

{
UiΩi

∣∣Ωi ∈ TeM
U
i

}
. (4.67)

We make a similar set of definitions for Vi. Let

Vi =



vi1 0 · · · 0

0 vi2 · · · 0

...
. . .

...

0 · · · 0 vi`i


, (4.68)

for i = 1, 2, . . . , LV , some LV > 0, where vij ∈ U(nij),

`i∑
j=1

nij = n ∀i = 1, 2, . . . , LV . (4.69)

Let

MV
i = U(ni1)× U(ni2)× · · · × U(ni`i). (4.70)

Then Vi belongs to the smooth, connected Lie subgroup MV
i ⊂ U(n). The Lie

algebra of MV
i is

TeM
V
i = u(ni1)⊕ u(ni2)⊕ · · · ⊕ u(ni`i). (4.71)

As before, we choose to write and element of TeM
V
i as a block diagonal skew–
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hermetian with the same block structure as Vi, i.e. Λi ∈ TeMV
i will be written

Λi =



λi1 0 · · · 0

0 λi2 · · · 0

...
. . .

...

0 · · · 0 λi`i


, (4.72)

where λij ∈ u(nij) for j = 1, 2, . . . , `i. The tangent space of MV
i at the point Vi is

then

TViM
V
i =

{
ViΛi

∣∣Λi ∈ TeM
V
i

}
. (4.73)

Define the smooth Lie groups

MU = MU
1 ×M

U
2 × · · · ×M

U
LU
,

MV = MV
1 ×M

V
2 × · · · ×M

V
LV
,

M = MU ×MV . (4.74)

Let Ψ ∈M be an (LU + LV )–tuple of Uis and Vis,

Ψ = (U1, U2, . . . , ULU , V1, V2, . . . , VLV ) . (4.75)

Then X ∈ TΨM is an (LU + LV )–tuple

X = (U1Ω1, U2Ω2, . . . , ULUΩLU , V1Λ1, V2Λ2, . . . , VLV ΛLV ) , (4.76)

where Ωi ∈ TeMU
i , i = 1, 2, . . . , LU , and Λi ∈ TeMV

i , i = 1, 2, . . . , LV .

The matrices Pi, i = 1, 2, . . . , LU , are fixed permutations of the m ×m iden-

tity matrix. Likewise, Qi, i = 1, 2, . . . , LV , be fixed permutations of the n × n

identity matrix. Both sets of matrices are given as part of the ROT configuration

parameters.
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For i = 1, 2, . . . , LU , we define the sequences of m dimensional ROTs

Ũi =
i∏

j=1

PjUj (4.77)

Ŭi =

LU∏
j=i+1

PjUj . (4.78)

Likewise, for i = 1, 2, . . . , LV we define the n dimensional ROTs

Ṽi =
i∏

j=1

QjVj (4.79)

V̆i =

LV∏
j=i+1

QjVj . (4.80)

We will call these ROTs subtransforms; Ũi and Ṽi are lower subtransforms, while

Ŭi and V̆i are upper subtransforms. The ROTs Ũ = ŨLU and Ṽ = ṼLV will be

called complete transforms.

Constructing the Gradient Flow

The objective of this section is to find recursive orthogonal transforms Ũ and Ṽ of

the configuration outlined above that most closely approximate the SVD factors of

the matrix H0. To do this, we will search M for the Ψ = (U1, . . . , ULU , V1, . . . , VLV )

which most closely diagonalizes the matrix

H(Ψ) = Ṽ HH0Ũ . (4.81)

Consider the Frobenius distance between the fixed matrix N and H(Ψ),

‖N −H(Ψ)‖2 = ‖N‖2 + ‖H0‖
2 − 2retr

(
NHH(Ψ)

)
. (4.82)

Clearly, this quantity is minimized when the functional

φ(Ψ) = 2retr
(
NHH(Ψ)

)
(4.83)
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is maximized. If we let the matrix N be a diagonal matrix with distinct values on

the diagonal, then φ can be thought of as a “diagonalness” function.

As in the case of diagonalizing symmetric matrices, the approach we take is to

search the Lie group M for the maximizing Ψ by flowing along the gradient vector

field of φ. The gradient vector field ∇φ is defined by the following properties:

1. ∇φ(Ψ) ∈ TΨM ∀Ψ ∈M .

2. DφΨ(X) = 〈∇φ(Ψ), X〉 ∀X ∈ TΨM .

To satisfy the first property, ∇φ(Ψ) must be of the form

∇φ(Ψ) =
(
U1Ω

∇φ
1 , . . . , ULUΩ∇φLU , V1Λ

∇φ
1 , . . . VLV Λ∇φLV

)
, (4.84)

where Ω∇φi ∈ TeM
U
i , i = 1, 2, . . . , LU , and Λ∇φi ∈ TeM

V
i , i = 1, 2, . . . , LV . For

convenience of notation, we have surpressed the fact that these matrices depend

on Ψ. Writing ∇φ in this form, the second property states

DφΨ(X) =
〈(
U1Ω

∇φ
1 , . . . , ULUΩ∇φLU , V1Λ

∇φ
1 , . . . VLV Λ∇φLV

)
, X
〉

= −
LU∑
i=1

retr
(
Ω∇φi Ωi

)
−

LV∑
i=1

retr
(
Λ∇φi Λi

)
. (4.85)

Finding and expression for DφΨ(X), we get

DφΨ(X) = 2retr

(
LU∑
i=1

NH Ṽ HH0ŨiΩiŬi +

LV∑
i=1

NH
(
ṼiΛiV̆i

)H
H0Ũ

)

= 2retr

(
LU∑
i=1

ŬiN
H Ṽ HH0ŨiΩi −

LV∑
i=1

Ṽ H
i H0ŨN

H V̆ H
i Λi

)

= 2retr

(
LU∑
i=1

1

2

(
ŬiN

H Ṽ HH0Ũi − Ũ
H
i H

H
0 Ṽ NŬ

H
i

)
Ωi

−
LV∑
i=1

1

2

(
Ṽ H
i H0ŨN

H V̆ H
i − V̆iNŨ

HHH
0 Ṽi

)
Λi

)
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=

LU∑
i=1

retr
({
V̆iNŬ

H
i , Ṽ

H
i H0Ũi

}
Ωi

)
+

LV∑
i=1

retr
({
ŬiN

H V̆ H
i , Ũ

H
i H

H
0 Ṽi

}
Λi

)
(4.86)

In the last Equation, the matrices multiplying Ωi and Λi are in u(m) and u(n),

respectively. Recall that in order for the gradient vector to be tangent to M ,

each Ωi must be multiplied on the left by Ω∇φi , where Ω∇φi ∈ Te(M
U
i ) and each

Λi must be multiplied on the left by Λ∇φi , where Λ∇φi ∈ Te(MU
i ). To accomplish

this, we introduce a set of natural projection operators, ΠU
i : TeU(m)→ Te(M

U
i ),

i = 1, 2, . . . , LU and ΠV
i : TeU(n) → Te(M

V
i ), i = 1, 2, . . . , LV . These operators

project from the set of skew–hermetian matrices to the set of block diagonal skew–

hermetian matrices by setting all off diagonal blocks to zero. Using these operators

along with Fact 4.1.1, we get

DφΨ(X) =

LU∑
i=1

retr
(
ΠU
i

{
V̆iNŬ

H
i , Ṽ

H
i H0Ũi

}
Ωi

)
+

LV∑
i=1

retr
(
ΠV
i

{
ŬiN

H V̆ H
i , Ũ

H
i H

H
0 Ṽi

}
Λi

)
.(4.87)

Looking back to Equation 4.53, we see that the choices

Ω∇φi = −ΠU
i

{
V̆iNŬ

H
i , Ṽ

H
i H0Ũi

}
, i = 1, 2, . . . LU ,

Λ∇φi = −ΠV
i

{
ŬiN

H V̆ H
i , Ũ

H
i H

H
0 Ṽi

}
, i = 1, 2, . . . LV . (4.88)

satisfy both gradient flow properties. As a result, the gradient flow equations are

U̇i = −UiΠ
V
i

{
V̆iNŬ

H
i , Ṽ

H
i H0Ũi

}
Ui(0) = Ui0 ∈M

U
i , (4.89)

for i = 1, 2, . . . , LU , and

V̇i = −ViΠ
V
i

{
ŬiN

H V̆ H
i , Ũ

H
i H

H
0 Ṽi

}
, Vi(0) = Vi0 ∈M

V
i , (4.90)

for i = 1, 2, . . . , LV .
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Plant Matrix (1D Membrane)
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Figure 4.7: Plant matrix for flexible membrane.

Examples

Here we apply this method to the examples introduced in Section 2.4. The plant

matrix for the simplified membrane example is depicted in Figure 4.7. Approxi-

mately diagonalized plant matrices using 10, 20, and 31 level ROTs are shown in

Figures 4.8, 4.9, and 4.10, respectively. The plant matrix for the flexible beam

at its 6th resonance is plotted in Figure 4.11. Approximately diagonalized plant

matrices using 10, 20, and 31 level ROTs are shown in Figures 4.12, 4.13, and 4.14,

respectively. These results will be discussed more quantitatively in Chapter 6.
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Approximately Diagonalized Plant Matrix (Level 10 ROT)
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Figure 4.8: Approximately diagonalized membrane plant matrix using 10 level

ROT.

Approximately Diagonalized Plant Matrix (Level 20 ROT)

5 10 15 20 25 30

5

10

15

20

25

30

2

4

6

8

10

12

14

Figure 4.9: Approximately diagonalized membrane plant matrix using 20 level

ROT.

99



Approximately Diagonalized Plant Matrix (Level 31 ROT)
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Figure 4.10: Approximately diagonalized membrane plant matrix using 31 level

ROT.
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Flexible Beam Plant Matrix (6th Resonance)
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Figure 4.11: Plant matrix for flexible beam at 6th resonance.
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Figure 4.12: Approximately diagonalized flexible beam plant matrix using 10 level

ROT.
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Figure 4.13: Approximately diagonalized flexible beam plant matrix using 20 level

ROT.
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Figure 4.14: Approximately diagonalized flexible beam plant matrix using 31 level

ROT.
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Chapter 5

Spatially Invariant Systems

In many applications of sensor/actuator arrays, a large number of identical sen-

sor/actuator pairs are placed at regular intervals in some homogeneous medium.

Such systems often exhibit a spatial invariance property; the coupling between

any two nodes depends only on the relative positions of the nodes and not on their

absolute positions in the array. This property, which will be defined more rigor-

ously below, can be exploited to aid in the design and implementation of feedback

controllers. Brockett and Willems [11] [12] used the spatial invariance property

found in discretized partial differential equations to develop optimal feedback laws.

Melzer and Kuo [27] formulated a Riccatti equation for spatially invariant systems

and then applied their results to the problem of controlling an infinite string of

vehicles. El-Sayed and Krishnaprasad [16] employed a similar method to design

optimal feedback laws to control the depth of a seismic cable containing an array

of hydrophones. More recently, Bamieh [1] and Bamieh, Paganini, and Dahleh

[2] have proposed the use of this same idea to develop controllers for large scale

sensor/actuator arrays.

Here we propose to exploit the spatial invariance property for the purpose of
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plant matrix diagonalization. We begin by defining a spatially invariant system

and discussing some of the features that such systems exhibit. We then show that

the discrete Fourier transform can be used to diagonalize the plant matrix of any

spatially invariant system. Using this information, we then address the problem

of diagonalizing such systems using ROTs.

5.1 Infinite Sensor/Actuator Arrays

Here we define the spatial invariance property for an infinite sensor/actuator array

and we discuss how this property can be exploited to aid in controller design and

implementation for such systems. Of course, this discussion is purely hypothetical

since infinite arrays do not exist. In the next section we will extend the ideas

discussed to arrays of finite length.

Consider a control system consisting of some physical plant equipped with a

doubly infinite sensor/actuator array. Assume that each node on the array contains

exactly one sensor and one actuator. Let yi be the output measured at the ith

sensor and let ui be the input applied to the ith actuator. This system is spatially

invariant if, for each i, the output yi can be written as

yi =
∑
i−j∈M

gi−juj (5.1)

where gi−j is a scalar, finite dimensional linear operator representing the dynamic

coupling between yi and and uj. The set M ⊂ ZZ defines the extent of the spatial

coupling between y and u. The coupling function gi−j is zero whenever i − j

is outside of M . For example, nearest neighbor coupling can be represented by

letting M = {−1, 0, 1}. This system is invariant under discrete translations. In

other words, the relationship between yi and uj is identical to the relationship
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between yi+k and uj+k for all k ∈ ZZ.

In the time domain, gi−j represents the convolution (in time) with a weighting

function wi−j(t). Equation 5.1 is then be written in the time domain as

yi(t) =
∑
i−j∈M

∫ t

0

wi−j(t− σ)uj(σ)dσ. (5.2)

In the frequency domain, gi−j represents multiplication by a finite dimensional

transfer function, gi−j(s). In this case, Equation 5.1 becomes

yi(s) =
∑
i−j∈M

gi−j(s)uj(s), (5.3)

where yi(s) and uj(s) are the Laplace transforms of the time varying quantities

yi(t) and uj(t), respectively. For convenience, the remainder of this discussion will

use the s domain representation given by Equation 5.3.

It is worthwhile at this point to take a close look at the variables in Equation 5.3.

First consider the familiar Laplace variable s. The s domain is associated with the

temporal frequency domain by making the assignment s = jωt. Traditionally,

the “temporal frequency domain” is simply called the “frequency domain”, but in

this case it is important to specify that we mean frequency in time as opposed to

frequency in space. The reason for this distinction will soon become clear. The

second variable in Equation 5.3 consists of the subscript i, i − j, or j in the case

of y, g, or u, respectively. This variable represents position in space. Hence, the

subscript describes the spatial behavior of the system while the Laplace variable

describes the temporal behavior.

The spatial invariance exhibited by Equation 5.3 is analogous to the well known

time invariance property exhibited by discrete linear time invariant systems. Here,

g(s) = {. . . , g−1(s), g0(s), g1(s), . . .}
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can be thought of as a spatial impulse response. The elements of this impulse

response are transfer functions. The output y(s) = {. . . , y−1(s), y0(s), y1(s), . . .}

can be written as y(s) = g(s) ∗ u(s), where the ∗ operator represents convolution

in the spatial domain and u(s) = {. . . , u−1(s), u0(s), u1(s), . . .}. It follows then

that we can write

Y (s, z) = G(s, z)U(s, z), (5.4)

where Y (s, z), G(s, z), and U(s, z) are the 2-sided spatial z transforms of y(s),

g(s), and u(s), respectively. The 2-sided spatial z transform is defined to be

X(s, z) =
∞∑

i=−∞

xi(s)z
i (5.5)

where i indexes the spatial domain. Here, z is the spatial shift operator, i.e.

z : xi 7→ xi+1.

Assume that y(s), g(s), and u(s) satisfy conditions such that their z transforms

exist on the unit circle. Then the z domain can be though of as the spatial

frequency domain by assigning z = ejωs. Hence, Equation 5.4 is a frequency

domain representation of the system in both time and space.

This representation provides some advantages in the development and imple-

mentation of feedback control laws for the system. Suppose we wish to develop

a spatially invariant feedback law U(s, z) = K(s, z)Y (s, z). Under this feedback,

the closed loop transfer function becomes

Gcl(s, z) =
G(s, z)

1 +K(s, z)G(s, z)
. (5.6)

It is possible to evaluate the stability of the Gcl(s, z) using extensions of classical

frequency domain methods such as the Nyquist and circle criterion. Under some

conditions, spectral factorization techniques can be used to develop optimal spa-

tially invariant control laws [12]. Once a controller is decided upon, implementation
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on a control network is straight forward; the control law U(s, z) = K(s, z)Y (s, z)

is applied by each node on the network.

5.2 Periodic Arrays and Circulant Matrices

In the previous section we discussed the spatial invariance property for an infinite

sensor/actuator array. As is done frequently in the time invariant case, these ideas

can be applied to a finite array by assuming that the array is periodic. Consider

a sensor/actuator array with n nodes where each node has exactly one sensor

and one actuator. The periodic assumption means that yi+kn(s) = yi(s) and

ui+kn(s) = ui(s) for all i = 0, 1, . . . , n − 1 and for all k ∈ ZZ. We call the system

spatially invariant if

yi(s) =
n−1∑
j=0

g((i−j) mod n)(s)uj(s) (5.7)

for i = 0, 1, . . . , n− 1. Physically, this means that the array must wrap around so

that the (n− 1)th node is adjacent to the zeroth node. An example of this would

be a circular array.

Let y(s) = [y0(s), y1(s), . . . , yn−1(s)]
T and u(s) = [u0(s), u1(s), . . . , un−1(s)]

T .

Then Equation 5.7 becomes

y(s) = P (s)u(s) (5.8)

where

P (s) =



g0(s) gn−1(s) gn−2(s) · · · g1(s)

g1(s) g0(s) gn−1(s) · · · g2(s)

g2(s) g1(s) g0(s) · · · g3(s)

...
...

...
. . .

...

gn−1(s) gn−2(s) gn−3(s) · · · g0(s)


. (5.9)
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In this equation, gi(s) is a finite dimensional, scalar transfer function for i =

0, 1, . . . , n− 1. Matrices of the form given by Equation 5.9 are said to be circulant

[12]. A finite dimensional system is spatially invariant if and only if its associated

plant matrix is circulant.

Define z to be the circular shift operator, i.e.

z : xi 7→

 xi+1 i 6= n− 1

x0 i = n− 1
(5.10)

Note that as a direct result of this definition,

zk = zk mod n (5.11)

for all k ∈ ZZ. Define the circular z transform of the n-vector x(s) to be

X(s, z) =
n−1∑
i=0

xi(s)z
i. (5.12)

Then, because of the spatial invariance property of the plant matrix P (s), the

system given by Equation 5.8 can be written in the z domain as

Y (s, z) = G(s, z)U(s, z). (5.13)

Here G(s, z) is the z transform of g(s) = [g0(s), g1(s), . . . , gn−1(s)]
T .

The discrete Fourier transform (DFT) of an n dimensional vector is equivalent

to evaluating the z transform at n evenly spaced points on the unit circle. In other

words, the kth element of the DFT of x is X(e−j2πk/n). As a result, the DFT can

be used to diagonalize the system of Equation 5.8. The resulting system is written
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as

Y (s, 1)

Y (s, e
j
n )

...

Y (s, e
j(n−1)
n )


=



G(s, 1) 0 · · · 0

0 G(s, e
j
n ) · · · 0

...
...

. . .
...

0 · · · 0 G(s, e
j(n−1)
n )





U(s, 1)

U(s, e
j
n ))

...

U(s, e
j(n−1)
n )


.

(5.14)

To put this idea into the context of plant diagonalization as discussed in the

previous chapters, consider the coordinate transformations ỹ(s) = Fny(s) and

ũ(s) = Fnu(s). For a circulant plant matrix P (s) we have

y(s) = P (s)u(s)

F−1
n ỹ(s) = P (s)F−1

n ũ(s)

ỹ(s) = FnP (s)F−1
n ũ(s). (5.15)

It is not difficult to see that the matrix FnP (s)F−1
n is equal to the diagonal matrix

on the right hand side of Equation 5.14. Hence, the DFT matrix can be used to

diagonalize any circulant plant matrix.

5.3 Diagonalizing Circulant Plants

In the previous section we showed that the discrete Fourier transform can be used

to diagonalize plants which exhibit a spatial invariance property. Here we work

from this result to find ROTs which diagonalize these plants.

5.3.1 Background: The Discrete Fourier Transform

Let x = [x0, x1, . . . , xn−1]
T be a vector in IRn and let X(z) be the circular z

transform of x as defined in Equation 5.12. The DFT of x is X(z) evaluated at
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n evenly spaced points on the unit circle in the complex plane. Let X denote the

DFT of x. The kth element of the X is X(e−j2πk/n), k = 0, 1, 2, . . . , n − 1. Using

the definition of the circular z transform, we get

X(k) = X(e−j2πk/n) =
n−1∑
`=0

x`e
−j2πk`/n. (5.16)

Hence the DFT can be written as a matrix whose kth row is[
1 e−j2πk/n e−j2π2k/n · · · e−j2π(n−1)k/n

]
. (5.17)

We will denote this matrix as Fn, i.e. X = Fnx.

Using Equation 5.17, we see that the (`, k)th element of FnFHn is given by

[
FnF

H
n

]
`k

=
n−1∑
m=0

e−j2πm(`−k)/n. (5.18)

If ` = k, then all of the terms in the sum on the right hand side are equal to 1

and
[
FnFHn

]
`k

= n. If ` 6= k, then the terms in the sum are evenly spaced points

on the unit circle. As a result, they add up to zero and
[
FFH

]
`k

= 0. Hence,

FnFHn = n1I. Clearly, the matrix Fn
4
= Fn/

√
n is unitary.

5.3.2 Gradient Flows Diagonalizing Circulant Matrices

For a given set of ROT parameters, we consider the task of finding the ROT vari-

ables which most closely diagonalize any circulant plant matrix. As we have shown

in the previous sections, the DFT matrix accomplishes the goal of diagonalization

and is unitary when properly scaled. In Chapter 4 we showed how to use a gradient

flow to find the ROT variables which approximate the unitary SVD factors of an

arbitrary complex matrix. Here we take a similar approach to find an ROT which

diagonalizes any circulant matrix.
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Recall that in the case of diagonalizing a symmetric matrix H0, we constructed

a gradient flow to find the Θ̃ which minimized
∥∥∥N − Θ̃TH0Θ̃

∥∥∥2

, where N was a

diagonal matrix with the same dimension as H0. Here instead of trying to diago-

nalize a single matrix H0, we are trying to diagonalize the whole set of circulant

matrices. Towards this end, we notice that the set of n × n circulant matrices

forms an n dimensional vector space. As a result, there exist a set of basis vectors

{E0, E1, E2, . . . , En−1} such that any circulant matrix A can be written

A =
n−1∑
i=0

αiEi, (5.19)

with αi ∈ IR for i = 0, 1, 2, . . . , n− 1. The task of diagonalizing (or approximately

diagonalizing) any circulant matrix can then be posed as the task of simultaneously

diagonalizing each of the n basis vectors. Also, each Ei is circulant, so the matrix

Ni = FEiF
H is diagonal. Hence, the problem of diagonalizing any circulant matrix

can be posed as the problem of finding the Θ̃ which minimizes the cost function

J(Θ̃) =
n−1∑
i=0

∥∥∥Ni − Θ̃HEiΘ̃
∥∥∥2

. (5.20)

As in Chapter 4, simple matrix manipulation shows that minimizing J is equiv-

alent to maximizing the “diagonalness” function

φ
(
Θ̃
)

=
n−1∑
i=0

retr
(
NH
i Θ̃HEiΘ̃

)
. (5.21)

The unitary operator Θ̃ is an ROT, i.e.

Θ̃ =
L∏
k=1

PkΘk. (5.22)
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Each Θk, k = 1, 2, . . . , L is of the form

Θk =



θk1 0 · · · 0

0 θk2 · · · 0

...
. . .

...

0 · · · 0 θkmk


, (5.23)

where θkj ∈ U(nkj),
mk∑
j=1

nkj = n ∀k = 1, 2, . . . , L, (5.24)

and the 0s represent appropriately dimensioned blocks of zeros. We define Mk =

U(nk1)×U(nk2)× · · ·×U(nkmk). Then each Θk belongs the smooth Lie subgroup

Mk ∈ U(n). The Lie algebra of Mk is

TeMk = u(nk1)⊕ u(nk2)⊕ · · · ⊕ u(nkmk). (5.25)

A vector in TeMk can then be written

Ωk =



ωk1 0 · · · 0

0 ωk2 · · · 0

...
. . .

...

0 · · · 0 ωkmk


. (5.26)

where ωkj ∈ u(nkj) for j = 1, 2, . . . ,mk.

Here, we assume that the configuration parameters of the ROT are given and

fixed. In other words, the level L is fixed and for k = 1, 2, . . . L, the following

quantities are fixed: Pk, mk, and nkj , j = 1, 2, . . . ,mk. Our task is to find the

ROT variables, i.e. the Θks, which maximize φ.

Let M = M1 ×M2 × · · · ×ML. The set M is a Lie group. An element of M

is written as the L-tuple Ψ = (Θ1,Θ2, . . . ,ΘL). A vector in TΨM is written as

X = (Θ1Ω1,Θ2Ω2, . . . ,ΘLΩL), where Ωk ∈ TeMk for each k.

112



The diagonalness function φ can now be thought of as a functional on M ,

φ : M → IR. As in Chapter 4, our approach to searching for the Ψ which maximizes

φ is to flow along the gradient vector field of φ on M .

Recall that ∇φ(Ψ) on M is defined by the following properties:

1. ∇φ(Ψ) ∈ TΨM ∀Ψ ∈M .

2. DφΨ(X) = 〈∇φ(Ψ), X〉 ∀X ∈ TΨM .

The first property states that ∇φ(Ψ) in contained in the tangent space of M at

the point Ψ. This means that ∇φ(Ψ) must be of the form

∇φ(Ψ) =
(
Θ1Ω

∇φ
1 ,Θ2Ω

∇φ
2 , . . . ,ΘLΩ

∇φ
L

)
, (5.27)

where Ω∇φk ∈ TeMk, k = 1, 2, . . . , L. For convenience of notation, we have sup-

pressed the fact that Ω∇φk depends on Ψ.

From the second property, we must have

DφΨ((Θ1Ω1, . . . ,ΘLΩL)) = 〈∇φ(Θ1, . . . ,ΘL), (Θ1Ω1, . . . ,ΘLΩL)〉

=
〈
(Θ1Ω

∇φ
1 , . . . ,ΘLΩ

∇φ
L ), (Θ1Ω1, . . . ,ΘLΩL)

〉
=

L∑
k=1

retr
(
(Ω∇φk )HΩk

)
= −

L∑
k=1

retr
(
Ω∇φk Ωk

)
(5.28)

Finding an expression for DφΨ(X):

DφΨ(X) =

retr

(∑L
k=1

∑n−1
i=0 N

H
i

((∏k−1
`=1 P`Θ`

)
PkΘkΩk

(∏n
`=k+1 P`Θ`

))H
Ei (
∏n

`=1 P`Θ`)

+NH
i (
∏n

`=1 P`Θ`)
H
Ei

(∏k−1
`=1 P`Θ`

)
PkΘkΩk

(∏n
`=k+1 P`Θ`

))
.

(5.29)
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To simplify notation, we define two sequences of recursive orthogonal trans-

forms:

Θ̃k =
k∏
`=1

P`Θ`, (5.30)

Θ̆k =
n∏

`=k+1

P`Θ`. (5.31)

Using this notation, we get

DφΨ(X) = retr

(
L∑
k=1

n−1∑
i=0

NH
i

(
Θ̃kΩkΘ̆k

)H
EiΘ̃ +NH

i Θ̃TEiΘ̃kΩkΘ̆k

)

= retr

(
L∑
k=1

n−1∑
i=0

NH
i Θ̆T

kΩT
k Θ̃H

k EiΘ̃ +NH
i Θ̃HEiΘ̃kΩkΘ̆k

)

=
L∑
k=1

retr

((
n−1∑
i=0

[
Θ̆kN

H
i Θ̆H

k , Θ̃
H
k EiΘ̃k

])
Ωk

)
. (5.32)

Claim 5.3.1 Let {E0, E1, . . . , En−1} be an orthonormal basis for the space of n×n

circulant matrices. Let Ni = FEiF
H, for i = 0, 1, . . . , n− 1, where F is the DFT

matrix scaled by 1/
√
n. Then the matrix

Γk =
n−1∑
i=0

[
Θ̆kN

H
i Θ̆H

k , Θ̃
H
k EiΘ̃k

]
(5.33)

is skew–hermitian for k = 1, 2, . . . , L.

Proof:

Expanding the Lie bracket and substituting for Ni, we get

Γk =
n−1∑
i=0

Θ̆kF
HEH

i F Θ̆H
k Θ̃H

k EiΘ̃k − Θ̃H
k EiΘ̃kΘ̆kF

HEH
i F Θ̆H

k

= Θ̆kF
H

(
n−1∑
i=0

EH
i F Θ̆H

k Θ̃H
k EiΘ̃kΘ̆kF

H

−F Θ̆H
k Θ̃H

k EiΘ̃kΘ̆kF
HEH

i

)
F Θ̆H

k . (5.34)
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Define A
4
= Θ̃kΘ̆kF

H and define

K
4
=

n−1∑
i=0

EH
i F Θ̆H

k Θ̃H
k EiΘ̃kΘ̆kF

H − F Θ̆H
k Θ̃H

k EiΘ̃kΘ̆kF
HEH

i

=
n−1∑
i=0

EH
i A

HEiA− A
HEiAE

H
i . (5.35)

Substituting K into Equation 5.34 and taking the (Hermitian) transpose gives

ΓHk =
(
Θ̆kF

HKF Θ̆H
k

)H
= Θ̆kF

HKHF Θ̆H
k . (5.36)

As a result, Γk is skew if and only if K is skew. By definition, K is skew if

K +KH = 0. Finding an expression for K +KH :

K +KH =
n−1∑
i=0

EH
i A

HEiA− A
HEiAE

H
i +

(
n−1∑
i=0

EH
i A

HEiA−A
HEiAE

H
i

)H

=
n−1∑
i=0

EH
i A

HEiA− A
HEiAE

H
i +AHEH

i AEi − EiA
HEH

i A. (5.37)

Since {Ei} is a basis for circulant matrices and EH
i is a circulant matrix, we

can write each EH
i as

EH
i =

n−1∑
j=0

αijEj , (5.38)

where each αij ∈ IR. Since {Ei} is orthonormal, we have an explicit expression for

αij :

αij =
〈
EH
i , Ej

〉
= retr (EiEj) . (5.39)

Note that retr (EiEj) = retr (EjEi), so αij = αji for each i and j. Substituting for

EH
i in Equation 5.37 yields
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K +KH

=
n−1∑
i=0

(
n−1∑
j=0

αijEj

)
AHEiA−A

HEiA

(
n−1∑
j=0

αijEj

)

+AH

(
n−1∑
j=0

αijEj

)
AEi − EiA

H

(
n−1∑
j=0

αijEj

)
A

=
n−1∑
i=0

n−1∑
j=0

αij
((
EjA

HEiA− EiA
HEjA

)
+
(
AHEjAEi −A

HEiAEj
))

=
n−1∑
i=0

n−1∑
j=i+1

αij
(((

EjA
HEiA− EiA

HEjA
)

+
(
AHEjAEi −A

HEiAEj
))

+αji
((
EiA

HEjA− EjA
HEiA

)
+
(
AHEiAEj − A

HEjAEi
)))

+
n−1∑
i=0

αii
((
EiA

HEiA− EiA
HEiA

)
+
(
AHEiAEi −A

HEiAEi
))

=
n−1∑
i=0

n−1∑
j=i+1

(αij − αji)
((
EjA

HEiA− EiA
HEjA

)
+
(
AHEjAEi − A

HEiAEj
))
. (5.40)

But we have already shown that αij = αji, so K +KH = 0.

Looking back at Equation 5.28, we see that in order to have a valid gradient

flow, each Ωk in Equation 5.32 must be multiplied on the left by −Ω∇φk , where

Ω∇φk ∈ Te(Mk). Claim 5.3.1 tells us that the matrices which multiply the Ωks

on the left are skew–hermitian. To put them in Te(Mk) we introduce a set of

natural projection operators, Πk : TeU(n) → Te(Mk). Πk projects from the set of

skew–symmetric matrices to the set of block diagonal skew–symmetric matrices by

setting all off diagonal blocks to zero. Now we can use Fact 4.1.1 to state

DφΨ(X) =
L∑
k=1

retr

(
Πk

(
n−1∑
i=0

[
Θ̆kN

H
i Θ̆H

k , Θ̃
H
k EiΘ̃k

])
Ωk

)
. (5.41)

Now

Πk

(
n−1∑
i=0

[
Θ̆kN

H
i Θ̆H

k , Θ̃
H
k EiΘ̃k

])
∈ TeMk (5.42)
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for each k, so the gradient flow which satisfies both properties is given by the

assignment

Ω∇φk = −Πk

(
n−1∑
i=0

Πk

[
Θ̆kN

H
i Θ̆H

k , Θ̃
H
k EiΘ̃k

])
. (5.43)

The gradient flow is then given by the couple matrix ODEs

Θ̇k = −ΘkΠk

(
n−1∑
i=0

[
Θ̆kN

H
i Θ̆H

k , Θ̃
H
k EiΘ̃k

])
, Θk(0) = Θk0, (5.44)

for k = 1, 2, . . . , L.

5.3.3 Example

Here we apply this plant diagonalization technique to the example of a flexible

beam with periodic boundary conditions. This system can be thought of as a

flexible ring. The model we use is the beam model described and modeled in

Appendix B with the boundary conditions at the ends of the beam replaced by

periodic boundary conditions. In this example, we consider a beam with 8 inputs

and 8 outputs. The sensors and actuators are evenly spaced around the ring so

that the system has the spatial invariance property.

The plots in Figure 5.1 shows the responses of the 8 outputs to an impulse

applied to the first input. Figure 5.2 depicts the circulant nature of the plant. In

this figure, the intensity of the (i, j)th pixel represents the energy contained in the

response of the ith output to an impulse applied to the jth input. We call this

matrix the impulse energy matrix.

We found diagonalizing basis transformations as described in this chapter using

3, 5, and 7 level ROTs. Figures 5.3, 5.4, and 5.5 show the impulse energy matrices

for these transforms. The coordinate transforms are complex so the resulting

impulse responses are complex valued. To compute the impulse energy, we take

the magnitude of the impulse response.
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Figure 5.1: Plant response to impulse applied to first actuator.

Impulse Energy Matrix of Flexible Ring
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Figure 5.2: Impulse energy matrix for untransformed plant.
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Impulse Energy Matrix of Flexible Ring with Level 3 ROT
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Figure 5.3: Impulse energy matrix for plant transformed with level 3 ROT.

Impulse Energy Matrix of Flexible Ring with Level 5 ROT
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Figure 5.4: Impulse energy matrix for plant transformed with level 5 ROT.
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Impulse Energy Matrix of Flexible Ring with Level 7 ROT
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Figure 5.5: Impulse energy matrix for plant transformed with level 7 ROT.
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Chapter 6

Conclusions

In this thesis, we have presented the foundations of a novel approach to signal

processing and control on large distributed control networks. Our approach is

to apply efficient data transformations to the input and output vector of a plant

in an effort to make the resulting plant matrix look diagonal. In Chapters 2

and 4 we proposed efficient transforms capable of “approximately” diagonalizing

any constant matrix. These ideas are useful for stable linear systems in which

the transient behavior can be ignored as well as systems which exhibit strong,

sharp peaks (resonances) in their frequency response. In Chapter 5 we developed

a method of diagonalizing dynamic plants which exhibit a linear spatial invariance

property.

We conclude the thesis with a quantitative comparison of the matrix diagonal-

ization methods presented followed by some suggestions for future research.
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6.1 Comparison of Proposed Approximate Diag-

onalization Methods

In this section we compare and contrast the methods of approximate matrix di-

agonalization that we have developed in this thesis. Our purpose is not only to

highlight the merits of the proposed methods, but also to point out where there is

room for improvement.

6.1.1 Performance Measures

Here we define the performance measures that will be used to compare the var-

ious data transformation techniques. The costs we consider are communication

and computational costs associated with transforming the output vector. We also

define a performance measure which indicates how well the proposed transforms

diagonalize the plant matrix.

Global Data Transfers

One common network configuration is the common bus topology. In this configu-

ration, all of the nodes on the network share one serial communication bus. The

cost of a data transfer in this configuration does not depend on the positions of

the sending receiving nodes. It is as expensive for a node to send information to

its neighbor as it is to send information to a node on the other side of the network.

In fact, for the same cost, the sending node can communicate its data to every

node on the network. We call any such communication a global data transfer.

As an example, consider a 1–level ROT on a linear array as described in Sec-

tion 3.2.1. Recall that the first (and only) communication step is for each evenly
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indexed node to send the value of its sensor output to the node to its left. For an

array with n nodes, this requires n/2 global data transfers.

Nearest Neighbor Data Transfers

To measure this communication cost, we assume that each node on the network can

exchange information only with its nearest neighbors. The transfer of data from

a node to its neighbor is called a nearest neighbor data transfer. Multiple data

transfers are required to exchange information between non–neighboring nodes.

For example, in order to send a piece of data from the ith node of a linear array

to the jth node, a total of |i− j| nearest neighbor data transfers are required.

Nearest Neighbor Transfer Time

In a nearest neighbor network, independent data transfers can be performed at the

same time. We define the nearest neighbor communication time to be the total

time required to carry out all communications, taking into account the fact that

many can be carried out simultaneously. The unit used to measure this time is the

amount of time required to carry out one nearest neighbor data transfer. We call

this time a step.

To send a piece of data from the ith node of a linear array to the jth node, a

total of |i− j| nearest neighbor data transfers are required. These transfers cannot

be performed in parallel, so the communication time is |i− j| steps. On the other

hand, a 1–level ROT performed on a linear array with n nodes requires n/2 nearest

neighbor communications. All of these can be performed simultaneously, so the

corresponding communication time is 1 step.
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Implementation Multiplications

Here, we measure computational complexity by counting the total number of mul-

tiplications required to implement the output vector transformation.

Implementation Multiplication Time

Here we measure the amount of time required to carry out the multiplications for

the output vector transformation. In this measure, we take into account the fact

that some operations can be performed simultaneously. The unit of measurement

is the time required to complete one multiplication. We call this time a step.

Off–line Multiplications

In addition to implementation costs, there is a cost associated with finding the

transformation to be applied. We measure this cost by counting the number of

multiplications required. We do not put as much weight on this cost as we do on

the implementation costs; the philosophy of this thesis is that it is worth the extra

off–line effort to improve the on–line costs. We include this cost in our comparison

to give an indication of just how much extra off-line work is required.

Diagonal Energy Percentage

To help compare the performances of the various methods presented in this thesis,

we develop a measure that indicates the “diagonalness” of an approximately diag-

onalized matrix. Let H be an n×m matrix. Let x be the vector whose elements

are the diagonal elements of H, i.e. x(i) = [H]ii for i = 1, 2, . . . , min(n,m). We

define the diagonal energy percentage to be

η(H) =
‖x‖2

‖H‖
× 100, (6.1)
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where ‖H‖ denotes the Frobenius norm of H.

6.1.2 Implementation of Exact SVD Factors

In Section 2.1 we pointed out that the SVD factors can be used to diagonalize

a real–valued matrix. We also claimed that they require too much computation

and communication to be implemented in real time on a large distributed control

network. Here we briefly discuss such an implementation of the SVD factors so

that we can quantify these remarks and compare the performance of SVD factors

to the other matrix diagonalization techniques proposed in this thesis. We discuss

only the implementation of the output vector transformation. The implementation

of the input vector transformation can be inferred from this discussion.

The most straight forward method is what we refer to as the centralized im-

plementation. In this implementation, each network node sends its piece of the

output vector to a central location where the computations are carried out. If we

assume that the n nodes on the network share a common bus allowing them to

communicate with every node on the the network, then the communication step

requires (n − 1) data transfers. If we instead assume that only nearest neighbor

communication is required, then the fewest data transfers required to get all of the

data to a central location is

Nc = 2

n/2−1∑
k=1

k. (6.2)

Once all of the data is collected, the computation which needs to be executed

consists of the multiplication of an n × n matrix with an n–dimensional vector.

This requires n2 multiplications and n(n− 1) additions.

The SVD factors can also be realized using a parallel implementation. Here

each node on the network must send its piece of the data vector to every other node
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on the network. Then the matrix multiplication is carried out in parallel, with each

node computing the multiplication of one row of the matrix with the data vector.

If we assume that the n nodes on the network share a common bus allowing them

to communicate with every node on the the network, then the communication step

requires (n−1) data transfers. If only nearest neighbor communication is allowed,

then

Np = 2
n−1∑
k=1

k (6.3)

data transfers are required. Once all of the necessary transfers have been made,

each node performs the multiplication of one row of the SVD factor by the data

vector. The total number of operations necessary to complete the transform is the

same as in the centralized implementation, but since the parallel implementation

allows the row multiplications to be carried out simultaneously the computation

time is reduced. Hence, the computations are completed in the time it takes to

perform n multiplications and (n− 1) additions.

6.1.3 Comparison Tables

Table 6.1.3 lists these measures for a variety of approximate matrix diagonalization

techniques applied to the plant matrix of a flexible membrane driven by a linear

array. Table 6.1.3 compares the same techniques applied to the plant matrix of a

flexible beam at its sixth resonance. In these tables, the SVD measures correspond

to the parallel implementation of the SVD factors.

Though the costs and performances of the various transforms vary from exam-

ple to example, we can make some generalizations about the comparisons. The

wavelet packet transform generally require the lowest number of implementation

multiplications, the lowest multiplication time, and the lowest off–line multiplica-
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SVD Wavelet ROT 10 ROT 20 ROT 31

Global Data

Transfers
32 110 160 320 496

Nearest Neighbor

Data Transfers
992 480 160 320 496

Nearest Neighbor

Transfer Time
62 steps 40 steps 10 steps 20 steps 30 steps

Implementation

Multiplications
1024 252 640 1280 1984

Implementation

Mult. Time
32 steps 20 steps 40 steps 80 steps 124 steps

Off–line

Multiplications
∼ 3× 104 ∼ 6× 103 ∼ 1010 ∼ 1011 ∼ 1014

Diagonal

Energy %
100% 93.4% 64.2% 88.7% 99.9%

Table 6.1: Comparison table for membrane example.
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SVD Wavelet ROT 10 ROT 20 ROT 31

Global Data

Transfers
32 104 160 320 496

Nearest Neighbor

Data Transfers
992 218 160 320 496

Nearest Neighbor

Transfer Time
62 steps 26 steps 10 steps 20 steps 30 steps

Implementation

Multiplications
1024 240 640 1280 1984

Implementation

Mult. Time
32 steps 20 steps 40 steps 80 steps 124 steps

Off–line

Multiplications
∼ 3× 104 ∼ 6× 103 ∼ 1010 ∼ 1011 ∼ 1014

Diagonal

Energy %
100% 60.6% 54.3% 69.7% 99.3%

Table 6.2: Comparison table for the example of a flexible beam at its 6th resonance.
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tions. The ROTs exhibit the lowest nearest neighbor transfer time. The higher

the level of the ROT, the better its performance in terms of diagonal energy, but

this performance comes at the cost of every other measure listed.

6.2 Suggestions for Future Work

The main theoretical question that remains is the issue of the convergence of the

ROT gradient flow equations and the characteristics of the equilibrium points

to which these equations converge. We begin to address these issues in for the

case of transforming a 4 dimensional data vector (See Appendix A), but a more

thorough understanding is required. Such an understanding may yield bounds on

the performance of an ROT or algorithms to select the “best” set of permutation

matrices.

Another issue that needs to be addressed is the numerical integration of the

ROT gradient flow equations. The computations required to find a 31–level, 32×32

ROT are almost prohibitive. More efficient numerical techniques are necessary if we

are to find ROTs for larger systems. This boils down to the problem of integrating

the nonlinear matrix ODE

Θ̇ = ΘΩ(Θ), (6.4)

on O(n) where Ω(Θ) ∈ o(n) for every Θ ∈ O(n). It is important to use a numerical

integration scheme which respects the constraint that Θ remains orthogonal. The

recursive sequence

Θk+1 = Θkexp(αΩ(Θ)) (6.5)

provides one such integration method. This method is analogous to the Euler

method, where the scalar α is the step size. Brockett [7] and Moore, Mahony, and
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Helmke [29] have developed recursive methods for their work which combine this

idea with a clever choice of α. These methods give fast convergence to the desired

solution. A similar approach should be possible for the ROT equations. Other nu-

merical gains might be found by using generalizations of the Cayley transform (see

Tsiotras, Junkins, and Schaub [39]) to approximate the computationally intensive

matrix exponential.

Throughout the thesis, we have assumed that the ROT parameters are fixed

and given. In particular, we selected the parameters based on a nearest neighbor

communication scheme. Almost certainly, better performance can be achieved by

changing the ROT parameters. One idea towards this end is to use devise permu-

tation matrices which mimic the communication schemes of the transforms in the

wavelet packet. Alternatively, it may be possible to use more sophisticated search-

ing algorithms to optimize the ROT variables and parameters simultaneously.
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Appendix A

Analysis of ROTs on SO(4)

Here we study the some of the properties of a recursive orthogonal transform

(ROT) composed of 4 × 4 matrices. The aim of this exercise is to provide some

insight into the nature of the ROT and perhaps lay some groundwork for future

research. Specifically, we examine the 3–Level ROT

Θ̃ = Θ1P2Θ2P3Θ3. (A.1)

Here,

Θi =

 θi1 02×2

02×2 θi2

 , (A.2)

where θij ∈ SO(2) for i ∈ {1, 2, 3}, j ∈ {1, 2}. The permutation matrices are

P2 =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


and P3 =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


. (A.3)

Equation A.1 can be implemented as a data transformation on a four node linear

array using only nearest neighbor communication (See Section 3.2.1). Matrices of
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the form given in Equation A.2 form a compact subgroup (torus) of SO(4). We

will denote this subgroup by M .

Each component in the product on the right hand side of Equation A.1 is in

SO(4), so Θ̃ is also in SO(4). The question that naturally arises at this point is

the following: what subset of SO(4) can be represented by the above ROT? Or,

more to the point, is it possible to represent any Φ ∈ SO(4) with a product of the

form given in Equation A.1?

We know that the dimension of SO(4) is six. In order to have any chance of

representing all of SO(4), Θ̃ must have at least six degrees of freedom which are,

in some sense, independent. Each Θi in Equation A.1 has two degrees of freedom,

so Θ̃ has a total of six. It is not clear that these six dimensions are independent,

though. For example, if P2 and P3 were both the identity matrix, then Θ̃ could

only represent elements in the two dimensional subgroup M ⊂ SO(4).

To answer these questions we look to the theory of symmetric subalgebras.

Here we give a brief presentation of some of these tools and then show how to

apply them to the above ROT.

A.1 The KAK Representation

Here we present a brief introduction to the KAK representation of semisimple Lie

groups. We follow Hermann [23] and present the main theorems without proof.

Readers interested in the details of this material are referred to Hermann or Hel-

gason [20].

Definition A.1.1 Let G be a connected, semisimple Lie group with finite center.

Let g be the Lie algebra of G. Let k be a subspace of g and let p be the complement of
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k in g. Then k is said to be a symmetric subalgebra of g if the following bracketing

conditions hold:

1. [k, k] ⊂ k.

2. [k, p] ⊂ p.

3. [p, p] ⊂ k.

.

Associated with the subalgebra k ⊂ g is a subgroup K ⊂ G. The subgroup K

is said to be a symmetric subgroup of G. Since G has a finite center, K is compact.

Since K is compact, the exponential map maps k onto K [33]. As a result, for

any k ∈ K there exists X ∈ k such that k =exp(X).

Theorem A.1.1 (Theorem 6–4 from Hermann [23])

Let G, K, g, k, and p be as defined above. Let a be a maximal Abelian subalgebra

of p and let a′ be any Abelian subalgebra of p. Then there exists k ∈ K such that

ka′k−1 ⊂ a. (A.4)

Theorem A.1.2 (Theorem 6–5 from Hermann [23])

Let G, K, g, k, and p be as defined above. Let P be the image of p under the

exponential map. Then any g ∈ G can be represented as

g = pk, (A.5)

where p ∈ P and k ∈ K.

These two theorems are combined to give us the so–called KAK representation

of the group G. First, Theorem A.1.2 says that any g ∈ G can be represented as
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exp(Xp)k where Xp ∈ p and k ∈ K. Now let a be a maximal Abelian subalgebra

of p. A direct result of Theorem A.1.1 is that every element of p can be written

Xp = k1Xak
−1
1 where k1 ∈ K and Xa ∈ a. Substituting, we get

g = exp(k1Xak
−1
1 )k

= k1exp(Xa)k
−1
1 k. (A.6)

Since K is a group, k−1
1 k ∈ K. Letting A denote the image of a under the

exponential, we see that any g ∈ G can be written as

g = k1ak2, (A.7)

where k1, k2 ∈ K and a ∈ A. This is known as the KAK representation.

A.2 ROT Representation of SO(4)

To begin, we note that SO(4) is a simple group [37], which means it is also semisim-

ple. As a result, the theory developed in the previous section can be applied. Next,

we define the following basis vectors for so(4):

A1 =



0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


A2 =



0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


A3 =



0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0



A4 =



0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


A5 =



0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0


A6 =



0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0


(A.8)
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Since M is compact, any Θi ∈M can be written as the exponential of an element

in the Lie algebra of M . Using the above basis vectors, we can write

Θi = exp(αi1A1 + αi2A4), (A.9)

where αi1 and αi2 are real, i ∈ {1, 2, 3}. Substituting into Equation A.1, Θ̃ can be

written

Θ̃ = exp(α1
1A1 + α2

2A4)P2exp(α2
1A1 + α2

2A4)P3exp(α3
1A1 + α3

2A4)

= exp(α1
1A1 + α2

2A4)P2exp(α2
1A1 + α2

2A4)P
T
2 exp(α3

1A1 + α3
2A4)

= exp(α1
1A1 + α2

2A4)exp(α2
1P2A1P

T
2 + α2

2P2A4P
T
2 )exp(α3

1A1 + α3
2A4)

= exp(α1
1A1 + α2

2A4)exp(−α2
1A6 + α2

2A2)exp(α3
1A1 + α3

2A4). (A.10)

Let k = span{A1, A4}. It is easy to check the bracket conditions in Defini-

tion A.1.1 to see that k is a symmetric subalgebra of so(4). Let p be the complement

of k in so(4), i.e. p = span{A2, A3, A5, A6}. Explicitly, the bracket [A1, A4] = 0

implies that [k, k] ⊂ k. The brackets

[A1, A2] = −A3 [A4, A2] = A5

[A1, A3] = A2 [A4, A3] = A6

[A1, A5] = −A6 [A4, A5] = −A2

[A1, A6] = A5 [A4, A6] = −A3

(A.11)

imply that [k, p] ⊂ p. Finally, the brackets

[A2, A3] = −A1 [A3, A5] = 0

[A2, A5] = −A4 [A3, A6] = A4

[A2, A6] = 0 [A5, A6] = −A1

(A.12)

imply that [p, p] ⊂ k. From the last set of brackets, is also clear that the subalgebra

a
4
= span{A2, A6} is a maximal Abelian subalgebra of p.
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Using the KAK representation, we see that any Φ ∈ SO(4) can be written as

Φ = exp(Xk1)exp(Xa)exp(Xk2), (A.13)

where Xk1, Xk2 ∈ k and Xa ∈ a. This expression is of exactly the same form as

the expression for Θ̃ given in Equation A.10. Therefore, the ROT Θ̃ can be used

to represent any Φ ∈ SO(4).

This representation exploits a somewhat unique feature of so(4): its contains

Abelian subalgebras which are also symmetric. This also holds for so(3), but it

does not in general hold for so(n) where n > 4. This means that the above analysis

does not easily extend to address ROTs on higher dimensional spaces.

A.3 Convergence of ROT Equations

In the previous sections we showed that a 3–level ROT given in Equation A.1 can

be used to represent any matrix in SO(4). This means that given any symmetric

4 × 4 matrix H0, there exists a Θ̃ of the form given in Equation A.1 so that the

matrix H = Θ̃TH0Θ̃ is diagonal. However, this does not necessarily mean that

the gradient flow equations we derived to find the ROT variables in Chapter 4

converge to Θ̃. Hence, it is necessary to study the convergence properties of the

ROT gradient flow equations.

As we pointed out in Chapter 4, the system of ROT equations evolves on a

compact manifold. By the properties of a gradient flow on a compact manifold, the

solution to the ROT equations exists for all time and converges to an equilibrium

point of the system. The first step is understanding the convergence properties of

the system of ROT equations is to investigate the nature of the equilibrium points

of the system. Unfortunately this is a tedious task, and even in the relatively
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simple case of 4 × 4 matrices it is difficult to get clear answers. Here we analyze

the equilibrium points of the ROT equations on 4 × 4 matrices for 1–,2–, and

3–level ROTs. In particular, we study the characteristics of the approximately

diagonalized matrix which result.

A.3.1 1–Level ROT

For a 1–level ROT, we simply have

Θ̃ = Θ1, (A.14)

where Θ1 is of the form given in Equation A.2. Following Section 4.1.2, the gradient

flow equation to search for the ROT variables which most nearly diagonalize the

symmetric matrix H0 is

Θ̇1 = −Θ1Π
[
N,ΘT

1H0Θ1

]
, Θ1(0) = Θ10, (A.15)

where N is a 4 × 4 diagonal matrix with distinct entries and Π is the projection

operator,

Π





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




=



a11 a12 0 0

a21 a22 0 0

0 0 a33 a34

0 0 a43 a44


. (A.16)

Let Θ1∗ be an equilibrium point of Equation A.15 and let H = ΘT
1∗H0Θ1∗ be the

resulting approximately diagonalized matrix. Since Θ1∗ is nonsingular, we have

Π [N,H] = 0. (A.17)

In Section 4.1.1 we showed that the (i, j)th element of the skew–symmetric matrix

[N,H] is hij (ni − nj). Equation A.17 tells us that the (1, 2)th and (3, 4)th elements
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of [N,H] are zero. Since the elements of N are distinct, we have

h12 = h21 = 0

h34 = h43 = 0
(A.18)

. Hence, the gradient flow equation for the 1–level ROT is guaranteed to converge

to a Θ1∗ such that the resulting approximately diagonalized matrix H has h12 =

h34 = 0.

A.3.2 2–Level ROT

For the 2–level ROT we have

Θ̃ = Θ1P2Θ2, (A.19)

where Θ1 and Θ2 are of the form given in Equation A.2 and P2 is given by Equa-

tion A.3. Following Section 4.1.2, the gradient flow equations to search for the

ROT variables which most nearly diagonalize the symmetric matrix H0 are

Θ̇1 = −Θ1Π
[
P2Θ2NΘT

2 P
T
2 ,Θ

T
1H0Θ1

]
, Θ1(0) = Θ10

Θ̇2 = −Θ2Π
[
N,ΘT

2P
T
2 ΘT

1H0Θ1P2Θ2

]
, Θ2(0) = Θ20. (A.20)

Let (Θ1∗,Θ2∗) be an equilibrium point for this system of equations and let

H = ΘT
2∗P

T
2 ΘT

1∗H0Θ1∗P2Θ2∗ (A.21)

be the resulting approximately diagonalized matrix. Looking at the equation for

Θ̇2 and following the calculations from the previous section, we see that h12 =

h21 = h34 = h43 = 0. Looking at the Equation for Θ̇1, we see that

Π
[
P2Θ2∗NΘT

2∗P
T
2 ,Θ

T
1H0Θ1

]
= 0. (A.22)
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Using some algebraic manipulation we have

[
P2Θ2∗NΘT

2∗P
T
2 ,Θ

T
1∗H0Θ1∗

]
=

[
P2Θ2∗NΘT

2∗P
T
2 , P2Θ2∗Θ

T
2∗P

T
2 ΘT

1∗H0Θ1∗P2Θ2∗Θ
T
2∗P

T
2

]
= P2Θ2∗ [N,H] ΘT

2∗P
T
2 . (A.23)

We can write Θ2∗ as a matrix using sines and cosines,

Θ2∗ =



cos(ϑ21) −sin(ϑ21) 0 0

sin(ϑ21) cos(ϑ21) 0 0

0 0 cos(ϑ22) −sin(ϑ22)

0 0 sin(ϑ22) cos(ϑ22)


. (A.24)

. To simplify upcoming long expressions, we will use sij and cij to denote sin(ϑij)

and cos(ϑij), respectively.

Now, the equilibrium condition means that the (1, 2)th and (3, 4)th elements of

the matrix P2Θ2∗ [N,H] ΘT
2∗P

T
2 must be equal to zero. Substituting Equation A.24

into this expression and evaluating using the Maple kernel of MATLAB yields the

following two equations:

h13s22c21(n3 − n1) + h14c22c21(n4 − n1)

+h23s22s21(n2 − n3) + h24c22s21(n2 − n4) = 0

h13c22s21(n3 − n1) + h14s22s21(n4 − n1)

+h23c22c21(n2 − n3) + h24s22c21(n2 − n4) = 0.

(A.25)

Hence, the gradient flow equations for the 2–level ROT are guaranteed to con-

verge to an equilibrium point (Θ1∗,Θ2∗) such that the resulting approximately

diagonalized matrix H has

1. h12 = h34 = 0
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2. The vector [h13h14h23h24]
T is in the null space of the matrix s22c21(n3 − n1) c22c21(n4 − n1) s22s21(n2 − n3) c22s21(n2 − n4)

c22s21(n3 − n1) s22s21(n4 − n1) c22c21(n2 − n3) s22c21(n2 − n4)


A.4 3–Level ROT

Here we consider the 3–level ROT given by Equation A.1. Following Section 4.1.2,

the gradient flow equations to search for the ROT variables which most nearly

diagonalize the symmetric matrix H0 are

Θ̇1 = −Θ1Π
[
P2Θ2P3Θ3NΘT

3 P
T
3 ΘT

2 P
T
2 ,Θ

T
1H0Θ1

]
, Θ1(0) = Θ10 (A.26)

Θ̇2 = −Θ2Π
[
P3Θ3NΘT

3 P
T
3 ,Θ

T
2 P

T
2 ΘT

1H0Θ1P2Θ2

]
, Θ2(0) = Θ20 (A.27)

Θ̇3 = −Θ3Π
[
N,ΘT

3 P
T
3 ΘT

2 P
T
2 ΘT

1H0Θ1P2Θ2P3Θ3

]
, Θ3(0) = Θ30. (A.28)

Let (Θ1∗,Θ2∗,Θ3∗) be an equilibrium point for this system of equations and let

H = ΘT
3∗P

T
3 ΘT

2∗P
T
2 ΘT

1∗H0Θ1∗P2Θ2∗P3Θ3∗ (A.29)

be the resulting approximately diagonalized matrix. Looking at the equation for

Θ̇3 and following the calculations from the Section A.3.1, we see that h12 = h21 =

h34 = h43 = 0. Looking at the equation for Θ̇2 and following t the calculations of

Section A.3.2 we get the equations

h13s32c31(n3 − n1) + h14c32c31(n4 − n1)

+h23s32s31(n2 − n3) + h24c32s31(n2 − n4) = 0
(A.30)

h13c32s31(n3 − n1) + h14s32s31(n4 − n1)

+h23c32c31(n2 − n3) + h24s32c31(n2 − n4) = 0,
(A.31)

where s3j and c3j are the sines and cosines that result from writing Θ3∗ as a matrix

of sines and cosines (see Equation A.24).
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Now, looking at the Equation for Θ̇1, we see that

Π
[
P3Θ3∗P2Θ2∗NΘT

2∗P
T
2 ΘT

3∗P
T
3 ,Θ

T
1∗H0Θ1∗

]
= 0. (A.32)

Using some algebraic manipulation we see that[
P2Θ2∗NΘT

2∗P
T
2 ,Θ

T
1∗H0Θ1∗

]
= P2Θ2∗P3Θ3∗ [N,H] ΘT

3∗P
T
3 ΘT

2∗P
T
2 . (A.33)

The equilibrium condition means that the (1, 2)th and (3, 4)th elements of the ma-

trix P2Θ2∗P3Θ3∗ [N,H] ΘT
3∗P

T
3 ΘT

2∗P
T
2 must be equal to zero. Using the sine/cosine

matrix representations of Θ2∗ and Θ3∗ along with the Maple kernel of MATLAB

yields the equations

h13(s21s32s31c22 + c21c32c31s22)(n3 − n1)

+h14(s21c32s31c22 − c21s32c31s22)(n4 − n1)

+h23(s21s32c31c22 − c21c32s31s22)(n3 − n2)

+h24(s21c32c31c22 + c21s32s31s22)(n4 − n2) = 0

(A.34)

h13(c21s32s31s22 + s21c32c31c22)(n1 − n3)

+h14(c21c32s31s22 − s21s32c31c22)(n1 − n4)

+h23(c21s32c31s22 − s21c32s31c22)(n2 − n3)

+h24(c21c32c31s22 + s21s32s31c22)(n2 − n4) = 0.

(A.35)

Since h13, h14, h23, and h24 all enter linearly into Equations A.30, A.31, A.34,

and A.35, we can rewrite these equations as

Γ



h13

h14

h23

h24


=



0

0

0

0


, (A.36)

where Γ is a 4 × 4 matrix. When the matrix Γ is full rank, then we must have

h13 = h14 = h23 = h24 = 0 at the equilibrium points of the ROT gradient flow
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equations. From the Θ̇3 equation we already have that h12 = h34 = 0, So when Γ

is full rank, the matrix H must be diagonal.

Using the Maple kernel of MATLAB, we see that the determinant of Γ is

det(Γ) = (n4 − n1)(n2 − n4)(n3 − n1)(n3 − n2)(c
2
22s

2
21 − s

2
22c

2
21). (A.37)

Hence, the determinant is nonzero and Γ is full rank unless

cos2(ϑ22)sin
2(ϑ21) = sin2(ϑ22)cos

2(ϑ21). (A.38)

This failure in rank leads to the possibility that the matrix H has nonzero off–

diagonal elements.

We can take some comfort in the fact that Γ is nonsingular “almost every-

where”, i.e. the set on which Γ is singular is a thin subset of the configuration

space of the ROT variables. It is tempting to state that, for most cases, the

gradient flow equations for the 3–level ROT to converge to an equilibrium point

(Θ1∗,Θ2∗,Θ3∗) such that the resulting H is diagonal. Based on our numerical ex-

periments, this fact seems to be true. However the theoretical argument outlined

above is incomplete. It is entirely possible that the thin set on which Γ is singular is

an attractor for the system of ROT equations. In order to complete our argument,

it is necessary to rule out the possibility that the ROT equations converge to an

equilibrium point which lies on this thin set. This remains as an open problem.
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Appendix B

Flexible Beam Model

This appendix develops a model for a flexible cantilever beam. The beam is driven

by a number of surface mounted PZT actuators and the beam has a number

of outputs given by surface mounted PZT sensors. We assume that the beam

undergoes pure bending and satisfies the Euler–Bernoulli condition (linear strain

distribution). From these assumptions, we use first principles to derive a PDE

model to describe the dynamics of the beam. The PDE is then discretized using

the finite difference method to give an ODE model. Simulation results using this

ODE model are then presented.

B.1 Simple Beam Model

Here we derive the equations of motion for transverse vibrations in a cantilever

beam. The beam has length L, width b, and thickness tb. We assume that L �

b� tc. At rest, the beam is oriented as depicted in Figure B.1. The clamped end

of the beam is at x = 0 and the free end is at x = L.

It is necessary to introduce some notation with which we can describe the beam
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x

y

z

L b

tb

Figure B.1: Rest configuration of beam.

when it is deformed in some way. One common method of doing this is to describe

the displacement of each point in the beam using rest position as a reference point.

Since there are a continuum of points within the beam, these descriptions take the

form of continuous functions in x, y, and z. In order to describe how the beam

evolves over time, these functions must also be time dependent. Let x, y, and z

be the coordinates of a point P in the beam at rest. Define the x component of

the displacement of the point P at time t by u(x, y, z, t). Likewise, let the y and

z components be denoted by v(x, y, z, t) and w(x, y, z, t), respectively.

For the current case, only transverse vibrations are considered. We assume

that there is no displacement in the y direction which means that v is identically

zero. We assume that the beam does not undergo extension which means that

u is identically zero. We also assume that there is no torsion in the beam, so w

is not dependent on y. Since the beam is thin, we assume that the displacement

function does not vary across the thickness of the beam. As a result of these

assumptions, the configuration of the beam can be completely described using the

function w = w(x, t), as shown in Figure B.2.

At time t, we define the neutral surface to be {z|z = w(x, t), x ∈ [0, L]}. The

strain in the neutral surface is zero as a result of the “no extension” assumption.
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x

z

w(x,t)

Figure B.2: Beam displacement.

This is shown in Figure B.2. Away from the neutral surface, the strain is assumed

to be axial; shear strain is neglected.

We also assume that the beam is an Euler–Bernoulli beam. This assumption

means that each cross section perpendicular to the x axis for the resting beam

remains perpendicular to the neutral surface for all time. This assumption can be

used to find a formula for the strain at any point in the beam. Figure B.3 depicts a

differential element of the beam undergoing some deformation. The cross sections

at x and x + dx are perpendicular to the neutral surface, which is shown here as

an arc connecting the two points. The angle between the two cross sections, θ, is

shown to be equal to the negative curvature of the beam,

θ = −
∂2w

∂x2
(x)dx. (B.1)

The radius of curvature, R, can be found using the relationship

dx

2πR
=

θ

2π
= −

1

2π

∂2w

∂x2
(x)dx, (B.2)

which leads to the following expression for R:

R = −

(
∂2w

∂x2
(x)

)−1

. (B.3)
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x x+dx(x)∂w
∂x

(x+dx) ≈           +        (x) dx∂w
∂x (x)∂w

∂x

2∂  w
∂x2

φ(x) = - (x)∂w
∂x φ(x+dx) ≈ -            -         (x) dx(x)∂w

∂x

2∂  w
∂x2

θ θ = φ(x) - φ(x+dx)

≈ -         (x) dx
2∂  w

∂x2

R

ζ
dx

a(ζ)

z

x

fiber section

Figure B.3: Kinematic diagram of differential beam element used to determine

strain.

To calculate the strain at a point on the cross section, it is necessary to look at

the change in length of the “fiber” passing through that point. A fiber is defined

to be a set of points in the resting beam which form a line parallel to the x axis.

When the beam is deformed, the fibers are also deformed. In Figure B.3, the arc

labeled “fiber section” represents the piece of a deformed fiber which is contained

in the differential element. The fiber is displaced from the neutral surface by ζ .

The length of the arc is denoted by a(ζ). In the undeformed beam, the length of

the fiber section is dx, which is the same as the length of the differential element.

In the deformed beam, we can obtain an expression for a(ζ) using the relationship

a(ζ)

2π(R+ ζ)
=

θ

2π
= −

1

2π

∂2w

∂x2
(x)dx, (B.4)

which yields

a(ζ) = dx− ζ
∂2w

∂x2
(x)dx. (B.5)

The strain in the fiber section, which is defined to be the change in length divided
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by the undeformed length, is given by

ε(ζ) =
a(ζ)− dx

dx

= −ζ
∂2w

∂x2
(x).

Therefore, at time t the strain at a point P in the perpendicular cross section at

x is normal to the cross section with magnitude

ε(ζ, t) = −ζ
∂2w

∂x2
(x, t), (B.6)

where ζ is the displacement between P and the neutral surface.

To get the relationship between stress and strain, we use a version of Hooke’s

law modified to account for viscous damping within the beam [4]. This law yields

the stress on the cross section as

σb(ζ) = Ebε+ E∗b
∂ε

∂t

= −Ebζ
∂2w

∂x2
(x, t)− E∗b ζ

∂3w

∂t∂x2
(x, t), (B.7)

where Eb and E∗b are, respectively, Young’s modulus and the viscous damping

constant for the beam material. Here the subscript b emphasizes that σb, Eb, and

E∗b correspond to the beam. The reason for this emphasis will become apparent in

Section B.2. The force acting on a differential area dA of the beam cross section

is then σb(ζ)dA. This is shown in Figure B.4. Here we have chosen the convention

that a normal force directed away from the cross section is positive.

The bending moment acting on the cross section can now be computed.

Mb(x, t) = −

∫
A

σb(ζ)ζ dA

= −

∫ t/2

−tb/2

σb(ζ)bζdζ
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Figure B.4: Strain in beam cross section.

= −

∫ t/2

−tb/2

(
Ebε+ E∗b

∂ε

∂t

)
bζdζ

=

∫ t/2

−tb/2

(
Ebζ

∂2w

∂x2
+ E∗b

∂

∂t
(ζ
∂2w

∂x2
)

)
bζdζ

= (Eb
∂2w

∂x2
+ E∗b

∂3w

∂t∂x2
)

∫ t/2

−tb/2

bζ2dζ

= EbIb
∂2w

∂x2
+ E∗b Ib

∂3w

∂t∂x2
, (B.8)

where Ib is the moment of inertia of the cross section. In this case, Ib = bt3b/12.

Now we consider the forces and moments acting on an interior differential

element of the beam as shown in Figure B.5. Balancing the forces, we get

S − (S +
∂S

∂x
dx)− ρbtbdx

∂2w

∂t2
= 0

=⇒ ρbtb
∂2w

∂t2
= −

∂S

∂x
. (B.9)

Ignoring the rotational inertia of the differential element, the moment balance
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∂t

2

2b

 b

 b
 b

Figure B.5: Interior differential beam element and the forces acting on it.

equation is

Mb + Sdx− (Mb +
∂Mb

∂x
dx) = 0

=⇒ S =
∂Mb

∂x
. (B.10)

Combining Equations B.9 and B.10 yields

ρbtb
∂2w

∂t2
= −

∂2Mb

∂x2
. (B.11)

Substituting the expression for the bending moment from Equation B.8 into Equa-

tion B.11 gives the equation of motion for the interior of the beam. This equation

is

ρbtb
∂2w

∂t2
= −EbIb

∂4w

∂4x
−E∗b Ib

∂5w

∂t∂x4
(B.12)

At the clamped end of the beam, the displacement and slope are both zero. This

yields the boundary conditions

w(0, t) = 0 (B.13)

∂w

∂x
(0, t) = 0 (B.14)

for all time t > 0. There is no moment applied to the free end. This implies that

EbIb
∂2w

∂x2
(L, t) + E∗b Ib

∂3w

∂t∂x2
(L, t) = 0 ∀t > 0. (B.15)
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There is also no shear force at the free end, which implies

EbIb
∂3w

∂x3
(L, t) + E∗b Ib

∂4w

∂t∂x3
(L, t) = 0 ∀t > 0. (B.16)

Given initial conditions w(x, 0) and ∂w
∂t

(x, 0) for x ∈ [0, L], Equations B.12 through

B.16 give a complete description of the deformation of the beam for all t > 0. 1

B.2 Sandwiched Beam Model

In this section, we derive the equations of motion for transverse vibrations in a

flexible beam which is sandwiched between two PZT actuators. The actuators

are mounted with opposite polarity so that applying the same voltage to both

actuators induces pure bending (no extension) in the beam.

A voltage applied across the terminals of a PZT actuator induces a stress

tensor field within the crystal, which in turn induces a strain in the crystal. In this

model, we consider only the component of stress in the axial direction; all other

components are ignored. An applied voltage Vc will create an internal stress of

σtopc = −d31Ec
Vc
tc

+ Ecεc, (B.19)

in the top crystal and

σbottomc = d31Ec
Vc
tc

+ Ecεc, (B.20)

1If the damping is small compared to the stiffness (Eb � E∗b ), boundary conditions B.15 and

B.16 can be approximated by the simplified boundary conditions

∂2w

∂x2
(L, t) = 0 (B.17)

and

∂3w

∂3x
(L, t) = 0, (B.18)

respectively, for all t > 0.
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Figure B.6: Strain in sandwich cross section.

in the bottom crystal [13]. In these equations d31 is the piezoelectric strain coeffi-

cient, Ec is Young’s modulus for the PZT crystal, tc is the thickness of the PZT,

and εc is the axial strain in the PZT. We neglect the viscous damping term in the

crystal for simplicity, we will keep the viscous damping term in the beam material.

The parameter d31 is assumed to be negative so that a positive voltage causes the

top crystal to contract while the bottom expands, creating a positive curvature.

We assume that the Euler–Bernoulli bending assumption holds in the crystal as

well as the beam, so the strain in the crystal is a linear function of beam curvature

and distance from the neutral surface,

εc(ζ) = −ζ
∂2w

∂x2
. (B.21)

Now we can compute the bending moment acting on the sandwich cross section.

The forces used to compute the moment are shown in Figure B.6.

Ms(x, t)
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= −

∫
A

σ(ζ)ζdA

= −

[∫ −tb/2
−tb/2−tc

σbottomc (ζ)bζdζ +

∫ t/2

−tb/2

σb(ζ)bζdζ +

∫ tb/2+tc

tb/2

σtopc (ζ)bζdζ

]

= −2

∫ tb/2+tc

tb/2

σtopc (ζ)bζdζ +Mb

= −2

∫ tb/2+tc

tb/2

(
−d31Ec

Vc
tc
− Ec

∂2w

∂x2
ζ

)
bζdζ +Mb

=
2bd31EcVc

tc

∫ tb/2+tc

tb/2

ζdζ + 2bEc
∂2w

∂x2

∫ tb/2+tc

tb/2

ζ2dζ +Mb

= bd31Ec(tb + tc)Vc + EcIc
∂2w

∂x2
+Mb, (B.22)

where Mb is given by Equation B.8 and Is is the moment of inertia of the crystal

cross sections about the neutral axis. In this case, Ic = (b(2tc + tb)
3 − bt3b)/12. 2

As in the case of the simple beam, the forces and moments balance to give

(2ρctc + ρbtb) b
∂2w

∂t2
= −

∂2Ms

∂x2
. (B.23)

Substituting the expression for Ms from Equation B.22 into Equation B.23 yields

the equation of motion for the interior of the sandwich.

(2ρctc + ρbtb) b
∂2w

∂t2
= − (EcIc + EbIb)

∂4w

∂x4
−E∗b Ib

∂5w

∂t∂x4
. (B.24)

Note that the forcing term in Ms due to the PZT voltage is constant in x and

disappears when differentiated. This term only affects the boundary elements of

the sandwich. Specifically, at x = L there is no externally applied moment, which

means

bd31Ec(tb + tc)Vc + (EcIc + EbIb)
∂2w

∂x2
(L, t) + E∗b Ib

∂3w

∂t∂x2
(L, t) = 0 (B.25)

2Here, we have assumed that the crystal thickness tc constant and that the width of the

crystal is everywhere equal to the width of the beam. In some applications, it may be desirable

to allow one or both of these parameters to vary, causing Is and the number which multiplies Vc

to be functions of x.
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for all time t > 0. The shear force at x = L is also zero, which implies

(EcIc + EbIb)
∂3w

∂x3
(L, t) + E∗b Ib

∂4w

∂t∂x3
(L, t) = 0 (B.26)

for all time t > 0. At the clamped end, the position and slope of the beam are

both zero, yielding

w(0, t) = 0 (B.27)

∂w

∂x
(0, t) = 0 (B.28)

(B.29)

for all time t > 0. Given initial conditions w(x, 0) and ∂w
∂t

(x, 0) for x ∈ [0, L],

Equation B.24 and Equations B.25 through B.28 give a complete description of

the deformation of the beam for all time t > 0. 3

B.3 Final Beam Model

In this section, we derive the equations of motion for a flexible cantilever beam

excited by pairs of PZT crystals mounted at various places on the beam. We

assume that all of the crystals have the same thickness, tc. Additionally, the

3If the damping coefficient of the beam is small compared to the stiffnesses of the beam and

the crystal (i.e. E∗b is much smaller than Eb and Ec), then the boundary conditions given by

Equations B.25 and B.26 can be approximated by

∂2w

∂x2
(L, t) = −

bd31Ec(tb + tc)Vc
EcIc +EbIb

(B.30)

and

∂3w

∂x3
= 0, (B.31)

respectively, for all t > 0.
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x=0

x=λ1 x=µ2 x=λ3x=µ1 x=λ2 x=µ3

x=L

Figure B.7: Example configuration of final beam.

crystals all have the same width, b, which is also the width of the beam. An

example of such a beam is depicted in Figure B.7.

First, we introduce some notation for describing the locations of the PZT crys-

tals. Let k be the number of PZT pairs. We will use λi to denote the x coordinate

of the left edge of the ith PZT pair. Let µi denote the x coordinate of the right

edge of the ith PZT pair. The PZTs cannot overlap and they cannot extend be-

yond the dimensions of the beam. We assume that the first pair is the pair closest

to the left end of the beam. We also define µ0 = 0 and λk+1 = L. Then we have

0 = µ0 ≤ λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λk ≤ µk ≤ λk+1 = L. (B.32)

We will call the sections of the beam with no PZT “simple” sections and we will

call the sections with PZTs “sandwiched” sections.

Within the simple sections, the motion of beam is described by Equation B.12.

Likewise, Equation B.24 describes the motion of the interiors of the sandwiched

sections. In order to obtain a complete model for the beam, it is necessary to

piece these sections together with the appropriate boundary conditions. The left

end of the beam is clamped, so the boundary conditions at x = 0 are given by
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Equations B.13 and B.14. At x = L, the beam is free so the boundary conditions

are given by Equations B.15 and B.16 if the rightmost section of the beam is

simple or Equations B.25 and B.26 if the rightmost section is sandwiched. We

have yet to determine the boundary conditions at the points where simple section

meets sandwiched section (i.e. x ∈ {λ1, µ1, . . . , λk, µk}). Let V i
c denote the voltage

applied to the ith PZT pair.

First we need to introduce some more notation. Consider the function f : IR→

IR. We define the f(x−0 ) to be the limit of f(x) as x approaches x0 from the left,

i.e.

f(x−0 ) = lim
x→x0
x<x0

f(x). (B.33)

Similarly, we define f(x+
0 ) to be the limit of f(x) as x approaches x0 from the

right.

We assume that w and ∂w
∂x

are continuous functions in x, which means that for

all t > 0

w(λ−i , t) = w(λ+
i , t) (B.34)

∂w

∂x
(λ−i , t) =

∂w

∂x
(λ+

i , t) (B.35)

at the left sandwich–beam boundaries and

w(µ−i , t) = w(µ+
i , t) (B.36)

∂w

∂x
(µ−i , t) =

∂w

∂x
(µ+

i , t) (B.37)

at the right boundaries. We assume the bending moment is continuous in the

beam, so

M(λ−i ) = M(λ+
i ). (B.38)

Equations B.8 and B.22 are substituted into Equation B.38 to yield

EbIb
∂2w

∂x2
(λ−i , t) = bd31Ec(tb + tc)V

i
c + (EbIb + EcIc)

∂2w

∂x2
(λ+

i , t). (B.39)
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This gives us one set of boundary conditions for the left edges of the PZT. The

same process computed at µi gives a set of boundary conditions for the right edges

of the PZTs,

bd31Ec(tb + tc)V
i
c + (EbIb + EcIc)

∂2w

∂x2
(µ−i , t) = EbIb

∂2w

∂x2
(µ+

i , t). (B.40)

Similarly, we assume the shear force is continuous in the beam. Setting S(x−) =

S(x+) at the boundaries yields additional boundary conditions

EbIb
∂3w

∂x3
(λ−i , t) = (EbIb + EcIc)

∂3w

∂x3
(λ+

i , t) (B.41)

and

(EbIb + EcIc)
∂3w

∂x3
(µ−i , t) = EbIb

∂3w

∂x3
(µ+

i , t). (B.42)

B.3.1 Final Model Statement

We can use the above information to piece together a model for the entire beam.

It is stated here:

simple sections:

For x ∈ (µi−1, λi), i = {1, 2, 3, . . . , k + 1},

ρbtb
∂2w

∂t2
= −EbIb

∂4w

∂4x
− E∗b Ib

∂5w

∂t∂x4
. (B.43)

sandwiched sections:

For x ∈ (λi, µi), i = {1, 2, 3, . . . , k},

(ρctc + ρbtb) b
∂2w

∂t2
= − (EcIc + EbIb)

∂4w

∂x4
− E∗b Ib

∂5w

∂t∂x4
. (B.44)

boundary conditions (clamped end):

w(0, t) = 0 (B.45)

∂w

∂x
(0, t) = 0 (B.46)
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for all time t > 0.

boundary conditions (free end):

If the rightmost section of the beam is simple, then for all t > 0

EbIb
∂2w

∂x2
(L, t) + E∗b Ib

∂3w

∂t∂x2
(L, t) = 0 (B.47)

EbIb
∂3w

∂3x
(L, t) + E∗b Ib

∂4w

∂t∂x3
(L, t) = 0. (B.48)

If the rightmost section of the beam is sandwiched, then for all t > 0

bd31Ec(tb + tc)V
k
c (t) + (EcIc + EbIb)

∂2w
∂x2 (L, t) + E∗b Ib

∂3w
∂t∂x2 (L, t)

= 0
(B.49)

(EcIc + EbIb)
∂3w

∂3x
(L, t) + E∗b Ib

∂4w

∂t∂x3
(L, t) = 0. (B.50)

boundary conditions (left edges of crystals):

w(λ−i , t) = w(λ+
i , t) (B.51)

∂w

∂x
(λ−i , t) =

∂w

∂x
(λ+

i , t) (B.52)

EbIb
∂2w

∂x2
(λ−i , t) = bd31Ec(tb + tc)V

i
c + (EbIb + EcIc)

∂2w

∂x2
(λ+

i , t) (B.53)

EbIb
∂3w

∂x3
(λ−i , t) = (EbIb + EcIc)

∂3w

∂x3
(λ+

i , t) (B.54)

for i = {1, 2, . . . , k}, ∀t > 0.

boundary conditions (right edges of crystals):

w(µ−i , t) = w(µ+
i , t) (B.55)

∂w

∂x
(µ−i , t) =

∂w

∂x
(µ+

i , t) (B.56)

bd31Ec(tb + tc)V
i
c + (EbIb + EcIc)

∂2w

∂x2
(µ−i , t) = EbIb

∂2w

∂x2
(µ+

i , t) (B.57)

(EbIb + EcIc)
∂3w

∂x3
(µ−i , t) = EbIb

∂3w

∂x3
(µ+

i , t) (B.58)
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for i = {1, 2, 3, . . . , k}, ∀t > 0 if the rightmost section of the beam is simple, for

i = {1, 2, 3, . . . , k − 1}, ∀t > 0 if the rightmost section of the beam is sandwiched.

Given initial conditions w(x, 0) and ∂w
∂t

(x, 0) for x ∈ [0, L], and inputs V i
c (t), i =

{1, 2, . . . , k}, ∀t > 0, these equations give a complete description of the deformation

of the beam for all time t > 0.

B.4 Finite Difference Model

Here we apply the finite difference method to the partial differential equations

(PDEs) and boundary conditions listed in Section B.3.1 to obtain a set of ordinary

differential equations (ODEs) which approximate the PDE system.

The first step in applying the finite difference method is to discretize the spatial

domain. For the beam, we consider N evenly spaced points between x = 0 and

x = L. We will include the point at x = L. We do not include the point as x = 0

(it is not necessary to include this point since the boundary conditions tell us is

it always zero.) We label the leftmost point x1 and the rightmost point xN . This

allows us to write the ith point as xi = i∆, where ∆ = L/N is the spacing between

the points. We denote the displacement of the beam at the point xi and time t as

wi(t),

wi(t)
4
= w(xi, t). (B.59)

The next step is to approximate the spatial derivatives of w using the wis. First

some notation:

∂kwi

∂xk
4
=

∂kw

∂xk

∣∣∣
x=xi

. (B.60)

The approximations for the first four spatial derivatives are then

∂wi
∂x
≈
wi − wi−1

∆
or

∂wi
∂x
≈
wi+1 − wi

∆
, (B.61)
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∂2wi

∂x2
≈
wi−1 − 2wi + wi+1

∆2
, (B.62)

∂3wi
∂x3

≈
−wi−2 + 3wi−1 − 3wi + wi+1

∆3
or

∂3wi
∂x3

≈
−wi−1 + 3wi − 3wi+1 + wi+2

∆3
,

(B.63)

and

∂4wi
∂x4

≈
wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2

∆4
. (B.64)

Of course, wi is only defined for i = {1, 2, . . . , N}, so these approximations are only

valid at the “interior points”, which are loosely defined here as points far enough

away from the boundaries that the above spatial derivative approximations are

valid.

We will obtain a system of ODEs approximating the PDE system by substitut-

ing Equations B.61, B.62, B.63, and B.64 into Equations B.43 and B.44 for each

wi. First, we introduce some more notation:

ẇi
4
=

d

dt
wi (B.65)

ẅi
4
=

d2

dt2
wi (B.66)

Γb
4
=

EbIb
ρbbtb

(B.67)

Γ∗b
4
=

E∗b Ib

ρbtb
(B.68)

Γc
4
=

EbIb + EcIc

b(ρbtb + 2ρctc)
(B.69)

Now we can use this notation to rewrite the equations of motion for the interior

of a simple beam section:

∂2w

∂t2
= −Γb

∂4w

∂x4
− Γ∗b

∂5w

∂t∂x4
. (B.70)

Subsituting from Equation B.64 yields

ẅi = −

(
Γb + Γ∗b

d
dt

∆4

)
(wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2) . (B.71)
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Again, this expresseion is valid only at the “interior points” in the simple section,

i.e. points xi such that xi−2, xi−1, xi, xi+1, and xi+2 are all contained in the simple

section. Hence, Equation B.71 provides a second order ODE for each interior point

in the simple section. Likewise, within a sandwiched section we get

ẅi = −

(
Γc + Γ∗c

d
dt

∆4

)
(wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2) . (B.72)

Again, this expression is only valid for interior points of the sandwiched section.

So we have now derived second order ODEs to describe the motion of each

interior point on the beam. Now we need to find ODEs to describe the remaining

“boundary points”. This can be done using the boundary conditions from the

PDE model.

The problem that arises at the boundary points is that the spatial derivative

approximations require the values of displacements at points that are not defined

for the original PDE. To solve this problem, we define “ghost points”. The dis-

placement at these ghost points can be found using the boundary conditions.

For example, at the clamped end of the beam, we define ghost points x̃0 and

x̃−1 which lie ∆ and 2∆ to the left of x1, respectively. We denote the displacement

at x̃i by w̃i. The boundary condition

w(0, t) = 0 ∀t > 0 (B.73)

implies that w̃0 = 0 ∀t > 0. The boundary condition

∂w

∂x
(0, t) ∀t > 0 (B.74)

implies

w̃0 − w̃−1

∆
= 0

⇒ w̃−1 = 0 ∀t > 0. (B.75)
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Using these ghost points, we can now write a valid expressions for ẅ1 and ẅ2

(assuming the leftmost section of the beam is simple):

ẅ1 = −

(
Γb + Γ∗b

d
dt

∆4

)
(w̃−1 − 4w̃0 + 6w1 − 4w2 + w3)

= −

(
Γb + Γ∗b

d
dt

∆4

)
(6w1 − 4w2 + w3) (B.76)

and

ẅ2 = −

(
Γb + Γ∗b

d
dt

∆4

)
(w̃0 − 4w1 + 6w2 − 4w3 + w4)

= −

(
Γb + Γ∗b

d
dt

∆4

)
(−4w1 + 6w2 − 4w3 + w4) . (B.77)

At the free end of the beam, we introduce ghost points x̃N+1 and x̃N+2. As-

suming the rightmost section of the beam is simple, the zero moment condition

is

EbIb
∂2w

∂x2
(L, t) + E∗b Ib

∂3w

∂t∂x2
(L, t) = 0 ∀t > 0. (B.78)

Subsituting the appropriate spatial derivative approximations yields

EbIb

(
wN−1 − 2wN + w̃N+1

∆2

)
+ E∗b Ib

(
ẇN−1 − 2ẇN + d

dt
w̃N+1

∆2

)
= 0, (B.79)

which simplifies to the ODE

d

dt
w̃N+1 = −

EbIb

E∗b Ib
(wN−1 − 2wN + w̃N+1)− ẇN−1 + 2ẇN , (B.80)

which must hold for all t > 0. The shear condition at the free end is

EbIb
∂3w

∂x3
(L, t) + E∗b Ib

∂3w

∂t∂x2
(L, t) = 0 ∀t > 0. (B.81)

Making the spatial derivative approximations yields

EbIb

(
−wN−1 + 3wN − 3w̃N+1 + w̃N+2

∆3

)
+E∗b Ib

(
−ẇN−1 + 3ẇN − 3 d

dt
w̃N+1 + d

dt
w̃N+2

∆3

)
= 0. (B.82)
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Simplifying and substituting for d
dt
w̃N+1 from Equation B.80 yields the ODE

d

dt
w̃N+2 = −

EbIb

E∗b Ib
(2wN−1 − 3wN + w̃N+2)− 2ẇN−1 + 3ẇN , (B.83)

which hold for all t > 0.

Using these ghost points, we can now write a valid expressions for ẅN−1 and

ẅN (assuming the rightmost section of the beam is simple):

ẅN−1 = −

(
Γb + Γ∗b

d
dt

∆4

)
(wN−3 − 4wN−2 + 6wN−1 − 4wN + w̃N+1) (B.84)

and

ẅN = −

(
Γb + Γ∗b

d
dt

∆4

)
(wN−2 − 4wN−1 + 6wN − 4w̃N+1 + w̃N+2) , (B.85)

where the quantities w̃N+1 and w̃N+2 are given by the solutions of the ODEs in

Equations B.80 and B.83 respectively. 4

We now look at the left boundary of a PZT pair. Recall that the beam model is

actually composed of different PDEs “pasted” together using boundary conditions.

Consider a left boundary at x = λ. Let ` be a integer such that x`−1 < λ ≤ x`.

4If the stiffness of the beam is much greater than its damping, (i.e. Eb � E∗b ), then the ODEs

given by Equations B.80 and B.83 can be approximated by the following algebraic expressions

for all (t > 0):

w̃N+1 = −wN−1 + 2wN (B.86)

w̃N+2 = −2wN−1 + 3wN . (B.87)

As a result, the ODEs for the two rightmost points on the beam become

ẅN−1 = −

(
Γb + Γ∗b

d
dt

∆4

)
(wN−3 − 4wN−2 + 5wN−1 − 2wN ) (B.88)

ẅN = −

(
Γb + Γ∗b

d
dt

∆4

)
(wN−2 − 2wN−1 + wN ) . (B.89)
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We assume that there is no other boundary “nearby” so that, for points of interest

to the boundary, xi is in a simple section for i < ` and and xi is in a sandwiched

section for i ≥ `. The the displacement expression given in Equation B.71 is not

valid at The simple section points x`−2 and x`−1 are boundary points since the

displacement expression given in Equation B.71 requires the displacement values

at points outside the section. Likewise, the displacement expression given in Equa-

tion B.72 is not valid for the sandwiched section points x` and x`+1. Hence, we

introduce ghost points x̃`, and x̃`+1 (to augment the simple section) and x̃`−2 and

x̃`−1 (to augment the sandwiched section).

Now we use the boundary conditions given in Equations B.51 through B.58 to

derive expressions for the ghost displacements w̃`−2, w̃`−1, w̃`, and w̃`+1 in terms

of the actual displacements. First, we introduce some notation to simplify the

resulting expressions. Let

Ψ =
EbIb + EcIc

EbIb
(B.90)

and

Λ = −bd31Ec(tb + tc). (B.91)

The boundary condition

w(λ−, t) = w(λ+, t) ∀t > 0 (B.92)

implies

w̃` = w` ∀t > 0. (B.93)

The boundary condition

∂w

∂x
(λ−, t) =

∂w

∂x
(λ+, t) ∀t > 0 (B.94)

implies

w̃`+1 − w̃`
∆

=
w`+1 − w`

∆
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⇒ w̃`+1 = w`+1 ∀t > 0. (B.95)

The boundary condition given by Equation B.53 becomes

∂2w

∂x2
(λ−, t) = −ΛVc + Ψ

∂2w

∂x2
(λ+, t) ∀t > 0, (B.96)

which implies

w`−1 − 2w̃` + w̃`+1 = −∆2ΛVc + Ψ (w̃`−1 − 2w` + w`+1)

⇒ w`−1 − 2w` + w`+1 + ∆2ΛVc + 2Ψw` −Ψw`+1 = Ψw̃`−1

⇒ w̃`−1 =
∆2Λ

Ψ
Vc +

1

Ψ
w`−1 +

2(Ψ− 1)

Ψ
w` −

Ψ− 1

Ψ
w`+1 (B.97)

for all t > 0. The boundary condition given by Equation B.54 becomes

∂3w

∂x3
(λ−, t) = Ψ

∂3w

∂x3
(λ+, t) ∀t > 0, (B.98)

which implies

−w`−2 + 3w`−1 − 3w̃` + w̃`+1 = Ψ (−w̃`−2 + 3w̃`−1 − 3w` + w`+1)

⇒ −w`−2 + 3w`−1 − 3w` + w`+1 − 3Ψw̃`−1 + 3Ψw` −Ψw`+1 = −Ψw̃`−2

⇒ w̃`−2 =
1

Ψ
w`−2 −

3

Ψ
w`−1 +

3

Ψ
w` −

1

Ψ
w`+1

+3

(
∆2Λ

Ψ
Vc +

1

Ψ
w`−1 +

2(Ψ− 1)

Ψ
w` −

Ψ− 1

Ψ
w`+1

)
− 3w` + w`+1

⇒ w̃`−2 =
3∆2Λ

Ψ
Vc +

1

Ψ
w`−2 +

3(Ψ− 1)

Ψ
w` −

2(Ψ− 1)

Ψ
w`+1. (B.99)

Hence, to the left of the boundary we get

ẅ`−2 = −
Γb + Γ∗b

d
dt

∆4
(w`−4 − 4wcl−3 + 6w`−2 − 4w`−1 + w̃`)

= −
Γb + Γ∗b

d
dt

∆4
(w`−4 − 4w`−3 + 6w`−2 − 4w`−1 + w`) (B.100)
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and

ẅ`−2 = −
Γb + Γ∗b

d
dt

∆4
(w`−3 − 4w`−2 + 6w`−1 − 4w̃` + w̃`+1)

= −
Γb + Γ∗b

d
dt

∆4
(w`−3 − 4w`−2 + 6w`−1 − 4w` + w`+1) . (B.101)

To the right of the boundary

ẅ` = −
Γc + Γ∗c

d
dt

∆4
(w̃`−2 − 4w̃`−1 + 6w` − 4w`+1 + w`+2)

= −
Γc + Γ∗c

d
dt

∆4

((
3∆2Λ

Ψ
Vc +

1

Ψ
w`−2 +

3(Ψ− 1)

Ψ
w` −

2(Ψ− 1)

Ψ
w`+1

)
−4

(
∆2Λ

Ψ
Vc +

1

Ψ
w`−1 +

2(Ψ− 1)

Ψ
w` −

Ψ− 1

Ψ
w`+1

)
+6w` − 4w`+1 + w`+2)

= −
Γc + Γ∗c

d
dt

∆4

(
1

Ψ
w`−2 −

4

Ψ
w`−1 +

(
6 +

5(Ψ− 1)

Ψ

)
w`

+

(
2(Ψ− 1)

Ψ
− 4

)
w`+1 + w`+2

)
+

ΓcΛ

∆2Ψ
Vc (B.102)

and

ẅ`+1 = −
Γc + Γ∗c

d
dt

∆4
(w̃`−1 − 4w` + 6w`+1 − 4w`+2 + w`+3)

= −
Γc + Γ∗c

d
dt

∆4

(
∆2Λ

Ψ
Vc +

1

Ψ
w`−1 +

2(Ψ− 1)

Ψ
w`

−
Ψ− 1

Ψ
w`+1 − 4w` + 6w`+1 − 4w`+2 + w`+3

)
= −

Γc + Γ∗c
d
dt

∆4

(
1

Ψ
w`−1 +

(
2(Ψ− 1)

Ψ
− 4

)
w`

+

(
6−

Ψ− 1

Ψ

)
w`+1 − 4w`+2 + w`+3

)
−

ΓcΛ

∆2Ψ
Vc. (B.103)

Here we have assumed that Γ∗c
d
dt
Vc is small compared to ΓcVc and can be neglected.

In practice, Γc � Γ∗c and Vc is smooth, so this assumption is reasonable.

A similar procedure is followed to obtain ODEs for the boundary points at the

right edge of a crystal pair. The resulting equations are stated in the following

section.
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B.4.1 Finite Difference Model Statement

Here we summarize the previous section by stating the complete set of ODEs which

comprise the finite difference approximation of the beam model.

Define `(i) to be an integer such that x`(i)−1 < `(i) ≤ x`(i). Likewise, define

r(i) to be an integer such that xr(i) ≤ r(i) < xr(i)+1. additionally, let r(0) = 2 and

`(k + 1) = N .

simple sections:

For i such that r(j) < i < `(j + 1), j ∈ {0, 1, 2, . . . , k},

ẅi = −
Γb + Γ∗b

d
dt

∆4
(wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2) . (B.104)

sandwiched sections:

For i such that `(j) + 2 ≤ i ≤ r(j)− 2, j ∈ {1, 2, 3, . . . , k},

ẅi = −
Γc + Γ∗c

d
dt

∆4
(wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2) . (B.105)

boundary conditions (clamped end):

ẅ1 = −
Γb + Γ∗b

d
dt

∆4
(6w1 − 4w2 + w3) , (B.106)

ẅ2 = −
Γb + Γ∗b

d
dt

∆4
(−4w1 + 6w2 − 4w3 + w4) . (B.107)

boundary conditions (free end):

ẅN−1 = −
Γb + Γ∗b

d
dt

∆4
(wN−3 − 4wN−2 + 6wN−1 − 4wN + w̃N+1) (B.108)

ẅN = −
Γb + Γ∗b

d
dt

∆4
(wN−2 − 4wN−1 + 6wN − 4w̃N+1 + w̃N+2) , (B.109)

where w̃N+1 and w̃N+2 satisfy

d

dt
w̃N+1 = −

EbIb
E∗b Ib

(wN−1 − 2wN + w̃N+1)− ẇN−1 + 2ẇN (B.110)

d

dt
w̃N+2 = −

EbIb

E∗b Ib
(2wN−1 − 3wN + w̃N+2)− 2ẇN−1 + 3ẇN . (B.111)
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boundary conditions (left edge of PZT pair):

For i ∈ {1, 2, 3, . . . , k},

ẅ`(i) = −
Γc + Γ∗c

d
dt

∆4

(
1

Ψ
w`(i)−2 −

4

Ψ
w`(i)−1 +

(
6 +

5(Ψ− 1)

Ψ

)
w`(i)

+

(
2(Ψ− 1)

Ψ
− 4

)
w`(i)+1 + w`(i)+2

)
+

ΓcΛ

∆2Ψ
V i
c (B.112)

ẅ`(i)+1 = −
Γc + Γ∗c

d
dt

∆4

(
1

Ψ
w`(i)−1 +

(
2(Ψ− 1)

Ψ
− 4

)
w`(i)

+

(
6−

Ψ− 1

Ψ

)
w`(i)+1 − 4w`(i)+2 + w`(i)+3

)
−

ΓcΛ

∆2Ψ
V i
c . (B.113)

boundary conditions (right edge of PZT pair):

For i ∈ {1, 2, 3, . . . , k},

ẅr(i)−1 = −
Γc + Γ∗c

d
dt

∆4

(
wr(i)−3 − 4wr(i)−2 +

(
6−

Ψ− 1

Ψ

)
wr(i)−1

+

(
2(Ψ− 1)

Ψ
− 4

)
wr(i) +

1

Ψ
wr(i)+1

)
−

ΓcΛ

∆2Ψ
Vc (B.114)

ẅr(i) =
Γc + Γ∗c

d
dt

∆4

(
wr(i)−2 +

(
2(Ψ− 1)

Ψ
− 4

)
wr(i)−1

+

(
6 +

5(Ψ− 1)

Ψ

)
wr(i) −

4

Ψ
wr(i)+1 +

1

Ψ
wr(i)+2

)
+

ΓcΛ

∆2Ψ
V i
c . (B.115)

Given initial conditions wi(0) and ẇi(0) for i = {1, 2, . . . , N}, w̃N+1(0), and

w̃N+2(0), and inputs V j
c (t), j = {1, 2, . . . , k}, ∀t > 0, these equations give a com-

plete description of the deformation of the beam for all time t > 0. Hence, we

have approximated the PDEs listed in Section B.3.1 with a set of N second order

ODEs along with two first order ODEs.

B.5 Simulation Results

In this section we present results of the simulation of a flexible beam based on

the above model. The N second order ODEs listed in Section B.4.1 were first
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transformed into state-space form to creating 2N first order ODEs. These were

then numerically integrated using the fourth order Runge–Kutta method.

For the simulation, we chose to model an aluminum beam with a length of 1

meter, a width of 0.05 meters, and a thickness of 2.5 millimeters. Four pairs of

PZT crystals are evenly spaced along the length of the beam.

Figures B.8 and B.9 depict the response of the beam to a 100 volt step applied

to the leftmost actuator pair at time t = 0. Figure B.8 shows the configuration

of the entire beam at ten successive “snapshots” in time. Figure B.9 plots the

position of the tip of the beam as a function of time. Both figures compare well

with experimentally observed results for a similar beam [26].
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Figure B.8: Snapshots in time of simulated cantilever beam subject to a 100 volt

step input to the leftmost actuator.
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volt step input to the leftmost actuator .
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