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measure as applied to land development. Finally, to prevent the proliferation of 

sprawl a new measure of compactness that involves the use of the minimum spanning 

tree is embedded into a mixed integer programming formulation. Despite the 

exponential number of variables and constraints required to define the minimum 

spanning tree, this problem was solved using a hybrid algorithm developed in this 

research. 
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Since 2001 the author of this doctoral dissertation has been working with Dr. 

Steve Gabriel and Dr. Glenn Moglen on innovative formulations to select a set of 

parcels for development among a larger pool currently used as farmland or pristine 

forest. Two papers have been published as a result of these efforts Moglen, Gabriel 

and Faria 2003; and Gabriel, Faria and Moglen 2005. 

The land development problem was approached as a multiobjective 

optimization using a weighted average of stakeholders’ objectives subject to new 

housing, industrial, and commercial requirements. Upper and lower bounds in the 

development have been set to model minimum and maximum demand constraints. 

With that background and a keen interest in multiobjective and integer 

programming, the author has developed mixed integer formulations for the land 

development problem along with efficient algorithms to solve them. A new measure 

of compactness involving the use of the minimum spanning tree embedded into a 

mixed integer programming formulation was introduced to prevent the proliferation 

of sprawl. Despite the exponential number of variables and constraints required to 

define the embedded minimum spanning tree, this problem can be solved. 
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RHD : Upper bound on the number of units developed in the residential high 
density zone. 

RLD:  Residential low density zone. 

RLD : Lower bound on the number of units developed in the residential low 
density zone. 

RLD : Upper bound on the number of units developed in the residential low 
density zone. 

RMD:  Residential medium density zone. 

RMD :  Lower bound on the number of units developed in the residential medium 
density zone. 

RMD : Upper bound on the number of units developed in the residential medium 
density zone 

S: Set of nodes or feasible points, depending on the context.  

Sc:  Set of parcels included in the environmentally sensitive set. 

LDPP: Land Development Planning Problem. 

T: When used as a superscript means transposed. i.e. Tc  is the row vector 
resulting from taking the transpose of the column vector c. 

zT : Number of parcels available for development in zone z 

TImpCh: Total value of imperviousness change resulting from the development of 
parcels selected when solving the optimization problem 

iu  :  Units available for development of parcel i. In the case of the three 
residential zones these are dwelling units per parcel, in the commercial 
and industrial cases this value corresponds to the area in acres of the 
parcel. 



 xix  

V(G): The set of nodes (vertices) of the graph G. 

x   : Column vector of decision variables typically used in most of the 
literature to describe the variables of the primal problem in linear 
programming problems (e.g., Ax b≤ ). 

ix : The ith component of vector x . 

L
ix : Lower bound of the ith component of vector x . 

U
ix : Upper bound of the ith component of vector x . 

Bx : Column vector of basic decision variables obtained when solving the 
equation B NBx Nx b+ = . 

Nx : Column vector of non-basic decision variables obtained when solving the 
equation B NBx Nx b+ = . These variables take values of zero to solve the 
system of equalities. 

y  : Column vector of decision variables typically used in most of the 
literature to describe the variables of the dual problem in linear 
programming problems. 

w: Measure of the objective function of the dual problem. i.e. w = min: y 

kw :  Weight of kth objective function. 

w:  Vector of weights = 1 2{ , ,.., }kw w w . 

W:  Set of weight vectors. 

z:  Each of the development zones, sometimes used as measurement of the 
objective function i.e. z = max: x. 

Z: Set of all development zones = {RLD, RMD, RHD, COM, IND}. 
n¢ : The n-dimensional vector of integer numbers. 

•   : Ceiling of • . 

•   : Floor of • . 

 

Note: Whenever the work of other authors is presented in this dissertation, the 
original notation will be used. 
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Chapter 1  Findings, Contributions and Literature Review 

This chapter provides background information required to understand the 

work that has been done before in the area of optimization as applied to planning in 

land development. Previous compactness measurements are reviewed as they were 

used to reduce sprawl providing the motivation for new measurements. 

1.1. Introduction 

In general a land development solution combines two decisions : choosing the 

land to be selected for development, in our case this means to choose among the 

available parcels those where the development will take place, and deciding the type 

of development that should take place on the selected parcels. The different 

possibilities considered by Moglen, Gabriel and Faria (2003) and Gabriel, Faria and 

Moglen (2005) included three types of residential housing as well as commercial and 

industrial use. The difference between these works is that in the former the parcels 

had a predetermined zone type so the decision was limited to develop or not to 

develop a parcel and the planner’s objective function involved the maximization of 

development in Priority Funded Areas (PFA’s). The PFA’s are zones in which the 

government is interested in promoting development.  

In Gabriel, Faria and Moglen (2005), a subset of parcels did not have a 

predetermined zone, so there was another group of decision variables associated with 

selecting the zone type for each of those parcels besides the decision whether to 

develop or not the parcel. The planner’s objective was a quadratic mixed integer 

description of a compactness measurement.  
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The “Land Development Planning Problem” (LDPP) can be stated as which 

parcels should be developed and for what purpose. To be a solution, a development 

plan needs to accommodate the growth of the new and existing residents and 

businesses. To be optimal it needs to provide stakeholders benefits that cannot be 

improved by another solution without deteriorating at least one of the stakeholders’ 

objectives. This solution concept is known as “Pareto optimal”; in general there is 

more than one Pareto optimal solution which forms a Pareto optimal set.  

To find if a solution is Pareto optimal, one evaluates the objective functions in 

objective space (as opposed to decision space). The measurement of the stakeholders’ 

objectives can be arranged as a vector, each solution to the land development problem 

can be associated with a vector that measures the objectives of all the stakeholders 

under the proposed solution. Typically these vectors are called criterion vectors 

(Steuer 2002). A criterion vector is said to dominate the criterion vector of a second 

solution if for all objectives the first criterion vector provides at least1 the same values 

for all the stakeholders as compared with the second, and at least one of the 

stakeholders gets a strictly better value of the ir objective function. These 

“nondominated” vectors identify the Pareto optimal solutions from all the feasible 

solutions to the problem. The Pareto optimal solutions in decision space are also 

known as efficient solutions to the multiobjective problem. A solution is efficient if 

its criterion vector is not dominated by the criterion vector of any other solution.  

This notion of tradeoffs between solutions implies that between two Pareto 

optimal solutions one provides more benefit to a particular individual, group, or 

                                                 
1 Assuming maximization of the objectives. 
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organization only at the expense of reducing benefits to at least one other individual 

or group. There are a large number of potential combinations of parcels to develop, in 

fact the number is exponential with respect to the number of available parcels. The 

combination of parcels to develop will be on the order of 2n since each parcel that 

belongs to the set of n  “developable” parcels can be developed or not developed (two 

possible states), not all those combinations are feasible solutions. To get a quick idea 

on the number of potential solutions, Moglen, Gabriel and Faria (2003) used 810 

parcels in their work. This represents 8102  possible choices of development. Later 

Gabriel, Faria and Moglen (2005) used 401 parcels whose zones were fixed with an 

additional set of 512 parcels to be developed in any of the five zone categories (or not 

developed at all), the resulting number of possible combinations is then( ) ( )401 5122 6 .  

A complete enumeration of possible solutions, their evaluation for feasibility, 

and objective function is impractical. Therefore, a multiobjective mixed integer 

programming formulation was required which was solved by the traditional branch 

and bound method (Wolsey, 1998; Winston, 2004). However, some cases were 

difficult to solve this way2. Because of these difficult cases, other methods are 

required to decompose the problem into subproblems that can be solved faster, or to 

relax the problem for easier computations at the expense of accepting suboptimal 

solutions. These methods however should find “acceptable solutions” in a 

“reasonable time”. The definition of acceptable and reasonable may vary among both 

the users and critics of the methods. 

                                                 
2 One of the cases evaluated in Gabriel, Faria and Moglen (2005) took over 20 hours to solve. 
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1.2. Research Objectives 

1.2.1. Alternative Solution Method to Moglen, Gabriel and Faria (2003) 

One of the objectives of this work is to find alternative solution methods to 

solve the formulation presented in Moglen, Gabriel and Faria (2003). Some of the 

cases considered in the multiobjective formulation for land development of Moglen, 

Gabriel and Faria (2003), required considerable computing time to solve. This was 

the motivation to look for alternative solution methods to solve this particular mixed 

integer programming formulation. An algorithm based on solving the problem using 

initially the branch and bound method with a time limit of one minute3, followed by 

an application of the Lagrangian relaxation and for the cases where the solution is not 

optimal, Dantzig-Wolfe decomposition is applied. This hybrid algorithm finds a large 

set of Pareto optimal solutions in a relatively short time. 

1.2.2. Alternative Formulation to Moglen, Gabriel and Faria (2003) 

The work in Moglen, Gabriel and Faria (2003) is based on the weighting 

method to solve the development problem. This method is known to have a potential 

pitfall in finding Pareto optimal solutions when searching for the complete Pareto 

optimal set since some points might not be found due to the duality gap (see 

Appendix 2, page 240). This dissertation work expands that work by presenting a 

formulation using the constraint method with an example, and a brief description of 

how this problem can be solved using relaxation and decomposition techniques.   

                                                 
3 The one minute limit was determined based on numerical evidence with different values tried. 
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1.2.3. Create a New Compactness Measure to Prevent Sprawl 

The work by Gabriel, Moglen and Faria (2005) presents a quadratic objective 

function to minimize the compactness of a land development plan. This measurement 

was found to change only by the development of only few critical parcels, a new 

measurement was conceived that depends on all parcels selected for development. 

This work uses the classical concept of a minimum spanning tree (MST) as a 

measurement for compactness in land development. A mixed integer programming 

formulation was created for this multiobjective land development problem embedding 

a minimum spanning tree.  

1.2.3.1. Create an Algorithm to Solve the Embedded MST Formulation 

Despite the exponential number of constraints involved in the formulations 

found in the literature, an algorithm was created to solve the land development 

problem using the minimum spanning tree without explicitly including the 

exponential number of constraints. 
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1.3. Research Organization 

The material presented in this dissertation is organized as presented in Figure 

1.1. The boxes with thicker outline represent original contributions of the author for 

this dissertation. 

 
Figure 1.1 Dissertation organization 

Model 1 includes methods to solve the cases (weight assignments for 

objectives) with long solution time as identified in Moglen, Gabriel and Faria (2003). 

New random weights were generated creating cases that proved even more difficult to 

solve in terms of computing time. Also, this dissertation expands Moglen, Gabriel 

and Faria (2003) by including a formulation using the constraint method instead of 

the weighting method originally published. 

Model 2 includes methods to solve the challenging cases presented in the 

paper by Gabriel, Faria, and Moglen (2005). The parcels in that work were divided 

into quadrants where a certain compactness measure was applied related to an outer 

rectangle encompassing all developed parcels. This research looks into a 

decomposition of the formulation by those quadrants and also by zones and quadrants 
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proposing a possible decomposition strategy based on the structure of the 

formulation. We did not applied decomposition or relaxation methods to solve this 

model, rather a high level view of the possible decomposition strategy was presented. 

Model 3 deals with an innovative application of the Minimum Spanning Tree 

problem used to measure the compactness of the developed area. This work was 

presented by Faria and Gabriel during the INFORMS conference in Denver 2004. 

1.4. Difference from Previous Work 

This research differentiates itself from previous work in the following aspects: 

1. Innovative use of the minimum spanning tree (MST) as a measurement 

for compactness in a multiobjective optimization problem applied to land 

development. To the best of our knowledge no one has set up an embedded minimum 

spanning tree within this setting. 

2. Combination of well-known techniques such as minimum spanning 

trees, shortest path method, relaxation and decomposition methods, combined in a 

novel way with graphical and spatial geographical information systems (GIS) in a 

multiobjective setting for land development. 

4. Implementation of decomposition and relaxation techniques for the 

weighting method for the land development multiobjective optimization in a new 

way. 

5. The formulation mentioned in literal 1 has an exponential number of 

variables and constraints. An approach to reduce the number of variables and 

constraints was used, which allows the problem to be solved without explicitly use all 

constraints. 
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1.5. Usability of the Models 

We expect that the three models could be used in a wide variety of practical 

and academic settings. 

Perhaps the first model, due to its mixed integer linear formulation and 

decomposition approach, would be attractive to land development stakeholders. We 

envision this tool as an aid in negotiations over the impact of different policies for 

zoning, development, and even future transportation initiatives. For academics this 

model presents an example of mixed integer programming and techniques to solve 

large scale models by using decomposition, relaxation, column generation and 

constraints generation strategies.   

The other two models, due to their higher level of complexity might be less 

appealing to practitioners as compared to the first one, although they consider 

minimizing sprawl as one of the objectives which would be of interest to the planning 

community. 

For the advocates of compact land development, we hope these models will be 

a useful tool to understand the long term implications of land development decisions. 

Moreover, the results of relaxation of zone restrictions can be readily applied to 

support current tendencies of mixed zoning to contain sprawl and encourage walkable 

communities. 

We also envision the models to be used as an example of what can be done for 

multiobjective optimization applications and decomposition techniques in 

mathematical and engineering settings both in practical and academic settings. 
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1.6. Literature Review 

This section is divided into five areas starting with a discussion on 

compactness measurements and sprawl, followed by a brief review of neoclassical 

economics that predict land development, and prescriptive approaches aimed to plan 

the development. The last two sections are dedicated to present two land development 

models used in subsequent chapters. 

The development of land is a necessity for human kind, as the population 

grows, the need for housing grows too. As the economy expands, businesses extend 

their operations and as a result new facilities are built. Depending on the locations 

selected, these new developments could cause damage to the environment or to the 

community itself. “Sprawl growth” is by definition unplanned, randomly selected, 

scattered and typically outside of traditional development areas. Take for example the 

definition presented in Gillham (2002): 

“Sprawl is a form of urbanization distinguished by leapfrog 
patterns of development, commercial strips, low density, separated 
land uses, automobile dominance, and minimum of public open 
space.”  

 
Bammi and Bammi (1979) mention this form of sprawl, “linear leapfrog 

fashion”, as the historical tendency of development in Du Page County near Chicago, 

Illinois. 

This chaotic development translates into the need for infrastructure in the 

form of water and sewer lines, power lines, sidewalks, communication networks, 

school districts, etc., required to support small development at relatively remote 

locations. Gilbert et al. (1985) recognized the desirable effects of compactness of the 

developed area as a lowering factor in the cost of land development.  There is an 
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economic cost associated with building such an infrastructure financed from 

collection of taxes. There is an environmental cost measured in increased pollution, 

and there is also an ecological cost measured in reduction of natural resources. The 

undesirable effects of sprawl have prompted federal and state agencies such as the 

U.S. Environmental Protection Agency (EPA), the American Association of State 

Highway Transportation Officials (AASHTO), the University of Maryland, and the 

Governor of Maryland office among others to create rationalized plans for land 

development. Such plans are focused on preventing sprawl in order to reduce or 

“minimize” the impact on cost and the environment, while still promoting economic 

growth and providing the required housing for the community.  

1.6.1. Definition and Measures of Compactness and Sprawl 

 “Urban Sprawl is low density, automobile dependent development 
beyond the edge of service and employment areas. It is ubiquitous 
and its effects are impacting the quality of life in every region of 
America, in our large cities and small towns” (EPA, 2005) 

 
Measuring the compactness of a land development project is not as simple as 

it seems. Knaap, Song and Nedovic-Budic (2004) wrote: 

“Despite the release of several new sprawl indexes, the 
measurement of sprawl remains an illusive task”.  

 
Wolman et al. (2004) agrees, defining what is meant by sprawl, how it should 

be measured, and what geographical area and type of land should be considered are 

key factors required to understand the problem and although many researchers have 

tried no consensus has been reached. The difficulty might be in the multidimensional 

aspect of the problem where each dimension requires a different measure such as the 

ones proposed by Torrens and Alberti (2000):  density, scatter, leapfrogging, 
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interspersion, and accessibility, or the ones proposed by Galster et al. (2001): density, 

continuity, concentration, clustering, centrality, nuclearity, mixed uses and proximity. 

Gillham (2002) claims that sprawl can be seen from an airplane, the main 

characteristic is the presence of a pattern of developed conglomerates of land 

surrounded by forests and farms.  

Perhaps few of the common descriptions of sprawl include that the sprawl 

phenomenon is found outside the cities where the new developments are taking place. 

It is identifiable by the predominance of low density developments (Wolman et al. 

2004, Galster et al. 2001), with service and commercial areas reached by vehicle and 

not primarily by walking due to their separation from the residential areas. These 

developments are associated with an ad hoc or unplanned fashion (Gillham, 2002). 

Another term cited in the literature of sprawl is leapfrog development (Bammi and 

Bammi, 1975; Heim, 2001; Gillhamm, 2002) which refers to the scattered 

development of land with forests or farm land in between.  

Density can be measured as the number of people per unit of area, or as the 

number of dwelling units per unit of area (Gillham, 2002). Density is the most widely 

used indicator of sprawl (Burchell and Listokin, 1991; Black, 1996; Torrens and 

Alberti, 2000; Galster et al., 2001). Galster et al. (2002) proposed the measurement of 

density as the number of residential units per available area for development, this 

measure eliminates the commercial and industrial dwellings that are more likely to be 

clustered together, and also eliminates the parks and areas not available for 

development. 
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1.6.1.1. Cost of Sprawl 

Almost all the literature about sprawl associates the negative impact of sprawl 

with the higher cost of infrastructure.  

“Sprawl is creating a hidden debt of unfunded infrastructure and 
services, social dysfunction, urban decay and environmental 
degradation”. (EPA, 2005)  

 
It seems clear that every unit developed either for commercial, industrial or 

residential use requires basic services such as electricity, telephone, and some sort of 

road access, besides service support such as schools, police stations, firefighting 

stations, etc. If we analyze the cost of connecting the new development to the existing 

network, we will find a variable cost which is proportional to the distance from the 

new development to the point of connection, plus some associated fixed cost. So we 

would expect that the further away a new development is from the interconnection 

points the more expensive it is to provide the service. Since one of the characteristics 

of sprawl is having a “leapfrog” type of development with pristine land in between, it 

is expected to have higher costs as compared to a development plan that maintains a 

tight distance to the connection points (cities, hubs, highways, etc). 

The negative effects of sprawl can be a measure of the cost to society, those 

unwanted factors are multiple. They cover a large spectrum of social, environmental 

and technical areas. Some of these factors are traffic congestion with the associated 

noise and air pollution (Black 1996, Downs 1999), environmental contamination and 

the destruction of ecosystems (Rees, 1991, Sierra Club 1998), conversion of farmland 

to urban uses (Bryant and Johnson, 1992, U.S. General Accounting Office 1999). 

There is also a monetary cost to the public as raised taxes are needed to pay for 
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services such as police and fire departments, infrastructure such as new schools, and 

roads. Utilities such as water and sewer (Burchell et al. 2000) must be stretched much 

further to serve the same number of people than they do in the city (Sierra Club 

1998). A quick search of “negative effect of sprawl” using Google reported about 

118,000 links (April 2005) this provides an idea of how controversial is this topic and 

how many sources have looked into the sprawl phenomenon. 

1.6.1.2. Economic Reasons for Sprawl 

The land use in the United States is mostly driven by economic factors rather 

than by state and regional legislation (Lewis 2001; Gillham 2002). It is a matter of a 

simple check of the available residential units for sale, to find out that there are many 

properties located in rural areas whose cost are considerably lower than those in the 

city or around its immediate borders. This cost factor has made many corporations to 

move from the city to the rural area in a search for lower costs, better lifestyle and 

less congestion (Heenan 1999, Gillham 2002). Some homeowners are willing to take 

longer trips from their residences to their workplace as a tradeoff to be close to open 

spaces (Wu and Plantinga, 2003). 

Gillham (2002) identifies four factors that promote or make sprawl. Land 

ownership and use is the first. Based on the rights of the owner, the land can be sold, 

divided, built on, etc. These decisions depend (in most cases) on the land owner and 

would be driven by the economies of the region and the market. Since 70% of the 

U.S. land is privately owned, there is a big portion of the decision of land use left to 

the land owner. The second factor identified as a cause of sprawl is the transportation 

patterns. It seems rather clear that without a transportation network to tie together the 
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places where people and industries settle it would be impossible to have sprawl. 

Telecommunications has earned a third place on the list. Since in today’s world it is 

easy to communicate with almost anyone from anywhere, now the geographical 

location of the business and individuals is less important than ever before. Initially it 

was the telephone that permitted businesses to be far from each other and still 

communicate. Today, the computers, internet, cellular technology and satellite 

communication reduce even more the geographical barriers to do business. Finally the 

regulations and standards are the ultimate factor that defines the development pattern. 

How the land is developed and for what use is mostly determined by the economic 

factors. Although there are some zoning and density regulations to prevent or reduce 

the arbitrariness of the development decision the final use of the land is mostly 

dictated by the owner. 

1.6.2. Predictive Land Development Models 

These models are based on the “first principles” or “neoclassical” tradition of 

economics focused on explaining and predicting land development. This theory of 

land development describes the uses of land as they change from one type to another, 

brings an explanation of why these changes occur, what causes these changes, and 

what are the mechanisms of change.  Consistent with the neoclassical approach, they 

proceed from fundamental assumptions about consumer utility maximization and 

producer profit maximization.  There is a large literature of land development based 

on these principles, most of it built upon von Thünen’s results. 

In 1842 Johann-Heinrich von Thünen published a model for land development 

based on a central market which is isolated from any external influences and 
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surrounded by unobstructed and unoccupied land with identical climate conditions 

(Thünen, 1826). The value of the land, given all other factors being equal, is highest 

in the close proximity to this market place, and reduces as the distance from the 

marketplace increases.  

“The basic principle was that each piece of land should be devoted 
to the use in which it would yield the highest rent” (Hoover and 
Giarratani, 1984).  

 
This model considers the land development as concentric rings with the 

marketplace in the center. The most profitable perishable goods with high transport 

costs would be located close to the market, while those less profitable would be found 

in the outer rings. The original simplistic assumptions used to explain this land rent 

theory were relaxed by von Thünen himself and by other researchers (Romanos, 

1976; Wheeler and Muller, 1981, Hoover and Giarratani 1984).  

As a more recent example of the neoclassical approach to land economics, 

Alonso (1964) describes and explains the residential location of individual 

households and the resulting spatial structure of an urban area as a function of the rent 

paid. The rent paid is in time a function of the distance to the market place (city 

business district). 

A different theoretical framework focus on the agents operating in urban 

contexts and the interactions among them, they take into account the market structure 

of the urban setting (Christaller, 1966; Pred, 1966; Myrdal, 1957). 

For a review of land use change models that include social drivers see 

Agarwal et al. (2000). For a brief review of land development modeling and 

economics since von Thünen, see Briassoulis (2000). 
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A distinct approach to predictive land use model is the agent-based method.  

In this approach, the decisions of individual agents are modeled, and their actions are 

the product of heuristics applied under limited foresight, unlike the perfect knowledge 

and rationality assumptions of the neoclassical model.  An example of an agent-based 

model is Costanza and Wainger (1993) who discuss the extremely complex and 

nonlinearities of the relations between economics and ecology. This level of 

complexity influences the predictability of the models, and therefore their use. These 

relationships require more complex models with larger number of inputs that are 

sometimes difficult to estimate. 

The models presented in this dissertation consider, as one objective, the 

maximization of profits obtained by a development strategy (among other objectives). 

In this sense it is broadly consistent with the neoclassical economic concepts.   

However, the models of this thesis are not meant to be predictive or explanatory of 

land development in the way the above models are.  Rather the models proposed here 

are normative, suggesting alternative desirable patterns of development for 

consideration by planners.  A further difference with some of the neoclassical models 

is that the compactness measurements presented in this work are not focused on 

development around a central market, rather two measurements are used.  The first 

one minimizes the rectangle that encloses all developed parcels (previously developed 

and selected for development) while the second measurement minimizes the distance 

required to connect the parcels selected for development to the infrastructure of 

previously developed parcels (existing infrastructure). This infrastructure is modeled 

as a network where the parcels are nodes and the arcs are the distances between 
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parcels.  However, it would be possible to change the last measurement to minimize 

the distance to highly populated areas or markets (cities). 

1.6.3. Normative Land Development Models 

One of the early works that analyzed land development and optimization 

problems was by Garfinkel and Nemhauser (1970) who developed an algorithm to 

optimize political district areas. They used the notion of compactness to solve a 

political redistricting problem which seeks to distribute the population into districts 

based on contiguity of geographical regions and density of population. They identify 

at least two possible measures of compactness, one related to geographical 

compactness and a second one related to population compactness. They depict a 

compact region as “somewhat circular or squared in shape rather than long and thin”.  

Their two-phase method first generates feasible solutions for contiguous 

districts, compactness and limited population deviation. Then, this procedure finds a 

set of districts that cover each population exactly once, minimizing the maximum 

deviation of any district population from the mean. Their model measures 

compactness using two factors “distance” and “shape”. These definitions are derived 

from continuity of the units that make up the district and the distance between them. 

A district is defined as a connected graph with nodes where each node is a district 

unit and each arc exists only if the nodes are contiguous. Two nodes are said to be 

contiguous if the border between them is greater than a single point. Then the 

compactness measure is achieved by computing a dimensionless factor 
2
ij

j

d
c

A
=  where 

ijd measures the distance between the two farthest apart units of the district called i 
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and j, and where jA is the area of the district j.  The distance between districts is 

determined by the shortest path from one point to another since the districts are 

contiguous. Their model assigns units to districts with compactness and contiguous 

considerations.  The work presented in this dissertation employs similar concepts but 

in different ways, the shortest path is used to detect cycles in a minimum spanning 

tree created as a measurement of compactness, we do not impose the continuity 

requirement but we do promote compactness developments as the tree connecting 

developed parcels is minimized. 

Later, Bammi and Bammi (1975, 1979) developed a multiobjective 

optimization model with five objectives. The first one minimized a measure of 

“conflict” between adjacent land uses. They assigned a conflict value for adjacent 

land uses by creating a table and assigning values to the different possible 

combinations of adjacent land use, the criteria for weighting these were based on 

aesthetic factors, noise, pollution, density, transportation, and social and 

psychological concerns. The second one minimized travel time measuring the 

distance traveled on trips between the existing developments, and the new land 

allocated for development by their model. The third objective, minimization of tax 

cost, included the cost of providing services such as schools to the new communities 

but also the revenues from taxation to commercial districts searching for a balanced 

development between costs and revenue sources. The fourth objective, minimization 

of adverse environmental impact, used an environmental weighting matrix for which 

a committee of experts in several fields provided their assessments using a scale from 

zero to twenty for the development. Finally the fifth objective was minimization of 
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cost to build community facilities such as schools, parks, sewage plants, etc. The 

constraints of the problem were growth requirements per type of use. Their model 

assigned acreage to each land use type and they considered seven different use types, 

residential (three sub categories low, medium and high density), commercial, office, 

research and development, manufacturing, institutional, and open space (two sub 

categories local and regional). The compactness of the development can be seen as 

addressed by the minimization of traveling time between existing developments and 

new developments. This is in a sense a compactness measure but the net result might 

allow for high density zones to be located near existing population centers (high 

accessibility) while the low density zones, mostly residential in nature, assigned to the 

surroundings (low accessibility). In our work by using the minimum spanning tree we 

are minimizing the total interconnecting distance among developed parcels, this 

seems to simplify the calculations required to compute the total traveling distance of 

new owners.  

Wright, ReVelle, and Cohon (1983) presented a multiobjective integer 

programming formulation for land development with an efficient algorithm to find 

Pareto optimal solutions. They looked at a weighted combination of three objectives: 

maximize compactness, maximize area, and minimize cost subject to budget 

constraints, contiguity constraints, number of cells, inclusion of cells in the solution, 

area constraints regularity of the grid and expansion. The decision variables were to 

acquire or not acquire individual parcels. Here the constraints included a requirement 

for contiguity meaning that the land developed should be contiguous, the more 

general problem of maintaining a compact design without the contiguity requirement 
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requires a different approach. They measured the external border of the development 

as definition for compactness in their weighted combination of three objectives. This 

work was extended later by Benabdallah, and Wright (1992). Our work does not 

impose the contiguity requirement and does not require the land to match a grid 

pattern required by Wright, ReVelle, and Cohon (1983). 

Gilbert, Holmes and Rosenthal (1985) created a four-objective model to 

minimize acquisition cost, minimize distance to an amenity, which is a place or cell 

designated as desirable to be close in distance, maximize distance to a detractor or 

undesirable cell, and minimize a shape measure. Their definition of compactness was 

the product of the perimeter and the diameter of the set selected. In this setting the 

perimeter was the number of outside edges and the diameter was the maximum 

distance between any two cells in the shape. Outside edges were those that divided a 

cell selected from others that were not selected. An edge between two contiguous 

selected cells was internal. They used an equally-sized grid to measure the cells so 

that the number of edges could be used as a measure of distance. They presented a 

method to generate points that belonged to the Pareto optimal set. They claimed that 

pursuing the complete set of Pareto optimal points was too large of a task from the 

computational point of view and cumbersome from the managerial point of view.  

The book edited by Beinat, and Nijkamp (1998) includes a set of papers which 

combine multiobjective land use along with GIS components, and Pullar (1999) who 

presented a methodology to include spatial iterations as constraints into a multicriteria 

decision-making process for land allocation with a geographical information system 

(GIS). The logic of the algorithm was based on computing a weighted average of 
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factors for each location, then ranking them to arrive at the best solution. The 

algorithm was applied to find the optimal location for timber harvesting evaluating an 

environmental factor (related to environmentally sensitive areas), a yield indicator, a 

cost indicator and an allocation indicator related to mill capacity.  

Balling et al. 1999 created a multiobjective optimization formulation for urban 

planning where they minimized traffic congestion, cost related to the maintenance of 

the network and taxes associated with the land development and zoning 

considerations, the third objective considered was the minimization of change 

including rezoning, upgrades to the system, etc.  They used genetic algorithms to find 

a set of Pareto optimal developments. 

Similarly Vatalis and Manoliadis (2002) used a multicriteria decision system 

to find the best location for a waste disposal site. They employed a weighted function 

of environmental, technical and cost factors to evaluate and rank a list of possible 

sites. By judging for the number of references obtained in this subject, there are many 

other researchers who have done multicriteria decision and land development but they 

seem to be focused on the same principles of the last two references mentioned which 

are a weighted sum of factors and ranking of possible solutions rather than modeling 

and solving an optimization problem. 

Wu and Plantinga (2003) analyze the impacts of open space that produce 

leapfrog development they measured the distance between residences and the city 

business district as the primary amenity for the resident. 

Wolman et al. (2005) use the definition of proximity as: 

“the degree to which cross-area observations of a particular land 
use or pair of land uses are close to each other, relative to the 
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distribution of all land comprising the study area. Proximity is 
maximized when all locations with the highest densities of the 
given land uses are closest together. Low levels of proximity are 
more sprawl- like.” 

 
Gabriel, Faria and Moglen (2005) approached the measure of compactness as 

the square of the diagonal of a rectangle that encloses all developed parcels. This 

measurement was proven to have some shortcomings despite the nice mathematical 

properties of convexity. If the solution proposed to develop a group of parcels falls 

inside the rectangle formed by the parcels already selected then the compactness 

measure does not change. Any solution within that rectangle will be considered 

equivalent. Moreover, this measurement is dependent on the orientation of the axis 

used to take the measure. The authors worked around the shortcomings of such 

compactness measurement by dividing the area under study into quadrants, some 

quadrants resulted with more potential for changes in compactness than others due to 

the location of the parcels defining the borders of the quadrants.  

Aerts et al. (2005) have proposed a goal programming model that contains 

three spatial compactness objectives using a GIS database and a multicriteria decision 

making process they search for the  lowest cost and also at maximum compactness for 

land allocation. These spatial compactness objectives are based on size, perimeter and 

area of a cluster of the same land use. They have divided the land space with a grid 

with rows and columns, each cell is then assigned to a land use by a model that 

minimizes cost. Other models are presented considering contiguity of the land 

selected with same land use. This non linear combinatorial optimization problem was 

solved using simulated annealing and genetic algorithms. 
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1.6.4. Work by Moglen, Gabriel and Faria (2003) 

The authors presented a model to choose the best development strategy as 

measured by a weighted sum of the benefits obtained by the stakeholders involved in 

the land development process. The decision variables were to develop/not develop 

each parcel in an available set and the constraints were related to the growth of the 

community. The following stakeholders were considered: 

a. The Hydrologist: This stakeholder group has an interest in preserving 

the environmental conditions of the land as measured by the detriment in the capacity 

of the soil to permit the absorption of water due to the development of the land (i.e. 

imperviousness).  

b. The Conservationist: A stakeholder group focused on the preservation 

of the natural resources required by the different species of flora and fauna found in 

the undeveloped land. The goal of this group is to maintain certain pristine areas 

undeveloped. 

c. The Government Planner: This stakeholder class seeks to maintain an 

orderly development of communities and is responsible for insuring the existence of 

sufficient schools, roads, and supportive services such as sewer, fire and police 

stations, etc. 

d. The Land Developer: The collection of individuals and enterprises 

whose main goal is to obtain an economic benefit from building houses, commercial 

sites, governmental and industrial facilities.  

The local government has established different zone categories for the land to 

be developed, for example in the state of Maryland the following land uses can be 
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found : residential (low, medium and high density), commercial, institutional, 

industrial, extractive, open urban land, crop land, pasture, deciduous forest, mixed 

forest, bush and bare ground. 

Developers must adhere to the government’s stated land use. These different 

zone categories can be seen as a mechanism used by the government to maintain 

groups of similar use within the communities. Consequently, residential land use 

parcels are expected to be surrounded by other residential parcels, similarly parcels 

designated for commercial and industrial uses would be contained in commercial 

areas and industrial parks, respectively. In spite of what we just stated, the modern 

land development tendency to prevent sprawl seems to integrate commercial and 

residential use as to minimize automobile usage rather than develop them in different 

in zones. 

Based on the research of Arnold and Gibbons (1996) and Schueler (1994) 

where imperviousness is used as an index of urban impact, the objective of this group 

is to minimize the imperviousness of the land as a result of the development. In 

Moglen, Gabriel and Faria (2003) the Hydrologists’ objective function presented 

sought to minimize the total change of imperviousness defined as  

1

min ( )
n

i i i
i

a I d
=

∆∑  (1.1) 

where n was the number of total parcels under consideration, id  was a land 

development variable for parcel i equal to 1 if parcel i was developed, and 0 

otherwise, iI∆  was the change in imperviousness associated with developing parcel i, 
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and ia  was the area of parcel i.  The Conservationist objective function minimized 

the development in areas defined as environmentally sensitive expressed as  

min i i
i Sc

a d
∈
∑  (1.2) 

where the set Sc was the subset of (restricted) parcels that the Conservationist wanted 

to stop from being developed. The Government Planner sought to steer development 

inside the zones defined as Priority Funding Areas or PFA’s for short. These were 

regions where the local government provided economic benefits if the development 

took place, the objective function can be written as  

max i i
i PFA

a d
∈
∑  (1.3) 

where PFA was the set of parcels designated as Priority Funding Areas. Lastly the 

land Developer’s objective was to maximize net profit computed as:  

1

max
n

i i
i

p d
=

∑  (1.4) 

where ip was a measure of the economic profit of the parcel i if it was developed, and 

was statistically determined from actual data. 

The land use of each parcel (zone type) was fixed beforehand using a heuristic 

that considered the distance to existing industrial parks, residential zoning and mayor 

highways. The problem constraints included minimum and maximum requirements of 

new housing in terms of units, commercial area and industrial area. The type of 

development permissible was fixed for each parcel and the development of the parcel 

was either complete or none meaning that partial development of a parcel was not 

considered valid. The authors presented a picture of the tradeoffs between 
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stakeholders, and a novel framework for decision making in the land development 

area. 

1.6.5. Work by Gabriel, Faria and Moglen (2005)  

Later Gabriel, Faria and Moglen (2005) extended Moglen, Gabriel and Faria 

(2003) by including in the decision variables the zone type for each parcel, and by 

changing the planner’s objective function to maximize the compactness of the 

development. This was accomplished by computing the square of the diagonal of an 

outer rectangle drawn by tracing horizontal lines over the northernmost and 

southernmost points, and vertical lines over the westernmost and easternmost points 

as presented in Figure 1.2. 

 

Figure 1.2 Measure of compactness as the diagonal of the “outer development box” 

The actual measure of compactness used was the square of the length of the 

diagonal (for computationally attractive reasons) so the objective function for the 

planner became: 

2 2
1 0 1 0min:( ) ( )r r c c− + −  (1.5) 
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where 0r  was the southernmost coordinate, 1r was the northernmost coordinate, 0c was 

the westernmost and 1c the easternmost.  

This measure of compactness was then evaluated under a rotated axis creating 

a concept of optimization of land development along a path or corridor as presented 

in Figure 1.3. 

 

Figure 1.3 Corridor with axes rotated 

Besides a different objective function for the Planner in Gabriel, Faria and 

Moglen (2005), the constraints of the problem were further enhanced by a 

requirement to assign land use to the parcels. Some parcels were fixed in the type of 

use available, some others were free to be selected. However, a planning rule applied 

was that before any of the free zoned parcels could be assigned to any land use, all the 

available parcels in that land use must be chosen first. For example if there were 15 

parcels available for development in the residential high density zoning, all of those 
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should be included in the developed solution before any parcel in the “free” zone set 

could be selected for development for residential high density purposes.  

The weighting method was the approach used to solve the multiobjective 

optimization problem. Nine different weight vectors were used for the stakeholders’ 

objectives, and the results of the optimization were analyzed. The nine vectors used 

were selected to find extreme development points of view mixed with equally 

weighted consensus as presented in Table 1.1. For example in the case “Planner 

Alone” the Planners’ objective (compactness) got a weight of 1 while all other 

objectives got a weight of 0. 

C
as

e 

 Planner 
(Compactness) 

Hydrologist 
(Imp. Change) 

Conservationist 
(Env. Sensitive 

Area) 

Developer 
(Profit)  

Relative 
Gap 

1 Planner Alone 1 0 0 0 5e-005 
2 Planner Pareto 1 0.001 0.001 0.001 5e-005 
3 Hydrologist  

Alone 
0 1 0 0 5e-005 

4 Hydrologist  
Pareto 

0.001 1 0.001 0.001 5e-005 

5 Conservationist  
Alone 

0 0 1 0 5e-005 

6 Conservationist  
Pareto 

0.001 0.001 1 0.001 5e-005 

7 Developer  
Alone 

0 0 0 1 5e-005 

8 Developer  
Pareto4 

0.001 0.001 0.001 1 5e-004 

9 All 
Perspectives 

1 1 1 1 5e-005 

Table 1.1 Weight vectors for each stakeholder’s objective  

Note that the rightmost column of Table 1.1 contains a value for the relative 

gap defined as  

                                                 
4 A relative gap of 5e-005 was not achievable within a reasonable amount of time.  The authors thus 
slightly relaxed the problem and it solved with a relative gap of 5e-004 instead. 
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Best Solution - Best Bound
Relative Gap = 

Best Bound
 (1.6) 

This value was required because the solution of the problem for some of the 

weight vectors would require extremely long times (over 20 hours in some cases).  

The tolerance chosen is really extremely small, it is possible that in fact the best 

solution has been found but the solver keeps trying to achieve a bound that cannot be 

achieved. The relative gap tolerance not necessarily implies that the solver accepts a 

suboptimal solution in lieu of the optimal solution, but that case is still possible. This 

tolerance is called relative because the value of the gap is divided by the best bound 

thus creating a relative value. 

1.7. Chapter Conclusions 

Finding the best land development plan is not a new problem, many 

researchers have provided formulations and economic theories aimed to provide an 

answer to this dilemma, some by rigorous math models, and some by envisioning the 

ideal community based on environmental requirements and then proposing guidelines 

to achieve the ideal solution. From the early work of von Thünen the concept of 

compactness can be seen as develop the land around a central point (could be a city) 

outwards, facilitating the communication between those individual living in the 

community. The model developed Gabriel, Faria and Moglen (2005) also looks to 

maximize compactness but this measure is determined by the parcels that define the 

outer rectangle, inside the rectangle the selection of the parcels does not affects the 

compactness of the general development. Other compactness measurements that 

consider the perimeter of the development have been used on a small scale. Since the 
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compactness measure seems to be an elusive task, a new compactness measure 

proposed in this dissertation comes to increase the general body of knowledge on this 

area. This particular aspect of the dissertation can be applied to solve large scale 

problems of minimum spanning trees in embedded in optimization problems, not 

necessarily related to land development. 
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Chapter 2  Land Development Mixed Integer Formulation 

In this section we present an algorithm to solve the multiobjective formulation 

for the land development problem presented in the paper of Moglen, Gabriel and 

Faria (2003). This formulation has the following considerations: 

-All parcels belong to one predetermined zone category, the parcels can be 

developed only in that zone. 

-The Hydrologist is concerned with the minimization of the imperviousness 

change suffered by the soil by effect of the development of the parcel. 

- The Conservationist is concerned with steering the development away from 

some environmentally sensitive areas. 

-The Government Planner is concerned with the maximization of the 

development in the so called Priority Funding Areas (PFA’s). 

-The Developer is concerned with the maximization of the profit obtained by 

the development of the parcels. 

The objective of this section is to expand the work of Moglen, Gabriel and 

Faria (2003) by: 

a) Presenting a larger set of “Pareto optimal” solutions. 

b) Using the constraint method to solve the multiobjective problem. 

c) Presenting an algorithm to derive an approximation of the Pareto optimal 

set. 

d) Analyze the effectiveness of Lagrangian relaxation, branch and bound and 

Dantzig-Wolfe decomposition when solving the problem at hand. 
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Previously in Figure 1.1, we presented the roadmap of the dissertation goals. 

Now we present the branch for this chapter in Figure 2.4. 

 
Figure 2.4 Research structure for Chapter 2 

The original paper described before under 1.6.4 Work by Moglen, Gabriel and 

Faria (2003) was conceived as a mixed integer programming problem with multiple 

linear objectives and linear constraints. The solution approach was to use the 

weighting method and a set of nine cases were evaluated.  

This chapter expands that work in two areas: First it looks into the nine cases 

evaluated and identifies a case for which the solution took relatively longer time as 

compared with the rest. Then an algorithm based on relaxation and decomposition 

methods is applied to solve the problem. Further, a set of 1000 new weights were 

evaluated using three different bounds on development for the priority funding areas 

to test the efficiency of the proposed algorithm. The second area focuses on setting up 

a framework to solve the land development problem using the constraint method.  
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2.1. Objective Functions 

As previously introduced, the Land Development Planning Problem can be set 

up as a mixed integer programming problem considering four stakeholders. The 

stakeholders and objectives used in Moglen, Gabriel, and Faria (2003) were: 

The Hydrologist: 
1

min
n

i i i
i

a I d
=

∆∑  (2.1) 

The Conservationist: min i i
i Sc

a d
∈
∑  (2.2) 

The Government Planner: max i i
i PFA

a d
∈
∑  (2.3) 

The Developer: 
1

max
n

i i
i

p d
=

∑  (2.4) 

where Sc is the set of environmentally sensitive parcels, PFA is the set of preferred 

funded parcels and n is the total number of parcels available for development. 

2.2. Constraints 

The constraints for this problem were to reach a level of development to cover 

the requirements of residential housing and areas for commercial and industrial 

growth. These constraints are required to depict market requirements, there is a 

minimum number of units required to accommodate the growth of the population, but 

there is also a maximum number of units that would be bought during the period. 

Additionally, there are minimum and maximum requirements in terms of area 

developed in the priority funding areas. This constraint is considered a complicating 

constraint. The reason for this characterization is that if this constraint weren’t 
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present, then the problem could be easily decomposed into five subproblems, one for 

each zone, as described in a later section. 

2.3. Formulation Using the Weighting Method 

Consider that there are five zones z  numbered 1 to 5 representing 

respectively, residential low density, residential medium density, residential high 

density, commercial and industrial zones. Also, consider that each zone z has 

zN parcels. Each parcel i belongs to a zone type. In order to reveal the structure that 

facilitates the decomposition of this formulation by zone types, the subscript i 

previously used has been substituted by a subscript z,n where z is the zone type and n 

represents the number of the parcels within that zone. ,z nu  represents the number of 

dwelling units of the nth parcel in zone z. Then the mathematical formulation used for 

this model can be written as follows: 

Min: 
5

, , ,
1 1

zN

z n z n z n
z n

a I d
= =

∆∑∑  (2.5) 

Min: 
5

, ,
1

z n z n
z n Sc

a d
= ∈

∑ ∑  (2.6) 

Max: 
5

, ,
1

z n z n
z n PFA

a d
= ∈

∑ ∑  (2.7) 

Max: 
5

, ,
1 1

zN

z n z n
z n

p d
= =

∑∑  (2.8) 
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Subject to: 

5

, ,
1

z n z n
z n PFA

PFA a d PFA
= ∈

≤ ≤∑ ∑  (2.9) 

1

, ,
1

, 1
N

z n z n
n

RLD u d RLD z
=

≤ ≤ =∑  (2.10) 

2

, ,
1

, 2
N

z n z n
n

RMD u d RMD z
=

≤ ≤ =∑  (2.11) 

3

, ,
1

, 3
N

z n z n
n

RHD u d RHD z
=

≤ ≤ =∑  (2.12) 

4

, ,
1

, 4
N

z n z n
n

COM u d COM z
=

≤ ≤ =∑  (2.13) 

5

, ,
1

, 5
N

z n z n
n

IND u d IND z
=

≤ ≤ =∑  (2.14) 

, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (2.15) 

In Moglen, Gabriel, Faria (2003) the weighting method was used to find a set 

of solutions to the problem. Not all of the points found in Moglen, Gabriel and Faria 

(2003) are nondominated, because since some of the weights used are zero, they may 

be “weakly Pareto optimal”. This means that they will outperform or match any other 

solution for the objective with positive weight, but there might be another solution 

with the same value on that objective and better value for at least one other objective. 

For the cases in which all weights were positive, the resulting solutions are Pareto 

optimal (Cohon 2003).  By applying a weight to each objective the formulation can 

be written as: 
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Min:
5 5 5 5

1 , , , 2 , , 3 , , 4 , ,
1 1 1 1 1 1

z zN N

z n z n z n z n z n z n z n z n z n
z n z n Sc z n PFA z n

w a I d w a d w a d w p d
= = = ∈ = ∈ = =

∆ + − −∑∑ ∑∑ ∑ ∑ ∑∑

 (2.16) 

s.t. 

5

, ,
1

z n z n
z n PFA

PFA a d PFA
= ∈

≤ ≤∑ ∑  (2.17) 

1

, ,
1

, 1
N

z n z n
n

RLD u d RLD z
=

≤ ≤ =∑  (2.18) 

2

, ,
1

, 2
N

z n z n
n

RMD u d RMD z
=

≤ ≤ =∑  (2.19) 

3

, ,
1

, 3
N

z n z n
n

RHD u d RHD z
=

≤ ≤ =∑  (2.20) 

4

, ,
1

, 4
N

z n z n
n

COM u d COM z
=

≤ ≤ =∑  (2.21) 

5

, ,
1

, 5
N

z n z n
n

IND u d IND z
=

≤ ≤ =∑  (2.22) 

, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (2.23) 

The minus sign on the objective function for the last two objectives forces the 

solution to be a maximization of those objectives. The bounds used are presented in 

Table 2.1. 

 
Lower 
Bound 

Upper 
Bound  

Development in Preferred Funded Area  2 1,000 Acres 
Development in Residential Low Density Zone 1,554 2,331 Units 
Development in Residential Medium Density Zone 8,190 12,285 Units 
Development in Residential High  Density Zone  4,256 6,384 Units 
Development in Commercial Zone 270 406 Acres 
Development in Industrial Zone 179 268 Acres 

Table 2.1 Lower and upper bounds for development 
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It is convenient to group the terms in objective function by zone, so (2.16) can 

be rewritten as: 

5

1 , , , 2 , , 3 , , 4 , ,
1 1 1

z zN N

z n z n z n z n z n z n z n z n z n
z n n Sc n PFA n

w a I d w a d w a d w p d
= = ∈ ∈ =

 
∆ + − − 

 
∑ ∑ ∑ ∑ ∑  (2.24) 

It is also convenient to group the terms by each parcel so the objective 

function (2.24) can be written as: 

( )
5

1 , , 2 , 3 , 4 , ,
1 1

Nz
Sc PFA

z n z n z n z n z n z n
z n

w a I w a w a w p d
= =

∆ + − −∑∑  (2.25) 

where ,
Sc
z na is the area of the parcel if the parcel is in the environmentally sensitive area 

or zero otherwise, and ,
PFA
z na is the area of the parcel if the parcel is in the priority 

funding area or zero otherwise. The term inside the parenthesis can be computed for 

each parcel as: 

, 1 , , 2 , 3 , 4 ,
Sc PFA

z n z n z n z n z n z nc w a I w a w a w p= ∆ + − −  (2.26) 

So the integer programming formulation for the land development problem can be 

written as: 

LDIP: 

Min: 
5

, ,
1 1

Nz

z n z n
z n

c d
= =

∑∑  (2.27) 

s.t. 

5

, ,
1 1

Nz
PFA
z n z n

z n

PFA a d PFA
= =

≤ ≤∑∑  (2.28) 

, ,
1

, 1,2,..5
zN

z z n z n z
n

u u d u z
=

≤ ≤ =∑  (2.29) 

, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (2.30) 
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Evaluation of the Nine Original Cases 

In Moglen, Gabriel and Faria (2003) the problem was solved using nine cases 

as presented in Table 2.2. 

  Weights  Original Objective Functions 

Case H
yd

ro
lo

gi
st

 

C
on

se
rv

at
io

ni
st

 

Pl
an

ne
r 

D
ev

el
op

er
 

(Imp. 
Change)  
Hydrologist 
Objective 
Area  
(ha) 

(Env. Sensitive 
Area) Conserv. 
Objective  
(ha) 

(PFA Area) 
Planner 
Objective 
(ha) 

(Profit) 
Developer 
Objective 
($10e6) 

1H 1 0 0 0  658.38   1,063.72   173.20   1,091.44  
1C 0 1 0 0  727.13   17.00   153.41   1,207.87  
1P 0 0 1 0  760.86   1,007.96   343.65   1,229.96  
1D 0 0 0 1  997.26   1,446.18   206.31   1,583.71  
2 1 1 1 1  689.25   77.04   177.18   1,143.28  
3H 2 1 1 1  661.71   491.82   182.21   1,096.24  
3C 1 2 1 1  689.25   77.04   177.18   1,143.28  
3P 1 1 2 1  693.99   77.04   208.53   1,153.50  

3D 1 1 1 2  846.71   99.67   181.67   1,449.41  

Table 2.2 Objective function values for cases in Moglen, Gabriel and Faria (2003) 

The notation for the case is the case (first digit) followed by the stakeholder 

whose objective function has the greatest weight. For example 1H is the first case for 

which the Hydrologist is optimized with a weight of one while all others are zero, 3H 

is a case where the Hydrologists’ objective function has a weight of 2 while the others 

have a weight of 1. 

The data used to solve the model was normalized in an attempt to reduce the 

big differences in scale for the measurements of the objectives.  

The normalization method used changed the scale of the original objective’s 

measurement for each parcel to a 0-100 scale applying the following formula. 

Original Value - Min{All Values}
Scaled Value =100

Max{All Values}-Min{All Values}
 (2.31)  
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The numbers presented in Table 2.2 represent the solutions obtained using the 

original scale of the objectives. For the rest of this work we will be using normalized 

data rather than real values unless otherwise noted. The normalized results are 

presented in Table 2.3 along with an additional column to show the time required to 

achieve the optimal solution. 

  Weights  Normalized Objective Functions   

Case H
yd

ro
lo

gi
st

 

C
on

se
rv

at
io

ni
st

 

Pl
an

ne
r 

D
ev

el
op

er
 

(Imp. 
Change)  
Hydrologist 
Objective 
Area  
(ha) 

(Env. 
Sensitive 
Area) 
Conserv. 
Objective  
(ha) 

(PFA 
Area) 
Planner 
Objective 
(ha) 

(Profit) 
Developer 
Objective 
($10e6) Time (s) 

1H 1 0 0 0  1,051.55   372.30   52.71   763.81  0.51 
1C 0 1 0 0  1,419.38   1.77   45.75   782.00  0.07 
1P 0 0 1 0  1,547.89   294.34   79.39   800.59  0.07 
1D 0 0 0 1  1,706.94   451.65   57.39   1,100.99  595.00 
2 1 1 1 1  1,201.43   25.09   54.16   795.79  0.18 
3H 2 1 1 1  1,084.72   173.06   54.51   765.80  1.08 
3C 1 2 1 1  1,201.43   25.09   54.16   795.79  1.08 
3P 1 1 2 1  1,221.01   25.09   62.62   802.47  0.24 
3D 1 1 1 2  1,502.61   31.85   55.79   1,008.64  0.07 
Table 2.3 Normalized objective function values for the nine cases evaluated in Moglen, Gabriel 

and Faria (2003) and execution times 

Note how all but one case was solved in less than two seconds. The case for 

the Developer alone took the longest time at about ten minutes (595 seconds). Now 

we will explore other solution methods to reduce the computational time of that 

particular case. 

By carefully observing the weights selected for each of the cases one can 

predict some conditions of the solutions. For example when the developer’s objective 

is optimized alone, we expect the solution to be binding on the maximum number of 

parcels allowed for development since as the number of parcels developed increases 

so does the profit. Similarly we expect the hydrologist’s solution to be binding to the 
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lower bound of developed parcels when this perspective is considered alone since the 

lower the number of parcels developed the lower the imperviousness. In the case of 

the government planner it is not possible to associate the solution to the bounds of 

available parcels since the objective function tends to select as many parcels in the 

PFA area as possible so any feasible solution within the bounds of required 

development per zone can be selected. 

2.3.1. Branch and Bound 

A traditional approach to finding the optimal solution is by use of the branch 

and bound technique (for details of this technique see the Appendix section A 2.3.1). 

Consider the solution to the integer relaxation found earlier. Relaxing the constraint 

that forced the variables ,z nd  to be binary variables, we obtained four parcels with 

fractional values presented in Table 2.4. 

We could take any of these parcels and create two problems, one in which the 

parcel is forced to be developed and another one where the parcel is forced not to be 

developed. For example take parcel d11,266 to create two problems, one with an 

additional constraint as: 

d11,266  = 0  (2.32) 

and the other one with 

d11,266 =1 (2.33) 

Clearly both cases are mutually exclusive since a parcel cannot be developed 

and not developed at the same time, and they are also collectively exhaustive since 

there is no other possible outcome for that particular parcel. 
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 Solving with the relaxed problem including constraint (2.32) provides an 

optimal solution of z = -1102.43, while solving with constraint (2.33) provides an 

optimal solution of z = -1102.39 as presented in Table 2.4. At this point we set the 

lower bound to -1102.43 and since we have no feasible solution, the upper bound is 

set to infinity. The tree with two branches is presented below with their respective 

solutions: 

d11,266 = 0 d11,266= 1 

 

z =-1102.43 
 
Fractional parcels: 

d11,230  0.098413 
d12,177  0.691223 
d14,11 0.077997 
d15,251  0.855685  

z = -1102.39 
 
Fractional Parcels: 

d11,282 0.164835 
d12,177  0.691223 
d14,11 0.077997 
d15,251  0.855685  

Table 2.4 Branch and bound technique at first level 

These two solutions resulted in more variables being fractional, from each 

branch we can create other branches by taking each fractional variable and force it 

binary.  

There are some considerations as to which variable should be selected to 

branch on. Previously, we selected d11,266 among four possible variables, now we 

have a choice of four again for each of the two cases resulting from fixing the value 

of d11,266. Some researchers suggest that the best variable to branch on is the one 

closest to 0.5 In our case that variable would have been d11,177. For continuity 

purposes assume we selected first d11,266 and then d12,177, the solution would look as 

presented in Table 2.5. 
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d11,266 = 0 d11,266 = 1 
d12,177 = 0 
z = -1102.43 
 

d12,177 = 0 
z = -1102.38 
 

d11,266 = 0  d11,266 = 1 

 

d12,177 = 1 
z = -1102.42 

d12,177 = 1 
z = -1102.38 

Table 2.5 Branch and bound technique at second level 

After these nodes have been evaluated we update the lower bound as the 

minimum of the integer relaxations found, in this case it is -1102.43 (no change). The 

upper bound is set to infinity since no feasible solution has been found so far (no 

change). 

The branches of the tree will grow until all variables in the solution are binary. 

The only information known thus far is the upper bound on the objective function.  

The tree although large does not have to be exhaustively enumerated. As previously 

presented, there are three cases in which a complete branch of the tree can be 

eliminated or pruned. 

a) Pruned by infeasibility 

This case arises when forcing a variable to be binary results in the problem 

being infeasible. For example, if d15,251 which was a fractional variable in Table 2.4 is 

forced to 1, then the problem becomes infeasible. This happens because the area of 

that particular parcel combined with others already selected is larger than the upper 

bound in industrial acres to be developed. Therefore d15,25 = 0 is required for the 

problem to be feasible.  
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b) Pruned by optimality 

If we reach a solution in which all variables are binary, then we have obtained 

a feasible solution which provides an upper bound on the value of the objective 

function.  

Since we are minimizing if we find one feasible solution we obtain an upper 

bound to the problem. As we find more feasible solutions we could take the smallest 

of them to be our tightest bound. Once we reach a branch that is optimal there is no 

need to further evaluate the branch since all variables are already binary. The 

information obtained in these cases provides valuable insight for the next case since 

sometimes this solution becomes the best available feasible solution. 

c) Pruned by bound 

Having an upper bound and a lower bound on z is very valuable since when 

the relaxed integer problem is solved at a node, if the solution goes over the upper 

bound (minimization case) then we know that no matter what combination of 

variables are tried, that branch will not reach an optimal solution because the bound 

of the best value that can be obtained is already been improved by another feasible 

solution. 

For example if parcel d14,11 is forced to zero, then the optimal objective 

function of the integer relaxation is -1097.59 but this number is worse (higher) than 

the current best feasible solution of -1099.03. Therefore, regardless of the selection of 

the rest of the parcels, if this parcel is not developed, then it will be impossible to find 

a better solution than the one at hand. This leads to cut the branch rooted at d14,11=0 

by bound, since it will make no improvement to keep following that trajectory. 
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The solver evaluated over 2.1 million nodes before finally arriving at an 

optimal solution using the branch and bound method, using a weight of 1 for the 

Developer and 0 for all other objectives. 

Next we will develop the Dantzig-Wolfe decomposition technique and the 

Lagrangian relaxation methods tailored for the mixed integer land development 

problem with a small reduced example followed by the proposed algorithm to solve 

for a list of weighting vectors. 
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2.3.2. Dantzig-Wolfe Decomposition Technique for Land Development 

Because each parcel belongs to exactly one of five different parcel sets, the 

problem’s coefficient matrix has the structure presented in Table 2.6 below. 

1, 1,n n
n PFA

a d
∈
∑  2, 2,n n

n PFA

a d
∈
∑  3, 3,n n

n PFA

a d
∈
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a d
∈
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a d
∈
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∈
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a d
∈
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∈
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∈
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=
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    ≥  RLD  

1, 1,
1

RLDN
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n

u d
=
∑  

    ≤  RLD  

 
2, 2,

1
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n n
n

u d
=

∑  
   ≥  RMD  

 

2, 2,
1

RMDN

n n
n

u d
=

∑  
   ≤  RMD  

  

3, 3,
1
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n n
n

u d
=

∑  
  ≥  RHD  

  
3, 3,

1
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n n
n

u d
=
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4 , 4,
1
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n n
n
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=
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 ≥  COM  

   

4 , 4,
1
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n n
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u d
=
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 ≤  COM  

    
5, 5,
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n n
n

u d
=

∑  
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5, 5,
1

INDN

n n
n

u d
=

∑  
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Table 2.6 Structure of the land development problem 

Since this is a multiobjective optimization problem, and the proposed method 

for solving it was the weighting method, then the objective function is a weighted 

combination of the four objectives as presented in (2.27). 
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This structure suggests that if the first two rows are eliminated, then the 

problem can be decomposed into five problems that can be independently solved. 

However, the solution of such relaxation does not necessarily solve the original 

problem since the solution might be infeasible due to the elimination of the 

constraints. 

The advantage of this approach is that at a minimum, we have a lower bound 

on the value of the optimal solution. This information could be used during the 

execution of the branch and bound optimization strategy to reduce the search space. 

Also, in general it will be computationally easier to solve five smaller problems and a 

master problem than one large problem because the number of nodes required will be 

significantly reduced therefore reducing also the amount of memory needed and the 

execution time. Moreover, the Dantzig-Wolfe decomposition and the Lagrangian 

relaxation approach provide a mechanism that result in the solution of the original 

problem by iteratively obtaining better feasible solutions to the original problem via 

combinations of solutions obtained from the relaxations. 

The algorithm (presented in Figure 2.5) starts with a set of feasible solutions, 

solves a restricted master linear problem and tests for optimality, if the solution is not 

optimal more feasible solutions are incorporated into the set of feasible solutions, and 

the restricted master linear problem is solved again. 
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Step 0 Initialization
Find a set of feasible solutions by solving:

at least once per zone

Step 1: Solve the Restricted Linear Programming problem RLPM

Step 2 Solve the pricing optimization problems

Is any reduced
cost positive? Stop

Step 3
Generate a new

solution

No

Yes
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=
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Figure 2.5 Dantzig-Wolfe decomposition algorithm 
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The problems mentioned in steps 1, and 2 will be detailed in the next sections 

along with a small example to detail the procedure, followed by a step-by step 

description using all parcels from the work of Moglen, Gabriel and Faria (2003). 

2.3.2.1. Dantzig-Wolfe Decomposition Reduced Example 

To illustrate the decomposition structure of the problem, and the application 

of the method, let’s start with a simple case of land development that has two zones 

and three parcels in each zone. 

Lets suppose that the data from the parcels is as presented in Table 2.7, where 

the first column (PFA) represents the area of the parcel in the Priority Funding Area, 

the second column (IMP) represents the change of imperviousness due to the 

development of the parcel, the third column (ENV) represents the area of the parcel in 

the environmentally sensitive area, the fourth column (PRO)  represents the level of 

profit obtained by the development of the parcel, the fifth column (U) represents the 

number of dwelling units that can be built in the parcel. 

Zone, Parcel IMP ENV PFA PROF U 
1,1 7 8 2 2 5 

1,2 9 6 3 3 4 

1,3 12 4 5 7 2 

2,1 8 10 6 4 4 

2,2 8 5 8 9 6 

2,3 9 5 6 6 8 

Table 2.7 Properties of parcels for reduced example 

Assuming a weight vector W = (1,1,1,1),  the following bounds: 15PFA = , 

30PFA = , 1 6u = , 1 10u = , 2 8u = and 2 13u = . 

The objective function can be computed as: 
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Min  7 d11 +  8 d11 – 2 d11 – 2 d11 + 
     9 d12 +  6 d12 - 3 d12 – 3 d12 + 
    12 d13 +  4 d13 – 5 d13 – 7 d13 + 
     8 d21 + 10 d21 - 6 d21 – 4 d21 + 
     8 d22 +  5 d22 - 8 d22 – 9 d22 + 
     9 d23 +  5 d23 - 6 d23 – 6 d23 

 

Grouping terms the problem can be written as in Table 2: 

Min: 11 d11 + 9 d12 + 4 d13    + 8 d21 -  4 d22 + 2 d23 
s.t. 
           2 d11 + 3 d12 + 5 d13    + 6 d21 + 8 d22 + 6 d23  
           2 d11 + 3 d12 + 5 d13    + 6 d21 + 8 d22 + 6 d23  

>= 15 
<= 30 

           5 d11 + 4 d12 + 2 d13 
           5 d11 + 4 d12 + 2 d13 

 >=  6 
<= 10 

 4 d21 + 6 d22 + 8 d23 
4 d21 + 6 d22 + 8 d23 

>=  8 
<= 13 

Table 2.8 Block structure of the formulation for the reduced example 

It is clear how the formulation when written as in Table 2.8 matches the 

structure presented in Table 2.6. 

The solution to this problem is: 

        OBJECTIVE FUNCTION VALUE:      17.00000 
 
  VARIABLE        VALUE          REDUCED COST 
       D11         0.000000         11.000000 
       D12         1.000000          9.000000 
       D13         1.000000          4.000000 
       D21         1.000000          8.000000 
       D22         1.000000         -4.000000 
       D23         0.000000          2.000000 
 

This solution calls for development of parcels 2 and 3 from zone 1, and 

parcels 1 and 2 from zone 2 which would yield an objective function of 17.  

Consider that each of the zones z contains a large but finite set of development 

strategies Tz. Introducing a binary vector of decision variables ,1 ,2 ,( , ,..., )z z z z T zλ λ λ λ=  

to decide if a strategy t from the set is developed ( , 1z tλ = ) or not ( , 0z tλ = ), the 

original problem with the structure presented in Table 2.6 can be re-written as: 
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5 5 5 5

1 , , , 2 , , 3 , , 4 , , ,
, 1 1 1 1 1 1

min:
z zN N

t t t t
z n z n z n z n z n z n z n z n z n z t

z t z n z n Sc z n PFA z n

w a I d w a d w a d w p d λ
= = = ∈ = ∈ = =

 
∆ + − − 

 
∑ ∑∑ ∑ ∑ ∑ ∑ ∑∑ (2.34) 

where ,
t
z nd is the binary decision variable associated to develop under strategy t, the 

nth parcel in zone z. 

To simplify (2.34) we define the following terms: 

,
, , ,

1

zN
z t t

z n z n z n
n

IMP a I d
=

= ∆∑  (2.35) 

,
, ,

z t t
z n z n

n Sc

ENV a d
∈

= ∑  (2.36) 

,
, ,

z t t
z n z n

n PFA

PFA a d
∈

= ∑  (2.37) 

,
, ,

1

zN
z t t

z n z n
t

PRO p d
=

= ∑  (2.38) 

,z tIMP  accounts for the change of imperviousness resulting from selecting the 

development strategy (z,t) similarly, ,z tENV  for the area of environmentally sensitive 

area, ,z tPFA  for the area of Priority Funding Area, and ,z tPRO  for the profit. 

So the objective function can be written as: 

( ), , , ,
1 2 3 4 ,

,

min: z t z t z t z t
z t

z t

w IMP w ENV wPFA w PRO λ+ − −∑  (2.39) 

grouping the terms inside the parenthesis 

, , , , ,
1 2 3 4

z t z t z t z t z tc wIMP w ENV w PFA w PRO= + − −  (2.40) 

the formulation can be written as: 
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,
,

,

min: z t
z t

z t

c λ∑  (2.41) 

s.t.  

,
,

,

z t
z t

z t

PFA PFA PFAλ≤ ≤∑  (2.42) 

,
1

1
zT

z t
t

λ
=

=∑ for z = 1,2,3,4,5 (2.43) 

}1,0{, ∈tzλ  (2.44) 

Where each (z,t) is a feasible solution or development strategy for zone z and there 

are Tz of these feasible solutions in each zone z. So the problem is a binary program 

whose solution is to choose the best development strategy possible. 

Since the tz ,λ  are the decision variables, if tz ,λ =1, then development strategy t 

in zone z is selected. Constraint (2.43) selects only one development strategy per 

zone. Going back to the example presented, where we have three 3 parcels per zone, 

since each parcel can be developed or not, we have 32 8= development strategies per 

zone as presented in Table 2.9. Then there are a total of 16 development strategies 

divided in two groups of eight. The problem becomes to choose a strategy per zone. 

 Zone 1 Parcel 1 Parcel 2 Parcel 3 Zone 2 Parcel 1 Parcel 2 Parcel 3 

Strategy 1,1 0 0 0 Strategy 2,1 0 0 0 

Strategy 1,2 0 0 1 Strategy 2,2 0 0 1 

Strategy 1,3 0 1 0 Strategy 2,3 0 1 0 

Strategy 1,4 0 1 1 Strategy 2,4 0 1 1 

Strategy 1,5 1 0 0 Strategy 2,5 1 0 0 

Strategy 1,6 1 0 1 Strategy 2,6 1 0 1 

Strategy 1,7 1 1 0 Strategy 2,7 1 1 0 

Strategy 1,8 1 1 1 Strategy 2,8 1 1 1 

Table 2.9 List of possible development strategies with three parcels in two zones 
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The result of these calculations using our example are presented in Table 2.10  

Zone 1 
Strategy 

IMP ENV PFA PRO U C Zone 2 
Strategy 

IMP ENV PFA PRO U C 

1,1 0 0 0 0 0 0 2,1 0 0 0 0 0 0 
1,2 12 4 5 7 2 4 2,2 9 5 6 6 8 2 
1,3 9 6 3 3 4 9 2,3 8 5 8 9 6 -4 
1,4 21 10 8 10 6 13 2,4 17 10 14 15 14 -2 
1,5 7 8 2 2 5 11 2,5 8 10 6 4 4 8 
1,6 19 12 7 9 7 15 2,6 17 15 12 10 12 10 
1,7 16 14 5 5 9 20 2,7 16 15 14 13 10 4 
1,8 28 18 10 12 11 24 2,8 25 20 20 19 18 6 

Table 2.10 Possible development strategies with three parcels in two zones 

The value of the coefficients C above were computed using a weight vector W 

= (1,1,1,1). Using the following bounds: 15PFA = , 30PFA = , 1 6u = , 1 10u = , 

2 8u =  and 2 13u = , the formulation can be explicitly written as follows: 

Min 0 1,1λ + 4 1,2λ + 9 1,3λ  + 13 1,4λ  + 11 1,5λ  + 15 1,6λ  + 20 1,7λ  + 24 1,8λ  + 0 2,1λ  + 2 2,2λ  -

4 2,3λ  - 2 2,4λ  + 8 2,5λ  + 10 2,6λ  + 4 2,7λ  + 6 2,8λ  (2.45) 

s.t. 

0 1,1λ  + 5 1,2λ  + 3 1,3λ  + 8 1,4λ  + 2 1,5λ  + 7 1,6λ  + 5 1,7λ  + 10 1,8λ  + 0 2,1λ  + 6 2,2λ  + 8 2,3λ  + 

14 2,4λ  + 6 2,5λ  + 12 2,6λ  + 14 2,7λ  + 20 2,8λ  15≥  (2.46) 

0 1,1λ  + 5 1,2λ  + 3 1,3λ  + 8 1,4λ  + 2 1,5λ  + 7 1,6λ  + 5 1,7λ  + 10 1,8λ  + 0 2,1λ  + 6 2,2λ  + 8 2,3λ  + 

14 2,4λ  + 6 2,5λ  + 12 2,6λ  + 14 2,7λ  + 20 2,8λ  30≤  (2.47) 

0 1,1λ  + 2 1,2λ  + 4 1,3λ  + 6 1,4λ  + 5 1,5λ  + 7 1,6λ  + 9 1,7λ  + 11 1,8λ  6≥  (2.48) 

0 1,1λ  + 2 1,2λ  + 4 1,3λ  + 6 1,4λ  + 5 1,5λ  + 7 1,6λ  + 9 1,7λ  + 11 1,8λ  10≤  (2.49) 

1,1λ  + 1,2λ  + 1,3λ  + 1,4λ  + 1,5λ  + 1,6λ  + 1,7λ  + 1,8λ  1=  (2.50) 

0 2,1λ  + 8 2,2λ  + 6 2,3λ + 14 2,4λ  + 4 2,5λ  + 12 2,6λ  + 10 2,7λ  + 18 2,8λ 8≥  (2.51) 

0 2,1λ  + 8 2,2λ  + 6 2,3λ + 14 2,4λ  + 4 2,5λ  + 12 2,6λ  + 10 2,7λ  + 18 2,8λ 13≤  (2.52) 



 53 

 

2,1λ  + 2,2λ  + 2,3λ + 2,4λ  + 2,5λ  + 2,6λ  + 2,7λ  + 2,8λ 1=  (2.53) 

}1,0{, ∈tzλ  (2.54) 

The solution to this problem is: 

        OBJECTIVE FUNCTION VALUE 
 
        1)      17.00000 
 
  VARIABLE        VALUE          REDUCED COST 
       L11         0.000000          0.000000 
       L12         0.000000          4.000000 
       L13         0.000000          9.000000 
       L14         1.000000         13.000000 
       L15         0.000000         11.000000 
       L16         0.000000         15.000000 
       L17         0.000000         20.000000 
       L18         0.000000         24.000000 
       L21         0.000000          0.000000 
       L22         0.000000          2.000000 
       L23         0.000000         -4.000000 
       L24         0.000000         -2.000000 
       L25         0.000000          8.000000 
       L26         0.000000         10.000000 
       L27         1.000000          4.000000 
       L28         0.000000          6.000000 

 

This solution calls for development strategies 14 and 27. Strategy 14 call for 

the development of parcels 2 and 3 from zone 1, and strategy 27 calls for the 

development of parcels 1 and 2 from zone 2. Together they yield an objective 

function value of 17. As expected this solution is exactly the same as the one obtained 

by solving the original problem.  

This formulation has a decomposable structure since the variables in 

constraints (2.48) - (2.50) are different from the variables included in constraints 

(2.51) -(2.53). A procedure to solve this problem would be as follows: 
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2.3.2.1.1. Step 0: Initialization: 

Find a set of feasible solution from each zone. To obtain this set we solve a 

restricted programming subproblem with arbitrary weight coefficients. Suppose we 

select two weights to obtain two feasible solutions within each zone. Then we would 

need to solve the following subproblems: 

Min: , , , ,
1 2 3 4

z t z t z t z twIMP w ENV w PFA w PRO+ − −  (2.55) 

s.t. 

, , ,
1

zN

z n z n z n
n

IMP a I d
=

= ∆∑  (2.56) 

, ,z n z n
n Sc

ENV a d
∈

= ∑  (2.57) 

, ,z n z n
n PFA

PFA a d
∈

= ∑  (2.58) 

, ,
1

zN

z n z n
n

PRO p d
=

= ∑  (2.59) 

, ,
1

zN

zz n z n
n

u d u
=

≥∑  (2.60) 

, ,
1

zN

zz n z n
n

u d u
=

≤∑  (2.61) 

, {0,1}z nd ∈  (2.62) 

By solving (2.55) - (2.62) four times, two for each of the zones we obtain the 

initial feasible solutions. For example, suppose we obtained the feasible solutions 

presented in Table 2.11 
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Parcel Parcel 1 Parcel 2 Parcel 3 IMP ENV PFA PRO U C 
Zone 1 weight 1 1 0 1 19 12 7 9 7 15 
Zone 1 weight 2 1 1 0 16 14 5 5 9 20 
Zone 2 weight 1 1 0 1 17 15 12 10 12 10 
Zone 2 weight 2 1 1 0 16 15 14 13 10 4 
Table 2.11 Initial solutions obtained from the restricted subproblems by zone 

2.3.2.1.2. Iteration 1, Step 1: Solve the restricted linear master problem 

With at least one solution, we proceed to solve the relaxed restricted master problem: 

,
,

,

: z t
z t

z t

Max c λ−∑  (2.63) 

s.t. 

,
, 1

1 1

zTZ
z t

z t
z t

PFA S PFAλ
= =

− =∑∑  (2.64) 

,
, 2

1 1

zTZ
z t

z t
z t

PFA S PFAλ
= =

+ =∑∑  (2.65) 

,
1

1; 1,2
zT

z t
t

zλ
=

= ∀ =∑  (2.66) 

where 1 2 and S S are deviation variables from the PFA bounds. The master problem is 

set as a maximization problem to mach the notation in the literature. The formulation 

can be explicitly written as: 

Max -15 1,1λ  - 20 1,2λ  - 10 2,1λ  - 4 2,2λ  (2.67) 

s.t. 

7 1,1λ  + 5 1,2λ  + 12 2,1λ  + 14 2,2λ 1 15S− =  (2.68) 

7 1,1λ  + 5 1,2λ  + 12 2,1λ  + 14 2,2λ 2 30S+ =  (2.69) 

1,1λ  + 1,2λ  1=  (2.70) 

2,1λ  + 2,2λ  1=  (2.71) 
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Whose solution is: 

1,1λ = 1, 1,2λ =0, 2,1λ =0, 2,2λ =1, (0,0)π =  and ( 15, 4)µ = − −  

Where  and π µ are the dual variables corresponding to the first two and last 

two constraints respectively. 

2.3.2.1.3. Iteration 1, Step 2: Optimality check 

 We need to check whether the set of variables ( )µπ ,  is dual feasible for the 

master problem.  

Note that not all the development combinations presented in Table 2.10 are 

feasible solutions, only the feasible strategies are considered because the solutions to 

the subproblems are feasible within each zone. They are listed in Table 2.12 

Parcel Parcel 1 Parcel 2 Parcel 3 IMP ENV PFA PRO U C 
Strategy 1,4 0 1 1 21 10 8 10 6 13 
Strategy 1,6 1 0 1 19 12 7 9 7 15 
Strategy 1,7 1 1 0 16 14 5 5 9 20 
Strategy 2,2 0 0 1 9 5 6 6 8 2 
Strategy 2,6 1 0 1 17 15 12 10 12 10 
Strategy 2,7 1 1 0 16 15 14 13 10 4 

Table 2.12 List of feasible solutions from total pool of possible strategies 

The evaluation of each possible feasible solution, as the simplex method 

would do, can be set up in the form of a typical simplex tableau as presented in Table 

2.13. 

1,1λ 1,2λ 1,3λ 2,1λ 2,2λ 2,3λ 1S 2S
C -13 -15 -20 -2 -10 -4 0 0
1) 8 7 5 6 12 14 1 0
2) 8 7 5 6 12 14 0 -1
3) 1 1 1 0 0 0 0 0
4) 0 0 0 1 1 1 0 0
Zj -15 -15 -15 -4 -4 -4 0 0

Cj-Zj 2 0 -5 2 -6 0 0 0

Table 2.13 Simplex tableau for reduced example 
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Where T k
jz Aπ=  

We see that there are some positive reduce reduced costs in particular those 

corresponding to 1,1λ , and 2,1λ . This result implies that the current solution can be 

improved by letting any one of those variables with positive reduced cost into the 

basis. 

Rather than evaluate all possible points, we solve an optimization problem. 

Let’s consider the dual of the Master Problem (2.63) - (2.66) which can be 

written as: 

Min 1 2 z
z

PFA PFAπ π µ+ + ∑  (2.72) 

s.t. 

, , ' ,
1 2

, ,

z t z t z t

z t z t

PFA PFA E cπ π µ+ + ≥ −∑ ∑  (2.73) 

1 0π− ≥  (2.74) 

2 0π ≥  (2.75) 

Where 'E is the transposed matrix of the coefficients for the convex 

constraints (2.66). This problem has a large number of constraints (one per 

development strategy) but we have solved the primal problem for a restricted number 

of development solutions. To find if the solution at hand to the restricted primal 

problem is dual feasible we can solve the following set of subproblems (one per 

zone): 
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, , , '
1 2

, ,

max{ }, 1,2,3,4,5z t z t z t
z

t z t z t

c PFA PFA E zς π π µ= − − − − =∑ ∑  (2.76) 

s.t. 

, ,
1

zN

z zz n z n
n

u u d u
=

≤ ≤∑  (2.77) 

, {0,1}z nd ∈  (2.78) 

In terms of the original decision variables, each one of the subproblems becomes: 

max:zζ =  

( ) ( )1 , , 2 , 3 , 4 , , 1 2 ,
,

Sc PFA PFA
z n z n z n z n z n z n z n z

z n

w a I w a w a w p d aπ π µ− ∆ + − − − + −∑  (2.79) 

s.t. (2.77) - (2.78) 

where ,
PFA
z na  is the are in the PFA of parcel z,n. Using the weighted coefficient 

calculation for each parcel  

, 1 , 2 , 3 , 4 ,z n z n z n z n z nc wIMP w ENV w PFA w PRO= + − −  (2.80) 

We can write (2.79) as  

( )( ), 1 2 , ,max: PFA
z z n z n z n zc a dζ π π µ= − − + −  (2.81) 

The solution to each subproblem finds the variable with highest reduced cost. 

If any of those is positive the development vector ( ), ,1 ,2 ,, ,...,z t z z z N zd d d d= provides an 

additional feasible solution for the next iteration. 

Going back to our example, the cost coefficients 

, 1 , 2 , 3 , 4 ,( )z n z n z n z n z nc wIMP w ENV w PFA w PRO= + − − for each of the parcels, using the 

weighting vector (1,1,1,1)w = are presented in Table 2.14. 
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Zone, Parcel IMP ENV PFA PROF U C 
1,1 7 8 2 2 5 11 
1,2 9 6 3 3 4 9 
1,3 12 4 5 7 2 4 
2,1 8 10 6 4 4 8 
2,2 8 5 8 9 6 -4 
2,3 9 5 6 6 8 2 

Table 2.14 Table of coefficients for each parcel for reduced cost computation 

The terms of (2.76) come from Table 2.14 and from the coefficients of 

1 2 and S S in formulation (2.67) - (2.71).  

The pricing subproblems are as follows: 

So we have for zone 1: 

Max (-11 – (0+0)2)d11 + 
    (- 9 – (0+0)3)d12 + 
    (- 4 – (0+0)5)d13 
    - (-15) 
s.t.  
    - 5 d11 - 4 d12 - 2 d13 <= -6 
      5 d11 + 4 d12 + 2 d13 <= 10 
End 
Int d11 
Int d12 
Int d13 
 

Which is equivalent to: 

Max -11 d11 - 9 d12 - 4 d13 + 15 
s.t.  
    - 5 d11 - 4 d12 - 2 d13 <= -6 
      5 d11 + 4 d12 + 2 d13 <= 10 
End 
Int d11 
Int d12 
Int d13 
 

Whose optimal solution is  

        OBJECTIVE FUNCTION VALUE 
        1)     -13.00000 
 
  VARIABLE        VALUE          REDUCED COST 
       d11         0.000000         11.000000 
       d12         1.000000          9.000000 
       d13         1.000000          4.000000 
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       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.000000 
        3)         4.000000          0.000000 
 
-13 + 15 = 2 
 

And for zone 2 we have: 

Max (- 8 – (0*6+0*6))d21 + 
    (+ 4 – (0*8+0*8))d22 + 
    (- 2 – (0*6+0*6))d23 
    - (-4) 
s.t.  
    -4 d21 - 6 d22 - 8 d23 <= -8 
     4 d21 + 6 d22 + 8 d23 <= 13 
End 
Int d21 
Int d22 
Int d23 
 

Which is equivalent to: 

Max - 8 d21 + 4 d22 - 2 d23 + 4 
s.t.  
    -4 d21 - 6 d22 - 8 d23 <= -8 
     4 d21 + 6 d22 + 8 d23 <= 13 
End 
Int d21 
Int d22 
Int d23 
 

With optimal solution:  

 
        OBJECTIVE FUNCTION VALUE 
        1)     -2.000000 
 
  VARIABLE        VALUE          REDUCED COST 
       d21         0.000000          8.000000 
       d22         0.000000         -4.000000 
       d23         1.000000          2.000000 
 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.000000 
        3)         5.000000          0.000000 
 
-2 + 4 = 2 
 

These results are as expected equivalent to the results form the simplex 

method. 
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2.3.2.1.4. Iteration 1, Step 3: Stopping Criterion 

Since there are positive values of the reduced cost, the algorithm moves into 

the next step. 

An alternative stopping criterion is to check if the complicating constraint is 

met, if so then the solution at hand is optimal. 

2.3.2.1.5. Iteration 1, Step 4: Generating a New Column 

For our example, feasible solution 1 from zone 1, and feasible solution 3 from 

zone 2 would enter the group of feasible solutions for consideration on the next 

iteration. 

2.3.2.1.6. Iteration 2, Step 1: Solve the restricted linear master problem 

Having now a new solution from each zone, we solve the restricted linear 

master problem again obtaining: 1,1λ = 0, 1,2λ =0, 1,3λ =1, 2,1λ =0, 2,2λ =0.125, 

2,3λ =0.875 ( 0.25,0)π = −  and ( 11, 0.5)µ = − − .  

2.3.2.1.7. Iteration 2, Step 2: Optimality check 

We solved the optimization subproblems (2.79) : 

( )max{ : }
Tk k

k k kc A x x Xς π µ= − − ∈  obtaining an objective function value 

of 0 for zone 1 and 0 for zone 2. 

Since none of the reduced costs is positive, then the solution is optimal. But 

since the solutions are fractional we need to recourse to branch and bound to find an 

integer solution. The solution obtained was: 1,1λ = 1, 2,3λ =1 and the objective function 

is -17 which matches exactly the results previously obtained. 
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2.3.3. Lagrangian Relaxation Technique for Land Development 

From the set of constraints it seems natural to relax the constraints that limit 

the development in PFA areas. An algorithm is depicted in Figure 2.6. 

Step 0: Initialization
Set values of

 and µ ρ

Step 2:
Is the

Feasible to
SGIP?

( )LR µ
Step 3:

Update Lower and
Upper Bounds

YES

Step 4:
Stopping Criteria

met?
Stop

YESStep 5:
Update

µ

Step 1: Solve the Lagrangian Relaxation

( )

, ,
1

1 2 , . 1 2
1

( ) max:
Nz

z n z n
n

Nz
PFA
z n z n

n

LR c d

a d PFA PFA

µ

µ µ µ µ

=

=

= −

+ − + −

∑

∑

 

Figure 2.6 Algorithm to apply Lagrangian relaxation to the integer programming version of the 
land development problem  

What follows is a description of the steps and the formulations involved in the 

algorithm including an example using only two zones and three parcels in each zone. 

Starting from the integer programming formulation of the land development 

problem (2.27) - (2.30) we can write the following Lagrangian relaxation: 

Max:
5 5 5

, , , , 1 , , 2
1 1 1 1 1 1

Nz Nz Nz
PFA PFA

n z n z z n z n z n z n
z n z n z n

c d a d PFA PFA a dµ µ
= = = = = =

   
− + − + −   

   
∑∑ ∑∑ ∑∑  (2.82) 
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The terms in objective function can be grouped by the decision variables so 

the Lagrangian relaxation of the land development problem can be written as: 

Max:
5 5 5

, , , , 1 , , 2 1 2
1 1 1 1 1 1

Nz Nz Nz
PFA PFA

n z n z z n z n z n z n
z n z n z n

c d a d a d PFA PFAµ µ µ µ
= = = = = =

   
− + − − +   

   
∑∑ ∑∑ ∑∑

 (2.83) 

s.t. 

, ,
1

, 1,2,..5
zN

z z n z n z
n

u u d u z
=

≤ ≤ =∑  (2.84) 

, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (2.85) 

1 2, 0µ µ ≥  (2.86) 

Once again we see that the formulation can be decomposed since the 

constraints are independent per zone. The objective function can be broken down per 

zones also so the final solution is the sum of the subproblems. 

The subproblems have the following form: 

Max: , , , , 1 , , 2
1 1 1

Nz Nz Nz
PFA PFA

n z n z z n z n z n z n
n n n

c d a d a dµ µ
= = =

   
− + −   

   
∑ ∑ ∑  (2.87) 

s.t. 

1

, ,
1

N

zz z n z n
n

u u d u
=

≤ ≤∑  (2.88) 

1 2, 0µ µ ≥  (2.89) 

There is one subproblem per zone. As previously explained, the Lagrangian 

relaxation finds an upper bound to the original problem. The challenge is to find 

values for the multipliers such that we obtain the minimum possible bound. 
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As an example consider again the reduced case with two zones and three 

parcels per zone. 

Using the explicit formulation as presented before in Table 2.8, we proceed to 

post the problem as maximization, and to relax the bounds imposed on the PFA 

obtaining the formulation presented in Table 2.15. 

Max: -11 d11 - 9 d12 - 4 d13    - 8 d21 +  4 d22 - 2 d23 
            (2 d11 + 3 d12 + 5 d13    + 6 d21 + 8 d22 + 6 d23 - 15) 1µ + 

   [30 - (2 d11 + 3 d12 + 5 d13    + 6 d21 + 8 d22 + 6 d23)] 2µ  

s.t. 
             5 d11 + 4 d12 + 2 d13 
             5 d11 + 4 d12 + 2 d13 

 >=  6 
<= 10 

 4 d21 + 6 d22 + 8 d23 
4 d21 + 6 d22 + 8 d23 

>=  8 
<= 13 

Table 2.15 Lagrangian relaxation for reduced example 

This problem can be decomposed into two problems, one for each zone as 

follows:  

Zone 1 Zone 2 

Max: -11 d11 - 9 d12 - 4 d13 

            (2 d11 + 3 d12 + 5 d13) 1µ  

          - (2 d11 + 3 d12 + 5 d13) 2µ  

s.t. 
             5 d11 + 4 d12 + 2 d13 
             5 d11 + 4 d12 + 2 d13 

>=  6 
<= 10  

Max: - 8 d21 +  4 d22 - 2 d23 

            ( 6 d21 + 8 d22 + 6 d23) 1µ - 

            (6 d21 + 8 d22 + 6 d23)] 2µ  

s.t. 
4 d21 + 6 d22 + 8 d23 
4 d21 + 6 d22 + 8 d23 

>=  8 
<= 13  

 

We started with 1 2 0µ µ= = and obtained the following solution: 

1
11 12 130, 1, 1, 13d d d z= = = = −  and 2

21 22 230, 1, 1, 2d d d z= = = = − so the final 

objective function 1 2 15z z z= + = − which coincides with the solution obtained 

before. 
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2.4. Application to Moglen, Gabriel and Faria (2003) 

2.4.1. Evaluation of Original Weights 

We now take the difficult case from Moglen, Gabriel and Faria (2003) and 

solve it using both Dantzig-Wolfe decomposition and Lagrangian Relaxation, 

2.4.1.1. Dantzig-Wolfe Decomposition 

The initial solutions required for the initialization step were found by solving 

the subproblems for each zone with random coefficients in the objective function. 

This procedure ensures feasibility on the number of units developed per zone, since 

they meet all constraints. Alternative methods such as heuristics could be used to find 

initial solutions, but using random coefficients seems easier in this case.  

Because two sets of weights could result on the same optimal solution, the 

initial feasible solutions obtained by this method could be duplicated. 

2.4.1.1.1. Step 0: Initialization 

To obtain at least one solution per zone, we solved the subproblems for each 

zone with the following four arbitrary objective function coefficients: 

 IMP ENV PFA PRO 
1 16.13 2.79 6.75 4.28 
2 2.33 12.04 8.95 7.29 
3 1.67 0.17 1.3 14.35 
4 0 0 1 0 

Table 2.16 Arbitrary coefficients used to find initial solutions 

For example for zone 1, we solved subproblem (2.55) - (2.62) four times, each 

time with a different weighting vector from Table 2.16 obtaining four feasible 
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solutions. The four objectives of each solution are listed in Table 2.17. The same 

logic follows for the other five zones. 

Solving the subproblems yielded the following initial solutions per zone: 

IMP1 ENV1 PFA1 PRO1 
181.37 202.67 0.00 97.90 
288.77 0.00 0.00 94.55 
286.31 313.50 0.00 146.26 
246.85 224.82 4.37 100.02 

Table 2.17 Feasible solutions for zone 1 

IMP2 ENV2 PFA2 PRO2 
343.62 39.16 0.00 337.62 
582.91 0.00 8.10 503.16 
537.68 87.63 0.00 504.97 
466.27 87.63 11.67 357.91 

Table 2.18 Feasible solutions for zone 2 

IMP3 ENV3 PFA3 PRO3 
314.75 0.00 25.93 148.88 
320.38 0.00 25.08 155.42 
470.63 0.00 25.93 185.09 
470.63 0.00 25.93 185.09 

Table 2.19 Feasible solutions for zone 3 

IMP4 ENV4 PFA4 PRO4 
147.03 25.09 28.58 120.59 
264.13 26.07 29.50 178.95 
249.32 32.33 28.58 179.21 
233.42 21.26 32.19 136.41 

Table 2.20 Feasible solutions for zone 4 

IMP5 ENV5 PFA5 PRO5 
68.41 0.00 0.00 62.67 
97.86 0.00 2.13 84.92 
97.86 0.00 2.13 84.92 

167.41 23.62 5.22 82.29 
Table 2.21 Feasible solutions for zone 5 

 

 

2.4.1.1.2. Iteration 1: Step 1: Solve the Restricted Linear Programming 

Problem 

Given these initial solutions we solved the reduced master linear programming 

(2.63) - (2.66) obtaining the following solution.  

Objective function: 1100.45 

1,4λ  =1, 2,4λ  =1, 3,4λ  =1, 4,4λ  =1, 5,3λ  =1 

1π  = 0, 2π  = 0 

1µ  = 146.263, 2µ  = 504.965, 3µ  = 185.094, 4µ  = 179.211, 5µ  = 84.9171 

Note that the zλ are vectors of decision variables to pick one of the feasible 

development strategies, the vectors have as many components as feasible solutions 



 67 

 

used in the restricted linear programming master problem, the positive components of 

the vector are reported here, the rest are zeroes. 

2.4.1.1.3. Iteration 1: Step 2: Solve the Pricing Optimization Problems 

Using the values of ( , )π µ  obtained in Step 1, we checked for each zone the 

reduced cost finding the following results: 

(0.0002234,0.124942, -0.000332115,0.212737,0.198477)ζ =  . 

2.4.1.1.4. Iteration 1: Step 3: Is any Reduced Cost Positive? 

Yes, there are four positive reduced costs. Therefore the current solution is not 

optimal and the algorithm goes to the next step. 

2.4.1.1.5. Iteration 1: Step 4: Generate a New Column 

Each time we solve the pricing problem and we get a positive reduced cost, 

we also obtain a development strategy that would improve the value of the objective 

function. We use these results and add them to the initial solutions found in Step 0. 

Table 2.22 presents the four solutions that have been added as a result of this 

step (one per each positive reduced cost). 

Zone IMP ENV PFA PRO 
1 316.49 335.03 0.00 146.26 
2 537.75 116.40 0.00 505.09 
4 309.46 21.75 31.46 179.42 
5 102.77 31.07 0.00 85.12 

Table 2.22 New columns generated during the pricing step iteration 1 

Having these new solutions at hand, we proceed to solve the restricted linear 

programming problem again. 
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2.4.1.1.6. Iteration 2: Step 1: Solve the Restricted Linear Programming 

Problem 

Objective function: 1100.986147 

1,4λ  =1, 2,6λ  =1, 3,4λ  =1, 4,6λ  =1, 5,6λ  =1 

1π  = 0, 2π  = 0 

1µ  = 146.263, 2µ  = 505.09, 3µ  = 185.094, 4µ  = 179.424, 5µ  = 85.1156 

2.4.1.1.7. Iteration 2: Step 2: Solve the Pricing Optimization Problems 

(0.0002234, -5.776e-005, -0.000332115, -0.000263231, -2.329e-005)ζ =  . 

2.4.1.1.8. Iteration 2: Step 3: Is any Reduced Cost Positive? 

Yes, there is one positive reduced cost. Therefore the current solution is not 

optimal and the algorithm goes to the next step. 

2.4.1.1.9. Iteration 2: Step 4: Generate a New Column 

Table 2.23 presents the solutions that have been added as a result of this step. 

Zone IMP ENV PFA PRO 
1 316.49 335.03 0.00 146.26 

Table 2.23 New columns generated during the pricing step iteration 2 

2.4.1.1.10. Iteration 3: Step 1: Solve the Restricted Linear Programming 

Problem 

1,4λ  =1, 2,6λ  =1, 3,4λ  =1, 4,6λ  =1, 5,6λ  =1 

1π  = 0, 2π  = 0 

1µ  = 146.263, 2µ  = 505.09, 3µ  = 185.094, 4µ  = 179.424, 5µ  = 85.1156 
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We have obtained the same solution as in the previous iteration. Therefore the 

algorithm has to stop due to the lack of progress. 

We set the upper bound for this problem as 

*

1 1 1

m K K
LPM T

i i k k
i k k

z c bλ π µ ς
= = =

≤ = + +∑ ∑ ∑%  (2.90) 

Since the solution to the restricted linear programming problem is feasible to 

the original integer programming problem we have that 

IP1100.986147 zLPMz ≤ ≤  

This bound is very close to the optimal solution of the problem, which is 

1100.994233IPz =  

Even though we had to solve many linear programming problems (20 for the 

initial solutions, 5 each time step 1 is executed, 1 for each time step 2 is executed, and 

5 each time step 2 is executed) each execution can be solved in about a second so the 

bound was obtained in less than a minute. 

2.4.1.2. Lagrangian Relaxation 

Starting with 1 2 0µ µ= = we obtained the first solution for the weight 

W=(0,0,0,1) as follows 

 IMP ENV PFA PRO Objective  
Function z(u) 

Units 

Zone 1 316.41 334.91 0.00 146.26 146.26 2331.00 
Zone 2 537.75 116.40 0.00 505.09 505.09 12285.00 
Zone 3 470.63 0.00 25.93 185.09 185.09 5384.00 
Zone 4 309.46 21.75 31.46 179.42 179.42 405.93 
Zone 5 102.77 31.07 0.00 85.12 85.12 267.98 

Total 1737.02 504.12 57.39 1100.99 1100.99  

Table 2.24 Initial Lagrangian relaxation results with 1 2 0µ µ= =  
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We observe that for the first solution the LHS of the complicating constraints 

, ,z n z n
n PFA

PFA a d
∈

 
− 

 
∑  and , ,z n z n

n PFA

a d PFA
∈

 
− 

 
∑  are 942.60 and 55.39 respectively. 

Since both terms are positive then this solution is feasible to the original problem 

therefore this solution is optimal. 

2.4.2. Evaluation of New Cases: Additional Weights 

The fact that one of the previously evaluated weight vectors was difficult to 

solve created the motivation to apply the decomposition techniques previously used. 

The question remains on how efficient these techniques are when a large set of 

weights is used.  

To answer this question we generated a set of 1000 random weights5 and 

solved the problem for each one of them using the traditional branch and bound 

technique. We found that if we solve those 1000 cases with the branch and bound 

algorithm but with a stopping criterion of one minute, then we can look into those 

cases that needed extra time and apply Lagrangian relaxation. If the solution found 

when solving the Lagrangian relaxation problem is the same as the one obtained by 

the branch and bound procedure then we stop because we would know that the branch 

and bound has found an optimal solution but keeps searching because there is still a 

gap to the best bound, otherwise we proceed to apply Dantzig-Wolfe decomposition. 

If still the solution is not optimal then we conclude that the case cannot be solved in 

short amount of time using alternative methods and the full branch and bound 

algorithm needs to be used. 

                                                 
5 An extract of the list of weights used can be found in Table A.18 in the appendix. 
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To reach this conclusion we ran a series of tests obtaining the results 

summarized in the next sections. Starting with the original bounds we found that 

weight sets (662), and (921) resulted in tremendous computational effort as seen in 

Figure 2.7 and Figure 2.8. The detailed computations for each method and each 

weight set evaluated can be found in the appendix. 

 

Figure 2.7 Report for weight 662 
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Figure 2.8 Report for weight 964 

Note that the solver had to evaluate over 5.2 million nodes for over 7 hours 

(weight 662) and over 6.7 million nodes for over 12 hours (weight 964) until finally 

the solver halted. The top 15 weights in descending order of solution time were: 

Solution Weight ID IMP ENV PFA PRO  Obj. F.   Time 
in seconds  

1 964 2044.91 21.74 78.39 1086.46 -1016.27 46,026.50 
2 662 2030.18 21.07 77.65 1086.90 -1024.14 25,876.00 
3 178 2030.14 21.07 77.65 1086.90 -640.73 7,749.32 
4 921 2059.86 21.75 79.01 1085.82 -387.98 6,857.84 
5 389 2045.17 21.07 78.27 1086.25 -412.21 4,495.65 
6 802 2030.12 21.07 77.65 1086.90 -762.24 2,158.55 
7 459 2015.20 21.07 76.84 1087.54 -883.56 2,123.08 
8 339 2030.10 21.07 77.65 1086.90 -467.82 291.44 
9 952 2029.34 20.63 77.76 1085.76 -203.14 50.76 
10 361 2014.23 20.63 76.95 1086.40 -369.64 49.55 
11 48 2015.06 21.07 76.84 1087.54 -687.43 39.45 
12 55 2015.05 21.07 76.84 1087.54 -657.70 17.87 
13 592 1054.16 267.89 52.75 766.25 1025.22 9.78 
14 150 1128.85 94.83 52.75 762.40 909.84 6.28 
15 179 1428.18 19.30 63.90 948.52 -24.68 5.28 

 Table 2.25 List of top 15 weights in descending order of solution time 
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From the other 998 weights we observed three cases where it took about two 

hours to find the solution and other two cases where the solution was found over 

thirty minutes. 

We will now proceeded to compute the solution of these difficult cases (those 

taking more then 30 minutes to solve) by using relaxation and decomposition 

methods, and then we will compare our results with the obtained above. 

The data from the “difficult to solve” weights is presented in Table 2.26 

Weight 
ID 

 Branch 
and 

Bound 

Lagrangian  
Relaxation 

Dantzig-Wolfe Best 
Method 

Best solution -1016.27 -1016.27 -1016.27  

964 
Effort 12 hours, 

8.78  
Million 

nodes  

Few seconds  
One iteration 

One minute 
Two iterations 

LR 

Best solution -1024.14 -1023.88 - 1024.14  

662 
Effort 7 hours 

5.2 
Million 

nodes  

Few seconds  
One iteration 

One minute 
Two iterations 

DW 

Best solution -640.73 -640.727 - 640.727  
178 Effort 2.15 hours Few seconds  

One iteration 
One minute 

Two iterations 
LR 

Best solution -387.98 -387.977 - 387.977  
921 Effort 1.90 hours Few seconds  

One iteration 
One minute 

Two iterations 
LR 

Best solution -412.21 -412.208 - 412.208  
389 Effort 1.25 hours Few seconds 

 One iteration 
One minute 

Two iterations 
LR 

Best solution -762.24 -762.239 - 762.239  
802 Effort 0.60 hours Few seconds  

One iteration 
One minute 

Two iterations 
LR 

Best solution -883.56 -883.565 - 883.565  459 
Effort 0.60 hours Few seconds  

One iteration 
One minute 

Two iterations 
LR 

Table 2.26 Results from the different methods for different weights original bounds  

Clearly the Lagrangian relaxation and the Dantzig-Wolfe decomposition 

methods are much faster than the traditional branch and bound when solving these 

complicated cases. Although they require more effort because the computation of the 
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multiple subproblems, they do not need to solve a relaxation on each node as the 

branch and bound method does. The downside is that neither the Lagrangian 

relaxation method nor the Dantzig-Wolfe decomposition will always achieve the 

optimal solution.  It is possible that the solution obtained by the Lagrangian relaxation 

is no better than the solution obtained by relaxing the integer requirement of the 

decision variables (integer relaxation) of the problem (Wolsey, 1998).  

This particular case was relatively easy to solve because the complicating 

constraints are easily met, the requirements for area in PFA was to be above two and 

below 1000. Therefore, the use of a simpleton Lagrangian vector (0, 0) was all that 

we needed to reach a solution. Perhaps a narrower range could shed more light on the 

efficiency of these methods. That is the main goal of section 2.4.2.1 Evaluation of 

New Cases: Tighter PFA Bounds. 

A good strategy to find the solution in general seems to be as follows: 

1. Set up a maximum execution time on the branch and bound procedure of 

about two minutes. 

2. Solve all weights keeping track of those instances where the solution was 

not met due to time constraints. 

3. Solve the cases identified in step 2 using Lagrangian relaxation. If the 

Lagrangian bound is too far away from the best solution found by the branch and 

bound method, then proceed to apply the Dantzig-Wolfe decomposition technique. 

As a test for this strategy we proceeded to set a maximum time of two minutes 

for evaluating the weights using the branch and bound procedure with the same PFA 
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bounds used in the work by Moglen, Gabriel and Faria (2003) obtaining seven results 

over 120 seconds followed by the next result obtained in almost 52 seconds. 

Solution Weight ID IMP  ENV PFA PRO  Obj. F.   Time  

1 964 2044.84 21.75 78.39 1086.46 -1016.27 133.21 

2 662 2030.15 21.07 77.65 1086.90 -1024.14 133.18 

3 921 2059.88 21.75 79.01 1085.82 -387.98 131.68 

4 459 2015.20 21.07 76.84 1087.54 -883.56 131.57 

5 178 2030.14 21.07 77.65 1086.90 -640.73 130.80 

6 389 2045.20 21.07 78.27 1086.25 -412.21 129.82 

7 802 2030.23 21.07 77.65 1086.90 -762.24 102.84 

8 361 2014.23 20.63 76.95 1086.40 -369.64 51.53 

Table 2.27 Results over 50 seconds with original bounds and time limit 120 

Note that Table 2.27 presents some values over the maximum allotted time, 

we believe that the reason is that the solver reports the total time including some 

overhead to save the data.  

We can expect that the top nine cases were terminated by exceeding the 

limited time allowed while the other 991 cases were solved to optimality. The 

objective functions of the top nine cases were exactly the same as the values 

presented in Table 2.25. Given the accuracy of the procedure one could think about 

reducing the time limit since the worst case solved that did not exceed the time limit 

was almost 56 seconds. We decided to run the 1000 weights again with a one minute 

time limit obtaining the results presented in Table 2.28.  
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Solution Weight ID IMP ENV PFA PRO  Obj. F.  Time  
1 535 2015.12 21.07 76.84 1087.54 -893.68 67.89 
2 389 2045.17 21.07 78.27 1086.25 -412.21 67.22 
3 339 2030.13 21.07 77.65 1086.85 -467.80 66.71 
4 662 2030.18 21.07 77.65 1086.90 -1024.14 66.48 
5 921 2059.89 21.75 79.01 1085.82 -387.98 65.96 
6 802 2045.19 21.07 78.27 1086.25 -762.16 65.70 
7 459 2015.11 21.07 76.84 1087.54 -883.56 64.64 
8 964 2044.91 21.75 78.39 1086.46 -1016.27 64.23 
9 178 2030.14 21.07 77.65 1086.90 -640.73 61.02 
10 361 2014.23 20.63 76.95 1086.40 -369.64 47.87 

Table 2.28 Results over 40 seconds with original bounds and time limit 60 

Table 2.29 shows the objective functions and their respective times for 

different weights obtained with the original bounds by setting different values of 

maximum time to compute (no maximum, 120 seconds and 60 seconds). These 

results indicate that the branch and bound method is able to find the solution within a 

minute. 

  Max time 60 
seconds 

Max time 120 
seconds 

No max time 

Solution Weight ID Obj. F. Time Obj. F. Time Obj. F. Time 
 178 -640.73 61.02 -640.73 130.80 -640.73 7749.32 
 339 -467.80 66.71 -467.80 89.14 -467.82 91.44 
 361 -369.64 47.87 -369.64 51.53 -369.64 55.93 
 389 -412.21 67.22 -412.21 129.82 -412.21 4495.65 
 459 -883.56 64.64 -883.56 131.57 -883.56 2123.08 
 662 -1024.14 66.48 -1024.14 133.18   
 802 -762.16 65.70 -762.24 102.84 -762.24 2158.55 
 921 -387.98 65.96 -387.98 131.68 -387.98 6857.84 
 964 -1016.27 64.23 -1016.27 133.21   

Table 2.29 Summary of objective functions and solution times original bounds  

Since the objective value obtained after a minute is the same as the one 

obtained after two minutes (all cases except 802) then it seems safe to use one minute 

as time limit instead of two minutes. If we consider that 98.80% of the 1000 cases 

were solved in less than ten seconds then it even makes sense to push down the time 
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limit and analyze the results. Appending the data for such a test to Table 2.29 we 

obtain the data presented in Table 2.30. 

 Max time 60 
seconds 

Max time 120 
seconds 

No max time  Max time 10 
seconds 

  Weight ID Obj. F. Time Obj. F. Time Obj. F. Time Obj. F. Time 
178 -640.73 61.02 -640.73 130.80 -640.73 7749.32 -640.73 11.086 
339 -467.80 66.71 -467.80 89.14 -467.82 291.44 -467.82 10.785 
361 -369.64 47.87 -369.64 51.53 -369.64 55.93 -369.64 11.106 
389 -412.21 67.22 -412.21 129.82 -412.21 4495.65 -412.21 10.525 
459 -883.56 64.64 -883.56 131.57 -883.56 2123.08 -883.56 10.875 
662 -1024.14 66.48 -1024.14 133.18   -1023.66 11.106 
802 -762.16 65.70 -762.24 102.84 -762.24 2158.55 -761.66 10.946 
921 -387.98 65.96 -387.98 131.68 -387.98 6857.84 -387.98 11.086 
964 -1016.27 64.23 -1016.27 133.21   -1016.27 10.846 

Table 2.30 Summary of results including the maximum time of 10 seconds  on last two columns 

We see that there are only one case (lightly shaded) where the objective 

function is different from the previous calculations. This makes us believe that within 

the first ten seconds the branch and bound technique is able to very accurately find 

the optimal solution. The drawback with ten seconds time is that there will be 11 

solutions solved in ten seconds or more so to verify the accuracy of the solutions we 

would need to apply the Lagrangian relaxation those cases. Therefore we think that 

using one minute as time limit provides a good tradeoff between the number of cases 

that needs to be checked and the total tome to solve the problems. 

Consider that to reach the results presented in Table 2.25 we spent almost 27 

hours of computing time over a period of about four days. The 1000 runs with a two 

minute limit took only half of an hour and the 1000 runs with one minute limit took 

twenty minutes. Since the evaluation of the Lagrangian relaxation took about one 

minute then the savings in time are considerable. 

The distribution of the objective function values for the four stakeholders has 

been presented in Figure 2.9 - Figure 2.12. These figures could be used by the 
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decision makers to visualize the ranges in which the solutions tend to be located. For 

example the Hydrologist could argue that there are about 140 solutions with low level 

of imperviousness, so those should be evaluated first. The problem is that the 

solutions are not related to other objectives as they are in a Value Path graph, but due 

to the number of Pareto points the Value Paths do not add much information (see 

Figure A.59 in the appendix).   
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Figure 2.9 Distribution of IMP solutions original bounds  
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Figure 2.12 Distribution of PRO solutions original bounds  

2.4.2.1. Evaluation of New Cases: Tighter PFA Bounds 

Having the somewhat wide range defined by the previous bounds 2PFA = , 

1000PFA = , we now seek to find new solutions within a much tighter range for PFA.  

The ranges of PFA values obtained from the evaluation of the 1000 weights 

with the original bounds were divided in 15 intervals, the results are presented in 

Figure 2.13. 
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Figure 2.13 Ranges of PFA obtained with original bounds 1000 cases  

The minimum value of PFA obtained was 47.52 and the maximum was 79.01, 

with those numbers at hand, we selected two ranges for the bounds, one in which the 

lower bound would be restrictive, and another one where both bounds would be 

restrictive. The selected ranges are presented in Table 2.31. 

Case PFA  PFA  Number of 
solutions 
obtained 

1 60 1000 150 
2 60 70 125 

Table 2.31 Cases evaluated in addition to the original bounds  

The last column represents the number of solutions obtained within the 

bounds using the original weights, we expect to obtain feasible solutions for the 

problem with the tighter bounds. 
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2.4.2.1.1. Case 1 

We ran the same 1000 weights again obtaining two cases (weights 176, and 

389) where the computer ran out of memory before producing the optimal solution( 

see Figure 2.14 and Figure 2.15). There is one case (weight 178) that took over two 

hours to solve. The following one took over half an hour (weight 459).  

  
Figure 2.14 Result of branch and bound case 1 weight 176 
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Figure 2.15 Result of branch and bound case 1 weight 389 

For the other weights we were able to obtain a solution as presented in Table 

2.32.  

Weight ID IMP ENV PRO PFA  Obj   Time in 
seconds  

389 2045.20 21.07 1086.25 78.27 -412.20 30187.40 
176 2004.05 1.95 1029.29 59.70 -75.86 13979.10 
178 2030.14 21.07 1086.90 77.65 -640.73 7465.24 
459 2015.20 21.07 1087.54 76.84 -883.56 2256.82 
361 2014.24 20.63 1086.40 76.95 -369.64 149.56 
339 2030.11 21.07 1086.90 77.65 -467.82 32.06 

39 2015.08 21.07 1087.54 76.84 -948.09 27.07 
48 2015.05 21.07 1087.54 76.84 -687.43 9.05 
55 2015.06 21.07 1087.54 76.84 -657.70 8.64 

582 1189.60 25.09 761.45 62.26 624.96 6.75 
150 1143.54 94.83 762.09 60.85 919.90 5.76 
166 1189.69 25.09 761.56 62.62 1042.15 5.52 

Table 2.32 List of top 10 weights in descending order of solution time case 1 
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Here there are only two cases where the solution time took more than thirty 

minutes. They are evaluated below along with the two cases for which we couldn’t 

find a solution. 

Some of the weight vectors required effort to achieve the optimal solution, we 

evaluated  them to compared the performance of the solution methods. The solutions 

are  presented in the appendix, the results of the tests are summarized in Table 2.33. 

Weight 
ID 

 Branch and 
Bound 

Lagrangian 
Relaxation 

Dantzig-Wolfe Best Method 

Best solution -75.41 -69.15 -69.15 B&B 
176 Effort Stopped after 

almost 2 hrs 
9 iterations 

5 minutes 
4 iterations 

6 minutes 
 

Best solution -412.20 -412.21 -412.208 LR 389 Effort Stopped after 8 hrs 1 iteration 3 iterations  
Best solution -640.73 -640.73 -640.73 LR 

178 Effort Obtained after 2 
hours 

1 iteration 3 iterations  

Best solution -883.56 -883.56 -883.56 LR 
459 Effort Obtained after half 

an hour 
1 iteration 3 iterations  

Table 2.33 Results from the different methods for different weights case 1 

Once again it seems like the Lagrangian relaxation would be a preferred 

method over Dantzig-Wolfe. We tried again reducing the time to compute down to 

one minute obtaining the results presented in Table 2.34. 

Weight PFA IMP ENV PRO  Obj   Time  in 
seconds  

389 78.27 2045.20 21.07 1086.25 -412.21 69.52 
176 60.01 2092.69 2.05 1026.86 -75.41 67.61 
361 76.95 2014.24 20.63 1086.40 -369.64 67.29 
662 77.65 2030.15 21.07 1086.90 -1024.14 66.80 
964 78.39 2044.84 21.75 1086.46 -1016.27 66.39 
952 77.76 2029.33 20.63 1085.76 -203.14 66.18 
802 78.27 2045.25 21.07 1086.25 -762.16 66.02 
178 77.65 2030.14 21.07 1086.90 -640.73 65.52 
921 79.01 2059.88 21.75 1085.82 -387.98 62.20 
459 76.84 2015.20 21.07 1087.54 -883.56 61.62 
724 60.03 1492.83 2.05 750.93 44.00 61.32 
339 77.65 2030.11 21.07 1086.90 -467.82 32.19 

Table 2.34 Results for case 1 with one minute time limit 



 85 

 

We found eleven cases where the time to compute the optimal solution took 

more than sixty seconds. Those cases then would need to be evaluated using 

Lagrangian Relaxation. Again all 1000 cases where solved in about twenty two 

minutes which is much better than the fifteen hours that took to solve the same cases 

with the same bounds but without time limits. 

2.4.2.1.2. Case 2 

We ran the same 1000 weights again obtaining two solutions (weights 176 and 

643) where the computer ran out of memory before producing the optimal solution 

(See Figure 2.16 and Figure 2.17). Besides those two cases, the branch and bound 

procedure provided the results in less than four minutes on the worst case. We 

expected this case with tighter bounds on the PFA requirements to be faster because 

the reduction of the bounds implies a reduction on the feasible region, making the 

trees smaller in size. 

Only one other weight (724) took a very long time to complete (over 3hrs). 

The top ten results in descending computation time are summarized in Table 2.35 

Weight PFA IMP ENV PRO  Obj   Time in 
seconds  

176     -75.4235 16496.4 
643     -110.172 12817.1 
724 60.0263 1492.67 2.04793 750.893 43.9923 12530.5 
964 69.9165 1943.18 21.0726 1090.46 -1013.24 208.1 
535 69.9165 1943.1 21.0726 1090.46 -890.983 185.2 
459 69.9165 1943.19 21.0726 1090.46 -882.556 92.5 
578 60.0067 2077.71 2.53492 1030.1 -133.97 11.3 
430 69.9165 1943.07 21.0726 1090.46 -634.369 8.3 
952 69.9798 1942.15 20.5856 1089.2 -202.456 7.8 
955 62.6185 1872.85 31.8475 1091.11 -986.22 7.4 

Table 2.35 Top 10 results for case 2 listed in descending order of solution time 
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We will next analyze the one case that took long time, along with the two 

cases (shown below) that were no t solved. 

 

Figure 2.16 Result for weight 176 
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Figure 2.17 Result for weight 643 

We proceed to apply the decomposition techniques finding that some of the 

weights required a great computational effort to achieve the optimal solution, we 

compared the performance of the solution methods and the results have been 

summarized in Table 2.36. Dantzig-Wolfe outperformed all others in this case. 

Weight 
ID 

 Branch and Bound Lagrangian 
Relaxation 

Dantzig-Wolfe Best 
Method 

Best 
solution 

-75.4235  Best bound -75.86  -75.754  

176 Effort over 6 million nodes 
over four and a half 

hours 

No feasible solution 
found 9 iterations 

Four iterations DW 

Best 
solution 

-110.172  Best Bound -112.327 -111.52  

643 Effort over 3.8 million 
nodes almost 4 hours 

No feasible solution 
found 11 iterations 

Four iterations DW 

Best 
solution 

43.9923  Best bound 49.66 47.0496  

724 Effort Over three and a half 
hours 

No feasible solution 
found 11 iterations 

Several 
iterations and 

B&B 

Unclear 

Table 2.36 Comparison of methods case 2 
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2.5. Algorithm Implementation 

The solution algorithm that we proposed to solve the integer programming 

land development model is presented below in Figure 2.18. 

Step 0: Initialization
Set Time Limit for Branch

and Bound

Step 1: Solve LDIP
For Each Weight in the
Set Solve the Problem

Using Branch and Bound

Step 2: Identify
Pareto Optimal

Solutions

Step 3: Identify
Solutions that
Required More

Time

Step 4: Apply
Lagrangian

Relaxation to the
Problem

For Each DIfficult
Case

Step 5: Is the
Solution Optimal?

Step 6: Apply
Dantzig-Wolfe
Decomposition

Next Case

YES

No

 

Figure 2.18 Algorithm to solve the integer programming version of the land development 
problem using Lagrangian relaxation and Dantzig-Wolfe decomposition 

This algorithm begins by setting a time limit on the branch and bound search, 

we have found by experimentation that for our problem a one minute limit works 

quite well since the total time to evaluate 1000 weights was less than an hour. After 

all weights have been solved using branch and bound the algorithm checks all those 

cases in which the algorithm stopped the branch and bound search due to time 

limitations. For those cases we then solve a Lagrangian relaxation, if the result of the 
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Lagrangian relaxation is the same as the one obtained by branch and bound then we 

consider the solution to be optimal, if it was not then we proceed to apply Dantzig-

Wolfe decomposition. 

2.5.1. Original Bounds 

To test our proposed algorithm we ran the 1000 cases with the case 2 bound 

using two minutes max time, and obtained in about 25 minutes the results presented 

in the appendix. 

These results are consistent with what we have found without time limit. We 

identified that from the 1000 runs, seven of them exceeded the two minutes limit, 

those solutions are listed in Table 2.37. The bounds obtained after two minutes are 

extremely close to those found after hours of computation. This method would reduce 

the total time to compute the all the solutions, since apparently only seven cases 

would need to be evaluated further.  

Solution Weight ID IMP ENV PFA PRO  Obj. F.  Time in 
seconds 

1 178 2030.14 21.0726 77.6513 1086.90 -640.727 126.813 
2 389 2045.20 21.0726 78.2727 1086.25 -412.207 125.931 
3 459 2015.20 21.0726 76.8444 1087.54 -883.564 127.153 
4 662 2030.15 21.0726 77.6513 1086.90 -1024.140 133.993 
5 802 2030.23 21.0726 77.6513 1086.90 -762.239 128.145 
6 921 2059.88 21.7481 79.0115 1085.82 -387.977 134.404 
7 964 2044.84 21.7481 78.3901 1086.46 -1016.270 131.198 

Table 2.37 Runs exceeding the time limit original bounds  

The solutions listed in Table 2.37 are candidates to further revision by the 

Lagrangian and Dantzig-Wolfe decomposition techniques. However, when we 

checked for Pareto optimality we found that from the 1000 solutions there are 285 

unique are Pareto optimal points. The list of those unique Pareto optimal points can 
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be found in the appendix. Since all weights used are positive, all runs should be 

Pareto optimal, but since more than one weight can result on the same solution then 

the set of Pareto optimal points is a subset of all runs. The interesting finding is that 

from the list of Pareto optimal points only three points exceeded the solution time. 

This means that some of the solutions found by the branch and bound procedure are 

being mapped to another weight combination that took less time and solved to 

optimality, so there is no need to evaluate them again. 

The solutions in the Pareto optimal set that need to be evaluated are: 

Weight ID IMP ENV PFA PRO  Obj. F.  Seconds 

389 2045.2 21.0726 78.2727 1086.25 -412.207 125.931 
921 2059.88 21.7481 79.0115 1085.82 -387.977 134.404 
964 2044.84 21.7481 78.3901 1086.46 -1016.27 131.198 

Table 2.38 List of Pareto optimal points exceeding maximum time  original bounds  

2.5.2. Tightened Bounds Case 1 

The 1000 cases were solved using the algorithm with a two minutes maximum 

solution time. It took 36 minutes to find all solutions. The list of the solutions 

obtained is presented in the appendix. We found that 11 of the solutions exceeded the 

allotted time to solve. Also, from the set of 1000 runs only 250 points were Pareto 

optimal. It was expected to find a smaller number of points as compared to the 

original bounds since the feasible region have been reduced. From those 250 Pareto 

optimal points, the 7cases are presented in Table 2.39 need to be evaluated further. 

Solution Weight ID IMP ENV PFA PRO Obj. F Seconds 
1 176 2,092.69 2.05 60.01 1,026.86 -75.41 133.3020 
2 361 2,014.24 20.63 76.95 1,086.40 -369.64 133.9530 
3 389 2,045.20 21.07 78.27 1,086.25 -412.21 135.8250 
4 724 1,492.83 2.05 60.03 750.93 44.00 132.8610 
5 921 2,059.88 21.75 79.01 1,085.82 -387.98 134.3630 
6 952 2,029.33 20.63 77.76 1,085.76 -203.14 123.2270 
7 964 2,044.84 21.75 78.39 1,086.46 -1,016.27 123.1970 

Table 2.39 List of Pareto optimal points that exceeded maximum time tightened bounds case 1 



 91 

 

2.5.3. Tightened Bounds Case 2  

The 1000 cases were solved using the algorithm with a two minutes maximum 

solution time. It took 20 minutes to find all solutions. The list of the solutions 

obtained is presented in the appendix. We found that 5 of the solutions exceeded the 

allotted time to solve. Also, from the set of 1000 runs only 236 points were Pareto 

optimal. It was expected to find a smaller number of points as compared to the 

original bounds since the feasible region have been reduced. From those 236 Pareto 

optimal points, only two need to be evaluated further. Those cases are presented in 

Table 2.40. 

Solution Weight ID IMP ENV PFA PRO Obj. F. Seconds 

1 176 2,092.66 2.05 60.03 1,026.85 -75.42 128.8250 
2 724 1,492.77 2.05 60.03 750.93 44.00 122.2860 

Table 2.40 List of Pareto optimal points that exceeded maximum time tightened bounds case 2 

2.6. Formulation Using the Constraint Method 

Consider again the same settings as for the weighted method. The difference 

is that now, we are interested in optimizing one of the objectives while we set a 

bound on the others. 

2.6.1. Optimizing the PFA’s 

We could set up the problem as to maximize the area of PFA developed, while 

at the same time maintain a total imperviousness change that does not exceed a 

certain upper bound ( )IMP , develop environmentally sensitive areas up to certain 

upper bound ( )ENV , while making at least a minimum profit ( )PRO . 
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Then the mathematical formulation used for this model can now be written as 

follows: 

Max: 
5

, ,
1

z n z n
z n PFA

a d
= ∈

∑ ∑  (2.91) 

Subject to: 

5

, , ,
1 1

zN

z n z n z n
z n

a I d IMP
= =

∆ ≤∑∑  (2.92) 

5
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1

z n z n
z n Sc
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≤∑ ∑  (2.93) 

5

, ,
1 1

zN

z n z n
z n

p d PRO
= =

≥∑∑  (2.94) 

5

, ,
1

z n z n
z n PFA

PFA a d PFA
= ∈

≤ ≤∑ ∑  (2.95) 

1

, ,
1

, 1
N

z n z n
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RLD u d RLD z
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≤ ≤ =∑  (2.96) 
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1
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N

z n z n
n

RMD u d RMD z
=

≤ ≤ =∑  (2.97) 

3

, ,
1

, 3
N

z n z n
n

RHD u d RHD z
=

≤ ≤ =∑  (2.98) 

4

, ,
1

, 4
N

z n z n
n

COM u d COM z
=

≤ ≤ =∑  (2.99) 

5

, ,
1

, 5
N

z n z n
n

IND u d IND z
=

≤ ≤ =∑  (2.100) 

, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (2.101) 

This formulation would avoid missing Pareto optimal points due to the duality 

gap as explained before in page 240. The bounds can be determined by optimizing 
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each one of the objectives first as a minimization (to obtain a lower bound) followed 

by a maximization (to obtain an upper bound). After the bounds are set then one can 

determine how many runs are desired to run and then divide the range of the bounds 

in suitable intervals. Note that the number of runs can be determined as 

* *IMP ENV PRON N N  which can result in a large number of runs. For example if each 

bound is broken in 10 ranges then there would be 1000 runs. 

We proceeded to optimize the four objectives twice as described above (one 

for minimization and one for maximization) obtaining the Table 2.41. 

Objective PFA IMP ENV PRO 
Min 13.2145 1051.55 1.76926 613.33 
Max 79.3887 5967.03 678.063 1100.99 

Table 2.41 Bounds on the objectives 

Having set the bounds for all objectives we could now divide the ranges in 

eleven intervals and use the intermediate points (ten points) as bounds for the 

constraints as presented in Table 2.42. 

Objective PFA IMP ENV PRO 
Min 13.2145 1051.55 1.76926 613.33 
Max 79.3887 5967.03 678.063 1100.99 

0 13.21 1051.55 1.77 613.33 
1 19.23 1498.41 63.25 657.66 
2 25.25 1945.27 124.73 702.00 
3 31.26 2392.14 186.21 746.33 
4 37.28 2839.00 247.69 790.66 
5 43.29 3285.86 309.18 834.99 
6 49.31 3732.72 370.66 879.33 
7 55.33 4179.58 432.14 923.66 
8 61.34 4626.44 493.62 967.99 
9 67.36 5073.31 555.10 1012.32 

10 73.37 5520.17 616.58 1056.66 
11 79.39 5967.03 678.06 1100.99 

Table 2.42 Selection of ten bounds for the four objectives 

The points start at zero with the lower bound and end at 11 with the upper 

bound, we would take the ten intermediate points as bounds for the optimization. 
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Example, the first run would be to maximize the PFA area subject to the 

Imperviousness not to exceed a value of 1498.41, the environmentally sensitive area 

not to exceed 63.25, and the profit to be at least 657.66. 

2.6.2. Lagrangian Relaxation 

To solve the above problem using Lagrangian relaxation we would proceed to 

relax the first three constraints and include in the objective function the positive slack 

of each constraint multiplied by a Lagrangian multiplier similarly as previously done 

with the weighting method. The formulation would be as follows: 

Max: 
5

, ,
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z n z n
z n PFA

a d
= ∈

∑ ∑  + 
5

1 , , ,
1 1
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 
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2 , ,
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− 
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3 , ,
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∑∑   (2.102) 

Subject to: 
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, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (2.108) 
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This formulation is very similar to the formulation presented in the 

Lagrangian relaxation for the weighting method, the difference is only in the 

objective function, so we will not proceed to solve it as scope for the present work. 

2.6.3. Dantzig-Wolfe Decomposition 

The formulation can be decomposed by zones in a similar fashion as before 

where each one of the subproblems are identical to the ones presented in the 

weighting method, but the master problem has been modified to accommodate for the 

new complicating constraints. The formulation is as follows: 

,
,max: z t

z tPFA λ  (2.109) 

s.t. 
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1 1
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zTZ
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z t z t
z t

PFA PFA d PFAλ
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≤ ≤∑∑  (2.113) 

1
1 1

, =∑∑
= =

Z

z

T

t
tz

k

λ for k = 1,2,3,4,5 (2.114) 

}1,0{, ∈tzλ  (2.115) 

We tried to obtain a result comparable with a previous one, so we choose to 

use case 2 bounds and tried to find the solution obtained for weight set 150 as: 
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Weight PFA IMP ENV PRO  Obj. F.   Seconds  
150 60.8501 1143.54 94.8272 762.086 919.901 6.028 

Table 2.43 Result for weight 150 case 2 

 We first set maximum value of imperviousness change to 1144, a maximum 

area of environmentally sensitive area of 95 and a minimum profit of 762. 

Maximizing for PFA we expect to obtain 60.0067, we obtained 61.2067 with the 

following values: 

Weight PFA IMP ENV PRO  Obj. F.   Seconds  
150 60.8501 1143.54 94.8272 762.086 919.901 6.028 

Bounds 61.2067 1143.63 94.8272 762.197  3.765 
Table 2.44 Comparison between the result of weight 150 and the bounds using constraint method 

Since the bounds seemed too loose, we tighten them to a maximum value of 

imperviousness change of 1143.55, a maximum area of environmentally sensitive 

area of 94.83 and a minimum profit of 762. Maximizing for PFA we to obtained 

60.85 which is the value we were expecting. The computation time was 7.28 seconds. 

2.7. Previous Work on Decomposition Heuristics 

Barnhart et al. (1996) presented formulations of integer programming 

problems involving a large number of variables with an example of the generalized 

assignment problem and crew assignment problem. They described how the pricing 

problem in Dantzig-Wolfe decomposition can be equivalently stated as a Lagrangian 

relaxation of the original integer programming problem. 

Huisman et al. (2003) presented two different ways to combine Lagrangian 

relaxation with column generation. They applied the Dantzig-Wolfe decomposition 

technique to an integer problem, and solved the LP relaxation. Two approaches were 

followed. On the first one a Lagrangian relaxation was used to solve the sub-problems 
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and on the second one, the Lagrangian relaxation was used to select the columns to be 

generated. They presented an example using lot sizing to show the applicability and 

to compare the computational efficiency of the two concepts. 

These approaches are different from the approach taken in this work since we 

are using the Lagrangian relaxation as a technique to verify the optimality of the 

solution obtained by the branch and bound technique in the cases where more time is 

presumably needed and later proceeding to use Dantzig-Wolfe instead of solving the 

relaxation within Dantzig-Wolfe using Lagrangian relaxation.  

2.8. Chapter Conclusions 

This chapter presents a mixed integer programming model for land 

development using a weighted sum of objectives from different stakeholders. An 

algorithm involving a combination of the traditional branch and bound method, 

Lagrangian relaxation and Dantzig-Wolfe decomposition is presented and applied 

finding a large subset of Pareto optimal points in a shorter time compared to branch 

and bound alone. These techniques have been applied together in the past as 

presented in section 2.7 but none of those used the same sequence as presented in this 

work. That is, those heuristics solved one instance of the problem where the 

Lagrangian relaxation was used to solve the subproblems from the Dantzig-Wolfe 

decomposition or to generate new columns. In contrast, in this work the branch and 

bound, Lagrangian relaxation and Dantzig-Wolfe techniques are applied in series to a 

large number of instances (sets of weighting vectors) to solve the same problem. 

The proposed algorithm to find an optimal solution follows three steps. First 

the problem is solved for all the weights using branch and bound with a time limit of 
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one minute. Then, the Lagrangian relaxation is used as a bound to verify if the 

solution obtained in the cases where the branch and bound seems to need more time is 

equal to the bound in which case the solution found is optimal, if not then the 

Dantzig-Wolfe decomposition is used to verify optimality. The Lagrangian relaxation 

is used first since numerically it provided a bound faster than the Dantzig-Wolfe 

technique. Another conclusion from the numerical tests is that the Lagrangian 

relaxation technique is easier to implement than the Dantzig-Wolfe decomposition. 

The 1000 weight vectors tried were solved within a reasonable time frame 

obtaining a relatively large set of Pareto optimal sets which would not have been 

possible by the use of branch and bound alone. The Lagrangian relaxation alone was 

not sufficient for one of the cases evaluated because it was not possible to obtain a 

feasible solution of the original problem by solving the relaxation. There was also one 

case where the Dantzig-Wolfe decomposition did not yield an integer solution so we 

needed to apply branch and bound to solve it. Although it was not the case in this 

dissertation, it is possible that neither Lagrangian relaxation nor Dantzig-Wolfe 

would find an optimal solution, so the only viable procedure would be to eliminate 

the time limit of the branch and bound search. This is true because in certain cases the 

Lagrangian relaxation is no stronger than the linear programming relaxation (Wolsey, 

1998). Also, because the Lagrangian relaxation and the Dantzig-Wolfe decomposition 

are duals of each other (Geoffrion, 1974; Fisher, 1981) then their optimal solutions 

are the same. Therefore, it is possible that the optimal solution obtained by the 

algorithm after applying both Lagrangian relaxation and Dantzig-Wolfe would be no 

better than the linear programming relaxation (Fisher, 1981). 
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Chapter 3  Land Development Quadratic Mixed Integer 
Formulation 

Gabriel, Faria and Moglen (2005) extended the work previously done by 

Moglen, Gabriel and Faria (2003) in several aspects. First Gabriel, Faria and Moglen 

(2005) allows for a set of parcels with “unassigned zoning” to be used. One of the 

decision variables of the model is to decide what type of development zone should be 

used for each unassigned parcels selected for development. Second, new constraints 

were added to handle preferences given to the parcels with zone category to be 

developed first, before considering any from the unassigned set. Third, the concept of 

compactness was treated in this work as the squared distance of a rectangle that 

enclosed all parcels previously developed and chosen for development by the model.  

In this section we again extend that work by presenting a strategy to solve the 

problem using Lagrangian relaxation and Dantzig-Wolfe decomposition methods but 

do not present numerical results. 

3.1. Objective Functions 

This formulation considers four stakeholders as described below: 

3.1.1. The Government Planner 

The Government Planner is mostly concerned with the compact development 

of the land as to prevent the scattered patterns usually associated with sprawl (see 

page 112). This stakeholder seeks to minimize the size of a rectangle that surrounds 

all developed parcels. For computationa l reasons, the objective function minimized 

the square of the diagonal rather than the diagonal itself.  
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Figure 3.19 presents an example of the rectangle that encloses all previously 

developed parcels and the parcels proposed to be developed by the model. 

 

Figure 3.19 Depiction of the diagonal and the rectangle that encloses all developed parcels 

To measure the rectangle it is first required to find the "largest northing" of 

the northernmost parcel, the "smallest northing" of the southernmost parcel, the 

"largest easting" of the easternmost parcel, and the "smallest easting" of the 

westernmost parcel. Let those coordinates be named , , , and N S E Wr r c c respectively. 

Then the length of the diagonal of the rectangle is given by: 

  ( ) ( )2 2
N S E Wdist r r c c= − + −  (3.1) 

To simplify this equation but without loss of generality, the objective function 

was squared to obtain: 

( ) ( )2 2
N S E Wr r c c− + −  (3.2) 

which represents the Planner’s objective to be minimized. 
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3.1.2. The Hydrologist 

The objective function used was the same as for the Hydrologist in Chapter 2, so the 

objective function can be written as: 

99

5

, , ,
1 1

min
zN

z n z n z n n n n
z n n S

a I d a I d
= = ∈

∆ + ∆∑∑ ∑  (3.3) 

3.1.3. The Conservationist 

This stakeholder matches the one presented in Chapter 3, so the objective function 

can be written as: 

( )99
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, ,
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z n z n n n
z n Sc n S S

a d a d
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+∑∑ ∑  (3.4) 

3.1.4. The Land Developer 

This stakeholder matches the one presented in Chapter 3, so the objective function 

can be written as: 
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z n z n n n
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= = ∈

+∑ ∑ ∑  (3.5) 

3.2. Constraints 

Similar to the formulation presented in Chapter 3, this formulation has constraints to 

accommodate the development to the expected growth of the population, commercial 

and industrial requirements.  

1

99

, , , ,
1

, 1
N

z n z n z n z n
n n S

RLD u d u RLD RLD z
= ∈

≤ + ≤ =∑ ∑  (3.6) 



 102 

 

2

99

, , , ,
1

, 2
N

z n z n z n z n
n n S

RMD u d u RMD RMD z
= ∈

≤ + ≤ =∑ ∑  (3.7) 

3

99

, , , ,
1

, 3
N

z n z n z n z n
n n S

RHD u d u RHD RHD z
= ∈

≤ + ≤ =∑ ∑  (3.8) 

4

99

, , , ,
1

, 4
N

z n z n z n z n
n n S

COM u d u COM COM z
= ∈

≤ + ≤ =∑ ∑  (3.9) 

5

99

, , , ,
1

, 5
N

z n z n z n z n
n n S

IND u d u IND IND z
= ∈

≤ + ≤ =∑ ∑  (3.10) 

, {0,1}, { }, {1,2,3,4,5}z n zd n N z∈ ∈ ∀ ∈  (3.11) 

, , , , ,, , , , {0,1} ,z n z n z n z n z nRLD RMD RHD COM IND z n∈ ∀  

where the new decision variables , , , , ,, , , ,z n z n z n z n z nRLD RMD RHD COM IND have been 

included to associate a development type (residential low density, residential medium 

density, residential high density, commercial, or industrial respectively) to each of the 

parcels in the set of unassigned parcels labeled as set 99S . 

The parcels in this set can be developed under only one type of zone: 

, , , , , 99, {1,2,3,4,5},z n z n z n z n z n nRLD RMD RHD COM IND d z n S+ + + + = ∀ ∈ ∈  (3.12) 

99{0,1}nd n S∈ ∀ ∈  (3.13) 

Additional constraints are required for the computation of the corner 

coordinates of the outer rectangle for the planner’s objective. These can be written as: 

( ) ( ),, 1S S z nr row z n d M− ≤ −  (3.14) 

( ) ( ),, 1N N z nrow z n r d M− ≤ −  (3.15) 

( ) ( ),, 1W W z nc col z n d M− ≤ −  (3.16) 
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( ) ( ),, 1E E z ncol z n c d M− ≤ −  (3.17) 

where M  is a suitably large positive constant. 

 Finally there are another two groups of constraints required to give priority to the 

parcels with zones assigned over those without it. Specifically, the first set of 

constraints stipulates that the parcels without assigned zone shouldn’t be developed 

under a zone type z if there are enough parcels in that zone to cover the minimum 

requirements for growth. The constraints for the first group are written as: 

( )
99
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1 1

, 1
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n n RLD z n RLD
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{ }, , , , 0,1RLD RMD RHD COM INDy y y y y ∈  (3.23) 

Also, where the available number of parcels is not enough, all available 

parcels should be developed before assigning parcels from the unassigned set. The 

constraints for the second group can be mathematically written as: 
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{ }, , , , 0,1RLD RMD RHD COM INDw w w w w ∈  (3.29) 

where N is a suitably large positive constant. 

Since the region where the development is taking could be quite large, in 

order to better utilize the compactness measure presented in (3.2), the area can be 

broken down in sub areas or quadrants in such a way that the total area of the 

development is covered by those quadrants. For example consider the case presented 

in Gabriel, Faria and Moglen (2005) where the Montgomery County area under study 

is presented in Figure 3.20. 
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Figure 3.20 Division of Montgomery county study into four quadrants 

The parcels that belong to each quadrant are shaded differently as in Figure 3.21. 

 

Figure 3.21 Parcels assigned to each quadrant 
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The objective function of the Planner can be slightly modified to minimize the 

sum of the four squared diagonals. More specifically, if there are Q quadrants, then 

the objective function of the Planner becomes: 

Min: ( ) ( )( )2 2

, , , ,
1

Q

q N q S q E q W
q

r r c c
=

− + −∑  (3.30) 

where ,q Nr  is the northernmost coordinate,  ,q Sr is the southernmost coordinate, ,q Ec is 

the easternmost coordinate and ,q Wc  is the westernmost coordinate of the quadrant q. 

3.2.1. Formulation Using the Weighting Method 

Similar to the formulation presented in Chapter 2, we can use the weighting 

method to solve the problem as follows 
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s.t. 

(3.6) - (3.29) 

3.2.2. Evaluation of the Nine Original Cases 

Similarly to the study in Moglen, Gabriel and Faria (2003) this formulation 

was tested with nine cases as presented in Table 3.1. 
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C
as

e  Planner 
(Compactness) 

Hydrologist 
(Imperviousnes

s Change) 

Conservationist 
(Env. Sensitive 

Area) 

Developer 
(Profit)  

Relative 
Gap 

1 Planner  
Alone 

1 0 0 0 5e-005 

2 Planner  
Pareto 

1 0.001 0.001 0.001 5e-005 

3 Hydrologist 
 Alone 

0 1 0 0 5e-005 

4 Hydrologist 
 Pareto 

0.001 1 0.001 0.001 5e-005 

5 Conservationist 
 Alone 

0 0 1 0 5e-005 

6 Conservationist 
 Pareto 

0.001 0.001 1 0.001 5e-005 

7 Developer 
 Alone 

0 0 0 1 5e-005 

8 Developer  
Pareto  

0.001 0.001 0.001 1 5e-004 

9 All  
Perspectives 

1 1 1 1 5e-005 

 Table 3.1 Weights assigned to each stakeholders’ objective  

In these nine cases each stakeholders’ objective was optimized alone (setting 

the weight of the other stakeholders to zero), also giving a small positive weight to 

the others objectives (called Pareto) and with all stakeholders having the same weight 

(All Perspectives case). 

Note that one of the cases required a larger relative gap measured as: 

Best Solution - Best Bound

Best Bound
 (3.32) 

because the computation time required to reach the solution was not acceptable. Other 

cases took also a long time to solve i.e., the “Conservationist Alone” took a little over 

six hours to reach an optimal solution. 

The tradeoff between stakeholders was presented in a value path graph as in 

Figure 3.22. The values have been normalized in the range 0-1 where 0 is best and 1 

is worst. For example, case 7 (Developer Alone) does poorly in the compactness, 
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imperviousness change and environmental measurements but provides a very high 

profit (value close to zero are desirable for all objectives). 

 

Figure 3.22 Value path representation of the nine cases evaluated 

Figure 3.22 shows the normalized values of the four objective functions 

evaluated in the nine cases studied in a scale 0-1 where zero was the preferred 

solution and one the less desirable. Thus, z profit of zero means the highest profit and 

a imperviousness change of zero means the lowest imperviousness change. For 

example case 7 has the lowest compactness (parcels spread out more) among all 

cases, this case is also very high in the imperviousness and environmental measures 

while scores with a very high profit level (close to zero).  
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3.2.3. Problem’s Structure 

Once again, these long computational times are the motivation to implement 

relaxation and decomposition techniques similar to those already presented in the 

previous chapter. The implementation for this case should be straightforward similar 

to the previous chapter and thus are not presented in this dissertation. 

Because the quadrants are divided in such way that the parcels belong to only 

one quadrant, then the structure of this formulation can be considered as Q 

independent formulations (one per quadrant) with common constraints that calculate 

the total development for each type of zone development (similar to the previous 

case) but with an additional set of complicating variables that appear along all zones 

(the unassigned parcels). Now, within each quadrant there are parcels from all type of 

zones including unassigned. Therefore, a combination of Benders decomposition and 

Dantzig-Wolfe decomposition would be required to solve this problem. We leave the 

formulation and related numerical implementations of this case for future work. We 

envision this structure as depicted in Figure 3.23. 

 

Figure 3.23 Decomposition structure of the quadratic model for land development 
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3.3. Nested Decomposition Strategies 

Several researchers have applied sequentially Dantzig-Wolfe decomposition 

to solve large-scale problems raising a nested decomposition approach. Glassey 

(1973) applied this technique to a multi-stage linear programming problem (MLP). 

Ho (1977) applied the technique to a Manne’s version of a linear programming 

problem of U.S. energy options with a staircase structure. Vanderbeck (2001) applied 

a nested decomposition to solve a cutting stock problem.  

Similarly, nested Benders decomposition techniques has been used before in 

the context of multistage stochastic optimization (Birge, 1985; Gassman, 1990; 

Archibald and Buchanan, 1999; Watkins et al., 2000; Dempster and Thompson, 2005) 

where problems in the same time period can be solved independently with a 

decomposable structure exploited with a nested Benders algorithm.  

Other applications arise in power systems where the complexity and size of 

the problem are addressed by nested decomposition methods (McCusker and Hobbs, 

2003). 

Thus far we have not been able to find any publications that combine Benders 

and Dantzig-Wolfe techniques together as proposed here to solve a problem of this 

structure. 

3.4. Chapter Conclusions  

The land development problem can incorporate compactness as an objective 

function. Using the rectangle approach the land development area can be divided into 

quadrants in order to prevent sprawl or used as a corridor to foster development in a 
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specific direction set by the orientation of the coordinate system used. The rectangle-

based measure has the advantage of convexity so any local solution is a global 

solution. However the parcels located inside the rectangle do not affect the 

measurement of compactness since they do not change the size of the rectangle. We 

propose in the next chapter a compactness measure that depends on all parcels 

selected for development. 

This model has flexibility in the use of land since some of the parcels do not 

have a previously assigned zone type. However, the flexibility provided by allowing 

the model to decide the land use for each parcel increases the complexity of the 

model.  

We envision Benders decomposition first to take care of the complicating 

variables for those parcels with unassigned zoning. Then we would have five 

subproblems, each being solvable by applying Dantzig-Wolfe decomposition.  
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Chapter 4  Embedded Minimum Spanning Tree 
Formulation 

4.1. Selected Works About Minimum Spanning Trees 

The minimum spanning tree (MST) is one of the most widely studied 

problems in operations research (Graham and Hell, 1985) therefore there are 

numerous publications that analyze this problem from a variety of different 

perspectives. The following list is not meant to be exhaustive, just indicative of work 

previously done that reflect some resemblance with the concepts and algorithms later 

developed in this section. 

Toussaint (1980) showed that the MST is a subset of the relative 

neighborhood graph (RNG) and presented two algorithms for obtaining the RNG of n 

points on the plane. This means that if one wants to construct a MST one could first 

construct a RNG and then use the edges as variables for the MST. 

Vaidya (1984) studied the problem of finding a MST on a fully connected 

graph of n nodes in kE  with a bounded radius. He has developed a fast algorithm to 

find an approximation of the solution for a qL distance metric where q = 2, 3, ... He 

used a search within a neighbor of each node for candidates to be included in the tree. 

This concept reinforces a basic property of the MST that is: each node will be 

connected to the closest node. 

Lai and Sheng (1996) applied the concept of a closure defined as the set of all 

edges incident to a node with a specified length to select edges in an algorithm used 

to construct the Euclidean MST allowing a reduction on the size of the problem. 
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Zhou, G. and Gen (1999) considered simultaneously multicriteria in 

determining an MST, assigning multiple attributes on each edge creating a more 

realistic representation of the practical problem. 

Yaman et al. (2001) modeled the robust spanning tree problem as a mixed 

integer programming formulation. In this formulation a single-commodity 

formulation and the dual of a multi-commodity formulation, both modeling the 

classic minimum spanning tree problem and both presented in Magnanti and Wolsey 

(1995), are joined together. Some rules are presented which allowed the author to 

reduce the size of the problem based on identify edges which will never be in the 

solution of a robust tree. 

Montemanni and Gambardella (2002) presented a branch and bound algorithm 

for a robust version of the minimum spanning tree problem where edge costs are 

specified as intervals instead of fixed numbers. Based on the work of Yaman et al. 

(2001) a set of pre-processing rules are applied to reduce the dimension of the 

problem.  

Graham et al. (2003) studied the capacitated minimum spanning tree (CMST) 

problem presenting a mixed integer programming formulation with a root node. They 

proposed an exact algorithm for solving the CMST problem using a heuristic since an 

exact procedure, which has to enumerate all feasible solutions, is exponential in the 

number of nodes is not applicable to very large size problems. They sorted the length 

of the edges and the algorithm chooses from the list starting with the smallest ones 

first, and applied a modification to the branch and bound search using an m-stage 

binary search tree. 
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4.2. The Minimum Spanning Tree in the Land Development 

Problem 

According to Burchell et al. (2000), limiting the development of the land to 

areas close to those already developed is a control mechanism that could be 

applicable to reduce sprawl and the negative consequences associated with it. One 

can conclude from the literature review that the notion of compactness is often 

associated with the measure of density defined as dwelling units per unit of area. 

Sprawl and compactness are inversely related to each other. The more compact a 

development is, the less sprawl and vice versa.  

We envision the parcels that are already developed as connected among them 

forming an existing infrastructure. New parcels will connect to this existing 

infrastructure by means of the minimum distance. With this idea in mind we have 

proposed the use of the minimum spanning tree (MST) as a compactness measure 

since it will promote the selection of parcels that are closer to existing developed 

parcels and therefore promoting compactness and preventing sprawl. This objective is 

considered in a multiobjective optimization problem in conjunction with other 

stakeholder objectives. 

The foundation for the formulation is as follows: We propose the 

measurement and optimization of three objective functions. First the Planner’s 

objective which will be to maximize the compactness measured as the resulting MST 

over all parcels chosen for development and the existing network of developed 

parcels. The existing network of developed parcels is presented as the MST which 

connects all already developed parcels, but this is only for purposes of representation 
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and does not in any way implies that such a network is a tree. In fact, water supply 

networks, for example, are interconnected in densely settled areas by multiple cycles 

hence, the concept of the tree is not valid. The second objective considered is the 

Developer’s objective, which is maximizing the profits obtained from the 

development of the land. The third objective proposed is from the Hydrologist 

perspective the minimization of imperviousness. The constraints are to provide 

enough dwelling units to satisfy both the population growth in terms of residential 

units, and the economic growth in terms of acres for commercial and industrial use. 

Finally there is a set of constraints required to define the length of the minimum 

spanning tree. 

Because a typical MST formulation involves an exponential number of 

variables constraints it is impractical if not impossible to solve with a large scale 

problem. Therefore a strategy is required to reduce the number of variables and 

constraints, such strategy was developed in this dissertation work. First, the fully 

connected concept was relaxed and the parcels are allowed to connect only to those 

parcels within vicinity. Second, not all constraints are imposed at once, rather just a 

subset of the full formulation is used and the relaxed problem is solved iteratively. On 

each iteration the disconnected element s are identified and new constraints to ensure 

connectivity of those components are added. Also, to speed up the process, the cycles 

within the graph are detected and new constraints are added to break the cycles. This 

double constraint generation approach has been tested here with networks of various 

sizes. 
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The algorithm developed is as presented in Figure 4.24. An additional step 

could be added to the algorithm in order to speed up the approach, where the potential 

cycles are identified ahead of time based on the parcels that have been selected for 

development during previous iterations.  

In the next sections of this chapter, supporting arguments for the selection of 

the MST as a compactness measure are presented along with a discussion of the 

multiobjective formulation and implementation of the proposed algorithm supported 

by examples. 
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Step 0: Initialization
Create Initial Formulation SLDMST

a) Find the distance from each parcel to the
existing network

b) Define variables for the formulation
c) Create initial formulation relaxing MST
constraints except for cutset inequalities

around each node

Step 1
Solve the formulation LDMST

Step 2
Find all cycles and identify  the parcels in

the cycle
Find all disconnected elements and identify

the parcels in the set

Step 3
Is the number of

cycles  >0?

Step 4:
Generate cutset inequalities and cycle

breaking inequalities
Add the new inequalities to the LDMST

formulation

YES

ENDNO

 

Figure 4.24 Algorithm to solve the land development formulation with embedded MST 

4.3. The Minimum Spanning Tree as a Compactness Measure 

Historically the roots of the minimum spanning tree (MST) could be traced as 

far back as the work of Kirchhoff (1824-1887) and other researchers of the last 

century (Ahuja et al. 1995). The discovery and formal presentation of the minimum 

spanning tree is attributed to Boruvka (1926a, 1926b) who considered the problem of 
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an electric power company of Western Moravia seeking to interconnect cities to the 

existing power grid (Nesetril et al., 2000; Korte and Vygen, 2000). The problem was 

to distribute electricity, water, etc. from one point to another in the most efficient 

possible way. This is achieved by following a path of minimum distance or minimum 

cost which is found by the MST (Ahuja et al., 1995; Magnanti and Wolsey, 1995). 

Similar applications can be found in civil engineering when planning for new 

highways, one might first find the MST interconnecting the cities then try to fit a 

highway along the way since the distance to be covered would be minimum, or 

perhaps using a capacitated MST interconnect the major cities with highways and the 

smaller cities with routes (Magnanti and Wolsey, 1995). 

By just reading some of the definitions of sprawl and the economic 

consequences one can conclude that the farther away a parcel is from a point of 

connection to the existing infrastructure the higher the cost of the development in 

terms of providing the required services to support the development.  

The minimum spanning tree can be used to find the minimum length required 

to connect a group of points in the space, this concept can be applied to the 

connection of the parcels to the existing (or future) infrastructure. This problem is 

among the first combinatorial problems studied (Korte and Vygen, 2000).   

4.3.1. Formulation of the Land Development Problem 

4.3.1.1. Objectives 

We are given a fully connected graph G of V(G) nodes that represents the set 

of all parcels, and a set ( )V H of parcels previously developed such that 
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( ) ( )V H V G⊆ . These two sets of nodes together with the interconnection between 

those previously developed parcels (edges ( )E H ) form the infrastructure network H. 

We propose the following objective functions for the stakeholders: 

Planner’ objective: maximize compactness 

Min: 
( , ) ( )

ij ij
i j E G

dist e
∈
∑  (4.1) 

where ijdist  is the length of the edge that joins parcels i and j, ije is the decision 

variable to include the edge (i,j) into the MST ( 1ije = ) or not ( 0ije = ). E(G) is the set 

of all edges in the graph. 

Hydrologist’ objective: minimization of imperviousness change 

Min:
5

, , ,
1 1

zN

z n z n z n
z n

a I d
= =

∆∑∑  (4.2) 

Developer’ objective: maximization of profits 

Max: 
5

, ,
1 1

zN

z n z n
z n

p d
= =

∑∑  (4.3) 

were ,z na is the area of parcel n in zone z. ,z np is the profit from developing parcel n of 

zone z, znd is the decision variable to develop parcel n of zone z. V(H) is the set of 

available parcels, z,nI∆ is the change in imperviousness when parcel n is developed of 

zone z. For this dissertation work as following the same zones as in Moglen, Gabriel 

and Faria (2003) and Gabriel, Faria and Moglen (2005), five zones were in the set of 

possible zones for development. Taking a weighted sum of the objectives, as 

previously done in Chapters 2 and 3, we can write the objective function as: 
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Min: 
5 5

1 2 , , , 3 , ,
( , ) ( ) 1 1 1 1

z zN N

ij ij z n z n z n z n z n
i j E G z n z n

w dist e w a I d w p d
∈ = = = =

+ ∆ −∑ ∑∑ ∑∑  (4.4) 

4.3.1.2. Constraints 

The first set of constraints deal with the population, commercial and industrial 

growth of the region. The number of units developed for each zone should be 

bounded by the minimum and maximum required. These have been presented before 

in Chapter 2 as (2.10) - (2.14) 

1

, ,
1

, 1
N

z n z n
n

RLD u d RLD z
=

≤ ≤ =∑  (4.5) 

2

, ,
1

, 2
N

z n z n
n

RMD u d RMD z
=

≤ ≤ =∑  (4.6) 

3

, ,
1

, 3
N

z n z n
n

RHD u d RHD z
=

≤ ≤ =∑  (4.7) 

4

, ,
1

, 4
N

z n z n
n

COM u d COM z
=

≤ ≤ =∑  (4.8) 

5

, ,
1

, 5
N

z n z n
n

IND u d IND z
=

≤ ≤ =∑  (4.9) 

The next sets of constraints are required to define the minimum spanning tree, 

Appendix 2 presents several formulations developed to define the MST. Among them 

we prefer to use the cutset formulation (A.210) - (A.213) over the packing 

formulation (A.206) - (A.209) because less inequalities are required and because they 

are easier to generate computationally.  

Every parcel selected for development should be connected to the current 

infrastructure, this means it should be connected either to one of the previously 
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developed parcels, or to the MST of parcels selected for development which in time is 

connected to the existing network. Since the MST of the previously developed parcels 

contains n-1 nodes, for each newly developed parcel there will be one edge required 

to connect it to the existing MST. So the number of edges added to the MST has to be 

equal to the number of parcels selected for development. 

5

,
1 1

zN

ij z n
ij z n

e d
= =

=∑ ∑∑  (4.10) 

A node should have incident edges if and only if it is chosen for development. 

This double set of constraints is required given the fact that an edge is defined only if 

the parcels located at both ends of the edge are chosen for development. 

, , 1,2,...,ij z n
j z

e n d i n≤ =∑ ∑  (4.11) 

, , 1,2,...ij z n
i z

e n d j n≤ =∑ ∑  (4.12) 

For example in Figure 4.25 edges (1,2),  (2,3), (2,4) and (2,5) can only be 

defined if all the parcels in the set {1,2,3,4,5} are selected for development. If for 

example parcel 5 was not selected for development then the corresponding variable 

for the edge (2,5) 2,5 0e = .  

 

Figure 4.25 Example of four edges connecting five nodes 
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Both sets (4.11) and (4.12) are required since both nodes i and j are required 

to be developed for the edge to exist. 

The cutset inequalities can be used to ensure the connectivity of all nodes in 

the tree. That is, any subset of nodes S should be connected at least with one edge to 

the rest of the nodes in the network, either previously developed or selected for 

development. 

{( , ) ( ): , ( ) \ }

(1 ) ( ),ij s
i j E G i S j V G S

e y S V G S
∈ ∈ ∈

≥ − ∀ ⊂ ≠ ∅∑  (4.13) 

(1 )i s
i S

d n y
∈

≤ −∑  (4.14) 

{0,1}sy ∈  (4.15) 

To illustrate this set of inequalities consider Figure 4.26 and Figure 4.27.  

  

Figure 4.26 Set of one node connected 
to all other nodes 

Figure 4.27 Set of two nodes connected 
to all other nodes 

In Figure 4.26 if node 1 is selected for development, then that node should be 

connected to at least one of the other nodes (previously developed or selected for 

development parcels) in the graph. In Figure 4.27 if both nodes 1 and 2 are selected 
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for development, then they should be also connected to the rest of the nodes in the 

graph.  

Constraint (4.14) ensures that if there is at least one developed parcel in the 

set then the binary variable 0Sy = which then forces 
{( , ) ( ): , ( ) \ }

1ij
i j E G i S j V G S

e
∈ ∈ ∈

≥∑  by 

means of constraint(4.13). This ensures that the set S is connected to the rest of the 

graph by at least one edge. 

Note that it is not required to have the packing constraints and the cutset 

constraints. The complete formulation would have redundant constraints if both are 

included at the same time. They are included here for reasons that will be come 

obvious when the proposed algorithm is presented. 

Binary definition of the edge and development decision variables: 

{0,1}izd ∈  (4.16) 

{0,1}ije ∈  (4.17) 

The implementation of formulation (4.4) - (4.17) as presented might be 

impossible to solve for a large network because the number of constraints involved in 

the definition of the MST is exponential. 

To understand the exponential nature of those constraints consider the 

following: we need to take groups of one node first, and connect them to the rest of 

the nodes, if there are n=V(G) nodes then the number of constraints is 
!

1 ( 1)!

n n
n

 
=  − 

, 

to take groups of two nodes and connect them with the rest of the graph we need 

!
2 ( 2)!2!

n n
n

 
=  − 

 constraints, and then we need to take groups of three nodes which 
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are 
!

3 ( 3)!3!

n n
n

 
=  − 

and so on. However, we do not need to add all the count together 

which would be 2 2n −  because taking combinations of one node is equivalent to take 

combinations of (n-1) nodes, combinations of two nodes is equivalent to taking 

combinations of (n-2) nodes and so on.  Therefore, the number of constraints in this 

group would be  

2 2
2

n −
 if n is odd  (4.18) 

and  

2 2
/ 2

/ 22

n n
nn

n

 
− −      +  

 
 if n is even.  (4.19) 

To understand how we arrived to these formulas consider first the case 

presented in Figure 4.28. 

 

Figure 4.28 Graph of five nodes with a table of possible combinations 

Consider for example a graph with five nodes such as presented in Figure 

4.28, where the table lists all possible combinations from five nodes to choose. Note 

that the total number of possible combinations is given by: 

0

2
n

n

i

n
i=

 
= 

 
∑  (4.20) 
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The first combination shown in the table of Figure 4.29 is the combination of 

five nodes taken by zero, this is identical to the combination of all nodes taken by all 

nodes. This combination is not explicitly included as a cutset inequality, rather is 

implicitly in constraint (4.10) which accounts the number of edges in the tree. 

Note how the number of possible combinations is symmetrical to n/2 meaning 

that the number of combinations of nodes taken by say a number of c nodes is 

identical to the number of possible combinations of the nodes taken by n-c when c is 

less than n/2. We only need one set of these constraints since they are redundant. 

Therefore, from all possible combinations ( )2n  we do not need the combinations 

taken by zero (or by n) so we can deduct those from the total number obtaining 

( )2 2n − , because of the symmetry explained above, we only need half of those 

constraints leaving the final number of constraints required as 
2 2

2

n −
 
 

. In our 

example we need to take combinations of five taken by one, and combinations of five 

taken by two. 

Now consider the case of a four node graph as the one presented in Figure 

4.29. 

 

Figure 4.29 Graph of four nodes with a table of possible combinations 
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By the same argument as before, not all combinations of nodes are required to 

generate the constraints, the difference is that in this case (n/2) is integer so the total 

number of constraints can be computed as 

2 2
2

2

n
n

n
 
 − −
 
   to account for the 

combinations from 1,2,…, 2 1n − constrains with symmetrical groups, to this we need 

to add the 
2

n
n

 
 
 

 not yet accounted for.  

But since we need an additional constraint to define the auxiliary variable sy  

per cutset inequality, then the total number of constraints required is two times the 

number computed in (4.18) and (4.19), still these are an exponential number of 

constraints as presented in Table 4.1. 

n Constraints 
3                 6  
4               20  
5               30  
6               82  
7             126  
8             324  
9             510  

10          1,274  
11          2,046  
12          5,018  
13          8,190  
14         19,814  
15         32,766  
16         78,404  
17       131,070  
18       310,762  
19       524,286  
20    1,233,330  
21    2,097,150  
22    4,899,734  
23    8,388,606  
24  19,481,370  

Table 4.1 Number of constraints as a function of the number of nodes 
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Note that with 21 nodes the number of constraints exceeds one million. Figure 

4.30 shows the exponential function for the number of constraints as a function of the 

number of nodes. 

-
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2,500,000.00
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Number of nodes

 

Figure 4.30 Number of constraints as a function of the number of nodes 

The number of variables is also extremely large, since the nodes of the graph 

are parcels, and in theory if it can be a fully connected graph, then the number of 

edges is also exponential.  

4.3.2. Solution Approach 

We have developed an algorithm to solve this multiobjective land 

development problem with an embedded MST. The first step requires the solution of 

an initial formulation. This initial formulation is based on the previously presented 

formulation (4.4) - (4.17) with some modifications. In order to have any hope solving 
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this problem given the extremely large number of variables and constraints we 

attacked the problem on two fronts as follows. 

4.3.2.1. Reduction in the number of variables 

The first and almost obvious reduction in the number of variables can be 

accomplished by eliminating the double counting of the edges. We identify each arc 

by ije where : ( , ) ( )i j i j E G< ∀ ∈ . Because we are only concerned with connecting the 

newly developed parcels to the existing infrastructure, we do not care about the 

direction of the edges. Hence, an edge ij jie e= rather than introducing these equalities 

in the formulation we define the edges in a lexicographic order. This allows us to 

effectively reduce the number of variables by half without losing any accuracy in the 

description of the problem.  

The second reduction, although not that obvious is still easy to understand. 

Since each parcel represents a node in the graph, and the graph is considered fully 

connected, then there are 
2
n 

 
 

edges to consider. This number is extremely large but 

not all those edges need to be used, just a subset of edges that connect each node to a 

group of geographically close nodes needs to be considered. 

Theorem 1 In an optimal solution of the land development problem, two parcels 

i and j chosen for development will never be directly connected if the distance 

between them is larger than both the distance from i to the its closest previously 

developed parcel, and the distance from j  to its closest previously developed 

parcel. 
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Proof Suppose that for an optimal solution, there is a parcel i selected for 

development which is connected in the MST to a parcel j. Now suppose that the 

distance from parcel i to its closest developed parcel (call it parcel 1) is 1idist , and the 

distance from parcel j to its closest developed parcel (call it parcel 2) is 2jdist . 

Because the MST cannot have any cycles, it is impossible for the edges 

1 2,  ,  and i ij je e e to be selected simultaneously. Assume that the connection is made 

between the two nodes to the rest of the MST by means of edge 1ie , this can be done 

without loss of generality since it could be 2je  as well, see Figure 4.31 left. 

 

Figure 4.31 Nodes i and j connected to the existing infrastructure (left using eij, right using ei1 
and ej2) 

 If the distance from parcel i to parcel j ijdist satisfies, 1ij idist dist> and 

2ij jdist dist> then we could build another tree, namely 1T  for which we replace the 

edge ije by the edge 2je . The total length of the tree 1
2ij jT MST dist dist= − + . Since 

the term 2 0ij jdist dist− + <  because 1ij idist dist> , then we will have found a tree with 

a shorter dimension than MST so either MST is not a minimum tree, or 1ij idist dist≤  

QED. 

The consequence of Theorem 1 allows us to reduce the number of potential 

edges to consider by each parcel to only those that are within a circle of radius equal 
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to the closest developed parcel (see Figure 4.32). The reduction in the number of 

edges and variables is substantial but cannot be calculated in general since it depends 

of the relative location of the developed nodes in reference to the available nodes.  

 

Figure 4.32 Two nodes i,j available for development connected to previously developed nodes 1 
and 2 

4.3.2.2. Reduction in the Number of Constraints 

We also considered reducing the number of constraints. We designed an 

algorithm that iteratively moves from a series of forests to the optimal solution by 

adding cycle breaking constraints and cutset inequalities on each iteration. 

The algorithm presented in Figure 4.33 begins with the formulation presented 

in (4.4) - (4.15) but slightly modified by relaxing the set (4.13) - (4.15) and adding 

cutset inequalities around each node. This decision was made based on the 

performance of the algorithm. It is clear that if a parcel is developed then it must be 

connected, so we save some iterations by including this set of constraints ahead of 

time. We then solve this initial formulation, and apply a heuristic based on a shortest 

path method to locate the cycles in the graph and then to locate the forest elements in 

the graph. Once we have identified these, we add only anti-cycling constraints 

(packing type of constraints) and connecting constraints (cutset type of inequalities) 

to avoid the cycles that we have found and connect the elements that are 

disconnected. 
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4.3.3. Solution Algorithm 

4.3.3.1. Initial Formulation LDMST 

Min: 
5 5

1 2 , , , 3 , ,
( , ) ( ) 1 1 1 1

z zN N

ij ij z n z n z n z n z n
i j E G z n z n

w dist e w a I d w p d
∈ = = = =

+ ∆ −∑ ∑∑ ∑∑  (4.21) 

s.t. 
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Step 0: Initialization
Create Initial Formulation LDMST

a) Find the distance from each parcel to the
existing network

b) Define variables for the formulation
c) Create initial formulation relaxing MST
constraints except for cutset inequalities

around each node

Step 1
Solve the formulation LDMST

Step 2
Find all cycles and identify  the parcels in

the cycle
Find all disconnected elements and identify

the parcels in the set

Step 3
Is the number of

cycles  >0?

Step 4:
Generate cutset inequalities and cycle

breaking inequalities
Add the new inequalities to the LDMST

formulation

YES

ENDNO

 

Figure 4.33 Algorithm to solve the land development formulation with embedded MST 

Constraints (4.30) prevents that a parcel selected for development remains 

disconnected, it will be connected to at least another parcel. 

4.3.3.2. Step 0: Initialization 

The initial step requires preparing the formulation LDMST. The edges to be 

included as decision variables need to be defined. The distance from each parcel 
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available for development to the nearest developed parcel needs to be found, and then 

compared to the distance to the rest of the undeveloped parcels. If there is an 

undeveloped parcel closer than the closest developed parcel, then the edge that joins 

those two undeveloped parcels is included in the set of decision variables. 

For example consider Figure 4.34 where two undeveloped parcels (A and B) 

and one developed parcel (1) are presented. First by evaluating node A, we note that 

the closest developed parcel is parcel 1, there is no other parcel in a radius of length 

1Adist , so we define the variable 1Ae . Then, by evaluating node B we find that the 

closest developed parcel is parcel 1, but there is one parcel (parcel A) in the radius of 

length 1Bdist so we define the decision variable 1Be  and the decision variable ABe . 

  

Figure 4.34 Two undeveloped parcels A, and B and one previously developed parcel 1 

After all nodes available for development have been evaluated as described 

above, we solve the initial formulation LDMST and proceed to Step 1 in the 

algorithm. 

4.3.3.3. Step 1: Solve the Formulation LDMST 

Solve the formulation and record the solution which is the vector of decision 

variables for the parcels, and the vector of decision variables for the edges. 
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4.3.3.4. Step 1: Find the Cycles and Identify the Disconnected 

Components 

Using an algorithm to find a shortest path to all nodes from a given node s 

take one of the parcels chosen for development and find all nodes connected to it, this 

will identify a component in the graph. Proceed until all developed nodes have been 

evaluated. 

By evaluating each edge selected ije and finding the shortest path between 

nodes i and j (not including edge ije ) the cycles can be identified. If there is a path 

between nodes I and j different than the edge ije then there is a cycle formed by the 

nodes in the path and the edge ije . 

4.3.3.5. Step 3: Optimality Check 

Is the number of cycles = 0. If so stop else go to next step. 

4.3.3.6. Step 3: Generate Inequalities to Break Cycles and Connect 

Disconnected Components 

Generate cutset inequalities of the form (4.13) - (4.15). 

Take all trees found in step 1 of the algorithm and generate cutset inequalities 

of the form (4.30) to connect those isolated components into a tree. 

In the example shown in Figure 4.35 a valid constraint would be 

1,3 2,3 3,4 3,5 3, ze e e e d+ + + ≥  (4.33) 

For all cycles found within each one of the components, including the tree of 

previously developed parcels, generate packing inequalities of the form: 
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| | 1 ( , ) ( )ij
ij

e S i j S E G≤ − ∀ ∈ ⊂∑  (4.34) 

Any group of S nodes should not have any more than S-1 edges. An example 

is presented in Figure 4.35 

 

Figure 4.35 Example of a cycle and two disconnected sets 

In Figure 4.35 there are three edges between the three nodes {2,4,5}. If one of 

the edges is removed then the cycle is removed. A valid constraint would be  

2,4 2,5 4,5 2, 4, 5, 1z z ze e e d d d+ + ≤ + + −  (4.35) 

The following example was solved step-by-step, to clarify the algorithm. 

4.3.4. Example with 100 Nodes W=(1,1,1) 

Suppose that there are 40 previously developed parcels connected in a MST6 

and 20 parcels available for development as presented in Figure 4.36. 

                                                 
6 This  is not a requirement and likely is not the case either, assumed only for clarity purposes. 
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Figure 4.36 Initial set of 40 developed parcels connected with dark edges, and set of 60 parcels 
available for development (not connected) 

4.3.4.1. Step 1: Solve the Initial Formulation 

We solved the initial formulation (4.21) - (4.32) using a weight of one for 

each objective. Then we proceeded to graph the solution as in Figure 4.37. 

 

Figure 4.37 Solution of first iteration step 1, new edges shown lighter 
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4.3.4.2. Step 2: Find all Cycles and Disconnected Sets 

Figure 4.37 shows that the solution of the initial step is a forest with eight 

disconnected elements identified with ellipses, and eight cycles identified with 

rectangles.  

4.3.4.3. Step 3: Optimality Check 

Since there are cycles and disconnected elements in the graph, the solution is 

neither optimal not feasible. We proceed with the next step. 

4.3.4.4. Step 4: Generate Inequalities to Break Cycles and Connect Elements 

We create inequalities to break the cycles found in the solution. The details of 

the cycles found are presented in Figure 4.38 and Figure 4.39. 

 

Figure 4.38 Three of the five cycle areas found with the first solution 

      

Figure 4.39 Two of the five cycle areas found in the initial solution 
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4.3.4.5. Step 4: Generate Cutset Inequalities to Connect the Trees in the Forest 

We create inequalities to ensure the connectivity of the components that were 

not connected in the solution. There were at least eight trees not connected in the 

initial solution. For example, we observe in Figure 4.40 two of the disconnected 

components, one formed by the set {44, 53, 93, 94} and another by the set {57, 69, 

97}. 

 

Figure 4.40 Two of the disconnected components found in the initial solution 

4.3.4.6. Step 5: Solve the Augmented Formulation 

After adding the cycle breaking constraints and the connectivity constraints to 

the previous formulation we proceed to solve the augmented formulation. Obtaining 

the solution presented in Figure 4.41. 
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Figure 4.41 Second iteration, solution to the augmented formulation 

Figure 4.41 shows that those components that were previously disconnected 

are now connected, for example the previously disconnected set {48, 71} is now 

connected to node 86. The cycles we had before are eliminated, but new cycles have 

been created, for example the edges around nodes {41, 77, 28} no longer form a 

cycle, but the edges around nodes {44, 31, 55} now form a cycle. 

4.3.4.7. Step 2: Optimality Check 

Since there are still some disconnected components the solution is neither 

optimal not feasible. We continue this process for two more iterations until we found 

an optimal solution as presented in Figure 4.42. 
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Figure 4.42 Optimal solution found 

The solution found is a tree since it doesn’t have cycles, has minimum 

distance (since the objective function is minimization) and complies with all other 

growth constraints therefore is optimal. This case was relatively easy to solve, in just 

four iterations we were able to fully create the constraints required to depict the 

problem. The data collected from each iteration is shown in Table 4.2. 

 Add. 

Ineq. 

Time 
sec 

Variables Constraints MST  Profit  Imp Ch  Cycles Disc. 

Elements 

Iter 1 0 0.2 414 209  2,934.17  39,538.70  17,928.50  8 8 

Iter 2 24 0.1 422 233 3,169.34  39,538.70  17,928.50  3 3 

Iter 3 33 0.1 425 242 3,252.94  39,538.70  17,928.50  1 1 

Iter 4 36 0.2 426 245 3,258.82  39,538.70  17,928.40  0 0 

Table 4.2 Data collected per iteration 
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Table 4.2 provides information about the advance of the algorithm, we notice 

that the length of the MST is increasing as the algorithm moves forward, this is 

expected since at each iteration new constraints are added, the refore the feasible 

region is being reduced. The number of additional inequalities added decreases on 

each step from 24 added in the first iteration down to three added in the last one.  

4.3.5. Example with 100 Nodes, 40 Previously Developed and 60 Available 

for Development Using Other Weight Combinations 

Given the success with the small example, we decided to analyze the effects 

of changing the weights to the number of iterations, variables and constraints required 

to solve the problem.  We are also interested in looking at the effect of such changes 

in the compactness of the solution. The cases evaluated and their solutions are 

presented in Table 4.3. The weight is represented by a three digit code with either a 1 

or a p. The order of the digits represents the weight given to the compactness 

measurement, profit measurement and imperviousness change measurements 

respectively. The number 1 represents a weight of 1 to the objective, and the letter p 

stands for a small positive weight. For example case 2 with a weight code of pp1 

means a small positive weight associated to the compactness and profit measure, and 

a weight of 1 to the imperviousness change. 

Case Weight MST  Profit  Imp Ch  Iterations 
1 111  3,258.82   39,538.70   17,928.50  4 
2 pp1  1,971.21   15,446.00     8,086.86  3 
3 p1p  3,358.87   43,233.20   26,777.50  4 
4 1pp  1,254.32   11,600.20   15,845.50  5 
5 11p  3,358.87   43,233.20   26,777.50  4 
6 1p1  1,833.94   15,404.60     8,169.74  3 
7 p11  1,833.94   15,404.60     8,169.74  3 

Table 4.3 Cases evaluated with different weights 
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These cases were relatively easy to solve, within five iterations the optimal 

solution was found. The value of the objectives were normalized in a 0-1 scale where 

0 is the preferred value and plotted together in Figure 4.43. As expected the solution 

with the most compact development strategy (Case 4) is also the one with the least 

profit, the rationale is that Case 4 with weight (1,p,p)  
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Figure 4.43 Value path graph for the seven cases analyzed 
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Figure 4.44 MST of Case 3 (Left) and Case 4 (right) 

Figure 4.44 presents a comparison of the MST obtained by Cases 3 (left) and 

4 (right). We notice that Case 3 has many more parcels developed than Case 4, this is 

because the profit is the objective with the highest weight. In contrast, Case 4 has 

fewer parcels and they tend to be located closer to the existing MST. 

4.3.6. Example with parcels used in Gabriel, Faria and Moglen 2005 

We started to solve the model using all parcels in Gabriel, Faria and Moglen 

(2005). There were a total of 1990 parcels with 1462 parcels previously developed 

that form an infrastructure as presented in Figure 4.45.  

This task has proven to be an arduous, a solution was obtained after 237 

iterations and a total of about 80 hours of computation time. We have noticed that at 

each iteration only a few constraints were added. This phenomenon was observed 

with other tests we ran, but became critical with this case. 
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Figure 4.45 MST over all existing parcels 

Figure 4.46 shows the number of constraints added per iteration. It is clear 

that at the beginning many cycles are found but as the algorithm progresses, the 

number of cycles actually created is reduced drastically. However the possible 

number of combinations for arcs to create cycles is still exponential. We had recorded 

all cycles and trees found per iteration with the hope of improve the current algorithm 

to predict the parcels that will tend to be tied together. 
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Figure 4.46 Number of constraints added per iteration using 1990 parcels 

One of such ideas is to measure the distance from each parcel to all neighbor 

parcels (those closer than the closest previously developed parcel) then assign a 

likelihood of connection to each arc, given the average or maximum distance of arcs 

incident to a node. Having that information one can create an exponential number of 

constraints only for the group of arcs with very high likelihood of creating a cycle. 

The difficulties obtained with this case were expected, the model has 4,711 

variables and 4,089 constraints. Another interesting chart that could provide insight to 

the solution is presented in Figure 4.47. 
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Figure 4.47 Length of the MST per iteration 

This graph shows the how the MST length changes from one iteration to the 

next. Sometimes it increases and sometimes it decreases, the reason is due to the 

tradeoffs between other objectives in the problem. It seems like there is a tendency 

where the MST length increases slightly every iteration then suddenly drops, one 

might think that new parcels enter the solution as others are discarded while the 

algorithm goes through the steps. 

Another idea is to identify the parcels selected for development at each 

iteration up to the point where the number of iterations added drops below a threshold 

(maybe 10) and then decide on the size of the radius to use. 

We took the number of cycles identified over the 100 iterations and we 

discovered that some nodes appear more often than others, so we listed the nodes 

with high level of appearance. Table 4.4 contains the nodes with highest frequency. 
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Node ID Frequency Node ID Frequency Node ID Frequency 
1722 62 1538 17 1545 14 
1721 61 1811 17 1808 13 
1723 60 1540 16 332 12 
1720 59 1547 16 1552 11 
1725 50 1546 15 1687 11 
1724 46 1756 15 1772 11 
1542 20 1770 15 1543 10 
1548 20 1771 15 1755 10 
1541 18 213 14 1809 10 

Table 4.4 List of nodes with 10 or more appearances in cycles up to iteration 150 

Node 1722 is on top of the list, so this node tends to be selected for 

development. Due to the location of other nodes there is a tendency to form cycles. 

Figure 4.48 shows the neighborhood of node 1721. We note that there is a group of 6 

nodes that are close together, they could form a fully connected network. A speedup 

strategy could be to include all cycle breaking constraints required for the 6 nodes 

network rather than iteratively add constraints as the cycles are found. 

  

Figure 4.48 Neighborhood of node 1721 

We note how there is a group of nodes close together all available for 

development. This group of nodes is delaying considerably the speed of the algorithm 
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because of their proximity. To accelerate the procedure we could insert cycle 

breaking constraints for this group of six nodes. 

A far more difficult situation comes in the neighborhood of node 1542 

presented in Figure 4.49, there are 22 parcels available for development all grouped 

close between them and relatively far from the existing infrastructure. Figure 4.50 

shows the arcs that could potentially connect the nodes in the neighbor, we created a 

circle around the area and counted about 220 arcs inside and about 28 nodes. It is 

clear that the number of arcs and nodes creates a level of complexity that slows down 

the algorithm. It would not be practical to include all nodes and arcs due to the 

exponential number of constraints, but perhaps not all of the nodes are required to be 

included because the attributes of the parcels.  

Figure 4.51 shows all arcs used in the problem. We can see that there are areas 

with a large concentration of arcs, and therefore a large concentration of cycles. 

 

Figure 4.49 Neighborhood of node 1542 
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Figure 4.50 Potential arcs to connect nodes in the neighborhood of node 1542 

 

Figure 4.51 Network of potential arcs  
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Besides the neighbor of node 1542 there is another large area of concentration 

around node 1811 as shown in Figure 4.52. This creates an area of complexity due to 

the large number of edges eligible to enter the solution as shown in Figure 4.53. 

 

Figure 4.52 Nodes near node 1811 

 

Figure 4.53 Potential arcs to connect nodes in the neighborhood of node 1811 

Although the arcs in the neighborhood of node 1811 are quite large in length 

so perhaps they do not need to be all accounted for.  
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From the list of nodes in Table 4.4 there are 10 nodes in the neighborhood of 

node 1546 that appear frequently, for 10 nodes there are 637 constraints required to 

break the possible cycles 10 of which are already inc luded in the initial formulation. 

This explains the slowness of the algorithm as it is currently implemented, at a pace 

of about 10 constraints per iteration it would take about 60 iterations to generate all 

constraints required for the neighborhood of node 1546. Given the hardware and 

software used it would take approximately 15 hours of computer time to complete 60 

iterations. Figure 4.54 presents the solution obtained after the algorithm terminates. 

 

Figure 4.54 Solution obtained using set of all parcels. 

Due to the scale it is difficult to differentiate the parcels selected for 

development from those that are not. The available parcels are indicated by a red dot 

not connected to the MST, all developed parcels are connected to the MST solution. 
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4.3.7. Comparison of Results Between Models 

In this section we proceed to compare the results obtained with the model 

using the MST as a compactness measure, against the model using the squared 

diagonal as a compactness measurement presented in the work of Gabriel, Faria and 

Moglen (2005). Although the sets of parcels for the two models are different, and the 

objectives in the formulations are different we compare the results in terms of the 

stakeholders’ objectives and analyze the compactness of the results for both models. 

In Gabriel, Faria and Moglen the compactness measure used was the squared 

value of the diagonal surrounding all developed parcels. When this measurement is 

compared to the MST we can immediately notice that the squared diagonal measure 

is determined by the four extreme parcels that define the rectangle. Any development 

inside the rectangle is not going to affect that measure of the compactness. In 

contrast, when the MST is used, all parcels contribute to the compactness measure so 

the final result should be that the parcels tend to be developed close to one another. 

Figure 4.55 presents the solution of both models in one picture taken in quadrant 3. 

The shaded parcels are those selected by the model when the square diameter is 

minimized, while the thick gray lines represent the arcs required to connect the 

parcels selected for development to the existing infrastructure. The inner rectangle 

represents the smallest rectangle that can be drawn around the developed parcels 

while the outer rectangle represents the area of the quadrant. We choose quadrant 3 

because that was the quadrant with the most potential of savings from the point of 

view of compactness, this quadrant had the most difference between the inner 

rectangle and the outer rectangle. 
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Figure 4.55 Overlapping of Solutions in Quadrant 3 

It is clear by looking at the figure that the smallest rectangle method contained 

the development of the parcels within a reduced area much more effectively than the 

MST method. The MST method chooses smaller parcels, located closer together but 

overall dispersed over the region, while the smallest rectangle method instead chooses 

larger parcels within a compact area. 

Figure 4.56 presents the solutions in quadrant 1. Again the parcels selected by 

the MST model fall outside the inner rectangle. However the difference between the 

two solutions is not as dramatic as in quadrant 3. As in the quadrant 3 case a larger 

number of smaller parcels were selected; this makes sense from the point of view of 

the MST measure since smaller parcels have smaller arcs required to connect them to 
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the existing parcels, so it is natural for the model to favor small parcels closer to the 

existing infrastructure as opposed to large parcels separated. 

 

Figure 4.56 Overlapping of Solutions in Quadrant 1 

Although these results are not strictly speaking comparable since they were 

obtained with different objectives, the conclusions can be generalized because it is 

expected that the MST will select smaller parcels located as close as possible to all 

developed parcels. Such parcels are probably distinct from the set of geographically 

proximate parcels that would be chosen by the squared diagonal measure. 

4.3.8. Improvements to the Algorithm 

Based on the result of the various test ran, we observed that the total number 

of constraints was not exponential. For example in the 100 node case with weight 

W=(1,1,1), the algorithm found a solution using 245 constraints. This is an indication 
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that the constraints required was far from the number of constraints used by including 

all possible cuts. Therefore we could add all constraints required to break cycles on 

small group of nodes and save some iterations. 

4.3.9. Future Work with MST 

Although we have some ideas about other uses of the MST in this context, we 

have not pursued them due to different reasons. Some of those ideas and a brief 

explanation of the work we had done follows: 

4.3.9.1. Minimization of the Maximum Diameter 

In lieu of using the MST as the compactness measure, use instead the 

minimization of the maximum diameter of a tree that connects all parcels to be 

developed to the existing network. This might prove somewhat better since 

considering the two MST presented below in Figure 4.57 

 

Figure 4.57 MST of five units on a linear fashion (left) and star fashion (right) 

Most people would consider the star development arrangement shown on the 

right of Figure 4.57 to be more compact than the development on the left. The 

diameter of a tree is defined as the longest path between any pair of nodes in the tree. 

The tree show on the left has a diameter of five which is greater than the diameter of 

two found on the right figure. 
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The difficulty of such a measure is that there is no easy way to optimize this 

objective function since is a minimization of a maximization function of the form: 

ijminimize D = max{P } ( , ) ( )i j E G∀ ∈  (4.36) 

To solve a problem with (4.36) as one of the objective functions we would 

recommend using genetic algorithms. 

4.3.10. Connectivity to Hubs 

A point can be made that the new developments will not be connected to a 

neighbor parcel but rather to a hub located in some geographical point. The model as 

formulated can be easily changed to accomplish this, we would only need to change 

the input information of the existing MST to be the MST of the existing hubs. 

4.3.11. Connectivity to Large Populated Cities 

It is possible to use the concept of compactness as development around cities 

with large population density, in this case we propose to use as objective function the 

maximization of a normalized weighted sum of the distances from the available 

parcels to neighboring highly dense cities. The normalization formula could be one 

such as the following 

{ }

{ } { }

ij ijij
ij

ij ij

Max Dist Dist
ND

Max Dist Min Dist

−
=

−
 (4.37) 

And then the objective function would be similar to: 

Maximize j ij i
i j

Pop ND d∑∑   (4.38) 

Equation (4.37) would provide a normalized weight from each parcel i to each 

highly populated city j in such way that the closest parcels to the node j would have 
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higher score (would be preferred as to other parcels further away). The term jPop  

represents the population of the city j. Objective function (4.38) would then try to 

prefer the development of parcels that are closer to highly populated cities. 

This concept would require the use of Census data and relatively minor 

changes to the formulation presented in this work. 

4.3.12. Use of Planar Graphs 

Based on the work of Williams (2001) who developed an integer 

programming model to find a MST in a planar graph, we decided to test the concept 

with the MST setting, but found that some parcels cannot be selected for development 

unless another neighbor parcel is developed as well. This limitation is based on the 

characteristics of planar graphs which does not have any edges crossing. For example 

consider Figure 4.58 where for example node 7 can connect only to nodes 4, 5, 6, 8, 

9, or 10. Otherwise the edge would cross another existing edge. Therefore, the model 

as currently envisioned cannot be implemented. 

 

Figure 4.58 Existing MST connects nodes 1,2, and 3 other disconnected nodes (left) form a 
planar graph (right) 
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The desirables properties of the planar graph is that the formulation required 

to find a MST has the unimodularity property which ensures that the solution is 

integer. This property might be of interest if implemented into the formulation 

because it could be possible to apply decomposition techniques where the some of the 

sub-problems might have the total unimodularity property. 

4.3.13. Cluster Analysis 

Cluster analysis techniques are concerned with the grouping of items that 

present closely related characteristics. Gower and Ross (1969), Magnanti and Wolsey 

(1995) and Zahn (1971) are among others some of the researchers who have applied 

the MST concept to identify and analyze clusters. These concepts could be applied to 

the land development problem to decide upon the type of development to take place 

in the set of unassigned parcels. One possible objective function would be to generate 

one MST per zone using the existing developed parcels, and then minimize the MST 

resulting from connecting the parcels to those z trees instead of the connection to one 

existing MST as presented in this work.  

Also, the clustering principle can be used by the Department of Planning 

office of a county or state to determine the zone types most convenient for parcels.  
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4.4. Chapter Conclusions 

An innovative measure for compactness in land development is presented in 

this chapter along with a methodology to solve it. The minimum spanning tree has a 

long history in operations research. It has been studied since 1926 and many 

formulations have been created to solve it (see A 3.5). The work of this dissertation 

presents a novel approach to integrate the minimum spanning tree into a 

multiobjective optimization problem for land development accounting for the 

perspective of several stakeholders.  

The problem of finding the MST typically involves a large formulation since 

the number of variables and constraints grow exponential to the number of nodes in 

the network, some researchers had already developed mechanisms to reduce the size 

of the problem, we presented a different approach since we consider the existence of 

a previous infrastructure in our analysis. By using a reduced (relaxed) formulation, 

which is solved and augmented by including additional inequalities that were violated 

by the solution of the previous iteration, a new solution is found and checked again 

continuing a procedure that stops when the solution is a tree (no cycles found and all 

parcels selected for development are connected). 

An optimal solution has been found for small problems, for large ones we had 

to accept suboptimal solutions to the problem due to the time requirement to solve the 

iterations. Some techniques can be implemented to expedite the current procedure by 

looking ahead and include potential cycles in earlier iterations. There will be a 

tradeoff between the number of constraints actually required and the number of 

iterations performed. This work can be extended (and simplified) by assuming large 
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hubs instead of individual previously developed parcels that would define the existing 

infrastructure. This simplification should improve computation time and reduce the 

number of variables required.  

From the point of view of containing the development within certain 

boundaries the smallest rectangle model presented in Chapter 3 resulted more 

effective than the MST model presented in this section, however from the cost of 

infrastructure point of view the solution in the MST model should be less since the 

distances to the existing infrastructure are smaller. 
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Appendix 1  Numerical Results for Models 

A 1.1. Solution of Difficult Weights 

A 1.1.1. Weight 964- Original Bounds  

This weight took the longest computation time, over 12 hours before the 

program stopped. 

A 1.1.2. Lagrangian Relaxation 

Applying the Lagrangian relaxation method described earlier to this case we 

obtained the following result: 

Using u=(0,0) The solution is  

PFA IMP ENV PRO z(u) z 
78.39008 2044.813 21.7481 1086.466 -1016.27 -1016.27 

Table A.1 Lagrangian relaxation result weight 964 original bounds  

This solution is feasible to the original problem, so it is optimal. 

A 1.1.3. Dantzig-Wolfe Decomposition 

After two iterations the Dantzig-Wolfe decomposition method provided the 

following solution, 

Objective function: -1016.27 

 Note that this is the same solution reported by the solver as the “Best Solution” 

before the procedure halted, and it is consistent with the solution obtained by the 

Lagrangian relaxation. 
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A 1.1.4. Weight 662- Original Bounds  

This weight took the second longest computation time, a little over 7 hours 

before the program stopped. 

A 1.1.4.1. Lagrangian Relaxation: 

Applying the Lagrangian relaxation method described earlier to this case we 

obtained the following result: 

Using u=(0,0) The solution is  

PFA IMP ENV PRO z(u) z 
79.01148 2059.857 21.7481 1085.822 -387.976 -1023.88 

Table A.2 Lagrangian relaxation result weight 662 original bounds  

This solution is feasible to the original problem, so it is optimal. 

A 1.1.4.2. Dantzig-Wolfe Decomposition 

Iteration 1: Objective function: - 978.237 

Iteration 2: Objective function: - 1024.14 

After two iterations the Dantzig-Wolfe decomposition method provided the 

optimal solution,  

 Note that this is the same solution reported by the solver as the “Best Solution” 

before the procedure halted, and it is better than the solution obtained by the 

Lagrangian relaxation. 
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A 1.1.5. Weight 178- Original Bounds  

This weight took the longest computation time from those where the optimal 

solution was actually found, took a little over 2 hours before the optimal solution was 

found. 

A 1.1.5.1. Lagrangian Relaxation: 

Applying the Lagrangian relaxation method described earlier to this case we 

obtained the following result: 

Using u=(0,0) the solution is  

PFA IMP ENV PRO z(u) z 
77.65128 2030.104 21.0726 1086.897 -640.727 -640.727 
Table A.3 Lagrangian relaxation result weight 178 original bounds  

This solution is feasible to the original problem, so it is optimal. 

A 1.1.5.2. Dantzig-Wolfe Decomposition 

Iteration 1: Objective function: - 607.534 

Iteration 2: Objective function: - 640.727 

After two iterations the Dantzig-Wolfe decomposition method provided the 

optimal solution,  

 Note that this is the same solution reported by the solver as the optimal solution, 

and it is consistent with the solution obtained by the Lagrangian relaxation. 

A 1.1.6. Weight 921- Original Bounds  

This weight took a little under 2 hours before the optimal solution was found. 
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A 1.1.6.1. Lagrangian Relaxation 

Applying the Lagrangian relaxation method described earlier to this case we 

obtained the following result: 

Using u=(0,0) the solution is  

PFA IMP ENV PRO z(u) z 
79.01148 2059.857 21.7481 1085.822 -387.976 -387.977 

Table A.4 Lagrangian relaxation result weight 921 original bounds  

This solution is feasible to the original problem, so it is optimal. 

A 1.1.7. Weight 389 – Tightened Bounds Case 1 

A 1.1.7.1. Lagrangian Relaxation 

We started with weight (0,0)u =  and obtained a feasible solution (a solution 

within the lower and upper PFA bounds) so we have found the optimal solution.  

IMP ENV PFA PRO z(u) z u1 u2 Feasible? 

2045.17 21.07 78.27 1086.25 412.21 412.21 0.00 0.00 TRUE 

Table A.5 Results of Lagrangian relaxation case 1 weight 389 

We note that the solution obtained is between the lower and the upper bound 

reported by the branch and bound procedure. 

A 1.1.7.2. Dantzig-Wolfe Decomposition 

The procedure goes through three iterations and ends with the following 

result: 
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Objective function: 412.208, 1,6 1λ = , 2,6 1λ = , 3,4 1λ = , 4,7 0.984371λ = ,  

5,6 1λ = , 1 0π = , 2 0π = , 1 45.2669µ = , 2 177.754µ = , 3 80.8921µ = , 4 76.1641µ = , 

5 32.1313µ =  

Since there are no fractional lambdas the problem is solved. The solution 

coincides with the Lagrangian relaxation. 

A 1.1.8. Weight 176 – Tightened Bounds Case 1 

A 1.1.8.1. Lagrangian Relaxation: 

We started with weight µ =(0,0) and obtained an infeasible solution. Since the 

PFA was under the lower bound we increased the value of 1µ until the lower bound 

was exceeded. Since all solutions will be feasible to the constrain limiting the 

development under the upper bound, we kept 2 0µ = and varied only 1µ . We started 

with step size of 0.1 until we got a feasible solution, then we applied a decreasing 

factor 0.9ρ = obtaining the following results: 

Iteration IMP ENV PFA PRO z(u) z u1 u2 Feasible? 

1 2004.05 1.9578 59.71 1029.29 75.86 75.86 0 0.00 FALSE 

2 2004.05 1.9578 59.71 1029.29 75.83 75.86 0.1 0.00 FALSE 

3 2004.05 1.9578 59.71 1029.29 75.80 75.86 0.2 0.00 FALSE 

4 2004.05 1.9578 59.71 1029.29 75.77 75.86 0.3 0.00 FALSE 

5 2044.35 20.6290 78.38 1085.12 76.51 69.16 0.4 0.00 TRUE 

6 2044.35 20.6290 78.38 1085.12 75.77 69.16 0.36 0.00 TRUE 

7 2004.05 1.9578 59.71 1029.29 75.76 75.86 0.324 0.00 FALSE 

Table A.6 Results of Lagrangian relaxation case 1 weight 176 
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From the table we note that the distance between the upper bound found 75.77  

(Iteration 6) and the best feasible solution found 69.16 (iteration 6) is quite large. The 

gap in this case is 8.73%. 

When we used a bisection approach with a ten iteration limit, starting with 0.4 

we obtained the following results. 

Iteration IMP ENV PFA PRO z(u) z u1 u2 Feasible? 

1 2004.05 1.96 59.71 1029.29 75.86 75.86 0 0.00 FALSE 

2 2004.05 1.96 59.71 1029.29 75.83 75.86 0.1 0.00 FALSE 

3 2004.05 1.96 59.71 1029.29 75.80 75.86 0.2 0.00 FALSE 

4 2004.05 1.96 59.71 1029.29 75.77 75.86 0.3 0.00 FALSE 

5 2044.35 20.63 78.38 1085.12 76.51 69.16 0.4 0 TRUE 

6 2004.05 1.96 59.71 1029.29 75.76 75.86 0.35 0 FALSE 

7 2044.36 20.63 78.38 1085.12 76.05 69.16 0.375 0 TRUE 

8 2044.35 20.63 78.38 1085.12 75.82 69.16 0.3625 0 TRUE 

9 2004.05 1.96 59.71 1029.29 75.75 75.86 0.35625 0 FALSE 

10 2044.35 20.63 78.38 1085.12 75.76 69.16 0.359375 0 TRUE 

Table A.7 Results of the Lagrangian relaxation case 1 using Bisection 

The bisection method performed slightly better, the best upper bound found 

was 75.76 and the best lower bound 69.15 for a relative gap of 8.72%. Since there 

was no real improvement using bisection as compared to the step procedure we kept 

using the step procedure to find the solution to the Lagrangian relaxation. 

A 1.1.8.2. Dantzig-Wolfe Decomposition 

The procedure goes through two iterations and ends with the following result: 

Objective function: 75.754, 1,6 1λ = , 2,7 1λ = , 3,4 1λ = , 4,6 0.984371λ = , 

4,7 0.0156294λ = , 5,6 1λ = , 1 -0.358858π = , 2 0π = , 1 9.33512µ = , 2 35.5167µ = , 

3 29.6239µ = , 4 14.4388µ = , 5 8.37099µ =  
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Since there are values of the lambdas fractional the problem is not completely 

solved. To obtain all lambdas binary we should use a branch and bound approach to 

eliminate the fractional values. 

We first divide the problem into two sets, one with 4,6 1λ =  and the other with 

4,6 0λ =  obtaining the following results: 

4,6 1λ =  4,6 0λ =  

Objective function: 2.27505 

1,6 1λ =  

2,5 0.547937λ =  

2,7λ = 0.452063 

3,4λ = 1 

4,6λ  = 1 

5,5λ  = 1 

1π  = -488.224 

2π  = 0 

1µ  = 2143.23 

2µ  = 5636.4 

3µ  = 12682.2 

4µ  = 15717 

5µ  = 2532.07 

Objective function: 69.1584 

1,6λ  =1 

2,7λ  =1 

3,4λ  =1 

4,7λ  =1 

5,6λ  =1 

1π  = 0 

2π  = 0 

1µ  = 7.76549 

2µ  = 31.3968 

3µ  = 20.317 

4µ  = 3.11374 

5µ  = 6.56531 

Table A.8 Branching for  Dantzig-Wolfe decomposition case 1 weight 176  

Since one of the solutions ( 4,6 0λ = ) produces all binary values for the λ  

vector then that branch is pruned by optimality, since the other branch ( 4,6 1λ = ) has a 

maximum value of 2.27 it is pruned by bound. The best solution found is the bound  

69.1584 which is the same bound obtained with the Lagrangian relaxation. 
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A 1.1.9. Weight 178 – Tightened Bounds Case 1 

A 1.1.9.1. Branch and Bound 

The branch and bound procedure obtained an optimal solution in a little over 2 

hours as shown in Table A.9. 

PFA IMP ENV PRO  Obj. F.   Time  WID Hrs 
77.6513 2030.14 21.0726 1086.9 -640.727 7465.24 178 2.073678 

Table A.9 Branch and bound result for case 1 weight 178  

A 1.1.9.2. Lagrangian Relaxation 

In just one iteration the Lagrangian relaxation provided the optimal solution. 

PFA IMP ENV PRO z(u) z u1 u2 Feasible? 
77.65 2030.10 21.07 1086.90 -640.73 -640.73 0.00 0.00 TRUE 

Table A.10 Lagrangian relaxation result for case 1 weight 178  

A 1.1.9.3. Dantzig-Wolfe  

The procedure took three iterations before it arrived to the following solution: 

Objective function: 640.727, 1,6 1λ = , 2,6 1λ = , 3,4 1λ = , 4,6 1λ = ,  

5,6 1λ = , 1 0π = , 2 0π = , 1µ = 75.0204, 2µ = 289.553, 3µ = 121.21, 4µ = 104.211, 

5µ = 50.7325. 

Since there are no fractional lambdas the problem is solved. The solution 

coincides with the Lagrangian relaxation. 

A 1.1.10. Weight 459 – Tightened Bounds Case 1 

A 1.1.10.1. Lagrangian Relaxation 

The Lagrangian relaxation obtained a feasible solution on the first try (W=0,0) 

as follows: 
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PFA IMP ENV PRO z(u) z 
76.84 2015.06 21.07 1087.54 -883.56 -883.57 

Table A.11 Lagrangian relaxation solution case 1 weight 459  

A 1.1.10.2. Dantzig-Wolfe  

After three iterations the procedure provided the following solution: 

Objective function: 883.565, 1,7 1λ = , 2,6 1λ = , 3,4 1λ = , 4,6 1λ = ,  

5,6 1λ = , 1 0π = , 2 0π = , 1µ = 109.38, 2µ = 401.677, 3µ =  158.621, 4µ = 145.146, 

5µ = 68.7407. 

Since there are no fractional lambdas the problem is solved. The solution 

coincides with the Lagrangian relaxation. 

A 1.1.11. Weight 176- Tightened Bounds Case 2 

A 1.1.11.1. Lagrangian Relaxation 

We tried different values of u without finding any feasible solution. The result 

of the relaxation was switching between two infeasible solutions as  

Iteration IMP ENV PFA PRO z(u) z u1 u2 Feasible? 

1 2004.05 1.96 59.71 1029.29 75.86 75.86 0 0.00 FALSE 

2 1796.07 1.77 23.48 995.35 105.30 58.77 0 1.00 FALSE 

3 2004.05 1.96 59.71 1029.29 85.86 75.86 1 1.00 FALSE 

4 2044.35 20.63 78.38 1085.12 88.35 69.16 1.5 1.00 FALSE 

5 2004.05 1.96 59.71 1029.29 86.79 75.86 1.35 1.10 FALSE 

6 2044.35 20.63 78.38 1085.12 88.16 69.16 1.485 0.99 FALSE 

7 2004.05 1.96 59.71 1029.29 86.68 75.86 1.3365 1.089 FALSE 

8 2044.35 20.63 78.38 1085.12 87.97 69.16 1.47015 0.9801 FALSE 

9 2004.05 1.96 59.71 1029.29 86.57 75.86 1.323135 1.07811 FALSE 

10 2044.35 20.63 78.38 1085.12 87.78 69.16 1.455449 0.970299 FALSE 

Table A.12 Lagrangian relaxation results weight 176 case 2 
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A 1.1.11.2. Dantzig-Wolfe  

After four iterations we obtained the following values: 

Objective function: 75.754, 1,6 1λ = , 2,7 1λ = , 3,4 1λ = , 4,6λ = 0.984371,  

4,7λ = 0.0156294, 5,6 1λ = , 1 -0.358858π = , 2 0π = , 1µ = 9.33512, 2µ = 35.5167, 3µ =  

29.6239, 4µ = 14.4388, 5µ = 8.37099. 

A 1.1.12. Weight 643- Tightened Bounds Case 2 

A 1.1.12.1. Lagrangian Relaxation 

Once again, the Lagrangian relaxation was not able to find a feasible solution 

within 10 iterations. The solution kept switching between two non feasible solutions 

to the original problem. 

Iteration IMP ENV PFA PRO z(u) z u1 u2 Feasible? 

1 2044.35 20.63 78.38 1085.12 112.33 112.33 0 0.00 FALSE 

2 1832.65 1.77 24.33 1001.63 128.11 82.44 0 1.00 FALSE 

3 1891.41 1.77 38.15 1033.77 121.53 95.05 0.1 0.90 FALSE 

4 1988.59 1.77 58.41 1029.37 118.84 109.77 0.2 0.81 FALSE 

5 2004.05 1.96 59.71 1029.29 117.95 110.53 0.3 0.73 FALSE 

6 2004.05 1.96 59.71 1029.29 117.17 110.53 0.4 0.6561 FALSE 

7 2044.36 20.63 78.38 1085.12 116.57 112.33 0.5 0.59049 FALSE 

8 2004.05 1.96 59.71 1029.29 117.08 110.53 0.45 0.649539 FALSE 

9 2044.36 20.63 78.38 1085.12 116.53 112.33 0.495 0.584585 FALSE 

10 2004.05 1.96 59.71 1029.29 117.02 110.53 0.4455 0.643044 FALSE 

Table A.13 Lagrangian relaxation results weight 643 case 2 
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A 1.1.12.2. Dantzig-Wolfe  

After four iterations the procedure stopped at the following solution 

Objective function: 111.52, 1,6 1λ = , 2,6 1λ = , 3,4 1λ = , 4,6λ = 0.551214,  

4,8λ = 0.448786, 5,6 1λ = , 1π =  0, 2π = 0.0962767, 1µ = 10.8096, 2µ = 41.5207, 3µ =  

28.8211, 4µ = 14.6866, 5µ = 8.94299. 

A 1.1.13. Weight 724- Tightened Bounds Case 2 

A 1.1.13.1. Lagrangian Relaxation 

The Lagrangian relaxation approach failed to find a feasible solution within 

10 iterations. The solution keeps switching between two infeasible solutions to the 

original problem. 

Iteration IMP ENV PFA PRO z(u) z u1 u2 Feasible? 

1 1311.46 1.77 47.79 763.22 -36.74 -36.74 0 0.00 FALSE 

2 1328.45 19.30 76.99 751.93 -34.48 -51.47 1 0.00 FALSE 

3 1297.55 19.30 75.70 751.40 -36.70 -50.26 0.9 0.10 FALSE 

4 1389.34 1.96 58.28 754.68 -38.52 -39.48 0.81 0.20 FALSE 

5 1282.46 19.30 74.89 752.04 -37.28 -49.66 0.891 0.18 FALSE 

6 1297.55 19.30 75.70 751.40 -35.79 -50.26 0.9801 0.162 FALSE 

7 1282.46 19.30 74.89 752.04 -37.40 -49.66 0.88209 0.1782 FALSE 

8 1389.34 1.96 58.28 754.68 -38.54 -39.48 0.793881 0.19602 FALSE 

9 1282.46 19.30 74.89 752.04 -37.52 -49.66 0.873269 0.176418 FALSE 

10 1389.34 1.96 58.28 754.68 -38.55 -39.48 0.785942 0.19406 FALSE 

Table A.14 Lagrangian relaxation results weight 724 case 2 
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A 1.1.13.2. Dantzig-Wolfe Decomposition 

After four iterations we obtained the following values: 

Objective function: -40.5298, 1,7 1λ = , 2,7 1λ = , 3,1 1λ = , 4,7λ = 0.103538,  

4,8λ = 0.896462, 5,7 1λ = , 1π =  -0.613294, 2 0π = , 1µ = -9.19256, 2µ = -1.55426, 3µ =  

8.15193, 4µ = -1.59139, 5µ = 0.454139. 

Since the values of lambda are fractional we need to apply branch and bound 

to find binary solutions. We obtained the following results: 

4,8 1λ =  4,8 0λ =  

Objective function: -338.042 

1,5λ = 0.894116 

1,7λ = 0.105884 

2,5λ = 1 

3,1λ = 1 

4,8λ  = 1 

5,5λ  = 1 

1π  = -260.398  

2π  = 0 

1µ  =917.467  

2µ  = 2944.48 

3µ  = 6745.56 

4µ  = 8358.37 

5µ  = 1331.94 

Objective function: -40.5298 

1,7λ  =1 

2,7λ  =1 

3,1λ  =1 

4,7λ  =0.103538 

4,9λ  =0.896462 

5,7λ  =1 

1π  = -0.613294 

2π  = 0 

1µ  = -9.19256 

2µ  = -1.55426 

3µ  = 8.15193 

4µ  = -1.59139 

5µ  =0.454139 

Table A.15 Results for Dantzig-Wolfe weight 724 case 2 first branch 

Since both solution have fractional values we need to branch again on each 

one obtaining the following results.  

4,8 1λ =  4,8 1λ =  

1,5 1λ =  1,5 0λ =  

Objective function: -349.08 

1,5λ = 1 

Infeasible 
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2,5λ = 1 

3,1λ = 1 

4,8λ  = 1 

5,5λ  = 0.54616 

5,7λ =0.45384 

1π  = -131.198, 2π  = 0 

1µ  =456.608 

2µ  = 1436.8 

3µ  = 3394.82 

4µ  = 4199.34 

5µ  = 657.523 

Table A.16 Results for Dantzig-Wolfe weight 724 case 2 second branch 

4,8 0λ =  4,8 0λ =  

1,5 1λ =  1,5 0λ =  

Objective function: -250.155 

1,5λ = 1 

2,7λ = 1 

3,1λ = 1 

4,7λ =0.0549682  

4,9λ  = 0.945032 

5,7λ  = 1 

1π  = -0.613294 

2π  = 0 

1µ  =0  

2µ  = -1.55426 

3µ  = 8.15193 

4µ  =  -1.59139 

5µ  =  0.454139 

Objective function: -40.5298 

1,7λ  =1 

2,7λ  =1 

3,1λ  =1 

4,7λ  =0.103538 

4,9λ  =0.896462 

5,7λ  =1 

1π  = -0.613294 

2π  = 0 

1µ  = -9.19256 

2µ  = -1.55426 

3µ  = 8.15193 

4µ  = -1.59139 

5µ  =0.454139 

Table A.17 Results for Dantzig-Wolfe weight 724 case 2 third branch 

The optimal solution found is: 

Objective function: -47.0496, 1,6 1λ = , 2,6 1λ = , 3,1 1λ = , 4,7λ = 1,  5,1 1λ = , 1π =  

0, 2 0π = , 1µ = -11.3802, 2µ = -8.21401, 3µ =  12.6749, 4µ = -9.37907, 5µ = -1.55416. 
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A 1.2. List of Weights Used to Find New Cases 

Weight ID IMP 
w1 

ENV 
w2 

PFA 
w3 

PRO 
w4 

1 0.871526 0.485054 0.147507 0.024457 
2 0.929101 0.597805 0.56447 0.299908 
3 0.172352 0.14218 0.050867 0.795779 
4 0.643518 0.749261 0.568631 0.974561 
5 0.357277 0.095527 0.39646 0.681209 
6 0.40432 0.948522 0.850309 0.940149 
7 0.618936 0.21963 0.684365 0.734583 
8 0.649157 0.858379 0.72361 0.677511 
9 0.224105 0.848818 0.036482 0.310137 

10 0.889452 0.820314 0.677809 0.073912 
11 0.347651 0.919449 0.83145 0.792619 
12 0.591866 0.665722 0.195238 0.276977 
13 0.202299 0.999514 0.719099 0.310625 
14 0.543946 0.2944 0.028189 0.275954 
15 0.331171 0.634428 0.177728 0.024844 
16 0.079885 0.388387 0.539113 0.27257 
17 0.502698 0.815553 0.139456 0.078516 
18 0.520485 0.312005 0.50296 0.29955 
19 0.201249 0.967271 0.965474 0.130321 
20 0.332656 0.76364 0.828601 0.475267 

     
…….. …….. …….. …….. …….. 

     
983 0.468824 0.542138 0.138855 0.145115 
984 0.598395 0.329389 0.890222 0.038672 
985 0.259766 0.671314 0.334407 0.485953 
986 0.064853 0.791861 0.000946 0.620814 
987 0.64908 0.540634 0.939127 0.868454 
988 0.566762 0.045235 0.521804 0.80763 
989 0.8458 0.612932 0.45743 0.18619 
990 0.28172 0.668197 0.373642 0.149056 
991 0.368481 0.509523 0.0197 0.723988 
992 0.965993 0.978895 0.088428 0.437695 
993 0.20147 0.845853 0.363693 0.036743 
994 0.461205 0.172675 0.102678 0.742378 
995 0.110919 0.792794 0.989794 0.078222 
996 0.82453 0.007803 0.08482 0.245826 
997 0.907274 0.899252 0.181329 0.74313 
998 0.530632 0.490737 0.564156 0.198193 
999 0.666129 0.51261 0.922694 0.096678 

1000 0.699326 0.807198 0.914195 0.941198 
Table A.18 Extract of the list of weights used to find new cases 
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A 1.3. Formulation to Find u in the Lagrangian Relaxation Example 

Formulation Solution 
min eta 
s.t. 
eta - 5.5u >=  0 
eta - 4.5u >=  2 
eta - 3.5u >=  4 
eta - 2.5u >=  6 
eta - 1.5u >=  8 
eta - 4.5u >=  3 
eta - 3.5u >=  5 
eta - 2.5u >=  7 
eta - 1.5u >=  9 
eta - 0.5u >= 11 
eta - 3.5u >=  6 
eta - 2.5u >=  8 
eta - 1.5u >= 10 
eta - 0.5u >= 12 
eta + 0.5u >= 14 
eta - 2.5u >=  9 
eta - 1.5u >= 11 
eta - 0.5u >= 13 
eta + 0.5u >= 15 
eta + 1.5u >= 17 
eta - 1.5u >= 12 
eta - 0.5u >= 14 
eta + 0.5u >= 16 
eta + 1.5u >= 18 
eta + 2.5u >= 20 
end 

 

        OBJECTIVE FUNCTION VALUE 
 
        1)      15.00000 
 
  VARIABLE        VALUE          REDUCED COST 
       ETA        15.000000          0.000000 
         U         2.000000          0.000000 
 
 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         4.000000          0.000000 
        3)         4.000000          0.000000 
        4)         4.000000          0.000000 
        5)         4.000000          0.000000 
        6)         4.000000          0.000000 
        7)         3.000000          0.000000 
        8)         3.000000          0.000000 
        9)         3.000000          0.000000 
       10)         3.000000          0.000000 
       11)         3.000000          0.000000 
       12)         2.000000          0.000000 
       13)         2.000000          0.000000 
       14)         2.000000          0.000000 
       15)         2.000000          0.000000 
       16)         2.000000          0.000000 
       17)         1.000000          0.000000 
       18)         1.000000          0.000000 
       19)         1.000000          0.000000 
       20)         1.000000          0.000000 
       21)         1.000000          0.000000 
       22)         0.000000          0.000000 
       23)         0.000000         -0.500000 
       24)         0.000000         -0.500000 
       25)         0.000000          0.000000 
       26)         0.000000          0.000000 
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A 1.4. Extract of the Solutions for the 1000 Weights Using Original 
Bounds  

Weight ID PFA IMP ENV PRO  Obj. F.  Time in 
seconds 

1 52.746 1083.69 174.035 764.393 1002.41 2.013 
2 54.5145 1129.87 93.8476 763.799 846.025 2.634 
3 55.7931 1643.67 131.847 1068.54 -551.124 0.26 
4 51.5783 1405.85 26.0652 954.101 -34.9364 0.1 
5 51.5783 1327.7 322.146 998.349 -195.401 0.13 
6 63.8971 1519.98 31.8475 1011.34 -360.375 0.201 
7 51.5783 1123.86 179.818 816.735 99.8317 0.12 
8 54.1578 1201.43 25.0856 795.793 223.102 0.12 
9 51.5783 1389.28 19.3033 931.728 36.8838 0.12 

10 54.5145 1175 25.0856 761.867 972.42 0.641 
11 63.8971 1519.98 31.8475 1011.34 -297.028 0.19 
12 54.5145 1175 25.0856 761.867 490.478 1.142 
13 63.8971 1429.13 19.3033 949.162 -32.3763 0.09 
14 54.1578 1084.63 173.056 765.685 428.104 0.601 
15 54.5145 1175 25.0856 761.867 376.424 0.851 
16 67.1099 1571.57 26.0652 1017.96 -177.977 0.241 
17 54.5145 1175 25.0856 761.867 543.706 1.642 
18 54.5145 1129.87 93.8476 763.799 361.147 2.944 
19 67.2085 1211.95 19.3033 756.826 99.057 0.18 
20 61.7628 1411.24 19.3033 941.056 -14.2309 0.121 

       
…… …….. …….. …….. …….. …….. …….. 

       
981 54.5145 1084.72 173.056 765.795 1008.32 0.531 
982 54.5145 1185.89 25.0856 777.479 414.509 0.41 
983 54.5145 1175 25.0856 761.867 446.338 1.012 
984 54.5145 1084.72 173.056 765.795 627.947 0.43 
985 53.6588 1421.91 19.3033 954.62 -99.5222 0.091 
986 67.6249 1928.06 21.0726 1091.11 -535.711 0.831 
987 61.7628 1361.88 26.0652 914.105 46.1994 0.12 
988 51.5783 1249.7 350.915 952.687 -72.1771 0.12 
989 54.5145 1175 25.0856 761.867 842.4 2.143 
990 55.4357 1189.42 19.3033 761.076 213.827 1.132 
991 51.5783 1462.96 31.8475 990.497 -162.823 0.09 
992 54.1578 1174.91 25.0856 761.756 821.3 2.043 
993 65.0742 1204.98 19.3033 761.141 207.462 0.26 
994 51.5783 1292.23 267.45 969.425 -82.8082 0.141 
995 71.5404 1241.22 19.3033 754.919 23.1166 0.23 
996 60.8135 1052.32 343.533 764.06 677.364 1.031 
997 54.5145 1185.89 25.0856 777.479 510.835 0.411 
998 54.5145 1175 25.0856 761.867 454.051 1.212 
999 54.5145 1175 25.0856 761.867 671.602 1.232 

1000 61.7628 1361.88 26.0652 914.105 56.6207 0.13 
Table A.19 Extract of the solutions for the 1000 Weights Using Original Bounds  
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A 1.5. Extract of the Pareto Optimal Solutions Using Original Bounds 

Weight ID IMP ENV PFA PRO  Obj. F.   Time  
3 1643.67 131.85 55.79 1068.54 -551.12 0.2600 
9 1389.28 19.30 51.58 931.73 36.88 0.1200 

20 1411.24 19.30 61.76 941.06 -14.23 0.1210 
26 1432.27 26.07 51.58 968.75 -207.04 0.0900 
38 1223.56 19.30 53.66 805.08 68.60 0.1200 
44 1846.58 26.07 65.32 1084.88 -659.68 0.5900 
45 1969.72 14.99 49.06 1086.49 -347.50 0.9320 
58 1790.90 26.07 65.32 1074.53 -652.80 0.2700 
60 1910.07 21.07 67.62 1088.33 -427.55 0.4010 
62 1409.96 179.82 55.79 1011.09 -192.92 0.1300 
63 1809.65 26.07 65.32 1078.19 -677.88 0.2710 
67 1113.27 174.04 54.16 802.65 433.48 0.1100 
69 1536.68 26.07 56.71 1014.30 -519.64 0.1400 
70 1203.55 26.07 54.16 798.72 255.80 0.3010 
74 1514.28 131.85 63.90 1032.71 -335.62 0.2800 
75 1140.77 93.85 54.51 779.41 373.66 0.2200 
79 1105.10 322.15 51.58 834.08 148.37 0.1100 
80 2000.01 21.07 75.62 1088.18 -667.56 2.2530 

       
….. ….. ….. ….. ….. ….. ….. 

       
965 1201.43 25.09 54.16 795.79 391.49 0.4610 
967 1190.88 25.09 64.15 762.39 133.80 0.4110 
971 1224.19 19.30 51.58 805.96 125.44 0.1200 
972 1123.86 179.82 51.58 816.74 168.35 0.1200 
973 1464.00 26.07 63.90 975.65 -195.06 0.2000 
974 1420.82 19.30 51.58 954.41 12.95 0.1100 
976 1469.92 398.99 53.71 1063.75 -582.11 0.1700 
977 1425.57 19.30 64.40 945.50 -6.63 0.1310 
978 1069.85 212.22 54.51 766.69 877.30 0.8310 
979 1054.16 267.89 52.75 766.25 750.90 1.3720 
980 1410.46 277.85 63.90 1023.53 -335.67 0.1100 
984 1084.72 173.06 54.51 765.80 627.95 0.4300 
985 1421.91 19.30 53.66 954.62 -99.52 0.0910 
986 1928.06 21.07 67.62 1091.11 -535.71 0.8310 
987 1361.88 26.07 61.76 914.11 46.20 0.1200 
988 1249.70 350.92 51.58 952.69 -72.18 0.1200 
990 1189.42 19.30 55.44 761.08 213.83 1.1320 
991 1462.96 31.85 51.58 990.50 -162.82 0.0900 
992 1174.91 25.09 54.16 761.76 821.30 2.0430 
993 1204.98 19.30 65.07 761.14 207.46 0.2600 
994 1292.23 267.45 51.58 969.43 -82.81 0.1410 
995 1241.22 19.30 71.54 754.92 23.12 0.2300 
996 1052.32 343.53 60.81 764.06 677.36 1.0310 
997 1185.89 25.09 54.51 777.48 510.84 0.4110 
999 1175.00 25.09 54.51 761.87 671.60 1.2320 

Table A.20 Extract of the Pareto Optimal Solutions for the 1000 Weights Using Original Bounds  
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A 1.6. Value Path Graph for Pareto Optimal Points 

The values from Table A.20 were normalized in the scale 0-1 with 1 being the 

most desirable solution (the one that either maximizes or minimizes the objective) 

and 0 the less desirable. Those points were plotted and joined with lines and 

presented in Figure A.59. This information is of very little help since the number of 

solutions is large. 
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Figure A.59 Value Path Graph for Pareto Optimal Points 
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A 1.7. Extract of the Solutions Using Tighter Bounds Case 1 

Weight ID  IMP  ENV PFA PRO  Obj. F.   Time  
1 1,098.39 174.04 60.85 764.08 1,014.03 0.7610 
2 1,145.43 93.85 64.15 763.87 855.02 1.1720 
3 1,661.05 131.85 63.90 1,071.24 -550.69 0.6010 
4 1,394.78 26.07 61.76 938.36 -32.51 0.1000 
5 1,365.09 311.76 61.76 1,007.89 -193.57 0.1500 
6 1,519.98 31.85 63.90 1,011.34 -360.38 0.2700 
7 1,143.85 179.82 60.18 823.93 101.04 0.1510 
8 1,224.03 25.09 62.26 806.00 224.99 0.1500 
9 1,411.24 19.30 61.76 941.06 38.54 0.1500 

10 1,190.56 25.09 64.15 761.93 979.72 0.6910 
11 1,519.98 31.85 63.90 1,011.34 -297.03 0.2400 
12 1,189.69 25.09 62.62 761.56 497.68 1.0620 
13 1,429.13 19.30 63.90 949.16 -32.38 0.1100 
14 1,099.32 173.06 62.26 765.38 435.96 0.9710 
15 1,190.31 25.09 63.84 761.60 379.84 0.6910 
16 1,571.57 26.07 67.11 1,017.96 -177.98 0.3810 
17 1,189.69 25.09 62.62 761.56 549.99 1.7830 
18 1,145.43 93.85 64.15 763.87 364.38 1.1910 
19 1,211.95 19.30 67.21 756.83 99.06 0.1910 
20 1,411.24 19.30 61.76 941.06 -14.23 0.1300 

       
….. ….. ….. ….. ….. ….. ….. 

       
981 1,084.75 201.83 62.62 765.84 1,013.70 1.1720 
982 1,208.49 25.09 62.62 787.69 423.48 0.2200 
983 1,189.69 25.09 62.62 761.56 452.15 0.6710 
984 1,100.28 173.06 64.15 765.86 628.68 0.3110 
985 1,439.28 19.30 61.76 957.32 -99.03 0.2400 
986 1,928.06 21.07 67.62 1,091.11 -535.71 1.5620 
987 1,361.88 26.07 61.76 914.11 46.20 0.1400 
988 1,269.69 350.92 60.18 959.88 -71.14 0.1410 
989 1,190.31 25.09 63.84 761.60 851.14 1.0210 
990 1,204.98 19.30 65.07 761.14 214.60 0.7710 
991 1,503.04 31.85 61.76 1,003.88 -157.94 0.2200 
992 1,189.60 25.09 62.26 761.45 834.92 1.4020 
993 1,204.98 19.30 65.07 761.14 207.46 0.2910 
994 1,298.70 228.29 60.18 957.21 -78.40 0.1200 
995 1,241.22 19.30 71.54 754.92 23.12 0.2200 
996 1,052.32 343.53 60.81 764.06 677.36 0.3910 
997 1,208.49 25.09 62.62 787.69 522.28 0.3710 
998 1,190.56 25.09 64.15 761.93 456.86 0.9210 
999 1,190.56 25.09 64.15 761.93 673.07 0.5310 

1000 1,361.88 26.07 61.76 914.11 56.62 0.1300 
Table A.21 Extract of the solutions for the 1000 Weights Tighter Bounds Case 1 
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A 1.8. Extract of the Pareto Optimal Set Using Tighter Bounds Case 1 

Weight ID IMP ENV PFA PRO Obj. F. Time 
1 1,098.39 174.04 60.85 764.08 1,014.03 0.7610 
3 1,661.05 131.85 63.90 1,071.24 -550.69 0.6010 
9 1,411.24 19.30 61.76 941.06 38.54 0.1500 

14 1,099.32 173.06 62.26 765.38 435.96 0.9710 
26 1,472.35 26.07 61.76 982.12 -203.07 0.2210 
44 1,846.58 26.07 65.32 1,084.88 -659.68 0.6310 
58 1,790.90 26.07 65.32 1,074.53 -652.80 0.2700 
60 1,910.07 21.07 67.62 1,088.33 -427.55 0.3910 
63 1,809.65 26.07 65.32 1,078.19 -677.88 0.2800 
64 1,144.57 93.85 62.62 763.49 563.53 1.5320 
67 1,135.87 174.04 62.26 812.86 443.56 0.1300 
70 1,226.15 26.07 62.26 808.93 258.01 0.3000 
74 1,514.28 131.85 63.90 1,032.71 -335.62 0.2810 
75 1,145.75 93.85 64.15 764.32 380.42 1.8220 
80 2,000.01 21.07 75.62 1,088.18 -667.56 2.3830 
82 1,203.87 19.30 62.93 760.44 268.43 1.7830 
83 1,395.91 26.07 61.76 939.07 -97.50 0.1000 
86 1,243.55 19.30 62.26 812.27 24.95 0.1310 
88 1,439.54 19.30 61.76 957.44 -167.71 0.2800 
90 1,175.88 93.85 62.62 804.41 456.95 0.1500 

       
…… …… …… …… …… …… …… 

       
976 1,484.60 388.60 61.82 1,062.60 -578.87 0.3700 
977 1,425.57 19.30 64.40 945.50 -6.63 0.1300 
979 1,054.16 316.36 60.85 766.25 757.47 0.5910 
980 1,410.46 277.85 63.90 1,023.53 -335.67 0.1100 
981 1,084.75 201.83 62.62 765.84 1,013.70 1.1720 
983 1,189.69 25.09 62.62 761.56 452.15 0.6710 
984 1,100.28 173.06 64.15 765.86 628.68 0.3110 
985 1,439.28 19.30 61.76 957.32 -99.03 0.2400 
986 1,928.06 21.07 67.62 1,091.11 -535.71 1.5620 
987 1,361.88 26.07 61.76 914.11 46.20 0.1400 
988 1,269.69 350.92 60.18 959.88 -71.14 0.1410 
989 1,190.31 25.09 63.84 761.60 851.14 1.0210 
991 1,503.04 31.85 61.76 1,003.88 -157.94 0.2200 
992 1,189.60 25.09 62.26 761.45 834.92 1.4020 
993 1,204.98 19.30 65.07 761.14 207.46 0.2910 
994 1,298.70 228.29 60.18 957.21 -78.40 0.1200 
995 1,241.22 19.30 71.54 754.92 23.12 0.2200 
996 1,052.32 343.53 60.81 764.06 677.36 0.3910 
997 1,208.49 25.09 62.62 787.69 522.28 0.3710 
999 1,190.56 25.09 64.15 761.93 673.07 0.5310 

Table A.22 Extract of the Pareto optimal solutions for the 1000 weights using tighter bounds case 
1 
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A 1.9. Extract of the Solutions Using Tighter Bounds Case 2 

Weight ID IMP ENV PFA PRO  Obj . F.  Time in 
seconds 

1 1098.39 174.035 60.8501 764.083 1014.03 0.761 
2 1145.43 93.8476 64.153 763.865 855.021 1.152 
3 1661.05 131.847 63.8971 1071.24 -550.688 0.511 
4 1394.78 26.0652 61.7628 938.358 -32.5097 0.1 
5 1365.09 311.756 61.7628 1007.89 -193.571 0.14 
6 1519.98 31.8475 63.8971 1011.34 -360.375 0.21 
7 1143.85 179.818 60.1814 823.929 101.036 0.13 
8 1224.03 25.0856 62.2619 806.003 224.992 0.121 
9 1411.24 19.3033 61.7628 941.056 38.5416 0.12 

10 1190.56 25.0856 64.153 761.932 979.722 0.641 
11 1519.98 31.8475 63.8971 1011.34 -297.028 0.2 
12 1189.69 25.0856 62.6185 761.557 497.68 1.072 
13 1429.13 19.3033 63.8971 949.162 -32.3763 0.09 
14 1099.32 173.056 62.2619 765.375 435.955 0.991 
15 1190.31 25.0856 63.839 761.598 379.844 0.631 
16 1571.57 26.0652 67.1099 1017.96 -177.977 0.25 
17 1189.69 25.0856 62.6185 761.557 549.987 1.423 
18 1145.43 93.8476 64.153 763.865 364.379 1.151 
19 1211.95 19.3033 67.2085 756.826 99.057 0.18 
20 1411.24 19.3033 61.7628 941.056 -14.2309 0.121 

       
….. ….. ….. ….. ….. ….. ….. 

       
982 1208.49 25.0856 62.6185 787.688 423.476 0.22 
983 1189.69 25.0856 62.6185 761.557 452.148 0.701 
984 1100.28 173.056 64.153 765.861 628.675 0.31 
985 1439.28 19.3033 61.7628 957.316 -99.0294 0.231 
986 1928.06 21.0726 67.6249 1091.11 -535.711 1.562 
987 1361.88 26.0652 61.7628 914.105 46.1994 0.13 
988 1269.69 350.915 60.1814 959.881 -71.1434 0.13 
989 1190.31 25.0856 63.839 761.598 851.135 0.952 
990 1204.98 19.3033 65.0742 761.141 214.6 0.791 
991 1503.04 31.8475 61.7628 1003.88 -157.941 0.2 
992 1189.6 25.0856 62.2619 761.446 834.915 1.322 
993 1204.98 19.3033 65.0742 761.141 207.462 0.25 
994 1298.7 228.291 60.1814 957.209 -78.4017 0.121 
995 1227.31 19.3033 69.5 756.641 23.4584 0.11 
996 1052.32 343.533 60.8135 764.06 677.364 0.38 
997 1208.49 25.0856 62.6185 787.688 522.284 0.371 
998 1190.56 25.0856 64.153 761.932 456.857 0.931 
999 1190.56 25.0856 64.153 761.932 673.068 0.541 

1000 1361.88 26.0652 61.7628 914.105 56.6207 0.13 
Table A.23 Extract of the solutions for 1000 weights tighter bounds case 2 
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A 1.10. Extract of the Pareto Optimal Set Tighter Bounds Case 2 

Weight ID IMP ENV PFA PRO Obj. F. Time in seconds 

1 1098.39 174.035 60.8501 764.083 1014.03 0.761 
3 1661.05 131.847 63.8971 1071.24 -550.688 0.511 
9 1411.24 19.3033 61.7628 941.056 38.5416 0.12 

14 1099.32 173.056 62.2619 765.375 435.955 0.991 
26 1472.35 26.0652 61.7628 982.124 -203.07 0.21 
44 1846.58 26.0652 65.3173 1084.88 -659.684 0.601 
58 1790.9 26.0652 65.3173 1074.53 -652.798 0.26 
60 1910.07 21.0726 67.6249 1088.33 -427.548 0.391 
63 1809.65 26.0652 65.3173 1078.19 -677.875 0.28 
64 1144.57 93.8476 62.6185 763.489 563.529 1.562 
67 1135.87 174.035 62.2619 812.86 443.557 0.12 
70 1226.15 26.0652 62.2619 808.932 258.007 0.32 
74 1514.28 131.847 63.8971 1032.71 -335.621 0.291 
75 1145.75 93.8476 64.153 764.324 380.416 1.772 
82 1203.87 19.3033 62.9305 760.435 268.426 1.882 
83 1395.91 26.0652 61.7628 939.067 -97.5043 0.101 
86 1243.55 19.3033 62.2619 812.274 24.9496 0.13 
88 1439.54 19.3033 61.7628 957.444 -167.71 0.241 
90 1175.88 93.8476 62.6185 804.405 456.949 0.15 
92 1087.24 322.146 60.1814 809.193 101.413 0.12 

       
….. ….. ….. ….. ….. ….. ….. 

       
976 1484.6 388.603 61.8167 1062.6 -578.867 0.391 
977 1425.57 19.3033 64.3961 945.503 -6.62552 0.13 
979 1054.16 316.363 60.8501 766.254 757.47 0.581 
980 1410.46 277.852 63.8971 1023.53 -335.669 0.11 
981 1084.75 201.825 62.6185 765.837 1013.7 1.092 
983 1189.69 25.0856 62.6185 761.557 452.148 0.701 
984 1100.28 173.056 64.153 765.861 628.675 0.31 
985 1439.28 19.3033 61.7628 957.316 -99.0294 0.231 
986 1928.06 21.0726 67.6249 1091.11 -535.711 1.562 
987 1361.88 26.0652 61.7628 914.105 46.1994 0.13 
988 1269.69 350.915 60.1814 959.881 -71.1434 0.13 
989 1190.31 25.0856 63.839 761.598 851.135 0.952 
991 1503.04 31.8475 61.7628 1003.88 -157.941 0.2 
992 1189.6 25.0856 62.2619 761.446 834.915 1.322 
993 1204.98 19.3033 65.0742 761.141 207.462 0.25 
994 1298.7 228.291 60.1814 957.209 -78.4017 0.121 
995 1227.31 19.3033 69.5 756.641 23.4584 0.11 
996 1052.32 343.533 60.8135 764.06 677.364 0.38 
997 1208.49 25.0856 62.6185 787.688 522.284 0.371 
999 1190.56 25.0856 64.153 761.932 673.068 0.541 

Table A.24 Extract of the Pareto optimal solutions for the 1000 weights using tighter bounds case 
2 
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A 1.11. Data Collected Iteration by Iteration Solving Embedded 
Minimum Spanning Tree Large Scale Parcel Set 

 Add       Disconn. 
 Ineq  Time sec  Var   Constr   MST  Profit  Imp Ch Cycles Elements 

Iter 1 0 309.00 3,915.00 1,650.00  113,849.00 1,346,630.00 947.37 25 42 
Iter 2 135 305.50 3,957.00 1,783.00  118,787.00 1,346,560.00 947.93 18 28 
Iter 3 222 304.00 3,985.00 1,870.00  119,756.00 1,346,660.00 947.67 13 20 
Iter 4 287 306.00 4,005.00 1,933.00  126,061.00 1,346,740.00 947.54 9 15 
Iter 5 332 306.40 4,020.00 1,978.00  131,487.00 1,346,580.00 948.37 7 16 
Iter 6 382 306.80 4,036.00 2,028.00  130,418.00 1,346,800.00 948.00 4 6 
Iter 7 400 310.30 4,042.00 2,046.00  129,960.00 1,346,710.00 948.10 5 8 
Iter 8 427 304.50 4,050.00 2,071.00  128,485.00 1,346,680.00 948.08 4 8 
Iter 9 451 308.60 4,058.00 2,095.00  129,909.00 1,346,690.00 948.26 9 11 
Iter 10 484 304.70 4,069.00 2,128.00  127,644.00 1,346,720.00 947.43 2 4 
Iter 11 496 303.00 4,073.00 2,140.00  128,609.00 1,346,750.00 947.67 3 5 
Iter 12 511 303.80 4,078.00 2,155.00  126,328.00 1,346,590.00 947.27 6 9 
Iter 13 538 303.30 4,087.00 2,182.00  128,606.00 1,346,740.00 947.54 6 7 
Iter 14 559 303.00 4,094.00 2,203.00  131,061.00 1,346,760.00 948.31 2 4 
Iter 15 571 302.40 4,098.00 2,215.00  129,695.00 1,346,620.00 947.99 4 6 
Iter 16 589 303.30 4,104.00 2,233.00  139,790.00 1,346,760.00 948.11 3 6 
Iter 17 607 303.50 4,110.00 2,251.00  128,868.00 1,346,870.00 947.88 4 6 
Iter 18 625 305.10 4,116.00 2,269.00  130,130.00 1,346,660.00 948.06 4 4 
Iter 19 637 307.30 4,120.00 2,281.00  129,356.00 1,346,750.00 947.89 6 7 
Iter 20 658 307.00 4,127.00 2,302.00  129,080.00 1,346,740.00 947.87 3 5 
Iter 21 673 308.60 4,132.00 2,317.00  128,817.00 1,346,830.00 947.70 2 5 
Iter 22 688 310.60 4,137.00 2,332.00  138,630.00 1,346,750.00 949.01 4 5 
Iter 23 703 310.10 4,142.00 2,347.00  132,722.00 1,346,640.00 947.66 4 6 
Iter 24 721 310.10 4,148.00 2,365.00  134,031.00 1,346,690.00 947.82 3 6 
Iter 25 739 308.60 4,154.00 2,383.00  135,298.00 1,346,460.00 947.72 4 5 
Iter 26 754 303.90 4,159.00 2,398.00  128,358.00 1,346,660.00 947.10 3 4 
Iter 27 766 307.20 4,163.00 2,410.00  135,187.00 1,346,620.00 948.20 3 4 
Iter 28 778 308.90 4,167.00 2,422.00  132,734.00 1,345,210.00 948.33 6 7 
Iter 29 799 308.00 4,174.00 2,443.00  125,396.00 1,344,000.00 947.50 4 5 
Iter 30 814 309.30 4,179.00 2,458.00  126,459.00 1,345,520.00 947.43 2 4 
Iter 31 825 307.10 4,183.00 2,469.00  130,720.00 1,345,720.00 947.92 4 5 
Iter 32 840 302.50 4,188.00 2,484.00  133,765.00 1,343,110.00 948.21 8 9 
Iter 33 867 306.30 4,197.00 2,511.00  132,754.00 1,345,410.00 947.39 5 5 
Iter 34 882 302.80 4,202.00 2,526.00  129,198.00 1,345,570.00 947.55 1 3 
Iter 35 891 304.80 4,205.00 2,535.00  129,591.00 1,345,730.00 946.40 3 4 
Iter 36 903 303.60 4,209.00 2,547.00  129,678.00 1,344,130.00 947.56 5 6 
Iter 37 921 304.30 4,215.00 2,565.00  130,573.00 1,345,430.00 946.86 2 3 
Iter 38 930 302.50 4,218.00 2,574.00  130,841.00 1,344,160.00 946.32 3 4 
Iter 39 942 302.70 4,222.00 2,586.00  130,404.00 1,344,930.00 947.14 6 7 
Iter 40 963 307.30 4,229.00 2,607.00  129,789.00 1,344,310.00 947.30 1 2 
Iter 41 969 306.30 4,231.00 2,613.00  127,198.00 1,345,130.00 946.91 3 4 
Iter 42 981 308.50 4,235.00 2,625.00  133,460.00 1,345,980.00 947.85 5 5 
Iter 43 999 308.60 4,241.00 2,643.00  134,124.00 1,346,260.00 947.84 2 4 
Iter 44 1013 309.80 4,245.00 2,657.00  132,681.00 1,346,780.00 948.13 3 5 
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Iter 45 1028 307.50 4,250.00 2,672.00  133,606.00 1,346,630.00 947.64 3 5 
Iter 46 1043 305.20 4,255.00 2,687.00  136,018.00 1,346,390.00 947.65 4 6 
Iter 47 1062 308.60 4,261.00 2,706.00  135,586.00 1,346,830.00 949.03 4 5 
Iter 48 1078 313.30 4,266.00 2,722.00  133,654.00 1,346,710.00 947.83 2 3 
Iter 49 1087 307.80 4,269.00 2,731.00  135,546.00 1,346,440.00 947.61 3 4 
Iter 50 1099 308.20 4,273.00 2,743.00  130,784.00 1,346,450.00 947.79 3 4 
Iter 51 1111 308.90 4,277.00 2,755.00  131,177.00 1,346,650.00 947.50 2 3 
Iter 52 1120 306.10 4,280.00 2,764.00  133,560.00 1,346,480.00 947.60 4 5 
Iter 53 1135 305.60 4,285.00 2,779.00  131,223.00 1,346,650.00 947.86 1 3 
Iter 54 1145 307.10 4,288.00 2,789.00  137,718.00 1,346,650.00 947.51 1 3 
Iter 55 1154 306.00 4,291.00 2,798.00  135,111.00 1,346,740.00 948.02 2 4 
Iter 56 1166 307.70 4,295.00 2,810.00  132,482.00 1,346,490.00 947.27 3 5 
Iter 57 1182 307.10 4,300.00 2,826.00  134,469.00 1,346,750.00 948.19 2 2 
Iter 58 1188 306.60 4,302.00 2,832.00  132,740.00 1,346,710.00 947.97 1 1 
Iter 59 1191 302.90 4,303.00 2,835.00  132,855.00 1,346,690.00 947.83 4 5 
Iter 60 1206 302.60 4,308.00 2,850.00  134,582.00 1,346,680.00 948.61 3 3 
Iter 61 1215 302.70 4,311.00 2,859.00  134,481.00 1,346,540.00 947.77 1 1 
Iter 62 1218 302.90 4,312.00 2,862.00  137,775.00 1,346,230.00 948.48 4 5 
Iter 63 1233 302.10 4,317.00 2,877.00  133,990.00 1,346,310.00 947.69 2 3 
Iter 64 1242 303.20 4,320.00 2,886.00  132,377.00 1,346,110.00 946.87 1 2 
Iter 65 1248 302.20 4,322.00 2,892.00  137,026.00 1,346,400.00 947.54 1 3 
Iter 66 1257 306.70 4,325.00 2,901.00  134,548.00 1,346,440.00 947.08 4 5 
Iter 67 1272 306.90 4,330.00 2,916.00  136,720.00 1,346,190.00 947.69 3 3 
Iter 68 1281 305.10 4,333.00 2,925.00  134,585.00 1,346,410.00 947.72 2 4 
Iter 69 1293 305.70 4,337.00 2,937.00  132,819.00 1,346,560.00 947.82 2 3 
Iter 70 1304 302.80 4,340.00 2,947.00  135,062.00 1,346,460.00 947.71 1 3 
Iter 71 1313 303.60 4,343.00 2,956.00  136,500.00 1,346,270.00 948.03 2 5 
Iter 72 1329 304.30 4,348.00 2,972.00  134,011.00 1,346,270.00 946.99 2 2 
Iter 73 1335 306.90 4,350.00 2,978.00  133,997.00 1,346,270.00 947.50 1 2 
Iter 74 1341 305.30 4,352.00 2,984.00  133,277.00 1,346,530.00 947.67 2 4 
Iter 75 1353 302.70 4,356.00 2,996.00  138,779.00 1,346,820.00 948.33 1 1 
Iter 76 1356 302.40 4,357.00 2,999.00  134,737.00 1,346,550.00 947.38 1 2 
Iter 77 1363 302.20 4,359.00 3,006.00  134,194.00 1,346,550.00 947.56 2 3 
Iter 78 1372 302.90 4,362.00 3,015.00  131,819.00 1,346,710.00 947.35 3 3 
Iter 79 1381 308.10 4,365.00 3,024.00  134,896.00 1,346,190.00 947.05 2 4 
Iter 80 1394 309.50 4,369.00 3,037.00  135,769.00 1,346,220.00 947.88 2 3 
Iter 81 1404 307.90 4,372.00 3,047.00  135,713.00 1,346,640.00 948.03 2 4 
Iter 82 1416 308.60 4,376.00 3,059.00  133,775.00 1,345,960.00 947.38 2 3 
Iter 83 1425 307.70 4,379.00 3,068.00  134,515.00 1,346,480.00 948.34 1 2 
Iter 84 1431 305.40 4,381.00 3,074.00  134,402.00 1,346,670.00 947.66 2 3 
Iter 85 1440 302.70 4,384.00 3,083.00  132,995.00 1,346,340.00 947.87 2 4 
Iter 86 1453 308.00 4,388.00 3,096.00  132,107.00 1,346,480.00 947.44 1 1 
Iter 87 1456 305.60 4,389.00 3,099.00  137,724.00 1,346,420.00 947.80 4 4 
Iter 88 1471 307.30 4,393.00 3,112.00  133,662.00 1,346,530.00 948.29 1 2 
Iter 89 1477 306.30 4,395.00 3,118.00  133,950.00 1,346,490.00 947.56 1 2 
Iter 90 1483 306.30 4,397.00 3,124.00  135,176.00 1,346,380.00 947.45 2 4 
Iter 91 1496 304.80 4,401.00 3,137.00  136,523.00 1,346,430.00 947.68 2 3 
Iter 92 1505 307.90 4,404.00 3,146.00  143,053.00 1,346,580.00 948.66 3 3 
Iter 93 1514 303.70 4,407.00 3,155.00  135,230.00 1,346,400.00 947.93 1 2 
Iter 94 1520 307.40 4,409.00 3,161.00  132,161.00 1,346,620.00 947.57 6 4 
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Iter 95 1534 306.50 4,413.00 3,173.00  134,105.00 1,346,250.00 948.25 1 2 
Iter 96 1541 305.50 4,415.00 3,180.00  131,873.00 1,346,800.00 947.76 1 2 
Iter 97 1547 307.40 4,417.00 3,186.00  132,956.00 1,346,260.00 947.71 2 3 
Iter 98 1556 303.50 4,420.00 3,195.00  138,586.00 1,346,230.00 948.26 3 4 
Iter 99 1568 306.10 4,424.00 3,207.00  134,256.00 1,346,010.00 947.59 2 3 
Iter 100 1577 304.40 4,427.00 3,216.00  134,211.00 1,346,680.00 947.25 2 2 
Iter 101 1583 307.00 4,429.00 3,222.00  137,568.00 1,346,510.00 947.60 1 2 
Iter 102 1589 308.30 4,431.00 3,228.00  132,992.00 1,346,660.00 947.66 1 1 
Iter 103 1592 305.90 4,432.00 3,231.00  136,012.00 1,346,390.00 947.14 1 1 
Iter 104 1595 304.90 4,433.00 3,234.00  135,406.00 1,346,420.00 947.54 1 2 
Iter 105 1601 302.60 4,435.00 3,240.00  133,899.00 1,346,100.00 947.02 3 3 
Iter 106 1610 304.80 4,438.00 3,249.00  130,286.00 1,345,650.00 947.23 1 1 
Iter 107 1613 305.60 4,439.00 3,252.00  131,394.00 1,346,380.00 948.02 1 2 
Iter 108 1619 303.10 4,441.00 3,258.00  134,892.00 1,346,500.00 947.37 1 3 
Iter 109 1629 305.60 4,444.00 3,268.00  137,391.00 1,346,610.00 947.42 2 3 
Iter 110 1638 305.40 4,447.00 3,277.00  136,315.00 1,346,460.00 948.83 1 2 
Iter 111 1644 306.30 4,449.00 3,283.00  134,635.00 1,346,250.00 948.28 1 2 
Iter 112 1650 308.40 4,451.00 3,289.00  131,899.00 1,346,420.00 947.59 1 1 
Iter 113 1653 306.70 4,452.00 3,292.00  133,986.00 1,346,300.00 946.62 1 2 
Iter 114 1659 307.20 4,454.00 3,298.00  134,986.00 1,346,580.00 947.54 1 1 
Iter 115 1662 306.00 4,455.00 3,301.00  132,103.00 1,346,820.00 947.54 2 2 
Iter 116 1668 304.00 4,457.00 3,307.00  133,452.00 1,346,230.00 947.35 3 5 
Iter 117 1685 305.70 4,462.00 3,324.00  132,356.00 1,346,250.00 947.56 1 1 
Iter 118 1688 307.90 4,463.00 3,327.00  134,001.00 1,346,200.00 947.29 2 2 
Iter 119 1694 305.60 4,465.00 3,333.00  132,891.00 1,346,450.00 947.45 1 2 
Iter 120 1700 303.90 4,467.00 3,339.00  134,961.00 1,346,460.00 947.77 2 3 
Iter 121 1710 307.00 4,470.00 3,349.00  134,725.00 1,346,120.00 948.76 1 3 
Iter 122 1719 305.30 4,473.00 3,358.00  134,227.00 1,346,460.00 947.85 1 2 
Iter 123 1726 302.50 4,475.00 3,365.00  135,027.00 1,346,630.00 948.14 1 1 
Iter 124 1729 302.30 4,476.00 3,368.00  149,630.00 1,346,640.00 948.37 2 2 
Iter 125 1735 302.90 4,478.00 3,374.00  131,084.00 1,346,810.00 947.50 1 1 
Iter 126 1738 302.80 4,479.00 3,377.00  134,560.00 1,346,290.00 947.75 3 4 
Iter 127 1750 303.00 4,483.00 3,389.00  133,317.00 1,346,780.00 948.21 1 1 
Iter 128 1753 304.60 4,484.00 3,392.00  131,555.00 1,346,650.00 948.02 1 1 
Iter 129 1756 303.40 4,485.00 3,395.00  134,442.00 1,346,370.00 947.96 2 2 
Iter 130 1762 303.50 4,487.00 3,401.00  133,893.00 1,346,260.00 947.94 2 2 
Iter 131 1768 307.70 4,489.00 3,407.00  135,138.00 1,346,410.00 947.58 2 2 
Iter 132 1774 307.00 4,491.00 3,413.00  135,496.00 1,346,550.00 948.32 1 3 
Iter 133 1784 303.80 4,494.00 3,423.00  135,620.00 1,346,310.00 947.76 4 4 
Iter 134 1796 306.30 4,498.00 3,435.00  134,191.00 1,346,640.00 947.84 1 1 
Iter 135 1799 304.30 4,499.00 3,438.00  136,443.00 1,346,120.00 947.17 3 4 
Iter 136 1811 308.20 4,503.00 3,450.00  139,942.00 1,346,480.00 947.58 3 4 
Iter 137 1823 306.70 4,507.00 3,462.00  135,141.00 1,346,020.00 947.12 1 1 
Iter 138 1826 306.70 4,508.00 3,465.00  143,183.00 1,346,550.00 948.71 2 2 
Iter 139 1832 305.30 4,510.00 3,471.00  134,028.00 1,346,330.00 947.41 1 1 
Iter 140 1835 307.00 4,511.00 3,474.00  136,525.00 1,346,710.00 947.75 2 4 
Iter 141 1849 304.90 4,515.00 3,488.00  133,287.00 1,346,680.00 947.71 1 3 
Iter 142 1859 307.10 4,518.00 3,498.00  134,593.00 1,346,030.00 947.29 2 2 
Iter 143 1865 305.40 4,520.00 3,504.00  136,804.00 1,346,560.00 948.42 1 3 
Iter 144 1875 305.00 4,523.00 3,514.00  135,068.00 1,346,610.00 947.26 1 2 
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Iter 145 1881 303.80 4,525.00 3,520.00  137,718.00 1,346,450.00 947.62 1 3 
Iter 146 1890 306.20 4,528.00 3,529.00  136,174.00 1,346,240.00 947.63 1 2 
Iter 147 1900 305.90 4,530.00 3,539.00  134,451.00 1,346,620.00 947.52 1 2 
Iter 148 1906 304.10 4,532.00 3,545.00  132,991.00 1,346,510.00 947.28 1 2 
Iter 149 1912 305.80 4,534.00 3,551.00  135,442.00 1,346,370.00 947.09 2 3 
Iter 150 1921 305.50 4,537.00 3,560.00  136,198.00 1,346,490.00 948.05 4 4 

Table A.25 Data collected iteration by iteration from solving using all parcels in Moglen, 
Gabriel, and Faria (2003) 
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Appendix 2  Optimization Methods 

This section presents the theoretical framework required for the development 

of the formulations and solution methods presented in this work. The topics are: 

• Single Objective Optimization 

• Multiobjective Optimization and Solution Methods including 

o The Weighted Sum Method 

o The Constraint Method 

o The Weighted Metric Method 

o Goal Programming 

o Multiobjective Simplex 

• Methods to Solve Integer Programming Problems, including 

o Branch and Bound 

o Lagrangian Relaxation 

o Dantzig-Wolfe Decomposition Method 

o Dantzig-Wolfe Algorithm for Integer Programming 

o Benders Decomposition (Not used but included for 

completeness) 

• Duality Gap 

Optimization models are mathematical representation of problems with an 

objective function that is either maximized or minimized (Nash and Sofer, 1996), 

programming problems are concerned with finding an efficient allocation of resources 

to either maximize or minimize an objective (Gass, 1985).  Linear programming 

problems are optimization problems where the functions used are linear. 
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The optimization problems can be distinguished as either single objective or 

multiobjective, constrained or unconstrained, linear or nonlinear, stochastic or 

deterministic, among others distinctions. 

The objective functions are mathematical expressions that measure values of 

interest to the decision makers. For example profits, cost, risk, loss, efficiency, etc. 

When only one of these objectives is considered at a time, then the problem is 

considered a single objective optimization problem, when more than one objective is 

considered simultaneously then it is called a multiobjective optimization problem. 

If the variables in the optimization problem can take any value in the domain 

of the objective function then the problem is called unconstrained. On the other hand, 

there are additional restrictions that limit the values that these decision variables can 

take, then the problem is said to be constrained. The set of restrictions that limit the 

values of the decision variables are called constraints. Depending on the type of 

functions used to define the objectives and the constraints, the problem can be either 

linear or nonlinear. Linear problems are those whose objective function(s) and 

constraints are expressed as linear combinations of the decision variables and 

nonlinear problems are those whose either objective function(s) or at least one 

constraint is not a linear function of the decision variables.  

Deterministic models are those whose coefficients or functions are known 

with certainty. By contrast, stochastic models consider some of the problem’s data to 

be uncertain (Birge and Louveaux, 1997). 

The distinction between these types of problems is important because in 

general the solution approach used to solve problems in one category does not 
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necessarily carry over in other categories. The work presented in this dissertation 

does not consider unconstrained or stochastic optimization problems, and besides a 

case with a quadratic objective function, nonlinear problems in gene ral are not 

considered either. 

This chapter is intended to present the basic concepts from the theory of linear 

and integer programming optimization since those concepts are required for the 

algorithms presented in later chapters. 

A 2.1. Single Objective Optimization 

Linear programming was conceived in 1947 by George Dantzig. Although 

Fourier (1823), de la Vallee Poussin (1911), and Kantorovich (1939) produced work 

that suggest their authors were aware of the potential of linear programming. Prior to 

Dantzig the efforts in programming resources were mathematically studied but they 

lacked the concept of the objective function (Dantzig, 1982). The simplex method 

invented by Dantzig is a basic tool to solve practical problems of large complex 

systems (Dantzig, 1982). 

The following equations are taken from Nash and Sofer (1996), to describe 

the solution method invented by Dantzig using vector-matrix notation.  

The general linear programming problem can be written in standard form as: 

Min: Tc x  (A.1) 

subject to Ax b=  (A.2) 

 0x ≥  (A.3) 

with 0b ≥ . 
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Here nc ∈ ¡ is a column vector of objective function coefficients, mb ∈¡ is a 

column vector of the “right hand side”, and mxnA∈ ¡ is the constraint matrix of 

coefficients, and nx ∈ ¡ is a column vector of decision variables (Nash and Sofer, 

1996). 

Associated with any linear programming there is another linear programming 

problem called the “dual problem” in which the roles of the variables and constraints 

are reversed (Nash and Sofer, 1996). The original linear programming problem is 

then called by association the primal.  The dual problem to (A.1) - (A.3) can be 

written as: 

Max: Tb y  (A.4) 

subject to: TA y c≥  (A.5) 

There are strong relationships between the primal and the dual problems. 

Three of which are presented below without proof. The interested reader is referred to 

Nash and Sofer (1996), Gass (1985), Winston (2004) for the proof of these theorems. 

Theorem  2 Weak Duality 

Let x  be a feasible solution to the (primal) linear programming problem (A.1) 

- (A.3), and let y  be as feasible solution to the (dual) linear programming problem 

(A.4) - (A.5). Then 

T Tc x b y≥  (A.6) 

Theorem  3 Strong Duality 

Consider a pair of primal and dual linear programming problems. If one of 

the problems has an optimal solution then so does the other one, and the value of 

both objective functions is the same. 
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Let *x be an optimal solution of the primal problem (A.1) - (A.3), then *y is an 

optimal solution to the dual and: 

* *T Tc x b y=  (A.7) 

Theorem  4 Complementary Slackness 

Consider a primal problem written in standard form and the corresponding 

dual linear program. If *x is optimal for the primal and *y is optimal for the dual, 

then: 

* ( ) 0T Tx c A y− =  (A.8) 

If x is a feasible solution to the primal, and y is a feasible solution of the dual 

such that  

( ) 0T Tx c A y− =  (A.9) 

Then x and y are optimal solutions to their respective problems (Nash and 

Sofer, 1996). 

A 2.2. Multiobjective Optimization and Solution Methods 

This section explains some of the different techniques that traditionally have 

been implemented in other multiobjective optimization settings. This section also 

briefly describes how those techniques can be used or combined as the foundation to 

what would be the algorithm to solve the land development planning problem 

(LDPP). This section is not intended to serve as an exhaustive list of techniques but 

rather to brief the reader on methods that are typically available to solve this type of 

problem. 
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Figure A.60 has been adapted from ReVelle and McGarity (1997) and shows 

the relative position of multiobjective optimization within the decision support 

methods in operations research. 

 
Figure A.60 Hierarchy of decision support methods  

Multiobjective methods are mathematical tools to solve problems with 

conflicting objectives. These problems arise in a wide variety of settings since there is 

typically more than one interest, objective or goal to pursue. A typical example is in 

manufacturing where there is a constant tradeoff between cost and quality. Typically 

better quality implies higher cost but then, the lower the cost the greater the profits. In 

a grocery store the relationship between customer satisfaction and the number of 

cashiers available is also conflicting since the greater the number of cashiers 

available, the higher the cost but also the higher the level of customer satisfaction. 

Every time there are two or more objectives to optimize in a problem there is an 

opportunity to implement multiobjective optimization techniques. The most 

interesting problems, and also the most challenging ones are those where the 

objectives are in conflict with one another, meaning the increase in one is obtained as 

a loss to another. The problem then becomes to balance these objectives to reach 

solutions that are considered satisfactory. 
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Cohon (1978) divides multiobjective decision making into preference and not 

preference-based. Figure A.61 has been adapted from his book. 

  

Figure A.61 Multiobjective solution methods classification by Cohon (1978) 

What follows is a discussion of solution methods as presented in the literature. 

This is not an exhaustive discussion of all possible methods but a review of the most 

relevant ones. Consider the general multiobjective optimization problem typically 

formulated as follows: 

Minimize: ( ), 1,2,...,

Subject to: ( ) 0, 1,2,...,
( ) 0, 1,2,...,

, 1,...,

m

j

k
L U
i i i

f x m M

g x j J
h x k K
x x x i n

= 
≥ = 


= = 
≤ ≤ = 

  (A.10) 

There are M objectives subject to J inequalities, K equalities and the solution 

vector x has n components of which each one ix , is bounded below and above by L
ix  

and U
ix , respectively. This general form can be used recognizing that a minimization 

problem can be posed as a maximization problem by multiplying the objective 

function by -1 so: 

)(:max)(:min xfxf uu −↔  (A.11) 



 194 

 

And also by recognizing that any less than or equal to inequality can be 

converted into a greater than or equal to inequality by multiplying the constraint by -1 

0)(0)( ≤−↔≥ xgxg vv  (A.12) 

A 2.2.1. The Weighted Sum Method 

Known as the weighting method (Cohon, 1978), this method is based on 

combining all the M objectives into one objective by assigning each of the objective 

functions a weight mw , and then solving a single objective optimization problem. The 

general multiobjective formulation becomes: 

  
1

Minimize: ( )

Subject to: ( ) 0, 1,2,...,
( ) 0, 1,2,...,

, 1,...,

M

m m
m

j

k
L U
i i i

w f x

g x j J
h x k K
x x x i n

=



≥ = 
= =


≤ ≤ = 

∑
 (A.13) 

To obtain the Pareto optimal set7 with this method, first all the weights mw  

must be strictly positive (Miettinen, 1999; Deb, 2004; Steuer, 2004) since values of 

zero on the weights might produce weakly Pareto points, and negative weights would 

produce an opposite effect to the one desired (maximization instead of minimization 

or vice-versa). Also, the feasible region needs to be convex or there is a risk of 

missing Pareto optimal points around the non convex area8 (Deb, 2004). In the case of 

the related Land Development Planning Problem, since the problem is a mixed 

                                                 
7 Set of efficient solutions for which the improvement of one objective is only obtained by the 
diminishing of another objective. 
8 Specifically for integer programming problems where the feasible region is non convex. 
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integer programming problem, there is a risk of missing some Pareto optimal points 

as presented in ReVelle and McGarity (1997) due to a “duality gap”.  

An analysis of the Pareto optimal set provides insight into the different 

tradeoffs to the stakeholders and the decision makers. Each one of the stakeholders 

can identify how their objective changes when other players gain or lose weight in the 

evaluation process. This provides a useful negotiation tool to the individuals 

involved. The problem with this method is that there is little consensus on what the 

weights should be, moreover to determine the Pareto set a potentially large number of 

runs is required each one with a different weighting vector. For the land development 

problem, the identification of the complete Pareto optimal set is not a goal since at 

this point no decision on alternative developments are required. We know that this 

method can provide some of the Pareto optimal points, and we are interested in 

finding methods to solve each one of the optimization problems within reasonable 

times. 

A 2.2.2. The Constraint Method 

This method optimizes one objective while the other M-1 objectives are 

constrained to be not worse than a certain value. 

The general formulation becomes: 

Minimize: ( )

Subject to: ( ) , 1,2,..., \
( ) 0, 1,2,...,
( ) 0, 1,2,...,

, 1,...,

u

m m

j

k
L U
i i i

f x

f x m M m u
g x j J
h x k K
x x x i n

ε

≤ = = 

≥ = 
= = 

≤ ≤ = 

 (A.14) 

Where mε is a limiting value for the m objective.  
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One of the striking problems with this method is feasibility. It is quite possible 

that the values mε  selected to constrain the objective functions, render the problem 

infeasible. Therefore, some caution needs to be taken in the selection of the mε ’s 

values. These values need to be selected such that feasible solutions to the single 

objective problem exists (Cohon, 1978). 

Note that the value of the mε ’s are parameters in the optimization model and 

not decision variables. However, for a point to be in the Pareto optimal set it is 

required that all the constraints of the objectives should be binding at an optimal 

solution.  

“If this is not the case and if there are alternative optima to the constrained 
problem, then some of these alternative optimal solutions might be inferior” (Cohon, 
1978).  

 

Cohon (1978) presented an algorithm that could be used to overcome the 

infeasibility problem by solving M single objective optimization problems obtaining 

the optimal solution to each objective. Then this information is used as a bound to 

preserve feasibility.  

A 2.2.3. Weighted Metric Method 

An ideal solution z* would be one that simultaneously optimizes all the 

objectives. Such a solution although desirable is in most settings a point that lies 

outside of the feasible region. One fact worth noting is that the ideal solution z* is in 

most of the cases infeasible since it is usually located outside of the feasible region. 

Consider Figure A.62 where z* is the minimum value obtainable for objective 

functions 1 and 2 by themselves. 
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Figure A.62 Ideal solution to the two objective case with feasible region in gray 

This next method is based on finding a solution with minimal distance to this 

ideal solution z*.  

The general formulation becomes: 

1

*

1

Minimize: ( )

Subject to: ( ) 0, 1,2,...,
( ) 0, 1,2,...,

M pp

m m m
m

j

k
L U
i i i

w f x z

g x j J
h x k K

x x x

=

  −   


≥ = 
= = 

≤ ≤ 


∑
 (A.15) 

 As presented in Deb (2001), when p = 1 the problem is equivalent to the 

weighting method proposed before, when p = 2 the problem is to find the minimum 

Euclidean distance between the ideal solution and the solution provided by x. When a 

large p is used, the problem is to minimize the largest deviation to the ideal solution. 

This special case is also known as the weighted Tchebycheff problem, which can be 

written as: 



 198 

 

( )*
1Minimize: max ( )

Subject to: ( ) 0, 1,2,...,
( ) 0, 1,2,...,

M
m m m m

j

k
L U
i i i

w f x z

g x j J
h x k K

x x x

=
−

≥ = 

= = 
≤ ≤ 

 (A.16) 

A 2.2.4. Goal Programming 

To overcome the problem of infeasibility of the original problem, a goal 

programming technique can be used. Originally introduced by Charnes and Cooper 

(1961), this method provides a tool that guarantees feasibility to an augmented 

problem while seeking a solution as close as possible to the best values for each 

objective. Goal programming is based on the utilization of deviational variables. A  

weighted sum of the deviations becomes the objective function of the extended 

problem, and the objective functions of the original problem are now included as 

constraints that are functions of the original variables and the deviational variables. 

Consider again the general formulation written in a slight different form: 









∈
=

SxtoSubject
Mmxfm

: 
,...,2,1),( :Minimize

  (A.17) 

( ) 0, 1,2,...,

( ) 0, 1,2,...,
j

k

L U
i i i

g x j J

S h x k K

x x x

≥ =


= = =
 ≤ ≤

 (A.18) 

There are M objectives and it is desirable to achieve them as closely as 

possible to each one of their M goals. The actual value of the goals are set by the 

stakeholders, and their relative importance is key to the solution approach. One 

approach known as the weighted goal programming assign weights to the deviations 

from the goals, while another approach known as the preemptive goal programming 
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assumes that the goals are listed in order of importance, and each goal is infinitely 

more important than the next goal. 

A general expression for the weighted goal programming problem can be 

written as: 

1

Minimize: ( )

s.t.

( ) , 1,2,...,

, 0

M

m m m m
m

m m m m

m m

w d w d

f x d d m M

d d

x S

ε

+ + − −

=

− +

+ −


+ 





= + − = 
≥ 
∈



∑

 (A.19) 

where  md +  and md −  are deviational variables from the goal mε , mw+ and mw−   are non 

negative weights on the positive and negative deviations from each objective m.  

This formulation was adapted from Cohon (1978), other formulations of goal 

programming techniques are presented in Nijkamp (1979), Winston (1994), Gass 

(1985) and Deb (2001) among others.  

If the original problem is feasible then the set S is nonempty. The ideal case is 

that in which there is a point for which the objective function is exactly equal to the 

goal so that Mmxf mm ,...,2,1,)( == ε  but this might not be the case. By adding the 

deviational variables +
md  and −

md  an augmented version of the original problem is 

guaranteed to be feasible.  

Consider the constraint for each objective function 

( )m m m mf x d dε − += + −  (A.20) 
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In this constraint when the objective function is equal to the goal, the 

deviational variables will both be equal to zero, when the deviational variable md −  is 

positive the objective function ( )mf x falls short from the goal mε , since the objective 

function cannot be under mε  and over mε  at the same time, the deviational variable 

md +  equals to zero. Likewise, when the deviational variable md +  is positive, then md −  

equals zero, this holds because both deviational variables are minimized in the 

objective function. 

It is possible to eliminate one of the deviation variables if it is known with 

certainty the relation between the objective function to the goal. If the objective 

function )(xfm  is always greater or equal to the goal then only +
md  is required. If the 

objective function )(xfm  is always lower or equal to the goal then only md −  is 

required. 

This method provides a mechanism for optimization of goals that might prove 

very useful in the solution of the LDPP. One possible setting is to optimize the 

objective function of each stakeholder alone and then optimize them all together by 

minimizing their deviation from the optimal solution. This type of approach might be 

considered by decision makers because it provides a solution that the stakeholders 

could accept since it represents a minimum deviation from their goals. It is easier to 

accept that their optimum value has been decreased while everyone else’s has 

decreased as well to the minimum possible extent. The drawback is that the method 

will find potentially only one point. The one for which the deviations are minimized, 
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to find or approximate the Pareto set, or an approximation of it we need another 

method.  

Possibly the preemptive goal programming method could be used also by 

considering all possible orders of priorities for the stakeholders. Although, this may 

become computationally challenging due to the number of combinations and the 

number of subproblems that need to be solved.  

Other variations of this method such as the min-max Goal Programming (Deb, 

2001; Winston, 2004) consider minimizing the maximum distance among all goals to 

the ideal solution.  

A 2.2.5. Multiobjective Simplex 

The simplex method is a well known technique to solve single objective linear 

programming problems. It is based on a two-step procedure: first find an extreme 

point of the feasible region and then move to an adjacent extreme point with a better 

objective function until an optimal solution is found. The procedure to move from one 

extreme point to the next is based on elementary operations of the matrix of 

coefficients A and the values of the right hand side vector b. Typically some tableaus 

are used to ease the computation of the method. The multiobjective simplex method is 

an extension of the original simplex method in which additional rows are used to 

evaluate the multiobjective aspects of the problem.  

The simplex method for single objective optimizations is extensively 

presented in the literature (Dantzig, 1963; Gass, 1985; Nash and Sofer, 1996; Cohon, 

1978; Steuer, 2004; Winston 2004).  
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The following explanation was adapted from Nash and Sofer (1996). Consider 

the original linear programming problem (A.1) - (A.3).  

Equation (A.2) can be re-written as: 

( ) B

N

x
B N b

x
 

= 
 

 (A.21) 

where B and N are partitions of the coefficient matrix A, Bx  is the set of basic 

variables and Nx is the set of non-basic variables.  

Now the objective function (A.21) can be re-written as: 

Min: T T
B B N Nc x c x+  (A.22) 

where Bc  is the vector of coefficients of the basic variables and Nc  is the vector of 

coefficients of the non-basic variables. The constraints (A.21) written as: 

B nBx Nx b+ =  (A.23) 

0x ≥  (A.24) 

can be solved for Bx  as: 

1 1
B Nx B b B Nx− −= −  (A.25) 

assuming that 1B− exists. 

When (A.25) is substituted into (A.22) we obtain the following: 

Min: ( )1 1T T
B N N Nc B b B Nx c x− −− +  (A.26) 

which is equivalent to: 

Min: 1 1T T T
B B N N Nc B b c B Nx c x− −− +  (A.27) 

or: 

Min: ( )1 1T T T
B N B Nc B b c c B N x− −+ −  (A.28) 
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In (A.28), the term ( )1T T
N Bc c B N−−  is known as the vector of reduced costs of 

the non-basic variables Nx . This term is nonnegative when the optimal solution to the 

general linear programming problem is found. 

If we define  

( )1 TT
By c B−=  (A.29) 

then the objective function can be written as: 

Min: ( )T T T
N Nz y b c y N x= + −  (A.30) 

the vector y  is known as the vector of simplex multipliers or dual variables.  

At any extreme point, the basic variables and the value of the objective 

function can be determined by setting the non-basic variables Nx  to zero obtaining 

from (A.25): 

1
Bx B b−=  (A.31) 

and from (A.30) 

Tz y b=  (A.32) 

A point x is a basic solution if it satisfies the equality constraints (A.23) and if 

the columns of the constraint matrix corresponding to the nonzero components of x 

are linearly independent (Nash and Sofer, 1996). A basic feasible solution is a basic 

solution that also satisfies the nonnegativity constraint 0x ≥ . The simplex method 

starts by finding a basic feasible solution. There are several methods to obtain this 

initial point (Gass, 1985; Steuer, 2004). If the procedure is unable to do so then the 

problem is infeasible. Assuming this initial basic feasible solution (extreme point) is 

found, the simplex method evaluates the point for optimality. If the optimality test 
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fails, an adjacent basic feasible solution (extreme point) is evaluated until an optimal 

solution is found. The data of the variables is arranged in tableaus whose last rows are 

the reduced cost of each variable. The interested reader is referred to the literature for 

a detailed step by step description. 

Cohon (1978), Philip (1972), and Ecker and Kouada (1975) presented 

mathematical properties for noninferior solutions and developed algorithms for 

identifying noninferior solutions. Holl (1973), Evans and Steuer (1973), and Zeleny 

(1974) have all presented specific simplex-based methods for the generation of 

noninferior solutions.  

The algorithm by Zeleny (1974) extends the original simplex algorithm to 

accommodate multiple objectives instead of a single one. These additional objectives 

are added at the bottom of the original tableau. Zeleny’s theorem for multiobjective 

simplex method states that if when the reduced costs are evaluated, there is a solution 

for which all reduced cost are non negative and at least one strictly negative, then the 

current solution is inferior. Based on this and other related theorems Zeleny designed 

an algorithm that ends when all noninferior basic feasible solutions have been found. 

A 2.3. Methods to Solve General Mixed Integer Programming 
Problems 

This work in this dissertation uses integer programming techniques in all of 

the three models analyzed. Because of this, besides presenting the theory of 

multiobjective optimization, the author has considered equally important to present 

some of the theory behind integer programming problems and the methods available 

to solve them. 
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The “divide and conquer” approach is typically the preferred solution method 

to solve mixed integer programming problems (MIP), these are the core of the current 

commercial solvers (Eiselt and Sandblom, 2000). This approach divides the original 

problem into subproblems that are easier to solve. The downside of course is the need 

to solve multiple subproblems instead of only one problem. The effectiveness of the 

method depends on how much easier it is to solve the subproblems as compared to 

the original problem. The next three sections are dedicated to these types of solution 

methods. 

A 2.3.1. Branch and Bound 

Branch and bound is a simple yet powerful technique widely used by the 

optimization community to solve mixed integer programming problems. The core of 

the procedure is to first relax the integer requirements and solve a linear programming 

relaxation. Then, select those variables that do not have integer solutions and create 

new problems in which the variables are bounded by the closest integer values 

obtained. 

To clarify the procedure, cons ider the general formulation of a programming 

problem as presented in Wolsey (1998): 

max{ : }Tz c x x S= ∈  (A.33) 

where S is the feasible region. 

Suppose that the feasible region S can be divided into k smaller sets such that 

1 2 ... kS S S S= ∪ ∪ ∪  (A.34) 

Let max{ : } for  = 1,2,...,k T
kz c x x S k K= ∈  
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then max k
kz z=  (A.35) 

One way to represent the different possible sets is by using an enumeration 

tree. This is a graphical representation with a node on the top representing the feasible 

region S with arcs connecting nodes that represent subsets of S.  

Now consider the general formulation of a MIP as follows: 

Max: z = ydxc TT +  (A.36) 

s.t. 

 

,m n

x S
y T

x y

∈
∈

∈ ∈¡ ¢
 (A.37) 

where 1 2{ ( , ,..., ) }/  is integer n T
n iZ z z z z i= = ∀¢ . 

Suppose that we relax the integer requirements so we solve instead the linear 

programming relaxation: 

Max: z = ydxc TT +  (A.38) 

s.t. 

 

,m n

x S
y T

x y

∈
∈

∈ ∈¡ ¡
 (A.39) 

Obtaining as a solution at least one jy ∉¢ . Then we can create two problems 

as follows: 

Subproblem 1 and Subproblem 2 

max z1 = ydxc TT +  
s.t. 

 *

,

j j

m n

x S
y T

y y

x y

∈
∈
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∈ ∈¡ ¡

 

max z2 = ydxc TT +  
s.t. 
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,
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Where  •  is the floor of •  defined as the greatest integer ≤  • , and  •  

called ceiling of •  is defined as the smallest integer ≥  • . Is not difficult to see that z 

= Max:{z1,z2} 

The procedure of separating the initial problem into subproblems is called 

branching. We draw a tree structure with an initial node that represents the LP 

relaxation of the MIP and two branches coming out of this root node, one where we 

solve subproblem 1 and another where we solve subproblem 2 as presented in Figure 

A.63. 

 
Figure A.63 Tree representation with two branches 

The case in which only one variable has a fractional result is not common, 

rather, several of the jy variables could be fractional so the tree grows quite large 

very fast. Fortunately, there are smart strategies that take in account the result of the 

linear programming relaxation to fix upper and lower bounds on each branch. This 

information is used to prevent the exploration of those branches that will not have the 

optimal solution. This procedure is commonly called “pruning the tree” and it is 

based on the following proposition (Wolsey, 1998). 
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Let 1 2 ... kS S S S= ∪ ∪ ∪  be a partition of S into smaller sets, and let 

max{ : } for  = 1,2,...,k T
kz c x x S k K= ∈ , kz be an upper bound on kz and kz be a 

lower bound on kz . Then since (A.38) is a maximization problem, 

max k
kz z=  is an upper bound on z (A.40) 

and  

max k
kz z=  is a lower bound on z (A.41) 

z will tend to be reduced as the procedure advances since the feasible region 

gets smallest at each step, so the objective function tends to worsen (gets smaller in a 

maximization problem). 

A tree can be pruned by optimality, or by infeasibility. A branch is pruned by 

optimality if the solution of the relaxation yields an integer solution, then no more 

subproblems are to be found within the node. 

{max : }t T
tz c x x S= ∈  has been solved  (A.42) 

A branch of the tree is pruned by infeasibility if the LP relaxation solved at 

the node is infeasible.  

tS = ∅  (A.43) 

A branch is pruned by bound if the optimal solution of the LP relaxation at the 

node is outside the best bound found. In the case of maximization if the solution falls 

below the lower bound found, or in a minimization problem the solution falls above 

the best upper bound found.  

tz z≤  (A.44) 
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In a maximization problem to obtain the upper bound we solve the linear 

programming relaxation, to obtain a lower bound we need to find a feasible solution 

either by searching down the branches of the tree, or by using an algorithm. 

Example: Consider the following problem: 

(IP) 1 2max:3 2IPz x x= +  (A.45) 

s.t. 

1 2 5.5x x+ ≤  (A.46) 

1 4.5x ≤  (A.47) 

2 3.5x ≤  (A.48) 

1
1 2,x x +∈¢  (A.49) 

We solve the linear programming relaxation: 

(LP) 1 2max:3 2LPz x x= +  (A.50) 

s.t. 

1 2 5.5x x+ ≤  (A.51) 

1 4.5x ≤  (A.52) 

2 3.5x ≤  (A.53) 

1
1 2,x x +∈¡  (A.54) 

Whose optimal solution is: 

15.5LPz = , 1 4.5x = , 2 1x =  

Since 1x is fractional we break down the problem into two subproblems, one 

with 1 5x ≥ and the other with 1 4x ≤ as presented in Figure A.64. 
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Figure A.64 First branch  

The first problem evaluated in node 2 is infeasible so the tree gets pruned by 

infeasibility, and the second problem evaluated in node 3 has an optimal solution of  

15LPz = , 1 4x = , 2 1.5x =  

We update the value of the upper bound from 15.5 to 15. Since now 1x is 

fractional we need to branch on this variable creating two new subproblems one with 

2 2x ≥ and the other with 2 1x ≤ as presented in Figure A.65. 

 

Figure A.65 Second branch  

Since the optimal solution of node 5 is integer, we do not need to evaluate that 

node any more, thus it is pruned by optimality. Also, the lower bound of the problem 
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gets updated since we have found the first feasible solution. Node 4 has an optimal 

solution of  

14.5LPz = , 1 3.5x = , 2 2x =  

Since 1x is fractional we break down the problem into two subproblems, one 

with 1 4x ≥ and the other with 1 3x ≤ as presented in Figure A.66. 

 

Figure A.66 Third branch 

Now we find that node 6 is infeasible so it gets pruned by infeasibility and 

since node 7 has the same value of the bound but a fractional number then we 

conclude that node 5 represents an optimal solution so 14IPz = , 1 4x = , 2 1x = . 
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A 2.3.2. Lagrangian Relaxation 

The Lagrangian relaxation technique is based on simplifying the MIP problem 

by eliminating the constraints that makes it difficult to solve. The constraints are not 

completely eliminated, rather they are moved to the objective function multiplied by a 

factor. This factor is called a Lagrange multiplier.  

The rationale for this procedure comes from realizing that by eliminating the 

constraints from the feasible region the resulting feasible region is an expansion of 

the original one. By moving the nonnegative slack of these constraints to the 

objective function penalized by a certain nonnegative factor, the objective function of 

the relaxation is always larger, or in the best case equal, to the original problem for 

any feasible point in the original problem. This method does not always provide an 

optimal solution, but at least provides a bound on the MIP problem (Wolsey, 1998). 

We can express the IP problem as: 

( ) max: Tz x c x=  (A.55) 

s.t. 

 
Dx d
x X

≤
∈

 (A.56) 

where D is a matrix of “difficult or complicating” constraints coefficients, d is the 

right hand side of those constraints, and X is a set. The constraint set Dx d≤  is a 

complicating set of “k” constraints, in the sense that if they were eliminated then the 

problem would be computationally simpler to solve. A relaxation of the original is: 

( ) max: ( )T Tz u c x u d Dx= + −  (A.57) 

s.t. 

 x X∈  (A.58) 
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Note that the feasible region is larger since a set of inequalities have been 

eliminated. For any point such that ( ) 0d Dx− ≥ , the objective function can only be 

larger because 0u ≥ . Therefore the optimal solution z*(x) is bounded as,  

* *( ) ( ) : ( ) 0,z u z x x d Dx x X≥ ∀ − ≥ ∈  (A.59)  

Since *( )z u  is an upper bound on the value of *( )z x , the problem now 

become to find the smallest multipliers over all infinite possible values ofu . To find 

these multipliers we need to solve the Lagrangian dual problem: 

min{ ( ) : 0}LDw z u u= ≥  (A.60) 

As presented in Wolsey (1998) if 0u ≥ , 

i) ( )x u  is an optimal solution of (A.57), and 

ii) ( )Dx u d≤ , and 

iii) ( ( ))i iDx u d=  whenever 0iu >  (complementarity), 

then ( )x u is optimal in (A.55) - (A.56) 

Example: Consider again the problem presented in (A.45) - (A.49). We could 

relax constraint (A.51) and apply the Lagrangian relaxation procedure as follows: 

(IP) 1 2 1 2( ) max:3 2 (5.5 )z u x x x x u= + + − −  (A.61) 

s.t. 

1 4.5x ≤  (A.62) 

2 3.5x ≤  (A.63) 

1
1 2,x x +∈¢  (A.64) 

We need to solve the Lagrangian dual problem 
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{ }1 2 1 2min max:3 2 (5.5 )
u

wLD x x x x u= + + − −  (A.65) 

s.t. 

1 4.5x ≤  (A.66) 

2 3.5x ≤  (A.67) 

1 1
1 2, ,x x u+ +∈ ∈¢ ¡  (A.68) 

Before solving the Lagrangian dual we need to present some information 

about the solution of the Lagrangian dual problem that can be used to solve it. 

The following explanation comes directly from Wolsey (1998). Suppose for 

simplicity that the feasible region of the relaxed problem contains a large but finite 

number of points { }1 ,..., TX x x=  

Now 

0
min ( )LD u

w z u
≥

=   (A.69) 

{ }0
min max ( )T T

LD u x X
w c x u d Dx

≥ ∈
 = + −    (A.70) 

{ }0 1,..,
min max ( )T t T t

LD u t T
w c x u d Dx

≥ =
 = + −    (A.71) 

minLDw η=   (A.72) 

s.t. 

( ) for all 1,2,...,T t T tc x u d Dx t Tη ≥ + − =  (A.73) 

1,mu η+∈ ∈¡ ¡  (A.74) 

The new variable η represents an upper bound on ( )z u . Problem (A.72) - 

(A.74) is a linear problem whose dual is: 
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1

max ( )
T

T t
LD t

t

w c xµ
=

= ∑  (A.75) 

s.t. 

( )
1

0
T

t
t

t

Dx dµ
=

− ≤∑  (A.76) 

1

1
T

t
t

µ
=

=∑  (A.77) 

T
tµ +∈¡  (A.78) 

Setting 
1

T
t

t
t

x xµ
=

= ∑ , with 
1

1
T

t
t

µ
=

=∑  and T
tµ +∈¡  we get 

max T t
LDw c x=  (A.79) 

s.t. 

tDx d≤  (A.80) 

( )x conv X∈  (A.81) 

This can be generalized to the case when X is the feasible region of any 

integer programming problem:  

{ }:nX x Ax b+= ∈ ≤¢  (A.82) 

Then 

{ }max : , ( )T t
LDw c x Dx b x conv X= ≤ ∈  (A.83) 

The result of (A.83) provides the strength of the relaxation which in some 

cases is not any stronger than the simple linear programming relaxation (Wolsey, 

1998). 
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Now we can proceed to solve the Lagrangian dual using a subgradient 

algorithm as described in Wolsey (1998). 

Iteration 1, Step 1: Initialization  

set 0u u=  

Iteration k, Step 2: Solve the Lagrangian Subproblem 

set ku u=  

Solve the Lagrangian problem IP( ku ) with optimal solution ( )kx u . 

( ){ }1 max ( ) ,0k k k
ku u d Dx uµ+ = − −  

1k k← +  

The algorithm at each iteration takes a step from the present point ku in a 

direction opposite to a subgradient ( )kd Dx u− . The difficulty is in defining the step 

lengths { } 1k k
µ

∞

=
(Wolsey, 1998). 

Wolsey (1998) presents a theorem to aid in the selection of the steps. 

If , and 0 as  then ( )k k k LD
k

k z u wµ µ→ ∞ → → ∞ →∑  (A.84) 

where LDw is an optimal of LD 

If 0
k

kµ µ ρ= for some parameter <1ρ  then if  0µ and ρ are sufficiently large 

( )  k
LDz u w→  (A.85) 

If LDw w≥  and 
( )

( )
2

k
k

k
k

z u w

d Dx u

ε
µ

 − =
−

with 0 2kε< <  then 

( )kz u w→  (A.86) 
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Or the algorithm finds ku with ( )k
LDw z u w≥ ≥ for some finite k. 

Iteration k, Step 3: Convergence Check  

Unless a value of ku is obtained for which is known that ( )k
DZ u  equals the 

cost of a known feasible solution, there is no way to prove that the subgradient 

method has reached optimality (Fisher 1981). Therefore, we need to recourse to 

classic stopping criteria, one of which is setting a limit in the number of iterations 

(Fisher 1981), another could be by setting a tolerance that measures the improvement 

between one iteration and the next such as 1( ) ( )k kz u z u tol−− ≤  or one could also let 

the procedure run for certain predetermined maximum time . 

Going back to our previous example, se set 0 5u = and 0.9ρ = as per (A.85) 

we expect to obtain the optimal value of  LDw . 

Iteration 1, Step 1: Initialization  

set 4u =  

Iteration 1, Step 2: Solve the Lagrangian Subproblem 

Solve the Lagrangian problem LR( ku ) with optimal solution ( )kx u . 

LR( 1u ) 1 2 1 2( ) max:3 2 (5.5 )4z u x x x x= + + − −  (A.87) 

s.t. 

1 4.5x ≤  (A.88) 

2 3.5x ≤  (A.89) 

1
1 2,x x +∈¢  (A.90) 

we obtain 1 2( ) 22, 0, 0z u x x= = =  
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0 1 0.9k
kµ µ ρ µ= ↔ =  

1k =  

Iteration 2 

set 4*0.9 3.6u = =  

LR( 2u ) 1 2 1 2( ) max:3 2 (5.5 )3.6z u x x x x= + + − −  (A.91) 

s.t. 

1 4.5x ≤  (A.92) 

2 3.5x ≤  (A.93) 

1
1 2,x x +∈¢  (A.94) 

we obtain 1 2( ) 19.8, 0, 0z u x x= = =  

We continue in the same fashion obtaining the following results: 

Iteration u z x1 x2 
1 4.0000 22.0000 0 0 
2 3.6000 19.8000 0 0 
3 3.2400 17.8200 0 0 
4 2.9160 16.3740 4 0 
5 2.6244 15.9366 4 0 
6 2.3620 15.5429 4 0 
7 2.1258 15.1886 4 0 
8 1.9132 15.1302 4 3 
9 1.7219 15.4172 4 3 

10 1.5497 15.6755 4 3 
11 1.3947 15.9079 4 3 
12 1.2552 16.1171 4 3 

Table A.26 Values of the optimal solution for different iterations 

When there values are plotted we obtain  
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Figure A.67 Values of the objective function for different values of u 

The optimal solution found is ( ) 15.1302z u = with u=1.9132, 1 4x = , 

2 3x = which results in ( ) 18z x = . This value of LRz  is the closest to the optimal value 

of z (= 14). 

However, there is a better solution, because we know explicitly the feasible 

region of (A.66) - (A.68), and it is not too large (contains only 20 points) we can 

explicitly write the problem in the form (A.72) - (A.74) obtaining the optimal solution 

15, 2uη = =  (See appendix for formulation and solution using LINDO). This value is 

better than the one obtained earlier. This realization has created another area of 

research on the Lagrangian relaxation method based on column generation techniques 

similar to those explained under the Dantzig-Wolfe decomposition technique, and 

multiplier adjustment methods among others (Fisher, 1981). 

Although we found a close bound on the value of z, the values for 1x and 2x  

are not close to the optimal values of x. But this close bound on the objective function 
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can be employed to efficiently prune the branch and bound algorithm (Fisher, 1981; 

Wolsey 1996). 

The strength of the Lagrangian dual as presented in (A.83) is evident when 

considering the feasible region of the original problem and the relaxed problem as 

presented in Figure A.68. 

 

Figure A.68 Feasible region 

The original problem contains 17 points in the feasible region while the 

relaxation contains 20. The point (4,3) is optimal for any u that results in a positive 

coefficient of 1x  and 2x . The point (4,0) is optimal for any u that results in a positive 

coefficient of 1x  and negative for 2x . The point (0,0) will be optimal for any u such 

that both coefficients are negative. These ranges can be found by writing the objective 

function as 

LR( u ) 1 2( ) max:(3 ) (2 ) 5.5z u u x u x u= − + − +  (A.95) 

For 0 3u≤ < the coefficient of 1x is positive and for 0 2u≤ <  the coefficient 

of 2x is positive. 
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It is also possible to find the best value of u by applying the bisection method 

or the regula falsi method when we find two values of u such that one makes the 

original problem feasible and the other one infeasible. 

The reasoning is that when we consider the Lagrangian problem: 

{ }( ) max ( ) :T Tz u c x u d Dx x X= + − ∈  (A.96) 

as  

0u → { }*( ) max :Tz u c x x X→ ∈  (A.97) 

Since the feasible region of the original problem is contained in the feasible 

region of this relaxation, if 

{ } { }: ,x Dx D x X x X≤ ∈ ⊆ ∈  (A.98) 

Then  

* *( ) ( )z u z x≥  (A.99) 

This result was presented earlier as (A.59).  

If the original problem if feasible, then a large value of u would produce a 

feasible solution since it would maximize the term ( )d Dx− , which would be feasible 

on the original problem for any value of x such that ( ) 0d Dx− ≥ .  

One could then use the regula falsi method to find the minimum value of u 

that maximizes z(u). 

For example, consider the values  

(1) 2.1258u = with (1)( ) 15.1886z u =  where ( )(1) 0d Dx− ≥  and  

(2) 1.9132u = with (2)( ) 15.1302z u = where ( )(2) 0d Dx− ≤ . 
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(1) (2) (2) (1)
(3)

(1) (2)

( ) ( )
( ) ( )

d Dx u d Dx u
u

d Dx d Dx
− − −

=
− − −

 

in our example  

(3) 3
1 22.0194758 ( ) 15.0292137, 4, 0u z u x x= → = = =  

So the bound obtained with regula falsi was in this case closer than the one 

obtained using the subgradient method. Similarly a bisection approach could have 

been used as follows: 

(2) (1)
(3)

2
u u

u
+

=  

in our example  

(3) 2.0194758u =  

so the result would have been the same. 

A point could be made that under different values of 0u  and ρ  the 

subgradient method could have provided a better bound. Nevertheless, the application 

of successive iterations of the regula falsi method would match the bound found by 

the subgradient. The problem is to decide when to use one method or the other. 

A 2.3.3. Dantzig-Wolfe Decomposition Method 

The following method takes advantage of certain “decomposable” structure 

present in certain types of formulations. This decomposable structure permits the 

feasible region to be broken into sets 1 2 ... kS S S S= ∪ ∪ ∪ . These sets result from 

breaking the original formulation into k independent subproblems. However, some 

problems also include a set of m constraints that prevent the straightforward 

decomposition of the original problem, these constraints are called complicating 
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constraints (Nash and Sofer 1996; Conejo et al., 2003), central constraints (Winston, 

2004) or joint constraints (Wolsey, 1998). 

A formulation has a decomposable structure with complicating constraints, if 

one can arrange the constraints in the following general fashion: 

There is a group of m complicating constraints that involve any of the 

variables, ant there are k groups of constraints that involve only 1 2, ,..., nk k k variables.  

1 1 2 2: ...T T KT KMax c x c x c x+ + +  (A.100) 

s.t. 

1 2

1 1 2 2

1 1
1

2 2
2

1 2

...

                             

                        
...

                            

, ,..., , , ,j j jn

K K

K K
K

k xq qkk k K m j
j

A x A x A x b

D x d

D x d

D x d

x x x b D d

+ + + =

≤

+ ≤

≤

∈ ∈ ∈ ∈ ∈ ∈¡ ¡ ¡ ¡ ¡ ¡

 (A.101) 

Looking at the structure of the problem one can notice that the first set of 

constraints includes all the variables. If this set of constraints were not included, then 

the problem could be broken into k separate independent problems with 1 2, ,..., nk k k  

variables and 1 2, ,..., kq q q constraints, respectively. This problem is said to present 

complicating constraints because a constraint or set of constraints prevents a 

straightforward decomposition of the problem. 

In other words, a formulation has a decomposable structure with complicating 

constraints, if one can divide the constraints and the variables in sets such that: 

Constraints in set 1 only involve only variables in set 1 

Constraints in set 2 only involve only variables in set 2 

…. 
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Constraints in set k only involve only variables in set k 

There is a set of constraints k+1 that involves any variable (Winston, 2004). 

This set k+1 is referred to as the central constraints or complicating 

constraints. 

The Dantzig-Wolfe technique has two different but similar algorithms to solve 

problems with decomposable structure. One is for linear programming problems 

(Dantzig, 1969; Bradley, Hax and Magnanti, 1977; Nash and Sofer 1996; Conejo et 

al., 2003; Winston 2004), and another one for mixed integer programming problems 

(Wolsey, 1998; Vanderbeck, 1998).  

4.4.1. Dantzig –Wolfe Algorithm for Linear Programming Problems 

In the book edited by Aronofsky (1969) there is an explanation of the 

decomposition principle by Dantzig which is presented as follows: 

This method decomposes the original linear programming problem into: 

a) subprograms corresponding to its almost independent parts, and 

b) a master program which ties together the subprograms. 

The price paid for this decomposition is that the master program and the 

subprograms may have to be solved several times. The algorithm is based on the 

results of the following theorem (Winston, 2004; Wolsey, 1998) 

Theorem  5 All feasible points can be expressed  as a combination of the convex 
hull 

Suppose the feasible region for an LP is bounded and the extreme points (or 

basic feasible solutions) of the LP’s feasible region are: 1 2, ,..., kP P P . Then any point x 
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in the LP feasible region may be written as a linear combination of 1 2, ,..., kP P P . In 

other words there exist weights 1 2, ,..., kµ µ µ satisfying: 

1 1 2 2 ... k kx P P Pµ µ µ= + + +  (A.102) 

Moreover, the weights 1 2, ,..., kµ µ µ  may be chosen such that 

1 2 ... 1kµ µ µ+ + + =  and 1 2, ,..., 0kµ µ µ ≥  (A.103) 

Any linear combination of vectors for which the weights satisfy (A.103) is 

called a convex combination (Korte and Vygen, 1999; Winston, 2004). And the set of 

points 1 2, ,..., kP P P  is called the convex hull of the feasible region S denoted as 

conv(S) (Korte and Vygen, 1999; Wolsey, 1998). This theorem states that any point in 

a bounded feasible region can be written as a convex combination of the extreme 

points of the feasible region. 

A set X is convex if (1 ) ,  and [0,1]x y X x y Xλ λ λ+ − ∈ ∀ ∈ ∈ , so the set X is 

convex if and only if all convex combinations of points in X are again in X. The 

convex hull of a set X is the smallest convex set containing X (Korte and Vygen, 

1999). 

Consider the linear programming problem that has a decomposable structure 

with complicating constraints. If the complicating constraints are ignored we are 

relaxing the linear programming problem. Therefore in general the feasible region is 

expanded. The feasible region of the relaxed problem is divided into sets, each one 

having extreme points. Because the feasible region of the original problem is a subset 

of the feasible region of the relaxed problem, then the extreme points of the feasible 

region of the original problem would be feasible points of some of these subsets. 
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Therefore, by the theorem mentioned above, then they can be expressed as convex 

combinations of these extreme points. To reinforce this concept consider an 

analogous situation presented in Figure A.69 where the original feasible region 

(hatched) has extreme points 1 2 3 4, , ,x x x x .This feasible region is a subset of the 

feasible region of the relaxed problem which can be decomposed in two sets (white 

and shaded). The extreme points of the original problem are feasible points to the sets 

so they can be expressed as a convex combination of the extreme points of the 

subsets.  

For example 1x  can be expressed as 1 1 1 1 1 1 1 1
1 1 1 2 2 3 3 4 4x x x x xµ µ µ µ= + + +  

 

Figure A.69 Example of feasible region of original problem (shown hatched) as a subset of the 
feasible region of the relaxed problem with two subsets (shaded gray and unshaded) 

The Dantzig-Wolfe decomposition method seeks to find the extreme points of 

the feasible region by first decomposing or dividing the feasible region into sets. 

These sets result from taking the original formulation and ignoring the complicating 

constraints. By solving the linear programming subproblems multiple times, each 
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time with a different objective function, different extreme points of each set are 

found. Finally, feasible points for the original problem are found by using convex 

combinations of these extreme points. Because the number of extreme points of each 

set can be extremely large, the algorithm first finds few extreme points and then 

solves a linear programming problem to determine which of the variables not 

currently considered (non-basic variables) can be included in order to improve the 

current solution. This selection process is known as column generation. 

The following algorithm was adapted and generalized from Conejo et al. 

(2003) and Winston (2004). 

Iteration 1, Step 0: Initialization 

Initialize the iteration counter 0=v . 

Obtain vp  solutions to the k subproblems ki ...2,1= by solving vp times: 

: iT iMax c x  (A.104) 

s.t. 

,i i i i

i i
i

q x k k qi i
i

D x d

D x d

≤

∈ ∈ ∈¡ ¡ ¡
 (A.105) 

The coefficients of the variables in (A.104) are arbitrary (nonnegative) 

coefficients required to obtain the initial vp  solutions. 

Iteration 1, Step 1: Solve the Restricted Master Problem 

Increase the iteration counter 1+= vv  

Express the LP’s objective function and complicating constraints in terms of 

the solutions obtained before, and multipliers j
iµ . Add the convexity and sign 

constraints to obtain the restricted master problem: 
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Max: Objective function in terms of the j
iµ  (A.106) 

s.t. 

Complicating constraints in terms of the j
iµ  (A.107) 

1 2 ... 1kµ µ µ+ + + =  (A.108) 

1 2, ,..., 0kµ µ µ ≥  (A.109) 

To obtain the solution )()(
2

)(
1 ,...,, v

p
vv uuu and the dual variables 

)()(
2

)(
1 ,...,, v

p
vv λλλ and )(vσ . 

Iteration 1, Step 2: Solve the k Subproblems 

( )( )

1

:
ik

v
ij i ij ij

x j

Max v c a xλ
=

= −∑  

s.t. 

i

k

j
ijij dxa

i

≤∑
=1

 

nijijij kjubxlb ..1; =≤≤  

With the solution to the relaxed problem, evaluate the objective function of 

the original problem obtaining: 

=+ )( vpz ∑∑
= =

+
k

i

k

j

vp
ij

i

ij
xc

1 1

)(  

And the value of the complicating constraints obtaining: 

=+ )( vp
ir bxa

k

i

k

j

vp
ij

i

ij
=∑∑

= =

+

1 1

)(  

Iteration 1, Step 3: Convergence checking 
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If σ≥v then the optimal solution of the original problem has been achieved 

and the algorithm stops. If σ<v  then the current solution can be used to improve the 

solution of the master problem so go to step 2. 

A 2.3.4. Dantzig –Wolfe Algorithm for Integer Programming Problems  

Consider a slight variation of the problem presented in (A.100) - (A.101). The 

general formulation for a single objective integer programming problem that could be 

decomposed into k subproblems can be written as: 

(IP) 1 1 2 2: ...T T KT Kz Max c x c x c x= + + +  (A.110) 

s.t. 

1 2

1 1 2 2

1 1
1

2 2
2

1 2

...

                             

                        
...

                            

, ,..., , , ,j j jn

K K

K K
K

k xq qkk k K m j
j

A x A x A x b

D x d

D x d

D x d

x x x b D d

+ + + =

≤

+ ≤

≤

∈ ∈ ∈ ∈ ∈ ∈¢ ¢ ¢ ¡ ¡ ¡

 (A.111) 

or more succinctly as (Wolsey, 1998): 

1

1

:

 to:

 for   1...

K
kT k

k

K
k k

k

k k

Minimize c x

Subject

A x b

x X k K

=

=

=

∈ =

∑

∑
 (A.112) 

where 

{ : } for   1..knk k k k
kX x D x d k K+= ∈ ≤ =¢  (A.113) 

The goal is to decompose the problem by blocks into k subproblems. 

Assuming the feasible region of each subproblem is non empty, we can restate the 
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problem formulation as a function of the (possibly quite large) feasible points 

{ },

1

kTk t

t
x

=
contained in kX  so we have (Wolsey, 1998): 

( )( ),
, , , k

1 1

{ : , 1, {0,1} for t  1..T }
k k

k

T T
nk k k k t

k t k t k t
t t

X x x xλ λ λ
= =

= ∈ = = ∈ =∑ ∑¡  (A.114) 

Now substituting for kx leads to the equivalent IP Master problem: 

(IPM) ,

1 1

max ( )
kTK

k k t
kt

k t

z c x λ
= =

= ∑∑  (A.115) 

s.t. 

,
,

1 1

( )
kTK

k k t
k t

k t

A x bλ
= =

=∑∑  (A.116) 

1
1

, =∑
=

kT

t
tkλ  for k = 1, 2, …, K (A.117) 

}1,0{, ∈tkλ  for t = 1, 2, ..,Tk and k = 1, 2, …, K (A.118) 

To illustrate these formulations consider the example used before in (A.45) - 

(A.49) with an additional variable 3x used as slack variable to convert the 

complicating constraint into equality form: 

(IP) 1 2max:3 2z x x= +  (A.119) 

s.t. 

1 2 3 5.5x x x+ + =  (A.120) 

1
1

2
2

3
3

x X

x X

x X

∈


∈ 
∈ 

 (A.121) 

where 
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{ }1 1
1 1: 4.5X x x+= ∈ ≤¢  (A.122) 

{ }2 1
2 2: 3.5X x x+= ∈ ≤¢  (A.123) 

{ }3 1
3 3: 0X x x+= ∈ ≥¡  (A.124) 

The graphical representation of this problem is presented in Figure A.70 

 

Figure A.70 Feasible region of example 

The feasible region are the vertical lines that start on each of the integer points 

located in the plane 1 2x x and end on the shaded plane. Note that these points 

correspond to integer values of 1x and 2x and the shaded plane is formed by the 

intersection of the plane 1 2 3 5.5x x x+ + = with the planes 1 4.5x = (shown with 
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vertical hatch) and 2 3.5x = (shown with horizontal hatch). The optimal solution for 

this problem is: 1 2 314, 4, 1, 0.5IPz x x x= = = =  

In this case there is one complicating constraint and three constraints that can 

be decomposed into three subproblems. The sets 1X and 2X both contain a relatively 

small finite set of points { }1 0,1,2,3,4X =  and { }2 0,1,2,3X =  while the set 3X has 

an infinite number of points. Variable 3x can be regarded as a slack variable to force 

the inequality 1 2 5.5x x+ ≤ as equality. Therefore, Figure A.70 can be presented in 

two dimensions as in Figure A.71. 

 

Figure A.71 Two dimensional representation of the example’s feasible region 

We have that: 

( ) ( ) ( )
4 4

1 1 1,
1 1 1, 1, 1,

1 1

: , 1, {0,1}t
t t t

t t

X x x xλ λ λ+
= =

 
= ∈ = = ∈ 

 
∑ ∑¡  (A.125) 
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( ) ( ) ( )
5 5

2 1 2,
2 2 2, 2, 2 ,

1 1

: , 1, {0,1}t
t t t

t t

X x x xλ λ λ+
= =

 
= ∈ = = ∈ 

 
∑ ∑¡  (A.126) 

{ }3 1
3 3: 0X x x+= ∈ ≥¡  (A.127) 

or written explicitly as: 

(IPM) 
1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4

max:(3)(0) (3)(1) (3)(2) (3)(3) (3)(4)

               (2)(0) (2)(1) (2)(2) (2)(3)

z λ λ λ λ λ

λ λ λ λ

= + + + +

+ + +
 (A.128) 

s.t. 

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 3

0 1 2 3 4

0 1 2 3 5.5x

λ λ λ λ λ

λ λ λ λ

+ + + +

+ + + + =
 (A.129) 

1,1 1,2 1,3 1,4 1λ λ λ λ+ + + =  (A.130) 

2,1 2,2 2,3 2,4 2,5 1λ λ λ λ λ+ + + + =  (A.131) 

3 0x ≥  (A.132) 

1, {0,1} for 1,2,3,4t tλ ∈ =  (A.133) 

2, {0,1} for 1,2,3,4,5t tλ ∈ =  (A.134) 

The procedure to solve these problems is based on a linear programming 

relaxation of the integer programming problem known as the “Master linear problem” 

as follows.  

(LPM) ,

1 1

max ( )
kTK

k t
k kt

k t

z c x λ
= =

= ∑∑  (A.135) 

s.t. 

∑∑
= =

=
K

k

T

t
tk

tk
k bxA

k

1 1
,

, )( λ  (A.136) 
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1
1

, =∑
=

kT

t
tkλ  for k = 1, 2, …, K (A.137) 

0, ≥tkλ  for t = 1, 2, ..,Tk and k = 1, 2, …, K (A.138) 

The only difference in the formulation is the relaxation of the binary 

constraint for the ,k tλ  factors. This formulation has a column 

k

k

k

c x
A x
e

 
 
 
 
 

 for each kx X∈ . 

The objective is to solve this relaxed problem using the simplex method but 

since there is a very large number of columns, then the variable to enter the basis is 

selected by solving an optimization problem for each of the k subproblems rather than 

by finding the reduced cost of each possible variable. 

The set of variables { } 1

m
i i

π
=

will be used as the dual variables associated with 

the joint constraints (A.136) and the set of variables { } 1

K
k k

µ
=

as dual variables 

associated with the convexity constraints (A.137). 

The algorithm has five steps as follows: 

Iteration 1, Step 0: Initialization 

Find a set of feasible solutions, at least one for each subproblem. 

Iteration1, Step 1: Solve the restricted linear programming master problem 

(RLPM) max Tz c λ= %%%  (A.139) 

s.t. 

A bλ = %% %  (A.140) 

0λ ≥%  (A.141) 
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A~  is generated using the available set of columns (feasible solutions) and it is 

a subset of the matrix A  composed of all the feasible points in the feasible region. 

The solution to this problem provides a primal optimal solution *~
λ  and a dual optimal 

solution ( )µπ , . 

Because the restricted linear programming problem has been created with a 

subset of feasible points of the master problem then it follows that any feasible 

solution to the restricted problem is feasible to the master problem. 

Iteration 1, Step 2: Optimality Check. 

We need to check whether the set of variables ( )µπ ,  is dual feasible for the 

master problem. But rather than evaluate all possible points, we solve the following 

optimization problem: 

( )max{ : }
TkT k k

k kc A x x Xς π µ= − − ∈  (A.142) 

Iteration 1, Step 3: Stopping Criterion 

If ( )max{ : }
TkT k k

k kc A x x Xς π µ= − − ∈ =0 for k = 1, 2 ,… K then the 

solution ( )µπ ,  is dual feasible for the master problem so 

1 1

m K
LPM

i i k
i k

z bπ µ
= =

≤ +∑ ∑  (A.143) 

When the value of the objective function LPMz gets to be equal to the value of 

its upper bound then the solution λ% is optimal for (A.135) - (A.138). 

An alternative criterion is to check if the complicating constraint is met, if so 

then the solution at hand is optimal. 

Iteration 1, Step 4: Generating a New Column 
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if ( )max{ : }
Tk k

k k kc A x x Xς π µ= − − ∈ >0 for some k implies that the kth 

column would improve the value of the objective function if it enters the basis. Now 

the problem should be re-optimized using this kth column entering the basis. 

A 2.3.5. Example  

Following this algorithm for the small example (A.119) - (A.123) we have: 

A 2.3.5.1. Iteration 1, Step 1: Initialization 

Consider the initial feasible point (1,1)x =  

We solve the Restricted Linear Programming Master problem  

(RLPM) 1,1 2,1max:(3)(1) (2)(1)LPMz λ λ= +  (A.144) 

s.t. 

1,1 2,1 31 1 5.5xλ λ+ + =  (A.145) 

3 0x ≥  (A.146) 

1,1 1λ =  (A.147) 

2,1 1λ =  (A.148) 

Solving this problem gives the following optimal solution: 

5LPMz = , 1,1 1λ = , 2,1 1λ = , 3 3.5x = , 0π = , 1 3µ = , 2 2µ =  

A 2.3.5.2. Iteration 1, Step 2: Optimality Check. 

We need to solve the following problems: 

( )max{ : }
TkT k k

k kc A x x Xς π µ= − − ∈  (A.149) 



 237 

 

written explicitly: 

( )1 1 1max{ 3 (0)(1) 3 : 4.5}x xς = − − ≤  (A.150) 

( )2 2 1max{ 2 (0)(1) 2 : 3.5}x xς = − − ≤  (A.151) 

whose solutions are: 

1 110.5, 4.5xς = =  (A.152) 

2 27, 3.5xς = =  (A.153) 

Since both are positive the current value of 5LPMz =  can be improved by 

generating a new column. We then arbitrarily introduce 1 4.5x = and solve the 

restricted linear programming master problem again as follows: 

(RLPM) 1,1 1,2 2,1max:(3)(1) (3)(4.5) (2)(1)LPMz λ λ λ= + +  (A.154) 

s.t. 

1,1 1,2 2,1 31 4.5 1 5.5xλ λ λ+ + + =  (A.155) 

1,1 1,2 1λ λ+ =  (A.156) 

2,1 1λ =  (A.157) 

Solving this problem gives the following optimal solution: 

15.5LPMz = , 1,1 0λ = , 1,2 1λ = , 2,1 1λ = , 3 0x = , 0π = , 1 13.5µ = , 2 2µ =  

A 2.3.5.3. Iteration 1, Step 2: Optimality Check. 

We need to solve the following problems: 

( )max{ : }
TkT k k

k kc A x x Xς π µ= − − ∈  (A.158) 

written explicitly: 
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( )1 1 1max{ 3 (0)(1) 13.5: 4.5}x xς = − − ≤  (A.159) 

( )2 2 2max{ 2 (0)(1) 2 : 3.5}x xς = − − ≤  (A.160) 

whose solutions are: 

1 10, 4.5xς = =  (A.161) 

2 27, 3.5xς = =  (A.162) 

Since 2ς is positive the current value of 15.5LPMz =  can be improved by 

entering 2 3.5x = . Then we solve again the restricted linear programming master 

problem: 

(RLPM) 1,1 1,2 2,1 2,2max:(3)(1) (3)(4.5) (2)(1) (2)(3.5)LPMz λ λ λ λ= + + +  (A.163) 

s.t. 

1,1 1,2 2,1 2,2 31 4.5 1 3.5 5.5xλ λ λ λ+ + + + =  (A.164) 

3 0x ≥  (A.165) 

1,1 1,2 1λ λ+ =  (A.166) 

2,1 2,2 1λ λ+ =  (A.167) 

Solving this problem gives the following optimal solution: 

15.5LPMz = , 1,1 0λ = , 1,2 1λ = , 2,1 1λ = , 2,2 0λ = , 3 0x = , 2π = , 1 4.5µ = , 2 0µ =  

A 2.3.5.4. Step 2: Optimality Check. 

We need to solve the following problems: 

( )max{ : }
TkT k k

k kc A x x Xς π µ= − − ∈  (A.168) 

written explicitly: 
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( )1 1 1max{ 3 (2)(1) 4.5: 4.5}x xς = − − ≤  (A.169) 

( )2 2 2max{ 2 (2)(1) 0 : 3.5}x xς = − − ≤  (A.170) 

whose solutions are: 

1 10, 4.5xς = =  (A.171) 

2 20, 3.5xς = =  (A.172) 

Since both are zero we conclude that there is no other point that would 

improve the objective function. Therefore, the solution (4.5,1) is optimal and the 

algorithm stops. Note that this solution is not the optimal solution to the original 

problem. This leads us to look into the strength of the formulation. 

Wolsey (1998) has the following proposition: 

1 1

max : , ( )for 1,2,...,
K K

LPM kT k k k k k

k k

z c x A x b x conv x k K
= =

 
= = ∈ = 

 
∑ ∑  (A.173) 

A 2.3.6. Benders Decomposition 

Similar to the Dantzig-Wolfe decomposition method, there are problems that 

can be decomposed in blocks but slightly different than before. 

Consider a problem that has the following structure: 

1 1 2 2: ... K KMin c x c x c x+ + +  (A.174) 

s.t. 

1 2

1 1
1 1

2 2
2 2

1 1

1 2

                   +

               +
...

         

, ,..., n

K K

K K

K K K K
M M

kk k K

D x A x d

D x A x d

D x A x d

x x x

− −

≤

+ ≤

+ + ≤

∈ ∈ ∈¡ ¡ ¡

 (A.175) 



 240 

 

In this case, there is a group of variables Kx that prevent the decomposition of 

the problem in K-1 blocks. These variables are known as “complicating variables” 

(Conejo et al., 2003). 

 In the previous case we had a set of constraints that involve variables from 

any block (complicating constraints), and we had another group of constraints with a 

set of variables that appear only in those constraints. In this case we have a set of 

variables that appear only in a group of constraints and then we have another set of 

“complicating variables” that appear on all constraints.  

An algorithm to solve this kind of problems is known as Benders 

decomposition. We will not explain the details of the method here since it will not be 

used to solve any or the problems presented in this dissertation work. The section is 

included for briefing the reader on the existence of such algorithm. 

A 2.4. Duality Gap  

Previously we briefly mentioned the “duality gap” problem as a downside of 

the weighting method to find all the Pareto optimal points. Here we will expand on 

this issue since it is considered of utmost importance in finding the Pareto optimal set 

for this problem.  

Because the variables to decide if a parcel gets chosen to be developed or not 

are binary variables the feasible region is non-convex. Therefore, the convex 

combinations of solutions to the problem are not necessarily feasible. Moreover, the 

contour of the feasible region could lead to missing Pareto optimal points as the 

weights of the objectives are changed. To illustrate this point consider our previous 

single-objective problem with a second objective function (A.177): 
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1
1 2max:3 2z x x= +  (A.176) 

2
1 2max: 6 5z x x= − −  (A.177) 

s.t. 

1 2 5.5x x+ ≤  (A.178) 

where 

1 4.5x ≤  (A.179) 

2 3.5x ≤  (A.180) 

This problem has a graphical representation already shown in Figure A.71. 

The interesting aspect is that from the 17 feasible points in the feasible region, 10 of 

them are Pareto optimal. The data presented in Table A.27 show the value of the 

variables for all feasible points and the evaluation of the two objective functions. 

Values in gray represent dominated points. 

1x 2x max 1z max 2z
4 1 13 -29
4 0 12 -24
3 2 11 -28
3 1 10 -23
3 0 9 -18
2 3 9 -27
2 2 8 -22
2 1 7 -17
2 0 6 -12
1 3 6 -21
1 2 5 -16
1 1 4 -11
1 0 3 -6
0 3 3 -15
0 2 2 -10
0 1 1 -5
0 0 0 0

Table A.27 Feasible points with objective function values 
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If the weighting method is applied to solve this problem, one would combine 

both objectives and the formulation would be: 

1 1 2 2 1 2max: (3 2 ) ( 6 5 )z w x x w x x= + + − −  (A.181) 

s.t. 

1 2 5.5x x+ ≤  (A.182) 

1 4.5x ≤  (A.183) 

2 3.5x ≤  (A.184) 

1
1 2,x x +∈¢  (A.185) 

As we vary the weights for 1w and 2w we can obtain some of the Pareto 

optimal points.  Table A.28 presents 21 different values of 1w and 2w that produced 

only three of the ten Pareto optimal points.  

Point 1w 2w z 1x 2x
0 1.00 0.00 14.00 4 1
1 0.95 0.05 11.85 4 1
2 0.90 0.10 9.70 4 1
3 0.85 0.15 7.55 4 1
4 0.80 0.20 5.40 4 1
5 0.75 0.25 3.25 4 1
6 0.70 0.30 1.20 4 0
7 0.65 0.35 0.00 0 0
8 0.60 0.40 0.00 0 0
9 0.55 0.45 0.00 0 0

10 0.50 0.50 0.00 0 0
11 0.45 0.55 0.00 0 0
12 0.40 0.60 0.00 0 0
13 0.35 0.65 0.00 0 0
14 0.30 0.70 0.00 0 0
15 0.25 0.75 0.00 0 0
16 0.20 0.80 0.00 0 0
17 0.15 0.85 0.00 0 0
18 0.10 0.90 0.00 0 0
19 0.05 0.95 0.00 0 0
20 0.00 1.00 0.00 0 0

Table A.28 Pareto optimal points obtained by changing weights 



 243 

 

The gradient of a linear expression is formed by the coefficients of the 

variables, there is one gradient for the objective function formed as a vector with the 

coefficients of the variables (Steuer, 2004). Since the coefficients are a function of u, 

there are different gradients for different values of u. The feasible region, and some of 

the gradients of these weighted function are presented in Figure A.72. 

 

Figure A.72 Feasible region, and gradients of the weighted objective function 

The gradients are important because they indicate the direction of greatest 

increase of the linear function (Steuer, 2004). 

Notice how point (3, 1) with objective functions (11,-23) wasn’t found as 

result from the weighted method given the step between weights, since there is no 

combination of weights that can produced this point.  

However, if we use the constraint method instead, we would obtain all the 

Pareto optimal points in the feasible region. 

Consider the problem (A.176) - (A.180) written as: 

1
1 2max:3 2z x x= +  (A.186) 
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s.t. 

2
1 26 5x x z− − ≥  (A.187) 

1 2 5.5x x+ ≤  (A.188) 

1 4.5x ≤  (A.189) 

2 3.5x ≤  (A.190) 

1
1 2,x x +∈¢  (A.191) 

Where 2z is a lower bound on the value of the second objective function. As 

we solve this problem for different values of 2z , we obtain different optimal points. 

 2z  1z  2z  x  

1 -30 14 -29 (4,1) 
2 -28 13 -28 (3,2) 
3 -27 12 -27 (2,3) 
4 -26 12 -24 (4,0) 
5 -23 11 -23 (3,1) 
6 -22 10 -22 (2,2) 
7 -21 9 -21 (1,3) 
8 -20 9 -18 (3,0) 
9 -17 8 -17 (2,1) 

10 -16 7 -16 (1,2) 
11 -15 6 -15 (0,3) 
12 -14 6 -12 (2,0) 
13 -11 5 -11 (1,1) 
14 -10 4 -10 (0,2) 
15 -9 3 -6 (1,0) 
16 -5 2 -5 (0,1) 
17 -4 0 0 (0,0) 

Table A.29 Solutions to the constraint method for different values of 2z  

There are some aspects worth noting in Table A.29. First, we used integer 

values of 2z  because we noted that the function 1 26 5x x− −  would produce integer 

values for all integer combinations of 1x  and 2x . Second, there seems to be values 

missing for example -8, -7, -6 but upon a closer inspection we observe that for 
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2 9z = − , the optimal solution provides a value of 2 6z = −  so any value of 2z between 

-9 and -6 will provide the same solution as 2 9z = − . Therefore the next value to test 

is 2 5z = − . Also, not all the points obtained are Pareto optimal, for example, when 

comparing solutions 11 and 12 we note that the values for 1z  are the same while 2z is 

better for solution 12 as compared to 11. This means that solution 12 dominates 

solution 11 and therefore solution 11 is not Pareto optimal. Lastly, there are no 

positive values of 2z  because the function 1 26 5x x− −  is no positive for all values of 

1x  and 2x . 

The conclusion of this example is that the constrained method is a better 

method to search for the Pareto optimal set as compared to the weighting method but 

still one need to check if any of the points obtained are dominated by others. This still 

does not guarantee that all the obtained points are Pareto optimal, since we could miss 

some points by an inappropriate selection of 2z . 

Cohon (1978) warns about the possibility of obtaining inferior solutions us ing 

the constraint method saying that  

“all the constraints on objectives should be binding at the optimal 
solution to the constrained problem. If this is not the case and if 
there are alternative optima to the constrained problem, then some 
of these optimal solutions  may be inferior alternatives for the 
original multiobjective problem.”  

 
Since we are dealing with integer variables, we have the additional complication 

that the objective constraints need not be binding in order for the solution to be 

optimal. Consider for example the case where we do not have an integer lower 

bound 2z . Then since the left hand side is integer, and the right hand side is fractional 
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there must be a slack on the constraint but the solution may still be Pareto optimal. 

Consider for example 2 10.5z = − when solving (A.186) - (A.191) we obtained 

(0,2)x = , 1 4z = , 2 10z = − . This is a Pareto optimal point regardless of the 

constraint for 2z having slack. 
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Appendix 3  Introduction to Graph Theory 

This chapter is an introduction to the graph theory concepts used to prepare 

the algorithm presented in Chapter 4. The topics to be covered are: 

• Definitions Related to Graph Theory 

• The Shortest Path Problem 

o Graph Scanning Algorithm 

o Bellman’s Principle of Optimality 

• Solutions to the Shortest Path Problem 

o Algorithmic Approach 

o Mixed Integer Programming Formulations 

• The Minimum Spanning Tree Problem 

• Solutions to the Minimum Spanning Tree 

o Algorithms 

o Mixed Integer Programming Formulations 

Many of the algorithms explained in the following sections are applied in an 

algorithm to solve the Land Development Planning Problem with embedded 

minimum spanning tree presented in Chapter 6. 

A 3.1. Definitions Related to Graph Theory 

This section presents a brief introduction of the graph theory concepts that are 

required to completely follow the discussion of minimum spanning trees and their 

relationship with compactness and infrastructure as discussed in Chapter 4. It also 

provides the basis for the mixed integer programming formulation presented later. 
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An undirected graph G is a collection of nodes V(G) and edges E(G) that 

connects the nodes by pairs. A directed graph D or digraph is similar to the undirected 

graph with the difference that the edges are directed so the order of the nodes that 

define the edge is important. When an edge e that joins two nodes v and w, we say 

that v and w are adjacent; v and w are neighbors. If v is an endpoint of an edge e then 

v is incident to e. (Korte and Vygen, 2000).   

A path is a sequence of edges that connects two nodes. A graph is connected if 

there is a path from each node to every other node in the graph. A non-connected 

graph is made up of connected pieces called components, each component consists of 

vertices that are all reachable from one another (Gross and Yellen, 1999). An edge e 

is a bridge of G if the graph G-e has more connected components than G. A graph has 

a cycle (circuit) if there are at least two different paths between two nodes. An 

undirected graph without a cycle is called a forest. A connected forest is a tree. A 

spanning tree of a graph G is a tree that contains all the nodes of G. (Korte and 

Vygen, 2000).   

For undirected graphs G and ( )X V G⊂  we define a cut: 

( ) ( , ( ) \ )X E X V G Xδ =  (A.192) 

For directed graphs D and ( )X V D⊂  we define the cuts out of the set and 

into the set by Magnanti and Wolsey (1995): 

( ) ( , ( ) \ ) : , ( ) \ijX e E X V D X i X j V D Xδ + = ∈ ∈ ∈  (A.193) 

and 

( ) ( ( ) \ , ) : ( ) \ ,ijX e E V D X X i V D X j Xδ − = ∈ ∈ ∈  (A.194) 

respectively. 
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In words this is the set of all incident arcs to a set of nodes X. An example of 

these different types of cuts is presented in Figure A.73. 

 

Figure A.73 Cutset around set of nodes X={1,2,3,4} 

 

Theorem 6 Equivalent statements of for a MST 

Let G be an undirected graph on n vertices. Then the following statements are 
equivalent: 

(a) G is a tree (i.e. is connected and has no circuits) 

(b) G has n-1 edges and no circuits 

(c) G has n-1 edges and is connected 

(d) G is a minimal connected graph (i.e., every edge is a bridge) 

(e) G is a minimal graph with ( )Xδ ≠ ∅ for all ( )X V G∅ ≠ ⊂  

(f) G is a maximal cycle free graph (i.e. the addition of any other edge would 
create a cycle) 

(g) G contains a unique path between any pair of vertices. 

For a proof of this theorem the reader is referred to Korte and Vygen (2000).   
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A 3.2. The Shortest Path Problem 

The shortest path problem is one of the best known combinatorial 

optimization problems (Korte and Vygen, 2000), also it is among the simplest 

network flow problems (Ahuja et al., 1995). It consists of finding the shortest path 

[ , ]u vP between two nodes u and v of a graph G, or determines that none exists (in the 

case where the nodes are not connected). The shortest path is that for which the sum 

of the edge weights is a minimum. This problem is difficult to solve if the weights are 

arbitrary, in particular negative weights adds an extra complication because some 

paths can end up with negative values (Korte and Vygen, 2000). For the purposes of 

this dissertation, unless noted, all weights are to be considered nonnegative which 

greatly reduces the time to achieve a solution. Given a graph G with weights 

: ( )c E G R→ ,c is called conservative if there is no cycle with negative total weight.  

Connectivity is very important when searching for a shortest path, there are 

algorithms that find if there is a connection between two nodes of a graph. In 

particular there is a general algorithm that can find the path from a node s to all other 

nodes that are reachable from s. We call this algorithm the Graph Scanning Algorithm 

(Korte and Vygen, 2000). 
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A 3.2.1. Graph Scanning Algorithm9 

This algorithm is relevant to the dissertation work, because in the algorithm 

presenter in Chapter 6, one of the steps is to find all disconnected components in the 

graph. The graph scanning algorithm was implemented to find such components. 

Given a graph G (directed or undirected) and some vertex ( )s V G∈ , this 

algorithm finds the set R of vertices reachable from s, and the set ( )T E G⊆ such that 

(R,T) is a tree rooted at s. 

Steps 

(1) Set R={s}, Q={s} and T= ∅  

(2) If Q= ∅ then stop, else choose a v Q∈  

(3) Choose a ( ) \w V G R∈ with ( , ) ( )e v w E G= ∈  if there is no such w then set 

\ { }Q Q v=  and go to (2) 

(4) Set { }, { }, { }R R w Q Q w T T e= ∪ = ∪ = ∪ and go to (2) 

Step 1 is an initialization step, R is the set of nodes that can be reached from s, 

Q is a queue for the nodes to be eva luated, and T is the list of edges that connect s 

with the other nodes in G. Step 2 is a termination check, if the queue is empty then 

the procedure stops, otherwise a node v is chosen from the set of nodes stored in the 

queue Q. Step 3 finds a node w that is connected to v, if none can be found then v is 

removed from the queue. Step 4 adds the node w to the set of nodes that can be 

reached from s, updates the queue by adding node w and updates the tree by adding 

the edge e.  

                                                 
9 Unless referenced otherwise this section and its subsections were extracted from Korte and Vygen, 
(2000). 
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The implementation of this algorithm requires information about the graph G, 

one way to provide that information is by using the incidence matrix. The incidence 

matrix of an undirected graph G is given by ( ), ( ), ( )v e v V G e E G
A a

∈ ∈
= where:  

,

1 if ( )
0 if ( )v e

v E G
a

v E G
∈

=  ∉
 (A.195) 

For example consider the network presented in Figure A.74. 

 

Figure A.74 Small undirected graph example 

The incidence matrix corresponding to this network is: 

    Edges 

    1,2 1,3 1,4 1,5 2,3 2,6 3,5 3,6 4,5 4,6 5,6 

1 1 1 1 1               

2 1       1 1           

3   1     1   1 1       

4     1           1 1   

5       1     1     1  1 

N
od

es
 

6           1   1    1 1 

Table A.30 Incidence matrix of small undirected graph presented in Figure A.74 

For a directed graph, the elements of the matrix are given by 

,

1 if 
1 if 
0 if { , }

v e

v i
a v j

v i j

− =
= =
 ≠

 (A.196) 
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where e=(i,j) is the edge joining nodes i and j. For example consider the 

network presented in Figure A.75 

 

Figure A.75 Small directed graph example 

The incidence matrix corresponding to this network is: 

  Edges 

    1,2 1,3 1,4 1,5 2,3 2,6 3,5 4,6 5,4 5,6 6,3 

1 -1 -1 -1 -1               

2 1       -1 -1           

3   1     1   -1       1 

4     1         -1 1     

5       1     1   -1 -1   

N
od

es
 

6           1   1   1 -1 

Table A.31 Incidence matrix of small example presented in Figure A.75 

Using such matrix to represent a graph is not the most efficient representation 

because each column contains only two non zero entries. A better way to store the 

information is by using the adjacency matrix ( ), , ( )v w v w V G
A a

∈
=  where: 

,

1 if ( , ) ( )
0 otherwisev w

v w E G
a

∈
= 


 (A.197) 

An adjacency matrix for the network presented in Figure A.75 is presented in 

Table A.32. 
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 1 2 3 4 5 6 

1  1 1 1 1  

2   1   1 

3     1  

4      1 

5    1  1 

6   1    

Table A.32 Adjacency matrix for the network presented in Figure A.75 

Yet, there is still a better way to store the information of the graph, just by 

storing the edges incidence to each vertex in a so called adjacency list. There could be 

one ordered list of all edges sorted by vertex, or a list of edges per vertex. For 

example, consider the small network presented in Figure A.75, a list of all edges 

sorted by vertex is presented in Table A.33. 

Edge 
1,2 
1,3 
1,4 
1,5 
2,3 
2,6 
3,5 
4,6 
5,4 
5,6 
6,3 

Table A.33 Adjacency list of edges sorted by vertex for Figure A.75 

A list of edges by vertex are presented in Table A.34. 

 

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 
1,2 2,3 3,5 4,6 5,4 6,3 
1,3 2,6   5,6  
1,4      
1,5      

Table A.34 Adjacency list of edges per node for network in Figure A.75 
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There are two typical methods to implement this algorithm, depth first search 

(DFS) and breadth first search (BFS), they depend on the choice to select the vertex 

in step (3) they are as follows: 

A 3.2.2. Depth First Search 

In this implementation we choose the node v Q∈ that was last to enter Q. The 

implementation follows a Last In – First Out (LIFO stacking) strategy. 

A 3.2.3. Breadth First Search 

In this implementation we choose the node v Q∈ that was first to enter Q. The 

implementation follows a First In – First Out (FIFO stacking) strategy. With a small 

modification to the general algorithm, the BFS contains the shortest path from s to 

any vertex reachable from s given that the weight of each edge is one. 

Modification:  

In step (1) include the statement: l(s) = 0, in step (4) include the statement 

l(w)=l(v)+1. We then have ( , )( ) ( , )R Tl v dist s v= for all v R∈ at any stage of the 

algorithm. Where ( )l v  represents the distance in number of edges from the root to the 

node v. 

A 3.2.4. Bellman’s Principle of Optimality 

Some of the solutions to the shortest path problem are based on the so called 

Bellman’s principle of optimality.  

Theorem 7 Bellman’s Principle of Optimality 
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Given s and w as two different vertices of a digraph G with nonnegative 

weights,  if the edge ( , )e v w=  is the final edge of some shortest path [ , ]s wP from s to w 

then the path [ , ] [ , ]s v s wP P e= −  is the shortest path from the node s to the node v . The 

interested reader is referred to the proof as presented in (Korte and Vygen, 2000). 

This result also holds for undirected graphs with nonnegative weights and for 

acyclic digraphs with arbitrary weights.  

A 3.3. Solutions to the Shortest Path Problem 

There are many approaches at least to find a shortest path in a graph. For 

example, one set of approaches is based on the implementation of algorithms, and the 

other one is by the application of network optimization concepts recurring to solve a 

mixed integer programming formulation. Both approaches will be presented here. 

A 3.3.1. Algorithmic Approach 

Because some of the algorithms to solve the shortest path are based on 

Bellman’s principle of optimality, those algorithms also find the shortest path 

between a node and all other nodes in the graph (see BFS presented before). This 

holds because at the beginning it is unknown which nodes belong to the shortest path 

[ , ]s vP then it is easy to compute all shortest path to each node t until we find v, the 

information can be efficiently stored by saving only the final edge of each path (Korte 

and Vygen, 2000).  
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A 3.3.2. Modification of the BFS Algorithm 

One could replace the edge e in the BFS algorithm by a path of length 

( ) ( , ), ( )c e l v w e E G= ∈ which could introduce an exponential number of edges. 

A 3.3.3. Dijkstra’s Algorithm 

Given a graph G with associated weights : ( )c E G R+→  and some vertex 

( )s V G∈ , this algorithm finds the shortest paths from s to all ( )v V G∈  and their 

lengths. 

Steps 

(1) Set , ( ) 0, ( ) ( ) \ { }R l s l v v V G s= ∅ = = ∞ ∀ ∈  

(2)  Find a vertex 
( )\

( ) \ : ( ) min ( )
w V G R

v V G R l v l w
∈

∈ =  

(3) Set { }R R v= ∪  

(4) For all ( ) \ : ( , ) ( )w V G R v w E G∈ ∈  do: 

a. If ( ) ( ) (( , ))l w l v c v w> +  then ( ) ( ) (( , ), ( )l w l v c v w p w v= + =  

(5) If ( )R V G≠  then go to (2) 

Step 1 is an initialization step where R is a node checklist used to terminate 

the algorithm. The ( )l v ’s  are the list of distances from the node s to any node v. Step 

2 finds the closest node in the graph G that is not already into the checklist R to any 

node in the list R. Step 3 adds the node found in the checklist. Step 4 looks at all 

nodes in the graph G that are not in the checklist R such that there exists an edge (v,w) 

and updates the length of the shortest path from the node s to the node w if a shortest 
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path has been found. Step 5 checks for termination if the checklist includes all nodes 

of the graph. 

Theorem  8 Correctness of Dijkstra’s algorithm 

Dijkstra’s algorithm finds a shortest path between two nodes,  and its running 

time is 2( )O n , where ( )n V G= . For a proof of this theorem the reader is referred to 

Korte and Vygen (2000).   

A 3.3.4. Moore-Bellman-Ford Algorithm 

Given a digraph G with conservative weights : ( )c E G R→  and some vertex 

( )s V G∈ , this algorithm finds all the shortest paths from s to all ( )v V G∈  and their 

lengths. 

Steps 

(1) Set ( ) 0, ( ) ( ) \ { }l s l v v V G s= = ∞ ∀ ∈  

(2) For i=1 to n-1 do: 

a. For each edge ( , ) ( )v w E G∈  do 

i. If ( ) ( ) (( , ))l w l v c v w> +  then ( ) ( ) (( , )), ( )l w l v c v w p w v= + =  

Theorem  9 Correctness of Moore – Bellman – Ford algorithm 

The Moore-Bellman-Ford algorithm finds a shortest paths from s to all other 

reachable nodes in the network, and its running time is ( )O nm  where 

( ) , ( )n V G m E G= = . For a proof of this theorem the reader is referred to Korte and 

Vygen (2000).   



 259 

 

A 3.3.5. Floyd-Warshall Algorithm 

Given a digraph G with conservative weights : ( )c E G R→ , and nodes 

( ) {1,..., }V G n=  this algorithm finds the shortest path between all pairs of nodes s and 

v where , ( )s v V G∈  and their lengths. 

Steps 

(1) Set 
( )

,

,

,

(( , )) ( , ) ( )

( , ) ( ) ( ) \ ( ) :

0
, ( )

i j

i j

ii

i j

l c i j i j E G

l i j V G V G E G i j

l i
p i i j V G

= ∀ ∈

=∞∀ ∈ × ≠

= ∀
= ∀ ∈

 

(2) For j=1 to n do 

a. For i = 1  to n do: If i j≠ then: 

i. For k = 1 to n do: If k j≠ then 

1. If , , ,i k i j j kl l l> +  then set , , , ,,i k i k j k i k jkl l l p p= + =  

Theorem  10 Correctness of the Floyd-Warshall algorithm 

The Floyd-Warshall algorithm finds all shortest paths between all pairs of 

nodes v and s and their lengths with a running time of 3( )O n . For a proof of this 

theorem the reader is referred to Korte and Vygen (2000).   

A 3.3.6. Mixed Integer Programming Formulations  

A 3.3.6.1. Minimum Cost Flow Problem 

Some of these formulations have their origin in a problem called the minimum 

cost flow problem. This problem consists in finding the minimum cost of shipment 

for a commodity along a network , satisfying the demand constraints at each node. 
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The decision variables are flows along the arcs so the variable ijx represents the flow 

from node i to node j.  The minimum cost flow problem can be formulated as (Ahuja 

et al. 1999): 

Minimize 
( , ) ( )

ij ij
i j E G

c x
∈
∑  (A.198) 

s.t. 

{ :( , ) ( )} { :( , ) ( )}

( ) ,ij ji
j i j E G j j i E G

x x b i i N
∈ ∈

− = ∀ ∈∑ ∑  (A.199) 

, ( , ) ( )ij ij ijl x u i j E G≤ ≤ ∀ ∈  (A.200) 

The constraints in (A.199) balance the mass flow at each node i, while the 

constraints (A.200) prevent to exceed flow the capacity of each arc (i,j). 

Note how if when using the above formulation we set: 

( ) 1, ( ) 1, ( ) 0 : ( ) \ { , }b s b t b w w V G s t= = − = ∈  (A.201) 

0, 1 ( , )ij ijl u i j A= ≥ ∀ ∈  (A.202) 

then the solution to the minimum cost flow provides the shortest path between s and t 

by sending one unit from s to t.  

To find the shortest path from a node s to all other nodes in the network, the 

formulation can be changed to set: 

( ) ( 1), ( ) 1: ( ) \ { }b s n b w w V G s= − = − ∈  (A.203) 

0, ( 1) ( , ) ( )ij ijl u n i j E G= = − ∀ ∈  (A.204) 

The value n-1 for the arc capacity wouldn’t set any unnecessary restrictions on 

the flow. By sending one unit of product from node s to all other nodes at minimum 

cost we are finding the shortest paths. 
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A 3.4. The Minimum Spanning Tree Problem 

By definition a minimum spanning tree (MST) is a spanning tree of minimum 

weight10. In other words, a MST is a tree that connects all the nodes of G and the sum 

of the distance of all edges is minimum (Ahuja et al., 1995; Papadimitriou and 

Steiglitz, 1998; Jungnickel, 1999; and Korte and Vygen, 2000).  

A theorem from Cayley (1889) proves that the number of spanning trees in a 

graph with n nodes is given by  

2nn −  (A.205) 

It would be an extremely laborious task to identify each one of these trees, 

measure the total length and then find those with minimum weight. Fortunately as 

with some other combinatorial problems there are other procedures to reach the 

solution without resorting to an exhaustive search. 

A 3.5. Solutions to the Minimum Spanning Tree 

We provide two different approaches to solve the MST, the first one is based 

on the algorithms developed by Boruvka, Prim, and Kruskal among others. The 

second approach is using mixed integer programming to create formulations that can 

be used to find the solution to the MST.  

                                                 
10 The minimum weight is a general term which associates a weight or a cost to each edge of the tree, 
for our purposes this tree can also be said to be of minimum length. 
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A 3.6. Algorithms 

A 3.6.1. Prim (1930) 

Given a connected, undirected graph G with weights : ( )c E G R→ ,  this 

algorithm finds a spanning tree T of minimum weight.  

Steps 

(1) Choose ( )v V G∈ . Set ({ }, )T v= ∅  

(2) While ( ) ( )V T V G≠  do 

a. Choose an edge ( ( ))Ge V Tδ∈ of minimum cost. Set T T e= +  

Theorem 11 Correctness of Prim’s algorithm 

Prim’s algorithm finds a MST and its running time is 2( )O n . For a proof of 

this theorem the reader is referred to Korte and Vygen (2000). 

A 3.6.2. Kruskal (1956) 

Given a connected undirected graph G with weights : ( )c E G R→ ,  this 

algorithm finds a spanning tree T of minimum weight.  

Steps 

(3) Sort the edges such that 1 2( ) ( ) ... ( )mc e c e c e≤ ≤ ≤  

(4) Set ( )( ),T V G= ∅  

(5) For I = 1 to m do: 

a. if iT e+ contains no circuit then set iT T e= +  
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Theorem 12 Correctness of Kruskal’s algorithm  

Kruskal’s Algorithm finds a MST and can be implemented to run in 

( )O mn running time, can also be implemented to run in ( log )O m n . For a proof of 

this theorem the reader is referred to Korte and Vygen (2000). 

A 3.6.3. Mixed Integer Programming Formulations  

There has been some work in finding the solution to the minimum spanning 

tree using mixed integer programming by various researchers, the following is a 

collection of some of the research done in this area. We do not intend to be 

exhaustive but we consider the list to cover the most relevant formulations that we 

found to apply into the land development problem. 

A 3.6.4. Polyhedral Description or Packing Formulation 

Edmonds (1970) presented a formulation to find the minimum spanning tree 

called the polyhedral description of the MST. Then Magnanti and Wolsey (1995) 

presented this formulation with a slightly different notation as the packing 

formulation. We present the notation of Magnanti and Wolsey (1995). Given a 

connected undirected graph G with ( )n V G=  nodes, then a MST can be found by 

solving: 

Min: 
( )

e e
e E G

w x
∈
∑  (A.206) 

s.t. 

( )

1e
e E G

x n
∈

= −∑  (A.207) 
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( )

1 ( )e
e E G

x S S V G
∈

≤ − ∀ ⊂∑  (A.208) 

{0,1} ( )ex e E G∈ ∀ ∈  (A.209) 

where ex is a binary decision variable set to 1 if the edge e belongs to the 

minimum spanning tree and 0 otherwise. Note that by Theorem 6 the number of 

edges in the minimum spanning tree is n-1 which is enforced by the cardinality 

constraints (A.207). Also, there should not be cycles in the MST, this is enforced by 

the constraints known as packing constraints (A.208). Suppose that there is a cycle, 

then the number of edges between the set of nodes connected by the cycle would be at 

least S . Finally, (A.209) prevents fractional values for the edges which would not 

correspond to a MST.  

Theorem 13 A polyhedral description of the MST provides an integer solution 

The polytope (A.207) - (A.209) has an integer solution and its vertices are 

exactly the incidence vectors of spanning trees of G. The interested reader is referred 

to Korte and Vygen (2000) for a proof. 

Consider for example Figure A.76, the set S={1,3,5} has 3S =  and a cycle, 

therefore is on violation of an inequality of the form (A.208). 

 

Figure A.76 The cycle between nodes 1, 3 and 5 has three edges  
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The drawback of this formulation is the exponential number of constraints 

required in the set (A.208).  

A 3.6.5. Cutset Formulation 

Another formulation of the MST presented by Magnanti and Wolsey (1995) is 

as follows: 

Min: 
( )

e e
e E G

w x
∈
∑  (A.210) 

subject to 

( )

1e
e E G

x n
∈

= −∑  (A.211) 

( )

1, ( ),e
e S

x S V G S
δ∈

≥ ∀ ⊂ ≠ ∅∑  (A.212) 

{0,1}ex ∈  (A.213) 

Similarly to the packing formulation, this formulation requires the number of 

edges to be equal to n-1 and that all nodes are connected. Constraints (A.212) are 

included to enforce connectivity. They take a cut around a set S of nodes and force 

that there will be at least one edge from the set S to the set of nodes V\S. This, 

together with (A.211) forces the tree description. For example consider Figure A.77 

where a cut includes only one node. 
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Figure A.77 Cut around node 1 (Left) and around node 2 (Right) 

Now in Figure A.78 the cut includes two nodes. 

 

Figure A.78 Cut around nodes 1 and 2 

When all possible sets are considered, together with the fact that there must be 

exactly n-1 edges, then it is impossible to have a cycle. Because there is no 

disconnected set, there are n nodes and n-1 edges, then no cycles are possible because 

otherwise either one of the nodes would be disconnected, or there would be more than 

n-1 edges. This follows from Theorem 6. 
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A 3.6.6. Modified Cutset Formulation  

The above formulation can be tightened so that the underlying polyhedron 

equals the convex hull of incidence vectors of the spanning trees (Magnanti and 

Wolsey, 1995).The modification involves replacing each undirected edge from the 

graph by two opposite directed edges converting the undirected graph G in a digraph 

D. This formulation requires a root node r from which the flow is sent into the 

network.  

The resulting formulation is as follows: 

Min: 
( )

e e
e E G

w x
∈
∑  (A.214) 

subject to 

( )

1e
e E D

y n
∈

= −∑  (A.215) 

( )

1 ( ),e
e S

y S S V D S
δ +∈

≤ − ∀ ⊂ ≠ ∅∑  (A.216) 

( )

1 ( ) \ { }e
e v

y v V D r
δ −∈

= ∀ ∈∑  (A.217) 

0 ( )ey e E G≥ ∀ ∈  (A.218) 

( )e ij jix y y e E G= + ∀ ∈  (A.219) 

The interested reader is referred to Magnanti and Wolsey (1995) for the 

correctness of this formulation. 

A 3.6.7. Multi-Cut Formulation 

The above formulation finds a MST, but it has the inconvenience that if the 

binary restriction (A.217) is relaxed , the relaxation does not define the convex set of 
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incidence vectors of spanning trees (Magnanti and Wolsey, 1995). With this in mind, 

an alternative formulation is: 

Min: e e
e E

w x
∈
∑  (A.220) 

subject to 

( )

1e
e E G

x n
∈

= −∑  (A.221) 

0 1

0 1
{ ( , ,..., )}

, ,..., ,
k

e k
e C C C

x k C C C V S
δ∈

≥ ∀ ⊂ ≠ ∅∑  (A.222) 

{0,1}ex ∈  (A.223) 

This formulation is a more general case of the previous one (where k=1). Here 

a set of cuts 0 1, ,..., kC C C are connected to the rest of the tree by at least k edges. For a 

proof of correctness of this formulation the interested reader is referred to Magnanti 

and Wolsey (1995). An example with three cuts is presented in Figure A.79. 

 

Figure A.79 Example of three cuts 

A 3.6.8. Single  Commodity Flow Formulation 

Another approach to find the MST is by a modification of the general network 

design problem. This formulation considers that there is a flow of n-1 products sent 
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through the network from one of the nodes (node 1 for simplicity). Each one of the 

other n-1 nodes has a demand of one item. The decision variable ex is used to decide 

if an edge e will have flow ( 1ex = ) or not  ( 0ex = ). The formulation assumes that the 

graph is undirected but the flows are directed, so there is a sign consideration if the 

flow comes into the node or if the flow is leaving the node. The formulation can be 

written as: 

Min: 
( )

e e
e E G

w x
∈
∑  (A.224) 

subject to 

(1) (1)

1e e
e e

f f n
δ δ+ −∈ ∈

− = −∑ ∑  (A.225) 

( ) ( )

1, 1 ( )e e
e v e v

f f v V G
δ δ− +∈ ∈

− = ∀ ≠ ∈∑ ∑  (A.226) 

( 1) , ( )ij ef n x e E G≤ − ∀ ∈  (A.227) 

( 1) , ( )ji ef n x e E G≤ − ∀ ∈  (A.228) 

( )

1e
e E G

x n
∈

= −∑  (A.229) 

0ef ≥  (A.230) 

{0,1}, ( )ex e E G∈ ∀ ∈  (A.231) 

Here equations (A.225) and (A.226) are flow balance equations around the 

nodes, inequalities (A.227) and (A.228) set the flow to zero through a non selected 

edge ( 0ex = ). An interesting aspect of this formulation is that there is not a cost 

associated to the objective function, any feasible solution is a MST. 

Figure A.80 explains graphically an example of the formulation. 
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Figure A.80 Network with n-1 commodities leaving to each node from node 1 

Node 1 is the root node, (N-1) items are sent into the node represented by the 

arrow pointing towards the root node. All other nodes have a demand of one item 

represented by the arrow leaving each node in the graph. The items travel from one 

node to another by the edges connecting the nodes. 

A 3.6.9. Directed Multi-commodity Flow Model 

Ahuja et al., (1995) and Magnanti and Wolsey (1995) both suggested yet 

another modification to the general formulation for network design to find the MST. 

Such formulation would be as follows: 

Min: 
( )

e e
e E G

d y
∈
∑  (A.232) 

s.t. 

( ) ( )

1,k k
e e

e r e r

f f k r
δ δ− +∈ ∈

− = − ∀ ≠∑ ∑  (A.233) 

( ) ( )

0, ,  and all k k
e e

e v e v

f f v r v k k
δ δ− +∈ ∈

− = ∀ ≠ ≠∑ ∑  (A.234) 

( ) ( )

1, ( )k k
e e

e k e k

f f k r V G
δ δ− +∈ ∈

− = ∀ ≠ ∈∑ ∑  (A.235) 
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, ( )k
e ef y e E G≤ ∀ ∈  (A.236) 

( )

1e
e E G

y n
∈

= −∑  (A.237) 

e ij jix y y= +  (A.238) 

0, ( )k
ef e E G≥ ∀ ∈  (A.239) 

{0,1}ey ∈  ( )e E G∀ ∈  (A.240) 

Each commodity k=1,2,…K has an origin node that for purposes of simplicity 

can be node 1 in the network, and a destination node D(k), and a flow requirement of 

one unit at each node; k
ef is the fraction of commodity k that flows over the edge e. 

The upper bound on the capacity of the arcs is defined by ijy . Constraints (A.236) 

allows flow to cross an edge only if the edge is selected in T. The interested reader is 

referred to Ahuja et al. (1995) and Magnanti and Wolsey (1995) for proof of the 

correctness of the formulation. 

A 3.6.10. Extended Multi-commodity Flow Model 

A slight change of the previous formulation where the ijy  variables are 

eliminated and replaced by a flow constraint. The resulting formulation is as follows: 

Min: 
( )

e e
e E G

d y
∈
∑  (A.241) 

s.t. 

( ) ( )

1,k k
e e

e r e r

f f k r
δ δ− +∈ ∈

− = − ∀ ≠∑ ∑  (A.242) 

( ) ( )

0, ,  and all k k
e e

e v e v

f f v r v k k
δ δ− +∈ ∈

− = ∀ ≠ ≠∑ ∑  (A.243) 
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( ) ( )

1, ( )k k
e e

e k e k

f f k r V G
δ δ− +∈ ∈

− = ∀ ≠ ∈∑ ∑  (A.244) 

, ( )k
e ef y e E G≤ ∀ ∈  (A.245) 

( )

1e
e E G

x n
∈

= −∑  (A.246) 

k k
e ij jix f f≥ +  (A.247) 

0, ( )k
ef e E G≥ ∀ ∈  (A.248) 

{0,1}ey ∈  ( )e E G∀ ∈  (A.249) 
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