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average of the objectives of three or more stakeholders, subject to develop within
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The work is broken into three main sections. First, a mixed integer formulation of the

problem is presented along with an agorithm based on decomposition techniques that
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measure as applied to land development. Finally, to prevent the proliferation of

sprawl a new measure of compactness that involves the use of the minimum spanning

tree isembedded into a mixed integer programming formulation. Despite the

exponential number of variables and constraints required to define the minimum

spanning tree, this problem was solved using a hybrid algorithm developed in this

research.
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Preface
Since 2001 the author of this doctoral dissertation has been working with Dr.

Steve Gabriel and Dr. Glenn Moglen on innovative formulations to select a set of
parcels for development among a larger pool currently used as farmland or pristine
forest. Two papers have been published as a result of these efforts Moglen, Gabriel
and Faria 2003; and Gabriel, Faria and Moglen 2005.

The land development problem was approached as a multiobjective
optimization using aweighted average of stakeholders' objectives subject to new
housing, industrial, and commercial requirements. Upper and lower bounds in the
devel opment have been set to model minimum and maximum demand constraints

With that background and a keen interest in multiobjective and integer
programming, the author has developed mixed integer formulations for the land
development problem along with efficient algorithms to solve them. A new measure
of compactness involving the use of the minimum spanning tree embedded into a
mixed integer programming formulation was introduced to prevent the proliferation
of sprawl. Despite the exponential number of variables and constraints required to

define the embedded minimum spanning tree, this problem can be solved.
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d(X):

Notation and Abbreviations

Used as a superscript indicates the optimal value of a solution (e.g., d*).
Vector of ones.

Matrix of technology coefficients as typically presented in the literature
of linear programming (e.g., AXEDb).

Areaof parcel i.

Column vector of the right hand side coefficients (e.g. AXE D).

Matrix of basic coefficients. Thisis a square matrix of basic variables that
solves the set of constraints when written as Bx; =b.

Inverse of the matrix B.

Column vector of the coefficients in the objective function of the primal
problem as typically presented in the literature.

Coefficients of the basic variables.
Coefficients of the non-basic variables.
Minimum easting of the westernmost developed parcel.

Maximum easting of the easternmost developed parcel.

Commercia zone.

Lower bound on the number of acres developed in the commercia zone.

Upper bound on the number of acres developed in the commercia zone.
Convex hull of the set X.

Matrix of coefficients for the complicating constraints Also used to name
adirected graph

Decision variable to develop or not develop parcel i.

Decision variable to develop or not develop parcel t from zone z
Deviationa variable from goal m used in agoal programming
formul ation

Deviational variable from goa m used in agoa programming
formulation

Decision vector to develop or not develop all the available parcels.
Cut around a set of nodes X
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d*(X):  Setof edgesdirected into the set of nodes X

d (X): Setof edgesdirected out from the set of nodes X
e: Edge in agraph
E(G): The set of edges of the graph G.

e,: Limiting value of the m™ objective.

f: Function usualy in the objective of the problem.

g Function usually in the context of a constraint set with 3 inequalities.
G: An undirected graph

h Function usually in the context of a constraint set of equalities.

GIS: Geographical information system.

DI, : Imperviousness change resulting by developing parcel i.

l,: Imperviousness change factor of zone z

IND: Industrial zone.

IND: Lower bound on the number of acres developed in the industrial zone.
IND: Upper bound on the number of acres developed in the industrial zone.

INFORM S:Institute for operations research and the management sciences.

k: Number of objective functions. Also used as the number of setsin which
afeasible region can be decomposed.

LP: Linear programming, or linear program.

M: Number of objectives in a multiobjective optimization problem.

MIP: Mixed integer programming.

MOP: M ultiobjective optimization problem.

MST: Minimum spanning tree.

N : Thisisamatrix of coefficients of the non-basic variables in the

equationBx; + Nx,, =b.
N, : Number of parcels available in zone z

P : Profit obtained when parcel i is developed.

ParPFA:  Shorthand notation for area in acres developed as a solution of the
optimization problem.

PFA.: Set of parcels that belong to the priority funding area.
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RHD:
RHD :

RHD :

RLD:
RLD:

RLD:

RMD:
RVD :

RMD :

Lower bound on the area of parcels developed in the priority funding
area.

Upper bound on the area of parcels developed in the priority funding area.

Minimum northing of the southernmost developed parcel.
Maximum northing of the northernmost developed parcel.
The n-dimensional real numbers.

The n-dimensional nonnegative real numbers.

Residential high density zone.

Lower bound on the number of units developed in the residential high
density zone.

Upper bound on the number of units developed in the residentia high
density zone.

Residentia low density zone.

Lower bound on the number of units developed in the residentia low
density zone.

Upper bound on the number of units developed in the residential low
density zone.

Residential medium density zone.

Lower bound on the number of units developed in the residential medium
density zone.

Upper bound on the number of units developed in the residential medium
density zone

Set of nodes or feasible points, depending on the context.
Set of parcelsincluded in the environmentally sensitive set.
Land Development Planning Problem

When used as a superscript means transposed. i.e. ¢’ isthe row vector
resulting from taking the transpose of the column vector c.

Number of parcels available for development in zone z

Total value of imperviousness change resulting from the devel opment of
parcels selected when solving the optimization problem
Units available for development of parcel i. In the case of the three

residential zones these are dwelling units per parcel, in the commercia
and industrial cases this value corresponds to the area in acres of the
parcel.
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V(G):

'_

X
W
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N

Z
7":
g0
g0

The set of nodes (vertices) of the graph G.

Column vector of decision variables typicaly used in nost of the
literature to describe the variables of the primal problem in linear
programming problems (e.g., AXE b).

Theit" component of vector x.

Lower bound of the i*" component of vector x.

Upper bound of the it component of vector x.

Column vector of basic decision variables obtained when solving the
equationBx; + Nx,, =b.

Column vector of non-basic decision variables obtained when solving the

equation Bx; + Nx,, =b. These variables take values of zero to solve the
system of equalities.

Column vector of decision variables typically used in most of the

literature to describe the variables of the dua problem in linear
programming problems.

Measure of the objective function of the dual problem. i.e. w= min: y
Weight of k'™ objective function
Vector of weights = {w, ,W,,..,W,} .

Set of weight vectors

Each of the development zones, sometimes used as measurement of the
objective function i.e. z= max: X.

Set of al development zones = {RLD, RMD, RHD, COM, IND} .

The n-dimensional vector of integer numbers.
Ceiling of - .

Floor of - .

Note: Whenever the work of other authors is presented in this dissertation, the

original notation will be used.
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Chapter 1 Findings, Contributions and Literature Review
This chapter provides background information required to understand the

work that has been done before in the area of optimization as applied to planning in

land development. Previous compactness measurements are reviewed as they were

used to reduce spraw! providing the motivation for new measurements.

1.1. Introduction

In general aland development solution combines two decisions: choosing the
land to be selected for development, in our case this means to choose among the
available parcels those where the development will take place, and deciding the type
of development that should take place on the selected parcels. The different
possihilities considered by Moglen, Gabriel and Faria (2003) and Gabriel, Fariaand
Moglen (2005) included three types of residential housing as well as commercia and
industrial use. The difference between these works is that in the former the parcels
had a predetermined zone type so the decision was limited to develop or not to
develop a parcel and the planner’s objective function involved the maximization of
development in Priority Funded Areas (PFA’S). The PFA’s are zones in which the
government is interested in promoting development.

In Gabriel, Fariaand Moglen (2005), a subset of parcels did not have a
predetermined zone, so there was another group of decision variables associated with
selecting the zone type for each of those parcels besides the decision whether to
develop or not the parcel. The planner’s objective was a quadratic mixed integer

description of a compactness measurement.



The “Land Development Planning Problem” (LDPP) can be stated as which
parcels should be developed and for what purpose. To be a solution, a devel opment
plan needs to accommodate the growth of the new and existing residents and
businesses. To be optimal it needs to provide stakeholders benefits that cannot be
improved by another solution without deteriorating at least one of the stakeholders
objectives. This solution concept is known as “Pareto optimal”; in genera there is
more than one Pareto optimal solution which forms a Pareto optimal set.

To find if asolution isPareto optimal, one evaluates the objective functions in
objective space (as opposed to decision space). The measurement of the stakeholders
objectives can be arranged as a vector, each solution to the land development problem
can be associated with a vector that measures the objectives of all the stakeholders
under the proposed solution. Typically these vectors are called criterion vectors
(Steuer 2002). A criterion vector is said to dominate the criterion vector of a second
solution if for all objectives the first criterion vector provides at least' the same values
for al the stakeholders as compared with the second, and at least one of the
stakeholders gets a strictly better value of their objective function. These
“nondominated” vectors identify the Pareto optimal solutions from all the feasible
solutions to the problem. The Pareto optimal solutions in decision space are also
known as efficient solutions to the multiobjective problem. A solution is efficient if
its criterion vector is not dominated by the criterion vector of any other solution

This notion of tradeoffs between solutions implies that between two Pareto

optimal solutions one provides more benefit to a particular individual, group, or

! Assuming maximization of the objectives.



organization only at the expense of reducing benefits to at |east one other individual
or group. There are alarge number of potential combinations of parcelsto develop, in
fact the number is exponential with respect to the number of available parcels. The
combinationof parcelsto develop will be on the order of 2" since each parcel that
belongsto the set of n “developable’ parcels can be developed or not developed (two
possible states), not al those combinations are feasible solutiors. To get a quick idea
on the number of potential solutions, Moglen, Gabriel and Faria (2003) used 810
parcels in their work. This represents 28'° possible choices of development. Later
Gabriel, Fariaand Moglen (2005) used 401 parcels whose zones were fixed withan

additional set of 512 parcels to be developed in any of the five zone categories (or not

developed at all), the resulting number of possible combinations isthen(24°1) (6512) .

A complete enumeration of possible solutions, their evaluation for feasibility,
and objective function is impractical. Therefore, a multiobjective mixed integer
programming formulation was required which was solved by the traditional branch
and bound method (Wolsey, 1998; Winston, 2004). However, some caseswere
difficult to solve this way?. Because of these difficult cases, other methods are
required to decompose the problem into subproblems that can be solved faster, or to
relax the problem for easier computations at the expense of accepting suboptimal
solutiors. These methods however should find “ acceptable solutions” in a
“reasonable time”. The definition of acceptable and reasonable may vary among both

the users and critics of the methods.

2 One of the cases evaluated in Gabriel, Fariaand Moglen (2005) took over 20 hours to solve.
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1.2. Research Objectives

1.2.1. Alternative Solution Method to Moglen, Gabrid and Faria (2003)

One of the objectives of thiswork isto find alternative solution methods to
solve the formulation presented in Moglen, Gabriel and Faria (2003). Some of the
cases considered in the multiobjective formulation for land development of Moglen,
Gabridl and Faria (2003), required considerable computing time to solve. Thiswas
the motivation to look for alternative solution methods to solve this particular mixed
integer programming formulation. An algorithm based on solving the problem using
initially the branch and bound method with a time limit of one minute®, followed by
an application of the Lagrangian relaxation and for the cases where the solution is not
optimal, Dantzig-Wolfe decompositionis applied. This hybrid algorithm finds a large

set of Pareto optimal solutiors in arelatively short time.

1.2.2. Alternative Formulation to Moglen, Gabriel and Faria (2003)

Thework in Moglen, Gabriel and Faria (2003) is based on the weighting
method to solve the development problem. This method is known to have a potential
pitfall in finding Pareto optimal solutions when searching for the complete Pareto
optimal set since some points might not be found due to the duaity gap (see
Appendix 2, page 240). This dissertation work expands thet work by presenting a
formulation using the constraint method with an example, and a brief description of

how this problem can be solved using relaxation and decomposition techniques.

3 The one minute limit was determined based on numerical evidence with different values tried.
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1.2.3. Create a New Compactness Measure to Prevent Sprawl

The work by Gabriel, Moglen and Faria (2005) presents a quadratic objective
function to minimize the compactness of aland development plan. This measurement
was found to change only by the development of only few critical parcels, a new
measurement was conceived that depends on all parcels selected for development.

This work usesthe classical concept of a minimum spanning tree (MST) asa
measurement for compactness in land development. A mixed integer programming
formulation was created for this multiobjective land development problem embedding

a minimum spanning tree.

1.2.3.1. Create an Algorithmto Solve the Embedded MST Formulation

Despite the exponential number of constraints involved in the formulations
found in the literature, an algorithm was created to solve the land devel opment
problem using the minimum spanning tree without explicitly including the

exponentia number of constraints.



1.3. Research Organization

The material presented in this dissertation is organized as presented in Figure
1.1. The boxes with thicker outline represent origina contributions of the author for

this dissertation

FINDINGS, CONTRIBUTIONS AND LITERATURE REVIEW
CHAPTER 1

MODEL 1 MODEL 2: MODEL 3
MIXED INTEGER FORMULATION QUADRATIC OBJECTIVE FORMULATION EMBEDDED MST FORMULATION
CHAPTER 2 CHAPTER 2 CHAF’TER 4

FORMULATION FOR FORMULATION FOR
WEIGHTING METHOD COMNSTRAINT METHOD

EVALUATION OF SEARCH FOR NEW

NINE ORIGIMNAL CASES PARETCQ OPTIMAL POINTS
SET OF 1000 WEIGHTS

I , -

CRIGINAL PEARYTIGHTER PFA
BOUNDS BOUNDS
! !

APPLICATION OF BRANCH AND BOUND, RELAXATION
AND DECOMPOSITION TECHNIQUES

Figure 1.1 Dissertation organization

Model 1 includes methods to solve the cases (weight assignments for
objectives) with long solution time as identified in Moglen, Gabriel and Faria (2003).
New random weights were generated creating cases that proved even more difficult to
solve in terms of computing time. Also, this dissertation expands Moglen, Gabriel
and Faria (2003) by including a formulation using the constraint method instead of
the weighting method originally published.

Model 2 includes methods to solve the challenging cases presented in the
paper by Gabriel, Faria, and Moglen (2005). The parcelsin that work were divided
into quadrants where a certain compactness measure was applied related to an outer
rectangle encompassing all developed parcels. This research looksinto a

decomposition of the formulation by those quadrants and also by zones and quadrants



proposing a possible decomposition strategy based on the structure of the
formulation We did not applied decomposition or relaxation methods to solve this
model, rather a high level view of the possible decomposition strategy was presented.
Model 3 deals with an innovative application of the Minimum Spanning Tree
problem used to measure the compactness of the developed area. This work was

presented by Faria and Gabriel during the INFORMS conference in Denver 2004.

1.4. Difference from Previous Work

This research differentiates itself from previous work in the following aspects:

1.  Innovative use of the minimum spanning tree (M ST) as a measurement
for compactness in a multiobjective optimization problem applied to land
development. To the best of our knowledge no one has set up an embedded minimum
gpanning tree within this setting.

2. Combinationof well-known techniques such as minimum spanning
trees, shortest path method, relaxationand decomposition methods, combined in a
novel way with graphical and spatial geographical information systems (GIS) ina
multiobjective setting for land devel opment.

4.  Implementation of decomposition and relaxation techniques for the
weighting method for the land development multiobjective optimizationin anew
way.

5. The formulation mentioned in literal 1 has an exponential number of
variables and constraints. An approach to reduce the number of variablesand
constraints was used, which allows the problem to be solved without explicitly use all

constraints.



1.5. Usability of the Models

We expect that the three models could be used in awide variety of practical
and academic settings.

Perhaps the first model, due to its mixed integer linear formulation and
decomposition approach would be attractive to land development stakeholders. We
envision this tool as an aid in negotiations over the impact of different policies for
zoning, development, and even future transportation initiatives. For academics this
model presents an example of mixed integer programming and techniques to solve
large scale models by using decomposition, relaxation, column generation and
constraints generation strategies.

The other two models, due to their higher level of complexity might be less
appealing to practitioners as compared to the first one, although they consider
minimizing sprawl as one of the objectives which would be of interest to the planning
community.

For the advocates of compact land devel opment, we hope these models will be
auseful tool to understand the long term implications of land development decisions.
Moreover, the results of relaxation of zone restrictions can be readily applied to
support current tendencies of mixed zoning to contain sprawl and encourage walkable
communities.

We aso envision the models to be used as an example of what can be done for
multiobjective optimization applications and decomposition techniquesin

mathematical and engineering settings both in practical and academic settings.



1.6. Literature Review

This section is divided into five areas starting with a discussion on
compactness measurements and sprawl, followed by a brief review of neoclassical
economics that predict land development, and prescriptive approaches aimed to plan
the development. The last two sections are dedicated to present two land devel opment
models used in subsequent chapters.

The development of land is a necessity for human kind, as the population
grows, the need for housing grows too. As the economy expands, businesses extend
their operations and as a result new facilities are built. Deperding on the locatiors
selected, these new developments could cause damage to the environment or to the
community itself. “ Sprawl growth” is by definition unplanned, randomly selected,
scattered and typically outside of traditional development areas. Take for example the
definition presented in Gillham (2002):

“Sprawl is a form of urbanization distinguished by leapfrog
patterns of development, commercial strips, low density, separated
land uses, automobile dominance, and minimum of public open
space.”

Bammi and Bammi (1979) mention this form of sprawl, “linear |eapfrog
fashion”, as the historical tendency of development in Du Page County near Chicago,
lllinais.

This chaotic development translates into the need for infrastructure in the
form of water and sewer lines, power lines, sidewalks, communication networks,
school districts, etc., required to support small development at relatively remote

locations. Gilbert et al. (1985) recognized the desirable effects of compactness of the

developed area as a lowering factor in the cost of land development. Thereisan
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economic cost associated with building such an infrastructure financed from
collection of taxes. There is an environmental cost measured in increased pollution,
and there is also an ecologica cost measured in reduction of natural resources. The
undesirable effects of sprawl have prompted federal and state agencies such as the
U.S. Environmental Protection Agency (EPA), the American Association of State
Highway Transportation Officials (AASHTO), the University of Maryland, and the
Governor of Maryland office among others to create rationalized plans for land
development. Such plans are focused on preventing sprawl in order to reduce or
“minimize” the impact on cost and the environment, while still promoting economic

growth and providing the required housing for the community.

1.6.1. Definition and Measures of Compactness and Sprawl

“Urban Sprawl islow density, automobile dependent development
beyond the edge of service and employment areas. It is ubiquitous
and its effects are impacting the quality of life in every region of
America, in our large cities and small towns’ (EPA, 2005)
Measuring the compactness of aland development project is not as simple as
it seems. Knaap, Song and Nedovic-Budic (2004) wrote:

“Despite the release of several new sprawl indexes, the
measurement of sprawl remains an illusive task”.

Wolman et al. (2004) agrees, defining what is meant by sprawl, how it should
be measured, and what geographical area and type of land should be considered are
key factors required to understand the problem and although many researchers have
tried no consensus has been reached. The difficulty might be in the multidimensional
aspect of the problem where each dimension requires a different measure such as the

ones proposed by Torrens and Alberti (2000): density, scatter, leapfrogging,
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interspersion, and accessibility, or the ones proposed by Galster et al. (2001): density,
continuity, concentration, clustering, centrality, nuclearity, mixed uses and proximity.
Gillham (2002) claims that sprawl can be seen from an airplane, the main
characteristic is the presence of a pattern of developed conglomerates of land
surrounded by forests and farms.

Perhaps few of the common descriptions of sprawl include that the sprawl
phenomenon is found outside the cities where the new developments are taking place.
It isidentifiable by the predominarce of low density developments (Wolman et al.
2004, Galster et al. 2001), with service and commercial areas reached by vehicle and
not primarily by walking due to their separation from the residential areas. These
developments are associated with an ad hoc or unplanned fashion (Gillham, 2002).
Another term cited in the literature of sprawl is leapfrog development (Bammi and
Bammi, 1975; Heim, 2001; Gillhamm, 2002) which refers to the scattered
development of land with forests or farm land in between.

Density can be measured as the number of people per unit of area, or as the
number of dwelling units per unit of area (Gillham, 2002). Density is the most widely
used indicator of sprawl (Burchell and Listokin, 1991; Black, 1996; Torrens and
Alberti, 2000; Galster et al., 2001). Galster et al. (2002) proposed the measurement of
density as the number of residential units per available area for development, this
measure eliminates the commercia and industrial dwellings that are more likely to be
clustered together, and a so eliminates the parks and areas not available for

devel opment.
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1.6.1.1. Cost of Sorawl

Almost all the literature about sprawl associates the negative impact of sprawl
with the higher cost of infrastructure.

“Sprawl is creating a hidden debt of unfunded infrastructure and
services, socia dysfunction, urban decay and environmental
degradation”. (EPA, 2005)

It seems clear that every unit developed either for commercial, industrial or
residential use requires basic services such as electricity, telephone, and some sort of
road access, besides service support such as schools, police stations, firefighting
stations, etc. If we analyze the cost of connecting the new development to the existing
network, we will find a variable cost which is proportional to the distance from the
new development to the point of connection, plus some associated fixed cost. So we
would expect that the further away a new development is from the interconnection
points the more expensive it is to provide the service. Since one of the characteristics
of sprawl is having a*“leapfrog” type of development with pristine land in between, it
is expected to have higher costs as compared to a development plan that maintains a
tight distance to the connection points (cities, hubs, highways, etc).

The negative effects of sprawl can be a measure of the cost to society, those
unwanted factors are multiple. They cover alarge spectrum of social, environmental
and technical areas. Some of these factors are traffic congestion with the associated
noise and air pollution (Black 1996, Downs 1999), environmental contamination and
the destruction of ecosystems (Rees, 1991, Sierra Club 1998), conversion of farmland
to urban uses (Bryant and Johnson, 1992, U.S. General Accounting Office 1999).

There is also a monetary cost to the public as raised taxes are needed to pay for
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services such as police and fire departments, infrastructure such as new schools, and
roads. Utilities such as water and sewer (Burchell et al. 2000) must be stretched much
further to serve the same number of people than they do in the city (Sierra Club
1998). A quick search of “negative effect of sprawl” using Google reported about
118,000 links (April 2005) this provides an idea of how controversial isthistopic and

how many sources have looked into the sprawl phenomenon.

1.6.1.2. Economic Reasons for Sorawl

The land use in the United States is mostly driven by economic factors rather
than by state and regional legislation (Lewis 2001; Gillham 2002). It is a matter of a
simple check of the available residential units for sale, to find out that there are many
properties located in rural areas whose cost are considerably lower thanthose in the
city or around its immediate borders. This cost factor has made many corporations to
move from the city to the rural areain a search for lower costs, better lifestyle and
less congestion (Heenan 1999, Gillham 2002). Some homeowners are willing to take
longer trips from their residences to their workplace as a tradeoff to be close to open
spaces (Wu and Plantinga, 2003).

Gillham (2002) identifies four factors that promote or make sprawl. Land
ownership and use isthe first. Based on the rights of the owner, the land can be sold,
divided, built on etc. These decisions depend (in most cases) on the land owner and
would be driven by the economies of the region and the market. Since 70% of the
U.S. land is privately owned, there is a big portion of the decision of land use |eft to
the land owner. The second factor identified as a cause of sprawl is the transportation

patterns. It seems rather clear that without a transportation network to tie together the
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places where people and industries settle it would be impossible to have sprawl.
Telecommunications has earned a third place on the list. Since in today’ s world it is
easy to communicate with ailmost anyone from anywhere, now the geographical
location of the business and individuals is less important than ever before. Initialy it
was the telephone that permitted businesses to be far from each other and still
communicate. Today, the computers, internet, cellular technology and satellite
communication reduce even more the geographical barriers to do business. Finally the
regulations and standards are the ultimate factor that defines the development pattern.
How the land is developed and for what use is mostly determined by the economic
factors Although there are some zoning and density regulations to prevent or reduce
the arbitrariness of the development decisionthe final use of the land is mostly

dictated by the owner.

1.6.2. Predictive Land Development Models

These models are based on the “first principles’ or “neoclassical” tradition of
economics focused on explaining and predicting land devel opment. This theory of
land development describes the uses of land as they change from one type to another,
brings an explanation of why these changes occur, what causes these changes, and
what are the mechanisms of change. Consistent with the neoclassical approach, they
proceed from fundamental assumptions about consumer utility maximization and
producer profit maximization. Thereis alarge literature of land development based
on these principles, most of it built upon von Thiinen’s results.

In 1842 Johann-Heinrich von Thinen published a model for land development

based on a central market which isisolated from any external influences and
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surrounded by unobstructed and unoccupied land with identical climate conditions
(Thunen, 1826). The value of the land, given all other factors being equal, is highest
in the close proximity to this market place, and reduces as the distance from the
marketplace increases.

“The basic principle was that each piece of land should be devoted

to the use in which it would yield the highest rent” (Hoover and

Giarratani, 1984).

This model considers the land development as concentric rings with the
marketplace in the center. The most profitable perishable goods with high transport
costs would be located close to the market, while those less profitable would be found
in the outer rings. The original simplistic assumptions used to explain this land rent
theory were relaxed by von Thiinen himself and by other researchers (Romanos,
1976; Wheeler and Muller, 1981, Hoover and Giarratani 1984).

As amore recent example of the neoclassical approach to land economics,
Alonso (1964) describes and explains the residential location of individual
households and the resulting spatial structure of an urban area as a function of the rent
paid. The rent paid isin time a function of the distance to the market place (city
business district).

A different theoretical framework focus on the agents operating in urban
contexts and the interactions among them, they take into account the market structure
of the urban setting (Christaller, 1966; Pred, 1966; Myrdal, 1957).

For areview of land use change models that include social driverssee
Agarwal et al. (2000). For a brief review of land development modeling and

economics since von Thiinen, see Briassoulis (2000).
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A distinct approach to predictive land use model is the agent-based method.

In this approach, the decisions of individual agents are modeled, and their actions are
the product of heuristics applied under limited foresight, unlike the perfect knowledge
and rationality assumptions of the neoclassical model. An example of an agen-based
model is Costanza and Wainger (1993) who discuss the extremely complex and
nonlinearities of the relations between economics and ecology. This level of
complexity influences the predictability of the models, and therefore their use. These
relationships require more complex models with larger number of inputs that are
sometimes difficult to estimate.

The models presented in this dissertation consider, as one objective, the
maximization of profits obtained by a development strategy (among other objectives).
In this sense it is broadly consistent with the neoclassical economic concepts.
However, the models of this thesis are not meant to be predictive or explanatory of
land development in the way the above models are. Rather the models proposed here
are normative, suggesting alternative desirable patterns of development for
consideration by planners. A further difference with some of the neoclassical models
is that the compactness measurements presented in this work are not focused on
development around a central market, rather two measurements are used. The first
one minimizes the rectangle that encloses all developed parcels (previously developed
and selected for development) while the second measurement minimizes the distance
required to connect the parcels selected for development to the infrastructure of
previously developed parcels (existing infrastructure). This infrastructure is modeled

as a network where the parcels are nodes and the arcs are the distances between
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parcels. However, it would be possible to change the last measurement to minimize

the distance to highly populated areas or markets (cities).

1.6.3. Normative Land Development Models

One of the early works that analyzed land development and optimization
problems was by Garfinkel and Nemhauser (1970) who developed an algorithm to
optimize political district areas. They used the notion of compactness to solve a
political redistricting problem which seeks to distribute the population into districts
based on contiguity of geographical regions and density of population. They identify
at least two possible measures of compactness, one related to geographical
compactness and a second one related to population compactness. They depict a
compact region as “somewhat circular or squared in shape rather than long and thin”.

Their two-phase method first generates feasible solutions for contiguous
districts, compactness and limited population deviation. Then, this procedure finds a
set of districts that cover each population exactly once, minimizing the maximum
deviation of any district population from the mean. Their model measures
compactness using two factors “distance” and “shape”. These definitions are derived
from continuity of the units that make up the district and the distance between them.
A district is defined as a connected graph with nodes where each node is a district
unit and each arc exists only if the nodes are contiguous. Two nodes are said to be

contiguous if the border between them is greater than a single point. Then the

2
compactness measure is achieved by computing a dimensionless factor ¢ = XI where
i

d; measures the distance between the two farthest apart units of the district called i
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andj, and where A isthe areaofthedistrictj. The distance between districtsis

determined by the shortest path from one point to another since the districts are
contiguous. Their model assigns units to districts with compactness and contiguous
considerations. The work presented in this dissertation employs similar concepts but
in different ways, the shortest path is used to detect cyclesin a minimum spanning
tree created as a measurement of compactness, we do not impose the continuity
requirement but we do promote compactness developments as the tree connecting
developed parcels is minimized.

Later, Bammi and Bammi (1975, 1979) devel oped a multiobjective
optimization model with five objectives. The first one minimized a measure of
“conflict” between adjacent land uses. They assigned a conflict value for adjacent
land uses by creating a table and assigning values to the different possible
combinations of adjacent land use, the criteria for weighting these were based on
aesthetic factors, noise, pollution, density, transportation, and social and
psychological concerns. The second one minimized travel time measuring the
distance traveled on trips between the existing devel opments, and the new land
allocated for development by their model. The third objective, minimization of tax
cost, included the cost of providing services such as schools to the new communities
but aso the revenues from taxation to commercial districts searching for a balanced
devel opment between costs and revenue sources. The fourth objective, minimization
of adverse environmental impact, used an environmental weighting matrix for which
a committee of expertsin severa fields provided their assessments using a scale from

zero to twenty for the development. Finally the fifth objective was minimization of

18



cost to build community facilities such as schools, parks, sewage plants, etc. The
constraints of the problem were growth requirements per type of use. Their model
assigned acreage to each land use type and they considered seven different use types,
residential (three sub categories low, medium and high density), commercial, office,
research and development, manufacturing, institutional, and open space (two sub
categories local and regional). The compactness of the development can be seen as
addressed by the minimization of traveling time between existing devel opments and
new developments. Thisis in a sense a compactness measure but the net result might
allow for high density zones to be located near existing population centers (high
accessibility) while the low density zones, mostly residential in nature, assigned to the
surroundings (low accessibility). In our work by using the minimum spanning tree we
are minimizing the total interconnecting distance among developed parcels, this
seems to ssimplify the calculations required to compute the total traveling distance of
new owners.

Wright, ReVelle, and Cohon (1983) presented a multiobjective integer
programming formulation for land development with an efficient algorithm to find
Pareto optimal solutions. They looked at a weighted combination of three objectives:
maximize compactness, maximize area, and minimize cost subject to budget
constraints, contiguity constraints, number of cells, inclusion of cellsin the solution,
area constraints regularity of the grid and expansion. The decision variables were to
acquire or not acquire individual parcels. Here the constraints included a requirement
for contiguity meaning that the land developed should be contiguous, the more

general problem of maintaining a compact design without the contiguity requirement
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requires a different approach. They measured the external border of the development
as definition for compactness in their weighted combination of three objectives. This
work was extended later by Benabdallah, and Wright (1992). Our work does not
impose the contiguity requirement and does not require the land to match a grid
pattern required by Wright, ReVelle, and Cohon (1983).

Gilbert, Holmes and Rosenthal (1985) created a four-objective model to
minimize acquisition cost, minimize distance to an amenity, which is a place or cell
designated as desirable to be close in distance, maximize distance to a detractor or
undesirable cell, and minimize a shape measure. Their definition of compactness was
the product of the perimeter and the diameter of the set selected. In this setting the
perimeter was the number of outside edges and the diameter was the maximum
distance between any two cellsin the shape. Outside edges were those that divided a
cell selected from others that were not selected. An edge between two contiguous
selected cellswas interna. They used an equally-sized grid to measure the cells so
that the number of edges could be used as a measure of distance. They presented a
method to generate points that belonged to the Pareto optimal set. They claimed that
pursuing the complete set of Pareto optimal points was too large of atask from the
computational point of view and cumbersome from the managerial point of view.

The book edited by Beinat, and Nijkamp (1998) includes a set of papers which
combine multiobjective land use along with GIS components, and Pullar (1999) who
presented a methodology to include spatia iterations as constraints into a multicriteria
decision- making process for land allocation with a geographical information system

(GIS). Thelogic of the algorithm was based on computing a weighted average of
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factors for each location, then ranking them to arrive at the best solution. The
algorithm was applied to find the optimal location for timber harvesting evaluating an
environmental factor (related to environmentally sensitive areas), ayield indicator, a
cost indicator and an allocation indicator related to mill capacity.

Balling et al. 1999 created a multiobjective optimization formulation for urban
planning where they minimized traffic congestion, cost related to the maintenance of
the network and taxes associated with the land development and zoning
considerations, the third objective considered was the minimization of change
including rezoning, upgrades to the system, etc. They used genetic agorithms to find
aset of Pareto optimal developments.

Similarly Vatalis and Manoliadis (2002) used a multicriteria decision system
to find the best location for a waste disposal site. They employed a weighted function
of environmental, technical and cost factors to evaluate and rank alist of possible
sites. By judging for the number of references obtained in this subject, there are many
other researchers who have done multicriteria decision and land development but they
seem to be focused on the same principles of the last two references mentioned which
are aweighted sum of factors and ranking of possible solutions rather than modeling
and solving an optimization problem.

Wu and Plantinga (2003) analyze the impacts of openspace that produce
leapfrog development they measured the distance between residences and the city
business district as the primary amenity for the resident.

Wolman et al. (2005) use the definition of proximity as:

“the degree to which cross-area observations of a particular land
use or pair of land uses are close to each other, relative to the
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distribution of al land comprising the study area. Proximity is
maximized when all locations with the highest densities of the
given land uses are closest together. Low levels of proximity are
more sprawl-like.”

Gabriel, Faria and Moglen (2005) approached the measure of compactness as
the square of the diagonal of arectangle that encloses al developed parcels. This
measurement was proven to have some shortcomings despite the nice mathematical
properties of convexity. If the solution proposed to develop a group of parcelsfalls
inside the rectangle formed by the parcels aready selected then the compactness
measure does not change. Any solution within that rectangle will be considered
equivalent. Moreover, this measurement is dependent on the orientation of the axis
used to take the measure. The authors worked around the shortcomings of such
compactness measurement by dividing the area under study into quadrants, some
guadrants resulted with more potential for changes in compactness than others due to
the location of the parcels defining the borders of the quadrants.

Aerts et al. (2005) have proposed a goal programming model that contains
three spatial compactness objectives using a GI S database and a multicriteria decision
making process they search for the lowest cost and also at maximum compactness for
land allocation. These spatial compactness objectives are based on size, perimeter and
area of acluster of the same land use. They have divided the land space with a grid
with rows and columns, each cell is then assigned to aland use by a model that
minimizes cost. Other models are presented considering contiguity of the land

selected with same land use. This non linear combinatorial optimization problem was

solved using simulated annealing and genetic algorithms.
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1.6.4. Work by Moglen, Gabriel and Faria (2003)

The authors presented a model to choose the best development strategy as
measured by aweighted sum of the benefits obtained by the stakeholders involved in
the land development process. The decision variables were to develop/not develop
each parcel in anavailable set and the constraints were related to the growth of the
community. The following stakeholders were considered:

a  TheHydrologist: This stakeholder group has an interest in preserving
the environmental conditions of the land as measured by the detriment in the capacity
of the soil to permit the absorption of water due to the development of the land (i.e.
imperviousness).

b.  TheConservationist: A stakeholder group focused on the preservation
of the natural resources required by the different species of flora and fauna found in
the undeveloped land. The goal of this group isto maintain certain pristine areas
undevel oped.

c.  TheGovernment Planner: This stakeholder class seeks to maintain an
orderly development of communities and is responsible for insuring the existence of
sufficient schools, roads, and supportive services such as sewer, fire and police
stations, etc.

d. The Land Developer: The collection of individuals and enterprises
whose main goal is to obtain an economic benefit from building houses, commercial
sites, governmenta and industrial facilities.

The local government has established different zone categories for the land to

be developed, for example in the state of Maryland the following land uses can be
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found : residential (low, medium and high density), commercial, institutional,
industrial, extractive, open urban land, crop land, pasture, deciduous forest, mixed
forest, bush and bare ground.

Developers must adhere to the government’s stated land use. These different
zone categories can be seen as a mechanism used by the government to maintain
groups of similar use within the communities. Consequently, residential land use
parcels are expected to be surrounded by other residential parcels, smilarly parcels
designated for commercial and industrial uses would be contained in commercial
areas and industrial parks, respectively. In spite of what we just stated, the modern
land development tendency to prevent sprawl seems to integrate commercial and
residential use as to minimize automobile usage rather than develop them in different
in zones.

Based on the research of Arnold and Gibbons (1996) and Schueler (1994)
where imperviousness is used as an index of urban impact, the objective of this group
is to minimize the imperviousness of the land as aresult of the development. In
Moglen, Gabriel and Faria (2003) the Hydrologists objective function presented

sought to minimize the total change of imperviousness defined as

minén (aDl.d) (1.2)

i=1
where n was the number of total parcels under consideration, d, was aland

development variable for parcel i equa to 1 if parcel | was developed, and O

otherwise, DI, was the change in imperviousness associated with developing parcel i,
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and a wasthe areaof parcel i. The Conservationist objective function minimized

the development in areas defined as environmentally sensitive expressed as

ming ad, (1.2)

il sc
where the set Sc was the subset of (restricted) parcels that the Conservationist wanted
to stop from being developed. The Government Planner sought to steer development
inside the zones defined as Priority Funding Areas or PFA’s for short. These were
regions where the local government provided economic benefits if the development

took place, the objective function can be written as

max & ad, (1.3

il PFA
where PFAwas the set of parcels designated as Priority Funding Areas. Lastly the

land Developer’s objective was to maximize net profit computed as:

max ér;[ pd; (1.4

i=1
where p, was a measure of the economic profit of the parcel i if it was developed, and
was statistically determined from actual data.

The land use of each parcel (zone type) was fixed beforehand using a heuristic
that considered the distance to existing industrial parks, residential zoning and mayor
highways. The problem constraints included minimum and maximum requirements of
new housing in terms of units, commercia area and industrial area. The type of
development permissible was fixed for each parcel and the development of the parcel
was either complete or none meaning that partial development of a parcel was not

considered valid. The authors presented a picture of the tradeoffs between
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stakeholders, and a novel framework for decision making in the land development

area

1.6.5. Work by Gabrid, Faria and Moglen (2005)

Later Gabriel, Fariaand Moglen (2005) extended Moglen, Gabriel and Faria
(2003) by including in the decision variables the zone type for eachparcel, and by
changing the planner’ s objective function to maximize the compactness of the
development. This was accomplished by computing the square of the diagonal of an
outer rectangle drawn by tracing horizontal lines over the northernmost and
southernmost points, and vertical lines over the westernmost and easternmost points

as presented inFigure 1.2.
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Figure 1.2 Measure of compactness as the diagonal of the “outer development box”

The actual measure of compactness used was the square of the length of the
diagonal (for computationally attractive reasons) so the objective function for the

planner became:
min:(r, - ro)2+(C1' Co)2 (1.5)
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where r, was the southernmost coordinate, r, was the northernmost coordinate, c,was
the westernmost and ¢, the easternmost.

This measure of compactness was then evaluated under a rotated axis creating
a concept of optimization of land development along a path or corridor as presented

inFigure 1.3.

[ IPreviously Developed Parcels
[ lUndeveloped Parcels

Figure1.3 Corridor with axesrotated

Besides a different objective function for the Planner in Gabriel, Fariaand
Moglen (2005), the constraints of the problem were further enhanced by a
requirement to assign land use to the parcels. Some parcels were fixed in the type of
use available, some others were free to be selected. However, a planning rule applied
was that before any of the free zoned parcels could be assigned to any land use, all the
available parcelsin that land use must be chosen first. For example if there were 15

parcels available for development in the residential high density zoning, all of those
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should be included in the devel oped solution before any parcel in the “free” zone set
could be selected for development for residential high density purposes.

The weighting method was the approach used to solve the multiobjective
optimization problem. Nine different weight vectors were used for the stakeholders
objectives, and the results of the optimization were analyzed. The nine vectors used
were selected to find extreme development points of view mixed with equally
weighted consensus as presented in Table 1.1. For example in the case “Planner
Alon€e’ the Planners’ objective (compactness) got aweight of 1 while al other

objectives got aweight of 0.

Planner Hydrologist | Conservationist | Developer | Relative
(Compactness) (Imp. Change) | (Env. Sensitive (Profit) Gap
Area)
&
g
1| PlannerAlone 1 0 0 0| b5e-005
2| Planner Pareto 1 0.001 0.001 0.001| 5e-005
3 Hydrologist 0 1 0 0| 5e-005
Alone
4 Hydrol ogist 0.001 1 0.001 0.001 | 5e-005
Pareto
5| Conservationist 0 0 1 0] 5e-005
Alone
6| Conservationist 0.001 0.001 1 0.001| 5e-005
Pareto
7 Developer 0 0 0 1| 5e-005
Alone
8 Developer 0.001 0.001 0.001 1| 5e-004
Pareto”
9 All 1 1 1 1| 5e-005
Perspectives
Table 1.1 Weight vectorsfor each stakeholder’s objective
Note that the rightmost column of Table 1.1 contains avalue for the relative
gap defined as

* A relative gap of 5e-005 was not achievable within a reasonable amount of time. The authors thus
slightly relaxed the problem and it solved with arelative gap of 5e-004 instead.
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|Best Solution - Best Bound|

Relative Gap = Best Bound

(1.6)

This value was required because the solution of the problem for some of the
weight vectors would require extremely long times (over 20 hours in some cases).
The tolerance chosen is really extremely small, it is possible that in fact the best
solution has been found but the solver keeps trying to achieve a bound that cannot be
achieved. The relative gap tolerance not necessarily implies that the solver accepts a
suboptimal solution in lieu of the optimal solution but that case is il possible. This
tolerance is called relative because the value of the gap is divided by the best bound

thus creating a relative value.

1.7. Chapter Conclusions

Finding the best land development plan is not a new problem, many
researchers have provided formulations and economic theories aimed to provide an
answer to this dilemma, some by rigorous math models, and some by envisioning the
ideal community based on environmental requirements and then proposing guidelines
to achieve the ideal solution From the early work of von Thinen the concept of
compactness can be seen as develop the land around a central point (could be a city)
outwards facilitating the communication between those individua living in the
community. The model developed Gabriel, Faria and Moglen (2005) also looks to
maximize compactness but this measure is determined by the parcels that define the
outer rectangle, inside the rectangle the selection of the parcels does not affects the
compactness of the general development. Other compactness measurements that

consider the perimeter of the development have been used on a small scale. Since the
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compactness measure seems to be an elusive task, a new compactness measure
proposed in this dissertation comes to increase the general body of knowledge on this
area. This particular aspect of the dissertation can be applied to solve large scale
problems of minimum spanning trees in embedded in optimization problems, not

necessarily related to land development.
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Chapter 2 Land Development Mixed Integer For mulation
In this section we present an agorithm to solve the multiobjective formulation
for the land development problem presented in the paper of Moglen, Gabriel and
Faria (2003). This formulation has the following considerations:
-All parcels belong to one predetermined zone category, the parcels can be
developed only in that zone.
-The Hydrologist is concerned with the minimization of the imperviousness
change suffered by the soil by effect of the development of the parcel.
- The Conservationist is concerned with steering the development away from
some environmentally sensitive areas.
-The Government Planner is concerned with the maximization of the
development in the so called Priority Funding Areas (PFA’S).
-The Developer is concerned with the maximization of the profit obtained by
the development of the parcels.
The objective of this section isto expand the work of Moglen, Gabriel and
Faria (2003) by:
a) Presenting alarger set of “Pareto optimal” solutions.
b) Using the constraint method to solve the multiobjective problem.
c) Presenting anagorithm to derive an approximation of the Pareto optimal
Set.
d) Anayze the effectiveness of Lagrangian relaxation, branch and bound and

Dantzig-Wolfe decomposition when solving the problem at hand.
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Previoudy in Figure 1.1, we presented the roadmap of the dissertation goals.

Now we present the branch for this chapter in Figure 2.4.

MODEL 1:
MIXED INTEGER FORMULATION
CHAPTER 3

| |

FORMULATION FORMULATION GOAL PROGRAMMING
FOR WEIGHTING || FOR CONSTRAINT|| FORMULATIONS
METHOD METHOD

SEARCH FOR NEW
PARETO OPTIMAL POINTS
SET OF 1000 WEIGHTS

I I

ORIGINAL PFA| | TIGHTER PFA
BOUNDS BOUNDS
I I

APPLICATION OF BRANCH AND BOUND, RELAXATION
AND DECOMPOSITION TECHNIQUES

EVALUATION OF
NINE ORIGINAL CASES

Figure 2.4 Resear ch structure for Chapter 2

The original paper described before under 1.6.4 Work by Moglen, Gabriel and
Faria (2003) was conceived as a mixed integer programming problem with multiple
linear objectives and linear constraints. The solution approach was to use the
weighting method and a set of nine cases were eval uated.

This chapter expands that work in two areas: First it looks into the nine cases
evaluated and identifies a case for which the solution took relatively longer time as
compared with the rest. Thenan algorithm based on relaxation and decomposition
methods is applied to solve the problem. Further, a set of 1000 new weights were
evaluated using three different bounds on development for the priority funding areas
to test the efficiency of the proposed algorithm. The second area focuses on setting up

aframework to solve the land development problem using the constraint method.
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2.1. Objective Functions

As previously introduced, the Land Development Planning Problem can be set
up as amixed integer programming problem considering four stakeholders. The

stakeholders and objectives used in Moglen, Gabriel, and Faria (2003) were:

The Hydrologist: min én_ aDl,d (2.1)
ia
The Conservationist: min § ad, (2.2)
s
The Government Planner: max g ad, (2.3
it PFA
The Developer: max én_ pd. (2.4)

i=1
where Sisthe set of environmentally sensitive parcels, PFA isthe set of preferred

funded parcels and n is the total number of parcels available for development.

2.2. Constraints

The constraints for this problem were to reach alevel of development to cover
the requirements of residential housing and areas for commercia and industrial
growth. These constraints are required to depict market requirements, thereisa
minimum number of units required to accommodate the growth of the population, but
there is also a maximum number of units that would be bought during the period.

Additionally, there are minimum and maximum requirementsin terms of area
developed in the priority funding areas. This constraint is considered a complicating

constraint. The reason for this characterization is that if this constraint weren't
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present, then the problem could be easily decomposed into five subproblens, one for

each zone, as described in alater section.

2.3. Formulation Using the Weighting M ethod

Consider that there are five zones z numbered 1 to 5 representing
respectively, residential low density, residential medium density, residential high
density, commercia and industrial zones. Also, consider that each zone z has
N, parcels. Each parcel i belongs to a zone type. In order to reveal the structure that
facilitates the decomposition of this formulation by zone types, the subscript i
previously used has been substituted by a subscript z,n where z is the zone type and n
represents the number of the parcels within that zone. u,, represents the number of

dwelling units of then™ parcel in zone z. Then the mathematical formulation used for

this model can be written as follows:

5 N;

Min: § & &,.D!,.d,., (2.5)
z=1 n=1
S o

Min: 3 Q a,,d,, (2.6)
z=1n S
05 [o]

MaX: a a %,ndz,n (27)
z=1nl PFA
5 &

Max: g a p,.d,, (2.8)

z=1 n=1
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Subject to:

5
PFA£Q & a,d, £PFA (2.9)
z=1 nl PFA ' ’
gl -
RLDE£Q u,,d,,£RLD,z=1 (2.10)
n=1
gz -
RVMDE£ g u,,d,, £ RMD,z=2 (2.11)
n=1
gs -
RHD£Q u,,d,, £ RHD,z=3 (2.12)
n=l1
gzz
COM £q u,,d,, £COM,z=4 (2.13)
n=l
gls -
INDEQ u,,d,, £IND,z=5 (2.14)
n=1
d,,1 {0,nT {N;}," z1 {1,2,3,4,5} (2.15)

In Moglen, Gabriel, Faria (2003) the weighting method was used to find a set
of solutions to the problem. Not all of the points found in Moglen, Gabriel and Faria
(2003) are nondominated, because since some of the weights used are zero, they may
be “weakly Pareto optimal”. This means that they will outperform or match any other
solution for the objective with positive weight, but there might be another solution
with the same value on thet objective and better value for at |east one other objective.
For the cases in which al weights were positive, the resulting solutions are Pareto
optimal (Cohon 2003). By applying a weight to each objective the formulationcan

be written as:
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N

Z

. S gz 8 o 8 o 8 o
Mln:V\éa a a'z,nDlz,ndz,n +W2a a az,ndz,n - W3a a az,ndz,n - W4a. a pz,ndz,n

z=1 n=1 z=1d <

st.

5 —
PFA£Q & a,d,, £PFA

n“zn
z=1nl PFA

Ny -
RLD£§ u,,d,, £RLD,z=1

Z,Nn~=zn
n=1

Ny -
RMDE£ § u,,.d,, £RMD,z=2

znzn
n=1

N3 I
RHD£ § u,,d,, £ RHD,z=3

zn-zn
n=1

Ny
COM £ Q u,,d,, £COM,z=4

z,nzn
n=1

N5 _
INDEQ u, . d, £IND,z=5

zn™zn
n=1

d,, T {01},nT {N}," zI {1,2,3,4,5}

z=1r PFA

z=1 n=1

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

The minus sign on the objective function for the last two objectives forces the

solution to be a maximization of those objectives. The bounds used are presented in

Table2.1.

Lower | Upper

Bound [ Bound
Development in Preferred Funded Area 2 1,000 | Acres
Development in Residential Low Density Zone 1,554 2,331 | Units
Development in Residential Medium Density Zone 8,190 12,285 | Units
Development in Residential High Density Zone 4,256 6,384 | Units
Development in Commercial Zone 270 406 | Acres
Development in Industrial Zone 179 268 | Acres

Table2.1 Lower and upper bounds for development
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It is convenient to group the terms in objective function by zone, so (2.16) can
be rewritten as:
S & & o 0
a QV\ﬂ.a a7,nD|zndzn TW. a aE,ndz,n - W3 a aZ,ndz,n 4a pzn zn = (224)
z=1€@ n=1 nl s nl PFA n=1 %]

It is also convenient to group the terms by each parcel so the objective

function (2.24) can be written as:

N

é (W@, DI, +wass, - wali™ - w,p,, )d, (2.25)

=1

y o,

3

where a -isthe area of the parcel if the parcel isin the environmentally sensitive area

or zero otherwise, and aPFAls the area of the parcel if the parcel isin the priority

funding area or zero otherwise. The term inside the parenthesis canbe computed for

each parcel as:
C,,=wa, D, +wa® -wa - w (2.26)

So the integer programming formulation for the land development problem can be

written as:
LDIP:
5 Nz
Min: § & C,,d,, (2.27)
z=1 n=1
st.
8 ¥ PFA BEA
PEFAfa a a,, d,, £PFA (2.28)
z=1 n=1
gz
u£gq uzndzn£u z=12,.5 (2.29)
T o
d,, T {01},nT {N}," zI {1,2,3,4,5} (2.30)
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Evaluation of the Nine Original Cases

In Moglen, Gabriel and Faria (2003) the problem was solved using nine cases

aspresented in Table 2.2.

Weights Original Objective Functions
% (Imp.
- IS Change)
> ® & | Hydrologist (Env. Sensitive (PFA Area)  (Profit)
% § ‘g c_% Objective Area) Conserv. Planner Devel oper
S £ § 2 | Area Objective Objective Objective
Case T ©O @ a|(hg (ha) (ha) ($10e6)
1H 1 0O 0 0 658.38 1,063.72 173.20 1,091.44
1C 0 1 0 0 727.13 17.00 153.41 1,207.87
1P 0 0o 1 0 760.86 1,007.96 343.65 1,229.96
1D 0 O 0 1 997.26 1,446.18 206.31 1,583.71
2 1 1 1 1 689.25 77.04 177.18 1,143.28
3H 2 1 1 1 661.71 491.82 182.21 1,096.24
3C 1 2 1 1 689.25 77.04 177.18 1,143.28
3P 1 1 2 1 693.99 77.04 208.53 1,153.50
3D 1 1 1 2 846.71 99.67 181.67 1,449.41

Table 2.2 Objective function valuesfor cases in Moglen, Gabriel and Faria (2003)

The notation for the case is the case (first digit) followed by the stakehol der
whose objective function has the greatest weight. For example 1H is the first case for
which the Hydrologist is optimized with aweight of one while al others are zero, 3H
is a case where the Hydrologists' objective function has a weight of 2 while the others
have aweight of 1.

The data used to solve the model was normalized in an attempt to reduce the
big differences in scale for the measurements of the objectives.

The normalization method used changed the scale of the original objective's
measurement for each parcel to a 0-100 scae applying the following formula.

Original Vaue - Min{ All Vaues}
Max{ All Values}-Min{ All Values}

Scaled Vaue =100

(2.31)
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The numbers presented in Table 2.2 represent the solutions obtained using the
original scale of the objectives. For the rest of this work we will be using normalized
data rather than real values unless otherwise noted. The normalized results are
presented in Table 2.3 along with an additional column to show the time required to

achieve the optimal solution.

Weights Normalized Objective Functions
3 (Imp. (Env.

- 5 Change) ' Sensitive (PFA .

> B g | Hydrologist Ared) Area) (Profit)

2 § o] & | Objective Conserv. Planner Developer

S £ § g |Amea Objective  Objective  Objective
Case T 8 & o |(ha (ha) (ha) ($10e6) | Time ()
1H 1 0 0 0 1,051.55 372.30 52.71 763.81 051
1C 0o 1 0 0 1,419.38 1.77 45.75 782.00 0.07
1P 0 O 1 0 1,547.89 294.34 79.39 800.59 0.07
1D 0 0 0 1 1,706.94 451.65 57.39 1,100.99 595.00
2 1 1 1 1 1,201.43 25.09 54.16 795.79 0.18
3H 2 1 1 1 1,084.72 173.06 54.51 765.80 1.08
3C 1 2 1 1 1,201.43 25.09 54.16 795.79 1.08
3P 1 1 2 1 1,221.01 25.09 62.62 802.47 0.24
3D 1 1 ) 1,502.61 31.85 55.79 1,008.64 0.07

Table 2.3 Normalized objective function values for the nine cases evaluated in Moglen, Gabriel
and Faria (2003) and execution times

Note how all but one case was solved in less than two seconds. The case for
the Developer alone took the longest time at about ten minutes (595 seconds). Now
we will explore other solution methods to reduce the computatioral time of that
particular case.

By carefully observing the weights selected for each of the cases one can
predict some conditions of the solutions. For example when the developer’ s objective
is optimized alone, we expect the solution to be binding on the maximum number of
parcels allowed for development since as the number of parcels developed increases

so does the profit. Similarly we expect the hydrologist’ s solution to be binding to the
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lower bound of developed parcels when this perspective is considered alone since the
lower the number of parcels developed the lower the imperviousness. In the case of
the government planner it is not possible to associate the solution to the bounds of
available parcels since the objective function tends to select as many parcelsin the
PFA area as possible so any feasible solution within the bounds of required

development per zone can be selected.

2.3.1. Branch and Bound

A traditional approach to finding the optimal solution is by use of the branch
and bound technique (for details of this technique see the Appendix section A 2.3.1).

Consider the solution to the integer relaxation found earlier. Relaxing the constraint

that forced the variables d,  to be binary variables, we obtained four parcels with

fractional values presented in Table 2.4.

We could take any of these parcels and create two problems, one in which the
parcel is forced to be developed and another one where the parcel is forced not to be
developed. For example take parcel di1 266 tO create two problems, one with an
additional constraint as:
di1266 =0 (2.32)
and the other one with
O11,266 =1 (2.33)

Clearly both cases are mutually exclusive since a parcel cannot be developed
and not developed at the same time, and they are also collectively exhaustive since

there is no other possible outcome for that particular parcel.
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Solving with the relaxed problem including constraint (2.32) provides an
optimal solution of z=-1102.43, while solving with constraint (2.33) provides an
optimal solution of z=-1102.39 as presented in Table 2.4. At this point we set the
lower bound to -1102.43 and since we have no feasible solution, the upper bound is
set to infinity. The tree with two branches is presented below with their respective

solutions:

d11266=0

d11066= 1

z=-1102.43

Fractional parcels:

z=-1102.39

Fractional Parcels:

d11,230 0.098413 d11.282 0.164835
d12’177 0.691223 d12’177 0.691223
dis11 0.077997 dis11 0.077997
d 15,251 0.855685 d 15,251 0.855685

© O

Table 2.4 Branch and bound technique at first level

These two solutions resulted in more variables being fractional, from each
branch we can create other branches by taking each fractiona variable and force it
binary.

There are some considerations as to which variable should be selected to
branch on. Previoudly, we selected d11 266 among four possible variables, now we
have a choice of four again for each of the two cases resulting from fixing the value
of d11,266. SOmMe researchers suggest that the best variable to branch on is the one
closest to 0.5 In our case that variable would have been di1 177. For continuity
purposes assume we selected first dig 266 and thendi2 177, the solution would look as

presented in Table 2.5.
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d11266=0 Oi1o6s =1

dip177=0 dip177=0
z=-1102.43 z=-1102.38

d11266 =0 di1oes =1

dip177=1 dipi77=1
z=-1102.42 z=-1102.38

Table 2.5 Branch and bound technique at second level

After these nodes have been evaluated we update the lower bound as the
minimum of the integer relaxations found, in this case it is-1102.43 (no change). The
upper bound is set to infinity since no feasible solution has been found so far (no
change).

The branches of the tree will grow until all variables in the solution are binary.
The only information known thus far is the upper bound on the objective function.
The tree although large does not have to be exhaustively enumerated. As previously
presented, there are three cases in which a complete branch of the tree can be
eliminated or pruned.

a) Pruned by infeasibility

This case arises when forcing a variable to be binary results in the problem
being infeasible. For example, if dis 251 which was a fractiona variable in Table2.4 is
forced to 1, then the problem becomes infeasible. This happens because the area of
that particular parcel combined with others already selected is larger than the upper
bound in industrial acres to be developed. Therefore dis 25 = O isrequired for the

problem to be feasible.
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b) Pruned by optimality

If we reach a solution in which all variables are binary, then we have obtained
afeasible solution which provides an upper bound on the value of the objective
function.

Since we are minimizing if we find one feasible solution we obtain an upper
bound to the problem. As we find more feasible solutions we could take the smallest
of them to be our tightest bound. Once we reach a branch that is optimal thereis no
need to further evaluate the branch since al variables are aready binary. The
information obtained in these cases provides valuable insight for the next case since
sometimes this solution becomes the best available feasible solution.

¢) Pruned by bound

Having an upper bound and alower bound on zis very valuable since when
the relaxed integer problem is solved at a node, if the solution goes over the upper
bound (minimization case) then we know that no matter what combination of
variables are tried, that branch will not reach an optimal solution because the bound
of the best value that can be obtained is aready been improved by another feasible
solution.

For example if parcel di411 isforced to zero, then the optimal objective
function of the integer relaxation is -1097.59 but this number is worse (higher) than
the current best feasible solution of -1099.03. Therefore, regardless of the selection of
the rest of the parcels, if this parcd is not developed, then it will be impossible to find
a better solution than the one at hand. This leads to cut the branch rooted at di4,11=0

by bound, since it will make no improvement to keep following that trajectory.



The solver evaluated over 2.1 million nodes before finally arriving at an
optimal solution using the branch and bound method, using a weight of 1 for the
Developer and O for al other objectives.

Next we will develop the Dantzig-Wolfe decomposition technique and the
Lagrangian relaxation methods tailored for the mixed integer land development
problem with a small reduced example followed by the proposed algorithm to solve

for alist of weighting vectors.



2.3.2. Dantzig-Wolfe Decomposition Technique for Land Development

Because each parcel belongs to exactly one of five different parcel sets, the

problem’s coefficient matrix has the structure presented in Table 2.6 below.

3 a,d 3 a,,d 3 a.d 3 a,,d 3 a,d
a al,n 1,n a. a2,n 2,n a. aS,n 3n a. a'4,n 4,n a. aS,n 5,n
nl PFA nl PFA nl PFA nl PFA nl PFA
3 a,d A a,,.d 3 a,d A a,,.d 3 a,d
a al,n 1n a a2,n 2,n a a?;,n 3n a a'4,n 4n a aS,n 5,n
nl PFA nl PFA nl PFA nl PFA nl PFA
N
8LD
a u].,ndl,n
n=1
N
8LD
a u].,ndl,n
n=1
N
g\AD
a u2,nd2,n
n=1
N
g\AD
a uz,ndZ,n
n=1
N
8HD
a. uE’:,ndS,n
n=1
N
SHD
a u3,nd3,n
n=1
N,
SOM
a u4,nd4,n
n=1
N
(6OM
a u4,nd4,n
n=1
N
6ND
a u5,nd5,n
n=1
N
6ND
a u5,nd5,n
n=1

Table 2.6 Structure of theland development problem

PFA
PFA

RLD

RLD

Since this is a multiobjective optimization problem, and the proposed method

for solving it was the weighting method, then the objective function is a weighted

combination of the four objectives as presented in (2.27).
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This structure suggests that if the first two rows are eliminated, then the
problem can be decomposed into five problems that can be independently solved.
However, the solution of such relaxation does not necessarily solve the origina
problem since the solution might be infeasible due to the elimination of the
constraints.

The advantage of this approach is that at a minimum, we have alower bound
on the value of the optimal solution. This information could be used during the
execution of the branch and bound optimization strategy to reduce the search space.
Also, in genera it will be computationally easier to solve five smaller problems and a
master problem than one large problem because the number of nodes required will be
significantly reduced therefore reducing also the amount of memory needed and the
execution time. Moreover, the Dantzig-Wolfe decomposition and the Lagrangian
relaxation approach provide a mechanism that result in the solution of the original
problem by iteratively obtaining better feasible solutions to the original problem via
combinations of solutions obtained from the relaxations.

The algorithm (presented in Figure 2.5) starts with a set of feasible solutions,
solves a restricted master linear problem and tests for optimality, if the solution is not
optimal more feasible solutions are incorporated into the set of feasible solutions, and

the restricted master linear problem is solved again.
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Step O Initialization
Find a set of feasible solutions by solving:

Lk

max. - a Cz,ndz,n
n=1

S.t.

N,
o - ~
ufgau,d, £u;, d, | {01}
n=1
at least once per zone

A 4

Step 1: Solve the Restricted Linear Programming problem RLPM
. 8 7t
Max: g -c*1 ,,
zt

s.t.

z T,
a 4 PFA™ ,,- § =PFA
z=1 t=1

T

§ o 2 ——
a a PFA"l, +S =PFA

z=1 t=1

o

al, =1"2z1z
t=1

A 4

Step 2 Solve the pricing optimization problems

%
zZ,=max:g ('Cz,n - (p1+p2)a;EA)dz,n' m,
n1
s.t.

— N, ~
u:£34 u,,d,,£u,.d,,1 {01}

n=1

Is any reduced
cost positive?

Step 3

Generate a new
solution

Figure 2.5 Dantzig-Wolfe decomposition algorithm
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The problems mentioned in steps 1, and 2 will be detailed in the next sections
along with a small example to detail the procedure, followed by a step-by step

description using all parcels from the work of Moglen, Gabriel and Faria (2003).

2.3.2.1. Dantzig-Wolfe Decomposition Reduced Example

To illustrate the decomposition structure of the problem, and the application
of the method, let’s start with a simple case of land development that has two zones
and three parcels in each zone.

L ets suppose that the data from the parcelsis as presented in Table 2.7, where
the first column (PFA) represents the area of the parcel in the Priority Funding Area,
the second column (IMP) represents the change of imperviousness due to the
development of the parcel, the third column (ENV) represents the area of the parcel in
the environmentally sensitive area, the fourth column (PRO) represents the level of

profit obtained by the development of the parcel, the fifth column (U) represents the

number of dwelling units that can be built in the parcel.

Zone, Parcel | IMP| ENV PFA| PROF| U
1,1 7 8 2 2 5
1,2 9 6 3 3| 4
13 12 4 5 7 2
2,1 8 10 6 4| 4
2,2 8 5 8 9 6
2,3 9 5 6 6 8

Table 2.7 Properties of parcelsfor reduced example
Assuming aweight vector W = (1,1,1,1), thefollowing bounds: PFA=15,
PFA=30, u =6, 0, =10, u, =8and T, =13.

The objective function can be computed as:
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Mn 7 d11 + 8 di1 - 2 di1 - 2 di1 +
9 d12 + 6 d12 - 3 dil2 - 3 di2 +
12 d13 + 4 d13 - 5 d13 - 7 di13 +
8 d21 + 10 d21 - 6 d21 — 4 d21 +
8 d22 + 5 d22 - 8 d22 - 9 d22 +
9 d23 + 5 d23 - 6 d23 - 6 d23

Grouping terms the problem can be written asin Table 2:

Min: 11d11+9d12+4d13 +8d21- 4d22+2d23
S.t.

2d11+3d12+5d13 +6d21+8d22+6d23 | >=15
2d11+3d12+5d13 +6d21+8d22+6d23 | <=30
5d11+4d12+2d13 >= 6
5dl1+4d12+2d13 <=10
4d21+60d22+8d23 | >= 8
4d21+60d22+8d23 | <=13
Table 2.8 Block structure of the formulation for the reduced example

It is clear how the formulation when written asin Table 2.8 matches the
structure presented in Table 2.6.

The solution to this problemis:

OBJECTI VE FUNCTI ON VALUE: 17. 00000
VARI ABLE VALUE REDUCED COST
D11 0. 000000 11. 000000
D12 1. 000000 9. 000000
D13 1. 000000 4.000000
D21 1. 000000 8. 000000
D22 1. 000000 -4, 000000
D23 0. 000000 2. 000000

This solution calls for development of parcels 2 and 3 from zone 1, and
parcels 1 and 2 from zone 2 which would yield an objective function of 17.

Consider that each of the zones z contains a large but finite set of development
strategies Tz Introducing abinary vector of decision variables | , =(I ,, | ,,.....1 ,1,)

to decide if astrategy t from the set is developed (1 ,, =1) or not (1 ,, =0), the

origina problem with the structure presented in Table 2.6 can be re-writtenas:
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§: o o gz 0
mi n:é ?\ng- é- aZnD z,nd;,n + V\ég a az,nd;,n B \ng- a aLnd[z,n - W4§ a pz,nd;,n 9' zt (234)
a

zt €  z=El el z=lnl & z=1nl PFA z=1 n=l
where dtz,n isthe binary decision variable associated to develop under strategy t, the

n" parcel in zone z

To simplify (2.34) we define the following terms.

N
oz

IMP* = § a,,Dl,d!, (2.35)
n=1

ENV* = § a,,d., (2.36)
nl S

PFA*' = § a,,d., (2.37)
nl PFA
N,

PRO* =§ p,.d., (2.38)
t=1

IMP*" accounts for the change of imperviousness resulting from selecting the
development strategy (z,t) similarly, ENV ** for the area of environmentally sensitive

area, PFA*' for the area of Priority Funding Area, and PRO*" for the profit.

So the objective function can be written as:

min: 4 (wIMP* +W,ENV*'- wPFA® - w PRO™ I, (2.39)

zt

grouping the terms inside the parenthesis
¢ =wIMP?" +w,ENV " - w, PFA*! - w, PRO* (2.40)

the formulation can be written as;
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min:§ ¢l ,, (2.41)

zt

st

PFAE § PFAY| .+ EPFA (2.42)
Zt

gz

al, =1forz=12345 (2.43)

t=1

.. 1 {01 (2.44)

Where each (zt) isafeasible solution or development strategy for zone z and there
are Tz of these feasible solutions in each zone z So the problem isabinary program

whose solution is to choose the best devel opment strategy possible.
Sincethe | ,, arethe decision variables, if |, =1, then development strategy t
in zone zis selected. Constraint (2.43) selects only one development strategy per
zone. Going back to the example presented, where we have three 3 parcels per zone,
since each parcel can be developed or not, we have 2° = 8 development strategies per
zone as presented in Table 2.9. Then there are atotal of 16 development strategies

divided in two groups of eight. The problem becomes to choose a strategy per zone.

Zonel Parcel 1 | Parcel 2 | Parcel 3 | Zone 2 Parcel 1 | Parcel 2 | Parcel 3
Strategy 1,1 0 0 0| Strategy 2,1 0 0 0
Strategy 1,2 0 0 1 | Strategy 2,2 0 0 1
Strategy 1,3 0 1 0 | Strategy 2,3 0 1 0
Strategy 1,4 0 1 1| Strategy 2,4 0 1 1
Strategy 1,5 1 0 0 | Strategy 2,5 1 0 0
Strategy 1,6 1 0 1 | Strategy 2,6 1 0 1
Strategy 1,7 1 1 0 | Strategy 2,7 1 1 0
Strategy 1,8 1 1 1| Strategy 2,8 1 1 1

Table2.9 List of possible development strategies with three parcelsin two zones
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The result of these calculations using our example are presented in Table 2.10

Zonel | IMP| ENV|PFA | PRO| U| C| Zone2 | IMP| ENV | PFA | PRO| U| C
Strategy Strategy

1,1 0 0 0 0 0f 021 0 0 0 0Of 0] O
1,2 12 4 5 71 2] 4]22 9 5 6 6 8] 2
1,3 9 6 3 3| 4] 9([23 8 5 8 9| 6| 4
1,4 21 10 8 10| 61324 17 10 14 15| 14| -2
15 7 8 2 2| 5]11]|25 8 10 6 4| 4| 8
1,6 19 12 7 9| 7]115]|26 17 15 12 10| 12 { 10
1,7 16 14 5 5[ 9]20]| 27 16 15 14 13| 10 4
1,8 28 18 10 12111[{24]128 25 20 20 19| 18| 6

Table 2.10 Possible development strategies with three parcelsin two zones

The value of the coefficients C above were computed using a weight vector W
=(1,1,1,1). Using the following bounds. PFA =15, PFA =230, y =6, T, =10,
u, =8 and T, =13, the formulation can be explicitly written as follows:
MinOl ,,+4l,,+91 , +13l, + 111  + 15| ,, + 201 ., + 24l ,, + Ol ,, +2I ,, -
41,5 - 21 ,, +8l,5 +101 ,, +4l ,, +6l ,, (2.45)
st.
ol,, +51,+3l,+8l,+2l ;+7l,,+5],,+10l , +0l , +6l,, +8l,;, +
14l ,, + 6l ,, + 121, + 141 ,, + 201 ,, 3 15 (2.46)

ol ,, +51,+3l;+8l,+2l ; +7l,+5],,+10l ; +0l , +6l,, +8l ,, +

141 ,, + 6l ,¢ + 121, + 141 ,, + 201 ,, £30 (2.47)
ol,+2l,,+4l,,+6l ,+5l o +71 ,+9 ,+11l .36 (2.48)
ol,+2l,+4l,,+6l,,+5l +7 ,+9 ,+11l , £10 (2.49)
I+l + g+l H g+l g+, +1, =1 (2.50)
ol, +8l,, +6l,,+14l,, +41 ,, +12] ,, +10l ,, +18I ,;3 8 (2.51)
ol,, +8l,, +6l,,+14l,, +4l . +121 ,, +10l ,, +18I ,; £13 (2.52)
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I2,1 + l 2,2 + l 2,3+ l 24 + l 25 +|2,6 + I 27 + l 2,8=1 (253)

1, 1{0% (2.54)
The solution to this problem is:

OBJECTI VE FUNCTI ON VALUE

1) 17. 00000

VARI ABLE VALUE REDUCED COST
L11 0. 000000 0. 000000
L12 0. 000000 4. 000000
L13 0. 000000 9. 000000
L14 1. 000000 13. 000000
L15 0. 000000 11. 000000
L16 0. 000000 15. 000000
L17 0. 000000 20. 000000
L18 0. 000000 24. 000000
L21 0. 000000 0. 000000
L22 0. 000000 2..000000
L23 0. 000000 -4.000000
L24 0. 000000 -2.000000
L25 0. 000000 8. 000000
L26 0. 000000 10. 000000
L27 1. 000000 4. 000000
L28 0. 000000 6. 000000

This solution calls for development strategies 14 and 27. Strategy 14 call for
the development of parcels 2 and 3 from zone 1, and strategy 27 calls for the
development of parcels 1 and 2 from zone 2. Together they yield an objective
function value of 17. As expected this solution is exactly the same as the one obtained
by solving the origina problem.

This formulation has a decomposabl e structure since the variablesin
constraints (2.48) - (2.50) are different from the variables included in constraints

(2.51) -(2.53). A procedure to solve this problem would be as follows:
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2.3.2.1.1. Sep O: Initialization:

Find a set of feasible solution from each zone. To obtain this set we solve a
restricted programming subproblem with arbitrary weight coefficients. Suppose we
select two weights to obtain two feasible solutions within each zone. Then we would

need to solve the following subproblems:

Min: wIMP?' + W,ENV*' - w, PFA*! - w, PRO*" (2.55)

st.
N

IMP=Q a,,Dl,.d,, (2.56)
n=1

ENV=3 a,d,, (2.57)
nl

PFA= § a&,d,, (2.59)
nl PFA
N

PRO = a pz,ndz,n (259)
n=1

glz

au,d,,3u, (2.60)

n=1

N: -

au,d, £u: (2.61)

n=1

d, T {01 (2.62)

By solving (2.55) - (2.62) four times, two for each of the zones we obtain the
initial feasible solutions. For example, suppose we obtained the feasible solutions

presented in Table2.11
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Parcel Parcel 1 | Parcel 2 | Parcel 3| IMP| ENV | PFA | PRO| U| C
Zone 1 weight 1 1 0 1 19 12 7 9 7| 15
Zone 1 weight 2 1 1 0 16 14 5 5[ 9] 20
Zone 2 weight 1 1 0 1 17 15 12 10| 12| 10
Zone 2 weight 2 1 1 0 16 15 14 13| 10| 4

Table2.11 Initial solutions obtained from therestricted subproblems by zone

2.3.2.1.2. Iteration 1, Step 1: Solve the restricted linear master problem

With at least one solution, we proceed to solve the relaxed restricted master problem:

Max: § - c*l ,, (2.63)

zt

st.

zZ T,
4 4 PFA“I - S =PFA (2.64)

z=1 t=1

—

T
§ &

4  PFA*l, +S,= PFA (2.65)

z=1 t=1

oz

al, =1 z=12 (2.66)

t=1
where § and S, are deviation variables from the PFA bounds. The master problem is

set as a maximization problem to mach the notation in the literature. The formulation

can be explicitly written as:

Max-151,, - 20l ,, - 101 ,, - 4l ,, (2.67)
st.

71, +51,,+121, +141,,-§=15 (2.68)
71, +51,,+121, +141,,+S,=30 (2.69)
l,+1,, =1 (2.70)
|, +1,, =1 (2.71)
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Whose solution is:
l,=1,1,,=0,1,,=0,1,,=1, p =(0,0) and m=(-15,-4)
Where p and mare the dua variables corresponding to the first two and last

two constraints respectively.

2.3.2.1.3. Iteration 1, Step 2: Optimality check

We need to check whether the set of variables (p,m) is dual feasible for the
master problem.

Note that not all the development combinations presented in Table 2.10 are
feasible solutions, only the feasible strategies are considered because the solutions to

the subproblems are feasible within each zone. They arelisted in Table 2.12

Parcel Parcel 1 | Parcel 2 | Parcel 3 | IMP| ENV | PFA | PRO| U | C
Strategy 1,4 0 1 1 21 10 8 10| 6| 13
Strategy 1,6 1 0 1 19 12 7 9 7] 15
Strategy 1,7 1 1 0 16 14 5 5[ 9] 20
Strategy 2,2 0 0 1 9 5 6 6 8| 2
Strategy 2,6 1 0 1 17 15 12 10| 12| 10
Strategy 2,7 1 1 0 16 15 14 13| 10| 4

Table2.12 List of feasible solutions from total pool of possible strategies
The evaluation of each possible feasible solution, as the ssimplex method

would do, can be set up in the form of atypical simplex tableau as presented in Table

2.13.

|1,1|1,2|l,3|2,1|22|2,3 %SZ
d 194 19 2d 4 1d 4
) 9§ 41 9 d 14 14
12
g
1
4

2l 4§ 41 § 4 14
3] 1 1 1 q
o d d d 1
zj] -1 -19 -19 - 4
Gzj 4 J 4 0

Table2.13 Simplex tableau for reduced example

el Fenll Fen Nl I*=Vl Fan ¥ Fan

NID IO
[enll fenll Feanll Fen Nl Ve ¥ N ™=V Fan
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Where z, =p " A"

We see that there are some positive reduce reduced costs in particular those
corresponding tol ,,, and | ,, . Thisresult implies that the current solution can be
improved by letting any one of those variables with positive reduced cost into the
basis.

Rather than evaluate all possible points, we solve an optimization problem.

Let’'s consider the dual of the Master Problem (2.63) - (2.66) which can be

written as:

Min PFAp, + PFAD, + & m, (272
st.

& PFAp,+§ PFA®p, +E m3 -c* 2.73)
21t 2t

-p, %0 (2.74)
p,30 (2.75)

Where E isthe transposed matrix of the coefficients for the convex
congtraints (2.66). This problem has a large number of constraints (one per
development strategy) but we have solved the primal problem for a restricted number
of development solutions. To find if the solution at hand to the restricted primal
problem is dual feasible we can solve the following set of subproblems (one per

zone):
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V, =max{- c*'- § PFA*'p, - § PFA*p,- En},z=1,2,3,4,5 (2.76)
t

zt zt

St.

— Nz

u-£qu,d, Eu, (2.77)
n=1

d,.T {03 (2.78)

In terms of the origina decision variables, each one of the subproblems becomes:

Z , =max:

z

é - (Vvlaz,nDlzn +W2azs,cn - V\éazp,'rzmA - W, pz,n )dz,n - (pl +p2) P';A -m (279)

zn

st. (2.77) - (2.78)

where a, " isthe arein the PFA of parcel zn. Using the weighted coefficient

calculation for each parcel

C,n =WIMP, +W,ENV, - w,PFA, - w,PRO,, (2.80)
We can write (2.79) as
Zz:max:(_cz,n_ (pl +p2)a§,'r:1A)dz,n_ m (281)

The solution to each subproblem finds the variable with highest reduced cost.

If any of those iis positive the development vector d,, =(d,,,d d,, ) provides an

z1' Tz,2'""" YzNz

additional feasible solution for the next iteration.
Going back to our example, the cost coefficients

C,, =(WIMP,,+ wENV, - wPFA, - w,PRO, ) for each of the parcels, using the

weighting vector w=(1,1,1,1) are presented in Table 2.14.
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Zone, Parcel | IMP| ENV | PFA | PROF | U| C
11 7 8 2 2] 5({ 11
1,2 9 6 3 3| 4] 9
13 12 4 5 7| 2] 4
2,1 8 10 6 41 4| 8
2,2 8 5 8 9| 6| 4
2,3 9 5 6 6| 8| 2

Table2.14 Table of coefficientsfor each parcel for reduced cost computation
The terms of (2.76) come from Table 2.14 and from the coefficients of
S and S, informulation (2.67) - (2.71).

The pricing subproblems are as follows:

So we have for zone 1:

+

9 — (0+0)3)d12
4 — (0+0)5)d13
(-15)

+

Max (-11 — (0+0)2)d11l
(_
(-

S.t.
- 5d11 - 4 d12 - 2 d13 <= -6
5 dl11 + 4 d12 + 2 d13 <= 10
End
Int dl1l
Int dl2
Int di3

Which is equivalent to:

Max -11 di1 - 9 di12 - 4 di3 + 15

s.t.
- 5d11 - 4 d12 - 2 di13 <= -6
5 dll + 4 d12 + 2 d13 <= 10
End
Int di1l
Int di2
Int di3
Whose optimal solution is
OBJECTI VE FUNCTI ON VALUE
1) -13. 00000
VARI ABLE VAL UE REDUCED COST
di1 0. 000000 11. 000000
di2 1. 000000 9. 000000
di3 1. 000000 4.000000
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ROW  SLACK OR SURPLUS DUAL PRI CES
2) 0. 000000 0. 000000
3) 4. 000000 0. 000000

-13 + 15 = 2
And for zone 2 we have:

Max 8 — (0*6+0*6))d21 +
4 — (0*8+0*8))d22 +
2 — (0*6+0*6))d23
(-4)
-4 d21 - 6 d22 - 8 d23 <= -8
4 d21 + 6 d22 + 8 d23 <= 13
End
Int d21
Int d22
Int d23

Which is equivalent to:

Max - 8 d21 + 4 d22 - 2 d23 + 4

s. t.
-4 d21 - 6 d22 - 8 d23 <= -8
4 d21 + 6 d22 + 8 d23 <= 13
End
Int d21
Int d22
Int d23
With optimal solution:
OBJECTI VE FUNCTI ON VALUE
1) -2. 000000
VARI ABLE VALUE REDUCED COST
d21 0. 000000 8. 000000
d22 0. 000000 -4. 000000
d23 1. 000000 2.000000
ROW  SLACK OR SURPLUS DUAL PRI CES
2) 0. 000000 0. 000000
3) 5. 000000 0. 000000
-2 +4 =2
These results are as expected equivalent to the results form the smplex
method.
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2.3.2.1.4. Iteration 1, Step 3: Sopping Criterion

Since there are positive values of the reduced cost, the algorithm moves into
the next step.
An aternative stopping criterion is to check if the complicating constraint is

met, if so then the solution at hand is optimal.

2.3.2.1.5. Iteration 1, Step 4: Generating a New Column

For our example, feasible solution 1 from zone 1, and feasible solution 3 from
zone 2 would enter the group of feasible solutions for consideration on the next

iteration.

2.3.2.1.6. Iteration 2, Step 1: Solve therestricted linear master problem
Having now a new solution from each zone, we solve the restricted linear

master problem again obtaining: | ,,=0, 1 ,,=0, | ,;=1, 1 ,,=0, I ,,=0.125,

| ,,=0.875p =(-0.25,0) and m=(- 11,- 05) .

2.3.2.1.7. Iteration 2, Sep 2: Optimality check

We solved the optimization subproblems (2.79) :

V, = max{(ck- p Ak)T x- m,:xI X*} obtaining an objective function value
of O for zone 1 and O for zone 2.

Since none of the reduced costs is positive, then the solution is optimal. But
since the solutions are fractional we need to recourse to branch and bound to find an

integer solution. The solution obtained was: | ,=1, | ,;=1 and the objective function

is-17 which matches exactly the results previously obtained.
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2.3.3. Lagrangian Relaxation Technique for Land Development

From the set of constraints it seems natura to relax the constraints that limit

the development in PFA areas. An agorithm is depicted in Figure 2.6.

Step O: Initialization
Set values of

mand r

A 4

Step 1: Solve the Lagranglan Relaxation

LR(rT» max a zn ZFI

n=1

Nz -
+(m- m)q altd,, + PFAm - PFAmM

n=1

A 4

Step 2:
Is the
LR(m)
Feasible to
SGIP?

Step 3:
Update Lower and
Upper Bounds

Step 5: Step 4:
Update Stopping Criteria
m met?

Figure 2.6 Algorithm to apply Lagrangian relaxation to the integer programming version of the
land development problem

What follows is a description of the steps and the formulations involved in the
algorithm including an example using only two zones and three parcels in each zore.
Starting from the integer programming formulation of the land devel opment

problem (2.27) - (2.30) we can write the following Lagrangian relaxation:

- e % S & pra
Max.-aacnzdnz+ ad, - PFA_rq+ FA- aaagndzn_ (2.82)
z=1 n=1 gz—l n—l 8 z=1 n=1 9
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The terms in objective function can be grouped by the decision variables so

the Lagrangian relaxation of the land development problem can be written as:

5 Nz 5 NZ 5 NZ - .
Max: - é. é andnz+ PFAdzn—m a a. PFAdzngnl- ﬂrnl-'-PFArnZ

z=1 n=l 82-1 n=1 81—1 n=1 (%]

2.83)
st.
o

uf£aq uzndzn£u z=12,.5 (2.84)
o
d,,1 {01,nT {N}," z1 {1,2,3,4,5} (2.85)
m,m,2 0 (2.86)

Once again we see that the formulation can be decomposed since the
constraints are independent per zone. The objective function can be broken down per
zones aso so the final solution is the sum of the subproblems.

The subproblems have the following form:

Max: a Cn zdn z +8 FAdzn —”1 ga azFAdz n Bmz (287)
(]
st.
o
gz £a uz ndzn £Uz (288)
n=1
m,m,3 0 (2.89)

There is one subproblem per zone. As previously explained, the Lagrangian
relaxation finds an upper bound to the original problem. The challengeisto find

values for the multipliers such that we obtain the minimum possible bound.
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As an example consider again the reduced case with two zones and three

parcels per zone.

Using the explicit formulation as presented before in Table 2.8, we proceed to
post the problem as maximization, and to relax the bounds imposed on the PFA

obtaining the formulationpresented in Table 2.15.

Max: -11d11- 9d12-4d13 -8d2l + 4d22- 2d23
(2d11+3d12+5d13 +6d21 +8d22 +6d23- 15) M +

[30-(2d11+3d12+5d13 +6d21+8d22+6d23)] M
st.

5d11 +4d12 +2d13 >= 6
5d11 +4d12 +2d13 <= 10
4d21+6d22+8d23 | >= 8
4d21+6d22+8d23 | <=13
Table2.15 Lagrangian relaxation for reduced example

This problem can be decomposed into two problems, one for each zone as

follows:

Zonel Zone?

Max: -11d11-9d12 - 4 d13 Max: - 8d21 + 4d22 -2 d23
(2d11+3d12+5d13) m (6d21+8d22+6d23) M-
-(2d11+3d12+5d13) m (6d21+8d22+6d23)] M

s.t. s.t.
5d11+4d12+2d13 >= 6 40d21+6d22+8d23 >= 8
5d11+4d12+2d13 <=10 4d21+6d22+8d23 <=13

We started with m = m, = Oand obtained the following solution:
d,=0d,=1d,=12z"=-13 and d,, =0,d,,=1,d,, =1,2° =- 2so thefina

objective function z = Z + z* = - 15which coincides with the solution obtained

before.
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2.4. Application to Moglen, Gabridl and Faria (2003)

2.4.1. Evaluation of Original Weights

We now take the difficult case from Moglen, Gabriel and Faria (2003) and

solve it using both Dantzig-Wolfe decomposition and Lagrangian Relaxation,

2.4.1.1. Dantzig-Wolfe Decomposition

The initia solutions required for the initialization step were found by solving
the subproblems for each zone with random coefficients in the objective function.
This procedure ensures feasibility on the number of units developed per zone, since
they meet al constraints. Alternative methods such as heuristics could be used to find
initial solutions, but using random coefficients seems easier in this case.

Because two sets of weights could result on the same optimal solution, the

initial feasible solutions obtained by this method could be duplicated.

24.1.1.1. Sep O: Initialization

To obtain at least one solution per zone, we solved the subproblems for each

zone with the following four arbitrary objective function coefficients:

IMP| ENV PFA PRO
16.13 2.79 6.75 4.28
233 | 12.04 8.95 7.29
1.67 0.17 13| 14.35
4 0 0 1 0
Table2.16 Arbitrary coefficientsused to find initial solutions

WIN |-

For example for zone 1, we solved subproblem (2.55) - (2.62) four times, each

time with a different weighting vector from Table 2.16 obtaining four feasible
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solutions. The four objectives of each solution are listed in Table 2.17. The same
logic follows for the other five zones.

Solving the subproblems yielded the following initial solutions per zone:

IMP1 ENV1 PFA1 PRO1 IMP4 | ENV4 PFA4 PRO4
181.37 | 202.67 0.00 97.90 147.03 25.09 28.58 | 120.59
288.77 0.00 0.00 94.55 264.13 26.07 29.50| 178.95
286.31| 313.50 0.00 | 146.26 249.32 32.33 28,58 | 179.21
246.85 | 224.82 437 | 100.02 233.42 21.26 32.19| 13641

Table2.17 Feasible solutions for zone 1 Table 2.20 Feasible solutions for zone4
IMP2 ENV2 PFA2 PRO2 IMP5 [ ENV5 PFAS5 PRO5
343.62 39.16 0.00 | 337.62 68.41 0.00 0.00 62.67
582.91 0.00 810 | 503.16 97.86 0.00 213 84.92
537.68 87.63 0.00 | 504.97 97.86 0.00 213 84.92
466.27 87.63 11.67| 357.91 167.41 23.62 5.22 82.29
Table 2.18 Feasible solutions for zone 2 Table2.21 Feasible solutionsfor zone5

IMP3 | ENV3 PFA3 PRO3
314.75 0.00 25.93| 148.88
320.38 0.00 25.08| 155.42
470.63 0.00 25.93| 185.09
470.63 0.00 25.93| 185.09

Table 2.19 Feasible solutions for zone 3
24.1.1.2. lteration 1: Step 1: Solve the Restricted Linear Programming

Problem

Given these initial solutions we solved the reduced master linear programming
(2.63) - (2.66) obtaining the following solution.

Objective function: 1100.45

l 14 =1, I 2,4 =1, I3,4 =1, l 4,4 =1, l 53 =1

P, =0,p,=0

m = 146.263, m =504.965, m = 185.094, m =179.211, m =84.9171
Note that the | ,are vectors of decision variables to pick one of the feasible

development strategies, the vectors have as many components as feasible solutions
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used in the restricted linear programming master problem, the positive components of

the vector are reported here, the rest are zeroes.

2.4.1.1.3. Iteration 1. Sep 2: Solve the Pricing Optimization Problems
Using the values of (p ,m) obtained in Step 1, we checked for each zore the
reduced cost finding the following results:

z =(0.0002234,0.124942, -0.000332115,0.212737,0.198477) .

2.4.1.1.4. Iteration 1. Sep 3: Isany Reduced Cost Positive?

Y es, there are four positive reduced costs. Therefore the current solution is not

optimal and the algorithm goes to the next step.

24.1.1.5. Iteration 1: Step 4: Generate a New Column

Each time we solve the pricing problem and we get a positive reduced cost,
we also obtain a development strategy that would improve the value of the objective
function. We use these results and add them to the initial solutions found in Step 0.

Table 2.22 presents the four solutions that have been added as aresult of this

step (one per each positive reduced cost).

Zone IMP ENV PFA PRO
1| 316.49| 335.03 0.00 | 146.26
2| 537.75| 116.40 0.00 | 505.09
4 309.46 21.75 3146 | 179.42
5| 102.77 31.07 0.00 85.12
Table2.22 New columns generated during the pricing stepiteration 1

Having these new solutions at hand, we proceed to solve the restricted linear

programming problem again.
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2.4.1.1.6. Iteration 2: Sep 1: Solve the Restricted Linear Programming

Problem
Objective function: 1100.986147

|0 =11, =105, =11 ,, =11, =1

17 5,6

p,=0,p, =0

m = 146.263, m = 505.09, m = 185.094, m} = 179.424, m = 85.1156

24.1.1.7. Iteration 2: Step 2: Solve the Pricing Optimization Problems

z =(0.0002234, -5.776e-005, -0.000332115, -0.000263231, -2.329e-005) .

2.4.1.1.8. Iteration 2: Sep 3: Isany Reduced Cost Positive?

Yes, there is one positive reduced cost. Therefore the current solution is not

optimal and the algorithm goes to the next step.

2.4.1.1.9. Iteration 2: Sep 4: Generate a New Column

Table 2.23 presents the solutions that have been added as a result of this step.

Zone IMP ENV PFA PRO
1| 316.49| 335.03 0.00 | 146.26
Table 2.23 New columns generated during the pricing stepiteration 2

2.4.1.1.10. Iteration 3: Sep 1. Solve the Restricted Linear Programming

Problem
g =141 6 =115, =11 ;s =115, =1
P,=0,p, =0

m = 146.263, m = 505.09, m = 185.094, n} = 179.424, m = 85.1156

68



We have obtained the same solution as in the previous iteration. Therefore the
algorithm has to stop due to the lack of progress.

We set the upper bound for this problem as

. b K K
Z™Mec" =g ph+am+aVv (2.90)
i=1 k=1 k=1

Since the solution to the restricted linear programming problem is feasible to
the original integer programming problem we have that
z*"™ £1100.986147 £ Z*

This bound is very close to the optimal solution of the problem, which is
z' =1100.994233

Even though we had to solve many linear programming problems (20 for the
initial solutions, 5 each time step 1 is executed, 1 for each time step 2 is executed, and

5 each time step 2 is executed) each execution can be solved in about a second so the

bound was obtained in less than a minute.

2.4.1.2. Lagrangian Relaxation

Starting with m = m, = Owe obtained the first solution for the weight

W=(0,0,0,1) asfollows

IMP ENV PFA PRO Objective Units
Function z(u)
Zonel 316.41 | 334.91 0.00 146.26 146.26 2331.00
Zone?2 537.75 | 116.40 0.00 505.09 505.09 | 12285.00
Zone 3 470.63 000| 25.93 185.09 185.09 5384.00
Zone4 309.46 21.75| 31.46 179.42 179.42 405.93
Zone5 102.77 31.07 0.00 85.12 85.12 267.98
Total | 1737.02 | 504.12| 57.39| 1100.99 1100.99

Table2.24 Initial Lagrangian relaxation resultswith m =m, =0
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We observe that for the first solution the LHS of the complicating constraints

PEA- a azyndzlngandge

g 4 a, d,, - PFAY are 942.60 and 55.39 respectively.
nl PFA 1]

ni PFA [1]
Since both terms are positive then this solution is feasible to the original problem

therefore this solution is optimal.

2.4.2. Evaluation of New Cases. Additional Weights

The fact that one of the previoudly evaluated weight vectors was difficult to
solve created the motivation to apply the decomposition techniques previously used.
The question remains on how efficient these techniques are when alarge set of
weights is used.

To answer this question we generated a set of 1000 random weights® and
solved the problem for each one of them using the traditional branch and bound
technique. We found that if we solve those 1000 cases with the branch and bound
algorithm but with a stopping criterion of one minute, then we can look into those
cases that needed extra time and apply Lagrangian relaxation. |f the solution found
when solving the Lagrangian relaxation problem is the same as the one obtained by
the branch and bound procedure then we stop because we would know that the branch
and bound has found an optimal solution but keeps searching because thereis still a
gap to the best bound, otherwise we proceed to apply Dantzig-Wolfe decomposition.
If till the solution is not optimal then we conclude that the case cannot be solved in
short amount of time using alternative methods and the full branch and bound

algorithm needs to be used.

® An extract of the list of weights used can be found in Table A.18 in the appendix.
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Toreach this conclusion we ran a series of tests obtaining the results
summarized in the next sections. Starting with the origina bounds we found that
weight sets(662), and (921) resulted in tremendous computational effort as seen in
Figure 2.7 and Figure 2.8. The detailed computations for each method and each

weight set evaluated can be found in the appendix.

| 0" |Cument optimization statistics. [~ Auta Hide
M atrix: Presolved:
Fows[constraintz): 41 Rows(constraintz B
Columnz(wariables]. 833 Columnz[variables): 11
Monzero elements: 2750 MNonzero elements: 842
Global entities: a10 Global entities: 210
Sets: 1} Sets: 0
Set members: 1} Set members: 0
Owerall status: Performing global search...
LP relaxation: Global search:
Algorithm: Simplex dual Current node: 5242871
Simplex iterations: 8 Drepth: 43
Obijective: 102626 Active nodes: 0
Status: LP Dptimal Best bound: 10245
Time: 0.0z Best solution; -1024.14
Gap: 0.0351457%
Status: E integer solution(s] fo
Tirne: 2BE7E. 0
Time overheads:
Frogress graphs: 3144z
Wwiting output: 0.0s
Fauzing: 0.0z
Updating status: 144 2z
Output/Input — Stats | bl atrix I Dbiectivel rIP searchl BE treel SLF I szer graphl
|

Figure2.7 Report for weight 662
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MNonzero elements: 2750 MNonzero elements: 842
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Sets: 1} Sets: 0
Set members: 1} Set members: 0
Owerall status: Performing global search...
LP relaxation: Global search:
Algorithm: Simplex dual Current node: B782333
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Status: LP Dptimal Best bound: 10164
Time: 0.0z Best solution; A0E.27
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Figure 2.8 Report for weight 964

Note that the solver had to evaluate over 5.2 million nodes for over 7 hours
(weight 662) and over 6.7 million nodes for over 12 hours (weight 964) until finally

the solver hated. The top 15 weights in descending order of solution time were:

Solution | Weight ID IMP ENV| PFA PRO Obj. F. Time
in seconds

1 964 204491 21.74| 78.39 | 1086.46 | -1016.27 | 46,026.50
2 662 2030.18 [ 21.07| 77.65| 1086.90 | -1024.14 | 25,876.00
3 178 2030.14 | 21.07| 77.65| 1086.90 | -640.73| 7,749.32
4 921 2059.86 | 21.75| 79.01| 1085.82 | -387.98| 6,857.84
5 389 2045.17 | 21.07| 78.27| 1086.25 | -412.21| 4,495.65
6 802 2030.12 | 21.07| 77.65| 1086.90 | -762.24| 2,158.55
7 459 201520 | 21.07| 76.84| 108754 | -883.56| 2123.08
8 339 2030.10 [ 21.07| 77.65| 1086.90 | -467.82 291.44
9 952 2029.34 | 20.63| 77.76 | 1085.76 | -203.14 50.76
10 361 201423 20.63| 76.95( 1086.40 | -369.64 49.55
1 48 2015.06 [ 21.07| 76.84 | 1087.54 | -687.43 39.45
12 55 2015.05 | 21.07| 76.84| 1087.54 | -657.70 17.87
13 592 1054.16 | 267.89| 52.75| 766.25| 1025.22 9.78
14 150 1128.85 | 94.83| 52.75( 762.40 909.84 6.28
15 179 1428.18 | 19.30| 63.90 | 948.52 -24.68 5.28

Table2.25 List of top 15 weightsin descending order of solution time

72



From the other 998 weights we observed three cases where it took about two

hours to find the solution and other two cases where the solution was found over

thirty minutes.

We will now proceeded to compute the solution of these difficult cases (those

taking more then 30 minutes to solve) by using relaxation and decomposition

methods, and then we will compare our results with the obtained above.

The data from the “difficult to solve” weights is presented in Table 2.26

Weight Branch Lagrangian | Dantzig-Wolfe Best
ID and Relaxation Method
Bound
Best solution -1016.27 -1016.27 -1016.27
Effort | 12 hours, Few seconds One minute LR
964 8.78 Oneiteration | Two iterations
Million
nodes
Best solution -1024.14 -1023.88 -1024.14
Effort 7 hours Few seconds One minute DW
662 52 Oneiteration | Two iterations
Million
nodes
Best solution -640.73 -640.727 -640.727
178 Effort | 2.15 hours Few seconds One minute LR
Oneiteration | Two iterations
Best solution -387.98 -387.977 - 387.977
921 Effort | 1.90 hours Few seconds One minute LR
Oneiteration | Two iterations
Best solution -412.21 -412.208 -412.208
389 Effort | 1.25 hours Few seconds One minute LR
Oneiteration | Two iterations
Best solution -762.24 -762.239 - 762.239
802 Effort | 0.60 hours Few seconds One minute LR
Oneiteration | Two iterations
459 Best solution -883.56 -883.565 - 883.565
Effort | 0.60 hours Few seconds One minute LR
Oneiteration | Two iterations

Table 2.26 Results from the different methods for different weights original bounds

Clearly the Lagrangian relaxation and the Dantzig-Wolfe decomposition

methods are much faster than the traditional branch and bound when solving these

complicated cases. Although they require more effort because the computation of the
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multiple subproblems, they do not need to solve arelaxation on each node as the
branch and bound method does. The downside is that neither the Lagrangian
relaxation method nor the Dantzig-Wolfe decomposition will always achieve the
optimal solution. It is possible that the solution obtained by the Lagrangian relaxation
IS no better than the solution obtained by relaxing the integer requirement of the
decision variables (integer relaxation) of the problem (Wolsey, 1998).

This particular case was relatively easy to solve because the complicating
congtraints are easily met, the requirements for areain PFA was to be above two and
below 1000. Therefore, the use of a simpleton Lagrangian vector (0, 0) was al that
we needed to reach a solution. Perhaps a narrower range could shed more light on the
efficiency of these methods. That is the main goa of section2.4.2.1 Evaluation of
New Cases: Tighter PFA Bounds.

A good strategy to find the solution in general seems to be as follows:

1. Set up a maximum execution time on the branch and bound procedure of
about two minutes.

2. Solve al weights keeping track of those instances where the solution was
not met due to time constraints.

3. Solve the cases identified in step 2 using Lagrangian relaxation. If the
Lagrangian bound is too far away from the best solution found by the branch and
bound method, then proceed to apply the Dantzig-Wolfe decomposition technique.

As atest for this strategy we proceeded to set a maximum time of two minutes

for evaluating the weights using the branch and bound procedure with the same PFA
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bounds used in the work by Moglen, Gabriel and Faria (2003) obtaining sevenresults

over 120 seconds followed by the next result obtained in amost 52 seconds.

Solution | Weight ID IMP| ENV | PFA PRO Obj.F.| Time
1 964 | 2044.84 | 21.75 | 78.39| 1086.46 | -1016.27 | 133.21
2 662 | 2030.15 | 21.07 | 77.65| 1086.90 | -1024.14 | 133.18
3 921| 2059.88 | 21.75| 79.01 | 1085.82 | -387.98 | 131.68
4 459 | 2015.20 | 21.07 | 76.84 | 1087.54 | -883.56 | 131.57
5 178 | 2030.14 | 21.07 | 77.65| 1086.90 | -640.73| 130.80
6 389 | 2045.20 | 21.07 | 78.27 | 1086.25 | -412.21| 129.82
7 802 | 2030.23 | 21.07 | 77.65| 1086.90 | -762.24 | 102.84
8 361 | 2014.23 | 20.63 | 76.95| 1086.40 | -369.64 | 51.53

Table2.27 Results over 50 seconds with original bounds and time limit 120

Note that Table 2.27 presents some values over the maximum allotted time,
we believe that the reason is that the solver reports the total time including some
overhead to save the data.

We can expect that the top nine cases were terminated by exceeding the
limited time allowed while the other 991 cases were solved to optimality. The
objective functions of the top nine cases were exactly the same as the values
presented in Table 2.25. Given the accuracy of the procedure one could think about
reducing the time limit since the worst case solved that did not exceed the time limit
was almost 56 seconds. We decided to run the 1000 weights again with a one minute

time limit obtaining the results presented in Table 2.28.
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Solution Weight ID IMP ENV PFA PRO Obj. F. Time
1 535( 2015.12 | 21.07| 76.84| 1087.54 -893.68 67.89
2 389 204517 | 21.07| 78.27| 1086.25 -412.21 67.22
3 339 2030.13 | 21.07| 77.65| 1086.85 -467.80 66.71
4 662 | 2030.18 | 21.07( 77.65| 1086.90| -1024.14 66.48
5 921 2059.89 | 21.75| 79.01| 1085.82 -387.98 65.96
6 802 | 204519 | 21.07| 78.27| 1086.25 -762.16 65.70
7 459| 201511 | 21.07| 76.84| 1087.54 -883.56 64.64
8 964 204491 | 21.75| 78.39| 1086.46| -1016.27 64.23
9 178 | 2030.14 | 21.07| 77.65| 1086.90 -640.73 61.02
10 361 | 201423 | 20.63| 76.95| 1086.40 -369.64 47.87

Table 2.28 Results over 40 seconds with original bounds and time limit 60

Table 2.29 shows the objective functions and their respective times for
different weights obtained with the origina bounds by setting different values of
maximum time to compute (no maximum, 120 seconds and 60 seconds). These

results indicate that the branch and bound method is able to find the solution within a

minute.
Max time 60 Max time 120 No max time
seconds seconds
Solution | Weight ID Obj. F. Time Obj. F. Time Obj. F. Time

178 | -640.73 61.02| -640.73 130.80| -640.73| 7749.32
339 | -467.80 66.71| -467.80 89.14 | -467.82 91.44
361 | -369.64 47.87| -369.64 51.53| -369.64 55.93
389 | -412.21 67.22| -412.21 129.82 -412.21( 4495.65
459 | -883.56 64.64 | -883.56 131.57| -883.56| 2123.08
662 | -1024.14 66.48 | -1024.14 133.18
802 | -762.16 65.70 | -762.24 102.84| -762.24| 2158.55
921| -387.98 65.96 | -387.98 131.68| -387.98| 6857.84
964 | -1016.27 64.23 | -1016.27 133.21
Table2.29 Summary of objective functions and solution times original bounds

Since the objective value obtained after a minute is the same as the one
obtained after two minutes (all cases except 802) then it seems safe to use one minute
astime limit instead of two minutes. If we consider that 98.80% of the 1000 cases

were solved in less thanten secords then it even makes sense to push down the time
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limit and analyze the results. Appending the data for such atest to Table 2.29 we

obtain the data presented in Table 2.30.

Max time 60 Max time 120 No max time Max time 10

seconds seconds seconds

Weight ID Obj. F. Time Obj. F. Time Obj. F. Time Obj. F. Time
178 -640.73 | 61.02 -640.73 | 130.80 | -640.73| 7749.32 -640.73 | 11.086
339 -467.80 | 66.71 -467.80 89.14 | -467.82 291.44 -467.82  10.785
361 -369.64 | 47.87 -369.64 51.53 | -369.64 55.93 -369.64 [ 11.106
389 41221 | 67.22 -412.21 | 129.82 | -412.21| 4495.65 -412.21 10.525
459 -883.56 | 64.64 -883.56 | 131.57| -883.56| 2123.08 -883.56 [ 10.875
662 -1024.14| 66.48| -1024.14( 133.18 -1023.66 | 11.106
802 -762.16 | 65.70 -762.24 | 102.84 | -762.24| 2158.55 -761.66 [ 10.946
921 -387.98 | 65.96 -387.98 | 131.68| -387.98| 6857.84 -387.98  11.086
964 | -1016.27 | 64.23| -1016.27 | 133.21 -1016.27 | 10.846

Table2.30 Summary of resultsincluding the maximum time of 10 seconds on last two columns

We see that there are only one case (lightly shaded) where the objective
function is different from the previous calculations. This makes us believe that within
the first ten seconds the branch and bound technique is able to very accurately find
the optimal solution. The drawback with ten seconds time is that there will be 11
solutions solved in ten seconds or more so to verify the accuracy of the solutions we
would need to apply the Lagrangian relaxation those cases. Therefore we think that
using one minute as time limit provides a good tradeoff between the number of cases
that needs to be checked and the total tome to solve the problems.

Consider that to reach the results presented in Table 2.25 we spert almost 27
hours of computing time over a period of about four days. The 1000 runs with atwo
minute limit took only half of an hour and the 1000 runs with one minute limit took
twenty minutes. Since the evaluation of the Lagrangian relaxation took about one
minute then the savings in time are considerable.

The distribution of the objective function values for the four stakeholders has

been presented in Figure 2.9 - Figure 2.12. These figures could be used by the
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decision makers to visualize the ranges in which the solutions tend to be located. For
example the Hydrologist could argue that there are about 140 solutions with low level
of imperviousness, so those should be evaluated first. The problem is that the
solutions are not related to other objectives as they are in aVaue Path graph, but due
to the number of Pareto points the Vaue Paths do not add much information (see

Figure A.59 in the appendix).
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24.2.1. Evaluation of New Cases. Tighter PFA Bounds
Having the somewhat wide range defined by the previous bounds PFA=2,

PFA =1000, we now seek to find new solutions within a much tighter range for PFA.
The ranges of PFA values obtained from the evaluation of the 1000 weights
with the original bounds were divided in 15 intervals, the results are presented in

Figure 2.13.
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Figure2.13 Ranges of PFA obtained with original bounds 1000 cases

The minimum value of PFA obtained was 47.52 and the maximum was 79.01,
with those numbers at hand, we selected two ranges for the bounds, one in which the
lower bound would be restrictive, and another one where both bounds would be

restrictive. The selected ranges are presented in Table 2.31.

Case| PFA | PEA | Number of
T solutions
obtained

1 60| 1000 150

2 60 70 125

Table 2.31 Cases evaluated in addition to the original bounds

The last column represents the number of solutions obtained within the
bounds using the original weights, we expect to obtain feasible solutions for the

problem with the tighter bounds.
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24211 Casel

We ran the same 1000 weights again obtaining two cases (weights 176, and
389) where the computer ran out of memory before producing the optimal solution
see Figure 2.14 and Figure 2.15). There is one case (weight 178) that took over two

hours to solve. The following one took over half an hour (weight 459).

| 0" [Current optimization statistics. [ Auto Hide
M atrix: Presolved:
Fows{constraintz): 41 Rows(constraintz: B
Columnz(wariables]. 833 Columnsz(wanablez): 811
MNonzero elements: 2750 MNonzero elements: 842
Glabal entities: 2o Glabal entities: 2o
Sets: 0 Sets: 0
Set members: 1] Set memnbers: 1]
Owerall status: Performing global search...
LP relaxation: Global search:
Algorithm: Simplex dual Current node: BE36038
Simplex iterations: 7 Depth: 187
Objective: -75.9253 Active nodes: 1]
Statuz LP Optimal Best bound: 754442
Tirme: 0.0z Best solution: -7h.4148
Gap: (0.0383356%
Status 14 integer zolution(z] i
Time: 13573.1s
Time overheads:
Progress araphs: 184.72
\writing output: 0.0
Pauszing: 0.0s
Updating status: 481z
Output/lnput — Stats |Matli:-c | Dbiectivel rIP sealchl EE treel 5LP | Uzer graphl
s

Figure2.14 Result of branch and bound case 1 weight 176
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| [Curent optimization statistics. [ Auto Hide
M atrix: Presolved:
Fowslconstraintz). 41 Fowslconstraintz), &
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LP relazation: Global search:
Algorithm: Simplex dual Current node: E324215
Simplex iterations: 8 Depth: 53
Objective: 413,486 Active nodes: 0
Status: LP Optimal Best bound: -A12 342
Tirne: 0.0z Best solution: -412.207
Gap: 0.0327155%
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Figure 2.15 Result of branch and bound case 1 weight 389

For the other weights we were able to obtain a solutionas presented in Table

2.32.

Weight ID IMP ENV PRO PFA Obj Timein
seconds
389 | 204520 | 21.07| 1086.25| 78.27| -412.20 30187.40
176 | 2004.05 195( 1029.29 | 59.70 -75.86 13979.10
178 | 2030.14 | 21.07| 1086.90| 77.65| -640.73 7465.24
459 2015.20 | 21.07| 108754 | 76.84| -883.56 2256.82

361| 201424 | 20.63| 108640 | 76.95( -369.64 149.56
339| 203011 | 21.07| 108690| 77.65| -467.82 32.06
39| 2015.08 | 21.07| 108754 | 76.84| -948.09 27.07
48| 201505 | 21.07| 1087.54| 76.84| -687.43 9.05
55| 2015.06 | 21.07| 1087.54| 76.84| -657.70 8.64
582 | 1189.60 | 25.09 761.45( 62.26 624.96 6.75
150 114354 | 94.83 762.09 [ 60.85 919.90 5.76
166 | 1189.69 | 25.09 761.56 | 62.62| 1042.15 552

Table2.32 List of top 10 weightsin descending order of solution time case 1
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Here there are only two cases where the solution time took more than thirty

minutes. They are evaluated below aong with the two cases for whichwe couldn’t

find a solution.

Some of the weight vectors required effort to achieve the optimal solution, we

evaluated them to compared the performance of the solution methods. The solutiors

are presented in the appendix, the results of the tests are summarized in Table 2.33.

Weight Branch and L agrangian Dantzig-Wolfe | Best Method
ID Bound Relaxation
Best solution -75.41 -69.15 -69.15 B&B
176 Effort Stopped after 9 iterations 4 iterations
almost 2 hrs 5 minutes 6 minutes
389 Best solution -412.20 -412.21 -412.208 LR
Effort | Stopped after 8 hrs 1 iteration 3 iterations
Best solution -640.73 -640.73 -640.73 LR
178 Effort Obtained after 2 1 iteration 3 iterations
hours
Best solution -883.56 -883.56 -883.56 LR
459 Effort | Obtained after half 1 iteration 3 iterations
an hour

Table 2.33 Results from the different methods for different weightscase 1

Once again it seems like the Lagrangian relaxation would be a preferred

method over Dantzig-Wolfe. We tried again reducing the time to compute down to

one minute obtaining the results presented in Table 2.34.

Weight PFA IMP ENV PRO Obj | Timein
seconds

389 78.27 | 2045.20 21.07 | 1086.25 -412.21 69.52
176 60.01 | 2092.69 205 | 1026.86 -75.41 67.61
361 76.95( 2014.24 20.63 | 1086.40 -369.64 67.29
662 77.65| 2030.15 21.07| 1086.90 | -1024.14 66.80
9%4 78.39| 2044.84 21.75| 1086.46 | -1016.27 66.39
952 77.76 | 2029.33 20.63 | 1085.76 -203.14 66.18
802 78.27 | 2045.25 21.07 | 1086.25 -762.16 66.02
178 77.65( 2030.14 21.07 | 1086.90 -640.73 65.52
921 79.01| 2059.88 21.75| 1085.82 -387.98 62.20
459 76.84 ( 2015.20 21.07 | 108754 | -883.56 61.62
724 60.03 | 1492.83 2.05 750.93 44,00 61.32
339 77.65( 2030.11 21.07 | 1086.90 -467.82 32.19

Table2.34 Resultsfor case 1 with one minute time limit
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We found eleven cases where the time to compute the optimal solution took
more than sixty seconds. Those cases then would need to be evaluated using
Lagrangian Relaxation. Again all 1000 cases where solved in about twenty two
minutes which is much better than the fifteen hours that took to solve the same cases

with the same bounds but without time limits.

24212 Case?2

We ran the same 1000 weights again obtaining two solutions (weights 176 and
643) where the computer ran out of memory before producing the optimal solution
(See Figure 2.16 and Figure 2.17). Besides those two cases, the branch and bound
procedure provided the results in less than four minutes on the worst case. We
expected this case with tighter bounds on the PFA requirements to be faster because
the reduction of the bounds implies a reduction on the feasible region, making the
trees smaller in size.

Only one other weight (724) took a very long time to complete (over 3hrs).

The top ten results in descending computation time are summarized in Table 2.35

Weight PFA IMP ENV PRO Obj Timein
seconds

176 -75.4235| 16496.4
643 -110.172| 12817.1

724 60.0263 | 149267 | 2.04793| 750.893 43.9923 | 12530.5
964 | 69.9165| 194318 | 21.0726| 109046 | -1013.24 208.1
535| 69.9165 1943.1| 21.0726| 1090.46 | -890.983 185.2

450 | 69.9165| 194319 | 21.0726| 109046 | -882.556 92.5
578 | 60.0067 | 2077.71 | 253492 1030.1 -133.97 113
430 | 699165 | 1943.07 | 21.0726| 1090.46 | -634.369 8.3
952 | 69.9798 | 1942.15| 20.5856 1089.2 | -202.456 7.8
955| 62.6185| 187285 | 31.8475| 1091.11 -986.22 7.4

Table2.35 Top 10 resultsfor case 2 listed in descending order of solution time
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We will next analyze the one case that took long time, along with the two

cases (shown below) that were not solved.

[T [Current optimization statistics. [ Auto Hide
M atrix: Presolved:
Fows[constraints): 41 Rows(constraintz]: &
Columns(vanablez) 833 Columnz[+ariables): 811
MNanzero elementz. 2750 Monzero elements: 842
Global ertities: a10 Global entities: 810
Sets: 0 Sets: 1}
Set members: 0 Set members: 1}
Overall status: Performing global search...
LF relaxation: Global search:
Algorithm: Simplex dual Current node: E35E936
Simplex iterations: 7 Drepth: 95
Objective: -75.9253 Achve nodes: 0
Statuz LF O ptimal Best bound: 75,4524
Time: 0.05 Best solution: -75.4235
Gap: 00383361 %
Status: 11 integer solutionfs] fo
Tirne: 1E43E 45
Time overheads:
Frogress graphs: 4132
Writing autput: 0.0z
FPauzing: 0.0z
Updating status: 196z
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Figure2.16 Result for weight 176
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Figure2.17 Result for weight 643

We proceed to apply the decomposition techniques finding that some of the
weights required a great computational effort to achieve the optimal solution, we
compared the performance of the solution methods and the results have been

summarized in Table 2.36. Dantzig-Wolfe outperformed all othersin this case.

Weight Branch and Bound Lagrangian | Dantzig-Wolfe Best
ID Relaxation M ethod
Best -75.4235 Best bound -75.86 -75.754
solution
176 Effort over 6 million nodes No feasible solution | Four iterations DW
over four and a half found 9 iterations
hours
Best -110.172 | Best Bound-112.327 -111.52
643 solution __ - . - -
Effort over 3.8 million No feasible solution | Four iterations DW
nodes almost 4 hours found 11 iterations
Best 43.9923 Best bound 49.66 47.0496
solution
724 Effort | Over threeand ahaf | No feasible solution Several | Unclear
hours found 11 iterations iterations and
B&B

Table2.36 Comparison of methods case 2
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2.5. Algorithm | mplementation

The solution algorithm that we proposed to solve the integer programming

land development model is presented below in Figure 2.18.

Step O: Initialization )
Set Time Limit for Branch ,| For Each Difficult
Case
and Bound
A 4 A 4
Step 4: Apply
Step 1: Solve LDIP Lagrgnglan
For Each Weight in the Relaxation to the
Set Solve the Problem Problem
Using Branch and Bound

v YES

Step 5: Is the
. Solution Optimal?
Step 2: Identify
Pareto Optimal
Solutions

Step 6: Apply

v Dantzig-Wolfe

Decomposition
Step 3: Identify
Solutions that
Required More

Time A 4
Next Case

Figure2.18 Algorithm to solve the integer programming version of the land development
problem using L agrangian relaxation and Dantzig-Wolfe decomposition

This algorithm begins by setting a time limit on the branch and bound search,
we have found by experimentation that for our problem a one minute limit works
quite well since the total time to evaluate 1000 weights was less than an hour. After
all weights have been solved using branch and bound the algorithm checks al those
cases in which the algorithm stopped the branch and bound search due to time

limitations. For those cases we then solve a Lagrangian relaxation, if the result of the
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Lagrangian relaxation is the same as the one obtained by branch and bound then we
consider the solution to be optimal, if it was not then we proceed to apply Dantzig-

Wolfe decomposition.

25.1. Original Bounds

To test our proposed agorithm we ran the 1000 cases with the case 2 bound
using two minutes max time, and obtained in about 25 minutes the results presented
in the appendix.

These results are consistent with what we have found without time limit. We
identified that from the 1000 runs, seven of them exceeded the two minutes limit,
those solutions are listed in Table 2.37. The bounds obtained after two minutes are
extremely close to those found after hours of computation. This method would reduce
the total time to compute the all the solutions, since apparently only seven cases

would need to be evaluated further.

Solution Weight ID | IMP ENV PFA PRO Obj. F. Time in
seconds
1 178 2030.14 21.0726 | 77.6513 | 1086.90 | -640.727 | 126.813
2 389 2045.20 21.0726 | 782727 | 1086.25| -412.207| 125.931
3 459 2015.20 21.0726 | 76.8444 | 108754 | -883.564 | 127.153
4 662 2030.15 21.0726 | 77.6513 | 1086.90 | -1024.140 | 133.993
5 802 2030.23 21.0726 | 776513 | 1086.90 | -762.239| 128.145
6 921 2059.88 217481 | 79.0115| 1085.82 | -387.977| 134.404
7 964 2044.84 21,7481 | 783901 | 1086.46 | -1016.270 | 131.198

Table 2.37 Runs exceeding the time limit original bounds

The solutions listed in Table 2.37 are candidates to further revision by the
Lagrangian and Dantzig-Wolfe decomposition techniques. However, when we
checked for Pareto optimality we found that from the 1000 solutions there are 285

unique are Pareto optimal points. The list of those unique Pareto optimal points can
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be found in the gopendix. Since all weights used are positive, al runs should be
Pareto optimal, but since more than one weight can result on the same solution then
the set of Pareto optimal pointsis a subset of all runs. The interesting finding is that
from the list of Pareto optimal points only three points exceeded the solution time.
This means that some of the solutions found by the branch and bound procedure are
being mapped to another weight combination that took less time and solved to
optimality, so there is no need to evaluate them again.

The solutions in the Pareto optimal set that need to be evaluated are:

Weight ID | IMP ENV PFA PRO Obj. F. Seconds

389 | 2045.2 | 21.0726 | 78.2727 | 1086.25 | -412.207 125.931
921 | 2059.88 | 21.7481 | 79.0115 | 1085.82 | -387.977 134.404
964 | 2044.84 | 21.7481 | 78.3901 | 1086.46 | -1016.27 131.198
Table2.38 List of Pareto optimal pointsexceeding maximum time original bounds

2.5.2. Tightened Bounds Case 1

The 1000 cases were solved using the algorithm with a two minutes maximum
solution time. It took 36 minutes to find all solutions. Thelist of the solutions
obtained is presented in the appendix. We found that 11 of the solutions exceeded the
allotted time to solve. Also, from the set of 1000 runs only 250 points were Pareto
optimal. It was expected to find a smaller number of points as compared to the
original bounds since the feasible region have been reduced. From those 250 Pareto

optimal points, the 7cases are presented in Table 2.39 need to be evaluated further.

Solution | Weight ID | IMP ENV [ PFA | PRO Obj. F Seconds
1 176| 2,092.69 | 205 60.01| 1,026.86 -75.41 | 133.3020
2 361| 2,014.24| 20.63| 76.95| 1,086.40( -369.64| 133.9530
3 389| 2,045.20| 21.07| 78.27| 1,086.25 -412.21| 135.8250
4 724 1,492.83| 2.05| 60.03 750.93 44.00 | 132.8610
5 921| 2,059.88| 21.75| 79.01| 1,085.82| -387.98 | 134.3630
6 952| 2,029.33| 20.63| 77.76| 1,085.76 -203.14| 123.2270
7 964| 2,044.84| 21.75| 78.39| 1,086.46( -1,016.27 | 123.1970

Table2.39 List of Pareto optimal points that exceeded maximum time tightened bounds case 1
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2.5.3. Tightened Bounds Case 2

The 1000 cases were solved using the agorithm with a two minutes maximum
solution time. It took 20 minutes to find all solutions. The list of the solutions
obtained is presented in the appendix. We found that 5 of the solutions exceeded the
allotted time to solve. Also, from the set of 1000 runs only 236 points were Pareto
optimal. It was expected to find a smaller number of points as compared to the
original bounds since the feasible region have been reduced. From those 236 Pareto

optimal points, only two need to be evaluated further. Those cases are presented in

Table 2.40.
Solution | WeightID | IMP ENV | PFA | PRO Obj. F. | Seconds
1 176 | 2,092.66 | 2.05| 60.03| 1,026.85| -75.42 | 128.8250
2 724 1,492.77| 205 | 60.03| 750.93| 44.00| 122.2860

Table2.40 List of Pareto optimal pointsthat exceeded maximum time tightened bounds case 2

2.6. Formulation Using the Constraint Method

Consider again the same settings as for the weighted method. The difference
is that now, we are interested in optimizing one of the objectives while we set a

bound onthe others.

2.6.1. Optimizing the PFA's

We could set up the problem as to maximize the area of PFA developed, while

at the same time maintain a total imperviousness change that does not exceed a

certain upper bound (W’) , develop environmentally sensitive areas up to certain

upper bound (ENV) , while making at least a minimum profit (PRO) .
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Then the mathematical formulation used for this model can now be written as

follows:
O5 [o]
Max: g a &,d,, (2.91)
z=1ni PFA Y ’
Subject to:
g ¥ —
aaa,n,d,£EIMP (2.92)
z=1 n=1
05 [e] —
aaa.d,,£ENV (2.93)
z=1nl S Y Y
g ¥
aa p..d,,* PRO (2.94)
z=1 n=1
05 [e] ——
PFALQ & a,d,,£PFA (2.95)
z=1 nl PFA ' ’
gll -
RLD£Q u,.d,, £RLD,z=1 (2.96)
n=1
gz -
RMD£Qu,,d,, ERMD,z=2 (2.97)
n=1
gs -
RHD£Qqu,.d,, £RHD,z=3 (2.98)
n=1
Na
coMvfgqu,d, £ECOM,z=4 (2.99)
n=1
Ns -
INDE£EQ u,.d,,£IND,z=5 (2.100)
n=1
d,, T {01},nT {N}," zI {1,2,3,4,5} (2.101)

This formulation would avoid missing Pareto optimal points due to the duality

gap as explained before in page 240. The bounds can be determined by optimizing
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each one of the objectives first as a minimization (to obtain alower bound) followed
by a maximization (to obtain an upper bound). After the bounds are set then one can
determine how many runs are desired to run and then divide the range of the bounds
in suitable intervals. Note that the number of runs can be determined as

Nwe * Neny * Npro Which can result in alarge number of runs. For example if each

bound is broken in 10 ranges then there would be 1000 runs.
We proceeded to optimize the four objectives twice as described above (one

for minimization and one for maximization) obtaining the Table 2.41.

Objective PFA IMP ENV PRO
Min [ 13.2145| 1051.55( 1.76926 613.33
Max| 79.3887 | 5967.03| 678.063| 1100.99

Table2.41 Bounds on the objectives
Having set the bounds for all objectives we could now divide the rangesin
eleven intervals and use the intermediate points (ten points) as bounds for the

constraints as presented in Table 2.42.

Objective PFA IMP ENV PRO
Min | 13.2145| 105155 | 1.76926 613.33
Max| 79.3887 | 5967.03| 678.063 | 1100.99

0 13.21| 1051.55 177 613.33
1 19.23| 149841 63.25 657.66
2 25.25| 1945.27 124.73 702.00
3 31.26| 2392.14 186.21 746.33
4 37.28 | 2839.00 247.69 790.66
5 43.29 | 3285.86 309.18 834.99
6 4931 | 3732.72 370.66 879.33
7 55.33| 4179.58 432.14 923.66
8 61.34| 4626.44 493.62 967.99
9 67.36 | 5073.31 555.10 | 1012.32
10 73.37| 5520.17 616.58 | 1056.66
11 79.39 | 5967.03 678.06 | 1100.99

Table 2.42 Selection of ten boundsfor the four objectives

The points start at zero with the lower bound and end at 11 with the upper

bound, we would take the ten intermediate points as bounds for the optimization.
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Example, the first run would be to maximize the PFA area subject to the
Imperviousness not to exceed avalue of 1498.41, the environmentally sensitive area

not to exceed 63.25, and the profit to be at least 657.66.

2.6.2. Lagrangian Relaxation

To solve the above problem using Lagrangian relaxation we would proceed to
relax the first three constraints and include in the objective function the positive slack
of each constraint multiplied by a Lagrangian multiplier ssimilarly as previously done

with the weighting method. The formulation would be as follows:

5 g) lc\l> °5 o .
Max: & & a,d,, + meIMP- 8 a0, 0,2+ nngENV 38 a.d,o+

z=1nl PFA =1 n=1 4] zAn & a

N

N

o
ﬁlga a p,.d,,- PRO- (2.102)
€z=l n=1 (%]
Subject to:
(I;h
RLD£J u,.d,, £RLD,z=1 (2.103)
n=1
’2‘,2
RMD£ § u,,d,, £ RMD,z=2 (2.104)
n=1
lel’
RHD£ § u,,d,, £ RHD,z=3 (2.105)
n=1
g
COM£3 u,.d,, £COM,z=4 (2.106)
n=1
gls
INDEQ u,,d,, £ IND,z=5 (2.107)
n=1
d,,1 {04,nT {N}," z1 {1,2,3,4,5} (2.108)
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This formulation is very similar to the formulation presented in the
Lagrangian relaxation for the weighting method, the difference is only in the

objective function, so we will not proceed to solve it as scope for the present work.

2.6.3. Dantzig-Wolfe Decomposition

The formulation can be decomposed by zones in a similar fashion as before
where each one of the subproblems are identical to the ones presented in the
weighting method, but the master problem has been modified to accommodate for the

new complicating constraints. The formulation is as follows:

max: PFA™ (2.209)
st.
5 ¥ —
a a azn[] z,ndz,nI zt £ lMP (2110)
z=1 n=1
o5 o —
a a azndznl zt £ ENV (2.111)
s ’
5 ¥
a a. pz,ndz,nI zt 3 E) (2112)
z=1 n=1
& & —
PFAEQ a PFAZ’tdz,tl .+ E PFA (2.113)
z=1 t=1
g &
aal, =1fork=12345 (2.114)
z=1l t=1
I, 1{0% (2.115)

We tried to obtain aresult comparable with a previous one, so we choose to

use case 2 bounds and tried to find the solution obtained for weight set 150 as:
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Weight

PFA

IMP

ENV

PRO

Obj. F.

Seconds

150

60.8501

1143.54

94.8272

762.086

919.901

6.028

Table 2.43 Result for weight 150 case 2

We first set maximum value of imperviousness change to 1144, a maximum
area of environmentally sensitive area of 95 and a minimum profit of 762.
Maximizing for PFA we expect to obtain 60.0067, we obtained 61.2067 with the

following values:

Weight PFA IMP ENV PRO Obj. F. Seconds
150 | 60.8501 | 114354 | 94.8272| 762.086| 919.901 6.028
Bounds | 61.2067 | 1143.63| 94.8272| 762.197 3.765

Table2.44 Comparison between the result of weight 150 and the bounds using constraint method

Since the bounds seemed too loose, we tighten them to a maximum value of
imperviousness change of 1143.55, a maximum area of environmentally sensitive
areaof 94.83 and aminimum profit of 762. Maximizing for PFA we to obtained

60.85 which is the value we were expecting. The computation time was 7.28 seconds.

2.7. Previous Work on Decomposition Heuristics

Barnhart et al. (1996) presented formulations of integer programming
problems involving alarge number of variables with an example of the generalized
assignment problem and crew assignment problem. They described how the pricing
problem in Dantzig-Wolfe decomposition can be equivaently stated as a Lagrangian
relaxation of the original integer programming problem.

Huisman et al. (2003) presented two different ways to combine Lagrangian
relaxation with column generation. They applied the Dantzig-Wolfe decomposition
technique to an integer problem, and solved the LP relaxation. Two approaches were

followed. On the first one a Lagrangian relaxation was used to solve the sub-problems
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and on the second one, the Lagrangian relaxation was used to select the columns to be
generated. They presented an example using lot sizing to show the applicability and
to compare the computational efficiency of the two concepts.

These approaches are different from the approach taken in this work since we
are using the Lagrangian relaxation as a technique to verify the optimality of the
solution obtained by the branch and bound technique in the cases where more timeis
presumably needed and later proceeding to use Dantzig-Wolfe instead of solving the

relaxation within Dantzig-Wolfe using Lagrangian relaxation.

2.8. Chapter Conclusions

This chapter presents a mixed integer programming model for land
development using a weighted sum of objectives from different stakeholders. An
algorithm involving a combination of the traditional branch and bound method,
Lagrangian relaxation and Dantzig-Wolfe decomposition is presented and applied
finding alarge subset of Pareto optimal pointsin a shorter time compared to branch
and bound aone. These techniques have been applied together in the past as
presented in section 2.7 but none of those used the same sequence as presented in this
work. That is, those heuristics solved one instance of the problem where the
Lagrangian relaxation was used to solve the subproblems from the Dantzig-Wolfe
decomposition or to generate new columns. In contrast, in this work the branch and
bound, Lagrangian relaxation and Dantzig-Wolfe techniques are applied in seriesto a
large number of instances (sets of weighting vectors) to solve the same problem.

The proposed algorithm to find an optimal solution follows three steps First

the problem is solved for al the weights using branch and bound with atime limit of

97



one minute. Then, the Lagrangian relaxation is used as a bound to verify if the
solution obtained in the cases where the branch and bound seems to need more time is
equal to the bound in which case the solution found is optimal, if not then the
Dantzig-Wolfe decomposition is used to verify optimality. The Lagrangian relaxation
is used first since numerically it provided a bound faster than the Dantzig-Wolfe
technique. Another conclusion from the numerical tests isthat the Lagrangian
relaxation technique is easier to implement than the Dantzig-Wolfe decomposition.
The 1000 weight vectors tried were solved within a reasonable time frame
obtaining arelatively large set of Pareto optimal sets which would not have been
possible by the use of branch and bound aone. The Lagrangian relaxation alone was
not sufficient for one of the cases evaluated because it was not possible to obtain a
feasible solution of the original problem by solving the relaxation. There was also one
case where the Dantzig-Wolfe decomposition did not yield an integer solution so we
needed to apply branch and bound to solve it. Although it was not the case in this
dissertation, it is possible that neither Lagrangian relaxation nor Dantzig-Wolfe
would find an optimal solution, so the only viable procedure would be to eliminate
the time limit of the branch and bound search. This is true because in certain cases the
Lagrangian relaxation is no stronger than the linear programming relaxation (Wolsey,
1998). Also, because the Lagrangian relaxation and the Dantzig-Wolfe decomposition
are duals of each other (Geoffrion, 1974; Fisher, 1981) then their optimal solutions
are the same. Therefore, it is possible that the optimal solution obtained by the
algorithm after applying both Lagrangian relaxation and Dantzig-Wolfe would be no

better than the linear programming relaxation (Fisher, 1981).
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Chapter 3 Land Development Quadratic Mixed I nteger
Formulation

Gabriel, Fariaand Moglen (2005) extended the work previously done by
Moglen, Gabriel and Faria (2003) in several aspects. First Gabriel, Fariaand Moglen
(2005) allows for a set of parcels with “unassigned zoning” to be used. One of the
decision variables of the model is to decide what type of development zone should be
used for each unassigned parcels selected for development. Second, new constraints
were added to handle preferences given to the parcels with zone category to be
developed first, before considering any from the unassigned set. Third, the concept of
compactness was treated in this work as the squared distance of a rectangle that
enclosed all parcels previously developed and chosen for development by the model.

In this section we again extend that work by presenting a strategy to solve the
problem using Lagrangian relaxation and Dantzig-Wolfe decomposition methods but

do not present numerical results.

3.1. Objective Functions

This formulation considers four stakeholders as described bel ow:

3.1.1. The Government Planner

The Government Planner is mostly concerned with the compact devel opment
of the land as to prevent the scattered patterns usually associated with sprawl (see
page 112). This stakeholder seeks to minimize the size of arectangle that surrounds
all developed parcels. For computational reasons, the objective function minimized

the square of the diagonal rather than the diagonal itself.
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Figure 3.19 presents an example of the rectangle that encloses all previousy

devel oped parcels and the parcels proposed to be developed by the model.
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Figure 3.19 Depiction of the diagonal and therectangle that encloses all developed parcels

To measure the rectangle it is first required to find the "largest northing" of
the northernmost parcel, the "smallest northing" of the southernmost parcel, the

"largest easting" of the easternmost parcel, and the "smallest easting” of the
westernmost parcel. Let those coordinates be named r,,r¢,C-, and G, respectively.

Then the length of the diagonal of the rectangle is given by:

dist :\/(rN 1)+ (ce- o) (3.)
To smplify this equation but without loss of generality, the objective function

was sguared to obtain:

(e 1)+ (ce- &)’ (3.2)
which represents the Planner’ s objective to be minimized.
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3.1.2. TheHydrologist

The objective function used was the same as for the Hydrologist in Chapter 2, so the

objective function can be written as:

N,
mlng é. azn[]zndzn-i- é. anDIndn (33)
24 n=1 ' ’ nl Sy

3.1.3. The Conservationist

This stakeholder matches the one presented in Chapter 3, so the objective function

can be written as:

5
mna 4 a,d,,+ a ad, (34)
z=End & n (S9CSc)

3.1.4. ThelLand Developer

This stakeholder matches the one presented in Chapter 3, so the objective function

can be written as;

N,

5
maxd & p,d,, + & Pud, (3.5)

z=1 n=1 nl Sy

3.2. Constraints

Similar to the formulation presented in Chapter 3, this formulation has constraints to
accommodate the devel opment to the expected growth of the population, commercial

and industrial requirements.

N; _—
RLD£Q u, d,,+a v, RD, £RD,z=1 (3.6)
n=1 nl S
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N, -
RMD£ Qu,.d,. +a u,,RMD,, £ RMD,z=2 (3.7)

n=1 nl Sy

N3 [
RHD£Q u,d,, +Q u,,RHD, £RHD,z=3 (3.8)
n=1 nl Sy
B4 ) -
COM£Qu,d, +g u, COM, £COM,z=4 (3.9)
nal ' nl Sg ’ '
Ns o —
INDE£Q u,,d,,+a u,,IND,,£IND,z=5 (3.10)
n=1 nl Sy
d,,1 {01,nT {N}," z1 {1,2,3,4,5} (3.11)

RLD,,,RMD,,,RHD,,,COM, .,IND, T {0,1}" z,n

z,n?

where the new decision variables RLD, ,RMD,_,RHD, COM

zn? z,n? zn! zn?

IND, , have been
included to associate a development type (residential low density, residential medium
density, residential high density, commercial, or industrial respectively) to each of the
parcelsin the set of unassigned parcels labeled as set S, .

The parcelsin this set can be developed under only one type of zone:
RLD,,+RMD,, + RHD,, +COM,, +IND,, =d,," zl {1,2,34,5},nl S, (3.12)
d,T{on"nl S, (3.13)

Additional constraints are required for the computation of the corner

coordinates of the outer rectangle for the planner’s objective. These can be written as:

rg - row, (z,n)£(1- d, )M (3.14)
row, (zn)-r £ (1- d, )M (3.15)
Gy - coly, (zn) £(1- d,, )M (3.16)
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col.(zn)- c.£ (1— dz,n) M (3.17)

where M is a suitably large positive constant.

Finally there are another two groups of constraints required to give priority to the
parcels with zones assigned over those without it. Specifically, the first set of
constraints stipulates that the parcels without assigned zone shouldn’t be devel oped
under azonetype zif there are enough parcels in that zone to cover the minimum

reguirements for growth. The congtraints for the first group are written as.

NZ

é. RI-Dnun E’ MyRLD’é. é. uz,n - —RL E’ M (l_ yRLD) (318)
nl Sy z=1 n=1

o o) 'c\l>z

a RMD,u, £Myyp.@ A U, n- RMD £ M (1' yRMD) (3.19)
nl Sy z=2 n=1

o o 3‘1

a RHDU, £Myq0.8 A U,,- RHD£M (1- yq) (3.20)
nl Sy 7z=3 n=1

[} o gz

a COM U, £ My, Q @ U, - COM £M (1- yeoy ) (3.21)
nl Sy z=4n=l

o o gz

a INDu, £My,,,a @ U,,,- IND£M (1- ;) (3.22)
nl Sy z=5n=

Yrior Yevor Yrio + Yeom s leDT {0’1} (3-23)

Also, where the available number of parcelsis not enough, al available
parcels should be devel oped before assigning parcels from the unassigned set. The

constraints for the second group can be mathematically written as:
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NZ NZ NZ
@_ é é. uz,n £N (1_ WRLD)’é é uz,n - é é. uz,ndz,n £ NWRLD (324)

z=1 n=1 z=1l n=1 z=1l n=1
0 <N>Z 0 gz 0 gz
M' a a uz,n £N (1' WRMD)'a a uz,n - a a uz,ndz,n £ NWRMD (3-25)
z=2 n=1 z=2 n=1 z=2 n=1
o) gz o) gz 0 <N)Z
@' aa uz,n £N (1' WRHD)’a a uz,n -ada uz,ndz,n £ NWRHD (3-26)
z=3 n=1 z=3 n=1 z=3 n=1
0 glz o) 'c;lz o) 'c\laz
m - a. a uz,n £ N (1- WCOM)’a a. uz,n - a. a. uz,ndz,n £ N\NCOM (327)
z=4 n=1 z=4 n=1 z=4 n=1
0 gz o) gz 0 <N>Z
_IND- aa U, EN (1_ \NIND)’a a u,, - aa uz,ndz,n £ N\NIND (328)
z=5 n=1 z=5 n=1 z=5 n=1
We 01 Waro s Weuo s W s Wao | {0, (3.29)

where N is a suitably large positive constant.

Since the region where the development is taking could be quite large, in
order to better utilize the compactness measure presented in (3.2), the area can be
broken down in sub areasor quadrants in such a way that the total area of the
development is covered by those quadrants. For example consider the case presented
in Gabriel, Faria and Moglen (2005) where the Montgomery County area under study

is presented in Figure 3.20.
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Q1

[ IPreviously Developed Parcels
[ Jundeveloped Parcels

Figure 3.20 Division of Montgomery county study into four quadrants

The parcels that belong to each quadrant are shaded differently as in Figure 3.21.

Q1

F7Z7 Quadrant 1 Parcels
= Quadrant 2 Parcels
Il Quadrant3 Parcels

Ny Quadrant 4 Parcels

Figure 3.21 Parcels assigned to each quadrant
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The objective function of the Planner can be dightly modified to minimize the
sum of the four squared diagonals. More specifically, if there are Q quadrants, then

the objective function of the Planner becomes:

Min: éQ ((rqyN - rqu)2+ (cq'E- cqyw)z) (3.30)

g=1
where 1, , isthe northernmost coordinate, r, ¢ is the southernmost coordinate, ¢, ¢ is

the easternmost coordinate and c,,, isthe westernmost coordinate of the quadrant g.

3.2.1. Formulation Using the Weighting Method

Similar to the formulation presented in Chapter 2, we can use the weighting
method to solve the problem as follows

Q

. a5 2 2\ 0 & o 0
Min: w cal ((rq’N - rqu) + (cq‘E- cqyw) ++weaaa,D,d,+a abl dz+
ea-1 a z=1 n=l Nl S 1]
&3 6 e ) 0
wed d a,d,+ a adz-wedad p.d,+a pdz (3.31)
z=1n < n (SeCS) [} z=1 n=1 nl S %]
st.
(3.6) - (3.29)

3.2.2. Evaluation of theNine Original Cases

Similarly to the study in Moglen, Gabriel and Faria (2003) this formulation

was tested with nine cases as presented in Table 3.1.
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% Planner Hydrologist | Conservationist | Developer | Relative
S (Compactness) | (Imperviousnes (Env. Sensitive (Profit) Gap
s Change) Area)

1 Planner 1 0 0 0| b5e-005
Alone

2 Planner 1 0.001 0.001 0.001| 5e-005
Pareto

3 Hydrologist 0 1 0 0| 5e-005
Alone

4 Hydrologist 0.001 1 0.001 0.001| 5e-005
Pareto

5| Conservationist 0 0 1 0| b5e-005
Alone

6| Conservationist 0.001 0.001 1 0.001| 5e-005
Pareto

7 Developer 0 0 0 1| 5e-005
Alone

8 Developer 0.001 0.001 0.001 1| 5e-004
Pareto

9 All 1 1 1 1| 5e-005
Perspectives

Table 3.1 Weights assigned to each stakeholders' objective

In these nine cases each stakeholders' objective was optimized alone (setting

the weight of the other stakeholders to zero), aso giving a small positive weight to

the others objectives (called Pareto) and with all stakeholders having the same weight

(All Perspectives case).

Note that one of the cases required a larger relative gap measured as:

|Best Solution - Best Bound|

(3.32
Best Bound

because the computation time required to reach the solution was not acceptable. Other
cases took also along time to solvei.e., the “Conservationist Alone” took a little over
six hours to reach anoptimal solution.

The tradeoff between stakeholders was presented in a value path graph asin
Figure 3.22. The values have been normalized in the range 0-1 where O isbest and 1

isworst. For example, case 7 (Developer Alone) does poorly in the compactness,
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imperviousness change and environmental measurements but provides avery high

profit (value close to zero are desirable for all objectives).
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Figure3.22 Value path representation of the nine cases evaluated

Figure 3.22 shows the normalized values of the four objective functions
evauated in the nine cases studied in a scale 0-1 where zero was the preferred
solution and one the less desirable. Thus, z profit of zero means the highest profit and
a imperviousness change of zero means the lowest imperviousness change. For
example case 7 has the lowest compactness (parcels spread out more) among all
cases, this case is also very high in the imperviousness and environmental measures

while scores with a very high profit level (close to zero).
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3.2.3. Problem’s Structure

Once again, these long computational times are the motivation to implement
relaxation and decomposition techniques similar to those already presented in the
previous chapter. The implementation for this case should be straightforward similar
to the previous chapter and thus are not presented in this dissertation

Because the quadrants are divided in such way that the parcels belong to only
one gquadrant, then the structure of this formulation can be considered as Q
independent formulations (one per quadrant) with common constraints that calcul ate
the total development for each type of zone development (similar to the previous
case) but with an additional set of complicating variables that gopear along all zones
(the unassigned parcels). Now, within each quadrant there are parcels from all type of
zones including unassigned. Therefore, a combination of Benders decomposition and
Dantzig-Wolfe decomposition would be required to solve this problem. We leave the
formulation and related numerical implementations of this case for future work. We

envision this structure as depicted in Figure 3.23.

5

",

"y

[

Figure 3.23 Decomposition structure of the quadratic model for land development
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3.3. Nested Decomposition Strategies

Several researchers have applied sequentially Dantzig-Wolfe decomposition
to solve large-scale problems raising a nested decomposition approach Glassey
(1973) applied this technigue to a multi-stage linear programming problem (MLP).
Ho (1977) applied the technique to aManne' s version of alinear programming
problem of U.S. energy options with a staircase structure. VVanderbeck (2001) applied
a nested decomposition to solve a cutting stock problem.

Similarly, nested Benders decomposition techniques has been used before in
the context of multistage stochastic optimization (Birge, 1985; Gassman, 1990;
Archibald and Buchanan, 1999; Watkins et al., 2000; Dempster and Thompson, 2005)
where problems in the same time period can be solved independently with a
decomposable structure exploited witha nested Benders a gorithm.

Other applications arise in power systems where the complexity and size of
the problem are addressed by nested decomposition methods (M cCusker and Hobbs,
2003).

Thus far we have not been able to find any publications that combine Benders
and Dantzig-Wolfe techniques together as proposed here to solve a problem of this

structure.

3.4. Chapter Conclusions

The land devel opment problem can incorporate compactness as an objective
function. Using the rectangle approach the land development area can be divided into

guadrants in order to prevent sprawl or used as a corridor to foster development in a
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specific direction set by the oriertation of the coordinate system used. The rectangle-
based measure has the advantage of convexity so any local solution is a global
solution. However the parcels |ocated inside the rectangle do not affect the
measurement of compactness since they do not change the size of the rectangle. We
propose in the next chapter a compactness measure that depends on all parcels
selected for development.

This model has flexibility in the use of land since some of the parcels do not
have a previously assigned zone type. However, the flexibility provided by alowing
the model to decide the land use for each parcel increases the complexity of the
model.

We envision Benders decomposition first to take care of the complicating
variables for those parcels with unassigned zoning. Then we would have five

subproblems, each being solvable by applying Dantzig-\Wolfe decomposition.
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Chapter 4 Embedded Minimum Spanning Tree
For mulation

4.1. Sdected Works About Minimum Spanning Trees

The minimum spanning tree (MST) is one of the most widely studied
problems in operations research (Graham and Hell, 1985) therefore there are
numerous publications that analyze this problem from a variety of different
perspectives. The following list is nhot meant to be exhaustive, just indicative of work
previously dore that reflect some resemblance with the concepts and agorithms later
developed in this section.

Toussaint (1980) showed that the MST is a subset of the relative
neighborhood graph (RNG) and presented two algorithms for obtaining the RNG of n
points on the plane. This means that if one wants to construct a MST one could first
construct a RNG and then use the edges as variables for the MST.

Vaidya (1984) studied the problem of finding a MST on afully connected
graph of n nodesin E* with a bounded radius. He has developed a fast algorithm to
find an approximation of the solution for a L, distance metric whereq=2, 3, ... He
used a search within a neighbor of each node for candidates to be included in the tree.
This concept reinforces a basic property of the MST that is: each node will be
connected to the closest node.

La and Sheng (1996) applied the concept of a closure defined as the set of all
edges incident to a node with a specified length to select edges in an agorithm used

to construct the Euclidean M ST allowing a reduction on the size of the problem.
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Zhou, G. and Gen(1999) considered simultaneously multicriteriain
determining an M ST, assigning multiple attributes on each edge creating a more
realistic representation of the practical problem.

Yaman et a. (2001) modeled the robust spanning tree problem as a mixed
integer programming formulation. In this formulation a single-commaodity
formulation and the dual of a multi-commodity formulation both modeling the
classic minimum spanning tree problem and both presented in Magnanti and Wolsey
(1995), are joined together. Some rules are presented which alowed the author to
reduce the size of the problembased on identify edges which will never be in the
solution of arobust tree.

Montemanni and Gambardella (2002) presented a branch and bound a gorithm
for arobust version of the minimum spanning tree problem where edge costs are
specified as intervals instead of fixed numbers. Based on the work of Yaman et al.
(2001) a set of pre-processing rules are applied to reduce the dimension of the
problem.

Graham et al. (2003) studied the capacitated minimum spanning tree (CMST)
problem presenting a mixed integer programming formulation with a root node. They
proposed an exact algorithm for solving the CM ST problem using a heuristic since an
exact procedure, which has to enumerate al feasible solutions, is exponential in the
number of nodes is not applicable to very large size problems. They sorted the length
of the edges and the algorithm chooses from the list starting with the smallest ones
first, and applied a modification to the branch and bound search using an m-stage

binary search tree.
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4.2. TheMinimum Spanning Treein the Land Development

Problem

According to Burchell et al. (2000), limiting the development of the land to
areas close to those already developed is a control mechanism that could be
applicable to reduce sprawl and the negative consegquences associated with it. One
can conclude from the literature review that the notion of compactness is often
associated with the measure of density defined as dwelling units per unit of area.
Sprawl and compactness are inversely related to each other. The more compact a
development is, the less sprawl and vice versa.

We envision the parcels that are already developed as connected among them
forming an existing infrastructure. New parcels will connect to this existing
infrastructure by means of the minimum distance. With thisidea in mind we have
proposed the use of the minimum spanning tree (MST) as a compactness measure
sinceit will promote the selection of parcels that are closer to existing developed
parcels and therefore promoting compactness and preventing sprawl. This objective is
considered in a multiobjective optimization problem in conjunction with other
stakeholder objectives.

The foundation for the formulation is as follows: We propose the
measurement and optimization of three objective functions. First the Planner’s
objective which will be to maximize the compactness measured as the resulting MST
over al parcels chosen for development and the existing network of developed
parcels. The existing network of developed parcelsis presented as the MST which

connects all already developed parcels, but thisis only for purposes of representation
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and does not in any way implies that sucha network is atree. In fact, water supply
networks, for example, are interconnected in densely settled areas by multiple cycles
hence, the concept of the tree is not valid. The second objective considered is the
Developer’ s objective, which is maximizing the profits obtained from the
development of the land. The third objective proposed is from the Hydrologist
perspective the minimization of imperviousness. The constraints are to provide
enough dwelling units to satisfy both the population growth in terms of residential
units, and the economic growth in terms of acres for commercial and industrial use.
Finally there is a set of constraints required to define the length of the minimum
Spanning tree.

Because atypical MST formulation involves an exponential number of
variables constraints it is impractical if not impossible to solve with alarge scale
problem. Therefore a strategy isrequired to reduce the number of variables and
congtraints, such strategy was developed in this dissertation work. First, the fully
connected concept was relaxed and the parcels are allowed to connect only to those
parcels within vicinity. Second, not all constraints are imposed at once, rather just a
subset of the full formulation is used and the relaxed problem is solved iteratively. On
each iteration the disconnected element s are identified and new constraints to ensure
connectivity of those components are added. Also, to speed up the process, the cycles
within the graph are detected and new constraints are added to break the cycles. This
double constraint generation approach has been tested here with networks of various

Szes.
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The algorithm developed is as presented in Figure 4.24. An additional step
could be added to the algorithm in order to speed up the approach, where the potential
cycles are identified ahead of time based on the parcels that have been selected for
development during previous iterations.

In the next sections of this chapter, supporting arguments for the selection of
the MST as a compactness measure are presented along with a discussion of the
multiobjective formulation and implementation of the proposed algorithm supported

by examples.
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Step 0: Initialization
Create Initial Formulation SLDMST
a) Find the distance from each parcel to the
existing network
b) Define variables for the formulation

c) Create initial formulation relaxing MST

constraints except for cutset inequalities
around each node

y

Step 1
Solve the formulation LDMST

A 4

Step 2
Find all cycles and identify the parcels in
the cycle
Find all disconnected elements and identify
the parcels in the set

Step 3
Is the number of
cycles >07?

YES

v

Step 4:
Generate cutset inequalities and cycle
breaking inequalities
Add the new inequalities to the LDMST
formulation

Figure4.24 Algorithm to solve the land development for mulation with embedded MST

4.3. TheMinimum Spanning Tree as a Compactness Measure
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Historically the roots of the minimum spanning tree (MST) could be traced as
far back as the work of Kirchhoff (1824-1887) and other researchers of the last
century (Ahuja et al. 1995). The discovery and formal presentation of the minimum

spanning tree is attributed to Boruvka (1926a, 1926b) who considered the problem of



an electric power company of Western Moravia seeking to interconnect cities to the
existing power grid (Nesetril et a., 2000; Korte and Vygen, 2000). The problem was
to distribute electricity, water, etc. from one point to another in the most efficient
possible way. Thisis achieved by following a path of minimum distance or minimum
cost which isfound by the MST (Ahuja et a., 1995; Magnanti and Wolsey, 1995).
Similar applications can be found in civil engineering when planning for new
highways, one might first find the MST interconnecting the cities then try to fit a
highway along the way since the distance to be covered would be minimum, or
perhaps using a capacitated MST interconnect the magjor cities with highways and the
smaller cities with routes (Magnanti and Wolsey, 1995).

By just reading some of the definitions of sprawl and the economic
consequences one can conclude that the farther away a parcel isfrom a point of
connection to the existing infrastructure the higher the cost of the development in
terms of providing the required services to support the development.

The minimum spanning tree can be used to find the minimum length required
to connect a group of points in the space, this concept can be applied to the
connection of the parcels to the existing (or future) infrastructure. This problem is

among the first combinatorial problems studied (Korte and Vygen, 2000).

4.3.1. Formulation of the Land Development Problem

4.3.1.1. Objectives

We are given afully connected graph G of V(G) nodes that represents the set

of all parcels, and aset V(H) of parcels previously developed such that
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V(H) I V(G). These two sets of nodes together with the interconnection between
those previously developed parcels (edges E(H) ) form the infrastructure network H.
We propose the following objective functions for the stakeholders:

Planner’ objective: maximize compactness

Min: g disyg 4.1)

(i.)E ©)
where dist;; isthe lengthof the edge that joins parcelsi and j, g; isthe decision
variable to include the edge (i,j) into the MST (g; =1) or not (g, =0). E(G) isthe set

of al edgesin the graph.

Hydrologist’ objective: minimization of imperviousness change

5 N,
Min:q & a,,Dl, .4, ., (4.2)

z=1 n=1

Developer’ objective: maximization of profits

5 N,
Max: & & p,.d,. (4.3)

z=1 n=1

were a,  istheareaof parcel ninzonez p,  isthe profit from developing parcel n of
zonez, d,, isthe decision variable to develop parcel n of zone z. V(H) isthe set of
available parcels, DI, ,isthe change in imperviousness when parcel n is developed of

zone z. For this dissertation work as following the same zones as in Moglen, Gabriel
and Faria (2003) and Gabriel, Faria and Moglen (2005), five zones were in the set of
possible zones for development. Taking a weighted sum of the objectives, as

previously done in Chapters 2 and 3, we can write the objective function as:
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NZ NZ

5 5
Min: \Nl é diStiij +W2é é aanI z,ndz,n - V\éé. é pz,ndz,n (44)

(i.jf §G) z=1 n=l 2=1 n=1

4.3.1.2. Constraints

The first set of constraints deal with the population, commercial and industrial
growthof the region. The number of units developed for each zone should be
bounded by the minimum and maximum required. These have been presented before

in Chapter 2 as (2.10) - (2.14)

I\ -
RLD£§ u,,d,, £RLD,z=1 (4.5)
n=1
2"2
RMD£ § u,,d,, £ RMD,z=2 (4.6)
n=1
gs I
RHD£ § u,.d,, £ RHD,z=3 (4.7)
n=1
§4
COM£3 u,.d,, £COM,z=4 (4.8)
n=l
Ns —
INDEJ u,,d,, £IND,z=5 (4.9)

n=1
The next sets of constraints are required to define the minimum spanning tree,
Appendix 2 presents several formulations developed to define the MST. Among them
we prefer to use the cutset formulation (A.210) - (A.213) over the packing
formulation (A.206) - (A.209) because less inequalities are required and because they
are easier to generate computationally.
Every parcel selected for development should be connected to the current

infrastructure, this means it should be connected either to one of the previoudy
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developed parcels, or to the MST of parcels selected for development which in timeis
connected to the existing network. Since the MST of the previously developed parcels
contains n-1 nodes, for each newly developed parcel there will be one edge required

to connect it to the existing MST. So the number of edges added to the MST hasto be

equal to the number of parcels selected for development.

5 N,
de=aad., (4.10)

A node should have incident edges if and only if it is chosen for devel opment.
This double set of constraints is required given the fact that an edge is defined only if

the parcels locaed at both ends of the edge are chosen for devel opment.

ae£ngd,,i=12..,n (4.12)
i z
aeEnd d,j=12.n (4.12)

For example in Figure 4.25 edges (1,2), (2,3), (2,4) and (2,5) can only be
defined if all the parcelsin the set {1,2,3,4,5} are selected for development. If for

example parcel 5 was not selected for development then the corresponding variable

for the edge (2,5) e,; =0.

Figure4.25 Example of four edges connecting five nodes
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Both sets (4.11) and (4.12) are required since both nodes i and | are required
to be developed for the edge to exist.

The cuset inequalities can be used to ensure the connectivity of al nodesin
thetree That is, any subset of nodes S should be connected at least with one edge to

the rest of the nodes in the network, either previously developed or selected for

devel opment.

a g (1- y)" Sl V(G),St £ (4.13)
{(i,)E (G)il S,jl V(Q\'S
& d £nt-y) (4.14)
s
y.1 {01 (4.15)

To illustrate this set of inequalities consider Figure 4.26 and Figure 4.27.

6 8
5 4 5 Jalws |
I‘- 4:
+ 7 1 ,y’!
7 6 | s 6
4 / - —-“‘é-‘s | 4 ! "/’ — 8
et ety J P It ol
e e ﬂ S g=FT S .
[ e V&= [ s \
3 = : 3 S Y TRV
s\ T~ 5 Sy s
(\ ‘-‘“‘“-—-.,__~ 4 77“"3“ [
\| T~——7 \ A ST~ T
2 \ T 2 \ ;f. ’ = rﬁl{
A\ 17 P Sl
\ A V' —’/
1 1 S £
2 T2

1T 2 3 4 5 6 ‘1‘2 3‘4I5I6

Figure4.26 Set of one node connected Figure4.27 Set of two nodes connected
to all other nodes to all other nodes

InFigure 4.26 if node 1 is selected for development, then that node should be
connected to at least one of the other nodes (previously developed or selected for

development parcels) in the graph. In Figure 4.27 if both nodes 1 and 2 are selected
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for development, then they should be also connected to the rest of the nodes in the

graph.
Constraint (4.14) ensures that if there is at least one developed parcel in the
set then the binary variable yg =0 which then forces é g 3 1lby

{(i,)TE )il S ji V(G\§}
means of constraint(4.13). This ensures that the set Sis connected to the rest of the
graph by at least one edge.

Note that it is not required to have the packing constraints and the cutset
constraints. The complete formulation would have redundant constraints if both are
included at the same time. They are included here for reasons that will be come
obvious when the proposed algorithm is presented.

Binary definition of the edge and development decision variables:

d, 1 {01 (4.16)
g {01} (4.17)

The implementation of formulation (4.4) - (4.17) as presented might be
impossible to solve for alarge network because the number of constraints involved in
the definition of the MST is exponential.

To understand the exponential nature of those constraints consider the

following: we need to take groups of one node first, and connect them to the rest of

) |
the nodes, if there are n=V(G) nodes then the number of constraints is g"“iS: ( n.l)l ,
g (nN-1):

to take groups of two nodes and connect them with the rest of the graphwe need

o _ n!

~=————— constraints, and then we need to take groups of three nodes which
825 (n- 212!
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ao_  n!

are o_-=———and so on. However, we do not need to add all the count together
&35 (n-3)3

which would be 2" - 2 because taking combinations of one node is equivaent to take
combinations of (n-1) nodes, combinations of two nodes is equivaent to taking
combinations of (n-2) nodes and so on  Therefore, the number of constraintsin this

group would be

2= 2 it nisodd (4.18)
and
0
2. ge /23 o
_ eNeg, &N O iseven. (4.19)
2 8n/2g

To understand how we arrived to these formulas consider first the case

presented in Figure 4.28.

CRECR | Cjhice '.I'I
-

1 2
Figure4.28 Graph of five nodes with a table of possible combinations
Consider for example a graph with five nodes such as presented in Figure
4.28, where the table lists all possible combinations from five nodes to choose. Note

that the total number of possible combinations is given by:

2 a=2" 4.20
908' 1] ( )
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The first combination shown in the table of Figure 4.29 is the combination of
five nodes taken by zero, thisis identical to the combination of all nodes taken by all
nodes. This combination is not explicitly included as a cutset inequality, rather is
implicitly in constraint (4.10) which accounts the number of edges in the tree.

Note how the number of possible combinationsis symmetrical to n/2 meaning
that the number of combinations of nodes taken by say a number of ¢ nodesis
identical to the number of possible combinations of the nodes taken by n-c when cis

lessthan n/2. We only need one set of these constraints since they are redundant.

Therefore, from all possible combinations (2”) we do not need the combinations

taken by zero (or by n) so we can deduct those from the total number obtaining

(2” - 2) , because of the symmetry explained above, we only need half of those

n

-20
~. Inour
2 g

: . : : . a2
constraints leaving the final number of constraints required as ¢
e

example we need to take combinations of five taken by one, and combinations of five
taken by two.
Now consider the case of afour node graph as the one presented in Figure

4.29.

From Choose |Combinations

ENEENEEY
AWM =O
e kI N

Figure4.29 Graph of four nodes with a table of possible combinations
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By the same argument as before, not all combinations of nodes are required to

generate the constraints, the difference is that in this case (n/2) is integer so the total
a&en o

2"- 2- (cé +
number of constraints can be computed as #%g to account for the

combinations from 1,2,..., n/2 - 1constrains with symmetrical groups, to this we need
&eho

to add the = hot yet accounted for.
&n/25

But since we need an additional constraint to define the auxiliary variable y,

per cutset inequality, then the total number of constraints required istwo times the
number computed in (4.18) and (4.19), still these are an exponential number of

congtraints as presented in Table 4.1.

n Constraints
3 6
4 20
5 30
6 82
7 126
8 324
9 510

10 1,274

11 2,046

12 5,018

13 8,190

14 19,814

15 32,766

16 78,404

17 131,070

18 310,762

19 524,286

20 1,233,330

21 2,097,150

2 4,899,734

23 8,388,606

24 19,481,370

Table4.1 Number of constraints as a function of the number of nodes
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Note that with 21 nodes the number of constraints exceeds one million. Figure
4.30 shows the exponential function for the number of constraints as a function of the

number of nodes.

2,500,000.00

2,000,000.00

1,500,000.00

1,000,000.00

500,000.00 L

Number of nodes

Figure 4.30 Number of constraintsasafunction of the number of nodes

The number of variablesis also extremely large, since the nodes of the graph
are parcels, and in theory if it can be afully connected graph, then the number of

edgesis also exponential.

4.3.2. Solution Approach

We have developed an agorithm to solve this multiobjective land
development problem with an embedded MST. The first step requires the solution of
an initial formulation. This initial formulation is based on the previously presented

formulation (4.4) - (4.17) with some modifications. In order to have any hope solving
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this problem given the extremely large number of variables and constraints we

attacked the problem on two fronts as follows.

4.3.2.1. Reduction in the number of variables

The first and almost obvious reduction in the number of variables can be

accomplished by eliminating the double counting of the edges. We identify each arc

by & wherei < j:" (i, )1 E(G) . Because we are only concerned with connecting the

newly developed parcels to the existing infrastructure, we do not care about the

direction of the edges. Hence, an edge €; = e, rather than introducing these equalities

in the formulation we define the edges in a lexicographic order. This alows us to
effectively reduce the number of variables by half without losing any accuracy in the
description of the problem.

The second reduction, although not that obvious is till easy to understand.

Since each parcel represents a node in the graph, and the graph is considered fully

connected, then there are aEggedges to consider. This number is extremely large but
%

not all those edges need to be used, just a subset of edges that connect each node to a
group of geographically close nodes needs to be considered.

Theorem 1 In an optimal solution of theland development problem, two parcels
i and j chosen for development will never bedirectly connected if the distance
between them islarger than both the distance from i to theits closest previously
developed parcel, and thedistancefrom j to itsclosest previously developed

parcel.
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Proof Suppose that for an optimal solution there is a parcel i selected for

development which is connected in the MST to a parcel j. Now suppose that the

distance from parcel i to itsclosest developed parcel (call it parcel 1) is dist;;, and the
distance from parcel | to its closest developed parcel (call it parcel 2) is dist,

Because the MST cannot have any cycles, it isimpossible for the edges

&,, §;, and e, to be selected smultaneously. Assume that the connection is made
between the two nodes to the rest of the MST by means of edge g, this can be done

without loss of generality since it could be e, aswell, see Figure 4.31 |€ft.

MST T
EXlSTING S EXlSTlNE
( |NFRASTRUCTURE\ t' INFRASTRUCTURE
1 R 2 m—&é 2
Dy S & 7 *3
/ /

?’4"--... R{ \\
| ---_-"---._ . i

K o ! ' 2

J J

Figure4.31 Nodesi and j connected to the existinginfrastructure (left using e, right using e;
and g 2)

If the distance from parcel i to parcel j dist; satisfies, dist; > dist, and
dist; > dist;,then we could build another tree, namely T* for which we replace the
edge g, by the edge e;,. The total length of the treeT* = MST - dist; + dist;,. Since
theterm - dist; +dist;, <O becausedist; >dist,, then we will have found atree with
ashorter dimension than MST so either MST is not a minimum tree, or dist; £ dist;

QED.

The consequence of Theorem 1 alows us to reduce the number of potential

edges to consider by each parcel to only those that are within a circle of radius equal
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to the closest developed parcel (see Figure 4.32). The reduction in the number of
edges and variables is substantial but cannot be calculated in general since it depends

of the relative location of the developed nodes in reference to the available nodes.

\

1
q 1\‘ \

Figure4.32 Two nodesi,j available for development connected to previously developed nodes 1
and 2

4.3.2.2. Reduction in the Number of Constraints

We aso considered reducing the number of constraints. We designed an
algorithm that iteratively moves from a series of foreststo the optimal solutionby
adding cycle breaking constraints and cutset inequalities on each iteration

The algorithm presented in Figure 4.33 begins with the formulation presented
in (4.4) - (4.15) but dightly modified by relaxing the set (4.13) - (4.15) and adding
cutset inequalities around each node. This decision was made based on the
performance of the algorithm. It is clear that if a parcel is developed then it must be
connected, so we save some iterations by including this set of constraints ahead of
time. We then solve this initial formulation, and apply a heuristic based on a shortest
path method to locate the cycles in the graphand then to locate the forest elementsin
the graph. Once we have identified these, we add only anti-cycling constraints
(packing type of constraints) and connecting constraints (cutset type of inequalities)
to avoid the cycles that we have found and connect the elements that are

disconnected.
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4.3.3. Solution Algorithm

4.3.3.1. Initial Formulation LDMST

5 N 5 N,
Min: W é. diStiJQj-l_WZéé.aanlzndzn_ V\ééé pzndzn (421)
(.Y 5§G) =in=l o =inzt
St
§1 -
RLD£Q umdz’n £RLD,z=1 (4.22)
n=1
gz -
RMD £ uz,ndz,n £RMD,z=2 (4.23)
n=1
gs _
RHD £ g Uz,ndz,n £ RHD,z=3 (4.24)
n=1
gzz
COM £ g Uz,ndz,n £ECOM,z=4 (4.25)
n=l
gls _
IND £ 3 Uz,ndz,n £IND,z=5 (4.26)
n=1
o 3 gz
asg=aad, (4.27)
ij z=1 n=1
o] [o] .
ae£nad,,i=12..,n (4.28)
i z
ae £ng d,j=12..n (4.29)
a e2d,"ilV(H) (4.30)
iV (G) '
d, 1 {01 (4.31)
e {01 (4.32)

131



Step 0: Initialization
Create Initial Formulation LDMST
a) Find the distance from each parcel to the
existing network
b) Define variables for the formulation

c) Create initial formulation relaxing MST

constraints except for cutset inequalities
around each node

y

Step 1
Solve the formulation LDMST

A 4

Step 2
Find all cycles and identify the parcels in
the cycle
Find all disconnected elements and identify
the parcels in the set

Step 3
Is the number of
cycles >07?

YES

v

Step 4:
Generate cutset inequalities and cycle
breaking inequalities
Add the new inequalities to the LDMST
formulation

Figure4.33 Algorithm to solve the land development for mulation with embedded M ST

Constraints (4.30) prevents that a parcel selected for development remains

disconnected, it will be connected to at least another parcel.

4.3.3.2. Sep O: Initialization

The initial step requires preparing the formulation LDMST. The edgesto be

included as decision variables need to be defined. The distance from each parcel

132



available for development to the nearest developed parcel needs to be found, and then
compared to the distance to the rest of the undeveloped parcels. If thereisan

undevel oped parcel closer than the closest developed parcel, then the edge that joins
those two undeveloped parcels is included in the set of decision variables.

For example consider Figure 4.34 where two undevel oped parcels (A and B)
and one developed parcel (1) are presented. First by evaluating node A, we note that
the closest developed parcel is parcel 1, thereis no other parcel in aradius of length
dist,, , so we define the variable e,,. Then, by evaluating node B we find that the
closest developed parcel is parce 1, but there is one parcel (parcel A) in the radius of

length distg, so we define the decision variable e, and the decision variable e,; .

1 1

‘\‘ ~.,

&
“
A Y | / \
Y \ / \
\‘ \ f ., \
»
A

Figure4.34 Two undeveloped parcels A, and B and one previously developed parcel 1

After all nodes available for development have been evaluated as described
above, we solve the initial formulation LDMST and proceed to Step 1 in the

algorithm.

4333. Sepl: Solvethe Formulation LDMST

Solve the formulation and record the solution which is the vector of decision

variables for the parcels, and the vector of decision variables for the edges.
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4.3.3.4. Sep 1: Find the Cycles and I dentify the Disconnected

Components

Using an agorithm to find a shortest path to all nodes from a given node s
take one of the parcels chosen for development and find all nodes connected to it, this
will identify a component in the graph. Proceed until al developed nodes have been

evaluated.

By evauating each edge selected g; and finding the shortest path between
nodes i and j (not including edge §; ) the cycles can be identified. If thereis a path
between nodes | and j different than the edge g, then there is a cycle formed by the

nodes in the path and the edge &; .

4335  Sep 3. Optimality Check

Is the number of cycles= 0. If so stop else go to next step.

4.3.3.6. Sep 3: Generate Inequalitiesto Break Cycles and Connect
Disconnected Components

Generate cutset inequalities of the form (4.13) - (4.15).

Take al trees found in step 1 of the algorithm and generate cutset inequalities
of the form (4.30) to connect those isolated components into a tree.

In the example shown in Figure 4.35 a valid constraint would be
e,te,+g,+e 3 d,, (4.33)

For al cycles found within each one of the components, including the tree of

previously developed parcels, generate packing inequalities of the form:
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A e £1S-1" (i, )T s1 E(G) (4.34)

Any group of Snodes should not have any more than S-1 edges. An example

Tﬁ\\“\
e
|

is presented in Figure 4.35

L=
N

41

Figure 4.35 Example of a cycle and two disconnected sets

In Figure 4.35 there are three edges between the three nodes { 2,4,5} . If one of

the edges is removed then the cycle is removed. A valid constraint would be
€4 + €5 + €5 £dz,z + d4,z + ds,z -1 (4-35)

The following example was solved step-by-step, to clarify the algorithm.

4.3.4. Example with 100 NodesW=(1,1,1)

Suppose that there are 40 previously developed parcels connected in a MST®

and 20 parcels available for development as presented in Figure 4.36.

® This is not arequirement and likely is not the case either, assumed only for clarity purposes.

135



I'EL———Z-' s B a7
a | i 55 i
) 3 W
/ 0 [ # = |
| 5
™, | {300 [
40 59 9 1
A o "*{ _ o |
& e R \.. 'f--;r;_
48 T 45 0a o ’ 55 _'J‘u‘l b
i — |
a7 15~ = |
", ! b I
1 - /
/ ns & fi I?C?:I
B ™ a3 ! 3
1+ \\ = | L-..
i
W i/
- 3 1':
i x =
A ] /
" B7
n__—
g @ & =
B3 e &2
- A -
i I3
P 31 43
L 57
a3 i o
53 i ] 7 Oy,
¥ 1'“_ [
o 1% g IB___.IﬁSB"
e S
7] 3
1] 3

Figure 4.36 Initial set of 40 developed par cels connected with dark edges, and set of 60 parcels
available for development (not connected)

4.3.4.1. Sep 1. Solvethe Initial Formulation

We solved the initial formulation (4.21) - (4.32) using a weight of one for

each objective. Then we proceeded to graph the solution asin Figure 4.37.

T1= (42.47F
T2={44.53.93.94
T3= {4871

IT4=1{5587.91.58

T5={57.60.07}

T6 = {62.68%
T7 = (78,00}
I8 = {83.84}

C1=1{05.50,80}

C2=1{95.50,76}

C5=1{98,6.51}
C6={05.1,80,501
C7-{80.1.76.50}

C8={77.28.41}

Figure 4.37 Solution of first iteration step 1, new edges shown lighter
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4.3.4.2. Sep 2: Find all Cycles and Disconnected Sets

Figure 4.37 shows that the solution of the initial step is aforest with eight
disconnected elements identified with ellipses, and eight cycles identified with

rectangles.

4.3.4.3. Sep 3: Optimality Check

Since there are cycles and disconnected elements in the graph, the solution is

neither optimal not feasible. We proceed with the next step.

4.3.4.4. Sep 4. Generate Inequalities to Break Cycles and Connect Elements

We create inequalities to break the cycles found in the solution. The details of

the cycles found are presented in Figure 4.38 and Figure 4.39.

Figure4.38 Three of the five cycle areas found with the first solution

70
9 2@ ) 9 O
669 7

Figure 4.39 Two of thefive cycle areasfound in theinitial solution

137



4.3.4.5. Sep 4: Generate Cutset Inequalities to Connect the Trees in the Forest

We create inequalities to ensure the connectivity of the components that were
not connected in the solution. There were at least eight trees not connected in the
initial solution. For example, we observe in Figure 4.40 two of the disconnected

components, one formed by the set {44, 53, 93, 94} and another by the set {57, 69,

97}.

7 L]
(69 74

276\ &
% /53 .4

4

94

Figure4.40 Two of the disconnected componentsfound in theinitial solution
4.3.4.6. Sep 5: Solve the Augmented Formulation

After adding the cycle breaking constraints and the connectivity constraints to
the previous formulation we proceed to solve the augmented formulation. Obtaining

the solution presented in Figure 4.41.
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Figure4.41 Second iteration, solution to the augmented for mulation

Figure 4.41 shows that those components that were previously disconnected
are now connected, for example the previously disconnected set {48, 71} is now
connected to node 86. The cycles we had before are eliminated, but new cycles have
been created, for example the edges around nodes {41, 77, 28} no longer form a

cycle, but the edges around nodes {44, 31, 55} now form a cycle.

4.3.4.7. Sep 2: Optimality Check

Since there are still some disconnected components the solution is neither
optimal not feasible. We continue this process for two more iterations until we found

an optimal solution as presented in Figure 4.42.
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distance (since the objective function is minimization) and complies with all other
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Figure4.42 Optimal solution found

The solution found is a tree since it doesn’'t have cycles, has minimum

growth constraints therefore is optimal. This case was relatively easy to solve, in just

four iterations we were able to fully create the constraints required to depict the

problem. The data collected from each iteration is shown in Table 4.2.

Add. | Time Variables | Constraints MST Profit Imp Ch | Cycles | Disc.
sec
Ineq. Elements
Iter 1 0 0.2 414 209 | 2,934.17 | 39,538.70 | 17,928.50 8 8
Iter 2 24 0.1 422 233 | 3,169.34 | 39,538.70 | 17,928.50 3 3
Iter 3 33 0.1 425 242 | 3,252.94 | 39,538.70 | 17,928.50 1 1
Iter 4 36 0.2 426 245| 3,258.82 | 39,538.70 | 17,928.40 0 0

Table 4.2 Data collected per iteration
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Table 4.2 provides information about the advance of the algorithm, we notice
that the length of the MST is increasing as the algorithm moves forward, thisis
expected since at each iteration new constraints are added, therefore the feasible
region is being reduced. The number of additional inequalities added decreases on

each step from 24 added in the first iteration down to three added in the last one.

4.3.5. Examplewith 100 Nodes, 40 Previously Developed and 60 Available

for Development Using Other Weight Combinations

Given the success with the small example, we decided to analyze the effects
of changing the weights to the number of iterations, variables and constraints required
to solve the problem. We are also interested inlooking at the effect of such changes
in the compactness of the solution. The cases evaluated and their solutions are
presented in Table 4.3. The weight is represented by athree digit code with either a1
or ap. The order of the digits represents the weight given to the compactness
measurement, profit measurement and imperviousness change measurements
respectively. The number 1 represents a weight of 1 to the objective, and the letter p
stands for a small positive weight. For example case 2 with aweight code of ppl
means a small positive weight associated to the compactness and profit measure, and

aweight of 1 to the imperviousness change.

Case | Weight | MST Profit Imp Ch Iterations
1 111 | 3,258.82 | 39,538.70 | 17,928.50 4
2 ppl| 1,971.21 | 15,446.00 | 8,086.86 3
3 plp | 3,358.87 | 43,233.20 | 26,777.50 4
4 1pp | 1,254.32 | 11,600.20 | 15,845.50 5
5 11p | 3,358.87 | 43,233.20 | 26,777.50 4
6 1pl| 1,833.94 | 15,404.60 | 8,169.74 3
7 pll | 1,833.94 | 15,404.60 | 8,169.74 3

Table 4.3 Cases evaluated with different weights
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These cases were relatively easy to solve, within five iterations the optimal
solution was found. The value of the objectives were normalized in a 0-1 scale where
O isthe preferred value and plotted together in Figure 4.43. As expected the solution
with the most compact development strategy (Case 4) is also the one with the |east

profit, the rationale is that Case 4 with weight (1,p,p)

1.2000
Normalized objectives: Zero is best for all objectives

1.0000 ®

1 2,6,7
Weigit
1 111
0.8000 2 ppl —
3 plp
4 pp
=] Mp
2 1t
T g1l
0.6000 A y
0.4000
2 7
6,7
0.2000
1
4 35 267
T T

MST Profit Imp Ch

0.0000

Figure4.43 Value path graph for the seven cases analyzed
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Figure4.44 MST of Case 3 (Left) and Case4 (right)

Figure 4.44 presents a comparison of the MST obtained by Cases 3 (left) and

4 (right). We notice that Case 3 has many more parcels developed than Case 4, thisis

because the profit is the objective with the highes weight. In contrast, Case 4 has

fewer parcels and they tend to be located closer to the existing MST.

4.3.6. Examplewith parcelsused in Gabriel, Faria and Moglen 2005

We started to solve the model using all parcelsin Gabriel, Faria and Moglen

(2005). There were atotal of 1990 parcels with 1462 parcels previously developed

that form an infrastructure as presented in Figure 4.45.

This task has proven to be an arduous, a solution was obtained after 237

iterations and a total of about 80 hours of computation time. We have noticed that at

each iteration only a few constraints were added. This phenomenon was observed

with other tests we ran, but became critical with this case.
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Figure4.45 M ST over all existing parcels

Figure 4.46 shows the number of constraints added per iteration. It is clear
that at the beginning many cycles are found but as the algorithm progresses, the
number of cycles actually created is reduced drastically. However the possible
number of combinations for arcs to create cyclesis still exponential. We had recorded
all cycles and trees found per iteration with the hope of improve the current algorithm

to predict the parcels that will tend to be tied together.
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Figure4.46 Number of constraints added per iteration using 1990 parcels

One of such ideas is to measure the distance from each parcel to all neighbor
parcels (those closer than the closest previously developed parcel) then assign a
likelihood of connection to each arc, given the average or maximum distance of arcs
incident to a node. Having that information one can create an exponential number of
congtraints only for the group of arcs with very high likelihood of creating acycle.

The difficulties obtained with this case were expected, the model has 4,711
variables and 4,089 constraints. Another interesting chart that could provide insight to

the solution is presented in Figure 4.47.
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Figure4.47 Length of the MST per iteration

This graph shows the how the MST length changes from one iteration to the
next. Sometimes it increases and sometimes it decreases, the reason is due to the
tradeoffs between other objectives in the problem. It seems like there is a tendency
wherethe MST length increases dightly every iteration then suddenly drops, one
might think that new parcels enter the solution as others are discarded while the
algorithm goes through the steps.

Another ideaisto identify the parcels selected for development at each
iteration up to the point where the number of iterations added drops below a threshold
(maybe 10) ard then decide on the size of the radius to use.

We took the number of cycles identified over the 100 iterations and we
discovered that some nodes appear more often than others, so we listed the nodes

with high level of appearance. Table 4.4 contains the nodes with highest frequency.
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NodelD | Frequency | NodelD | Frequency | NodelD | Frequency
1722 62 1538 17 1545 14
1721 61 1811 17 1808 13
1723 60 1540 16 332 12
1720 59 1547 16 1552 11
1725 50 1546 15 1687 11
1724 46 1756 15 1772 11
1542 20 1770 15 1543 10
1548 20 1771 15 1755 10
1541 18 213 14 1809 10

Table4.4 List of nodes with 10 or more appearances in cyclesup toiteration 150

Node 1722 is on top of the list, so this node tends to be selected for

development. Due to the location of other nodes there is a tendency to form cycles

Figure 4.48 shows the neighborhood of node 1721. We note that there is a group of 6

nodes that are close together, they could form afully connected network. A speedup

strategy could be to include al cycle breaking constraints required for the 6 nodes

network rather than iteratively add constraints as the cycles are found.
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Figure 4.48 Neighborhood of node 1721

We note how there is a group of nodes close together all available for

development. This group of nodes is delaying considerably the speed of the algorithm
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because of their proximity. To accelerate the procedure we could insert cycle
breaking constraints for this group of six nodes.

A far more difficult Situation comes in the neighborhood of node 1542
presented in Figure 4.49, there are 22 parcels available for development all grouped
close between them and relatively far from the existing infrastructure. Figure 4.50
shows the arcs that could potentially connect the nodes in the neighbor, we created a
circle around the area and counted about 220 arcs inside and about 28 nodes It is
clear that the number of arcsand nodes creates a level of complexity that slows down
the algorithm. It would not be practical to include all nodes and arcs due to the
exponential number of constraints, but perhaps not al of the nodes are required to be
included because the attributes of the parcels.

Figure 4.51 shows all arcs used in the problem. We can see that there are areas

with a large concentration of arcs, and therefore a large concentration of cycles.
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Figure4.49 Neighborhood of node 1542
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Figure4.51 Network of potential arcs
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Besides the neighbor of node 1542 there is another large area of concentration
around node 1811 as shown in Figure 4.52. This creates an area of complexity due to

the large number of edges eligible to enter the solution as shown in Figure 4.53.
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Figure4.52 Nodes near node 1811

Figure4.53 Potential arcsto connect nodesin the neighborhood of node 1811

Although the arcs in the neighborhood of node 1811 are quite large in length
so perhaps they do not need to be all accounted for.
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From the list of nodes in Table 4.4 there are 10 nodes in the neighborhood of
node 1546 that appear frequently, for 10 nodes there are 637 constraints required to
break the possible cycles 10 of which are already included in the initial formulation
This explains the slowness of the algorithm as it is currently implemented, at a pace
of about 10 constraints per iteration it would take about 60 iterations to generate all
congtraints required for the neighborhood of node 1546. Given the hardware and
software used it would take approximately 15 hours of computer time to complete 60

iterations. Figure 4.54 presents the solution obtained after the algorithm terminates.

Figure4.54 Solution obtained using set of all parcels.

Due to the scale it is difficult to differentiate the parcels selected for
development from those that are not. The available parcels are indicated by ared dot

not connected to the M ST, all developed parcels are connected to the MST solution.
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4.3.7. Comparison of Results Between Models

In this section we proceed to compare the results obtained with the model
using the MST as a compactness measure, against the model using the squared
diagonal as a compactness measurement presented in the work of Gabriel, Faria and
Moglen (2005). Although the sets of parcels for the two models are different, and the
objectives in the formulations are different we compare the results in terms of the
stakeholders' objectives and analyze the compactness of the results for both models.

In Gabriel, Faria and Moglen the compactness measure used was the squared
value of the diagonal surrounding all developed parcels. When this measurement is
compared to the MST we can immediately notice that the squared diagonal measure
is determined by the four extreme parcels that define the rectangle. Any development
inside the rectangle is not going to affect that measure of the compactness. In
contrast, when the MST is used, all parcels contribute to the compactness measure so
the final result should be that the parcels tend to be devel oped close to one another.
Figure 4.55 presents the solution of both models in one picture taken in quadrant 3.
The shaded parcels are those selected by the model when the square diameter is
minimized, while the thick gray lines represent the arcs required to connect the
parcels selected for development to the existing infrastructure. The inner rectangle
represents the smallest rectangle that can be drawn around the developed parcels
while the outer rectangle represents the area of the quadrant. We choose quadrant 3
because that was the quadrant with the most potential of savings from the point of
view of compactness, this quadrant had the most difference between the inner

rectangle and the outer rectangle.
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Figure 4.55 Overlapping of Solutionsin Quadrant 3

It is clear by looking at the figure that the smallest rectangle method contained
the development of the parcels within a reduced area much more effectively than the
MST method. The MST method chooses smaller parcels, located closer together but
overall dispersed over the region, while the smallest rectangle method instead chooses
larger parcels within a compact area

Figure 4.56 presents the solutions in quadrant 1. Again the parcels selected by
the MST mode fall outside the inner rectangle. However the difference between the
two solutiors is not as dramatic as in quadrant 3. As in the quadrant 3 case a larger
number of smaller parcels were selected; this makes sense from the point of view of

the MST measure since smaller parcels have smaller arcs required to connect them to
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the existing parcels, so it is natural for the model to favor small parcels closer to the

existing infrastructure as opposed to large parcels separated.

Figure 4.56 Overlapping of Solutionsin Quadrant 1

Although these results are not strictly speaking comparable since they were
obtained with different objectives, the conclusions can be generalized because it is
expected that the MST will select smaller parcels located as close as possible to all
developed parcels. Such parcels are probably distinct from the set of geographically

proximate parcels that would be chosen by the squared diagonal measure.

4.3.8. Improvementsto the Algorithm

Based on the result of the various test ran, we observed that the total number
of constraints was not exponential. For example in the 100 node case with weight

W=(1,1,1), the algorithm found a solution using 245 constraints. Thisis an indication
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that the constraints required was far from the number of constraints used by including
all possible cuts. Therefore we could add all constraints required to break cycles on

small group of nodes and save some iterations.

4.3.9. Future Work with MST

Although we have some ideas about other uses of the MST in this context, we
have not pursued them due to different reasons. Some of those ideas and a brief

explanation of the work we had done follows:

4.3.9.1. Minimization of the Maximum Diameter

In lieu of using the MST as the compactness measure, use instead the
minimization of the maximum diameter of atree that connects all parcelsto be
developed to the existing network. This might prove somewhat better since

considering the two MST presented below in Figure 4.57

Linsar Develapment :)-: 1

Star Development

Figure4.57 MST of fiveunitson alinear fashion (left) and star fashion (right)

Most people would consider the star development arrangement shown on the
right of Figure 4.57 to be more compact than the development on the left. The
diameter of atreeis defined as the longest path between any pair of nodes in the tree.
The tree show on the left has a diameter of five which is greater than the diameter of

two found on the right figure.
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The difficulty of such a measure is that there is no easy way to optimize this
objective function since is a minimization of a maximization function of the form:
minimize D = max{R,}" (i, DT EG) (4.36)

To solve aproblem with (4.36) as one of the objective functions we would

recommend using genetic algorithms.

4.3.10. Connectivity to Hubs

A point can be made that the new developments will not be connected to a
neighbor parcel but rather to a hub located in some geographical point. The model as
formulated can be easily changed to accomplish this, we would only need to change

the input information of the existing MST to be the MST of the existing hubs.

4.3.11. Connectivity to Large Populated Cities

It is possible to use the concept of compactness as devel opment around cities
with large population density, in this case we propose to use as objective function the
maximization of a normalized weighted sum of the distances from the available
parcels to neighboring highly dense cities. The normalization formula could be one

such as the following

Max{ Dist;} - Dis,

ND, = _ — (4.37)
' Max{Dist;} - Min{Dist; }
And then the objective function would be similar to:
Maximize § § Pop,ND,d, (4.38)

i
Equation (4.37) would provide a normalized weight from each parcel i to each

highly populated city j in such way that the closest parcels to the node j would have
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higher score (would be preferred as to other parcels further away). The term Pop,

represents the population of the city j. Objective function (4.38) would then try to
prefer the development of parcels that are closer to highly populated cities.
This concept would require the use of Census data and relatively minor

changes to the formulation presented in this work.

4.3.12. Use of Planar Graphs

Based on the work of Williams (2001) who developed an integer
programming model to find aMST in a planar graph, we decided to test the concept
with the MST setting, but found that some parcels cannot be selected for development
unless another neighbor parcel is developed as well. This limitation is based on the
characteristics of planar graphs which does not have any edges crossing. For example
consider Figure 4.58 where for example node 7 can connect only to nodes 4, 5, 6, 8,
9, or 10. Otherwise the edge would cross another existing edge. Therefore, the model

as currently envisioned cannot be implemented.
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Figure4.58 Existing M ST connects nodes 1,2, and 3 other disconnected nodes (left) form a
planar graph (right)
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The desirables properties of the planar graph is that the formulation required
to find aMST has the unimodularity property which ensures that the solution is
integer. This property might be of interest if implemented into the formulation
because it could be possible to apply decomposition techniques where the some of the

sub-problems might have the total unimodularity property.

4.3.13. Cluster Analysis

Cluster analysis technigues are concerned with the grouping of items that
present closely related characteristics. Gower and Ross (1969), Magnanti and Wol sey
(1995) and Zahn (1971) are among others some of the researchers who have applied
the MST concept to identify and analyze clusters. These concepts could be applied to
the land development problem to decide upon the type of development to take place
in the set of unassigned parcels. One possible objective function would be to generate
one M ST per zone using the existing developed parcels, and then minimize the MST
resulting from connecting the parcels to those z trees instead of the connection to one
existing MST as presented in this work.

Also, the clustering principle can be used by the Department of Planning

office of a county or state to determine the zone types most convenient for parcels.
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4.4. Chapter Conclusions

An innovative measure for compactness in land development is presented in
this chapter along with a methodology to solve it. The minimum spanning tree has a
long history in operations research. It has been studied since 1926 and many
formulations have been created to solve it (see A 3.5). The work of this dissertation
presents a novel approach to integrate the minimum spanning tree into a
multiobjective optimization problem for land development accounting for the
perspective of several stakeholders

The problem of finding the MST typically involves a large formulation since
the number of variables and constraints grow exponential to the number of nodesin
the network, some researchers had aready developed mechanisms to reduce the size
of the problem, we presented a different approach since we consider the existence of
aprevious infrastructure in our analysis. By using a reduced (relaxed) formulation,
which is solved and augmented by including additional inequalities that were violated
by the solution of the previous iteration, a new solution is found and checked again
continuing a procedure that stops when the solution is a tree (no cycles found and all
parcels selected for development are connected).

An optimal solution has been found for small problems, for large ones we had
to accept suboptimal solutions to the problem due to the time requirement to solve the
iterations. Some techniques can be implemented to expedite the current procedure by
looking ahead and include potential cyclesin earlier iterations. There will be a
tradeoff between the number of constraints actually required and the number of

iterations performed. Thiswork canbe extended (and simplified) by assuming large
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hubs instead of individual previously developed parcels that would define the existing
infrastructure. This simplification should improve computation time and reduce the
number of variables required.

From the point of view of containing the development within certain
boundaries the smallest rectangle model presented in Chapter 3 resulted more
effective than the MST model presented in this section, however from the cost of
infrastructure point of view the solution in the MST model should be less since the

distances to the existing infrastructure are smaller.
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Appendix 1 Numerical Resultsfor Models
A 1.1.Solution of Difficult Weights

A 111 Weight 964- Original Bounds

This weight took the longest computation time, over 12 hours before the

program stopped.

A 1.1.2. Lagrangian Relaxation

Applying the Lagrangian relaxation method described earlier to this case we
obtained the following result:

Using u=(0,0) The solution is

PFA IMP ENV PRO z(u) z
78.39008 2044.813 21.7481 1086.466 -1016.27 -1016.27
Table A.1 Lagrangian relaxation result weight 964 original bounds

This solution is feasible to the origina problem, so it is optimal.

A 11.3. Dantzig-Wolfe Decomposition

After two iterations the Dantzig-Wolfe decomposition method provided the
following solution,
Objective function: -1016.27
Note that this is the same solution reported by the solver as the “Best Solution”
before the procedure halted, and it is consistent with the solution obtained by the

Lagrangian relaxation.
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A 1.14. Weight 662- Original Bounds

This weight took the second longest computation time, alittle over 7 hours

before the program stopped.

A 1141. Lagrangian Relaxation:

Applying the Lagrangian relaxation method described earlier to this case we
obtained the following result:

Using u=(0,0) The solution is

PFA IMP ENV PRO z(u) z

79.01148 2059.857 21.7481 1085.822 -387.976 -1023.88
Table A.2 Lagrangian relaxation result weight 662 original bounds

This solution is feasible to the original problem, so it is optimal.

A 1.1.4.2. Dantzig-Wolfe Decomposition

Iteration 1: Objective function: - 978.237
Iteration 2: Objective function: - 1024.14
After two iterations the Dantzig-Wolfe decomposition method provided the
optimal solution,
Note that this is the same solution reported by the solver as the “Best Solution”
before the procedure halted, and it is better than the solution obtained by the

Lagrangian relaxation.
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A 1.1.5. Weight 178- Original Bounds

This weight took the longest computation time from those where the optimal
solution was actually found, took a little over 2 hours before the optimal solution was

found.

A 1151 Lagrangian Relaxation:

Applying the Lagrangian relaxation method described earlier to this case we
obtained the following result:

Using u=(0,0) the solution is

PFA

IMP

ENV

PRO

z(u)

z

77.65128

2030.104

21.0726

1086.897

-640.727

-640.727

Table A.3 Lagrangian relaxation result weight 178 original bounds

This solution is feasible to the origina problem, so it is optimal.

A 1152. Dantzig-Wolfe Decomposition

Iteration 1: Objective function: - 607.534
Iteration 2: Objective function: - 640.727

After two iterations the Dantzig-Wolfe decomposition method provided the

optimal solution,
Note that thisis the same solution reported by the solver as the optimal solution,

and it is consistent with the solution obtained by the Lagrangian relaxation.

A 1.1.6. Weight 921- Original Bounds

This weight took a little under 2 hours before the optimal solution was found.
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A 116.1. Lagrangian Relaxation

Applying the Lagrangianrelaxation method described earlier to this case we

obtained the following result:

Using u=(0,0) the solution is

PFA

IMP

ENV

PRO

Z(u)

z

79.01148

2059.857

21.7481

1085.822

-387.976

-387.977

Table A.4 Lagrangian relaxation result weight 921 original bounds

This solution is feasible to the origina problem, so it is optimal.

A 11.7. Weight 389 — Tightened Bounds Case 1

A 11.7.1. Lagrangian Relaxation

We started with weight u =(0,0) and obtained afeasible solution (a solution

within the lower and upper PFA bounds) so we have found the optimal solution.

IMP

ENV

PFA

PRO

z(u)

z

ul

u2

Feasible?

2045.17

21.07

78.27

1086.25

41221

412.21

0.00

0.00

TRUE

Table A.5 Results of Lagrangian relaxation case 1 weight 389

We note that the solution obtained is between the lower and the upper bound

reported by the branch and bound procedure.

A 11.7.2. Dantzig-Wolfe Decomposition

The procedure goes through three iterations and ends with the following

result:

164




Objective function: 412.208, | ,,=1,1,,=1,1,,=1,1,, =0.984371,
ls6=1,p,=0,p,=0, m=452669, m =177.754, m =80.8921, m =76.1641,
m =32.1313

Since there are no fractional lambdas the problem is solved. The solution

coincides with the Lagrangian relaxation.

A 11.8. Weight 176 — Tightened Bounds Case 1

A 1.18.1. Lagrangian Relaxation:

We started with weight m=(0,0) and obtained an infeasible solution. Since the
PFA was under the lower bound we increased the value of m until the lower bound
was exceeded. Since all solutions will be feasible to the constrain limiting the
development under the upper bound, we kept m, = Oand varied only m . We started

with step size of 0.1 until we got a feasible solution, then we applied a decreasing

factor r =0.9 obtaining the following results:

Iteration | IMP ENV PFA [ PRO z(u) z ul u2 Feasible?
1| 2004.05 [ 1.9578 | 59.71| 1029.29 | 75.86 | 75.86 0| 0.00 | FALSE
2| 2004.05 | 1.9578 | 59.71 | 1029.29 | 75.83 | 75.86 0.1| 000 | FALSE
3| 2004.05 | 1.9578 | 59.71 | 1029.29 | 75.80 | 75.86 0.2| 000 | FALSE
4| 2004.05| 1.9578 | 59.71| 1029.29 | 75.77 | 75.86 0.3| 000 | FALSE
5| 2044.35 | 20.6290 | 78.38 | 1085.12 | 76.51 | 69.16 04| 000| TRUE
6| 2044.35 | 20.6290 | 78.38 | 1085.12 | 75.77| 69.16 | 0.36| 0.00 | TRUE
7| 2004.05 | 1.9578 | 59.71( 1029.29 | 75.76 | 75.86 | 0.324 | 0.00 | FALSE

Table A.6 Results of Lagrangian relaxation case 1 weight 176
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From the table we note that the distance between the upper bound found 75.77

(Iteration 6) and the best feasible solution found 69.16 (iteration 6) is quite large. The

gap inthiscase is 8.73%.

When we used a bisection approach with aten iteration limit, starting with 0.4

we obtained the following results.

Iteration | IMP ENV PFA PRO z(u) z ul u2 Feasible?
1| 2004.05 196 | 59.71| 1029.29 | 75.86| 75.86 0| 000| FALSE
2| 2004.05 196 | 59.71| 1029.29 | 75.83| 75.86 0.1| 000| FALSE
3| 2004.05 196 | 59.71| 1029.29 | 75.80| 75.86 0.2| 000| FALSE
4| 2004.05 196 | 59.71| 1029.29 | 75.77| 75.86 0.3| 000| FALSE
5| 2044.35| 20.63| 78.38| 108512 | 76.51| 69.16 0.4 0| TRUE
6| 2004.05 196 | 59.71| 1029.29 | 75.76| 75.86 0.35 0| FALSE
7| 204436 | 20.63| 78.38| 108512 | 76.05| 69.16 0.375 0| TRUE
8| 2044.35| 20.63| 78.38| 108512 | 75.82| 69.16 0.3625 0| TRUE
9| 2004.05 196 | 59.71| 1029.29 | 75.75| 75.86| 0.35625 0| FALSE

10| 2044.35| 20.63| 78.38| 108512 75.76| 69.16| 0.359375 0| TRUE

Table A.7 Results of the Lagrangian relaxation case 1 using Bisection

The bisection method performed dightly better, the best upper bound found

was 75.76 and the best lower bound 69.15 for arelative gap of 8.72%. Since there

was no real improvement using bisection as compared to the step procedure we kept

using the step procedure to find the solution to the Lagrangian relaxation.

A 11.82. Dantzig-Wolfe Decomposition

The procedure goes through two iterations and ends with the following result:

Objective function: 75.754, |, =1,1,,=1,1,,=1,1,, =0.984371,

|, =0.0156294, | ., =1,p, =-0.358858, p, =0, m =9.33512, m =35.5167,

m =29.6239, m, =14.4388, m =8.37099
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Since there are values of the lambdas fractional the problem is not completely
solved. To obtain all lambdas binary we should use a branch and bound approach to
eliminate the fractional values.

We first divide the problem into two sets, one with | ,; =1 and the other with

46 = 0 obtaining the following results:

|6 =1 | 46 =0
Objective function: 2.27505 | Objective function: 69.1584
l6=1 l16=1
| ,5 =0.547937 l,,=1
| ,,=0.452063 l5,=1
l54=1 l 47 =1
| a6 =1 I 56 =1

l 55 =1 P, =
p, =-488.224 p, =0
P, =0 m =7.76549
m =2143.23 m, = 31.3968
M, = 5636.4 m =20.317
m = 12682.2 m =3.11374
m = 15717 M = 6.56531

m, = 2532.07

Table A.8 Branching for Dantzig-Wolfe decomposition case 1 weight 176
Since one of the solutions (1 ,; =0) produces all binary values for the |

vector then that branch is pruned by optimality, since the other branch (1 ,, =1) hasa

maximum value of 2.27 it is pruned by bound. The best solution found is the bound

69.1584 which is the same bound obtained with the Lagrangian relaxation.
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A 1.19. Weght 178 — Tightened Bounds Case 1

A 1.19.1. Branch and Bound

The branch and bound procedure obtained an optimal solution in alittle over 2

hoursas shown in Table A.9.

PFA IMP ENV PRO Obj. F. Time| WID Hrs

77.6513 2030.14 21.0726 1086.9 -640.727 7465.24 178 2.073678

Table A.9 Branch and bound result for case 1 weight 178

A 1192. Lagrangian Relaxation

In just one iteration the Lagrangian relaxation provided the optimal solution.

PFA IMP ENV PRO z(u) z ul u2 Feasible?
77.65| 2030.10 21.07| 1086.90| -640.73| -640.73| 0.00| 0.00 TRUE
Table A.10 Lagrangian relaxation result for case 1 weight 178

A 1.1.9.3. Dantzig-Walfe

The procedure took three iterations before it arrived to the following solution:
Objective function: 640.727, | , o =1,1,,=1,1,,=1,1,, =1,

l.6=1,p, =0, p, =0, M =75.0204, m =289.553, m =121.21, m =104.211,

m, =50.7325.

Since there are no fractional lambdas the problem is solved. The solution

coincides with the Lagrangian relaxation.

A 1.1.10.Weight 459 — Tightened Bounds Case 1

A 1.1.10.1. Lagrangian Relaxation

The Lagrangian relaxation obtained a feasible solution on the first try (W=0,0)

as follows:
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PFA IMP ENV PRO z(u) z
76.84 | 2015.06 21.07| 1087.54| -883.56| -883.57
Table A.11 Lagrangian relaxation solution case 1 weight 459

A 1.1.10.2. Dantzig-Wolfe

After three iterations the procedure provided the following solution:

Objective function: 883.565, | ,, =1, 1 ,,=1,1,,=1,1,, =1,
l.6=1,p, =0, p, =0, m=109.38, m =401.677,m = 158.621, m, =145.146,
m, =68.7407.

Since there are no fractional lambdas the problem is solved. The solution

coincides with the Lagrangian relaxation.

A 1.1.11. Weight 176- Tightened Bounds Case 2

A 1.1.11.1. Lagrangian Relaxation

We tried different values of u without finding any feasible solution. The result

of the relaxation was switching betweentwo infeasible solutions as

Iteration | IMP ENV PFA PRO z(u) z ul u2 Feasible?
1| 2004.05 196 | 59.71| 1029.29 75.86| 75.86 0 000 | FALSE
2| 1796.07 177 2348| 995.35( 105.30| 58.77 0 100 | FALSE
3| 2004.05 196 | 59.71| 1029.29 85.86 | 75.86 1 1.00| FALSE
4| 2044.35| 20.63| 78.38| 1085.12 88.35| 69.16 15 1.00| FALSE
5| 2004.05 196 | 59.71| 1029.29 86.79| 75.86 135 110| FALSE
6| 204435 20.63| 78.38| 1085.12 88.16 | 69.16 1.485 099 | FALSE
7| 2004.05 196 | 59.71| 1029.29 86.68 | 75.86 1.3365 1.089 | FALSE
8| 204435 20.63| 78.38| 1085.12 87.97| 69.16| 147015 0.9801 | FALSE
9| 2004.05 196 | 59.71| 1029.29 86.57 | 75.86| 1.323135| 1.07811| FALSE

10| 204435 | 20.63| 78.38| 1085.12 87.78 | 69.16 | 1.455449 | 0.970299  FALSE

Table A.12 Lagrangian relaxation resultsweight 176 case 2
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A 1.1.11.2. Dantzig-Wolfe

After four iterations we obtained the following values:

Objective function: 75.754, |, =1,1,,=1,1,,=1,1,, =0.984371,
|, =0.0156294,1 ., =1,p, =-0.358858, p, =0, m =9.33512, m =35.5167,m, =

29.6239, m) =14.4388, m =8.37099.

A 1.1.12. Weight 643- Tightened Bounds Case 2

A 1.1.12.1. Lagrangian Relaxation

Once again, the Lagrangian relaxation was not able to find a feasible solution
within 10 iterations. The solution kept switching between two non feasible solutions

to the original problem.

Iteration | IMP ENV PFA PRO Z(u) z ul u2 Feasible?
1| 2044.35| 20.63| 78.38| 1085.12 | 112.33| 112.33 0 0.00| FALSE
2| 183265 177| 24.33| 1001.63 | 128.11| 82.44 0 100 | FALSE
3| 189141 177| 38.15| 1033.77 | 121.53 95.05 0.1 090 | FALSE
4] 1988.59 177 | 5841 1029.37 | 118.84 | 109.77 0.2 081 | FALSE
5| 2004.05 196 | 59.71( 1029.29 [ 117.95| 110.53 0.3 0.73| FALSE
6| 2004.05 196 | 59.71( 1029.29 ( 117.17 | 110.53 0.4 0.6561 | FALSE
7| 204436 | 20.63| 78.38| 1085.12 | 116.57 | 112.33 05| 059049 | FALSE
8| 2004.05 196 | 59.71( 1029.29 [ 117.08 | 110.53 045 | 0.649539| FALSE
9| 2044.36| 20.63| 78.38| 1085.12 | 116.53 | 112.33( 0.495| 0.584585| FALSE

10 | 2004.05 196 | 59.71( 1029.29 | 117.02 | 110.53| 0.4455 | 0.643044 | FALSE

Table A.13 Lagrangian relaxation resultsweight 643 case 2
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A 1.1.12.2. Dantzig-Wolfe

After four iterations the procedure stopped at the following solution

Objective function: 111.52, |, =1,1,,=1,1,,=1,1,, =0.551214,

| ., =0.448786,1 ., =1,p, = 0, p, =0.0962767, m =10.8096, M =41.5207, m, =

28.8211, m) =14.6866, m =8.94299.

A 1.1.13.Weight 724- Tightened Bounds Case 2

A 1.1.13.1. Lagrangian Relaxation

The Lagrangian relaxation approach failed to find a feasible solution within

10 iterations. The solution keeps switching between two infeasible solutions to the

original problem.

Iteration | IMP ENV PFA PRO z(u) z ul u2 Feasible?
1| 1311.46 177 | 47.79| 763.22( -36.74 | -36.74 0 0.00 | FALSE
2| 132845| 19.30| 76.99| 751.93| -34.48 | -51.47 1 0.00| FALSE
3| 129755| 19.30( 75.70| 751.40| -36.70 | -50.26 0.9 010| FALSE
4| 1389.34 196 | 58.28| 754.68| -3852 | -39.48 0.81 0.20| FALSE
5| 128246 | 19.30 | 74.89| 752.04| -37.28 | -49.66 0.891 0.18| FALSE
6| 129755| 19.30| 75.70| 751.40| -35.79 | -50.26 0.9801 0.162 | FALSE
7| 128246 | 19.30| 74.89| 752.04| -37.40 | -49.66 | 0.88209 0.1782 | FALSE
8| 1389.34 196 | 58.28| 754.68| -3854 | -39.48 | 0.793881| 0.19602 | FALSE
9| 128246 | 19.30| 74.89| 752.04| -37.52 | -49.66 | 0.873269 | 0.176418 | FALSE

10| 1389.34 196 | 58.28| 754.68| -3855 | -39.48 | 0.785942 | 0.19406 | FALSE

Table A.14 Lagrangian relaxation resultsweight 724 case 2
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A 1.1.13.2. Dantzig-Wolfe Decomposition

After four iterations we obtained the following values:

Objective function: -40.5298, | ,, =1, | ,, =1, 1,,=1,1,, =0.103538,
| .o =0.896462,1 ., =1,p, = -0.613294, p, =0, m =-9.19256, m =-1.55426,m =
8.15193, m =-1.59139, m =0.454139.

Since the values of lambda are fractional we need to apply branch and bound

to find binary solutions. We obtained the following results:

|4 =1 | 45 =0
Objective function: -338.042 | Objective function: -40.5298
| 5 =0.894116 l,,=1
| ,, =0.105884 l,,=1
I 25 ~ I 31 =1

I 31= 1 I 47 =0.103538

I 4 = | 49 =0.896462
lss=1 ls; =1

p, =-260.398 p, =-0.613294
p,=0 p, =0

m =917.467 m =-9.19256
M =2944.48 M =-1.55426
m, = 6745.56 M, =8.15193
m, =8358.37 M =-1.59139
m = 1331.94 m =0.454139

Table A.15 Resultsfor Dantzig-Wolfe weight 724 case 2first branch

Since both solution have fractional values we need to branch again on each

one obtaining the following resullts.

I 438 =l l 48 =

I 1,5 =1 I 15 = O
Objective function: -349.08 Infeasible

s =1
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| 55 =0.54616

| 5 ,=0.45384

p, =-131.198, p, =0
m =456.608

m =1436.8

m, = 3394.82

M = 4199.34

m =657.523
Table A.16 Resultsfor Dantzig-Wolfe weight 724 case 2 second branch

l 5 =0 | e =
I 15 =1 I 5= 0
Objective function: -250.155 | Objective function: -40.5298
|5 =1 ;=1
l,,=1 l,, =1
l,,=1 I, =1
| ,;=0.0549682 | ,, =0.103538
|, =0.945032 |, =0.896462
I 57 =1 I 57 =1
p, =-0.613294 P, =-0.613294
P, =0 p, =0
m =0 m =-9.19256
m, =-1.55426 m =-1.55426
m =8.15193 m, =8.15193
m = -1.59139 m =-1.59139
m = 0.454139 m =0.454139

Table A.17 Resultsfor Dantzig-Wolfe weight 724 case 2 third branch
The optimal solution found is:

Objective function: -47.0496, | ., =1,1,,=1,1,,=1,1,,=1, |5, =1,p, =

0, p,=0, m=-11.3802, m =-8.21401, m = 12.6749, m =-9.37907, m =-1.55416.
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A 1.2.List of Weights Used to Find New Cases

Weight ID IMP ENV PFA PRO

wl w2 w3 w4
0.871526 | 0.485054 | 0.147507 | 0.024457
0.929101 | 0.597805 [ 0.56447 | 0.299908
0.172352 | 0.14218 | 0.050867 | 0.795779
0.643518 | 0.749261 | 0.568631 | 0.974561
0.357277 | 0.095527 [ 0.39646 | 0.681209
0.40432 | 0.948522 | 0.850309 | 0.940149
0.618936 | 0.21963 | 0.684365 | 0.734583
0.649157 | 0.858379 ( 0.72361 | 0.677511
0.224105 | 0.848818 | 0.036482 | 0.310137
0.889452 | 0.820314 | 0.677809 | 0.073912
0.347651 | 0.919449 ( 0.83145 | 0.792619
0.591866 | 0.665722 | 0.195238 | 0.276977
0.202299 | 0.999514 | 0.719099 | 0.310625
0.543946 0.2944 | 0.028189 | 0.275954
0.331171 | 0.634428 | 0.177728 | 0.024844
0.079885 | 0.388387 | 0.539113| 0.27257
0.502698 | 0.815553 | 0.139456 | 0.078516
0.520485 | 0.312005 ( 0.50296 | 0.29955
19| 0.201249 | 0.967271 | 0.965474 | 0.130321
20| 0.332656| 0.76364 | 0.828601 | 0.475267

OIO|IN|O|O|A[W|IN]|F-

=
o

[y
=

K

=
w

N

=
6]

=
(o]

(=Y
~

=
oo

983 | 0.468824 | 0.542138 | 0.138855| 0.145115
984 | 0.598395 | 0.329389 | 0.890222 | 0.038672
985 | 0.259766 | 0.671314 | 0.334407 | 0.485953
986 | 0.064853 | 0.791861 | 0.000946 | 0.620814
987 | 0.64908 | 0.540634 | 0.939127 | 0.868454
988 | 0.566762 | 0.045235 | 0.521804 | 0.80763
989 0.8458 | 0.612932 | 0.45743 | 0.18619
990 | 0.28172 | 0.668197 | 0.373642| 0.149056
991 | 0.368481 | 0.509523 0.0197 | 0.723988
992 | 0.965993 | 0.978895 | 0.088428 | 0.437695
993 | 0.20147 | 0.845853 | 0.363693 | 0.036743
994 | 0.461205| 0.172675 | 0.102678 | 0.742378
995 | 0.110919 | 0.792794 | 0.989794 | 0.078222
996 | 0.82453 | 0.007803 | 0.08482 | 0.245826
997 | 0.907274 | 0.899252 | 0.181329 | 0.74313
998 | 0.530632 | 0.490737 | 0.564156 | 0.198193
999 | 0.666129 | 0.51261 | 0.922694 | 0.096678
1000 | 0.699326 | 0.807198 | 0.914195 | 0.941198
Table A.18 Extract of thelist of weights used to find new cases
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A 1.3.Formulation to Find u in the Lagrangian Relaxation Example

For mul ati on Sol uti on
mn eta OBJECTI VE FUNCTI ON VALUE
S.t.
eta - 5.5u >= 0 1) 15. 00000
eta - 4.5u >= 2
eta - 3.5u >= 4 VARI ABLE VALUE REDUCED COST
eta - 2.5u >= 6 ETA 15. 000000 0. 000000
eta - 1.5u >= 8 U 2. 000000 0. 000000
eta - 4.5u >= 3
eta - 3.5u >= 5
eta - 2.5u >= 7 ROW  SLACK OR SURPLUS DUAL PRI CES
eta - 1.5u >= 9 2) 4. 000000 0. 000000
eta - 0.5u >= 11 3) 4. 000000 0. 000000
eta - 3.5u >= 6 4) 4.000000 0. 000000
eta - 2.5u >= 8 5) 4.000000 0. 000000
eta - 1.5u >= 10 6) 4.000000 0. 000000
eta - 0.5u >= 12 7) 3. 000000 0. 000000
eta + 0.5u >= 14 8) 3. 000000 0. 000000
eta - 2.5u >= 9 9) 3. 000000 0. 000000
eta - 1.5u >= 11 10) 3. 000000 0. 000000
eta - 0.5u >= 13 11) 3. 000000 0. 000000
eta + 0.5u >= 15 12) 2. 000000 0. 000000
eta + 1.5u >= 17 13) 2. 000000 0. 000000
eta - 1.5u >= 12 14) 2. 000000 0. 000000
eta - 0.5u >= 14 15) 2. 000000 0. 000000
eta + 0.5u >= 16 16) 2. 000000 0. 000000
eta + 1.5u >= 18 17) 1. 000000 0. 000000
eta + 2.5u >= 20 18) 1. 000000 0. 000000
end 19) 1. 000000 0. 000000
20) 1. 000000 0. 000000
21) 1. 000000 0. 000000
22) 0. 000000 0. 000000
23) 0. 000000 -0. 500000
24) 0. 000000 -0. 500000
25) 0. 000000 0. 000000
26) 0. 000000 0. 000000
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A 1.4.Extract of the Solutions for the 1000 Weights Using Original

Bounds

Weight ID | PFA IMP ENV PRO Obj. F. Time in

seconds
1 52.746 1083.69 174.035 | 764.393 1002.41 2.013
2 54,5145 1129.87 03.8476 | 763799 | 846.025 2.634
3 55.7931 1643.67 131.847 | 106854 | -551.124 0.26
4 51.5783 1405.85 260652 | 954.101 | -34.9364 0.1
5 51.5783 1327.7 322.146 | 998.349 | -195.401 0.13
6 63.8971 1519.98 318475 | 1011.34| -360.375 0.201
7 51.5783 1123.86 179.818 | 816.735| 99.8317 0.12
8 54.1578 1201.43 25.0856 | 795793 | 223.102 0.12
9 51.5783 1389.28 19.3033 | 931.728| 36.8838 0.12
10 54.5145 1175 25.0856 | 761.867 972.42 0.641
1 63.8971 1519.98 318475 | 1011.34| -297.028 0.19
12 54.5145 1175 25.0856 | 761.867 | 490478 1.142
13 63.8971 1429.13 19.3033 | 949.162 | -32.3763 0.09
14 54.1578 1084.63 173.056 | 765.685| 428.104 0.601
15 54,5145 1175 25.0856 | 761.867 | 376.424 0.851
16 67.1099 1571.57 26.0652 | 1017.96 | -177.977 0.241
17 54,5145 1175 25.0856 | 761.867 | 543.706 1.642
18 54.5145 1129.87 038476 | 763799 | 361.147 2.944
19 67.2085 1211.95 19.3033 | 756.826 99.057 0.18
20 61.7628 1411.24 19.3033 | 941.056 | -14.2309 0.121
081 54,5145 1084.72 173.056 | 765.795 1008.32 0.531
982 54.5145 1185.89 25.0856 | 777.479| 414.509 0.41
083 54.5145 1175 25.0856 | 761.867 | 446.338 1.012
984 54.5145 1084.72 173.056 | 765.795 | 627.947 0.43
085 53.6588 1421.91 19.3033 954.62 | -99.5222 0.091
086 67.6249 1928.06 21.0726 | 1091.11| -535.711 0.831
087 61.7628 1361.88 26.0652 | 914.105| 46.1994 0.12
988 51.5783 1249.7 350915 952.687 | -72.1771 0.12
989 54.5145 1175 25.0856 | 761.867 842.4 2.143
990 55.4357 1189.42 19.3033 | 761.076 | 213.827 1.132
991 51.5783 1462.96 31.8475 | 990.497 | -162.823 0.09
992 54.1578 1174.91 25.0856 | 761.756 821.3 2.043
093 65.0742 1204.98 19.3033 | 761.141| 207.462 0.26
994 51.5783 1292.23 267.45| 969.425| -82.8082 0.141
995 71.5404 1241.22 19.3033 | 754.919| 23.1166 0.23
996 60.8135 1052.32 343533 764.06 | 677.364 1.031
997 54.5145 1185.89 25.0856 | 777.479| 510.835 0.411
098 54.5145 1175 25.0856 | 761.867 | 454.051 1.212
999 54,5145 1175 25.0856 | 761.867 | 671.602 1.232
1000 61.7628 1361.88 26.0652 | 914.105| 56.6207 0.13

Table A.19 Extract of the solutionsfor the 1000 Weights Using Original Bounds
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A 1.5.Extract of thePareto Optimal Solutions Using Original Bounds

Weight ID IMP ENV PFA PRO Obj. F. Time
3 1643.67 131.85 55.79 | 1068.54 -551.12 0.2600

9 1389.28 19.30 51.58 931.73 36.88 0.1200
20 1411.24 19.30 61.76 941.06 -14.23 0.1210
26 1432.27 26.07 51.58 968.75 -207.04 0.0900
38 1223.56 19.30 53.66 805.08 68.60 0.1200
44 1846.58 26.07 65.32 | 1084.88 -659.68 0.5900
45 1969.72 14.99 49.06 | 1086.49 -347.50 0.9320
58 1790.90 26.07 65.32 | 1074.53 -652.80 0.2700
60 1910.07 21.07 67.62 | 1088.33 -427.55 0.4010
62 1409.96 179.82 55.79 | 1011.09 -192.92 0.1300
63 1809.65 26.07 65.32 | 1078.19 -677.88 0.2710
67 1113.27 174.04 54.16 802.65 433.48 0.1100
69 1536.68 26.07 56.71 | 1014.30 -519.64 0.1400
70 1203.55 26.07 54.16 798.72 255.80 0.3010
74 1514.28 131.85 63.90 | 1032.71 -335.62 0.2800
75 1140.77 93.85 54.51 779.41 373.66 0.2200
79 1105.10 322.15 51.58 834.08 148.37 0.1100
80 2000.01 21.07 75.62 | 1088.18 -667.56 2.2530
965 1201.43 25.09 54.16 795.79 391.49 0.4610
967 1190.88 25.09 64.15 762.39 133.80 0.4110
971 1224.19 19.30 51.58 805.96 125.44 0.1200
972 1123.86 179.82 51.58 816.74 168.35 0.1200
973 1464.00 26.07 63.90 975.65 -195.06 0.2000
974 1420.82 19.30 51.58 954.41 12.95 0.1100
976 1469.92 398.99 53.71 | 1063.75 -582.11 0.1700
977 1425.57 19.30 64.40 945.50 -6.63 0.1310
978 1069.85 212.22 54.51 766.69 877.30 0.8310
979 1054.16 267.89 52.75 766.25 750.90 1.3720
980 1410.46 277.85 63.90 | 1023.53 -335.67 0.1100
984 1084.72 173.06 54.51 765.80 627.95 0.4300
985 1421.91 19.30 53.66 954.62 -99.52 0.0910
986 1928.06 21.07 67.62 | 1091.11 -535.71 0.8310
987 1361.88 26.07 61.76 914.11 46.20 0.1200
988 1249.70 350.92 51.58 952.69 -72.18 0.1200
990 1189.42 19.30 55.44 761.08 213.83 1.1320
991 1462.96 31.85 51.58 990.50 -162.82 0.0900
992 1174.91 25.09 54.16 761.76 821.30 2.0430
993 1204.98 19.30 65.07 761.14 207.46 0.2600
994 1292.23 267.45 51.58 969.43 -82.81 0.1410
995 1241.22 19.30 71.54 754.92 23.12 0.2300
996 1052.32 343.53 60.81 764.06 677.36 1.0310
997 1185.89 25.09 54.51 777.48 510.84 0.4110
999 1175.00 25.09 54.51 761.87 671.60 1.2320

Table A.20 Extract of the Pareto Optimal Solutionsfor the 1000 Weights Using Original Bounds
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A 1.6.Value Path Graph for Pareto Optimal Points
The values from Table A.20 were normalized in the scale 0-1 with 1 being the
most desirable solution (the one that either maximizes or minimizes the objective)
and 0 the less desirable. Those points were plotted and joined with lines and
presented in Figure A.59. This information is of very little help since the number of

solutions is large.
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Figure A.59 Value Path Graph for Pareto Optimal Points
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A 1.7.Extract of the Solutions Using Tighter Bounds Case 1

Weight ID IMP ENV PFA PRO Obj. F. Time
1 1,098.39 174.04 60.85 764.08 1,014.03 0.7610
2 1,145.43 93.85 64.15 763.87 855.02 1.1720
3 1,661.05 131.85 63.90 | 1,071.24 -550.69 0.6010
4 1,394.78 26.07 61.76 938.36 -32.51 0.1000
5 1,365.09 311.76 61.76 | 1,007.89 -193.57 0.1500
6 1,519.98 31.85 63.90 | 1,011.34 -360.38 0.2700
7 1,143.85 179.82 60.18 823.93 101.04 0.1510
8 1,224.03 25.09 62.26 806.00 224.99 0.1500
9 1,411.24 19.30 61.76 941.06 38.54 0.1500
10 1,190.56 25.09 64.15 761.93 979.72 0.6910
11 1,519.98 31.85 63.90 | 1,011.34 -297.03 0.2400
12 1,189.69 25.09 62.62 761.56 497.68 1.0620
13 1,429.13 19.30 63.90 949.16 -32.38 0.1100
14 1,099.32 173.06 62.26 765.38 435.96 0.9710
15 1,190.31 25.09 63.84 761.60 379.84 0.6910
16 1,571.57 26.07 67.11| 1,017.96 -177.98 0.3810
17 1,189.69 25.09 62.62 761.56 549.99 1.7830
18 1,145.43 93.85 64.15 763.87 364.38 1.1910
19 1,211.95 19.30 67.21 756.83 99.06 0.1910
20 1,411.24 19.30 61.76 941.06 -14.23 0.1300
981 1,084.75 201.83 62.62 765.84 1,013.70 1.1720
982 1,208.49 25.09 62.62 787.69 423.48 0.2200
983 1,189.69 25.09 62.62 761.56 452.15 0.6710
984 1,100.28 173.06 64.15 765.86 628.68 0.3110
985 1,439.28 19.30 61.76 957.32 -99.03 0.2400
986 1,928.06 21.07 67.62 | 1,091.11 -535.71 1.5620
987 1,361.88 26.07 61.76 914.11 46.20 0.1400
988 1,269.69 350.92 60.18 959.88 -71.14 0.1410
989 1,190.31 25.09 63.84 761.60 851.14 1.0210
990 1,204.98 19.30 65.07 761.14 214.60 0.7710
991 1,503.04 31.85 61.76 | 1,003.88 -157.94 0.2200
992 1,189.60 25.09 62.26 761.45 834.92 1.4020
993 1,204.98 19.30 65.07 761.14 207.46 0.2910
994 1,298.70 228.29 60.18 957.21 -78.40 0.1200
995 1,241.22 19.30 71.54 754.92 23.12 0.2200
996 1,052.32 343.53 60.81 764.06 677.36 0.3910
997 1,208.49 25.09 62.62 787.69 522.28 0.3710
998 1,190.56 25.09 64.15 761.93 456.86 0.9210
999 1,190.56 25.09 64.15 761.93 673.07 0.5310
1000 1,361.88 26.07 61.76 914.11 56.62 0.1300

Table A.21 Extract of the solutionsfor the 1000 Weights Tighter Bounds Case 1
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A 1.8.Extract of the Pareto Optimal Set Using Tighter Bounds Case 1

Weight ID | IMP ENV PFA | PRO Obj. F. Time
1| 1,098.39| 174.04 | 60.85| 764.08 | 1,014.03| 0.7610
3| 1,661.05( 131.85| 63.90 | 1,071.24| -550.69 | 0.6010
9( 1,411.24| 19.30| 61.76| 941.06 38.54 | 0.1500

14 1,099.32| 173.06 | 62.26| 765.38| 435.96| 0.9710

26| 1,472.35| 26.07| 61.76| 982.12| -203.07| 0.2210

441 1,846.58 | 26.07| 65.32| 1,084.88| -659.68 | 0.6310

58| 1,790.90| 26.07| 65.32| 1,074.53 | -652.80| 0.2700

60 | 1,910.07| 21.07| 67.62| 1,088.33| -427.55| 0.3910

63| 1,809.65| 26.07| 65.32| 1,078.19( -677.88| 0.2800

64

67

70

74

75

80

82

1,14457| 93.85| 62.62| 763.49 563.53 [ 1.5320
1,135.87 | 174.04| 62.26| 812.86| 443.56( 0.1300
1,226.15| 26.07| 62.26| 808.93| 258.01( 0.3000
1,514.28 | 131.85| 63.90| 1,032.71| -335.62( 0.2810
1,14575| 93.85| 64.15| 764.32| 380.42( 1.8220
2,00001 | 21.07| 75.62| 1,088.18| -667.56 | 2.3830
1,203.87 | 19.30| 62.93| 760.44| 268.43( 1.7830

83| 1,395.91 | 26.07| 61.76 939.07 -97.50 | 0.1000
86| 1,24355| 19.30| 62.26 812.27 24.95( 0.1310
88| 1,439.54| 19.30| 61.76 957.44 | -167.71| 0.2800
90| 1,175.88| 93.85| 62.62 804.41 456.95 | 0.1500

976 | 1,484.60 | 388.60 | 61.82 | 1,062.60| -578.87| 0.3700
977| 1,425.57| 19.30| 6440 945.50 -6.63 | 0.1300
979| 1,054.16 | 316.36 | 60.85| 766.25| 757.47| 0.5910
980 | 1,410.46 | 277.85| 63.90 | 1,023.53| -335.67| 0.1100
981| 1,084.75| 201.83 | 62.62| 765.84| 1,013.70| 1.1720
983] 1,189.69| 25.09( 62.62| 761.56| 452.15| 0.6710
9841 1,100.28 | 173.06 | 64.15| 765.86| 628.68| 0.3110
985| 1,439.28| 19.30| 61.76| 957.32 -99.03 | 0.2400
986| 1,928.06 | 21.07| 67.62| 1,091.11| -535.71| 1.5620
987 1,361.88| 26.07| 61.76 | 914.11 46.20 | 0.1400
988 | 1,269.69 | 350.92 | 60.18 | 959.88 -71.14| 0.1410
9891] 1,190.31| 25.09| 63.84| 761.60| 851.14| 1.0210
991| 1,503.04| 31.85| 61.76| 1,003.88 | -157.94| 0.2200
9921 1,189.60| 25.09| 62.26| 761.45| 834.92| 1.4020
993] 1,204.98| 19.30| 65.07| 761.14| 207.46| 0.2910
9941 1,298.70 | 228.29 | 60.18 | 957.21 -78.40 | 0.1200
995| 1,241.22| 19.30| 71.54| 754.92 23.12| 0.2200
996 | 1,052.32 | 343.53 | 60.81| 764.06| 677.36| 0.3910
997 1,208.49| 25.09| 62.62| 787.69 522.28 | 0.3710
9991 1,190.56| 25.09| 64.15| 761.93| 673.07| 0.5310

Table A.22 Extract of the Pareto optimal solutionsfor the 1000 weights using tighter bounds case
1
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A 1.9.Extract of the Solutions Using Tighter Bounds Case 2

Weight ID | IMP ENV PFA PRO Obj.F. | Time in
seconds
1| 1098.39 | 174.035 | 60.8501 | 764.083 | 1014.03 0.761
2| 1145.43 | 93.8476 | 64.153 | 763.865 | 855.021 1.152
3| 1661.05 | 131.847 | 63.8971 | 1071.24 | -550.688 0.511
4| 1394.78 | 26.0652 | 61.7628 | 938.358 | -32.5097 0.1
5| 1365.09 | 311.756 | 61.7628 | 1007.89 | -193.571 0.14
6| 1519.98 | 31.8475 | 63.8971 | 1011.34 | -360.375 0.21
7| 1143.85| 179.818 | 60.1814 | 823.929 | 101.036 0.13
8| 1224.03 | 25.0856 | 62.2619 | 806.003 | 224.992 0.121
9| 1411.24 | 19.3033 | 61.7628 | 941.056 | 38.5416 0.12
10| 1190.56 | 25.0856 | 64.153 | 761.932 | 979.722 0.641
11| 1519.98 | 31.8475 | 63.8971 | 1011.34 | -297.028 0.2
12| 1189.69 | 25.0856 | 62.6185 | 761.557 497.68 1.072
13| 1429.13 | 19.3033 | 63.8971 | 949.162 | -32.3763 0.09
14| 1099.32 | 173.056 | 62.2619 | 765.375 | 435.955 0.991
15| 1190.31 | 25.0856 | 63.839 | 761.598 | 379.844 0.631
16| 1571.57 | 26.0652 | 67.1099 | 1017.96 | -177.977 0.25
17| 1189.69 | 25.0856 | 62.6185 | 761.557 | 549.987 1.423
18| 1145.43 | 93.8476 | 64.153 | 763.865 | 364.379 1.151
19( 1211.95| 19.3033 | 67.2085 | 756.826 99.057 0.18
20| 1411.24 | 19.3033 | 61.7628 | 941.056 | -14.2309 0.121
982 | 1208.49 | 25.0856 | 62.6185 | 787.688 | 423.476 0.22
983 | 1189.69 | 25.0856 | 62.6185 | 761.557 | 452.148 0.701
984 | 1100.28 | 173.056 | 64.153 | 765.861 | 628.675 031
985( 1439.28 | 19.3033 | 61.7628 | 957.316 | -99.0294 0.231
986 1928.06 | 21.0726 | 67.6249 | 1091.11 | -535.711 1.562
987 | 1361.88 | 26.0652 | 61.7628 | 914.105 | 46.1994 0.13
988 | 1269.69 | 350.915 | 60.1814 | 959.881 | -71.1434 0.13
989 1190.31 | 25.0856 | 63.839 | 761.598 | 851.135 0.952
990 (| 1204.98 | 19.3033 | 65.0742 | 761.141 214.6 0.791
991 1503.04 | 31.8475 | 61.7628 | 1003.88 | -157.941 0.2
992 1189.6| 25.0856 | 62.2619 | 761.446 | 834.915 1.322
993 | 1204.98 | 19.3033 | 65.0742 | 761.141 | 207.462 0.25
994 ( 1298.7 | 228.291 | 60.1814 | 957.209 | -78.4017 0.121
995( 1227.31 | 19.3033 69.5 | 756.641 | 23.4584 0.11
996 | 1052.32 | 343533 | 60.8135 | 764.06 | 677.364 0.38
997 | 1208.49 | 25.0856 | 62.6185 | 787.688 | 522.284 0.371
998 | 1190.56 | 25.0856 | 64.153 | 761.932 | 456.857 0.931
999 1190.56 | 25.0856 | 64.153 | 761.932 | 673.068 0.541
1000| 1361.88 | 26.0652 | 61.7628 | 914.105 | 56.6207 0.13

Table A.23 Extract of the solutions for 1000 weightstighter bounds case 2
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A 1.10. Extract of thePareto Optimal Set Tighter Bounds Case 2

Weight ID | IMP ENV PFA PRO Obj. F. Time in seconds
1] 1098.39 | 174.035 | 60.8501 | 764.083 | 1014.03 0.761

3| 1661.05 | 131.847 | 63.8971 | 1071.24 | -550.688 0.511

9| 1411.24 | 19.3033 | 61.7628 | 941.056 | 38.5416 0.12
14| 1099.32 | 173.056 | 62.2619 | 765.375 | 435.955 0.991
26| 1472.35 | 26.0652 | 61.7628 | 982.124 | -203.07 021
44| 1846.58 | 26.0652 | 65.3173 | 1084.88 | -659.684 0.601
58| 1790.9 | 26.0652 | 65.3173 | 1074.53 | -652.798 0.26
60 | 1910.07 | 21.0726 | 67.6249 | 1088.33 | -427.548 0.391
63| 1809.65 | 26.0652 | 65.3173 | 1078.19 | -677.875 0.28
64 | 114457 | 93.8476 | 62.6185 | 763.489 | 563.529 1.562
67| 1135.87 | 174.035 | 62.2619 | 812.86 | 443.557 0.12
70| 1226.15 | 26.0652 | 62.2619 | 808.932 | 258.007 0.32
74| 1514.28 | 131.847 | 63.8971 | 1032.71 | -335.621 0.291
75| 114575 | 93.8476 | 64.153 | 764.324 | 380.416 1.772
82| 1203.87 | 19.3033 | 62.9305 | 760.435 | 268.426 1.882
83| 139591 | 26.0652 | 61.7628 | 939.067 | -97.5043 0.101
86 | 124355 | 19.3033 | 62.2619 | 812.274 | 24.9496 0.13
88| 143954 | 19.3033 | 61.7628 | 957.444 | -167.71 0.241
90 | 1175.88 | 93.8476 | 62.6185 | 804.405 | 456.949 0.15
92 | 1087.24 | 322.146 | 60.1814 | 809.193 | 101.413 0.12
976 1484.6 | 388.603 | 61.8167 | 1062.6 | -578.867 0.391
977 | 1425.57 | 19.3033 | 64.3961 | 945.503 | -6.62552 0.13
979 | 1054.16 | 316.363 | 60.8501 | 766.254 757.47 0.581
980 | 1410.46 | 277.852 | 63.8971 | 1023.53 | -335.669 011
981 | 1084.75 | 201.825 | 62.6185 | 765.837 1013.7 1.092
983 | 1189.69 | 25.0856 | 62.6185 | 761.557 | 452.148 0.701
984 1100.28 | 173.056 | 64.153 | 765.861 | 628.675 0.31
985 1439.28 | 19.3033 | 61.7628 | 957.316 | -99.0294 0.231
986 | 1928.06 | 21.0726 | 67.6249 | 1091.11 | -535.711 1.562
987 | 1361.88 | 26.0652 | 61.7628 | 914.105 | 46.1994 0.13
988 | 1269.69 | 350.915 | 60.1814 | 959.881 | -71.1434 0.13
989 1190.31 | 25.0856 | 63.839| 761.598 | 851.135 0.952
991 | 1503.04 | 31.8475 | 61.7628 | 1003.88 | -157.941 0.2
992 1189.6 | 25.0856 | 62.2619 | 761.446 | 834.915 1.322
993 | 1204.98 | 19.3033 | 65.0742 | 761.141 | 207.462 0.25
994 | 1298.7 | 228.291 | 60.1814 | 957.209 | -78.4017 0.121
995 [ 1227.31 | 19.3033 69.5 | 756.641 | 23.4584 011
996 | 1052.32 | 343.533 | 60.8135 | 764.06 | 677.364 0.38
997 | 1208.49 | 25.0856 | 62.6185 | 787.688 | 522.284 0.371
999 [ 1190.56 | 25.0856 | 64.153 | 761.932 | 673.068 0.541

Table A.24 Extract of the Pareto optimal solutionsfor the 1000 weights using tighter bounds case
2
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A 1.11. Data Collected Iteration by Iteration Solving Embedded
Minimum Spanning Tree L arge Scale Par cel Set

Add Disconn.

Ineq | Time sed Var Constr | MST Profit Imp Ch|Cycles|Elements
Iter 1 0 309.003,915.00 1,650.00] 113,849.00 1,346,630.00| 947.37 25 42
Iter 2 135 305.50,3,957.00( 1,783.00| 118,787.00| 1,346,560.00, 947.93 18 28
Iter 3 2221 304.00 3,985.00( 1,870.00| 119,756.00| 1,346,660.00 947.67, 13 20
Iter 4 287 306.00,4,005.00( 1,933.00| 126,061.00| 1,346,740.00f 947.54 9 15
Iter 5 3320  306.40/4,020.00| 1,978.00| 131,487.00| 1,346,580.00 948.37| 7 16
Iter 6 382  306.80/4,036.00| 2,028.00| 130,418.00| 1,346,800.00 948.00 4 6
Iter 7 400 310.304,042.00| 2,046.00( 129,960.00| 1,346,710.00| 948.10 5 8
Iter 8 427 304.504,050.00| 2,071.00| 128,485.00| 1,346,680.00, 948.08 4 8
Iter 9 4511  308.604,058.00| 2,095.00| 129,909.00| 1,346,690.00, 948.26 9 11
Iter 10 | 484 304.704,069.00|2,128.00| 127,644.00| 1,346,720.000 947.43 2 4
Iter 11 | 496 303.00 4,073.00|2,140.00| 128,609.00 1,346,750.000 947.67 3 5
Iter 12 | 511f 303.80 4,078.00| 2,155.00| 126,328.00| 1,346,590.000 947.27 6 9
Iter 13 | 538 303.304,087.00| 2,182.00| 128,606.00| 1,346,740.00 947.54 6 7|
Iter 14 | 559  303.00 4,094.00| 2,203.00| 131,061.00(1,346,760.00 948.31 2 4
Iter 15 | 571 302.404,098.00| 2,215.00| 129,695.00| 1,346,620.00 947.99 4 6
Iter 16 | 589 303.304,104.00| 2,233.00| 139,790.00 1,346,760.00 948.11 3 6
Iter 17 | 607] 303.504,110.00|2,251.00| 128,868.00 1,346,870.00| 947.88 4 6
Iter 18 | 625 305.104,116.00| 2,269.00| 130,130.00| 1,346,660.00 948.06 4 4
Iter 19 | 637] 307.304,120.00| 2,281.00| 129,356.00| 1,346,750.00 947.89 6 7|
Iter 20 | 658 307.00 4,127.00| 2,302.00| 129,080.00| 1,346,740.000 947.87 3 5
Iter 21 | 673 308.604,132.00(2,317.00| 128,817.00( 1,346,830.00 947.70 2 5
Iter 22 | 688 310.604,137.00|2,332.00| 138,630.00(1,346,750.00 949.01 4 5
Iter 23 | 703 310.104,142.00|2,347.00| 132,722.00( 1,346,640.00 947.66 4 6
Iter 24 | 721f 310.10 4,148.00| 2,365.00| 134,031.00| 1,346,690.000 947.82 3 6
Iter 25 | 739 308.60 4,154.00| 2,383.00| 135,298.00| 1,346,460.000 947.72 4 5
Iter 26 | 754 303.90 4,159.00| 2,398.00| 128,358.00| 1,346,660.00 947.10 3 4
Iter 27 | 766 307.204,163.00|2,410.00| 135,187.00| 1,346,620.00 948.20 3 4
Iter 28 | 778 308.904,167.00| 2,422.00| 132,734.00( 1,345,210.00f 948.33 6 7|
Iter 29 | 799  308.004,174.00| 2,443.00| 125,396.00( 1,344,000.00 947.50 4 5
Iter 30 | 814 309.30/4,179.00| 2,458.00| 126,459.00| 1,345,520.00 947.43 2 4
Iter 31 | 825 307.104,183.00| 2,469.00| 130,720.00| 1,345,720.000 947.92 4 5
Iter 32 | 840 302.504,188.00|2,484.00| 133,765.00/1,343,110.000 948.21 8 9
Iter 33 | 867] 306.304,197.00|2,511.00| 132,754.00/ 1,345,410.00 947.39 5 5
Iter 34 | 882 302.80 4,202.00|2,526.00| 129,198.00| 1,345,570.00 947.55 1 3
Iter 35 | 891f 304.80 4,205.00| 2,535.00| 129,591.00| 1,345,730.00| 946.40 3 4
Iter 36 | 903 303.604,209.00| 2,547.00| 129,678.00| 1,344,130.00| 947.56 5 6
Iter 37 | 921f 304.304,215.00| 2,565.00| 130,573.00| 1,345,430.00| 946.86 2 3
Iter 38 | 930 302.504,218.00|2,574.00| 130,841.00/1,344,160.000 946.32 3 4
Iter 39 | 942 302.70 4,222.00| 2,586.00| 130,404.00/ 1,344,930.000 947.14 6 7|
Iter 40 | 963 307.304,229.00| 2,607.00| 129,789.00| 1,344,310.00 947.30 1 2
Iter 41 | 969 306.30 4,231.00| 2,613.00| 127,198.00/1,345,130.00 946.91 3 4
Iter 42 | 981 308.50 4,235.00| 2,625.00| 133,460.00( 1,345,980.00 947.85 5 5
Iter 43 | 999  308.60 4,241.00| 2,643.00| 134,124.00| 1,346,260.00 947.84 2 4
Iter 44 (1013 309.80 4,245.00|2,657.00| 132,681.00(1,346,780.00f 948.13 3 5
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Iter 45 |1028 307.50 4,250.00| 2,672.00| 133,606.00 1,346,630.00| 947.64 3 5
Iter 46 |1043 305.20 4,255.00| 2,687.00| 136,018.00| 1,346,390.00| 947.65 4 6
Iter 47 |1062) 308.60 4,261.00| 2,706.00| 135,586.00| 1,346,830.00| 949.03 4 5
Iter 48 |1078 313.304,266.00| 2,722.00| 133,654.00/ 1,346,710.000 947.83 2 3
Iter 49 |1087| 307.80 4,269.00| 2,731.00| 135,546.00| 1,346,440.00 947.61 3 4
Iter 50 |1099 308.204,273.00| 2,743.00| 130,784.00 1,346,450.000 947.79 3 4
Iter 51 |1111f 308.90 4,277.00| 2,755.00| 131,177.00| 1,346,650.00 947.50 2 3
Iter 52 |1120| 306.10 4,280.00| 2,764.00| 133,560.00| 1,346,480.00| 947.60 4 5
Iter 53 | 1135 305.60 4,285.00| 2,779.00| 131,223.00 1,346,650.000 947.86 1 3
Iter 54 |1145 307.10 4,288.00| 2,789.00| 137,718.00| 1,346,650.000 947.51 1 3
Iter 55 |1154f 306.00 4,291.00| 2,798.00| 135,111.00| 1,346,740.00| 948.02 2 4
Iter 56 |1166( 307.70 4,295.00|2,810.00| 132,482.00| 1,346,490.000 947.27 3 5
Iter 57 |1182( 307.10 4,300.00| 2,826.00| 134,469.00| 1,346,750.00 948.19 2 2
Iter 58 |1188 306.60 4,302.00| 2,832.00| 132,740.00| 1,346,710.00| 947.97 1 1
Iter 59 |1191f 302.90] 4,303.00| 2,835.00| 132,855.00| 1,346,690.000 947.83 4 5
Iter 60 |1206( 302.60| 4,308.00| 2,850.00| 134,582.00| 1,346,680.00| 948.61 3 3
Iter 61 |1215 302.704,311.00| 2,859.00| 134,481.00| 1,346,540.000 947.77 1 1
Iter 62 |1218 302.90 4,312.00| 2,862.00| 137,775.00( 1,346,230.00| 948.48 4 5
Iter 63 |1233 302.104,317.00|2,877.00| 133,990.00 1,346,310.00 947.69 2 3
Iter 64 |1242 303.20 4,320.00| 2,886.00| 132,377.00| 1,346,110.00| 946.87 1 2
Iter 65 |1248 302.204,322.00| 2,892.00| 137,026.00| 1,346,400.00| 947.54 1 3
Iter 66 |1257| 306.70 4,325.00| 2,901.00| 134,548.00| 1,346,440.00 947.08 4 5
Iter 67 |1272) 306.90 4,330.00| 2,916.00| 136,720.00| 1,346,190.00| 947.69 3 3
Iter 68 |1281f 305.10 4,333.00| 2,925.00| 134,585.00 1,346,410.000 947.72 2 4
Iter 69 |1293 305.704,337.00| 2,937.00| 132,819.00| 1,346,560.000 947.82 2 3
Iter 70 |1304f 302.80] 4,340.00| 2,947.00| 135,062.00| 1,346,460.00 947.71 1 3
Iter 71 |1313 303.604,343.00| 2,956.00| 136,500.00) 1,346,270.00 948.03 2 5
Iter 72 |1329 304.304,348.00| 2,972.00| 134,011.00 1,346,270.00| 946.99 2 2
Iter 73 | 1335 306.90 4,350.00| 2,978.00| 133,997.00| 1,346,270.00| 947.50 1 2
Iter 74 |1341f 305.30 4,352.00| 2,984.00| 133,277.00| 1,346,530.00| 947.67 2 4
Iter 75 |1353 302.70 4,356.00| 2,996.00| 138,779.00| 1,346,820.00| 948.33 1 1
Iter 76 |1356( 302.40 4,357.00| 2,999.00| 134,737.00| 1,346,550.00 947.38 1 2
Iter 77 |1363] 302.20 4,359.00| 3,006.00| 134,194.00| 1,346,550.00 947.56 2 3
Iter 78 |1372 302.90 4,362.00| 3,015.00| 131,819.00 1,346,710.00| 947.35 3 3
Iter 79 |1381f 308.10 4,365.00| 3,024.00| 134,896.00| 1,346,190.00| 947.05 2 4
Iter 80 |1394f  309.50] 4,369.00| 3,037.00| 135,769.00 1,346,220.00| 947.88 2 3
Iter 81 |1404f 307.90 4,372.00| 3,047.00| 135,713.00| 1,346,640.00 948.03 2 4
Iter 82 | 1416 308.604,376.00| 3,059.00| 133,775.00| 1,345,960.000 947.38 2 3
Iter 83 | 1425 307.704,379.00| 3,068.00| 134,515.00| 1,346,480.00| 948.34 1 2
Iter 84 |1431f 305.40 4,381.00| 3,074.00| 134,402.00| 1,346,670.00 947.66 2 3
Iter 85 |1440| 302.70 4,384.00| 3,083.00| 132,995.00| 1,346,340.00| 947.87 2 4
Iter 86 |1453 308.004,388.00| 3,096.00| 132,107.00| 1,346,480.000 947.44 1 1
Iter 87 |1456( 305.60 4,389.00| 3,099.00| 137,724.00 1,346,420.000 947.80 4 4
Iter 88 |1471f 307.30/4,393.00| 3,112.00| 133,662.00 1,346,530.00| 948.29 1 2
Iter 89 |1477] 306.30 4,395.00| 3,118.00| 133,950.00| 1,346,490.00| 947.56 1 2
Iter 90 |1483 306.30 4,397.00| 3,124.00| 135,176.00| 1,346,380.00| 947.45 2 4
Iter 91 |1496( 304.80 4,401.00|3,137.00| 136,523.00| 1,346,430.00 947.68 2 3
Iter 92 | 1505 307.90 4,404.00| 3,146.00| 143,053.00| 1,346,580.00 948.66 3 3
Iter 93 |1514 303.70 4,407.00| 3,155.00| 135,230.00 1,346,400.00 947.93 1 2
Iter 94 [1520 307.404,409.00| 3,161.00| 132,161.00| 1,346,620.00] 947.57 6 4
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Iter 95 |1534f 306.50 4,413.00| 3,173.00| 134,105.00 1,346,250.00| 948.25 1 2
Iter 96 |1541f 305.50 4,415.00| 3,180.00| 131,873.00| 1,346,800.00| 947.76 1 2
Iter 97 |1547| 307.404,417.00| 3,186.00| 132,956.00| 1,346,260.000 947.71 2 3
Iter 98 |1556( 303.50]4,420.00| 3,195.00| 138,586.00 1,346,230.00| 948.26 3 4
Iter 99 |1568 306.10 4,424.00| 3,207.00| 134,256.00| 1,346,010.00 947.59 2 3
Iter 100| 1577| 304.404,427.00| 3,216.00| 134,211.00| 1,346,680.00| 947.25 2 2
Iter 101| 1583 307.00 4,429.00| 3,222.00| 137,568.00 1,346,510.00| 947.60 1 2
Iter 102/ 1589  308.30] 4,431.00| 3,228.00| 132,992.00| 1,346,660.00| 947.66 1 1
Iter 103| 1592  305.90| 4,432.00| 3,231.00| 136,012.00| 1,346,390.00| 947.14 1 1
Iter 104| 1595 304.90| 4,433.00| 3,234.00| 135,406.00| 1,346,420.000 947.54 1 2
Iter 105/ 1601f 302.60| 4,435.00| 3,240.00| 133,899.00 1,346,100.00| 947.02 3 3
Iter 106| 1610 304.80] 4,438.00| 3,249.00| 130,286.00| 1,345,650.00 947.23 1 1
Iter 107|1613( 305.60] 4,439.00| 3,252.00| 131,394.00 1,346,380.00| 948.02 1 2
Iter 108/ 1619 303.10 4,441.00| 3,258.00| 134,892.00 1,346,500.00| 947.37 1 3
Iter 109| 1629 305.60 4,444.00| 3,268.00| 137,391.00| 1,346,610.00| 947.42 2 3
Iter 110| 1638 305.40 4,447.00| 3,277.00| 136,315.00| 1,346,460.000 948.83 1 2
Iter 111|1644f 306.30] 4,449.00| 3,283.00| 134,635.00 1,346,250.00| 948.28 1 2
Iter 112|1650| 308.40 4,451.00| 3,289.00| 131,899.00| 1,346,420.00| 947.59 1 1
Iter 113| 1653 306.70 4,452.00| 3,292.00| 133,986.00| 1,346,300.00| 946.62 1 2
Iter 114{1659 307.20 4,454.00| 3,298.00| 134,986.00 1,346,580.00| 947.54 1 1
Iter 115|1662) 306.00 4,455.00| 3,301.00| 132,103.00 1,346,820.00| 947.54 2 2
Iter 116| 1668 304.00 4,457.00| 3,307.00| 133,452.00 1,346,230.00| 947.35 3 5
Iter 117|1685 305.70 4,462.00| 3,324.00| 132,356.00| 1,346,250.00| 947.56 1 1
Iter 118/ 1688 307.90| 4,463.00| 3,327.00| 134,001.00| 1,346,200.00| 947.29 2 2
Iter 119|1694f 305.60 4,465.00| 3,333.00| 132,891.00| 1,346,450.000 947.45 1 2
Iter 120{1700| 303.90| 4,467.00| 3,339.00| 134,961.00| 1,346,460.000 947.77 2 3
Iter 121|1710| 307.00 4,470.00| 3,349.00| 134,725.00/ 1,346,120.00| 948.76 1 3
Iter 122|1719 305.30 4,473.00| 3,358.00| 134,227.00| 1,346,460.00| 947.85 1 2
Iter 123|1726( 302.50| 4,475.00| 3,365.00| 135,027.00| 1,346,630.00| 948.14 1 1
Iter 124|1729 302.30 4,476.00| 3,368.00| 149,630.00| 1,346,640.00| 948.37 2 2
Iter 125/ 1735 302.90| 4,478.00| 3,374.00| 131,084.00| 1,346,810.00| 947.50 1 1
Iter 126| 1738 302.80 4,479.00| 3,377.00| 134,560.00 1,346,290.00| 947.75 3 4
Iter 127|1750| 303.00| 4,483.00| 3,389.00| 133,317.00| 1,346,780.00| 948.21 1 1
Iter 128| 1753 304.60 4,484.00| 3,392.00] 131,555.00( 1,346,650.00| 948.02 1 1
Iter 129|1756( 303.40| 4,485.00| 3,395.00| 134,442.00| 1,346,370.00| 947.96 2 2
Iter 130| 1762 303.50| 4,487.00| 3,401.00| 133,893.00| 1,346,260.00| 947.94 2 2
Iter 131|1768 307.70 4,489.00| 3,407.00| 135,138.00 1,346,410.00| 947.58 2 2
Iter 132|1774f  307.00 4,491.00| 3,413.00| 135,496.00| 1,346,550.00| 948.32 1 3
Iter 133|1784f 303.80| 4,494.00| 3,423.00| 135,620.00 1,346,310.00| 947.76 4 4
Iter 134{1796( 306.30 4,498.00| 3,435.00| 134,191.00| 1,346,640.00 947.84 1 1
Iter 135/1799 304.30 4,499.00| 3,438.00| 136,443.00/ 1,346,120.00| 947.17 3 4
Iter 136|1811f 308.204,503.00| 3,450.00| 139,942.00 1,346,480.00| 947.58 3 4
Iter 137|1823 306.70 4,507.00| 3,462.00| 135,141.00| 1,346,020.00| 947.12 1 1
Iter 138|1826( 306.70 4,508.00| 3,465.00| 143,183.00 1,346,550.00| 948.71 2 2
Iter 139|1832( 305.30 4,510.00| 3,471.00| 134,028.00| 1,346,330.00| 947.41 1 1
Iter 140| 1835 307.00 4,511.00| 3,474.00| 136,525.00| 1,346,710.00| 947.75 2 4
Iter 141]1849 304.90 4,515.00) 3,488.00| 133,287.00| 1,346,680.00 947.71 1 3
Iter 142/ 1859 307.104,518.00| 3,498.00| 134,593.00| 1,346,030.00| 947.29 2 2
Iter 143| 1865 305.40 4,520.00| 3,504.00| 136,804.00 1,346,560.000 948.42 1 3
Iter 144{1875 305.00 4,523.00| 3,514.00] 135,068.00 1,346,610.00) 947.26 1 2
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Iter 145|1881f 303.80 4,525.00| 3,520.00| 137,718.00| 1,346,450.00| 947.62 1 3
Iter 146|1890| 306.20 4,528.00| 3,529.00| 136,174.00 1,346,240.00| 947.63 1 2
Iter 147|1900| 305.90] 4,530.00| 3,539.00| 134,451.00| 1,346,620.00| 947.52 1 2
Iter 148|1906( 304.104,532.00| 3,545.00| 132,991.00 1,346,510.000 947.28 1 2
Iter 149] 1912  305.80] 4,534.00| 3,551.00| 135,442.00| 1,346,370.00| 947.09 2 3
Iter 150{1921f 305.50 4,537.00| 3,560.00| 136,198.00 1,346,490.00] 948.05 4 4

Table A.25 Data collected iteration by iteration from solving using all parcelsin Moglen,
Gabriel, and Faria (2003)
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Appendix 2 Optimization Methods
This section presents the theoretical framework required for the devel opment
of the formulations and solution methods presented in thiswork. The topics are:
Single Objective Optimization
Multiobjective Optimization and Solution Methods including
o0 The Weighted Sum Method
0 The Constraint Method
o0 TheWeighted Metric Method
0 Goal Programming
0 Multiobjective Simplex
Methods to Solve Integer Programming Problems, including
0 Branch and Bound
0 Lagrangian Relaxation
o Dantzig-Wolfe Decomposition Method
o Dantzig-Wolfe Algorithm for Integer Programming
0 Benders Decomposition (Not used but included for
compl eteness)
Duality Gap
Optimization models are mathematical representation of problems with an
objective function that is either maximized or minimized (Nash and Sofer, 1996),
programming problems are concerned with finding an efficient allocation of resources
to either maximize or minimize an objective (Gass, 1985). Linear programming

problems are optimization problems where the functions used are linear.
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The optimization problems can be distinguished as either single objective or
multiobjective, constrained or unconstrained, linear or nonlinear, stochastic or
deterministic, among others distinctions.

The objective functions are mathematical expressions that measure values of
interest to the decision makers. For example profits, cost, risk, loss, efficiency, etc.
When only one of these objectivesis considered at atime, then the problem is
considered a single objective optimization problem, when more than one objective is
considered simultaneously then it is called a multiobjective optimization problem.

If the variables in the optimization problem can take any value in the domain
of the objective function then the problemis called unconstrained. On the other hand,
there are additional restrictions that limit the values that these decision variables can
take, then the problem is said to be constrained. The set of restrictions that limit the
values of the decision variables are called constraints. Depending on the type of
functions used to define the objectives and the constraints, the problem can be either
linear or nonlinear. Linear problems are those whose objective function(s) and
congtraints are expressed as linear combinations of the decision variables and
nonlinear problems are those whose either objective function(s) or at least one
constraint is not a linear function of the decision variables.

Deterministic models are those whose coefficients or functions are known
with certainty. By contrast, stochastic models consider some of the problem’ s data to
be uncertain (Birge and Louveaux, 1997).

The distinction between these types of problems is important because in

general the solution approach used to solve problems in one category does not
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necessarily carry over in other categories. The work presented in this dissertation
does not consider unconstrained or stochastic optimization problems, and besides a
case with a quadratic objective function, nonlinear problems in general are not
considered either.

This chapter is intended to present the basic concepts from the theory of linear
and integer programming optimization since those concepts are required for the

algorithms presented in later chapters.

A 2.1.Single Objective Optimization

Linear programming was conceived in 1947 by George Dantzig. Although
Fourier (1823), de la Vallee Poussin (1911), and Kantorovich (1939) produced work
that suggest their authors were aware of the potential of linear programming. Prior to
Dantzig the efforts in programming resources were mathematically studied but they
lacked the concept of the objective function (Dantzig, 1982). The ssimplex method
invented by Dantzig is abasic tool to solve practical problems of large complex
systems (Dantzig, 1982).

The following equations are taken from Nash and Sofer (1996), to describe
the solution method invented by Dantzig using vector-matrix notation.

The general linear programming problem can be written in standard form as:

Min: ¢"x (A1)
subject to Ax=Db (A.2)

x30 (A.3)
with b3 0.
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Here cl R"isacolumn vector of objective function coefficients, bT R™isa
column vector of the “right hand side”, and AT R™"is the constraint matrix of
coefficients, and xI R"isa column vector of decision variables (Nash and Sofer,
1996).

Associated with any linear programming there is another linear programming
problem called the “dual problem” in which the roles of the variables and constraints
arereversed (Nash and Sofer, 1996). The original linear programming problem is

then called by association the primal. The dual problemto (A.1) - (A.3) can be

written as:
Max: b’y (A.4)
subjectto: A'y3 ¢ (A.5)

There are strong relationships between the primal and the dual problems.
Three of which are presented below without proof. The interested reader is referred to
Nash and Sofer (1996), Gass (1985), Winston (2004) for the proof of these theorems.

Theorem 2 Weak Duality
Let x be a feasible solution to the (primal) linear programming problem (A.1)

- (A.3), and let y be asfeasible solution to the (dual) linear programming problem
(A4) - (A5). Then
c'x3b'y (A.6)

Theorem 3 Strong Duality
Consider a pair of primal and dual linear programming problems. If one of

the problems has an optimal solution then so does the other one, and the value of

both objective functionsis the same.
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Let X be an optimal solution of the primal problem (A.1) - (A.3), then y isan
optimal solution to the dual and:
c'x =b'y (A7)

Theorem 4 Complementary Slackness
Consider a primal problemwritten in standard form and the corresponding

dual linear program. If X isoptimal for the primal and y’is optimal for the dual,

then:
X'(c- Aly)=0 (A.8)
If Xisa feasible solution to the primal, and y is a feasible solution of the dual
such that
X (c- A'y)=0 (A.9)
Then xand y are optimal solutionsto their respective problems (Nash and
Sofer, 1996).

A 2.2.Multiobjective Optimization and Solution M ethods

This section explains some of the different techniques that traditionally have
been implemented in other multiobjective optimization settings. This section also
briefly describes how those techniques can be used or combined as the foundation to
what would be the algorithm to solve the land devel opment planning problem
(LDPP). This section is not intended to serve as an exhaustive list of techniques but
rather to brief the reader on methods that are typicaly available to solve this type of

problem.
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Figure A.60 has been adapted from ReVelle and McGarity (1997) and shows
the relative position of multiobjective optimization within the decision support

methods in operations research.

Operations Research Decision Support Methods

Simulation Optimization
Decision Analysis Multi-criteria Mathematical Programming
Decision Making Linear Programming
Integer Programming
Multiobjective Programming
Altematives Predefined Altematives not Predefined

Figure A.60 Hierarchy of decision support methods

M ultiobjective methods are mathematical tools to solve problems with
conflicting objectives. These problems arise in awide variety of settings since thereis
typically more than one interest, objective or goal to pursue. A typica exampleisin
manufacturing where there is a constant tradeoff between cost and quality. Typically
better quality implies higher cost but then, the lower the cost the greater the profits. In
agrocery store the relationship between customer satisfaction and the number of
cashiers available is aso conflicting since the greater the number of cashiers
available, the higher the cost but also the higher the level of customer satisfaction.
Every time there are two or more objectives to optimize in a problem there is an
opportunity to implement multiobjective optimization techniques. The most
interesting problems, and aso the most challenging ones are those where the
objectives are in conflict with one another, meaning the increase in one is obtained as
aloss to another. The problem then becomes to balance these objectives to reach

solutions that are considered satisfactory.
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Cohon (1978) divides multiobjective decision making into preference and not

preference-based. Figure A.61 has been adapted from his book.

/

-

Single decision maker
or decision group
Multiobjective solution methods

P

T

\\‘

Bottom-up information flow

l

Top-down information flow

l

Decision-making context

// //A-\\“\

\\

.

T

\\

\‘l-.
Conflict resolution

T

‘ Generating Techmques‘

‘ Techniques that incorporate preferences ‘

‘ Multiple decision maker methods‘

Figure A.61 Multiobjective solution methods classification by Cohon (1978)

What follows is a discussion

This is not an exhaustive discussion

of solution methods as presented in the literature.

of al possible methods but areview of the most

relevant ones. Consider the general multiobjective optimization problem typically

formulated as follows:

Minimize: f, (x),m=12,...,M
Subject to:

9,092 0,j=12,.,3%

h()=0k=12,.,K)

X" EX ExY i =1,...,n'f3

i

(A.10)

There are M objectives subject to J inequalities, K equalities and the solution

vector x has n components of which eachone x , is bounded below and above by x'

and x’ , respectively. This general form can be used recognizing that a minimization

problem can be posed as a maximization problem by multiplying the objective

function by -1 so:

min : f,(X) « max:- f, (x)

(A.11)
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And also by recognizing that any less than or equal to inequality can be

converted into a greater than or equal to inequality by multiplying the constraint by -1

gv(X)3 O« - gv(x) £0 (A12)

A 2.2.1. TheWeighted Sum Method

Known as the weighting method (Cohon, 1978), this method is based on

combining al the M objectives into one objective by assigning each of the objective

functionsaweight w,,, and then solving a single objective optimization problem. The

general multiobjective formulation becomes:

Minimize: 5 w,, f.(X) :J
m=1L

Subjectto: g, (x)3 0,j=1.2,... JJ{/
h(9)=0k=12,...Kl

)ﬂ £xi£x i,Izl,...,ﬂp

(A.13)

To obtain the Pareto optimal set” with this method, first al the weights w,

must be strictly positive (Miettinen, 1999; Deb, 2004; Steuer, 2004) since values of
zero on the weights might produce weakly Pareto points, and negative weights would
produce an opposite effect to the one desired (maximization instead of minimization
or vice-versa). Also, the feasible region needs to be convex or thereis arisk of
missing Pareto optimal points around the non convex area® (Deb, 2004). In the case of

the related Land Development Planning Problem, since the problem is a mixed

7 Set of efficient solutions for which the improvement of one objective is only obtained by the
diminishing of another objective.

8 Specifically for integer programming problems where the feasible region is non convex.
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integer programming problem, there is arisk of missing some Pareto optimal points
as presented in ReVelle and McGarity (1997) due to a*“duality gap”.

An analysis of the Pareto optimal set provides insight into the different
tradeoffs to the stakeholders and the decision makers. Each one of the stakeholders
can identify how their objective changes when other players gain or lose weight in the
evauation process. This provides a useful negotiation tool to the individuals
involved. The problem with this method is that there is little consensus on what the
weights should be, moreover to determine the Pareto set a potentially large number of
runs is required each one with a different weighting vector. For the land devel opment
problem, the identification of the complete Pareto optimal set is not agoal since at
this point no decision on alternative developments are required. We know that this
method can provide some of the Pareto optimal points, and we are interested in
finding methods to solve each one of the optimization problems within reasonable

times.

A 2.22. TheConstraint Method

This method optimizes one objective while the other M-1 objectives are
constrained to be not worse than a certain value.

The general formulation becomes:

Minimize: f,(X) u

Subjectto: f.(X)£e,,m=12,....M\m= u:':
9;(¥2*0,j=12,..,J J{/ (A.19)
h(x)=0k=12,..,K :
X Ex,£xY,i=1..,n b

Where e, isalimiting value for the m objective.
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One of the striking problems with this method is feasibility. It is quite possible

that the values e, selected to constrain the objective functions, render the problem
infeasible. Therefore, some caution needs to be taken in the selection of the e ’s

values. These values need to be selected such that feasible solutions to the single

objective problem exists (Cohon, 1978).

Note that the value of the e’ s are parameters in the optimization model and

not decision variables. However, for a point to be in the Pareto optimal set it is
required that all the constraints of the objectives should be binding at an optimal
solution.

“If thisis not the case and if there are alternative optima to the constrained
problem, then some of these alternative optimal solutions might be inferior” (Cohon,
1978).

Cohon (1978) presented an algorithm that could be used to overcome the
infeasibility problem by solving M single objective optimization problems obtaining
the optimal solution to each objective. Then thisinformation is used as a bound to

preserve feasibility.
A 2.23. Weighted Metric Method

An idea solution Z would be one that simultaneously optimizes al the
objectives. Such a solution although desirable isin most settings a point that lies
outside of the feasible region. One fact worth noting is that the ideal solution z* isin
most of the cases infeasible since it is usually located outside of the feasible region.
Consider Figure A.62 where z* is the minimum value obtainable for objective

functions 1 and 2 by themselves.
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Figure A.62 I deal solution to the two objective case with feasible region in gray

This next method is based on finding a solution with minimal distance to this

ideal solution Z'.

The genera formulation becomes:

Minimize: §§Wm| £ (3- in|p2%ij
m=1 g |

Subjectto: g, (0% 0,j=1,2...d ¥ (A.15)
h(x)=0k=12,..,K :
X £ £X b

As presented in Deb (2001), when p = 1 the problem is equivalent to the
weighting method proposed before, when p = 2 the problem is to find the minimum
Euclidean distance between the ideal solution and the solution provided by x. When a
large p is used, the problem is to minimize the largest deviation to the ideal solution.
This specia case is aso known as the weighted Tchebycheff problem, which can be

written as;
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Minimize: maxm:1(wm| f(3- ;n|):J
Subjectto:  g;(x)2 0,j=1.2,..,J i/ (A.16)

h()=0,k=12,..K i

X" £X, £x° i;,

A 2.24. Goal Programming

To overcome the problem of infeasibility of the original problem, a goal
programming technique can be used. Originally introduced by Charnes and Cooper
(1961), this method provides a tool that guarantees feasibility to an augmented
problem while seeking a solution as close as possible to the best values for each
objective. Goa programming is based on the utilization of deviational variables. A
weighted sum of the deviations becomes the objective function of the extended
problem, and the objective functions of the original problem are now included as
congtraints that are functions of the original variables and the deviational variables.

Consider again the general formulation written in a slight different form:

i Minmize : f_(X)ym=12,...,M U

1 Subject to: x1 S b (A7)

i9,(020,j=12,.,J
S=i{h (X =0k=12,...K (A.18)

% XiL Ex; £ XiU

There are M objectives and it is desirable to achieve them as closely as

possible to each one of their M goals. The actual value of the goals are set by the
stakeholders, and their relative importance is key to the solution approach. One
approach known as the weighted goal programming assign weights to the deviations
from the goals, while another approach known as the preemptive goal programming
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assumes that the goals are listed in order of importance, and each goal isinfinitely
more important than the next goal.
A general expression for the weighted goa programming problem can be

written as;

M
Minimize: § (wd+w.d)
m=1
S.t.
e,=f,(X+d -d,,m=12.. My (A.19)
d-,d 30
xS

—_— = —

U_: — — —:\<

where d; and d, are deviationa variables from the goa e, , w;and w,, arenon
negative weights on the positive and negative deviations from each objective m.

This formulation was adapted from Cohon (1978), other formulations of goal
programming techniques are presented in Nijkamp (1979), Winston (1994), Gass
(1985) and Deb (2001) among others.

If the original problem is feasible then the set Sis nonempty. The ideal caseis
that in which there is a point for which the objective function is exactly equal to the

god sothat f. (x)=e,,m=12,...,M but thismight not be the case. By adding the
deviational variables d; and d,, an augmented version of the original problem is

guaranteed to be feasible.

Consider the constraint for each objective function

&= f,00+d;,- d; (A.20)
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In this constraint when the objective function is equal to the goal, the

deviational variables will both be equal to zero, when the deviational variable d, is
positive the objective function f_(X) falls short from thegoal e, since the objective
function cannot be under e, and over e, at the same time, the deviationa variable
d> equals to zero. Likewise, when the deviational variable d ispositive, then d_

equals zero, this holds because both deviational variables are minimized in the
objective function
It is possible to eliminate one of the deviation variables if it is known with

certainty the relation between the objective function to the goal. If the objective

function f_(x) isaways greater or equal to the goa then only d; isrequired. If the

objective function f_(x) isawayslower or equal to the goal thenonly d; is
required.

This method provides a mechanism for optimization of goals that might prove
very useful in the solution of the LDPP. One possible setting is to optimize the
objective function of each stakeholder aone and then optimize them al together by
minimizing their deviation from the optimal solution. This type of approach might be
considered by decision makers because it provides a solution that the stakeholders
could accept since it represents a minimum deviation from their goals. It is easier to
accept that their optimum value has been decreased while everyone else’ s has
decreased as well to the minimum possible extent. The drawback is that the method

will find potentially only one point. The one for which the deviations are minimized,
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to find or approximate the Pareto set, or an approximation of it we need another
method.

Possibly the preemptive goa programming method could be used aso by
considering all possible orders of priorities for the stakeholders. Although, this may
become computationally challenging due to the number of combinations and the
number of subproblems that need to be solved.

Other variations of this method such as the min-max Goal Programming (Deb,
2001; Winston, 2004) consider minimizing the maximum distance among all goals to

the ideal solution.

A 2.25. Multiobjective Simplex

The simplex method is awell known technique to solve single objective linear
programming problems. It is based on atwo-step procedure: first find an extreme
point of the feasible region and then move to an adjacent extreme point with a better
objective function until an optimal solution is found. The procedure to move from one
extreme point to the next is based on elementary operations of the matrix of
coefficients A and the values of the right hand side vector b. Typically some tableaus
are used to ease the computation of the method. The multiobjective simplex method is
an extension of the original simplex method in which additional rows are used to
evaluate the multiobjective aspects of the problem.

The simplex method for single objective optimizations is extensively
presented in the literature (Dantzig, 1963; Gass, 1985; Nash and Sofer, 1996; Cohon,

1978; Steuer, 2004; Winston 2004).
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The following explanation was adapted from Nash and Sofer (1996). Consider
the original linear programming problem (A.1) - (A.3).
Equation (A.2) can be re-written as:
&6 0_

(B N)¢ ®+= (A.21)
eXv g

where B and N are partitions of the coefficient matrix A, X; isthe set of basic
variablesand X, is the set of non-basic variables.

Now the objective function (A.21) can be re-written as:
Min: cLXg +C4 Xy (A.22)
where ¢, isthe vector of coefficients of the basic variablesand c,, is the vector of
coefficients of the non-basic variables. The constraints (A.21) written as:
Bx; + Nx, =b (A.23)
X3 0 (A.24)
can be solved for x; as:
Xs =B 'b- BTN, (A.25)
assuming that B *exists.

When (A.25) is substituted into (A.22) we obtain the following:
Min: ¢ (B™b- B *Nx, ) + ¢\, (A.26)

which is equivaent to:

Min: ¢} B 'b- cgB*Nx,, + X, (A.27)
or:
Min: ¢;B b+ (g - ¢y BIN)x, (A.28)
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In (A.28), the term (CL - ch‘lN) is known as the vector of reduced costs of

the non-basic variablesx, . This term is nonnegative when the optimal solution to the

genera linear programming problem is found.

If we define
y= (ch‘l)T (A.29)
then the objective function can be written as:
Min: z=y'b+ (cf - y'N)x, (A.30)
the vector y isknown as the vector of simplex multipliers or dual variables.

At any extreme point, the basic variables and the value of the objective
function can be determined by setting the non-basic variables x,, to zero obtaining
from (A.25):

X; =B b (A.31)
and from (A.30)
z=y'b (A.32)

A point x isabasic solution if it satisfies the equality constraints (A.23) and if
the columns of the constraint matrix corresponding to the nonzero components of x
are linearly independent (Nash and Sofer, 1996). A basic feasible solution is abasic
solution that also satisfies the nonnegativity constraint x 2 0. The ssimplex method
starts by finding a basic feasible solution. There are several methods to obtain this
initial point (Gass, 1985; Steuer, 2004). If the procedure is unable to do so then the

problem is infeasible. Assuming this initial basic feasible solution (extreme point) is

found, the simplex method evaluates the point for optimality. If the optimality test
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fails, an adjacent basic feasible solution (extreme point) is evaluated until an optimal
solution is found. The data of the variablesis arranged in tableaus whose last rows are
the reduced cost of each variable. The interested reader is referred to the literature for
adetailed step by step description.

Cohon (1978), Philip (1972), and Ecker and Kouada (1975) presented
mathematical properties for noninferior solutions and developed algorithms for
identifying noninferior solutions. Holl (1973), Evans and Steuer (1973), and Zeleny
(1974) have all presented specific simplex-based methods for the generation of
noninferior solutions.

The agorithm by Zeleny (1974) extends the original ssmplex algorithm to
accommodate multiple objectives instead of a single one. These additional objectives
are added at the bottom of the original tableau. Zeleny’ s theorem for multiobjective
amplex method states that if when the reduced costs are evaluated, there is a solution
for which all reduced cost are non negative and at least one strictly negative, then the
current solution isinferior. Based on this and other related theorems Zeleny designed
an agorithm that ends when al noninferior basic feasible solutions have been found.

A 2.3.Methodsto Solve General Mixed I nteger Programming
Problems

Thiswork in this dissertation uses integer programming techniquesin all of
the three models analyzed. Because of this, besides presenting the theory of
multiobjective optimization, the author has considered equally important to present
some of the theory behind integer programming problems and the methods available

to solve them.
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The “divide and conquer” approach is typically the preferred solution method
to solve mixed integer programming problems (M1P), these are the core of the current
commercial solvers (Eiselt and Sandblom, 2000). This approach divides the origina
problem into subproblems that are easier to solve. The downside of course is the need
to solve multiple subproblems instead of only one problem The effectiveness of the
method depends on how much easier it is to solve the subproblems as compared to
the original problem. The next three sections are dedi cated to these types of solution

methods.

A 2.3.1. Branch and Bound

Branch and bound is a simple yet powerful technique widely used by the
optimization community to solve mixed integer programming problems. The core of
the procedure is to first relax the integer requirements and solve alinear programming
relaxation. Then, select those variables that do not have integer solutions and create
new problems in which the variables are bounded by the closest integer values
obtained.

To clarify the procedure, consider the general formulation of a programming
problem as presented in Wolsey (1998):
z=max{c"x:xI § (A.33)
where Sis the feasible region.

Suppose that the feasible region Scan be divided into k smaller sets such that
S=SESE .ES (A.34)

Let z“=max{c'x:x] S} fork =1,2,...K
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then z =max, z* (A.35)

One way to represent the different possible sets is by using an enumeration
tree. Thisis agraphical representation with a node on the top representing the feasible
region S with arcs connecting nodes that represent subsets of S.

Now consider the general formulation of a MIP as follows:

Max:z=c'x+d"y (A.36)
st.

xI S

yi T (A.37)
xI R™, yT Z"

where Z" ={Z = (z,,2,,...,2,)"}/ Z isinteger " i .
Suppose that we relax the integer requirements so we solve instead the linear

programming rel axation:

Max:z= c'x+d"y (A.38)
st

xI S

yi T (A.39)
xI R™,yl R"

Obtaining as a solution at least one y, I Z . Then we can create two problems

as follows:
Subproblem 1 and Subproblem 2
maxz=C'x+d"y maxz=C'x+d'y
st. st.
xS xS
yi T yi T
y; £ 8y;H Yi® 8YiH
xI R™, yl R" xI R™ yl R"
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Where ¢ (jisthefloor of - defined asthe greatest integer £ -, and &

caled ceiling of - isdefined asthe smallest integer 2 - . Isnot difficult to seethat z
=Max:{z,z}

The procedure of separating the initial problem into subproblemsis called
branching. We draw a tree structure with an initial node that represents the LP
relaxation of the MIP and two branches coming out of this root node, one where we
solve subproblem 1 and another where we solve subproblem 2 as presented in Figure

A.63.

Figure A.63 Tree representation with two branches

The case in which only one variable has a fractional result is not common,

rather, several of the y, variables could be fractional so the tree grows quite large

very fast. Fortunately, there are smart drategies that take in account the result of the
linear programming relaxation to fix upper and lower bounds on each branch. This
information is used to prevent the exploration of those branches that will not have the
optimal solution. This procedure is commonly called “pruning the tree” and it is

based on the following proposition (Wolsey, 1998).
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Let S= SE SE ..E S beapartition of Sinto smaller sets, and let
Z“ =max{c" x:x1 S} fork =1,2,...,.K , Z“be an upper bound on z“and z"bea

lower bound on z*. Then since (A.38) is a maximization problem,

Z =max, Z* isan upper bound on z (A.40)
and
z=max, z isalower bound on z (A.41)

zwill tend to be reduced as the procedure advances since the feasible region
gets smallest a each step, so the objective function tends to worsen (gets smaller in a
maximization problem).

A tree can be pruned by optimality, or by infeasibility. A branch is pruned by
optimality if the solution of the relaxation yields an integer solution, then no more
subproblems are to be found within the node.

Z' ={max c' x: xI S} has been solved (A.42)

A branch of the tree is pruned by infeasibility if the LP relaxation solved at
the node is infeasible.

S=& (A.43)

A branch is pruned by bound if the optimal solution of the LP relaxation at the
node is outside the best bound found. In the case of maximization if the solution falls
below the lower bound found, or in a minimization problem the solution falls above

the best upper bound found.

Z'£z (A.44)
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In a maximization problem to obtain the upper bound we solve the linear
programming relaxation, to obtain alower bound we need to find a feasible solution
either by searching down the branches of the tree, or by using an algorithm.

Example: Consider the following problem:

(IP) Z'¥ = max:3x, +2x, (A.45)
st.

X +X,£55 (A.46)

x £4.5 (A.47)

x, £3.5 (A.48)

X, % 1 Z (A.49)

We solve the linear programming relaxation:

(LP) z"° = max:3x +2x, (A.50)
st.

X +X,£55 (A.51)

x £4.5 (A.52)

x, £3.5 (A.53)

X, % 1 R (A.54)

Whose optimal solution is:
z'F =155,x =45,%x,=1
Since x is fractional we break down the problem into two subproblems, one

with x, ® 5and the other with x, £ 4 as presented in Figure A.64.

209



Figure A.64 First branch

The first problem evaluated in node 2 is infeasible so the tree gets pruned by

infeasibility, and the second problem evaluated in node 3 has an optimal solution of
z'P=15,x =4,x,=15
We update the value of the upper bound from 15.5 to 15. Since now Xx;is
fractional we need to branch on this variable creating two new subproblems one with

X, 3 2and the other with x, £ 1as presented in Figure A.65.

Figure A.65 Second branch

Since the optimal solution of node 5 is integer, we do not need to evaluate that

node any more, thusit is pruned by optimality. Also, the lower bound of the problem
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gets updated since we have found the first feasible solution Node 4 has an optimal

solution of
z'F =145,%x =35,x,=2
Since x,isfractional we break down the problem into two subproblems, one

with x, 3 4and the other with x, £ 3as presented in Figure A.66.

14.5
14

Figure A.66 Third branch

Now we find that node 6 is infeasible so it gets pruned by infeasibility and

since node 7 has the same value of the bound but a fractional number then we

conclude that node 5 represents an optimal solution so z'* =14,x =4,x, =1.
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A 2.3.2. Lagrangian Relaxation

The Lagrangian relaxation technique is based onsimplifying the MIP problem
by eliminating the constraints that makes it difficult to solve. The constraints are not
completely eliminated, rather they are moved to the objective function multiplied by a
factor. This factor is called a Lagrange multiplier.

The rationale for this procedure comes from realizing that by eliminating the
constraints from the feasible region the resulting feasible region is an expansion of
the original one. By moving the nonnegative slack of these constraints to the
objective function penalized by a certain nonnegative factor, the objective function of
the relaxation is always larger, or in the best case equal, to the origina problem for
any feasible point in the original problem. This method does not always provide an
optimal solution, but at least provides a bound on the MIP problem (Wolsey, 1998).

We can express the IP problem as:

z(X) = max:c'x (A.55)
st

Dx £

xEd (A.56)
xI X

where D isamatrix of “difficult or complicating” constraints coefficients, d is the
right hand side of those constraints, and X isa set. The constraint set DXx£d isa
complicating set of “k” constraints, in the sense that if they were eliminated thenthe

problem would be computationally simpler to solve. A relaxation of the original is:

z(u) = max:c'x+u' (d- Dx) (A.57)
st
xT X (A.58)
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Note that the feasible region is larger since a set of inequalities have been

eliminated. For any point such that (d - Dx) 3 0, the objective function can only be

larger becauseu ® 0. Therefore the optimal solution z* (x) is bounded as,

Z(u)d Z(x)" x:(d- Dx)3 0,xI X (A.59)
Since z (u) is an upper bound on the value of z' (X) , the problem now

become to find the smallest multipliers over all infinite possible values of u. To find

these multipliers we need to solve the Lagrangian dual problem:

W, =min{z(u):u?s 0} (A.60)
As presented in Wolsey (1998) if u3 0,

i) x(u) isan optimal solution of (A.57), and

i) Dx(u)£d, and

iif) (Dx(u)), =d, whenever u, >0 (complementarity),

then x(u) is optimal in (A.55) - (A.56)
Example: Consider again the problem presented in (A.45) - (A.49). We could

relax constraint (A.51) and apply the Lagrangian relaxation procedure as follows:

(IP) z(u) = max:3x, + 2%, +(5.5- X - X,)u (A.61)
st.

x £4.5 (A.62)

X, £3.5 (A.63)

X, % 1 7 (A.64)

We need to solve the Lagrangian dual problem
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wLD = rrlin{max:3x1+ 2%, +(5.5- % - %,)u} (A.65)

st
X £4.5 (A.66)
x, £3.5 (A.67)
X, %1 7t ul R (A.68)

Before solving the Lagrangian dual we need to present some information
about the solution of the Lagrangian dual problem that can be used to solve it.
The following explanation comes directly from Wolsey (1998). Suppose for

simplicity that the feasible region of the relaxed problem contains alarge but finite

number of points X :{ X,..., xT}

Now
W, = mgion Z(u) (A.69)
— i T TrA_ N
W, = nullon{ max g x+u (d DX)E} (A.70)
— mi ATt i TeA 3
W, = “J'Q{LT}%@C x'+u'(d Dxt)é (A.71)
W, = minh (A.72)
st.
h3c'x' +u'(d- Dx) foralt=1.2,...,T (A.73)
ul RThT R? (A.74)

The new variable h represents an upper bound on z(u) . Problem (A.72) -

(A.74) isalinear problem whose dual is:
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]
W, =max @ m(c'x')

t=1
st.
g :
a m(Dx'- d)£0
t=1
g
am=1
t=1
ml R}

T T
Setting x=§ mx',with § m =1 and m1 R we get

=1
W, =maxc’ X
St.

DX £d

x1 conv(X)

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

This can be generalized to the case when X is the feasible region of any

integer programming problem:

X ={xI Z:Ax£b}

Then

w,, = max{c'x : Dx£b,xI conv(X)}

(A.82)

(A.83)

The result of (A.83) provides the strength of the relaxation which in some

cases is not any stronger than the simple linear programming relaxation (Wolsey,

1998).



Now we can proceed to solve the Lagrangian dual using a subgradient
algorithm as described in Wolsey (1998).
Iteration 1, Step 1: Initialization

st u=u’
Iteration k, Step 2: Solve the Lagrangian Subproblem

st u=u”

Solve the Lagrangian problem IP(u*) with optimal solution x(u*).

ut = max{uk -m (d - Dx(uk)) ,O}

k- k+1

The agorithm at each iteration takes a step from the present point u“in a

direction opposite to asubgradient d - Dx(u*) . The difficulty is in defining the step
lengths {m}._ (Wolsey, 1998).
Wolsey (1998) presents a theorem to aid in the selection of the steps.

If QmM®¥ andm ® 0ask® ¥ thenz(u,)® w, (A.84)
k

wherew,, is an optimal of LD
If m =myr “for some parameter r <1 thenif myand r are sufficiently large

2(u) ® w, (A.85)
e, gz(u")- wu

u
2

If W3 w,,and m= with 0<e, <2 then

Hd - Dx(uk)

z(u") ® W (A.86)
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Or the agorithm finds u*with w z(u*) w,, for some finite k.

Iteration k, Sep 3: Convergence Check
Unless avalue of u“is obtained for which is known that Z (u*) equalsthe

cost of a known feasible solution, there is no way to prove that the subgradient
method has reached optimality (Fisher 1981). Therefore, we need to recourse to
classic stopping criteria, one of which is setting a limit in the number of iterations

(Fisher 1981), another could be by setting a tolerance that measures the improvement

between one iteration and the next such as |z(uk) - z(uk'1)| £ tol or one could aso let

the procedure run for certain predetermined maximum time .
Going back to our previous example, seset u®° =5and r =0.9as per (A.85)
we expect to obtain the optimal value of w, .
Iteration 1, Step 1: Initialization
st u=4
Iteration 1, Sep 2: Solve the Lagrangian Subproblem

Solve the Lagrangian problem LR(u*) with optimal solution x(u®).

LR(u') z(u) = max:3x, + 2x, +(5.5- x - X,)4 (A.87)
st

x £4.5 (A.88)

x, £3.5 (A.89)

X, % 1 72, (A.90)

weobtain z(u) =22,x, =0,x, =0
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m=mr*“« m=0.9
k=1
[teration 2

st u=4*0.9=36

LR(u?) z(u) = max:3x, + 2x, +(5.5- x, - X,)3.6

st.

x £4.5

x, £35

X% 1 Z,

weobtain z(u) =19.8,x, =0,x, =0

We continue in the same fashion obtaining the following results:

Iteration u z| x1| x2
1| 4.0000| 22.0000 0 0
2| 3.6000| 19.8000 0 0
3| 3.2400( 17.8200 0 0
4| 29160( 16.3740 4 0
5| 2.6244| 15.9366 4 0
6| 2.3620| 15.5429 4 0
7| 2.1258| 15.1886 4 0
8| 1.9132| 15.1302 4 3
9| 1.7219| 15.4172 4 3

10| 1.5497| 15.6755 4 3
11| 1.3947| 15.9079 4 3
12| 1.2552| 16.1171 4 3

Table A.26 Values of the optimal solution for different iterations

When there values are plotted we obtain
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Figure A.67 Values of the objective function for different values of u
The optimal solution found is z(u) =15.1302 with u=1.9132, x, =4,

X, =3which resultsin z(x) =18. Thisvalue of z" isthe closest to the optimal value
of z(=14).

However, there is a better solution, because we know explicitly the feasible
region of (A.66) - (A.68), and it is not too large (contains only 20 points) we can
explicitly write the problem in the form (A.72) - (A.74) obtaining the optimal solution
h =15,u=2 (See appendix for formulation and solution using LINDO). Thisvaueis
better than the one obtained earlier. This realization has created another area of
research on the Lagrangian relaxation method based on column generation techniques
similar to those explained under the Dantzig-Wolfe decomposition technique, and
multiplier adjustment methods among others (Fisher, 1981).

Although we found a close bound on the value of z, the values for x and x,

are not close to the optimal values of x. But this close bound on the objective function
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can be employed to efficiently prune the branch and bound algorithm (Fisher, 1981;
Wolsey 1996).

The strength of the Lagrangian dual as presented in (A.83) is evident when
considering the feasible region of the original problem and the relaxed problem as

presented in Figure A.68.

o

3 "
21 i
x5 =45
P
14 ~
-
\K 5 i1 -
1 1 2 2 q 5 X

Figure A.68 Feasible region

The origina problem contains 17 points in the feasible region while the
relaxation contains 20. The point (4,3) is optimal for any u that results in a positive
coefficient of x, and x,. The point (4,0) is optimal for any u that resultsin a positive
coefficient of x, and negative for x,. The point (0,0) will be optimal for any u such

that both coefficients are negative. These ranges can be found by writing the objective

function as
LR(u) z(u) = max:(3- u)x, +(2- u)x, +5.5u (A.95)
For O£ u < 3the coefficient of x ispositive and for O£ u < 2 the coefficient

of x,ispositive.
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It is aso possible to find the best value of u by applying the bisection method
or the regulafals method when we find two values of u such that one makes the
original problem feasible and the other one infeasible.

The reasoning is that when we consider the Lagrangian problem:

z(u) = max{ c"x+u'(d- Dx): x1 X} (A.96)
as
u® 07 (u)® max{cT x: x1 X} (A.97)

Since the feasible region of the original problem is contained in the feasible

region of this relaxation, if

{x:Dx£D,xI X} {xI X} (A.98)
Then
Z ()3 Z (X (A.99)

This result was presented earlier as (A.59).

If the original problem if feasible, then a large value of u would produce a

feasible solution since it would maximize the term (d - Dx), which would be feasible

on the original problem for any value of xsuchthat (d- Dx)2 0.

One could then use the regula fals method to find the minimum value of u
that maximizes z(u).
For example, consider the values

u® =2.1258with z(u)® =15.1886 where (d - Dx®)3 0 and

u® =1.9132with z(u)® =15.1302 where (d - Dx®@ ) £0.
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Lo _(d- DX - (d- DX
(d- Dx)- (d- Dx?)

in our example

u® =2.0194758 ® z(u)®=15.0292137,x, = 4,x, =0

So the bound obtained with regulafalsi was in this case closer than the one
obtained using the subgradient method. Similarly a bisection approach could have
been used as follows:

2

u® =

in our example

u® =2.0194758

S0 the result would have been the same.

A point could be made that under different values of u, and r the
subgradient method could have provided a better bound. Nevertheless, the application
of successive iterations of the regula fals method would match the bound found by

the subgradient. The problem is to decide when to use one method or the other.

A 2.3.3. Dantzig-Wolfe Decomposition M ethod

The following method takes advantage of certain “decomposable’ structure

present in certain types of formulations. This decomposable structure permits the
feasible region to be broken into setsS= SE SE ..E S, . These sets result from
breaking the original formulation into k independent subproblems. However, some
problems also include a set of m constraints that prevent the straightforward

decomposition of the original problem, these constraints are called complicating
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constraints (Nash and Sofer 1996; Conejo et al., 2003), central constraints (Winston,
2004) or joint constraints (Wolsey, 1998).

A formulation has a decomposable structure with complicating constraints, if
one can arrange the constraints in the following general fashion:

Thereis agroup of m complicating constraints that involve any of the

variables, ant there are k groups of constraints that involve only k,k,,...,k, variables.

Max: ¢ x" +¢c x? +...+c Tx" (A.100)

s.t.
A+ A2+ .+ AXK =D
D% £d,

2,2
+D7x £d, (A.101)

D*x" £d,
X1 R %21 R%,..,x“T R bl R™,DIT R d T R"
Looking at the structure of the problem one can notice that the first set of

constraints includes all the variables. If this set of constraints were not included, then

the problem could be broken into k separate independent problems with k;,k,,..., k.

variablesand q,,0,,..., g, constraints, respectively. This problemis said to present
complicating constraints because a constraint or set of constraints prevents a
straightforward decomposition of the problem.
In other words, a formulation has a decomposabl e structure with complicating
constraints, if one can divide the constraints and the variables in sets such that:
Congtraintsin set 1 only involve only variablesin set 1

Constraints in set 2 only involve only variablesin set 2
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Congtraints in set k only involve only variables in set k

Thereisaset of constraints k+ 1 that involves any variable (Winston, 2004).

This set k+ 1 is referred to as the central constraints or complicating
constraints.

The Dantzig-Wolfe technique has two different but similar algorithms to solve
problems with decomposable structure. One is for linear programming problems
(Dantzig, 1969; Bradley, Hax and Magnanti, 1977; Nash and Sofer 1996; Conejo et
a., 2003; Winston 2004), and another one for mixed integer programming problems

(Wolsey, 1998; Vanderbeck, 1998).

4.4.1. Dantag-Wolfe Algorithmfor Linear Programming Problems

In the book edited by Aronofsky (1969) there is an explanation of the
decomposition principle by Dantzig which is presented as follows:

This method decomposes the original linear programming problem into:

a) subprograms corresponding to its almost independent parts, and

b) amaster program which ties together the subprograms.

The price paid for this decomposition is that the master program and the
subprograms may have to be solved several times. The algorithm is based on the
results of the following theorem (Winston, 2004; Wolsey, 1998)

Theorem 5 All feasible points can be expressed asa combination of the convex
hull

Suppose the feasible region for an LP is bounded and the extreme points (or

basic feasible solutions) of the LP’sfeasibleregion are: RB,B,,..., B, . Then any point x
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in the LP feasible region may be written as a linear combination of B,P,,...,R,. In

other words there exist weights m, m,,..., m, satisfying:

x=mR +mP, +...+ mP, (A.102)
Moreover, the weights m, m,,...,m. may be chosen such that

m+m+...+m=1and m,m,...m 30 (A.103)
Any linear combination of vectors for which the weights satisfy (A.103) is
called a convex combination (Korte and Vygen, 1999; Winston, 2004). And the set of

points B,P,,..., B, iscalled the convex hull of the feasible region Sdenoted as

conv(S) (Korte and Vygen, 1999; Wolsey, 1998). This theorem states that any point in
a bounded feasible region can be written as a convex combination of the extreme
points of the feasible region.

A st Xisconvexif | x+(1- 1)yl X"x,yl Xandl 1[01],sotheset X is
convex if and only if al convex combinations of pointsin X are againin X. The
convex hull of aset X isthe smallest convex set containing X (Korte and Vygen,
1999).

Consider the linear programming problem that has a decomposable gructure
with complicating constraints. If the complicating constraints are ignored we are
relaxing the linear programming problem. Therefore in general the feasible region is
expanded. The feasible region of the relaxed problem is divided into sets, each one
having extreme points. Because the feasible region of the original problem is a subset
of the feasible region of the relaxed problem, then the extreme points of the feasible

region of the original problem would be feasible points of some of these subsets.
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Therefore, by the theorem mentioned above, then they can be expressed as convex
combinations of these extreme points. To reinforce this concept consider an
analogous situation presented in Figure A.69 where the original feasible region

(hatched) has extreme points x,, X,, X;, X,.This feasible region is a subset of the

feasible region of the relaxed problem which can be decomposed in two sets (white
and shaded). The extreme points of the original problem are feasible points to the sets
so they can be expressed as a convex combination of the extreme points of the

subsets.

For example x, can be expressed as x, = nix; + mhx; + Mx: + Nx;

Figure A.69 Example of feasible region of original problem (shown hatched) as a subset of the
feasible region of the relaxed problem with two subsets (shaded gray and unshaded)

The Dantzig-Wolfe decomposition method seeks to find the extreme points of
the feasible region by first decomposing or dividing the feasible region into sets.

These sets result from taking the original formulation and ignoring the complicating

constraints. By solving the linear programming subproblems multiple times, each
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time with a different objective function, different extreme points of each set are
found. Finally, feasible points for the original problem are found by using convex
combinations of these extreme points. Because the number of extreme points of each
set can be extremely large, the algorithm first finds few extreme points and then
solves alinear programming problem to determine which of the variables not
currently considered (nortbasic variables) can be included in order to improve the
current solution. This selection process is known as column generation.

The following agorithm was adapted and generalized from Conejo et al.
(2003) and Winston (2004).
Iteration 1, Step O: Initialization

Initialize the iteration counterv=0.

Obtain p, solutiors to the k subproblems i =1,2..k by solving p, times:

Max: d" X (A.104)
st.
Dx'£4 (A.105)

D'T R¥SxT R%,dT R¢
The coefficients of the variables in (A.104) are arbitrary (nonnegative)
coefficients required to obtain the initial p, solutions.

Iteration 1, Step 1. Solve the Restricted Master Problem
Increase the iteration counter v =v+1

Express the LP s objective function and complicating constraints in terms of
the solutions obtained before, and multipliers ny . Add the convexity and sign

congtraints to obtain the restricted master problem:
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Max: Objective function in terms of the my (A.106)

st.

Complicating constraints in terms of the ny (A.107)

m+m+..+m=1 (A.108)

m,m,...,m, 30 (A.109)
To obtain the solution uf”,u}”,...,u! and the dual variables

1101V ands @,

Iteration 1, Step 2: Solve the k Subproblems
s W)
Max:v=4 (g - | "a;)x
j=1
St.
K

é a;%; £d

LY

Ib; £x; £uby;j =1k,
With the solution to the relaxed problem, evaluate the objective function of

the original problem obtaining:

c. x(Pv

175

QJO.Z«‘

2(p+V) — a

k
o

I

H
L

And the value of the complicating constraints obtaining:

mO_F

K
(p+v) — &
f =a
i=1

gx"" =b

JIN

Iteration 1, Step 3: Convergence checking
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If v3 s then the optimal solution of the original problem has beenachieved
and the algorithm stops. If v<s then the current solution can be used to improve the

solution of the master problem so go to step 2.

A 2.3.4. Dantzig-Wolfe Algorithm for Integer Programming Problems

Consider adlight variation of the problem presented in (A.100) - (A.101). The
general formulation for a single objective integer programming problem that could be
decomposed into k subproblems can be written as:

(IP)z=Max: c"x* +c?"x? +...+cKTx¥ (A.110)

st.

A+ A2 + ..+ AXK =D

Dx £d,
2.2
+Dx £d, (A.111)
D*x" £d,
X1 25,521 z'%,...,x1 2 bl R™,DIT R d. T R®
or more succinctly as (Wolsey, 1998):
&
Minimize: g c*" x
k=1
Subject to:
" (A.112)
a A%< =b
k=1
x‘T X“fork = 1..K
where
X*={x*T Z% :D*x*£d} fork = 1.K (A.113)

The goal is to decompose the problem by blocks into k subproblems.

Assuming the feasible region of each subproblem is non empty, we can restate the
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problem formulation as a function of the (possibly quite large) feasible points

{x"’t}Tklcontained in X* sowe have (Wolsey, 1998):

t=

T
ok

]
X ={x T RY X =8 (1,,)(X¥). A1 =11, 1 {0 fort = LT} (A114)
t=1

t=1

Now substituting for x*leads to the equivalent IP Master problem:

K T
(IPM) Z=max § § (X , (A.115)
k=1 t=1
st.
§ & ey =
aa (AxXYl,, =b (A.116)
k=1 t=1
gk
Al =1fork=12..,K (A.117)
t=1
l 1{08 fort=1,2, ., Tcandk=1,2, ..., K (A.118)

To illustrate these formulations consider the example used before in (A.45) -

(A.49) with an additional variable x,used as slack variable to convert the

complicating constraint into equality form:

(IP) z=max:3x +2x, (A.119)
st.
X + X+ X =55 (A.120)
x 1 XU
X, 1 ng', (A.121)
XST X3|
where
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X'={x1 7. :x £ 45 (A.122)
X?={x1 7! :x,£35 (A.123)
X*={x1 R %2 g (A.124)

The graphical representation of this problem is presented in Figure A.70

5
55

T
.9

L]
LA
(4]

Figure A.70 Feasible region of example

The feasible region are the vertical lines that start on each of the integer points

located in the plane x;x, and end on the shaded plane. Note that these points
correspond to integer values of x and x,and the shaded plane is formed by the

intersection of the plane x, + X, + X, = 5.5with the planes x, = 4.5(shown with
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vertical hatch) and x, = 3.5 (shown with horizontal hatch). The optimal solution for
thisproblemis: z'¥ =14,x =4,x, =1,% =0.5

In this case there is one complicating constraint and three constraints that can
be decomposed into three subproblems. The sets X*and X both contain arelatively
small finite set of points X*={0,1,2,3,4 and X*={0,1,2,3 whiletheset X°*has
an infinite number of points. Variable x,can be regarded as a slack variable to force
the inequality x + x, £ 5.5as equality. Therefore, Figure A.70 can be presented in

two dimensions asin Figure A.71.

|

%)
53
4 X
x,=3.5
3 m K
x+x =55

2% m O X 5 =45
T B B B =

o % % Yo Yol -
0 1 2 3 4 5 X,

Figure A.71 Two dimensional representation of the example' s feasible region

We have that:

Qo..

X1:‘|, ’I‘Rl :61 I 1t
0l R =g (1) (<)

1 t

(I )=21,1 {0,1}% (A.125)

,_,
1
'u‘
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2_\! T R:: —g 2t S _ N u
. _%XZI Ry =8 (1) ()@ (1) =202 {0,1}%; (A.126)

=1 =1

—_
-

X*={x1 R %2 g (A.127)
or written explicitly as:

z=max:(3)(0) 1, +(D) I, *)() 115 + )3 |4 +)(H) 15

(IPM) (A.128)
2)O) 5, + QDI 5, +(A) 5 +B) 5,

st.

o, +1,+2,,+3,+4

ol 211 + 1I1;2 + le ,+ 3Il’: ,+ x:5= 55 (A.129)
L+l +l, =1 (A.130)
| o+, +l,+1,, +l,5 =1 (A.131)
X3 0 (A.132)
|, 1{01} fort=1,2,3,4 (A.133)
1, 1{01} fort=1,2,3,4,5 (A.134)

The procedure to solve these problems is based on a linear programming

relaxation of the integer programming problem known as the “Master linear problem”

as follows.
& &

(LPM)z=max q Q (cX“") (A.135)
k=1 t=1

st.

& &

aa (AxXN,, =b (A.136)

k=1 t=1
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Tx
al. =1lfork=12 ..,K (A.137)

t=1

| 2 0fort=1,2 . Txadk=1,2,..,K (A.138)
The only difference in the formulation is the relaxation of the binary

ax'x 6
constraint for the |, factors. This formulation has a column gAkx: for eachxl X*.

&& 2
The objective is to solve this relaxed problem using the simplex method but
since there is avery large number of columns, then the variable to enter the basisis
selected by solving an optimization problem for each of the k subproblems rather than

by finding the reduced cost of each possible variable.

The set of variables {p,} ", will be used as the dual variables associated with

the joint constraints (A.136) and the set of variables {m}_ as dual variables

associated with the convexity constraints (A.137).
The agorithm has five steps as follows:
Iteration 1, Step O: Initialization
Find a set of feasible solutions, at least one for each subproblem.

Iterationl, Sep 1. Solve therestricted linear programming master problem

(RLPM) z =max &'l (A.139)
st.

AN =b (A.140)
30 (A.141)
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A is generated using the available set of columns (feasible solutions) and it is
a subset of the matrix A composed of all the feasible points in the feasible region.
The solution to this problem provides a primal optimal solution | and adud optimal
solution (p,m).

Because the restricted linear programming problem has been created with a
subset of feasible points of the master problem then it follows that any feasible
solution to the restricted problem is feasible to the master problem.

Iteration 1, Step 2: Optimality Check.

We need to check whether the set of variables (p,m) is dual feasible for the

master problem. But rather than evaluate all possible points, we solve the following

optimization problem:
V, = max{(ckT -p Ak)T x- m xI X} (A.142)
Iteration 1, Sep 3: Sopping Criterion

If V, = max{(ckT - pAk)T x- m :xI X}=0fork=1,2,...K thenthe

solution (p,m) is dual feasible for the master problem so

m K
zZ™Ea ph+am (A.143)

i=1 k=1

LPM

When the value of the objective function z— gets to be equa to the vaue of

its upper bound then the solution I"is optimal for (A.135) - (A.138).
An dternative criterion is to check if the complicating constraint is met, if so
then the solution at hand is optimal.

Iteration 1, Step 4: Generating a New Column
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if V, = max{(ck- P Ak)T x- m : xi X*}>0 for somek implies that the k™

column would improve the value of the objective function if it enters the basis. Now

the problem should be re-optimized using this k™ column entering the basis.
A 2.35. Example
Following this algorithm for the small example (A.119) - (A.123) we have:
A 235.1. Iteration 1, Step 1: Initialization

Consider theinitial feasible point x =(1,1)

We solve the Restricted Linear Programming Master problem

(RLPM) z"™ = max:(3)(1)l ,, + QD) (A.144)
st.

1,,+1,, +%=55 (A.145)
%30 (A.146)
|, =1 (A.147)
l,, =1 (A.148)

Solving this problem gives the following optimal solution:

z7" =5,1,=1,1,,=1,x=35p=0,mMm=3,m=2

A 2352, Iteration 1, Step 2: Optimality Check.
We need to solve the following problems:
V, = max{(c"T -p A")T x-m :xI X} (A.149)
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written explicitly:
V, = max{(3- (0)(1)) % - 3: % £4.5} (A.150)
V, =max{(2- (0)(1))x, - 2:% £35} (A.151)
whose solutions are:
V,=105,x =45 (A.152)
V,=7,x,=35 (A.153)
Since both are positive the current value of z*"™ =5 can beimproved by
generating a new column. We then arbitrarily introduce x, = 4.5and solve the

restricted linear programming master problem again as follows:

(RLPM) z"™ = max:(3)(1)l ,, + Q)45 1, + QD)1 ,, (A.154)
st.

U,+45 ,+1,,+x =55 (A.155)
|, +1,,=1 (A.156)
l,, =1 (A.157)

Solving this problem gives the following optimal solution:

z*™=155,1,=0,1,,=1,1,,=1,%=0,p=0,m=135,m =2

A 235.3. Iteration 1, Step 2: Optimality Check.

We need to solve the following problems:
V, =max{(c - p A) x- m,:xT X} (A.158)

written explicitly:
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V, =max{(3- (0)(1)) % - 13.5:x, £ 45} (A.159)

V, =max{(2- (0)(1))% - 2:x, £35} (A.160)
whose solutions are:

V,=0,x =45 (A.161)

V,=7,%=35 (A.162)
Since V, is positive the current value of z"™ =15.5 can be improved by

enteringx, = 3.5. Then we solve again the restricted linear programming master
problem:

(RLPM) z"™ = max:(3)(L)l 1, +(3)(A5)l 1, + QD) ,, +(QBH)! 5, (A.163)

st.

1,,+450 ,+1, +35,,+x,=55 (A.164)
%20 (A.165)
|, +1,,=1 (A.166)
|+l ,,=1 (A.167)

Solving this problem gives the following optimal solution:

z*™=155,1,=0,1,,=1,1,,=1,1,,=0,%=0,p=2,m=45,m =0

A 2354. Step 2: Optimality Check.

We need to solve the following problems:
Vv, = max{(ckT -p A")T x- m xI X} (A.168)
written explicitly:
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V, =max{(3- (2)(1)) %, - 4.5: % £ 4.5} (A.169)

V, =max{(2- (2(1))x, - 0:x, £35} (A.170)
whose solutions are:

V,=0,x =45 (A.171)

V, =0,x,=35 (A.172)
Since both are zero we conclude that there is no other point that would

improve the objective function. Therefore, the solution (4.5,1) is optimal and the

algorithm stops. Note that this solution is not the optimal solution to the original

problem. This leads us to look into the strength of the formulation.

Wolsey (1998) has the following proposition:

. < .
z :maxié‘ cTxE QA =b, X1 conv(x")forkzl,z,...,Kg (A.173)
| =

A 2.3.6. Benders Decomposition

Similar to the Dantzig-Wolfe decomposition method, there are problems that
can be decomposed in blocks but dightly different than before.

Consider a problem that has the following structure:
Min: c'xt +c2x? +...+cKx (A.174)

st
Dx +AXC £d,
+D?x +AS XS £d,
(A.175)

+DK-1XK-1+A\I;XK £dM
xIT R%, 2T R%,... xX1T R%
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In this case, there is a group of variables x“ that prevent the decomposition of
the problem in K-1 blocks. These variables are known as “complicating variables”’
(Congjo et al., 2003).

In the previous case we had a set of constraints that involve variables from
any block (complicating constraints), and we had another group of constraints with a
set of variables that appear only in those constraints. In this case we have a set of
variables that appear only in agroup of constraints and then we have another set of
“complicating variables’ that appear on all constraints.

An algorithm to solve this kind of problemsis known as Benders
decomposition. We will not explain the details of the method here since it will not be
used to solve any or the problems presented in this dissertation work. The section is

included for briefing the reader on the existence of such algorithm.

A 2.4.Duality Gap

Previoudly we briefly mentioned the “duality gap” problem as a downside of
the weighting method to find all the Pareto optimal points. Here we will expand on
thisissue since it is considered of utmost importance in finding the Pareto optimal set
for this problem.

Because the variables to decide if a parcel gets chosen to be developed or not
are binary variables the feasible region is non-convex. Therefore, the convex
combinations of solutions to the problem are not necessarily feasible. Moreover, the
contour of the feasible region could lead to missing Pareto optimal points as the
weights of the objectives are changed. To illustrate this point consider our previous

single-objective problem with a second objective function (A.177):
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Z' =max:3x, +2X,
Z° =max: - 6x, - 5X,
st.

X +X £5.5

where

x £4.5

x, £35

(A.176)

(A.177)

(A.178)

(A.179)

(A.180)

This problem has a graphical representation already shown in Figure A.71.

The interesting aspect is that from the 17 feasible points in the feasible region, 10 of

them are Pareto optimal. The data presented in Table A.27 show the value of the

variables for al feasible points and the evaluation of the two objective functions.

Values in gray represent dominated points.

X X[ max Z;| max Z,
4 ] 13 -29
4 ( 17 -24
3 y. 11 -2§
3 ] 10 -23
3 @ g -1§
y. 3 g -2
y. y. § -2
y. ] 1 -17
y. @ & -12
] 3 & -21
1 y. 5 -16
] ] 4 -11
] ( 3 -6
@ 3 3 -15
( y. y. -10
@ ] ] -5
( ( ( (

Table A.27 Feasible points with objective function values
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If the weighting method is applied to solve this problem, one would combine

both objectives and the formulation would be:

z=max: W,(3x +2%,) + W, (- 6x, - 5%,) (A.181)
st

X +X £55 (A.182)
x £45 (A.183)
x, £35 (A.184)
X, % 1 7 (A.185)

As we vary the weights for w,and w, we can obtain some of the Pareto
optimal points. Table A.28 presents 21 different values of w, and w, that produced

only three of the tenPareto optimal points.

Poi ml W W, Z X X,
( 1.00 0.00 14.00 4 1
1 0.95 0.0§ 11.85 4 1
. 0.90 0.10 9.70 4 1
3 0.85 0.15 7.55 4 1
4 0.8C 0.20 5.40 4 1
5 0.75 0.25 3.25 4 1
6 0.7G 0.3C 1.20 4 C
1 0.65 0.35 0.00 ( (
g 0.60 0.40 0.00 ( (
g 0.55 0.45 0.00 ( q

10 0.5C 0.5C 0.0C q (
1] 0.45 0.55 0.00 ( (
17 0.4Q 0.60 0.00 ( (
13 0.35 0.65 0.00 ( (
14 0.3C 0.7G 0.00 (0 (0
15 0.25 0.75 0.00 ( q
16 0.20 0.8C 0.00 ( (
17 0.15 0.85 0.00 ( (
18 0.1G 0.90 0.0G 0 q
19 0.05 0.95 0.00 ( (
20 0.00 1.00 0.00 ( (

Table A.28 Pareto optimal points obtained by changing weights
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The gradient of alinear expression is formed by the coefficients of the
variables, there is one gradient for the objective function formed as a vector with the
coefficients of the variables (Steuer, 2004). Since the coefficients are a function of u,
there are different gradients for different values of u. The feasible region, and some of

the gradients of these weighted function are presented in Figure A.72.

X
5
4 3
3 o4
2 ®
1 o

Figure A.72 Feasibleregion, and gradients of the weighted objective function

The gradients are important because they indicate the direction of greatest
increase of the linear function (Steuer, 2004).

Notice how point (3, 1) with objective functions (11,-23) wasn't found as
result from the weighted method given the step between weights, since there is no
combination of weights that can produced this point.

However, if we use the constraint method instead, we would obtain all the
Pareto optimal points in the feasible region.

Consider the problem (A.176) - (A.180) written as:

Z' =max:3x, +2X, (A.186)
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st.

- 6% - 5, 3 z° (A.187)
X +X £55 (A.188)
x £4.5 (A.189)
X, £3.5 (A.190)
X, % 1 7 (A.191)

Where z?is alower bound on the value of the second objective function. As

we solve this problem for different values of z*, we obtain different optimal points.

22| 2| 2 X

1| 30| 14| 29| (41
2| 28| 13| 28] (32
3] 27| 12| 27| (23
4| 26| 12| 24| (40)
5] 23| 11| 23] (31
6] 22| 10| 22| (2.2
71 21| 9| 21| (1.3)
8] 20| 9| -18] (30
9| 17| 8| 17| (21
10| 16| 7| -16] (L2
11| 15| 6] -15] (0.3)
| 14| 6| 12| (20
13| 11| 5| 11| (LY
14| 10| 4| 10| (0.2)
5| 9| 3| 6] (L0)
6| 5| 2| 5| (0.1
17| 4| 0] 0] (00

Table A.29 Solutionsto the constraint method for different values of gz

There are some aspects worth noting in Table A.29. First, we used integer

vauesof z° because we noted that the function - 6x, - 5x, would produce integer

values for all integer combinations of x, and X,. Second, there seemsto be values

missing for example -8, -7, -6 but upon a closer inspection we observe that for
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z° =-9, the optimal solutionprovidesavaueof z> =-6 so any value of z?between
-9 and -6 will provide the same solution as z* =- 9. Therefore the next value to test

is z> =-5. Also, not all the points obtained are Pareto optimal, for example, when
comparing solutions 11 and 12 we note that the values for z* are the same while z*is
better for solution 12 as compared to 11. This means that solution 12 dominates

solution 11 and therefore solution 11 is not Pareto optimal. Lastly, there are no

positive values of z* because the function - 6x, - 5x, is no positive for al values of

X and ;.

The conclusion of this example is that the constrained method is a better
method to search for the Pareto optimal set as compared to the weighting method but
still one need to check if any of the points obtained are dominated by others. This still

does not guarantee that all the obtained points are Pareto optimal, since we could miss
some points by an inappropriate selection of z°.
Cohon (1978) warns about the possibility of obtaining inferior solutions using
the constraint method saying that
“all the constraints on objectives should be binding at the optimal
solution to the constrained problem. If this is not the case and if
there are alternative optima to the constrained problem, then some
of these optimal solutions may be inferior alternatives for the
original multiobjective problem.”
Since we are dealing with integer variables, we have the additional complication

that the objective constraints need not be binding in order for the solution to be

optimal. Consider for example the case where we do not have an integer lower

bound z*. Then since the Ieft hand side is integer, and the right hand side is fractional
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there must be a dack on the constraint but the solution may still be Pareto optimal.

Consider for example z* =- 10.5when solving (A.186) - (A.191) we obtained
x=(0,2), Z =4, z* =- 10. Thisis a Pareto optimal point regardless of the

constraint for z* having slack.
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Appendix 3 Introduction to Graph Theory
This chapter is an introduction to the graph theory concepts used to prepare
the algorithm presented in Chapter 4. The topics to be covered are:
Definitions Related to Graph Theory
The Shortest Path Problem
o Graph Scanning Algorithm
o Belman’sPrinciple of Optimality
Solutions to the Shortest Path Problem
o Algorithmic Approach
0 Mixed Integer Programming Formulations
The Minimum Spanning Tree Problem
Solutions to the Minimum Spanning Tree
o Algorithms
0 Mixed Integer Programming Formulations
Many of the algorithms explained in the following sections are applied in an
algorithm to solve the Land Development Planning Problemwith embedded

minimum spanning tree presented in Chapter 6.

A 3.1.Definitions Related to Graph Theory

This section presents a brief introduction of the graph theory corcepts that are
required to completely follow the discussion of minimum spanning trees and their
relationship with compactness and infrastructure as discussed in Chapter 4. It aso

provides the basis for the mixed integer programming formulation presented later.
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An undirected graph G is a collection of nodes V(G) and edges E(G) that
connects the nodes by pairs. A directed graph D or digraph is similar to the undirected
graph with the difference that the edges are directed so the order of the nodes that
define the edge is important. When an edge e that joins two nodes v and w, we say
that v and w are adjacent; v and w are neighbors. If v is an endpoint of an edge e then
v isincident to e. (Korte and Vygen, 2000).

A path is a sequence of edges that connects two nodes. A graph is connected if
there is a path from each node to every other node in the graph. A non-connected
graph is made up of connected pieces called components, each component consists of
vertices that are all reachable from one another (Gross and Y ellen, 1999). An edge e
isabridge of G if the graph G-e has more connected components than G. A graph has
acycle (circuit) if there are at least two different paths between two nodes. An
undirected graph without a cycle is called aforest. A connected forest isatree. A
gpanning tree of agraph G isatree that contains all the nodes of G. (Korte and
Vygen, 2000).

For undirected graphs G and X 1 V(G) we define a cut:
d(X)=E(X,V(G)\ X) (A.192)

For directed graphs D and X I V(D) we define the cuts out of the set and

into the set by Magnanti and Wol sey (1995):

d"(X)=¢ T E(X,V(D)\X):iT X, jI V(D)\ X (A.193)
and

d (X)=¢ T E(V(D)\X, X):il V(D)\ X, jT X (A.194)
respectively.
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In words thisis the set of al incident arcs to a set of nodes X. An example of

these different types of cutsis presented in Figure A.73.

V(GY\X = {5,6,7,8,9}

S (X )={ey;. e}
§'(X)= {455 €47, €45}

\/5(){)

Figure A.73 Cutset around set of nodes X={1,2,3,4}

Theorem 6 Equivalent statements of for a MST

Let G be an undirected graph on n vertices. Then the following statements are
equivalent:

(a) Gisatree(i.e. isconnected and has no circuits)

(b) G hasn-1 edges and no circuits

(©) G hasn-1 edgesand is connected

(d) Gisaminimal connected graph (i.e., every edgeis a bridge)
(e Gisaminimal graph with d(X)t Afor all £t X1 V(G)

(f) Gisamaximal cycle free graph (i.e. the addition of any other edge would
create a cycle)

(g) G contains a unique path between any pair of vertices.
For a proof of this theorem the reader is referred to Korte and Vygen (2000).
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A 3.2.The Shortest Path Problem

The shortest path problem is one of the best known combinatorial
optimization problems (Korte and Vygen, 2000), also it is among the simplest
network flow problems (Ahuja et a., 1995). It consists of finding the shortest path

R,.; between two nodes u and v of agraph G, or determines that none exists (in the

case where the nodes are not connected). The shortest path is that for which the sum
of the edge weights is a minimum. This problem is difficult to solve if the weights are
arbitrary, in particular negative weights adds an extra complication because some
paths can end up with negative values (Korte and Vygen, 2000). For the purposes of
this dissertation, unless noted, all weights are to be considered nonnegative which
greatly reduces the time to achieve a solution Given a graph G with weights
c.E(G)® R,ciscalled conservative if there is no cycle with negative total weight.
Connectivity is very important when searching for a shortest path, there are
algorithms that find if there is a connection between two nodes of a graph. In
particular there is a general agorithm that can find the path from a node sto all other
nodes that are reachable from s. We call this algorithm the Graph Scanning Algorithm

(Korte and Vygen, 2000).
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A 3.2.1. Graph Scanning Algorithm®

This algorithm is relevant to the dissertation work, because in the algorithm
presenter in Chapter 6, one of the stepsisto find all disconnected components in the
graph. The graph scanning algorithm was implemented to find such components.

Given agraph G (directed or undirected) and some vertex sl V(G), this
agorithm finds the set R of vertices reachable from s, and the set T | E(G) such that
(RT) isatreerooted at s.

Steps

(1) Set R={s}, Q={s} and T= A

(2) If Q= AEthen stop, else choosea vi Q

(3) Choosea wi V(G) \ Rwith e=(v,w)T E(G) if thereis no such w then set

Q=Q\{v} andgoto (2

(4) Set R=RE{wW,Q=QE{wW, T =TE{g andgoto (2

Step 1isaninitialization step, Ris the set of nodes that can be reached from s,
Q isaqueue for the nodes to be evaluated, and T is the list of edges that connect s
with the other nodesin G. Step 2 is atermination check, if the queue is empty then
the procedure stops, otherwise a node v is chosen from the set of nodes stored in the
queue Q. Step 3 finds a node w that is connected to v, if none can be found then v is
removed from the queue. Step 4 adds the node w to the set of nodes that can be
reached from s, updates the queue by adding node w and updates the tree by adding

the edge e.

% Unless referenced otherwise this section and its subsections were extracted from Korte and Vygen,
(2000).
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The implementation of this algorithm requires information about the graph G,

one way to provide that information is by using the incidence matrix. The incidence

matrix of an undirected graph G isgivenby A= (a\/,e)vw OEE ) where:
_i1ifvl E(G) (A.195)
eZlgitvi E@G) '
For example consider the network presented in Figure A.74.
Figure A.74 Small undirected graph example
The incidence matrix corresponding to this network is:
Edges
12| 13[14[15|23[26|35|36|45]|46]|56
1l 1| 1| 1] 1
2] 1 1] 1
¢ 3 1 1 1] 1
]
z |4 1 1] 1
5 1 1 1 1
6 1 1 1 1

Table A.30 Incidence matrix of small undirected graph presented in Figure A.74

For a directed graph, the elements of the matrix are given by

| -Lifv=i
a,.=(1lifv=] (A.196)
10ifvt {i, j}
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wheree=(i,j) is the edge joining nodesi and j. For example consider the

network presented in Figure A.75

Figure A.75 Small directed graph example

The incidence matrix corresponding to this network is:

Edges
121 13(14(15(23|26|35|46|54|56|6,3
1 1 1] -1 1
2 1 -1 1
g |3 1 1 1 1
§ 4 1 Al 1
5 1 1 1 -1
6 1 1 1] -1

Table A.31 Incidence matrix of small example presented in Figure A.75

Using such matrix to represent a graph is not the most efficient representation

because each column contains only two non zero entries. A better way to store the

information is by using the adjacency matrix A= (avyw) where:

v,vi V(G)

1if (v,w)] E(G)

. (A.197)
0 otherwise

i
w1
i
An adjacency matrix for the network presented in Figure A.75 is presented in
Table A.32.
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1 2| 3| 4] 5| 6
1 1] 1 1] 1
2 1 1
3 1
4 1
5 1 1
6 1

Table A.32 Adjacency matrix for the network presented in FigureA.75

Y e, there is still a better way to store the information of the graph, just by
storing the edges incidence to each vertex in a so called adjacency list. There could be
one ordered list of all edges sorted by vertex, or alist of edges per vertex. For
example, consider the small network presented in Figure A.75, alist of all edges

sorted by vertex is presented in Table A.33.

Edge
1,2
1,3
1,4
15
2,3
2,6
3,5
4,6
5,4
5,6
6,3

Table A.33 Adjacency list of edges sorted by vertex for Figure A.75

A list of edges by vertex are presented in Table A.34.

Nodel | Node2 | Node3 | Node4 | Node5 | Node 6
1,2 2,3 3,5 4.6 54 6,3
1,3 2,6 5,6
1,4
15

Table A.34 Adjacency list of edges per node for network in Figure A.75
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There are two typica methods to implement this algorithm, depth first search
(DFS) and breadth first search (BFS), they depend on the choice to select the vertex

in step (3) they are as follows:
A 3.2.2. Depth First Search

In this implementation we choose the node vi Qthat was last to enter Q. The

implementation follows a Last In — First Out (LIFO stacking) strategy.
A 3.2.3. Breadth First Search

In this implementation we choose the node vi Qthat was first to enter Q. The
implementation follows a First In — First Out (FIFO stacking) strategy. With asmall
modification to the general agorithm, the BFS contains the shortest path from sto
any vertex reachable from s given that the weight of each edge is one.

Modification:

In step (1) include the statement: I(s) = O, in step (4) include the statement
I(w)=1(v)+ 1. We then have I(v) = dist,(s,v)for al vl Rat any stage of the
algorithm. Where 1(v) represents the distance in number of edges from the root to the

nodev.

A 3.24. Bdlman’sPrinciple of Optimality

Some of the solutions to the shortest path problem are based on the so called
Bellman’s principle of optimality.

Theorem 7 Bellman’s Principle of Optimality
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Given sand w as two different vertices of a digraph G with nonnegative

weights, if the edge e =(v,w) isthefinal edge of some shortest path P, fromstow

=P

[sw

then the path P

[s.v]

|- € isthe shortest path from the node sto the node v . The

interested reader is referred to the proof as presented in (Korte and Vygen, 2000).
This result also holds for undirected graphs with nonnegative weights and for

acyclic digraphs with arbitrary weights.

A 3.3.Solutions to the Shortest Path Problem

There are many approaches at least to find a shortest pathin a graph. For
example, one set of approaches is based on the implementation of algorithms, and the
other one is by the application of network optimization concepts recurring to solve a

mixed integer programming formulation. Both approaches will be presented here.
A 3.3.1. Algorithmic Approach

Because some of the algorithms to solve the shortest path are based on
Bellman’s principle of optimality, those algorithms also find the shortest path
between a node and all other nodes in the graph (see BFS presented before). This

holds because at the beginning it is unknown which nodes belong to the shortest path

P, thenit is easy to compute all shortest path to each node t until we find v, the

information can be efficiently stored by saving only the final edge of each path (Korte

and Vygen, 2000).
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A 3.3.2. Madification of the BFS Algorithm

One could replace the edge e in the BFS agorithm by a path of length

c(e) =1(v, w,el E(G) which could introduce an exponential number of edges.
A 3.3.3. Dijkstra’sAlgorithm

Given agraph G with associated weights c:E(G) ® R, and some vertex

sl V(G), this agorithm finds the shortest paths from sto al vi V(G) and their
lengths.

Steps

(1) Set R=/1(s)=0,I(v) =¥" vl V(G)\{s}

(2) Findavertex vl V(G)\R:I (v):vqr\ng\Rl(w)

(3) Set R=RE {}
(4) Foral wi V(G)\R:(v,w)T E(G) do:
a |If I(w)>1(v)+c(f,w)) then I(w) =1(v) +c(lv,w), p(w) =v
(5) If R*V(G) thengoto (2
Step 1isaninitidization step where R is a node checklist used to terminate
the algorithm. The I(v)'s arethelist of distances from the node s to any node v. Step

2 finds the closest node in the graph G that is not aready into the checklist Rto any
nodein the list R Step 3 adds the node found in the checklist. Step 4 looks at all
nodes in the graph G that are not in the checklist R such that there exists an edge (v,w)

and updates the length of the shortest path from the node s to the node w if a shortest
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path has been found. Step 5 checks for termination if the checklist includes all nodes
of the graph.

Theorem 8 Correctness of Dijkstra’salgorithm
Dijkstra’ s algorithm finds a shortest path between two nodes, and its running

timeis O(n%), where n= |V(G)| . For a proof of thistheorem the reader is referred to

Korte and Vygen (2000).
A 3.3.4. Moore-Bellman-Ford Algorithm

Given adigraph G with conservative weights c:E(G) ® R and some vertex
sl V(G), this agorithm finds al the shortest paths from sto al vi V (G) and their
lengths.

Steps

(1) Set I(s) =0,1(v) =¥" v V(G)\{s}

(2) Fori=1ton-1do:

a. For each edge (v,w)T E(G) do
i1 1(w) >1(v) +c(@v,w)) then [(w) =1(v) +c(lv,w)), p(w) =v

Theorem 9 Correctness of M oore—Bellman — Ford algorithm

The Moore-Bellman-Ford algorithm finds a shortest paths from sto all other

reachable nodes in the network, and its running timeis O(nm) where
n=|V(G)|, m=|E(G)|. For aproof of this theorem the reader is referred to Korte and

Vygen (2000).
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A 3.3.5. Floyd-Warshall Algorithm

Given adigraph G with conservative weights ¢:E(G) ® R, and nodes
V(G)={1,...,n} thisalgorithm finds the shortest path between all pairs of nodes sand

v where s,vi V(G) and their lengths.

Steps
L, =@ )" (i, )T EG)

1) st :J::;é , (i, )T (V(G) V(G)) \E(G):it j
p, =i"i jl V(G)

(2) Forj=1tondo
a Fori=1tondoIf it jthen:
I. Fork=1tondo:If k! jthen
1oL, >0+l thenset | =1, +1, L Py = Py

Theorem 10 Correctness of the Floyd-War shall algorithm
The Floyd-Warshall algorithm finds all shortest paths between all pairs of

nodes v and s and their lengths with a running time of O(n®) . For a proof of this

theorem the reader is referred to Korte and Vygen (2000).

A 3.3.6. Mixed Integer Programming Formulations

A 3.3.6.1. Minimum Cost Flow Problem

Some of these formulations have their origin in a problem called the minimum
cost flow problem. This problem consists in finding the minimum cost of shipment

for acommodity along a network , satisfying the demand constraints at each node.
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The decision variables are flows along the arcs so the variable x; represents the flow

from node i to nodej. The minimum cost flow problem can be formulated as (Ahuja

et d. 1999):
Minimize g X, (A.198)
(i,)E (G)
st.
a x- a X =b@,ilN (A.199)
{ji, DTE(G)} {i(L) E(G)}
l; £x; £u,," (i, )T E(G) (A.200)

The congtraints in (A.199) balance the mass flow at each node i, while the
constraints (A.200) prevent to exceed flow the capacity of each arc (i,)).

Note how if when using the above formulation we set:
b(s) =1,b(t) =- 1, b(w) =0:wil V(G)\{s t} (A.201)
l;=0,u; 31" (i, )T A (A.202)
then the solution to the minimum cost flow provides the shortest path between sand t
by sending one unit from sto't.

To find the shortest path from a node s to al other nodes in the network, the
formulation can be changed to set:
b(s) = (n- 1),b(w) =- 1:wi V(G)\{s} (A.203)
l; =0,u;, =(n- )" (i, )T E(G) (A.204)

The value n-1 for the arc capacity wouldn’'t set any unnecessary restrictions on
the flow. By sending one unit of product from node s to all other nodes at minimum

cost we are finding the shortest paths.
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A 3.4.The Minimum Spanning Tree Problem
By definition a minimum spanning tree (MST) is a spanning tree of minimum
weight'°. In other words, a M ST is atree that connects all the nodes of G and the sum
of the distance of all edgesis minimum (Ahujaet al., 1995; Papadimitriou and
Steiglitz, 1998; Jungnickel, 1999; and Korte and Vygen, 2000).
A theorem from Cayley (1889) proves that the number of spanning treesin a
graph with n nodes is given by
n"™?2 (A.205)
It would be an extremely laborious task to identify each one of these trees,
measure the total length and then find those with minimum weight. Fortunately as
with some other combinatorial problems there are other procedures to reach the

solution without resorting to an exhaustive search.

A 3.5.Solutionsto the Minimum Spanning Tree

We provide two different approaches to solve the MST, the first one is based
on the algorithms developed by Boruvka, Prim, and Kruskal among others. The
second approach is using mixed integer programming to create formulations that can

be used to find the solution to the MST.

10 The minimum weight is ageneral term which associates aweight or acost to each edge of the tree,
for our purposes this tree can also be said to be of minimum length.
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A 3.6.Algorithms

A 3.6.1. Prim (1930)

Given a connected, undirected graph G with weights c:E(G) ® R, this
algorithm finds a spanning tree T of minimum weight.
Steps
(1) Choose vi V(G). Set T = ({v}, A
(2) While V(T)* V(G) do
a. Choosean edge el d(V(T)) of minimum cost. Set T =T +e

Theorem 11 Correctness of Prim’salgorithm

Prim’s algorithm finds a MST and its running time isO(n?) . For a proof of

this theorem the reader is referred to Korte and Vygen (2000).
A 3.6.2. Kruskal (1956)

Given a connected undirected graph G with weights ¢c:E(G) ® R, this
algorithm finds a spanning tree T of minimum weight.

Steps

(3) Sort the edges such that c(e) £ c(e,)£ ...£ c(e,)

@) St T =(V(G), &)

(5) Forl =1tomdo:

a if T+egcontainsno circuitthenset T =T +e
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Theorem 12 Correctness of Kruskal’s algorithm
Kruskal’s Algorithm finds a MST and can be implemented to run in

O(mn) running time, can also be implemented to run in O(mlog n) . For a proof of

this theorem the reader is referred to Korte and Vygen (2000).

A 3.6.3. Mixed Integer Programming Formulations

There has been some work in finding the solution to the minimum spanning
tree using mixed integer programming by various researchers, the following is a
collection of some of the research donein this area. We do not intend to be
exhaustive but we consider the list to cover the most relevart formulations that we

found to apply into the land development problem.
A 3.6.4. Polyhedral Description or Packing Formulation

Edmonds (1970) presented a formulation to find the minimum spanning tree
called the polyhedral description of the MST. Then Magnanti and Wolsey (1995)
presented this formulation with a dlightly different notation as the packing

formulation. We present the notation of Magnanti and Wolsey (1995). Given a

connected undirected graph G with n=|V(G)| nodes, then aM ST can be found by

solving:
Min: & wx, (A.206)
dE(G)
st.
a x=n-1 (A.207)
e E(G)
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a x.£[9-1 Ssi V(G) (A.208)

e E(G)

x.1 {01}" el E(G) (A.209)
where x,isabinary decision variable set to 1 if the edge e belongsto the

minimum spanning tree and O otherwise. Note that by Theorem 6 the number of

edges in the minimum spanning tree is n-1 which is enforced by the cardinality

congtraints (A.207). Also, there should not be cyclesin the MST, thisis enforced by

the constraints known as packing constraints (A.208). Suppose that there is a cycle,

then the number of edges between the set of nodes connected by the cycle would be at
least |S| . Findly, (A.209) prevents fractional values for the edges which would not

correspond to aM ST.

Theorem 13 A polyhedral descriptionof the M ST provides an integer solution
The polytope (A.207) - (A.209) has an integer solution and its verticesare

exactly the incidence vectors of spanning trees of G. The interested reader is referred

to Korte and Vygen (2000) for a proof.
Consider for example Figure A.76, the set S={1,3,5} has |§ =3 and acycle,

therefore is on violation of an inequality of the form (A.208).
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Figure A.76 The cycle between nodes 1, 3 and 5 has three edges
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The drawback of this formulation is the exponential number of constraints

required in the set (A.208).

A 3.6.5. Cutset Formulation

Another formulation of the MST presented by Magnanti and Wolsey (1995) is

as follows:
Min: & wx, (A.210)
e E(G)
subject to
a x=n-1 (A.211)
dE(G)
4 x31"Sl V(G),S' & (A.212)
dd(s)
x 1 {01} (A.213)

Similarly to the packing formulation, this formulation requires the number of
edges to be equal to n-1 and that al nodes are connected. Constraints (A.212) are
included to enforce connectivity. They take a cut around a set S of nodes and force
that there will be at least one edge from the set Sto the set of nodes V\S. This,
together with (A.211) forces the tree description. For example consider Figure A.77

where a cut includes only one node.
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Figure A.77 Cut around node 1 (L eft) and around node 2 (Right)

Now in Figure A.78 the cut includes two nodes.
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Figure A.78 Cut around nodes 1 and 2

When al possible sets are considered, together with the fact that there must be
exactly n-1 edges, then it is impossible to have a cycle. Because there is no
disconnected set, there are n nodes and n-1 edges, then no cycles are possible because
otherwise either one of the nodes would be disconnected, or there would be more than

n-1 edges. This follows from Theorem 6.
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A 3.6.6. Modified Cutset Formulation

The above formulation can be tightened so that the underlying polyhedron
equals the convex hull of incidence vectors of the spanning trees (Magnanti and
Wolsey, 1995).The modification involves replacing each undirected edge from the
graph by two opposite directed edges converting the undirected graph G in adigraph

D. This formulation requires a root node r from which the flow is sent into the

network.

The resulting formulation is as follows:

Min: & wx, (A.214)
e E(G)
subject to
a v.=n-1 (A.215)
d E(D)
a v.£|9-1si v(D),st & (A.216)
d d*(s)
a v.=1"vi V(D)\{r} (A.217)
dd (v)
y,2 0 el E(G) (A.218)
x. =y, +y,"el E@G) (A.219)

The interested reader is referred to Magnanti and Wolsey (1995) for the

correctness of this formulation.

A 3.6.7. Multi-Cut Formulation

The above formulation finds aM ST, but it has the inconvenience that if the

binary restriction (A.217) isrelaxed , the relaxation does not define the convex set of
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incidence vectors of spanning trees (Magnanti and Wolsey, 1995). With this in mind,

an dternative formulation is;

Min: é_ W, X, (A.220)
d E
subject to
a x=n-1 (A.221)
dE(G)
a x. %K' C,,C,...C, 1 V,St /£ (A.222)
{6l d( Co,Cp,, G}
x.1 {01} (A.223)

This formulation is a more general case of the previous one (where k=1). Here
aset of cuts C,,C,,..., C, are connected to the rest of the tree by at least k edges. For a

proof of correctness of this formulation the interested reader is referred to Magnanti

and Wolsey (1995). An example with three cutsis presented in Figure A.79.

6

Figure A.79 Example of three cuts

A 3.6.8. Single Commodity Flow Formulation

Another approach to find the MST is by a modification of the general network

design problem. This formulation considers that there is aflow of n-1 products sent
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through the network from one of the nodes (node 1 for smplicity). Each one of the
other n-1 nodes has a demand of one item. The decision variable x.is used to decide
if an edge e will have flow (x, =1) or not (x, =0). The formulation assumes that the

graph is undirected but the flows are directed, so there is a sign consideration if the

flow comes into the node or if the flow is leaving the node. The formulation can be

written as:
Min: § wx, (A.224)
e E(G)
subject to
[¢] [¢]
a f.- a f.=n-1 (A.225)
dd*(1) dd (1)
a f.- & f.=1"11 vl V(G) (A.226)
ed(v) e d*(v)
f, E(-1x,," el E(G) (A.227)
f, £(n- Dx," el E(G) (A.228)
a x=n-1 (A.229)
dE(G)
f.30 (A.230)
x.1{01}," el E(G) (A.231)

Here equations (A.225) and (A.226) are flow balance equations around the

nodes, inequalities (A.227) and (A.228) set the flow to zero through a non selected

edge (x, =0). Aninteresting aspect of this formulation is that there is not a cost

associated to the objective function, any feasible solution isa MST.

Figure A.80 explains graphically an example of the formulation.
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Figure A.80 Network with n-1 commaodities |eaving to each node from node 1

Node 1 is the root node, (N-1) items are sent into the node represented by the
arrow pointing towards the root node. All other nodes have a demand of one item
represented by the arrow leaving each node in the graph. The items travel from one

node to another by the edges connecting the nodes.

A 3.6.9. Directed Multi-commodity Flow M odel

Ahujaet d., (1995) and Magnanti and Wolsey (1995) both suggested yet
another modification to the general formulation for network design to find the MST.

Such formulation would be as follows:

Min: & d.y, (A.232)
el E(G)
st.
2 k 2 k
a ff- a fi=-1"ktr (A.233)
dd (r) dd*(r)
2 k 2 k
a f.- a f.=0"vir,vtkandalk (A.234)
dd (v) dd*(v)
a ff- & f=a"kiriv(g) (A.235)
e d (k) dd* (k)
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fXEy,," el E(G)

a v.=n-1
e E(G)
X =Y TY;i

f20," el EG)

y.1 {01} "el E(G)

(A.236)

(A.237)

(A.238)

(A.239)

(A.240)

Each commodity k=1,2,...K has an origin node that for purposes of ssimplicity

can be node 1 in the network, and a destination node D(Kk), and a flow requirement of

one unit at each node; f“isthe fraction of commodity k that flows over the edge e.

The upper bound on the capacity of the arcsis defined by y; . Constraints (A.236)

allows flow to cross an edge only if the edge is selected in T. The interested reader is

referred to Ahujaet a. (1995) and Magnanti and Wolsey (1995) for proof of the

correctness of the formulation.

A 3.6.10. Extended M ulti-commodity Flow M odel

A dlight change of the previous formulation where the y; variablesare

eliminated and replaced by a flow constraint. The resulting formulation is as follows:

Min: & d.y.

el E(G)

st
[¢] o]
& f- 8 fi=1kir
dd(r) dd* ()
o

a f- & ff=0"v1irvtkandallk

dd (v) dd*(v)
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(A.242)
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a - & f=1"kriv(o) (A.244)
dd (k) dd* (k)

f<E£y," el E(G) (A.245)
a x=n-1 (A.246)

e E(G)

X3 £+ (A.247)
f<30," el E(G) (A.248)

y.1 {01} "el EG) (A.249)
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