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derive the empirical distribution estimator G̃ from a reference sample, and the semi-

parametric distribution estimator Ĝ under the density ratio model. Furthermore we

can derive kernel density estimators g̃ and ĝ corresponding to G̃ and Ĝ by choosing

a bandwidth parameter. Goodness-of-fit test statistics can be constructed via the
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We propose two new test statistics by modifying the goodness-of-fit test statistics

suggested by Bondell (2007)[4] and by Cheng and Chu (2004)[6]. Asymptotic results

and limiting distributions are derived for both new test statistics, and the selections

of the kernel and bandwidth are discussed. Monte-Carlo simulations show that the

new test statistics improve the accuracy of the the goodness-of-fit test and that the

limiting distributions of the new test statistics are more symmetric.
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Chapter 1

Literature Review

1.1 Introduction

Multiple-sample semiparametric problems have attracted attention over many

years from both theoretical and practical points of view due to the fact that statis-

ticians may collect data for the same or similar objects from different sources which

refer to different distribution functions. Thus it is essential to build a system of

distributions to analyze multiple-sample problems to derive the necessary statistical

inference. To present the key ideas of this dissertation it is sufficient to focus on

the two-sample system. Therefore we shall deal with systems of two distributions

which represent samples from two sources. One distribution is called the reference

distribution which refers to a reference sample, and the other one serves as the dis-

tortion or deviation from the reference distribution which refers to a distortion

sample.

Since these two samples are observed and collected from the same or similar

objects, it is believed that the log-likelihood ratio of the corresponding unknown

densities, the reference and distortion , is of a known form which depends on

finite dimensional parameters and a tilt function. This form is called the Density

Ratio Model (DRM).
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1.2 Density Ratio Model

Consider the following two independent random samples:

u1, ..., un0 from density g(x).

z1, ..., zn1 from density g1(x) = exp(α + β′h(x))g(x).

(1.1)

We consider U = {u1, ..., un0} as the reference sample corresponding to an

unknown distribution function G(x) and density g(x), and let Z = {z1, ..., zn1}

be the distortion sample with unknown distribution function G1(x) and unknown

density g1(x). α is an unknown scalar, β is a p× 1 unknown vector parameters, and

h(x), called the tilt function or distortion function, is a p× 1 vector that consists of

functions of x. We denote by T = {t1, ..., tn} = {u1, ..., un0 , z1, ..., zn1}, the combined

or fused sample of both reference and distortion samples consisting of n = n0 + n1

observations.

Many researchers have made significant contributions to various aspects of the

density ratio model, such as kernel density estimation (Fokianos 2004[10], Cheng

and Chu 2004[5], Qin and Zhang 2005[28], Bondell 2005[3], Wu et al. 2010[34],

Wu et al. 2012[35]), analysis of variance (Fokianos et al. 2001[9]), case-control

studies (Prentice and Pyke 1979[26]), cluster detection (Wen and Kedem 2009[32]),

regression analysis (Voulgaraki et al. 2012[31]), mortality rate prediction (Kedem et

al. 2008[21]), out-of-sample fusion (Zhou 2013[41], Katzoff et al. 2014[18], Kedem

et al. 2016[23], Kedem et al. 2017[20]) and goodness-of-fit tests (Cheng and Chen

2004[5], Cheng and Chu 2004[6], Bondell 2007[4], Zhang 1999, 2000, 2001, 2002 [37]

[38] [39] [40], Xu and Wang 2011[36]).
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1.3 Goodness-of-Fit Test for the Density Ratio Model

When we assume the two samples satisfy the density ratio model as in (1.1),

goodness-of-fit tests are needed to justify and support the assumed model. The null

hypothesis is:

H0 : The two samples satisfy the DRM (1.1) with correctly specified tilt function.

Let Ĝ be the semiparametric estimate of underlying distribution G obtained

from the fused sample T = {t1, ..., tn} = {u1, ..., un0 , z1, ..., zn1} under the DRM. Let

G̃ be the empirical distribution function obtained from the reference sample U =

{u1, ..., un0} only. Qin and Zhang (1997)[27] suggested a Kolmogorov-Smirnov type

goodness-of-fit test statistic for the logistic regression model based on case-control

data, which is equivalent to density ratio model (1.1). Their statistic measures the

discrepancy between Ĝ and G̃ by

∆n = sup
t

√
n|Ĝ(t)− G̃(t)|. (1.2)

Unfortunately there is no analytic expression for the distribution of ∆n. They pre-

sented a bootstrap procedure to approximate the critical values of this test statistic.

Zhang (2000)[38] extended the Kolmogorov-Smirnov type test statistic to test the

validity of a multiplicative-intercept risk model and presented a bootstrap proce-

dure for approximating the p-value of the proposed test. Zhang (2002)[40] tested

the validity of the generalized logit model by a weighted Kolmogorov-Smirnov type

statistic and still needed a bootstrap procedure to approximate the p-values.

Zhang (1999)[37] proposed a chi-squared statistic to test the validity of the

3



model. He distributed the fused sample data in a finite number of mutually ex-

clusive intervals to derive a quadratic form in terms of the deviations between the

cell probabilities obtained from the reference sample U and from the fused sample

T . The test statistic has an asymptotic chi-squared distribution and thus p-values

could be obtained directly without employing the bootstrap method to evaluate

the critical values. Zhang (2001)[39] constructed a Wald-type statistic by extend-

ing the information matrix test of White (1982)[33]. This Wald-type statistic is

called the information-matrix-based goodness-of-fit statistic and it has an asymp-

totic chi-squared distribution. Both the chi-squared statistic and Wald-type statistic

do not require the bootstrap procedure to derive p-values but they require a high-

dimensional matrix inversion. Xu and Wang (2011)[36] developed a test procedure

based on Zhang (2001)[39]. Their procedure can simultaneously test the validity of

the model and also correct the bias of parameter estimators.

Bondell (2007)[4] presented a goodness-of-fit test by constructing a test statis-

tic via the integrated discrepancy between two competing kernel density estimators

in a bounded interval. He constructed the kernel density estimators in two ways:

ĝ(t) =

∫
Kb(t− x)dĜ(x) (1.3)

g̃(t) =

∫
Kb(t− x)dG̃(x) (1.4)

where Kb(·) is a kernel with bandwidth b. Then he defined the test statistic as

IBn = n

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt. (1.5)

He proved that the test statistic IBn tends in distribution to an infinite wighted sum

of independent chi-square variables. However, it is not easy to derive the asymptotic

4



distribution of IBn . Hence, he used a bootstrap method similar to that of Qin and

Zhang (1997)[27].

Cheng and Chu (2004)[6] proposed a goodness-of-fit test statistic similar to

(1.5)

JCn =

∫ (
ĝ(t)− g̃(t)

)2
dt. (1.6)

Furthermore, they proved that under certain conditions, the limiting distribution of

n
√
b · JCn is normal. Therefore they constructed the goodness-of-fit test without the

bootstrap procedure. In this dissertation, we shall study the Hellinger distance, a

modification of (1.5) and (1.6), which has a certain advantage.

1.4 Hellinger Distance

In probability and statistics, the Hellinger distance is used to quantify

the similarity between two probability distributions. Let f(x) and g(x) denote two

probability density functions. Then the square of the Hellinger distance between f

and g is defined as

H2(f, g) =
1

2

∫
(
√
f(x)−

√
g(x))2dx.

Since H2(f, g) ≥ 0 and

H2(f, g) =
1

2

∫
(
√
f(x)−

√
g(x))2dx

= 1−
∫ √

f(x)g(x)dx ≤ 1,

we have

0 ≤ H2(f, g) ≤ 1.

5



The Hellinger distance measures the discrepancy between two probability den-

sity distributions. Wu, Krunamuni and Zhang (2010)[34] proposed to derive a para-

metric estimator in the density ratio model by minimizing the Hellinger distance

between the semiparametric density estimator and nonparametric density estima-

tor. Wu and Karunamni (2012)[35] investigated the asymptotic properties of the

parametric estimators of the model, including consistency, asymptotic normality

and efficiency. Zhu, Wu and Lu (2013)[42] extended the minimum Hellinger dis-

tance estimation to right-censored survival data.

1.5 Organization of this Dissertation

In this dissertation we propose two new goodness-of-fit test statistics based

on the Hellinger distance. We begin with general semiparametric inference of the

density ratio model, including the derivation of the maximum likelihood estimator

of the underlying distribution G, and some of its asymptotic properties. We de-

scribe the two new goodness-of-fit test statistics, derive their asymptotic limiting

distributions, study them by Monte Carlo simulation, and apply them in real data

analysis.

This dissertation is organized as follows. Chapter 2 is an introduction to the

semiparametric density ratio model, including the procedure to derive the maximum

likelihood estimators of the parameters and underlying reference distribution func-

tion. At the end of Chapter 2, we introduce some asymptotic results, including the

consistency and asymptotic distribution of the estimators. Chapter 3 proposes In, a

6



new goodness-of-fit test statistic to test the validity of the density ratio model. The

limiting distribution of the new test statistic under the null hypothesis is derived.

A bootstrap procedure is applied in conjunction with Monte Carlo simulations.

Chapter 4 proposes another new goodness-of-fit test statistic Jn. Under the null hy-

pothesis which is model (1.1), the asymptotic limiting distribution of Jn is derived.

Furthermore the method to obtain the p-value corresponding to the test statistic Jn

is derived also. Chapter 5 provides simulation studies for Jn. Computer-generated

samples from the normal distribution, the gamma distribution and the lognormal

distribution are used to perform goodness-of-fit tests when the tilt function is both

correctly specified and also misspecified. Chapter 6 applies the goodness-of-fit test

developed in Chapter 3 and Chapter 4 in the analysis of experimental radar reflec-

tivity data. Chapter 7 summarizes this dissertation.
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Chapter 2

The Density Ratio Model

In this chapter we introduce a semiparametric statistical model which is called

density ratio model. A profiling procedure, following Qin and Zhang (1997)[27], to

derive the maximum likelihood estimation of parameters and underlying reference

distribution, is introduced. The asymptotic results for the estimators which were

derived by Qin and Zhang (1997)[27] and Lu (2007)[25] are given in the last section

of this chapter.

2.1 Introduction

Model (1.1) is a biased sampling model with weights depending on parameters.

Vardi (1982)[30] studied a related nonparametric two-sample estimation problem.

Consider a sample from a distribution function G and another sample from FG, the

length-biased distribution of G, such that

FG(y) =
1

µ

∫ y

0

xdG(x) (2.1)

where µ =
∫∞
0
xdG(x) < ∞. The nonparametric maximum likelihood estimation

(NPMLE) for G and its asymptotic properties were discussed in Vardi (1982)[30].

Gill, Vardi and Wellner(1988)[15] proved the consistency and asymptotic normality

of Vardi’s NPMLE.

Gilbert et al.(1999) extended the biased sampling problem model (2.1) to a

8



semiparametric problem with G unspecified. The model is

FG(y, θ) =
1

W (θ,G)

∫ y

−∞
w(x, θ)dG(x) (2.2)

where W (θ,G) =
∫∞
−∞w(x, θ)dG(x) < ∞. They showed that under the condition

that the biasing function w(x, θ) is known, the semiparametric biased sampling

problem is identifiable. The large sample behavior of the semiparametric MLE was

investigated by Gilbert (2000)[12], and goodness-of-fit test statistics of Cramér-von

Mises type, Anderson-Darling type, and Kolmogorov-Smirnov type were studied by

Gilbert (2004)[13].

2.2 Semiparametric Density Ratio Model

We are considering semiparametric inference from DRM by assuming that the

log-likelihood ratio of two unknown densities has a known linear form which depends

on unknown finite dimensional parameters. The DRM is equivalent to a generalized

logistic regression model in case-control sampling (Qin and Zhang (1997)[27]).

Consider model (1.1):

u1, ..., un0 is a random sample with reference density g(x).

z1, ..., zn1 is a random sample with density g1(x) = exp(α + β′h(x))g(x).

Here g(x) and g1(x) are unknown probability density functions, α is an unknown

scalar, β is a p× 1 vector parameter, and h(x), which is called the distortion or tilt

function, is a p×1 vector that consists of known functions of x. Let U = {u1, ..., un0}

is the reference sample corresponding to an unknown distribution function G(x),

the cdf corresponding to g(x), and let Z = {z1, ..., zn1} is the distortion sample

9



with unknown density g1(x). Let T = {t1, ..., tn} = {u1, ..., un0 , z1, ..., zn1} be the

combined or fused sample consisting of both the reference and distortion samples of

n = n0 + n1 observations.

Consider the following well-known examples of DRM.

Example 1 (Normal distribution). Assume that U ∼ N(µ1, σ
2
1) with density g(·)

and Z ∼ N(µ2, σ
2
2) with density g1(·). Then ratio of the densities is

g1(x)

g(x)
= exp

{
log

(
σ1
σ2

)
+

(
µ2
1

2σ2
1

− µ2
2

2σ2
2

)
+

(
µ2

σ2
2

− µ1

σ2
1

,
1

2σ2
1

− 1

2σ2
2

) x

x2

}.
This is a special case of model (1.1) with tilt function h(x) = (x, x2)′ and parameters

α = log

(
σ1
σ2

)
+

(
µ2
1

2σ2
1

− µ2
2

2σ2
2

)
β =

(
µ2

σ2
2

− µ1

σ2
1

,
1

2σ2
1

− 1

2σ2
2

)′
.

Note that when µ1 = µ2 = 0, h(x) = x2.

Example 2 (Gamma distribution). Assume that U ∼ Gamma(α1, β1) with density

g(·) and Z ∼ Gamma(α2, β2) with density g1(·). Then ratio of the densities is

g1(x)

g(x)
= exp

{
log

Γ(α1)

Γ(α2)
+(α1 log β1−α2 log β2)+

(
1

β1
− 1

β2
, α2 − α1

) x

log x

}.
Again this is a special case of model (1.1) with tilt function h(x) = (x, log x)′, and

parameters

α = log
Γ(α1)

Γ(α2)
+ (α1 log β1 − α2 log β2)

β =

(
1

β1
− 1

β2
, α2 − α1

)′
.

Note that when α1 = α2, h(x) = x, and when β1 = β2, h(x) = log x.
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Example 3 (Lognormal distribution). Assume that U ∼ Lognormal(µ1, σ
2
1) with

density g(·) and Z ∼ Lognormal(µ2, σ
2
2) with density g1(·). Then ratio of the

densities is

g1(x)

g(x)
= exp

{
log

(
σ1
σ2

)
+

(
µ2
1

2σ2
1

− µ2
2

2σ2
2

)
+

(
µ2

σ2
2

− µ1

σ2
1

,
1

2σ2
1

− 1

2σ2
2

) log x

(log x)2

}.
This is a special case of model (1.1) with tilt function h(x) = (log x, (log x)2)′, and

the parameters

α = log

(
σ1
σ2

)
+

(
µ2
1

2σ2
1

− µ2
2

2σ2
2

)
β =

(
µ2

σ2
2

− µ1

σ2
1

,
1

2σ2
1

− 1

2σ2
2

)′
.

Note that when µ1 = µ2 = 0, h(x) = (log x)2, and when σ1 = σ2, h(x) = log x.

In Chapter 3 and Chapter 5, Monte Carlo simulation studies for our test

statistics are applied by using computer-generated samples from normal, gamma

and lognormal distributions. Correctly specified tilt functions in the previous three

examples will be used in goodness-of-fit tests. And based on these examples, we

also can intentionally choose misspecified tilt functions to test our goodness-of-fit

procedures.

2.3 Maximum Likelihood Estimation

In this chapter we follow the main results from Qin and Zhang (1997)[27]

and Lu (2007)[25] and our contributions will be in the following chapters, and the

difference being that we deal with pdf’s whereas Qin and Zhang (1997)[27] and Lu

(2007)[25] deal with cdf’s.
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A maximum likelihood estimator of G can be obtained by maximizing the

empirical likelihood over the class of discrete cumulative distribution functions with

jumps at all the observed values {t1, ..., tn} = {u1, ..., un0 , z1, ..., zn1} from the com-

bined sample. Let pi = dG(ti) denote the size of the jump at the observed value ti.

Then the empirical likelihood is defined as as follows:

L (α, β,G) =

n0∏
i=1

dG(ui)

n1∏
j=1

exp
(
α + β′h(zj)

)
dG(zj)

=
n∏
i=1

pi

n1∏
j=1

exp
(
α + β′h(zj)

)
(2.3)

=
n∏
i=1

pi

n1∏
j=1

w(zj)

where

w(t) = exp
(
α + β′h(t)

)
. (2.4)

To maximize the empirical likelihood, we follow a profiling procedure by which

first the pi are optimized in terms of α, β, and then the pi are substituted back into

the likelihood to obtain a function of α, β only.

When α, β are fixed, the empirical likelihood (2.3) is optimized by maximizing

the product term
∏n

i=1 pi subject to the following constraints

n∑
i=1

pi = 1,
n∑
i=1

pi[w(ti)− 1] = 0. (2.5)

The constraints (2.5) simply express the fact that the discrete reference probability

masses and their distortions sum each to 1.

Lagrange multipliers are used in the maximization of
∏n

i=1 pi. This is equiva-

12



lent to maximizing

n∑
i=1

log pi + λ

[
n∑
i=1

pi − 1

]
− λ1

[
n∑
i=1

pi(w(ti)− 1)

]

where λ, λ1 are Lagrange multipliers. Differentiating with respect to pi and equating

to 0 gives,

1

pi
+ λ0 − λ1(w(ti)− 1) = 0 (2.6)

or

1 + λ0pi − λ1pi[w(ti)− 1] = 0.

Sum up over i = 1, ..., n and apply the constraints (2.5). Then we have

n+ λ0 = 0.

Substitute λ0 = −n into (2.6), and defining ρ = n1/n0, we derive

pi =
1

n0

· 1

1 + ρ exp(α + β′h(ti))
.

Substituting the pi’s back into the likelihood, we obtain the log-likelihood function

`(α, β) =

n1∑
j=1

(α + β′h(zj))−
n∑
i=1

log(1 + ρ exp(α + β′h(ti))). (2.7)

We get (α̂, β̂) by solving two score equations,

∂`

∂α
= n1 −

n∑
i=1

ρ exp(α + β′h(ti))

1 + ρ exp(α + β′h(ti))
= 0

∂`

∂β
=

n1∑
j=1

h(zj)−
n∑
i=1

ρ exp(α + β′h(ti))h(ti)

1 + ρ exp(α + β′h(ti))
= 0,

(2.8)

and therefore,

p̂i =
1

n0

· 1

1 + ρ exp(α̂ + β̂′h(ti))
. (2.9)
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Consequently, the MLE of the distribution function from the combined data

t1, ..., tn under DRM is

Ĝ(t) =
1

n0

n∑
i=1

I(ti ≤ t)

1 + ρ exp(α̂ + β̂′h(ti))
. (2.10)

2.4 Asymptotic Results

Assume that the true parameters are (α0, β0).

Define

A =


∫

exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)

∫
h(y) exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)∫

h(y) exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)

∫
h(y)′h(y) exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)


(2.11)

and

S =
ρ

1 + ρ
A (2.12)

The asymptotic properties of (α, β) are derived by Qin and Zhang (1997)[27]

and Lu (2007)[25] as follows:

Lemma 1 (Qin & Zhang (1997), Lu (2007)). Under certain regularity conditions,

if model (1.1) is true, then the asymptotic expansion of (α̂, β̂) is

 α̂− α0

β̂ − β0

 =
1

n
S−1


∂l(α0, β0)

∂α
∂l(α0, β0)

∂β

+ op(
1√
n

) (2.13)

and

√
n

 α̂− α0

β̂ − β0

 d−→ N(0,S−1VS−1) (2.14)
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where

V =
ρ

1 + ρ
A− ρ


∫

exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)∫

h(y) exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)


×
( ∫

exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)

∫
h(y) exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)

)
.

(2.15)
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Chapter 3

A Test Statistic

In this chapter we propose a test statistic constructed from the Hellinger dis-

tance, which is used to measure the discrepancy between two competing probability

densities. We start by defining these two competing density estimators as kernel

density estimators. One kernel density estimator is derived from the reference sam-

ple U and another one is derived from the fused sample T . Next our test statistic is

decomposed into two components. We derive the limiting distribution of one com-

ponent and render the value of the other component relatively small by choosing

an appropriate bandwidth. Therefore this gives a numerical approximation for our

test statistic. A bootstrap procedure is used to obtain an approximation to this

distribution of the test statistic.

3.1 Kernel Density Estimator

For a given kernel, K(x) ≥ 0, with
∫
K(x)dx = 1 and

∫
K2(x)dx < ∞, by

using the empirical distribution Gn, we can construct a kernel density estimate as

a convolution ∫
Kb(x− y)dGn(y)

where b is the bandwidth and Kb(·) = (1/b)K(·/b).
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The empirical distribution of the reference sample u1, ..., un0 is

G̃(t) =
1

n0

n0∑
i=1

I(ui ≤ t). (3.1)

From (2.10) and (3.1), we get two competing estimators for G(t): Ĝ(t) as

derived from the combined sample T = {t1, ..., tn} = {u1, ..., un0 , z1, ..., zn1}, and

G̃(t) as derived from the reference sample {u1, ..., un0} only.

We can now construct density estimators by using these two competing esti-

mators as follows:

ĝ(t) =

∫
Kb(t− y)dĜ(y)

g̃(t) =

∫
Kb(t− y)dG̃(y).

(3.2)

Lemma 2. Let ĝ(x) and g̃(x) be the kernel density estimators defined in (3.2). Then

ĝ(t) =
1

n0

n∑
i=1

1

1 + ρ exp(α̂ + β̂′h(ti))
Kb(t− ti)

g̃(t) =
1

n0

n0∑
i=1

Kb(t− ui).
(3.3)

Proof. Let δ(x) be the Dirac delta function. So, for any function f(x)

∫
f(x)δ(x− t)dx = f(t). (3.4)

By (2.10) and (3.1), we have

Ĝ(t) =
1

n0

n∑
i=1

I(ti ≤ t)

1 + ρ exp(α̂ + β̂′h(ti))

G̃(t) =
1

n0

n0∑
i=1

I(ui ≤ t)).
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So

ĝ(t) =

∫
Kb(t− x)dĜ(x)

=

∫
Kb(t− x)

n∑
i=1

p̂iδ(x− ti)dx

=
1

n0

n∑
i=1

Kb(t− ti)
1 + ρ exp(α̂ + β̂′h(ti))

and

g̃(t) =

∫
Kb(t− x)dG̃(x)

=

∫
Kb(t− x)

n0∑
i=1

1

n0

δ(x− ui)dx

=
1

n0

n0∑
i=1

Kb(t− ui).

3.2 A New Test Statistic

Bondell (2007)[4] presented a goodness-of-fit test by constructing a test statis-

tic via the discrepancy between two competing kernel density estimators. He con-

structed the kernel density estimators ĝ as (1.3) and g̃ as (1.4) and fixing the band-

width at b = 1. Then he defined the test statistic IBn as (1.5). He proved that

under H0 the test statistic IBn tends in distribution to an infinite weighted linear

combination of independent chi-square variables with one degree of freedom each.

In this chapter we define a new test statistic as the Hellinger distance which

measures the discrepancy between the two competing density estimators, ĝ and g̃.

The associated integrated squared error is obtained in a closed and bounded interval

18



[−L,L]. Through this dissertation, we use many integrals with certain limits. We

assume that our data are such that the integrals beyond the limits are negligible.

We define a new goodness-of-fit statistic in terms of the Hellinger distance

In ≡ nb

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt. (3.5)

It is convenient to define

Wn(t) ≡
√
nb

2
√
g(t)

(
ĝ(t)− g̃(t)

)
(3.6)

and

Dn(t) ≡ nb
(√

ĝ(t)−
√
g̃(t)

)2
−Wn(t)2

=
nb(√

ĝ(t) +
√
g̃(t)

)2 (ĝ(t)− g̃(t)
)2 − nb

4g(t)

(
ĝ(t)− g̃(t)

)2
= nb

(
ĝ(t)− g̃(t)

)2 2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
g̃(t))

(g(t)− g̃(t))

+nb
(
ĝ(t)− g̃(t)

)2 2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
ĝ(t))

(g(t)− ĝ(t)),

(3.7)

then

In =

∫ L

−L
Wn(t)2dt+

∫ L

−L
Dn(t)dt. (3.8)

In the following sections we assume that the bandwidth b is fixed at some

properly chosen values. A similar fixed bandwidth approach can be found in An-

derson et al. (1994)[1]. We will prove that Wn(t) converges weakly to W (t), a

Gaussian process with mean 0. In order to approximate Wn(t), we need to derive

an approximation of ĝ(t) first. Later we shall show that
∫ L
−LDn(t)dt is very small.
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3.3 An Approximation of ĝ(t)

We would like to obtain the Taylor expansion of ĝ(t). For this purpose, define

H1(t;α, β) =
1

n0

n∑
i=1

Kb(t− ti)
1 + ρ exp(α + β′h(ti))

(3.9)

Differentiate H1(t;α, β) with respect to α and β respectively.

∂H1(t;α, β)

∂α
= − 1

n0

n∑
i=1

ρ exp(α + β′h(ti))Kb(t− ti)(
1 + ρ exp(α + β′h(ti))

)2
∂H1(t;α, β)

∂β
= − 1

n0

n∑
i=1

ρ exp(α + β′h(ti))h(ti)Kb(t− ti)(
1 + ρ exp(α + β′h(ti))

)2 .

(3.10)

Taking the expectation at (α0, β0), we have

E
(∂H1(t;α0, β0)

∂α

)
= − 1

n0

E
( n∑
i=1

ρ exp(α0 + β′0h(ti))Kb(t− ti)(
1 + ρ exp(α0 + β′0h(ti))

)2 )
= − 1

n0

[
n0

∫
ρ exp(α0 + β′0h(y))Kb(t− y)(

1 + ρ exp(α0 + β′0h(y))
)2 dG(y)

+n1

∫
ρ
(

exp(α0 + β′0h(y))
)2
Kb(t− y)(

1 + ρ exp(α0 + β′0h(y))
)2 dG(y)

]
= −

∫
ρ exp(α0 + β′0h(y))Kb(t− y)

1 + ρ exp(α0 + β′0h(y))
dG(y)

= −ρA(t) (3.11)

where

A(t) ≡
∫

exp
(
α0 + β′0h(y)

)
Kb(t− y)

1 + ρ exp
(
α0 + β′0h(y)

) dG(y)
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and

E
(∂H1(t;α0, β0)

∂β

)
= − 1

n0

E
( n∑
i=1

ρ exp(α0 + β′0h(ti))h(ti)Kb(t− ti)(
1 + ρ exp(α0 + β′0h(ti))

)2 )
= − 1

n0

[
n0

∫
ρ exp(α0 + β′0h(y))h(y)Kb(t− y)(

1 + ρ exp(α0 + β′0h(y))
)2 dG(y)

+n1

∫
ρ
(

exp(α0 + β′0h(y))
)2
h(y)Kb(t− y)(

1 + ρ exp(α0 + β′0h(y))
)2 dG(y)

]
= −

∫
ρ exp(α0 + β′0h(y))h(y)Kb(t− y)

1 + ρ exp(α0 + β′0h(y))
dG(y)

= −ρB(t) (3.12)

where

B(t) ≡
∫

exp
(
α0 + β′0h(y)

)
h(y)Kb(t− y)

1 + ρ exp
(
α0 + β′0h(y)

) dG(y).

Let H1(t) = H1(t;α0, β0) and define

H2(t) =
ρ

n

(
A(t) B(t)

)
S−1

 ∂l{α0, β0}/∂α

∂l{α0, β0}/∂β

 . (3.13)

From Lemma 1, we have

(
ρA(t) ρB(t)

) α̂− α0

β̂ − β0

 = H2(t) + op(n
−1/2).

Lemma 3. The function ĝ(t) admits an approximation uniformly in t,

ĝ(t) = H1(t)−H2(t) +Rn(t), (3.14)

and the remainder term Rn(t) satisfies supt|Rn(t)| = op(n
−1/2).
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Proof. We study the Taylor expansion of ĝ(t) at (α0, β0). Let δn = ‖(α̂, β̂)−(α0, β0)‖.

By Lemma 2, we know

ĝ(t) =
1

n0

n∑
i=1

Kb(t− ti)
1 + ρ exp(α̂ + β̂′h(ti))

= H1(t;α0, β0) +

 ∂H1(t;α0,β0)
∂α

∂H1(t;α0,β0)
∂β


′ α̂− α0

β̂ − β0

+ op(δn)

= H1(t) +

 E ∂H1(t;α0,β0)
∂α

E ∂H1(t;α0,β0)
∂β


′ α̂− α0

β̂ − β0



+

 ∂H1(t;α0,β0)
∂α

− E ∂H1(t;α0,β0)
∂α

∂H1(t;α0,β0)
∂β

− E ∂H1(t;α0,β0)
∂β


′ α̂− α0

β̂ − β0

+ op(δn).

(3.15)

Let

Rn1(t) =

 ∂H1(t;α0,β0)
∂α

− E ∂H1(t;α0,β0)
∂α

∂H1(t;α0,β0)
∂β

− E ∂H1(t;α0,β0)
∂β


′ α̂− α0

β̂ − β0


and

Rn(t) = op(n
−1/2) +Rn1(t) + op(δn).

Thus

ĝ(t) = H1(t)−
(
ρA(t) ρB(t)

) α̂− α0

β̂ − β0

+Rn1(t) + op(δn)

= H1(t)−H2(t) + op(n
−1/2) +Rn1(t) + op(δn)

= H1(t)−H2(t) +Rn(t).

From Lemma 1, the estimator (α̂, β̂) is consistent in probability. So δn =
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op(n
−1/2). Again, Lemma 1 implies that supt |Rn1(t)| = op(n

−1/2). So we have

supt |Rn(t)| = op(n
−1/2) which completes the proof.

Therefore, H1(t)−H2(t) is an approximation of ĝ(t) uniformly in t. In order

to prove the weak convergence of Wn(t) =
√
nb

2
√
g(t)

(ĝ(t)− g̃(t)), according to Lemma

3, we only need to show that
√
nb

2
√
g(t)

(H1(t) − H2(t) − g̃(t)) converges weakly to a

Gaussian process.

Next we investigate the structure of the finite dimensional distribution of

√
nb

2
√
g(t)

(H1(t)−H2(t)− g̃(t)).

Lemma 4.

E
(
H1(t)−H2(t)− g̃(t)

)
= 0. (3.16)

Proof. Obviously, E(H2(t)) = 0 since E(∂l(α0, β0)/∂(α, β)) = 0

E(H1(t)) =
1

n0

E
n∑
i=1

Kb(t− ti)
1 + ρ exp(α0 + β′0h(ti))

=
1

n0

[
n0

∫
Kb(t− y)

1 + ρ exp(α0 + β′0h(y))
dG(y)

+n1

∫
Kb(t− y) exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
dG(y)

]
=

∫
Kb(t− y)dG(y)

and

E
(
g̃(t)

)
=

1

n0

E

n0∑
i=1

Kb(t− ui) =

∫
Kb(t− y)dG(y).

So

E
(
H1(t)−H2(t)− g̃(t)

)
= 0.
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3.4 Variance-Covariance Structure

Next we consider the variance-covariance of the process
√
nb

2
√
g(t)

(H1(t)−H2(t)−

g̃(t)).

Cov
( √nb

2
√
g(s)

(
H1(s)−H2(s)− g̃(s)

)
,

√
nb

2
√
g(t)

(
H1(t)−H2(t)− g̃(t)

))
=

nb

4
√
g(s)g(t)

{
E
((
H1(s)− g̃(s)

)(
H1(t)− g̃(t)

))
−E
((
H1(s)− g̃(s)

)
H2(t)

)
− E

(
H2(s)

(
H1(t)− g̃(t)

))
+E
(
H2(s)H2(t)

)}
. (3.17)

Consider the first part in (3.17). We have,

n2
0E

[(
H1(s)− g̃(s)

)(
H1(t)− g̃(t)

)]
= n2

0E

[( 1

n0

n∑
i=1

Kb(s− ti)
1 + ρ exp(α0 + β′0h(ti))

− 1

n0

n0∑
j=1

Kb(s− uj)
)

×
( 1

n0

n∑
i=1

Kb(t− ti)
1 + ρ exp(α0 + β′0h(ti))

− 1

n0

n0∑
j=1

Kb(t− uj)
)]

=

[
E
( n1∑
i=1

Kb(s− zi)
1 + ρ exp(α0 + β′0h(zi))

)
·
( n1∑
i=1

Kb(t− zj)
1 + ρ exp(α0 + β′0h(zj))

)
− E

( n1∑
i=1

Kb(s− zi)
1 + ρ exp(α0 + β′0h(zi))

)
E
( n0∑
j=1

ρ exp(α0 + β′0h(uj))

1 + ρ exp(α0 + β′0h(uj))
Kb(t− uj)

)
− E

( n0∑
j=1

ρ exp(α0 + β′0h(uj))

1 + ρ exp(α0 + β′0h(uj))
Kb(s− uj)

)
E
( n1∑
i=1

Kb(t− zi)
1 + ρ exp(α0 + β′0h(zi))

)
+ E

( n0∑
j=1

ρ exp(α0 + β′0h(uj))

1 + ρ exp(α0 + β′0h(uj))
Kb(s− uj)

)
×
( n0∑
j=1

ρ exp(α0 + β′0h(uj))

1 + ρ exp(α0 + β′0h(uj))
Kb(t− uj)

)]

≡
(
I1 − I2 − I3 + I4

)
. (3.18)
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We shall derive every term in (3.18) as follows.

I1 = n1E
( Kb(s− zi)Kb(t− zi)(

1 + ρ exp(α0 + β′0h(zi))
)2)

+(n2
1 − n1)E

( Kb(s− zi)
1 + ρ exp(α0 + β′0h(zi))

)
E
( Kb(t− zj)

1 + ρ exp(α0 + β′0h(zj))

)
= n0

∫
ρ exp(α0 + β′0h(x))(

1 + ρ exp(α0 + β′0h(x))
)2Kb(s− x)Kb(t− x)dG(x)

+(n2
1 − n1)A(s)A(t)

I2 = n1

∫
Kb(s− x)

1 + ρ exp(α0 + β′0h(x))
exp(α0 + β′0h(x))dG(x)

×n0

∫
ρ exp(α0 + β′0h(x))

1 + ρ exp(α0 + β′0h(x))
Kb(t− x)dG(x)

= n0n1ρA(s)A(t)

I3 = n0

∫
ρ exp(α0 + β′0h(x))

1 + ρ exp(α0 + β′0h(x))
Kb(s− x)dG(x)

×n1

∫
Kb(t− x)

1 + ρ exp(α0 + β′0h(x))
exp(α0 + β′0h(x))dG(x)

= n0n1ρA(s)A(t)

I4 = n0E
(( ρ exp(α0 + β′0h(uj))

1 + ρ exp(α0 + β′0h(uj))

)2
Kb(s− uj)Kb(t− uj)

)
+(n2

0 − n0)E
( ρ exp(α0 + β′0h(ui))

1 + ρ exp(α0 + β′0h(ui))
Kb(s− ui)

)
×E
( ρ exp(α0 + β′0h(uj))

1 + ρ exp(α0 + β′0h(uj))
Kb(t− uj)

)
= n0

∫ ( ρ exp(α0 + β′0h(x))

1 + ρ exp(α0 + β′0h(x))

)2
Kb(s− x)Kb(t− x)dG(x)

+(n2
0 − n0)ρ

2A(s)A(t).

Define

C(s, t) =

∫
exp(α0 + β′0h(y))

1 + ρ exp(α0 + β′0h(y))
Kb(s− y)Kb(t− y)dG(y).
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So, it follows that

E
(

(H1(s)− g̃(s))(H1(t)− g̃(t))
)

=
1

n2
0

(
I1 − I2 − I3 + I4

)
=

1

n2
0

(
n0

∫
ρ exp(α0 + β′0h(x))(

1 + ρ exp(α0 + β′0h(x))
)2Kb(s− x)Kb(t− x)dG(x)

+(n2
1 − n1)A(s)A(t)− 2n0n1ρA(s)A(t)

+n0

∫ ( ρ exp(α0 + β′0h(x))

1 + ρ exp(α0 + β′0h(x))

)2
Kb(s− x)Kb(t− x)dG(x)

+(n2
0 − n0)ρ

2A(s)A(t)
)

=
1

n0

(
ρC(s, t)− ρ(1 + ρ)A(s)A(t)

)
.

Note that if all the variables are restricted to [−L,L], then bC(s, t) is finite. Let

y = s− bx. Then

bC(s, t) =

∫ (s+L)/b

(s−L)/b

exp(α0 + β′0h(s− bx))

1 + ρ exp(α0 + β′0h(s− bx))
K(x)K(

s− t
b
− x)g(s− bx)dx

is bounded for any b > 0. Specifically, when s = t

bC(s, s) =

∫ s+L
b

s−L
b

exp(α0 + β′0h(s− bx))

1 + ρ exp(α0 + β′0h(s− bx))
K(x)2g(s− bx)dx.

If the kernel function K(·) has compact support (e.g. Epanechnikov, Uniform or

Biweight) and if b << |s − t|, such that |s − t|/b is greater than the range of the

compact support, then K(x) · K( s−t
b
− x) is zero for any x and thus the value of

C(s, t) vanishes. To avoid this situation, in this chapter we only use a kernel whose

support is all of R (e.g. Gaussian).

Next consider the fourth term in (3.17). From Qin & Zhang (1997) and Lu
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(2007)[25], we have

S−1V S−1 =
1 + ρ

ρ
A−1 −

 (1+ρ)2

ρ
0

0 0

 ,

thus for the fourth term in (3.17),

E
(

(H2(s)H
′
2(t)
)

=
ρ2

n2
E

{(
A(s) B(s)

)
S−1

 ∂l{α0, β0}/∂α

∂l{α0, β0}/∂β



×

((
A(t) B(t)

)
S−1

 ∂l{α0, β0}/∂α

∂l{α0, β0}/∂β


)′}

=
ρ2

n

(
A(s) B(s)

)
S−1V S−1

 A(t)

B(t)



=
ρ2

n

(
A(s) B(s)

)
1 + ρ

ρ
A−1

 A(t)

B(t)



−ρ
2

n

(
A(s) B(s)

) (1+ρ)2

ρ
0

0 0


 A(t)

B(t)



=
ρ(1 + ρ)

n

(
A(s) B(s)

)
A−1

 A(t)

B(t)

− ρ(1 + ρ)2

n
A(s)A(t).

Furthermore, from Qin & Zhang (1997) and Lu (2007)[25], we have

Cov(
√
nb(H1(s)− g̃(s)),

√
nbH2(t)) = Cov(

√
nbH2(s),

√
nbH2(t))

and

Cov(
√
nb(H2(s)− g̃(s)),

√
nbH1(t)) = Cov(

√
nbH2(s),

√
nbH2(t)).
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So (3.17) becomes,

Cov
( √nb

2
√
g(s)

(
H1(s)−H2(s)− g̃(s)

)
,

√
nb

2
√
g(t)

(
H1(t)−H2(t)− g̃(t)

))
=

nb

4
√
g(s)g(t)

{
E
((
H1(s)− g̃(s)

)(
H1(t)− g̃(t)

))
− E

((
H1(s)− g̃(s)

)
H2(t)

)
−E
(
H2(s)

(
H1(t)− g̃(t)

))
+ E

(
H2(s)H2(t)

)}
=

nb

4
√
g(s)g(t)

{ 1

n0

(
ρC(s, t)− ρ(1 + ρ)A(s)A(t)

)
+
ρ(1 + ρ)2

n
A(s)A(t)

−ρ(1 + ρ)

n

(
A(s) B(s)

)
A−1

 A(t)

B(t)

}

=
ρ(1 + ρ)b

4
√
g(s)g(t)

C(s, t)−
(
A(s) B(s)

)
A−1

 A(t)

B(t)


 .

3.5 Weak Convergence of Wn(t)

Define

V (s, t) =
ρ(1 + ρ)b

4
√
g(s)g(t)

C(s, t)−
(
A(s) B(s)

)
A−1

 A(t)

B(t)




Theorem 1. Assume that the underling density g(·), the tilt function h(·) and the

kernel K(·) all are Lipschitz continuous. The process Wn(t) =
√
nb

2
√
g(t)

(
ĝ(t) − g̃(t)

)
converges weakly in [-L,L] to a Gaussian process W(t) with mean 0 and

Cov(W (s),W (t)) = V (s, t)

=
ρ(1 + ρ)b

4
√
g(s)g(t)

C(s, t)−
(
A(s) B(s)

)
A−1

 A(t)

B(t)


 . (3.19)
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Note: Bondell (2007)[4] states a similar result for
√
n(ĝ(t) − g̃(t)) with fixed

bandwidth b = 1 without proof.

Proof. Since C(s, t), A(s) and A(t) are continuous, V (s, t) is continuous and band-

width is fixed. So V (s, t) is bounded for both s and t in [−L,L]. Thus finite-

dimensional convergence follows from Lindeberg-Feller. For tightness, following

Corollary 16.9 in Kallenberg 2002[19], we need to check the Kolmogorov-Chentsov

criterion which is E(Wn(s)−Wn(t))2 ≤ c|s− t|2 for some constant c <∞.

E(Wn(s)−Wn(t))2

= E(Wn(s))2 + E(Wn(t))2 − 2E(Wn(s)Wn(t))

= V (s, s) + V (t, t)− 2V (s, t)

=
ρ(1 + ρ)b

4

{(C(s, s)

g(s)
+
C(t, t)

g(t)
− 2

C(s, t)√
g(s)g(t)

)
−
(
a1
( A(s)√

g(s)
− A(t)√

g(t)

)2
+ a3

( B(s)√
g(s)

− B(t)√
g(t)

)2
+ 2a2

( A(s)√
g(s)

− A(t)√
g(t)

)( B(s)√
g(s)

− B(t)√
g(t)

))}
=
ρ(1 + ρ)b

4

{(C(s, s)

g(s)
+
C(t, t)

g(t)
− 2

C(s, t)√
g(s)g(t)

)
−
(√

a1
( A(s)√

g(s)
− A(t)√

g(t)

)
+

a2√
a1

( B(s)√
g(s)

− B(t)√
g(t)

))2
+ (

a22
a1
− a3)

( B(s)√
g(s)

− B(t)√
g(t)

)2}

where

A−1 =

 a1 a2

a2 a3

 .

Let

a(y) =
exp(α0 + β′0h(y))g(y)

1 + ρ exp(α0 + β′0h(y))

c(y) =
exp(α0 + β′0h(y))h(y)g(y)

1 + ρ exp(α0 + β′0h(y))
.
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We assume that g(·) is bounded away from zero in [−L,L]. Since g(·), h(·), and

K(·) all are Lipschitz continuous, ∃ C1 > 0 s.t.

∣∣∣ A(s)√
g(s)

− A(t)√
g(t)

∣∣∣ =
∣∣∣ ∫ a(y)√

g(s)
Kb(s− y)dy −

∫
a(y)√
g(t)

Kb(t− y)dy
∣∣∣

≤
∫ ∣∣∣a(s− bx)√

g(s)
− a(t− bx)√

g(t)

∣∣∣K(x)dx

≤
∫ ∣∣∣a(s− bx)− a(t− bx)

∣∣∣ 1√
g(s)

K(x)dx

+

∫ ∣∣∣ 1√
g(s)

− 1√
g(t)

∣∣∣ · ∣∣a(t− bx)
∣∣K(x)dx

≤ C1

∣∣s− t∣∣
and similarly ∃ C2 > 0 s.t.

∣∣∣ B(s)√
g(s)

− B(t)√
g(t)

∣∣∣ =
∣∣∣ ∫ c(y)√

g(s)
Kb(s− y)dy −

∫
c(y)√
g(t)

Kb(t− y)dy
∣∣∣

≤
∫ ∣∣∣c(s− bx)√

g(s)
− c(t− bx)√

g(t)

∣∣∣K(x)dx

≤
∫ ∣∣∣c(s− bx)− c(t− bx)

∣∣∣ 1√
g(s)

K(x)dx

+

∫ ∣∣∣ 1√
g(s)

− 1√
g(t)

∣∣∣ · ∣∣c(t− bx)
∣∣K(x)dx

≤ C2

∣∣s− t∣∣.
Furthermore, ∃ C3 > 0 s.t.

b ·
∣∣∣C(s, s)

g(s)
+
C(t, t)

g(t)
− 2

C(s, t)√
g(s)g(t)

∣∣∣ =
∣∣∣b · ∫ a(y)

(Kb(s− y)√
g(s)

− Kb(t− y)√
g(t)

)2
dy
∣∣∣

=
∣∣∣ ∫ a(s− bx)

( K(x)√
g(s)

−
K( t−s

b
+ x)√

g(t)

)2
dx
∣∣∣

≤ 1

2

∣∣∣ ∫ a(s− bx)K2(x)
( 1√

g(s)
− 1√

g(t)

)2
dx
∣∣∣

+
1

2

∣∣∣ ∫ a(s− bx)

g(t)

(
K(x)−K(

t− s
b

+ x)
)2
dx
∣∣∣

≤ C3

∣∣s− t∣∣2.
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Thus ∃C∗ > 0 s.t.

E
∣∣Wn(s)−Wn(t)

∣∣2 ≤ C∗
∣∣s− t∣∣2

And it is easy to see that the sequence Wn(0) is tight by Chebyshev’s inequality.

Thus following the Corollary 16.9 in Kallenberg 2002[19], the tightness of Wn(t) is

proved. The weak convergence of Wn(t) follows.

Remark 1. Since
√
g(t) is continuous,

√
g(t) is bounded in [−L,L]. If the bandwidth

is fixed as b = 1, then
√
n{ĝ(t)− g̃(t)} = 2

√
g(t)Wn(t) converges weakly in [−L,L]

to a Gaussian process 2
√
g(t)W (t) with mean 0 and covariance function given by

4
√
g(s)g(t)V (s, t) = ρ(1 + ρ)

C(s, t)−
(
A(s) B(s)

)
A−1

 A(t)

B(t)




This result was stated by Bondell(2007)[4] for IBn for without proof.

3.6 Convergence in Distribution to Linear Combination of Chi-square

Variables

We have shown that Wn(t) converges weakly to a Gaussian process W (t) with

mean 0 and covariance (3.19). The Gaussian process W (t) can be represented in

terms of its eigenfunction expansion by the Karhunen-Loève theorem. Before stating

the theorem, we introduce the Mercer kernel.

A function V (s, t) : R× R→ R is called a Mercer kernel if it satisfies,

1. V (s, t) is continuous

31



2. Symmetric: V (s, t) = V (t, s)

3. V (s, t) is positive definite; that is, for all finite sequences of points x1, x2, ..., xn

and all choices of real numbers c1, c2, ..., cn,
∑n

i=1

∑n
j=1 V (ti, xj)cicj ≥ 0.

Theorem 2 (Karhunen-Loève theorem). Let W (t) be a zero-mean square integrable

stochastic process over a closed and bounded interval [−L,L], with continuous co-

variance function V (s, t). Then V (s, t) is a Mercer kernel. Let {eK(t)}∞k=1 be an

orthonormal basis of L2([−L,L]) formed by the eigenfunctions of

∫ L

−L
V (s, t)ek(s)ds = λkek(t) (3.20)

with respective eigenvalues {λk}∞k=1. Then W(t) admits the following representation

W (t) =
∞∑
k=1

Zkek(t)

where the convergence is in L2, uniform in t and

Zk =

∫ L

−L
W (t)ek(t)dt.

Furthermore, if the original process W (t) is Gaussian, the random variables Zk are

independent normal random variables with zero-mean and variance λk.

Let

ζk =
1

λk
Z2
k .

Since W (t) is Gaussian, we have ζk follows a chi-square distribution with one degree

of freedom.
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Hence, by Theorem 1 and Theorem 2,

∫ L

−L
Wn(t)2dt →

∫ L

−L
W 2(t)dt ( Theorem 1 )

=

∫ L

−L
(
∞∑
k=1

Zkek(t))
2dt ( Theorem 2 )

=
∞∑
k=1

Z2
k

=
∞∑
k=1

λkζk.

Thus we have derived the following theorem,

Theorem 3. Assume that the underling density g(·), the tilt function h(·) and the

kernel K(·) all are Lipschitz continuous, and L is sufficiently large. The sequence

{λk}∞k=1 is defined as (3.20) in Theorem 2. The random variable
∫ L
−LWn(t)2dt tends

in distribution to
∑∞

k=1 λkζk, where {ζk} follow chi-square distribution with one

degree of freedom.

Next we will derive a numerical approach for In. From the standard con-

sistency result in Devroye and Györfi(1985)[7], we have that
∫
|g(t) − ĝ(t)|dt and∫

|g(t) − g̃(t)|dt both converge to 0 with probability one if b → 0 and nb → ∞.

And by Theorem 1, E
(
nb(ĝ(t) − g̃(t))2

)
= 4g(t)EWn(t)2 is finite. Thus when

the sample size n is large enough, ∀ε > 0, ∃b > 0 s.t.
∫ L
−LDn(t)dt < ε almost

surely. And then for fixed b, we can derive Theorem 1 and Theorem 3. By (3.8),

In =
∫ L
−LWn(t)2dt +

∫ L
−LDn(t)dt. Thus In can be approximated numerically by∫ L

−LWn(t)2dt and then equals to
∑∞

k=1 λkζk.
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Corollary 1. When sample size n is large enough, we can choose and fix the band-

width b which makes
∫ L
−LDn(t)dt small. Thus In = nb

∫ L
−L

(√
ĝ(t)−

√
g̃(t)

)2
dt can

be approximated by
∑∞

k=1 λkζk where the sequence {λk}∞k=1 is defined as (3.20) and

{ζk} follow chi-square distribution with one degree of freedom.

However it is difficult to derive the analytic expression for the distribution

of
∑∞

k=1 λkζk. Therefore we apply a bootstrap procedure as in Qin and Zhang

(1997)[27] in the next section.

Bondell (2007)[4] considered the test statistic IBn as (1.5) and he assumed that

the bandwidth is fixed at b = 1. For the sake of comparison, we modify his test

statistic as

IBbn = nb

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt (3.21)

where the bandwidth b needs to be selected properly.

3.7 Numerical Study

In this section we compare the performance of our In with the Kommogorov-

Simirnov-type statistic ∆n in (1.2) of Qin and Zhang (1997)[27], the test statistic IBn

in (1.5) of Bondell (2007)[4], and the modified test statistic IBbn as in (3.21). Thus,

these four test statistics ∆n, IBn , IBbn , and In are used in goodness-of-fit testing to

validate model (1.1).

In the following simulations, we use the Gaussian kernel in our density esti-

mators, K(x) = (1/
√

2π) exp(−x2/2). The value of bandwidth b is needed in the

calculations of IBbn and In. From standard consistency results, b → 0 and nb → ∞
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are needed. For a given sample, where the sample size n is large enough, we fix

the bandwidth at a proper value which numerically makes ĝ(·) and g̃(·) close to g(·)

and simultaneously makes
∫ L
−LDn(t)dt small. Thus we fix the bandwidth so that

4/n < b < 0.1. Experience shows that when n = 1000, b =
√

4
n
· 0.1 = 0.02 is a

good choice.

3.7.1 Bootstrap Procedure

The bootstrap procedure which was suggested by Qin and Zhang (1997)[27]

simulates the distribution of the test statistic and its quantiles. The steps are as

follows:

1. Generate samples U and Z following model (1.1).

2. Obtain semiparametric estimates (α̂, β̂) and Ĝ(x) from the fused sample

T , and empirical G̃(x) from the reference sample U only.

3. Generate bootstrap data U∗ and Z∗ from dĜ(x) and exp(α̂ + xβ̂)dĜ(x)

respectively.

4. Obtain the estimated (α̂∗, β̂∗) and Ĝ∗(x) from the fused sample T ∗ =

(U∗, Z∗), and the empirical G̃∗(x) from the bootstrap reference sample U∗.

5. Derive the bootstrap version of the test statistics ∆∗n = supt
√
n|Ĝ∗(t) −

G̃∗(t)|, IB∗n = n
∫ (

ĝ∗(t) − g̃∗(t)
)2
dt, IBb∗n = nb

∫ (
ĝ∗(t) − g̃∗(t)

)2
dt and I∗n =

nb
∫ (√

ĝ∗(t)−
√
g̃∗(t)

)2
dt. Here ĝ∗(t) and g̃∗(t) are derived from Ĝ∗(x) and G̃∗(x)

respectively, following Lemma 2.

6. Repeat step 3 to step 5 to generate many bootstrap replications of the test
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statistics to approximate the critical values.

7. Calculate the empirical p-values.

We apply our proposed goodness-of-fit test statistic to simulated data following

model (1.1). We generate U ∼ N(0, 1) and Z ∼ N(0, 2) with sample sizes (n0, n1) =

(500, 500). The fused sample is T = {U,Z} with size n = 1000. The bandwidth

is fixed at b = 0.02. According to Example 1, the correctly specified tilt function

is h(x) = x2. Then from the fused sample T we can obtain (α̂, β̂) and Ĝ(·), the

estimated semiparametric distribution. And from Lemma (2) we obtain the kernel

density estimators ĝ(·) and g̃(·). From this the observed value of test statistic In =

0.4685. To simulate the distribution of In, we generate U∗ and Z∗ from dĜ(x) and

exp(α̂+xβ̂)dĜ(x) respectively. From 500 bootstrap replications of I∗n from {U∗, Z∗},

the observed p-value is P (I∗n > In) = 0.856 which means that null hypothesis model

(1.1) should be accepted. By applying the same procedure we obtained p-values

corresponding to ∆n, IBn and IBbn : P (∆∗n > ∆n) = 0.834, P (IB∗n > IBn ) = 0.966 and

P (IBb∗n > IBbn ) = 0.508. They all validate model (1.1).

Still using the same samples U ∼ N(0, 1) and Z ∼ N(0, 2) of size (n0, n1) =

(500, 500), replacing the correctly specified tilt function h(x) = x2 by the misspec-

ified tilt function h(x) = x, from the same procedure we get the observed value

of In = 3.022 and corresponding p-value P (I∗n > In) = 0, which indicates a strong

rejection of the null hypothesis model (1.1). The p-values corresponding to the other

three tests are all zero and so model (1.1) is rejected by all the tests.
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3.7.2 Monte-Carlo Simulation

Next we run Monte-Carlo simulations to investigate the distributions of the

p-values corresponding to four test statistics ∆n, IBn , IBbn and In. Recall from (1.2),

(1.5), (3.21) and (3.5),

∆n = sup
t

√
n|Ĝ(t)− G̃(t)| IBn = n

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt

IBbn = nb

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt In = nb

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt

Note that bandwidth b = 1 in IBn and b = 0.02 in both IBbn and In. We ran 100

Monte-Carlo simulation repetitions. In each repetition, we generated U ∼ N(0, 1)

and Z ∼ N(0, 2) with sample sizes (n0, n1) = (500, 500). After deriving (α̂, β̂) and

Ĝ(x) from fused sample T = {U,Z}, we repeat the bootstrap procedure 500 times

from step 3 to step 6. Therefore we get the distributions of the observed p-values

corresponding to each test statistic from 100 Monte-Carlo repetitions.

Figure 3.1 gives the distributions of p-values corresponding to four test statis-

tics when the tilt function is correctly specified as h(x) = x2. Figure 3.2 gives the

distributions of p-values corresponding to four test statistics when the tilt function

is misspecified as h(x) = x. Table 3.1 gives minimum, lower quartile, median, upper

quartile and maximum values of the distributions of p-values corresponding to ∆n,

IBn , IBbn and In. The 2nd column from right is the difference between the upper

quartile value and the lower quartile value, and the last column is the variance of

the distributions of the p-values for each statistic.
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Figure 3.1: Distributions of p-values corresponding to ∆n, IBn , IBbn and In. U ∼
N(0, 1) and Z ∼ N(0, 2) with sample sizes (n0, n1) = (500, 500). Correctly specified
tilt function h(x) = x2. Bandwidth b = 0.02 for IBbn and In. Bootstrap repeti-
tions=500, Monte-Carlo repetitions=100.

Figure 3.2 tells us that when the tilt function is misspecified, all four test

statistics lead to a strong rejection of model (1.1). Figure 3.1 tells us that when the

tilt function is correctly specified, all four test statistics suggest acceptance of model

(1.1) in most of the cases. Figure 3.1 also tells that the distributions of p-values

corresponding to In has smaller variation than those of other statistics. From Table

3.1 we see that the distribution of p-values corresponding to In have the smallest

variation among all four test statistics.

In the simulation above we generate samples from the normal distribution.

Next we generate lognormal samples. The lognormal distribution has much heavier
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Figure 3.2: Distributions of p-values corresponding to ∆n, IBn , IBbn and In. U ∼
N(0, 1) and Z ∼ N(0, 2) with sample sizes (n0, n1) = (500, 500). The tilt function
is misspecified h(x) = x. Bandwidth b = 0.02 for IBbn and In. Bootstrap repeti-
tions=500, Monte-Carlo repetitions=100.

tails than the normal distribution. We ran 100 Monte-Carlo simulation repetitions.

In each repetition, we generated U ∼ Lognormal(0, 0.5) and Z ∼ Lognormal(0, 0.7)

with sample sizes (n0, n1) = (500, 500). According to Example 3, the correctly

specified tilt function is h(x) = (log(x))2. After deriving (α̂, β̂) and Ĝ(x) from the

fused sample T = {U,Z}, we repeated the bootstrap procedure 500 times from step

3 to step 6 above. From this we obtained observed the distributions of p-values

corresponding to each test statistic by 100 Monte-Carlo repetitions.

Figure 3.3 gives the distributions of p-values corresponding to four test statis-

tics when tilt function is correctly specified as h(x) = (log(x))2. Figure 3.4 gives the
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distributions of p-values corresponding to four test statistics when tilt function is

misspecified as h(x) = log(x). Table 3.2 gives the minimum, lower quartile, median,

upper quartile and maximum values of the distributions of p-values corresponding

to ∆n, IBn , IBbn and In. The 2nd column from right is the difference between upper

quartile and lower quartile, and the last column is the variance of the distributions

of p-values for each statistic.

The simulation results from the lognormal distribution are very similar to

those from the normal distribution. For all four test statistics, Figure 3.4 indi-

cates strong rejections of model (1.1) when the tilt function is misspecified, however

Figure 3.3 suggests acceptances of model (1.1) when the tilt function is correctly

specified. From 3.3 and Table 3.2, it is observed that the distribution of the p-values

Table 3.1: Distributions of p-values corresponding to ∆n, IBn , IBbn and In.

U ∼ Normal (0,1), Z ∼ Normal (0,2) with sample size (n0, n1) = (500, 500).

Correctly specified tilt function h(x) = x2. Bandwidth b = 0.02 for IBbn and

In. Bootstrap repetitions=500, Monte-Carlo repetitions=100.

stat- mini- lower median upper maxi- upper variance

istic mum quartile quartile mum -lower

∆n 0.014 0.164 0.445 0.699 0.994 0.535 0.09331524

IBn 0.010 0.163 0.475 0.731 1.000 0.568 0.09487272

IBbn 0.012 0.228 0.468 0.686 0.978 0.458 0.08061943

In 0.012 0.179 0.362 0.591 0.980 0.412 0.07121728
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Figure 3.3: Distributions of p-values corresponding to ∆n, IBn , IBbn and In.
U ∼ Lognormal(0, 0.5) and Z ∼ Lognormal(0, 0.7) with sample size (n0, n1) =
(500, 500). Correctly specified tilt function h(x) = (log(x))2. Bandwidth b = 0.02
for IBbn and In. Bootstrap repetitions=500, Monte-Carlo repetitions=100.

corresponding to In has the smallest variation among all four test statistics.

Since the distribution of ∆n is completely unknown, the goodness-of-fit test

based on ∆n requires simulations to obtain p-values. Since IBn uses a fixed bandwidth

b = 1, the density estimators ĝ(·) and g̃(·) are not consistent. Thus, the test statistic

IBn may not accurately measure the difference between two competing densities.

Hence IBn may not provide correct decisions. The limiting distribution of In, derived

in this chapter, and IBbn have similar limiting distribution. Thus In and IBbn can

provide more reliable goodness-of-fit test decisions. In the simulations above, the

distribution of p-values of In has the smallest variation as compared with the other
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Figure 3.4: Distributions of p-values corresponding to ∆n, IBn , IBbn and In.
U ∼ Lognormal(0, 0.5) and Z ∼ Lognormal(0, 0.7) with sample size (n0, n1) =
(500, 500). The tilt function is misspecified h(x) = log(x). Bandwidth b = 0.02 for
IBbn and In. Bootstrap repetitions=500, Monte-Carlo repetitions=100.

three test statistics, but all four test statistics reach the same goodness-of-fit test

decisions.
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Table 3.2: Distributions of p-values corresponding to ∆n, IBn , IBbn and In.

U ∼ Lognormal (0,0.5), Z ∼ Lognormal (0,0.7) with sample size (n0, n1) =

(500, 500). Correctly specified tilt function h(x) = (log(x))2. Bandwidth b =

0.02 for IBbn and In. Bootstrap repetitions=500, Monte-Carlo repetitions=100.

test mini- lower median upper maxi- upper variance

statistic mum quartile quartile mum -lower

∆n 0.004 0.262 0.507 0.829 0.994 0.567 0.0985849

IBn 0.004 0.214 0.475 0.778 0.998 0.564 0.09622541

IBbn 0.002 0.174 0.463 0.703 0.988 0.529 0.08825601

In 0.004 0.125 0.345 0.532 0.994 0.407 0.06814273
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Chapter 4

Another Test Statistic Jn

In this chapter we propose a new test statistic which is a modified version of

Cheng and Chu (2004)[6] by using the structure of Hellinger distance. The limiting

distribution of the new test statistic is derived so that the goodness-of-fit test can

be performed without the bootstrap procedure.

4.1 Review of Cheng and Chu (2004)

Cheng and Chu (2004)[6] proposed a goodness-of-fit test statistic defined as

the integrated squared difference between two competing kernel density estimators

ĝ in (1.3) and g̃ in (1.4). Their test statistic is defined as (1.6),

JCn =

∫ (
ĝ(t)− g̃(t)

)2
dt.

As in Lemma 2, ĝ is the semiparametric kernel density estimator of the un-

derlying reference density g,

ĝ(t) =
1

n0

n∑
i=1

1

1 + ρ exp(α̂ + β̂′h(ti))
Kb(t− ti).

We see that ĝ(·) depends on(α̂, β̂) which is the maximum likelihood estimator of

(α, β), derived by solving the two score equations in (2.8). From Lemma 1 we know

that (α̂, β̂) is strongly consistent. Cheng and Chu (2004)[6] applied a second-order

Taylor expansion of the semiparametric kernel density estimate ĝ at (α, β). Then
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ĝ is decomposed into several parts. Next they used the decomposition of ĝ and

followed the idea of degenerate U-statistics as in Hall (1984)[16] to decompose the

test statistic JCn into terms with centered components. One term was asymptoti-

cally normal and the other terms were negligible. Therefore the test statistic JCn is

asymptotically normal. For completeness, in the next section we will discuss their

results.

4.2 Notation and Decomposition of ĝ(·)

We shall need the decomposition of ĝ in our development. As in (2.4), w(t) =

exp(α + β′h(t)). Define

p(t) =
1

n0 + n1w(t)
=

1

n0

· 1

1 + ρw(t)
(4.1)

and

ŵ(t) = exp(α̂ + β̂′h(t))

p̂(t) =
1

n0 + n1ŵ(t)
=

1

n0

· 1

1 + ρŵ(t)
,

where (α̂, β̂) are the MLE that we derived by solving (2.8).

Then

∂p

∂α
= − 1

n0

ρw(t)

(1 + ρw(t))2
= −p2(t)n1w(t)

∂p

∂β
= − 1

n0

ρw(t)h(t)

(1 + ρw(t))2
= −p2(t)n1w(t)h(t).

And as in (2.9),

p̂(ti) ≡
1

n0

· 1

1 + ρ exp(α̂ + β̂′h(ti))
=

1

n0

· 1

1 + ρŵ(ti)
.
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Recalling the consistency of (α̂, β̂), we apply a second-order Taylor expansion to

p̂(t) at (α, β),

p̂(t)

= p(t) + ( ∂p
∂α

∂p
∂β′

)

 α̂− α

β̂ − β

+O
(
p(t)

(
(α̂− α) + h(t)′(β̂ − β)

)2)

= p(t)− p2(t)n1w(t)
(

(α̂− α) + h(t)′(β̂ − β)
)

+O
(
p(t)

(
(α̂− α)

+ h(t)′(β̂ − β)
)2)

.

As in Lemma 2,

ĝ(t)

=
1

n0

n∑
i=1

1

1 + ρ exp(α̂ + β̂′h(ti))
Kb(t− ti)

=
n∑
i=1

p̂(ti)Kb(t− ti)

=
n∑
i=1

[
p(ti)− p2(ti)n1w(ti)

(
(α̂− α) + h(ti)

′(β̂ − β)
)

+O
(
p(ti)

(
(α̂− α)

+ h(ti)
′(β̂ − β)

)2)] ·Kb(t− ti)

= Q1(t)− q2(t)(α̂− α)− q3(t)′(β̂ − β) +Q5(t), (4.2)
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where

Q1(t) =
n∑
i=1

p(ti)Kb(t− ti)

Q2(t) =
n∑
i=1

p2(ti)n1w(ti)Kb(t− ti)

q2(t) = E(Q2(t))

Q3(t) =
n∑
i=1

p2(ti)n1w(ti)h(ti)Kb(t− ti)

q3(t) = E(Q3(t))

Q4(t) = O
( n∑
i=1

p(ti)
(
(α̂− α) + h(ti)

′(β̂ − β)
)2
Kb(t− ti)

)
Q5(t) =

(
q2(t)−Q2(t)

)
(α̂− α) +

(
q3(t)−Q3(t)

)′
(β̂ − β) +Q4(t).

The following assumptions are needed.

(A1). The probability density function g is positive on R and has two Lipschitz

continuous derivatives.

(A2). The kernel function K is a Lipschitz continuous and symmetric probability

density function with support [−1, 1].

(A3). n1/n0 → ρ as n → ∞, and the value of the bandwidth b satisfies b → 0 and

nb→∞, as n→∞.

Let g(2) be the second derivative of g, and let

κsq =

∫ 1

−1
K(x)2dx

κ2 =

∫ 1

−1
x2K(x)dx

M(t) =
1

1 + ρ
+

ρ

1 + ρ
w(t) =

1

np(t)
.
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Lemma 5 (Cheng and Chu(2004)). If model (1.1) holds and assumption (A1)-(A3)

are satisfied, then we have the following asymptotic results:

E(Q1(t)) = g(t) +
1

2
b2κ2g

(2)(t) +O(b3) (4.3)

V ar(Q1(t)) =
1

nb
· κsqg(t)

M(t)
+O(

1

n
) (4.4)

E(Q2(t)) =
ρ

1 + ρ
· w(t)g(t)

M(t)
+O(b2) (4.5)

V ar(Q2(t)) =
1

nb

( ρ

1 + ρ
w(t)

)2κsqg(t)

M3(t)
+O(

1

n
) (4.6)

E(Q3(t)) =
ρ

1 + ρ
· h(t)w(t)g(t)

M(t)
+O(b2) (4.7)

V ar(Q3(t)) =
1

nb

( ρ

1 + ρ
w(t)

)2κsqh(t)′h(t)g(t)

M3(t)
+O(

1

n
) (4.8)

E(Q4(t)) = O(
1

n
) (4.9)

E(Q4(t)
2) = O(

1

n2
) (4.10)

E(α̂− α) = o(
1√
n

), E(β̂ − β) = o(
1√
n

), V ar(α̂) = O(
1

n
), V ar(β̂) = O(

1

n
).

(4.11)

The proof of Lemma 5 is provided in Appendix A.

4.3 A New Statistic

We define our test statistic as the Hellinger distance,

Jn =

∫ (√
ĝ(t)−

√
g̃(t)

)2
dt. (4.12)

Note that in Chapter 3 our new test statistic is In =
∫ (√

nb(
√
ĝ(t)−

√
g̃(t))

)2
dt.

We started from deriving weak convergence of
√
nb(
√
ĝ(t)−

√
g̃(t)) which is inside

of the integral. In this chapter we decompose Jn entirely.
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We shall use the Epanechnikov kernel which was first used in density estimation

by Epanechnikov (1969) [8]

K(x) =
3

4
(1− x2)I[−1,1](x) (4.13)

where I[−1,1](x) is an indicator function. In this chapter and in the following chap-

ters, all the kernel functions used in statistics Jn as (4.12) and JCn as (1.6) are the

Epanechnikov kernel. The interval of the integral in our statistic defined in (4.12)

is actually bounded by the largest value in the samples. Let L = max1≤i≤n |ti| + 1.

Then all the integrals are considered in [−L,L].

Consider

(√
ĝ(t)−

√
g̃(t)

)2
=

(
ĝ(t)− g̃(t)√
ĝ(t) +

√
g̃(t)

)2

=
(ĝ(t)− g̃(t))2

4g(t)
+

(( ĝ(t)− g̃(t)√
ĝ(t) +

√
g̃(t)

)2 − (ĝ(t)− g̃(t))2

4g(t)

)

=
(ĝ(t)− g̃(t))2

4g(t)
+
(

4g(t)− (
√
ĝ(t) +

√
g̃(t))2

) (ĝ(t)− g̃(t))2

4g(t)(
√
ĝ(t) +

√
g̃(t))2

=
(ĝ(t)− g̃(t))2

4g(t)
+
(
2
√
g(t)−

√
ĝ(t)−

√
g̃(t)

)(
2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

)
× (ĝ(t)− g̃(t))2

4g(t)(
√
ĝ(t) +

√
g̃(t))2

=
(ĝ(t)− g̃(t))2

4g(t)
+
(√

g(t)−
√
ĝ(t)

)(2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2

)
(ĝ(t)− g̃(t))2

+
(√

g(t)−
√
g̃(t)

)(2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2

)
(ĝ(t)− g̃(t))2

=
(ĝ(t)− g̃(t))2

4g(t)

+ (g(t)− ĝ(t))
2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
ĝ(t))

(ĝ(t)− g̃(t))2

+ (g(t)− g̃(t))
2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
g̃(t))

(ĝ(t)− g̃(t))2.
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Let

J0
n =

∫
(ĝ(t)− g̃(t))2

4g(t)
dt (4.14)

J1
n =

∫
(g(t)− ĝ(t))

2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
ĝ(t))

(ĝ(t)− g̃(t))2dt

J2
n =

∫
(g(t)− g̃(t))

2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
g̃(t))

(ĝ(t)− g̃(t))2dt,

then Jn = J0
n + J1

n + J2
n. In the next section we focus on J0

n.

4.4 Decomposition of J0
n

Let

Qr(t) = q2(t)(α̂− α) + q3(t)
′(β̂ − β)−Q5(t)

then

ĝ(t) = Q1(t)−Qr(t).

Let

q0(t) = E(g̃(t)), q1(t) = E(Q1(t)).

Then we have

J0
n =

∫
(ĝ(t)− g̃(t))2

4g(t)
dt

=

∫
1

4g(t)
(Q1(t)−Qr(t)− g̃(t))2dt

=

∫
1

4g(t)

{[
E(Q1(t))− E(g̃(t))

]
+
[(
Q1(t)− E(Q1(t))

)
−
(
g̃(t)− E(g̃(t))

)]
−Qr(t)

}2

dt

=

∫ 
(
q1(t)− q0(t)

)
+
((
Q1(t)− q1(t)

)
−
(
g̃(t)− q0(t)

))
−Qr(t)

2
√
g(t)


2

dt.
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Define

J1 =

∫ (q1(t)− q0(t)
2
√
g(t)

)2
dt

J2 =

∫ ((Q1(t)− q1(t)
)
−
(
g̃(t)− q0(t)

)
2
√
g(t)

)2
dt

J3 =

∫ ( Qr(t)

2
√
g(t)

)2
dt

J4 =
1

2

∫
q1(t)− q0(t)

g(t)

[(
Q1(t)− q1(t)

)
−
(
g̃(t)− q0(t)

)]
dt

J5 = −1

2

∫
q1(t)− q0(t)

g(t)
Qr(t)dt

J6 = −1

2

∫ (
Q1(t)− q1(t)

)
−
(
g̃(t)− q0(t)

)
g(t)

Qr(t)dt.

Then, J0
n = J1 + J2 + J3 + J4 + J5 + J6.

4.5 Asymptotic Result for J0
n

In this section, we will prove that J2 is asymptotically normal and that the

other terms J1,J3,J4,J5 and J6 all are negligible. Since J0
n = J1+J2+J3+J4+J5+J6,

we have that J0
n is asymptotically normal with the same distribution as J2.

Lemma 6.

n
√
b
(
J2 −

1

4nb
ρκsq

∫
w(t)

M(t)
dt
)

d−→ N
(

0,
1

8
ρ2κc

∫ (
w(t)

M(t)

)2

dt
)

where

κc =

∫ ( ∫
K(x)K(y − x)dx

)2
dy

is a constant number for fixed K(·) with compact support.

In this chapter K(·) is the Epanechnikov kernel. We provide the value of κc

in Appendix B.
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Proof. Notice that

1

n0

− p(t) = ρp(t)w(t).

So

(
Q1(t)− q1(t)

)
−
(
g̃(t)− q0(t)

)
=
( n∑
i=1

p(ti)Kb(t− ti)− E(
n∑
i=1

p(ti)Kb(t− ti))
)

−
( 1

n0

n0∑
i=1

Kb(t− ui)− E(
1

n0

n0∑
i=1

Kb(t− ui))
)

=

n1∑
j=1

(
p(zj)Kb(t− zj)− E(p(zj)Kb(t− zj))

)
−

n0∑
i=1

(
ρp(ui)w(ui)Kb(t− ui)− E(ρp(ui)w(ui)Kb(t− ui))

)
.

Define

Xi(t) = − 1

2
√
g(t)

(
ρp(ui)w(ui)Kb(t− ui)− E(ρp(ui)w(ui)Kb(t− ui))

)
i = 1, 2, ..., n0

Yj(t) =
1

2
√
g(t)

(
p(zj)Kb(t− zj)− E(p(zj)Kb(t− zj))

)
j = 1, 2, ..., n1

{
Tk(t)

}
=
{
X1(t), X2(t), ..., Xn0(t), Y1(t), Y2(t), ..., Yn1(t)

}
k = 1, 2, ..., n0, ..., n.

Then

J2 =

∫ ((Q1(t)− q1(t)
)
−
(
g̃(t)− q0(t)

)
2
√
g(t)

)2
dt

=

∫ ( n∑
k=1

Tk(t)
)2
dt

=

∫ n∑
k=1

T 2
k (t)dt+

∫
2
∑

1≤i<j≤n

Ti(t)Tj(t) dt. (4.15)
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Consider the first part in (4.15). From the calculation of n0EX
2
i (t)+n1EY

2
j (t)

below, we can see that EX2
i (t) and EY 2

j (t) both are continuous functions of t. Since

the integral is considered in a bounded interval [−L,L], we have E|
∫
X2
i (t)dt| <∞

and E|
∫
Y 2
j (t)dt| <∞. Thus

∫ n∑
k=1

T 2
k (t) dt =

∫ n0∑
i=1

X2
i (t) +

n1∑
j=1

Y 2
j (t) dt

= n0 ·
∑n0

i=1

∫
X2
i (t)dt

n0

+ n1 ·
∑n1

j=1

∫
Y 2
j (t)dt

n1

LLN−−−→
a.s.

n0E
(∫

X2
i (t)dt

)
+ n1E

(∫
Y 2
j (t)dt

)
=

∫ (
n0EX

2
i (t) + n1EY

2
j (t)

)
dt.

(4.16)

Next we calculate n0EX
2
i (t) + n1EY

2
j (t).

n0EX
2
i (t) + n1EY

2
j (t)

=
n0

4g(t)
E
(
ρp(ui)w(ui)Kb(t− ui)− E(ρp(ui)w(ui)Kb(t− ui))

)2
+

n1

4g(t)
E
(
p(zj)Kb(t− zj)− E(p(zj)Kb(t− zj))

)2
=

n0

4g(t)
E
(
ρp(ui)w(ui)Kb(t− ui)

)2
− n0

4g(t)

(
E(ρp(ui)w(ui)Kb(t− ui))

)2
+

n1

4g(t)
E
(
p(zj)Kb(t− zj)

)2
− n1

4g(t)

(
E(p(zj)Kb(t− zj))

)2
=

n0

4g(t)

∫
ρ2p2(x)w2(x)K2

b (t− x)g(x)dx− n0

4g(t)

(∫
ρp(x)w(x)Kb(t− x)g(x)dx

)2
+

n1

4g(t)

∫
p2(x)K2

b (t− x)w(x)g(x)dx− n1

4g(t)

(∫
p(x)Kb(t− x)w(x)g(x)dx

)2
=

1

4g(t)

∫ (
n0ρ

2w(x) + n1

)
p2(x)K2

b (t− x)w(x)g(x)dx

− n0ρ
2 + n1

4g(t)

(∫
p(x)Kb(t− x)w(x)g(x)dx

)2
=

ρ

4g(t)

∫
p(x)K2

b (t− x)w(x)g(x)dx− nρ

4g(t)

(∫
p(x)Kb(t− x)w(x)g(x)dx

)2
.
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Let t−x
b

= y, then x = t − by. Since K(·) is symmetric,
∫
yK(y)dy = 0 and∫

yK2(y)dy = 0. Apply the Taylor expansion to p(·), w(·) and g(·),∫
p(x)Kb(t− x)w(x)g(x)dx

=

∫
p(t− by)

1

b
K(y)w(t− by)g(t− by)bdy

=

∫ (
p(t)− byp′(t)

)
K(y)

(
w(t)− byw′(t)

)(
g(t)− byg′(t)

)
dy +O(

b2

n
)

= p(t)w(t)g(t)

∫
k(y)dy +O(

b2

n
)

=
1

n
· w(t)g(t)

M(t)
+O(

b2

n
) (4.17)

and∫
p(x)K2

b (t− x)w(x)g(x)dx

=

∫
p(t− by)

1

b2
K2(y)w(t− by)g(t− by)bdy

=
1

b

∫ (
p(t)− byp′(t)

)
K2(y)

(
w(t)− byw′(t)

)(
g(t)− byg′(t)

)
dy +O(

b

n
)

=
1

b
p(t)w(t)g(t)

∫
K2(y)dy +O(

b

n
)

=
1

nb
· w(t)g(t)

M(t)
κsq +O(

b

n
), (4.18)

so

n0EX
2
i (t) + n1EY

2
j (t) =

ρ

4g(t)
· 1

nb
· w(t)g(t)

M(t)
κsq −

nρ

4g(t)

( 1

n

w(t)g(t)

M(t)

)2
=

ρ

4nb
· w(t)

M(t)
κsq −

ρ

4ng(t)
(
w(t)

M(t)
)2g(t)

=
ρ

4nb
· w(t)

M(t)
κsq −O(

1

n
).

Then for the first part in (4.15), we have∫ n∑
k=1

T 2
k (t)dt

LLN−−−→
a.s.

∫
ρ

4nb
· w(t)

M(t)
κsqdt.

54



Next we investigate the 2nd part of (4.15). Note that {Tk(t)} are independent

and E(Tk(t)) = 0. Furthermore,

E(

∫
Ti(t)Tj(t)dt) =

∫
E
{
E
(
Ti(t)Tj(t)

∣∣∣ti)}dt = 0.

Let

wij =


2
∫
Ti(t)Tj(t)dt if i 6= j,

0 if i = j.

then ∫
2
∑

1≤i<j≤n

Ti(t)Tj(t)dt =
∑

1≤i<j≤n

wij (4.19)

and E(wij|ti) = 0. Thus
∑

1≤i<j≤nwij satisfies the ‘clean’ condition as in Jong

(1987)[17]. Next we calculate the variance of
∑

1≤i<j≤nwij.

Define

Wa =
∑

1≤i<j≤n

w2
ij

Wb =
∑

1≤i<j<k≤n

(
wijwik + wjiwjk + wkiwkj

)
Wc =

∑
1≤i<j<k<l≤n

(
wijwkl + wikwjl + wilwjk

)
.

Then ( ∑
1≤i<j≤n

wij
)2

= Wa + 2Wb + 2Wc.

Note that for any general term in Wb, the product wijwik has zero expectation since

E(wijwik) = E(E(wijwik|ti, tk)) = EwikE(wij|ti) = 0.

So we have EWb = 0, and obviously, EWc = 0. Let σ2(n) be the variance of∑
1≤i<j≤nwij. Then

σ2(n) = V ar(
∑

1≤i<j≤n

wij) = E(
∑

1≤i<j≤n

wij)
2 = E(Wa +Wb +Wc) = EWa.
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Thus

σ2(n) = E(
∑

1≤i<j≤n

w2
ij) = 4

∑
1≤i<j≤n

E
(∫

Ti(t)Tj(t)dt
)2

= 4
∑

1≤i<j≤n0

E
(∫

Xi(t)Xj(t)dt
)2

+ 4
∑

1≤i<j≤n1

E
(∫

Yi(t)Yj(t)dt
)2

+ 4
∑

1≤i≤n0
1≤j≤n1

E
(∫

Xi(t)Yj(t)dt
)2

= 4
∑

1≤i<j≤n0

E
(∫

Xi(s)Xj(s)ds

∫
Xi(t)Xj(t)dt

)
+ 4

∑
1≤i<j≤n1

E
(∫

Yi(s)Yj(s)ds

∫
Yi(t)Yj(t)dt

)
+ 4

∑
1≤i≤n0
1≤j≤n1

E
(∫

Xi(s)Yj(s)ds

∫
Xi(t)Yj(t)dt

)

= 4
∑

1≤i<j≤n0

∫ ∫
E
(
Xi(s)Xi(t)

)
E
(
Xj(s)Xj(t)

)
dsdt

+ 4
∑

1≤i<j≤n1

∫ ∫
E
(
Yi(s)Yi(t)

)
E
(
Yj(s)Yj(t)

)
dsdt

+ 4
∑

1≤i≤n0
1≤j≤n1

∫ ∫
E
(
Xi(s)Xi(t)

)
E
(
Yj(s)Yj(t)

)
dsdt

= 4

∫ ∫
n0(n0 − 1)

2

(
E(Xi(s)Xi(t))

)2
+
n1(n1 − 1)

2

(
E(Yj(s)Yj(t))

)2
+ n0n1E

(
Xi(s)Xi(t)

)
E
(
Yj(s)Yj(t)

)
dsdt

= 2

∫ ∫ (
n0EXi(s)Xi(t) + n1EYj(s)Yj(t)

)2
− n0

(
E(Xi(s)Xi(t))

)2
− n1

(
E(Yj(s)Yj(t))

)2
dsdt.

In order to obtain the value of σ(n), we need to calculate E(Xi(s)Xi(t)) and
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E(Yj(s)Yj(t)). We have,

E
(
Xi(s)Xi(t)

)
= E

{ 1

4
√
g(s)g(t)

(
ρp(ui)w(ui)Kb(s− ui)− E(ρp(ui)w(ui)Kb(s− ui))

)
×
(
ρp(ui)w(ui)Kb(t− ui)− E(ρp(ui)w(ui)Kb(t− ui))

)}
=

ρ2

4
√
g(s)g(t)

{
E
(
p2(ui)w

2(ui)Kb(s− ui)Kb(t− ui)
)

− E
(
p(ui)w(ui)Kb(s− ui)

)
E
(
p(ui)w(ui)Kb(t− ui)

)}
=

ρ2

4
√
g(s)g(t)

{∫
p2(x)w2(x)Kb(s− x)Kb(t− x)g(x)dx

−
∫
p(x)w(x)Kb(s− x)g(x)dx ·

∫
p(x)w(x)Kb(t− x)g(x)dx

}
.

Let t−x
b

= y, then x = t− by and x− s = (t− s)− by. We have

∫
p2(x)w2(x)Kb(s− x)Kb(t− x)g(x)dx

=

∫
p2(t− by)w2(t− by)

1

b2
K(y)K(

t− s
b
− y)g(t− by)bdy

=
1

b
p2(t)w2(t)g(t)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)

=
1

n2b

( w(t)

M(t)

)2
g(t)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
). (4.20)

Combining this with (4.17), we have

E(Xi(s)Xi(t))

=
ρ2

4
√
g(s)g(t)

{ 1

n2b

( w(t)

M(t)

)2
g(t)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)

−
( 1

n
· w(s)g(s)

M(s)
+O(

b2

n
)
)( 1

n
· w(t)g(t)

M(t)
+O(

b2

n
)
)}

=
ρ2

4n2b

( w(t)

M(t)

)2√ g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
). (4.21)
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Similarly,

E(Yj(s)Yj(t))

= E
{ 1

4
√
g(s)g(t)

(
p(zj)Kb(s− zj)− E(p(zj)Kb(s− zj))

)
×
(
p(zj)Kb(t− zj)− E(p(zj)Kb(t− zj))

)}
=

1

4
√
g(s)g(t)

{
E
(
p2(zj)Kb(s− zj)Kb(t− zj)

)
− E

(
p(zj)Kb(s− zj)

)
E
(
p(zj)Kb(t− zj)

)}
=

1

4
√
g(s)g(t)

{∫
p2(x)Kb(s− x)Kb(t− x)w(x)g(x)dx

−
∫
p(x)Kb(s− x)w(x)g(x)dx ·

∫
p(x)Kb(t− x)w(x)g(x)dx

}
=

1

4
√
g(s)g(t)

{
p2(t)w(t)g(t)

1

b

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)

− 1

n2
(
w(s)g(s)

M(s)
)(
w(t)g(t)

M(t)
)−O(

b2

n2
)
}

=
1

4n2b
· w(t)

M2(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
). (4.22)

So

n0EXi(s)Xi(t) + n1EYj(s)Yj(t)

= n0
ρ2

4n2b

( w(t)

M(t)

)2√ g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy

+ n1
1

4n2b
· w(t)

M2(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy

+O(
1

n
)

=
ρ

4nb
· w(t)

M(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n
).
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Let (t− s)/b = r, then s = t− br. Therefore,

σ2(n) = 2

∫ ∫ (
n0EXi(s)Xi(t) + n1EYj(s)Yj(t)

)2
− n0

(
E(Xi(s)Xi(t))

)2
− n1

(
E(Yj(s)Yj(t))

)2
dsdt

= 2

∫ ∫ ( ρ

4nb
· w(t)

M(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy

)2
dsdt

− 2n0

∫ ∫ ( ρ2

4n2b
(
w(t)

M(t)
)2

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy

)2
dsdt

− 2n1

∫ ∫ ( 1

4n2b
· w(t)

M2(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy

)2
dsdt

=

∫ ( ρ2

8n2b2
· w

2(t)

M2(t)
− n0ρ

4

8n4b2
· w

4(t)

M4(t)
− n1

8n4b2
· w

2(t)

M4(t)

)
g(t)

∫
1

g(t− br)

×
( ∫

K(y)K(r − y)dy
)2
bdrdt

=
ρ2

8n2b
κc

∫ (
w(t)

M(t)

)2

dt+O(
1

n3b
). (4.23)

In order to Apply Theorem (2.1) in Jong (1987)[17], we need to check two

conditions in Theorem (2.1) in Jong (1987)[17]:

σ(n)−2 max
1≤i≤n

∑
1≤j≤n

Ew2
ij → 0, n→∞. (4.24)

σ(n)−4E(
∑

1≤i<j≤n

wij)
4 → 3, n→∞. (4.25)

For condition (4.24),

∑
1≤j≤n

Ew2
ij = 4

∑
1≤j≤n

E(

∫
Ti(t)Tj(t)dt)

2

= 4E
( ∑

1≤j≤n0

(

∫
Ti(t)Xj(t)dt)

2 +
∑

n0<j≤n

(

∫
Ti(t)Yj−n0(t)dt)

2
)
.
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For 1 ≤ i ≤ n0,

∑
1≤j≤n

Ew2
ij

= 4E
( ∑

1≤j≤n0

(

∫
Xi(t)Xj(t)dt)

2 +
∑

n0<j≤n

(

∫
Xi(t)Yj−n0(t)dt)

2
)

= 4E
( ∑

1≤j≤n0

∫ ∫
Xi(t)Xj(t)Xi(s)Xj(s)dsdt

+
∑

n0<j≤n

∫ ∫
Xi(t)Yj−n0(t)Xi(s)Yj−n0(s)dsdt

)
= 4

∑
1≤j≤n0
i 6=j

∫ ∫
E
(
Xi(t)Xi(s)

)
E
(
Xj(t)Xj(s)

)
dsdt

+4
∑

n0<j≤n

∫ ∫
E
(
Xi(t)Xi(s)

)
E
(
Yj−n0(t)Yj−n0(s)

)
dsdt

= 4(n0 − 1)

∫ ∫ ( ρ2

4n2b
(
w(t)

M(t)
)2

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)
)2
dsdt

+4n1

∫ ∫ ( ρ2

4n2b
(
w(t)

M(t)
)2

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)
)

×
( 1

4n2b

w(t)

M2(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)
)
dsdt

=
ρ4(n0 − 1)

4n4b2

∫ ∫ ( w(t)

M(t)

)4 · g(t)

g(t− br)

(∫
K(y)K(r − y)dy

)2
bdrdt

+
ρ2n1

4n4b2

∫ ∫
w3(t)

M4(t)
· g(t)

g(t− br)

(∫
K(y)K(r − y)dy

)2
bdrdt+O(

1

n3
)

= O(
1

n3b
).
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And for n0 < i ≤ n, let k = i− n0,

∑
1≤j≤n

Ew2
ij

= 4E
( ∑

1≤j≤n0

(

∫
Yk(t)Xj(t)dt)

2 +
∑

n0<j≤n

(

∫
Yk(t)Yj−n0(t)dt)

2
)

= 4E
( ∑

1≤j≤n0

∫ ∫
Yk(t)Xj(t)Yk(s)Xj(s)dsdt

+
∑

1≤j≤n1

∫ ∫
Yk(t)Yj−n0(t)Yk(s)Yj−n0(s)dsdt

)
= 4

∑
1≤j≤n0

∫ ∫
E
(
Yk(t)Yk(s)

)
E
(
Xj(t)Xj(s)

)
dsdt

+4
∑

n0<j≤n
k 6=j

∫ ∫
E
(
Yk(t)Yk(s)

)
E
(
Yj−n0(t)Yj−n0(s)

)
dsdt

= 4n0

∫ ∫ ( 1

4n2b
· w(t)

M2(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)
)

×
( ρ2

4n2b
(
w(t)

M(t)
)2

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy +O(

1

n2
)
)
dsdt

+4(n1 − 1)

∫ ∫ ( 1

4n2b
· w(t)

M2(t)

√
g(t)

g(s)

∫
K(y)K(

t− s
b
− y)dy

+O(
1

n2
)
)2
dsdt

= O(
1

n3b
). (4.26)

Also from (4.23) we know that

σ2(n) = O(
1

n2b
).

Thus

σ(n)−2 max
1≤i≤n

∑
1≤j≤n

Ew2
ij = O(

1

n
)→ 0,

so condition (4.24) is satisfied.
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For condition (4.25), we define

WI =
∑

1≤i<j≤n

Ew4
ij

WII =
∑

1≤i<j<k≤n

(Ew2
ijw

2
ik + Ew2

jiw
2
jk + Ew2

kiw
2
kj)

WIII =
∑

1≤i<j<k≤n

(Ew2
ijwkiwkj + Ew2

ikwjiwjk + Ew2
kjwijwik)

WIV =
∑

1≤i<j<k<l≤n

(Ewijwikwljwlk + Ewijwilwkjwkl + Ewikwilwjkwjl)

WV =
∑

1≤i<j<k<l≤n

(Ew2
ijw

2
kl + Ew2

ikw
2
jl + Ew2

ilw
2
jk),

then

( ∑
1≤i<j≤n

wij
)4

=
[
(
∑

1≤i<j≤n

wij)
2
]2

= (Wa + 2Wb + 2Wc)
2

= W 2
a + 4W 2

b + 4W 2
c + 4WaWb + 4WaWc + 8WbWc.

By direct calculation, we have

EW 2
a = WI + 2WII + 2WV

EW 2
b = WII + 2WIII + 4WIV

EW 2
c = 2WIV +WV

EWaWb = WIII

EWaWc = 0

EWbWc = 0,

so that,

E
( ∑
1≤i<j≤n

wij
)4

= WI + 6WII + 12WIII + 24WIV + 6WV . (4.27)

62



Consider the general term in WI ,

Ew4
ij = 16E(

∫
Ti(t)Tj(t)dt)

4

= 16

∫ ∫ ∫ ∫
E(

4∏
k=1

Ti(tk)) · E(
4∏

k=1

Tj(tk))dt1dt2dt3dt4.

Next we need to calculate E(
∏4

k=1 Ti(tk)). Note here {tk} (k = 1, 2, 3, 4) are inte-

gration variables, not random. For 1 ≤ i ≤ n0, Ti(tk) = Xi(tk) (k = 1, 2, 3, 4.)

E(
4∏

k=1

Ti(tk)) = E(
4∏

k=1

Xi(tk))

=
1

16
√∏4

k=1 g(tk)
E
{ 4∏
k=1

[
ρp(ui)w(ui)Kb(tk − ui)− E

(
ρp(ui)w(ui)

×Kb(tk − ui)
)]}

=
ρ4

16
√∏4

k=1 g(tk)

(
L1 − L2 + L3 − L4

)
(4.28)

where

L1 = E
[
p4(ui)w

4(ui)
4∏

k=1

Kb(tk − ui)
]

L2 =
4∑

k=1

{
E
[
p3(ui)w

3(ui)

∏4
m=1Kb(tm − ui)
Kb(tk − ui)

]
· E
[
p(ui)w(ui)Kb(tk − ui)

]}
L3 =

∑
{k1,k2,k3,k4}={1,2,3,4},
{1,3,2,4},{1,4,2,3},{2,3,1,4},

{2,4,1,3},{3,4,1,2}

{
E
[
p2(ui)w

2(ui)Kb(tk1 − ui)Kb(tk2 − ui)
]

× E
[
p(ui)w(ui)Kb(tk3 − ui)

]
· E
[
p(ui)w(ui)Kb(tk4 − ui)

]}
L4 = 3

4∏
k=1

E
[
p(ui)w(ui)Kb(tk − ui)

]
.

We will get the order of L1, L2, L3 and L4 by deriving general term of them. Let

t1−x
b

= y, t1−t2
b

= s2,
t1−t3
b

= s3,
t1−t4
b

= s4, then t2 = t1 − bs2, t3 = t1 − bs3, and

t4 = t1 − bs4.
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For the general term in L4,

Ep(ui)w(ui)Kb(tk − ui) =

∫
p(x)w(x)Kb(tk − x)g(x)dx

=

∫
p(tk − by)w(tk − by)

1

b
K(y)g(tk − by)bdy

= p(tk)w(tk)g(tk)−O(
b2

n
)

=
1

n
· w(tk)g(tk)

M(tk)
+O(

b2

n
)

= O(
1

n
). (4.29)

Thus L4 in (4.28) is of order O( 1
n4 ). For the general term in L3,

Ep2(ui)w
2(ui)Kb(t1 − ui)Kb(t2 − ui)

=

∫
p2(x)w2(x)Kb(t1 − x)Kb(t2 − x)g(x)dx

=

∫
p2(t1 − by)w2(t1 − by)

1

b2
K(y)K(

t1 − t2
b
− y)g(t1 − by)bdy

=
1

b
p2(t1)w

2(t1)g(t1)

∫
K(y)K(s2 − y)dy +O(

1

n2
)

= O(
1

n2b
). (4.30)

Combining (4.29) and (4.30), we see that L3 in (4.28) is of order O( 1
n4b

). Consider

the general term in L2,

Ep3(ui)w
3(ui)Kb(t1 − ui)Kb(t2 − ui)Kb(t3 − ui)

=

∫
p3(x)w3(x)Kb(t1 − x)Kb(t2 − x)Kb(t3 − x)g(x)dx

=

∫
p3(t1 − by)w3(t1 − by)

1

b3
K(y)K(

t1 − t2
b
− y)K(

t1 − t3
b
− y)g(t1 − by)bdy

=
1

n3b2
· w

3(t1)g(t1)

M3(t1)

∫
K(y)K(s2 − y)K(s3 − y)dy +O(

1

n3b
)

= O(
1

n3b2
). (4.31)
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Thus combining (4.31) and (4.29), we see that L2 in (4.28) is of order O( 1
n4b2

). For

L1,

Ep4(ui)w
4(ui)

4∏
k=1

Kb(tk − ui)

=

∫
p4(x)w4(x)

4∏
k=1

Kb(tk − x)g(x)dx

=

∫
p4(t1 − by)w4(t1 − by)

1

b4
K(y)

4∏
k=2

K(
t1 − tk
b
− y)g(t1 − by)bdy

=
1

n4b3
· w

4(t1)g(t1)

M4(t1)

∫
K(y)K(s2 − y)K(s3 − y)K(s4 − y)dy +O(

1

n4b2
)

= O(
1

n4b3
). (4.32)

Thus L1 in (4.28) is of order O( 1
n4b3

). Then L2, L3 and L4 are of lower order than

L1. So we have

E(
4∏

k=1

Ti(tk)) = O(
1

n4b3
) for 1 ≤ i ≤ n0. (4.33)

For n0 < i ≤ n, let l = i− n0, then Ti(tk) = Yl(tk) (k = 1, 2, 3, 4). We have

E(
4∏

k=1

Ti(tk))

= E(
4∏

k=1

Yl(tk))

=
1

16
√∏4

k=1 g(tk)
E
{ 4∏
k=1

[
p(zl)Kb(tk − zl)− E

(
p(zl)Kb(tk − zl)

)]}
=

1

16
√∏4

k=1 g(tk)
E
(
L′1 − L′2 + L′3 − L′4

)
. (4.34)
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where

L′1 = E
[
p4(zl)

4∏
k=1

Kb(tk − zl)
]

L′2 =
4∑

k=1

{
E
[
p3(zl)

∏4
m=1Kb(tm − zl)
Kb(tk − zl)

]
· E
[
p(zl)Kb(tk − zl)

]}
L′3 =

∑
{k1,k2,k3,k4}={1,2,3,4},
{1,3,2,4},{1,4,2,3},{2,3,1,4},

{2,4,1,3},{3,4,1,2}

{
E
[
p2(zl)Kb(tk1 − zl)Kb(tk2 − zl)

]
· E
[
p(zl)

×Kb(tk3 − zl)
]
· E
[
p(zl)Kb(tk4 − zl)

]}
L′4 =

4∏
k=1

E
[
p(zl)Kb(tk − zl)

]
.

We can obtain the order of L′1, L
′
2, L

′
3 and L′4 by deriving general term of them as

before. The result is similar. L′1 is of order O( 1
n4b3

), L′2 is of order O( 1
n4b2

), L′3 is of

order O( 1
n4b

) and L′4 is of order O( 1
n4 ). Therefore, we have

E(
4∏

k=1

Ti(tk)) = O(
1

n4b3
) for n0 < i ≤ n. (4.35)

Combining (4.33) and (4.35), we have for any i ∈ {1, 2, · · ·, n},

E(
4∏

k=1

Ti(tk)) = O(
1

n4b3
). (4.36)

So

Ew4
ij =

1

16
ρ4I[1,n0]

(i)+4I[1,n0]
(j)

∫ ∫ ∫ ∫
O(

1

n4b3
)O(

1

n4b3
)b3ds4ds3ds2dt1

= O(
1

n8b3
).

Thus

WI =
∑

1≤i<j≤n

Ew4
ij =

(
n

2

)
O(

1

n8b3
) = O(

1

n6b3
). (4.37)
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Consider the general term in WII , we need the following result from combining

(4.21) and (4.22),

E
(
Ti(t1)Ti(t2)

)
= O(

1

n2b
), (4.38)

and by using the result in (4.36) and (4.38),

Ew2
ijw

2
ik

= E
[
(2

∫
Ti(t)Tj(t)dt)

2(2

∫
Ti(t)Tk(t)dt)

2
]

= 16E

∫ ∫ ∫ ∫
Ti(t1)Tj(t1)Ti(t2)Tj(t2)Ti(t3)Tk(t3)Ti(t4)Tk(t4)dt4dt3dt2dt1

= 16

∫ ∫ ∫ ∫
E(

4∏
l=1

Ti(tl))E(Tj(t1)Tj(t2))E(Tk(t3)Tk(t4))dt4dt3dt2dt1

=

∫ ∫ ∫ ∫
O(

1

n4b3
)O(

1

n2b
)O(

1

n2b
) · b3ds4ds3ds2dt1

= O(
1

n8b2
).

Then

WII =
∑

1≤i<j<k≤n

(Ew2
ijw

2
ik + Ew2

jiw
2
jk + Ew2

kiw
2
kj)

= 3

(
n

3

)
O(

1

n8b2
)

= O(
1

n5b2
). (4.39)

Consider WIII , since

|2wikwkj| ≤ w2
ik + w2

kj,

compare general term of WIII with the general term of WII ,

Ew2
ijwkiwkj + Ew2

ikwjiwjk + Ew2
kjwijwik ≤ Ew2

ijw
2
ik + Ew2

jiw
2
jk + Ew2

kiw
2
kj.

Thus we have |WIII | ≤ WII .
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Consider the general term in WIV , we will use the result in (4.38),

Ewijwikwljwlk

= 16E
(∫

Ti(t)Tj(t)dt

∫
Ti(t)Tk(t)dt

∫
Tl(t)Tj(t)dt

∫
Tl(t)Tk(t)dt

)
= 16

∫ ∫ ∫ ∫
ETi(t1)Ti(t2) · ETj(t1)Tj(t3) · ETk(t2)Tk(t4)

·ETl(t3)Tl(t4)dt4dt3dt2dt1

=

∫ ∫ ∫ ∫
O(

1

n2b
) · O(

1

n2b
) · O(

1

n2b
) · O(

1

n2b
) · b3ds4ds3ds2dt1

= O(
1

n8b
).

Thus we derive WIV as

WIV =
∑

1≤i<j<k<l≤n

(Ewijwikwljwlk + Ewijwilwkjwkl + Ewikwilwjkwjl)

= 3

(
n

4

)
O(

1

n8b
)

= O(
1

n4b
). (4.40)

Consider the general term in WV , we will use the result in (4.38),

Ew2
ijw

2
kl = E[w2

ij] · E[w2
kl]

=
(
Ew2

ij

)2
=

(
4E

∫ ∫
Ti(t)Tj(t)Ti(s)Tj(s)dsdt

)2
=

(
4

∫ ∫
ETi(t)Ti(s) · ETj(t)Tj(s)dsdt

)2
=

(∫ ∫
O(

1

n2b
)O(

1

n2b
)bdrdt

)2
= O(

1

n8b2
).
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So

WV =
∑

1≤i<j<k<l≤n

(Ew2
ijw

2
kl + Ew2

ikw
2
jl + Ew2

ilw
2
jk)

= 3

(
n

4

)
O(

1

n8b2
)

= O(
1

n4b2
). (4.41)

Combining (4.37),(4.39),(4.40) and (4.41), and the fact that |WIII | ≤ WII , we

have that WI ,WII , WIII and WIV all are of lower order than WV . So

E
( ∑
1≤i<j≤n

wij
)4

= 6WV + o(WV ). (4.42)

Furthermore,

σ4(n) = (EWa)
2 = (E

∑
1≤i<j≤n

w2
ij)

2

= 2WV +
∑

1≤i<j≤n

(Ew2
ij)

2 + 2
∑

1≤i<j≤n

∑
1≤k≤n
k 6=i,j

Ew2
ki · Ew2

kj. (4.43)

Since ∑
1≤i<j≤n

(Ew2
ij)

2 =

(
n

2

)
· O(

1

n4b
) · O(

1

n4b
) = O(

1

n6b2
),

and

∑
1≤i<j≤n

∑
1≤k≤n
k 6=i,j

Ew2
ki · Ew2

kj =

(
n

2

)
(n− 2)O(

1

n4b
)O(

1

n4b
) = O(

1

n5b2
),

then in (4.43), the 2nd and 3rd terms are of lower order than WV . So

σ4(n) = 2WV + o(WV ). (4.44)

Combining (4.42) and (4.44), we have

σ(n)−4E(
∑

1≤i<j≤n

wij)
4 → 3, as n→∞.
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we see that condition (4.25) is satisfied.

Applying Theorem 2.1 in Jong (1987)[17], we have

σ(n)−1
∑

1≤i<j≤n

wij
d−→ N(0, 1)

so that

σ−1(n)

∫
2
∑

1≤i<j≤n

Ti(t)Tj(t)dt
d−→ N(0, 1)

and we have got ∫ n∑
k=1

T 2
k (t)dt

LLN−−−→
a.s.

∫
ρ

4nb
· w(t)

M(t)
κsqdt.

As in (4.15),

J2 =

∫ n∑
k=1

T 2
k (t)dt+

∫
2
∑

1≤i<j≤n

Ti(t)Tj(t)dt.

By Slutsky’s theorem, J2 converges in distribution to normal distribution with mean∫
ρ

4nb
· w(t)
M(t)

κsqdt and variance σ(n)2 = ρ2

8n2b
κc
∫

( w(t)
M(t)

)2dt. Thus Lemma 6 is proved.

Next we will prove J1, J3, J4, J5, J6 are negligible.

Lemma 7.

E(Q5(t)) = O(
1

n
√
b
) E(Q5(t)

2) = O(
1

n2b
) (4.45)

J1 = O(b6) (4.46)

E(J3) = O(
1

n
) E(J2

3 ) = O(
1

n2
) (4.47)

E(J4) = 0 E(J2
4 ) = O(

b5

n
) (4.48)

E(J5) = o(
b3√
n

) E(J2
5 ) = O(

b6

n
) (4.49)

E(J6) = O(
1

n
) E(J2

6 ) = O(
1

n2
). (4.50)
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Proof. Combining (4.6), (4.11) in Lemma 5 and Cauchy-Schwarz inequality, we have

E{(q2(t)−Q2(t))(α̂− α)} ≤
√
V ar(Q2(t)) ·

√
E(α̂− α)2 = O(

1

n
√
b
).

Similarly we can get E{(q3(t) − Q3(t))(β̂ − β)} ≤ O( 1
n
√
b
). Thus E(Q5(t)) =

E{(q2(t)−Q2(t))(α̂− α)}+E{(q3(t)−Q3(t))(β̂ − β)}+E(Q4(t)) = O( 1
n
√
b
). Fur-

thermore, E(Q5(t)
2) = O( 1

n2b
). Hence (4.45) is proved.

From Silverman (1986)[29], we know

q0(t) = E(g̃(t)) = g(t) +
1

2
b2g(2)(t)κ2 +O(b3).

Combined with (4.3) in Lemma 5,

q1(t) = E(Q1(t)) = g(t) +
1

2
b2κ2g

(2)(t) +O(b3).

Note that the integral is in the bounded interval by the sample,

J1 =

∫
(
q1(t)− q0(t)

2
√
g(t)

)2dt = O(b6),

thus (4.46) is proved.

To prove (4.47), combining (4.6), (4.11) in Lemma 5 and (4.45) and by using

Cauchy-Schwarz inequality, we have

E(J3) = E

∫
(
Qr(t)

2
√
g(t)

)2dt =

∫
E(
q2(t)(α̂− α) + q3(t)(β̂ − β)−Q5(t)

2
√
g(t)

)2dt

=

∫
q22(t)

4g(t)
E(α̂− α)2dt+

∫
q23(t)

4g(t)
E(β̂ − β)2dt+

∫
EQ2

5(t)

4g(t)
dt

+

∫
q2(t)q3(t)

2g(t)
E{(α̂− α)(β̂ − β)}dt−

∫
q2(t)

2g(t)
E{Q5(t)(α̂− α)}dt

−
∫

q3(t)

2g(t)
E{Q5(t)(β̂ − β)}dt

= O(
1

n
).
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Thus EJ2
3 = O( 1

n2 ) and (4.47) is proved.

Since E{(Q1(t) − q1(t)) − (g̃(t) − q0(t))} = 0, EJ4 = 0. By Cauchy-Schwarz

inequality, (4.46) and Lemma 6,

E(J2
4 ) ≤ 4

(∫ (q1(t)− q0(t)
2
√
g(t)

)2
dt
)(
E

∫ ((Q1(t)− q1(t))− (g̃(t)− q0(t))
2
√
g(t)

)2
dt
)

= 4J1 · EJ2

= O(
b5

n
).

Thus (4.48) follows.

For (4.49), E(J5) = 2
∫ q1(t)−q0(t)

g(t)
E(Qr(t))dt = o( b3√

n
). Thus E(J2

5 ) = O( b
6

n
).

For (4.50), since (Q1(t)− q1(t))− (g̃(t)− q0(t)) = Op(1) and E(Qr(t)) = o( 1
n
),

thus E(J6) = O( 1
n
) and E(J2

6 ) = O( 1
n2 ).

When nb6 → 0, from Lemma (6) and Lemma (7) we know that compared

with J2, the other component J1, J3, J4, J5 and J6 are negligible. And J0
n =

J1 + J2 + J3 + J4 + J5 + J6, therefore, J0
n converges to the same distribution as J2.

Lemma 8. When nb6 → 0,

n
√
b
(
J0
n −

1

4nb
ρκsq

∫
w(t)

M(t)
dt
)

d−→ N
(

0,
1

8
ρ2κc

∫ (
w(t)

M(t)

)2

dt
)
.

4.6 Asymptotic Result for Jn

We are using the Epanechnikov kernel, and all the integrals are considered in

a bounded interval [−L,L]. So

2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
ĝ(t))

(ĝ(t)− g̃(t))2
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and

2
√
g(t) +

√
ĝ(t) +

√
g̃(t)

4g(t)(
√
ĝ(t) +

√
g̃(t))2(

√
g(t) +

√
g̃(t))

(ĝ(t)− g̃(t))2

are both bounded. As in the consistency result in Devroye and Györfi(1985)[7], we

have that
∫
|g(t)− ĝ(t)|dt and

∫
|g(t)− g̃(t)|dt both converge to 0 with probability

one if b → 0 and nb → ∞. Therefore J1
n → 0 and J2

n → 0 in probability. Since

Jn = J0
n + J1

n + J2
n, by Lemma 8 and Slutsky’s theorem, we now finally have our

main result.

Theorem 4. If model (1.1) holds and assumptions (A1)-(A3) are satisfied, and if

the bandwidth b satisfies nb6 → 0 as n → ∞, then Jn =
∫

(
√
ĝ(t)−

√
g̃(t) )2 dt has

limiting distribution given by

n
√
b
(
Jn −

1

4nb
ρκsq

∫
w(t)

M(t)
dt
)

d−→ N
(

0,
1

8
ρ2κc

∫ (
w(t)

M(t)

)2

dt
)

where

κsq =

∫
K(x)2dx, κc =

∫ ( ∫
K(x)K(y − x)dx

)2
dy.

Remark 2. Since the Epanechnikov kernel is our kernel of choice, κsq and κc are

constant. We will derive their values in Appendix B.

Remark 3. Let

m =
1

4nb
ρκsq

∫
w(t)

M(t)
dt

and

v =
1

8n2b
ρ2κc

∫
(
w(t)

M(t)
)2dt.
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Then from Theorem 4, we know that under model (1.1), the limiting distribution of

Jn is normal with mean m and variance v. The mean m can be estimated by

m̂ =
1

4b
ρκsq

n∑
k=1

ŵ(tk)

ĝ(tk)
p̂(tk)

2 (4.51)

and the variance v can be estimated by

v̂ =
1

8b
ρ2κc

n∑
k=1

ŵ(tk)
2

ĝ(tk)
p̂(tk)

3. (4.52)

Remark 4. Combining Theorem 4 and Remark 3 we have

1√
v̂

(Jn − m̂)→ N(0, 1) as n→∞ (4.53)

Let the significance level be αS and let zαS
denote the point having probability αS

to the right of it in the standard normal distribution. Then we can use the test

which rejects model (1.1) if

Jn ≥ m̂+
√
v̂zαS

. (4.54)

Remark 5. We can derive the p-value of the goodness-of-fit test by using (4.53). Let

Jobn be the observed statistic which is

Jobn =

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt

Since the Epanechnikov kernel is our kernel of choice, ĝ(t) and g̃(t) both are 0 when

|t| > L. Thus the integral range for Jobn is defined in [−L,L]. Then from (4.53), the

p-value can be approximated by

1− Φ
( 1√

v̂
(Jobn − m̂)

)
. (4.55)
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Remark 6 (Bandwidth Selection). When we deal with nonparametric and semipara-

metric problems, the choice of an appropriate bandwidth for the kernel estimate of

the underlying density is always crucial and important. In our Theorem 4 the band-

width b is assumed to satisfy

b→ 0

nb→∞

nb6 → 0 as n→∞

Thus we have 1
n
<< b << 1

n1/6 . That is, we need the bandwidth b to be between

1
n

and 1
n1/6 and not close to either limit. For example the range of the value of the

bandwidth b could be 5
n
≤ b ≤ (0.2

n
)1/6.
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Chapter 5

Simulation Studies for Jn

5.1 Overview

In this chapter, we will present Monte Carlo simulations to evaluate the per-

formance of our goodness-of-fit test for the semiparametric density ratio model. The

test statistic Jn is defined in (4.12) and its asymptotic properties are analyzed in

Chapter 4. The reference and distortion samples will be computer-generated ran-

domly. We restrict attention to normal, gamma, and lognormal samples.

First, we will derive our asymptotic approximation of the distribution of the

test statistic as in Theorem 4, and get the estimated distribution of the test statistic

from generated samples. The theoretical distribution and real-data distribution

are investigated under various bandwidth selections. According to Remark 6, the

bandwidth b should be selected in the range 5
n
≤ b ≤ (0.2

n
)1/6. We apply an equally

spaced grid search to derive the optimal bandwidth.

Furthermore, using the method in Remark 5, we calculate the p-value as (4.55)

under two cases. One is the correct selection of the tilt function. In this case model

(1.1) is correct and the null hypothesis should be accepted (i.e., the model is correctly

specified). In the second case, we intentionally misspecified the tilt function as in

Fokianos and Kaimi (2006)[11], where the null hypothesis should be rejected (i.e.,

the model is misspecified). As a comparison, we obtain the p-values of the test

76



corresponding to the statistic J cn which was defined in Cheng and Chu (2004)[6].

5.2 Behavior of Jn

In this section, we generate the reference and distortion samples from normal,

gamma and lognormal distributions. The asymptotic mean and variance of Jn are

calculated following Theorem 4, and also empirically from the samples. In all the

simulations, the total sample size n = n0 + n1 is 1000, where n0 is the size of the

reference sample and n1 is the size of the distortion sample. According to Remark

6, the range of the bandwidth will be [ 5
n
, (0.2

n
)1/6] = [0.005, 0.2418].

Consider the kth Monte-Carlo repetition, let m̂k be the theoretical mean of

Jn as in Theorem 4. Let m̃k be the value of the test statistic Jn calculated from

the kth computer-generated sample. Since the Epanechnikov kernel is our kernel of

choice, the integral range of Jn is only considered in [−L,L], i.e. Jn =
∫ L
−L

(√
ĝ(t)−√

g̃(t)
)2
dt. Thus by many Monte-Carlo repetitions, the optimal bandwidth can be

obtained by minimizing |
∑
m̂k−

∑
m̃k| with respect to the bandwidth, over equally

spaced grid points in the range [0.005, 0.2418].

5.2.1 Normal (0,1) and Normal (0,2)

We generate the reference sample U from N(0, 1), and the distortion sample Z

from N(0, 2). According to model (1.1) and Example 1, h(x) = x2. The sample sizes

{n0, n1} are first taken as {400, 600} and then {600, 400}. For each pair combination,

there are 200 Monte-Carlo runs. Table 5.1 gives the simulation results. Note that
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in each Monte-Carlo repetition, m̂k is the theoretical mean of the Jn. Following

Theorem 4, m̂k is obtained as in (4.51), and m̃k is the value of Jn, calculated

from the definition Jn =
∫ L
−L

(√
ĝ(t) −

√
g̃(t)

)2
dt by using the simulated samples.

We compare the mean of {m̂k} with the mean of {m̃k} under multiple bandwidth

selections and get the relative percentage of the difference of the means of m̂k and

m̃k in the last column. A large difference means the approximated distribution of Jn

as in Theorem 4 is not accurate because the bandwidth is not chosen properly. In

the table 5.1 optimal bandwidth is labeled by ’?’. Figure 5.1 shows the box plot for

comparison of m̂k and m̃k when bandwidth is optimal and when it is not optimal.

5.2.2 Gamma Distribution

In this section we generate the reference sample U from Gamma(3, 1), and

the distortion sample Z from Gamma(1, 1). According to model (1.1) and Example

2, h(x) = log(x). The sample sizes {n0, n1} are {400, 600}. The number of Monte-

Carlo repetitions is 200. Table 5.2 gives the simulation results.

Furthermore, we generate the reference sample U from Gamma(1, 1), and the

distortion sample Z from Gamma(1, 0.2). According to model (1.1) and Example 2,

the correct tilt is h(x) = x. The sample sizes {n0, n1} are {500, 500}. The number

of Monte-Carlo repetitions is 200. Table 5.3 gives the simulation result.
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Table 5.1: N(0, 1) and N(0, 2). U ∼ N(0, 1), Z ∼ N(0, 2), ? optimal

bandwidth for the statistics Jn.

U Z band- {m̂k} mean of {m̃k} mean of relative % of

sample size -width theoretical empirical the difference

400 600 0.005 0.1884818 0.2875685 34.46%

0.0178 0.1006727 0.1030558 2.31%

0.02? 0.09371565 0.09341618 0.32%

0.1 0.02942333 0.02125169 38.45%

0.25 0.01337576 0.00866427 54.38%

600 400 0.005 0.08372413 0.1460077 42.66%

0.0178 0.04687305 0.05431368 13.70%

0.03? 0.0346543 0.03458529 0.20%

0.1 0.0153845 0.01171947 31.27%

0.25 0.0073784 0.004849092 52.16%
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Table 5.2: Gamma (3,1) and Gamma (1,1). U ∼ Gamma (3,1), Z ∼

Gamma (1,1), ? optimal bandwidth for the statistics Jn.

U Z band- {m̂k} mean of {m̃k} mean of relative % of

sample size -width theoretical empirical the difference

400 600 0.005 0.1184832 0.2083053 43.12%

0.0178 0.04331359 0.06594018 34.31%

0.1 0.008454803 0.009272672 8.82%

0.23? 0.003683005 0.003684826 0.05%

0.25 0.003385677 0.003349908 1.07%

Table 5.3: Gamma (1,1) and Gamma (1,0.2). U ∼ Gamma (1,1), Z ∼

Gamma (1,0.2), ? optimal bandwidth for the statistics Jn.

U Z band- {m̂k} mean of {m̃k} mean of relative % of

sample size -width theoretical empirical the difference

500 500 0.005? 0.1434049 0.1471724 2.56%

0.01 0.1185871 0.09683343 22.47%

0.0178 0.09668758 0.06669246 44.98%

0.1 0.03964973 0.017706 123.93%

0.25 0.02122221 0.007987027 165.71%
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Figure 5.1: Boxplot for m̂k and m̃k. The left mhat (A) and mtilde (A’) are under
optimal bandwidth=0.02. The bandwidth for the right mhat (B) and mtilde (B’) is
0.005.

5.2.3 Lognormal Distribution

In this section we generate the reference sample U from Lognormal(0, 0.5),

and the distortion sample Z from Lognormal(0, 0.7). According to model (1.1) and

Example 3, h(x) = (log(x))2. The sample sizes {n0, n1} are {500, 500}. The number

of Monte-Carlo repetitions is 200. Table 5.4 gives the simulation results.
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5.3 Goodness-of-Fit Test

In section (5.2), we studied the behavior of Jn. Here we apply it. Following the

method in Remark 5, we can use (4.55) to approximate the p-value corresponding

to the test statistic Jn, and we reject H0 if the p-value is small. We still generate the

samples from normal, gamma and lognormal distributions. We calculate p-values

not only when the tilt function is correctly specified, but also misspecified, as in

Fokianos and Kaimi (2006)[11]. The p-values corresponding to the test statistic

JCn =
∫ L
−L

(
ĝ(t) − g̃(t)

)2
dt, which was proposed by Cheng and Chu (2004)[6], are

calculated for comparison. As before, we generate reference and distortion samples

from normal, gamma and lognormal distributions.

Table 5.4: Lognormal (0,0.5) and Lognormal (0,0.7). U ∼ Lognormal

(0,0.5), Z ∼ Lognormal (0,0.7), ? optimal bandwidth for the statistics

Jn.

U Z band- {m̂k} mean of {m̃k} mean of relative % of

sample size -width theoretical empirical the difference

500 500 0.005 0.07321884 0.1280294 42.81%

0.0178 0.03339353 0.04640805 28.04%

0.1 0.01001211 0.01136205 11.88%

0.235? 0.005325392 0.005319663 0.11%

0.25 0.005084966 0.00502595 1.17%
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5.3.1 Normal (0,1) and Normal (0,2)

We generate the reference sample U from N(0, 1), and the distortion sample

Z from N(0, 2). According to model (1.1) and Example 1, correctly specified tilt

function is h(x) = x2. We intentionally misspecify the tilt function by h(x) = x.

The sample sizes {n0, n1} are first taken as {400, 600} and then {600, 400}. For each

pair combination, there are 200 Monte-Carlo runs. p-values for both statistics JCn

and Jn are calculated under various bandwidths. We pick the median of the p-value

in 200 Monte-Carlo Repetitions. The maximum of the p-value in 200 Monte-Carlo

repetitions is recorded when the tilt function is misspecified. Table 5.5 gives the

simulation results.

5.3.2 Gamma Distribution

We generate the reference sample U from Gamma(3, 1), and the distortion

sample Z from Gamma(1, 1). According to model (1.1) and Example 1, correctly

specified till function is h(x) = log x. We intentionally misspecify the tilt function

by h(x) = x. The sample sizes {n0, n1} are {400, 600}. p-values for both statis-

tics JCn and Jn are calculated under various bandwidths. We pick the median of

the p-value in 200 Monte-Carlo Repetitions. The maximum of the p-value in 200

Monte-Carlo repetitions is recorded when the tilt function is misspecified. Table

5.6 gives the simulation results. Furthermore, we generate the reference sample U

from Gamma(1, 1), and the distortion sample Z from Gamma(1, 0.2). According

to model (1.1) and Example 1, correctly specified till function is h(x) = x. We
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Table 5.5: N(0, 1) and N(0, 2). U ∼ N(0, 1), Z ∼ N(0, 2), ? optimal bandwidth

for the statistics Jn, † optimal bandwidth for the statistics JCn

U Z band- p-value, column JCn and Jn are median from simulations

sample -width specified h(x) = x2 misspecified h(x) = x

size JCn Jn JCn max JCn Jn max Jn

400 600 0.005 0.5008695 0 0.010536 0.999999 0 0

0.0115† 0.5405066 0.1401269 9.68E-06 0.242335 0 0

0.0178 0.5267068 0.3488811 1.96E-06 0.549676 0 0

0.02? 0.5164572 0.5069916 2.91E-07 0.381980 0 0

0.1 0.6088644 0.9618217 0 1.43E-10 0 0

0.25 0.6810998 0.9316603 0 0 0 0

600 400 0.005 0.6725442 0 0.081080 0.997779 0 0

0.0178 0.561414 0.0510693 7.80E-06 0.208925 0 0

0.03? 0.6323972 0.52481 3.75E-09 0.007031 0 0

0.1 0.6600704 0.9294418 0 3.55E-07 0 0

0.25† 0.698934 0.9302384 0 0 0 0
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intentionally misspecify the tilt function by h(x) = log x. The sample sizes {n0, n1}

are {500, 500}. p-values for both statistics JCn and Jn are calculated under various

bandwidths. We pick the median of the p-value in 200 Monte-Carlo Repetitions.

The maximum of the p-value in 200 Monte-Carlo repetitions is recorded when the

tilt function is misspecified. Table 5.7 gives the simulation results.

Table 5.6: Gamma (3,1) and Gamma (1,1). U ∼ Gamma (3,1), Z ∼ Gamma (1,1),

? optimal bandwidth for the statistics Jn, † optimal bandwidth for the statistics

JCn .

U Z band- p-value, column JCn and Jn are median from simulations

sample -width specified h(x) = log(x) misspecified h(x) = x

size JCn Jn JCn max JCn Jn max Jn

400 600 0.005 0.6442556 0 0.329217 0.99172 0 0

0.01† 0.5793755 1.33E-15 0.121219 0.98821 0 3.10E-10

0.0178 0.5693371 2.70E-06 0.033288 0.85205 0 0

0.1 0.6416833 0.404165 1.10E-06 0.36665 0 0.000252

0.23? 0.7039756 0.565106 2.11E-11 0.04825 0 6.37E-09

0.25 0.7058387 0.589399 9.13E-12 0.04042 0 2.71E-09

5.3.3 Lognormal Distribution

We generate the reference sample U from Lognormal(0, 0.5), and the distor-

tion sample Z from Lognormal(0, 0.7). According to model (1.1) and Example 1,

correctly specified till function is h(x) = (log x)2. We intentionally misspecify the
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Table 5.7: Gamma (1,1) and Gamma (1,0.2). U ∼ Gamma (1,1), Z ∼ Gamma

(1,0.2), ? optimal bandwidth for the statistics Jn, † optimal bandwidth for the

statistics JCn .

U Z p-value, column JCn and Jn are median from simulations

specified misspecified

sample band- h(x) = log(x) h(x) = x

size -width JCn Jn JCn max JCn Jn max Jn

500 500 0.005? 0.81777 0.37423 0.7000 1 2.27E-09 0.99998

0.01 0.69705 0.99831 0.21356 1 0.00038 0.99971

0.013† 0.70421 0.99948 0.09164 1 0.00083 0.99410

0.0178 0.71502 0.99996 0.02159 0.99992 0.00251 0.83783

0.1 0.62303 0.99999 1.27E-10 0.23726 3.50E-07 0.74024

0.25 0.68406 0.99984 0 0.00946 3.59E-14 0.05056
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tilt function by h(x) = log x. The sample sizes {n0, n1} are {500, 500}. p-values for

both statistics JCn and Jn are calculated under various bandwidths. We pick the me-

dian of the p-value in 200 Monte-Carlo Repetitions. The maximum of the p-value

in 200 Monte-Carlo repetitions is recorded when the tilt function is misspecified.

Table 5.8 gives the simulation results.

Table 5.8: Lognormal (0,0.5) and Lognormal (0,0.7). U ∼ Lognormal(0,0.5), Z ∼

Lognormal(0,0.7), ? optimal bandwidth for the statistics Jn, † optimal bandwidth for

the statistics JCn .

U Z band- p-value, column JCn and Jn are median from simulations

sample -width specified h(x) = log(x) misspecified h(x) = x

size JCn Jn JCn max JCn Jn max Jn

500 500 0.005 0.4875377 0 0.1198135 0.975032 0 0

0.011† 0.500015 3.64E-07 0.0456381 0.75716 0 2.89E-15

0.0178 0.4991361 0.0008704 0.0116544 0.724075 0 3.08E-13

0.1 0.6598331 0.3024718 2.07E-07 0.228446 0 2.22E-14

0.235? 0.7710084 0.5480933 7.25E-11 0.077927 0 2.78E-15

0.25 0.7725608 0.5572037 6.59E-11 0.068809 0 8.22E-15

5.4 Comparison with JC
n

Since we can derive the limiting distribution of Jn and JCn , bootstrap is not

needed in the goodness-of-fit test using these test statistics. When the tilt function
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is misspecified, Jn rejects H0 strongly in most of the cases in our simulations, but

on the other hand JCn may give relatively large p-values resulting in acceptance

of the null hypothesis in many misspecified situations. When the tilt function is

correctly specified, the p-values of the test corresponding to Jn are large when the

bandwidth is chosen properly whereas JCn accepts model (1.1) all the time as it

should in specified cases. Thus Jn performs as well as JCn when the tilt function is

correctly specified and improves upon JCn when the tilt function is misspecified.
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Chapter 6

Application to Radar Data

In this chapter, we apply our test statistics In proposed in Chapter 3 and Jn

proposed in Chapter 4 in a two-sample radar problem, and compare them with the

test statistics ∆n, IBn , IBbn and JCn .

6.1 Description of the Radar Data

During NASA’s Tropical Rainfall Measuring Mission (TRMM) Kwajalein Ex-

periment (KWAJEX), held during Jul.15-Sep.12,1999 in the Republic of the Mar-

shall Islands, a C-band radar was deployed aboard NOAA ship Ronald H.Brown

(RHB) and an S-band KPOL radar was deployed on Kwajalein Island at the south-

ern end of the Kwajalein Atoll. Experimental radar reflectivity data were obtained

from these two radars. Kedem et al. 2004[24] gives more details about the data.

The data were collected in pairs referring to the radar as ‘Brown’ and ‘Kwajalein’.

We randomly sample the data collected from the ‘Brown’ radar to produce

random reference samples U , and randomly sample the data collected from the

‘Kwajalein’ radar to produce random distortion samples Z. If these two radars

or their algorithms produce equidistributed reflectivity data, the null hypothesis

model (1.1) should be accepted in the goodness-of-fit test by fusing U and Z. For

comparison, random reference samples U and distortion samples Z are sampled
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from the same radar to apply the test statistics. For the reason that radar data are

always assumed to be distributed as lognormal or gamma, following the results from

Example 2 and Example 3, we choose h(x) = x and h(x) = log(x) as tilt functions.

6.2 Dataset From Two Different Radars

U is randomly sampled from ‘Brown’ as the reference sample and Z is randomly

sampled from ‘Kwajalein’ as the distortion sample. The sample sizes (n0, n1)=(1500, 1500).

The combined sample T = {U,Z} has size n = 3000. The test statistics

∆n = sup
t

√
n|Ĝ(t)− G̃(t)|

IBn = n

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt

IBbn = nb

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt

In = nb

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt

JCn =

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt

Jn =

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt

are used in the goodness-of-fit test of the null model (1.1), with bandwidth b. Fol-

lowing the analysis in Chapter 3 and Chapter 4, a Gaussian kernel is used for IBn ,

IBbn and In, and the Epanechnikov kernel is used for JCn and Jn. As noted in Remark

6, the bandwidth needs to satisfy 5
n
≤ b ≤ (0.2

n
)1/6. So, the bandwidth is in the range

[0.0017, 0.201]. We derive p-values of the tests corresponding to each statistic under

various values of bandwidth which are 0.02, 0.05, 0.1, 0.2, 0.25.

Table 6.1 gives the p-values of the goodness-of-tests corresponding to all six
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test statistics with various values of bandwidth. The tilt functions h(x) = x and

h(x) = log(x) are applied separately. The p-values for Jn and JCn are derived by

(4.55) as in Remark 5. The p-values for ∆n, IBn , IBbn and In are derived by bootstrap

procedures discussed in Chapter 3. All six statistics suggest strong rejection of

model (1.1) which means that these two radars operate very differently.

6.3 From the Same Radar

In section (6.2), all test statistics indicate rejection of model (1.1) when the

reference sample is from ‘Brown’ and the distortion sample is from ‘Kwajalein’. In

this section, the reference and distortion samples are from the same radar. The

sample sizes are as before, (n0, n1)=(1500, 1500). The reference U and distortion Z

are both randomly sampled from ‘Brown’ first and then from ‘Kwajalein’. As before,

a Gaussian kernel is used for IBn , IBbn and In, and Epanechnikov kernel is used for JCn

and Jn. The bandwidth used is in the range [0.0017, 0.201]. The optimal bandwidth

for Jn is 0.19. Since ∆n does not depend on a bandwidth, and the bandwidth for IBn

is fixed at b = 1, we see that the p-values of the goodness-of-fit tests corresponding

to ∆n and IBn do not change in Table 6.2 and Table 6.3. The tilt functions h(x) = x

and h(x) = log(x) are applied separately both in Tables 6.2 and 6.3. Very similar

results are seen from these two tables. The p-values for ∆n, IBn , IBbn , In and JCn

lead to acceptance of model (1.1), and so does Jn when the bandwidth is chosen

properly. The results tell us the fact that samples U and Z are generated by the

same algorithm.
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Table 6.1: U is from ‘Brown’ as reference and

Z is from ‘Kwajalein’ as distortion. Sample size

(n0, n1)=(1500, 1500). Tile functions are h(x) = x and

h(x) = log(x).

tilt band- p-value

function width ∆n IBn IBbn In JCn Jn

x 0.25 0 0 0 0 0 0

0.2 0 0 0 0 0 0

0.1 0 0 0 0 1.35E-10 0

0.05 0 0 0 0 2.73E-7 0

0.02 0 0 0 0 0.00112 0

log(x) 0.25 0 0 0 0 0 0

0.2 0 0 0 0 0 0

0.1 0 0 0 0 2.48E-12 0

0.05 0 0 0 0 2.62E-8 0

0.02 0 0 0 0.002 0.00041 0
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Table 6.2: U is from ‘Brown’ as reference and Z is from ‘Brown’ as distor-

tion. Sample size (n0, n1)=(1500, 1500). Tile functions are h(x) = x and

h(x) = log(x).

tilt band- p-value

function width ∆n IBn IBbn In JCn Jn

x 0.25 0.57 0.7 1 0.994 0.9981411 0.9703743

0.2 0.57 0.7 1 0.998 0.999185 0.9565418

0.1 0.57 0.7 1 1 0.9999877 0.6973797

0.05 0.57 0.7 1 1 1 0.010993

0.02 0.57 0.7 1 1 1 0

log(x) 0.25 0.462 0.76 0.998 0.998 0.9983481 0.9853257

0.2 0.462 0.76 0.998 0.998 0.9992846 0.9779273

0.1 0.462 0.76 1 1 0.999989 0.8064212

0.05 0.462 0.76 1 1 1 0.02748843

0.02 0.462 0.76 1 1 1 0
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Table 6.3: U is from ‘Kwajalein’ as reference and Z is from ‘Kwajalein’ as

distortion. Sample size (n0, n1)=(1500, 1500). Tile functions are h(x) = x

and h(x) = log(x).

tilt band- p-value

function width ∆n IBn IBbn In JCn Jn

x 0.25 0.318 0.768 1 0.992 0.9988772 0.9926679

0.2 0.318 0.768 1 0.998 0.9995837 0.9904045

0.1 0.318 0.768 1 1 0.9999903 0.6773479

0.05 0.318 0.768 1 1 1 0.00017857

0.02 0.318 0.768 1 1 1 0

log(x) 0.25 0.254 0.87 1 0.998 0.9990609 0.9972642

0.2 0.254 0.87 1 1 0.999647 0.9963206

0.1 0.254 0.87 1 1 0.9999915 0.7975165

0.05 0.254 0.87 1 1 1 0.000779084

0.02 0.254 0.87 1 1 1 0
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Chapter 7

Conclusion

7.1 Overview

In this dissertation, we proposed two new goodness-of-fit test statistics In as

in (3.5) and Jn as in (4.12) for DRM. Model (1.1) is the null model. Goodness-

of-fit tests are needed to justify or reject the assumed model. In is a modification

of IBn which was proposed by Bondell (2007)[4], and Jn is a modification of JBn

which was proposed by Cheng and Chu (2004)[6]. In this chapter we summarize the

advantages of our test statistics, In and Jn, our contribution of this dissertation. The

distributions of the test statistics ∆n, IBn , IBbn and JCn are investigated to illustrate

the advantage of In and Jn, namely, our test statistics appear to be more symmetric,

and distinguished well between correctly specified and misspecified cases. Recall

from (1.2), (1.5), (3.21), (3.5), (1.6) and (4.12),

∆n = sup
t

√
n|Ĝ(t)− G̃(t)|

IBn = n

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt

IBbn = nb

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt

In = nb

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt

JCn =

∫ L

−L

(
ĝ(t)− g̃(t)

)2
dt
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and

Jn =

∫ L

−L

(√
ĝ(t)−

√
g̃(t)

)2
dt.

7.2 Simulation

In this section, we derive the distributions of ∆n, IBn , IBbn , In, JCn and Jn by

samples from computer-generated data when the tilt functions are both correctly

specified and misspecified.

7.2.1 Correctly Specified

Let X ∼ N(0, 1) with size 5000 and Y ∼ N(0, 2) with size 5000 be our popu-

lations. The reference U and distortion Z are sampled from X and Y respectively

with sample sizes (n0, n1) = (500, 500). As Example 1, the correctly specified tilt

function is h(x) = x2. Following the DRM in Chapter 2, we can obtain α̂, β̂ and Ĝ

from the fused sample T = {U,Z}, and G̃ from the reference sample U only. There-

after, ĝ and g̃ are derived by following Lemma 2. Note that IBn , IBbn and In use the

Gaussian kernel K(x) = (1/
√

2π) exp(−x2/2), and JCn and Jn use the Epanechnikov

kernel as in (4.13). Bandwidth b = 0.02 is used for IBbn , In, JCn and Jn, but IBn uses

a fixed bandwidth b = 1. Therefore we can obtain the numerical values of ∆n, IBn ,

IBbn , In, JCn and Jn from the reference samples U and the distortion samples Z. We

repeat this procedure 1000 times to approximate the distributions of ∆n, IBn , IBbn ,

In, JCn and Jn.

Figure 7.1 gives the histograms of the simulated distributions of ∆n, IBn , IBbn ,
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In, JCn and Jn. The histograms of ∆n and IBn have very long right tails. Actually

we do not know their distribution functions. The right tails corresponding to IBbn

and JCn are shorter as compared with ∆n and IBn . In improves IBbn at both left and

right tails and its histogram shape appears more symmetric. Similarly Jn improves

JCn at both left and right tails, and the histogram of Jn is more symmetric than that

of JCn . Figure 7.2 gives the Q-Q plots of the distributions of all six test statistics.

Clearly Jn is the closest to normal which is its limiting distribution according to

Theorem 4. Hence Jn performs more accurately in goodness-of-fit tests.

7.2.2 Correctly Specified and Misspecified

In this section we intentionally misspecify the tilt function by h(x) = x. This

time we only focus on IBbn , In, JCn and Jn. We repeat the same procedure as we have

done in Section (7.2.1) above to derive the simulated distributions of IBbn , In, JCn and

Jn. Together with the corresponding results in Section (7.2.1) , we get Figure 7.3

which gives the comparisons of the histograms of these four test statistics under both

correctly specified and misspecified tilts. The histograms of the test statistics when

the tilt function is correctly specified are given in red color in Figure 7.3 and those

are without color when the tilt function is misspecified. We consider the change from

correctly specified to misspecified. We can see that when tilt function is misspecified,

all the values of the test statistics increase and therefore lead to rejection of null

hypothesis H0. Our proposed test statistics In and Jn increase greatly so that they

make a strong rejection very conclusively under the misspecified case. However, IBbn
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Figure 7.1: Histograms of ∆n, IBn , IBbn , In, JCn and Jn. The reference U is sampled
from N(0, 1). The distortion Z is sampled from N(0, 2). Sample sizes (n0, n1) =
(500, 500). IBn , IBbn and In use the Gaussian kernel. JCn and Jn use the Epanechnikov
kernel. b = 0.02 is the bandwidth for IBbn , In, JCn and Jn. b = 1 is the bandwidth
for IBn . Simulation repetitions=1000.

and JCn do not increase much. Thus the two distributions of the same test statistic,

which are under the correctly specified case and under the misspecified case, may

have overlaps! This could lead to a wrong decision of the goodness-of-fit test like

we have discussed in Chapter 5. On the other hand, the distributions of In and Jn

do not suffer an overlap!
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Figure 7.2: Normal Q-Q plot for ∆n, IBn , IBbn , In, JCn and Jn.

7.3 Conclusion

In this dissertation we have discussed six goodness-of-fit test statistics. ∆n

performs well in data simulations. However, the unknown distribution of ∆n is

always a problem. The fixed bandwidth used by IBn may lead to inaccurate estimates

of the underlying density. Thus the test statistic IBn is not sufficiently reliable. In

improves IBbn by better distribution shapes on both the left and right tails when the

tilt function is correctly specified, and increases more pronouncedly when the tilt
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Figure 7.3: Histograms of IBbn , In, JCn and Jn when tilt functions are both correctly
specified h(x) = x2 (in red) and misspecified h(x) = x (in white).

function is misspecified, which helps to reject model (1.1) when it should be rejected.

Although we know the distributions of In and IBbn , the bootstrap procedure is still

needed to simulate the distributions of these test statistics. On the other hand, Jn

and JCn can perform goodness-of-fit tests without the bootstrap procedure. It seems

that the normal approximation of Jn is more apparent as compared with that of

JCn . Jn can perform as well as JCn in correctly specified cases and improves JCn in

misspecified cases. The distributions of our proposed statistics In and Jn appear
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more symmetric than those of IBbn and JCn in our simulation study.
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Appendix A

Proof of Lemma 5

In this section, we will provide the proof for the Lemma 5 which is not given

by Cheng and Chu (2004)[6].

Let (t − x)/b = y, then x = t − by. Note that since K(y) is symmetric,∫
yK(y)dy = 0 and

∫
yK2(y)dy = 0. These facts will be used in this section many

times, including in the following proof.

To prove (4.3),

E(Q1(t)) = E
[ n∑
k=1

p(ti)Kb(t− ti)
]

= E
[ n0∑
i=1

p(ui)Kb(t− ui)
]

+ E
[ n1∑
j=1

p(zj)Kb(t− zj)
]

= n0

∫
p(x)Kb(t− x)g(x)dx+ n1

∫
p(x)Kb(t− x)w(x)g(x)dx

=

∫
Kb(t− x)g(x)dx

=

∫
K(y)g(t− by)dy

=

∫
K(y) ·

[
g(t)− byg′(t) +

1

2
b2y2g(2)(t) +O(b3)

]
dy

= g(t) +
1

2
b2g(2)

∫
y2K(y)dy +O(b3)

= g(t) +
1

2
b2κ2g

(2)(t) +O(b3).
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(4.4) is the variance of Q1(t), we have

V ar(Q1(t)) = V ar
[ n∑
k=1

p(ti)Kb(t− ti)
]

= V ar
[ n0∑
i=1

p(ui)Kb(t− ui)
]

+ V ar
[ n1∑
j=1

p(zj)Kb(t− zj)
]

= n0

∫
p2(x)K2

b (t− x)g(x)dx+ n1

∫
p2(x)K2

b (t− x)w(x)g(x)dx

−n0

( ∫
p(x)Kb(t− x)g(x)dx

)2
−n1

( ∫
p(x)Kb(t− x)w(x)g(x)dx

)2
=

∫
p(x)K2

b (t− x)g(x)dx− n0

( ∫
p(x)Kb(t− x)g(x)dx

)2
−n1

( ∫
p(x)Kb(t− x)w(x)g(x)dx

)2
.

Since

∫
p(x)K2

b (t− x)g(x)dx =

∫
p(t− by)

1

b2
K2(y)g(t− by)bdy

=
1

b

∫ (
p(t)− byp′(t) +O(

b2

n
)
)
K2(y)

(
g(t)− byg′(t)

+O(b2)
)
dy

=
1

b
p(t)g(t)

∫
K2(y)dy +O(

b

n
)

=
1

nb
· κsqg(t)

M(t)
+O(

b

n
)

and

( ∫
p(x)Kb(t− x)g(x)dx

)2
=

( ∫
p(t− by)

1

b
K(y)g(t− by)bdy

)2
=

(
p(t)g(t) +O(

b2

n
)
)2

=
g2(t)

n2M2(t)
+O(

b2

n2
)
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and

( ∫
p(x)Kb(t− x)w(x)g(x)dx

)2
=

( ∫
p(t− by)

1

b
K(y)w(t− by)g(t− by)bdy

)2
=

(
p(t)w(t)g(t) +O(

b2

n
)
)2

=
w2(t)g2(t)

n2M2(t)
+O(

b2

n2
)

then

V ar(Q1(t)) =
1

nb
· κsqg(t)

M(t)
+O(

b

n
)− n0 ·

g2(t)

n2M2(t)
− n1 ·

w2(t)g2(t)

n2M2(t)
−O(

b2

n
)

=
1

nb
· κsqg(t)

M(t)
+O(

1

n
).

To prove (4.5),

E(Q2(t)) = E
[ n∑
k=1

p2(ti)n1w(ti)Kb(t− ti)
]

= E
[ n0∑
i=1

p2(ui)n1w(ui)Kb(t− ui)
]

+ E
[ n1∑
j=1

p2(zj)n1w(zj)Kb(t− zj)
]

= n0

∫
p2(x)n1w(x)Kb(t− x)g(x)dx

+n1

∫
p2(x)n1w(x)Kb(t− x)w(x)g(x)dx

=

∫
p(x)n1w(x)Kb(t− x)g(x)dx

=

∫
p(t− by)n1w(t− by)

1

b
K(y)g(t− by)bdy

= n1p(t)w(t)g(t) +O(b2)

=
ρ

1 + ρ
· w(t)g(t)

M(t)
+O(b2).
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To prove (4.6),

V ar
(
Q2(t)

)
= V ar

[ n∑
k=1

p2(ti)n1w(ti)Kb(t− ti)
]

= V ar
[ n0∑
i=1

p2(ui)n1w(ui)Kb(t− ui)
]

+ V ar
[ n1∑
j=1

p2(zj)n1w(zj)Kb(t− zj)
]

= n0

∫
p4(x)n2

1w
2(x)K2

b (t− x)g(x)dx

+n1

∫
p4(x)n2

1w
2(x)K2

b (t− x)w(x)g(x)dx

−n0

( ∫
p2(x)n1w(x)Kb(t− x)g(x)dx

)2
−n1

( ∫
p2(x)n1w(x)Kb(t− x)w(x)g(x)dx

)2
=

∫
p3(x)n2

1w
2(x)K2

b (t− x)g(x)dx− n0

( ∫
p2(x)n1w(x)Kb(t− x)g(x)dx

)2
−n1

( ∫
p2(x)n1w(x)Kb(t− x)w(x)g(x)dx

)2
.

Like the calculations above for (4.4), we derive every term for V ar(Q2(t)),∫
p3(x)n2

1w
2(x)K2

b (t− x)g(x)dx = n2
1

∫
p3(t− by)w2(t− by)

1

b2
K2(y)

×g(t− by)bdy

=
1

b
n2
1p

3(t)w2(t)g(t)

∫
K2(y)dy +O(

b

n
)

=
1

nb

( ρ

1 + ρ
w(t)

)2κsqg(t)

M3(t)
+O(

b

n
)

and

( ∫
p2(x)n1w(x)Kb(t− x)g(x)dx

)2
=

( ∫
p2(t− by)n1w(t− by)

1

b
K(y)

×g(t− by)bdy
)2

=
(
n1p

2(t)w(t)g(t) +O(
b2

n
)
)2

=
1

n2
(

ρ

1 + ρ
)2
w2(t)g2(t)

M4(t)
+O(

b2

n2
)
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and

( ∫
p2(x)n1w(x)Kb(t− x)w(x)g(x)dx

)2
=

( ∫
p2(t− by)n1w

2(t− by)
1

b
K(y)g(t− by)bdy

)2
=

(
n1p

2(t)w2(t)g(t) +O(
b2

n
)
)2

=
1

n2
(

ρ

1 + ρ
)2
w4(t)g2(t)

M4(t)
+O(

b2

n2
).

Thus

V ar
(
Q2(t)

)
=

1

nb

( ρ

1 + ρ
w(t)

)2κsqg(t)

M3(t)
+O(

b

n
) +

n0

n2
(

ρ

1 + ρ
)2
w2(t)g2(t)

M4(t)

+O(
b2

n2
) +

n1

n2
(

ρ

1 + ρ
)2
w4(t)g2(t)

M4(t)
+O(

b2

n2
)

=
1

nb

( ρ

1 + ρ
w(t)

)2κsqg(t)

M3(t)
+O(

1

n
).

Similarly we can get the mean and variance of Q3(t),

E
(
Q3(t)

)
=

ρ

1 + ρ
· h(t)w(t)g(t)

M(t)
+O(b2)

V ar
(
Q3(t)

)
=

1

nb

( ρ

1 + ρ
w(t)

)2κsqh(t)′h(t)g(t)

M3(t)
+O(

1

n
).

Next we are considering the expectation and variance of α̂ and β̂. Like in

section (4.6), we assume that we only consider all the variables and integrals in the

bounded interval [−L,L]. From (2.19) in Lu (2007)[25], and combined with the as-

sumption of g(·) andK(·), we know that 1
n
V ar

(
∂`(α0, β0)/∂α

)
, 1
n
V ar

(
∂`(α0, β0)/∂β

)
and 1

n
Cov

(
∂`(α0, β0)/∂α, ∂`(α0, β0)/∂β

)
all are bounded uniformly for n. So we

have 1√
n

(
∂`(α0, β0)/∂α, ∂`(α0, β0)/∂β

)′
is uniformly integrable. Combining Lemma

1, we have  α̂− α0

β̂ − β0

 =
1

n
S−1

 ∂l(α0,β0)
∂α

∂l(α0,β0)
∂β

+
1√
n
ςn
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where ςn is uniformly integrable and ςn → 0 in distribution. Following Theorem

25.12 in Billingsley (1995)[2], we have

E(α̂− α) = o(
1√
n

), E(β̂ − β) = o(
1√
n

), V ar(α̂) = O(
1

n
), V ar(β̂) = O(

1

n
)

Therefore, E(Q4(t)) = O( 1
n
) and E(Q2

4(t)) = O( 1
n2 ). The Lemma 5 is proved.
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Appendix B

Values of κsq and κc

We are using the Epanechnikov kernel which is

K(x) =
3

4
(1− x2)I[−1,1](x)

then

κsq =

∫ 1

−1
K(x)2dx =

9

16

∫ 1

−1
(1− x2)2dx =

3

5
.

Let’s consider κc,

κc =

∫ ( ∫
K(x)K(y − x)dx

)2
dy

=

∫ ( 9

16

∫
(1− x2)(1− (y − x)2)I[−1,1](x)I[−1,1](y − x)dx

)2
dy

Then the integral is in the area bounded by x = −1, x = 1, y = x−1 and y = x+1.

κc =

∫ 0

−2

( 9

16

∫ y+1

−1
(1− x2)(1− (y − x)2)dx

)2
dy

+

∫ 2

0

( 9

16

∫ 1

y−1
(1− x2)(1− (y − x)2)dx

)2
dy

= (
9

16
)2
(∫ 0

−2
(

1

30
y5 − 2

3
y3 − 4

3
y2 +

16

15
)2dy

+

∫ 2

0

(− 1

30
y5 +

2

3
y3 − 4

3
y2 +

16

15
)2dy

)
= 2 · ( 9

16
)2
∫ 2

0

(− 1

30
y5 +

2

3
y3 − 4

3
y2 +

16

15
)2dy

= 2 · ( 3

160
)2
∫ 2

0

(y10 − 40y8 + 80y7 + 400y6 − 1664y5 + 1600y4 + 1280y3

−2560y2 + 1024)dy

= 0.4337662
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