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This thesis investigates the modeling and control of bio-inspired flexible structures

for robotics applications. Many animals move through complicated natural environments

and perform complex tasks by exploiting soft structures. Soft structures are highly versa-

tile and are a growing area of interest in robotics because they can have decreased weight,

size, and mechanical complexity relative to more traditional rigid robotics. This work uses

planar discrete elastic rod (PDER) theory for modeling two types of flexible structures.

First, a flexible airfoil is modeled using PDER theory, including the Improved Lighthill

model (ILM) of hydrodynamic forces to study the propulsion thrust. The propulsion thrust

generated by rigid and flexible foils are also measured experimentally and compared to

the model. Second, a state-space description of a flexible pendulum with torque input

is presented. Linear state-and output-feedback hybrid controllers stabilize the inverted

flexible pendulum starting from the down equilibrium.
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Chapter 1: Introduction

1.1 Motivation

Engineering is a continued effort to improve and optimize the performance of man-

made designs that utilize an understanding of fundamental scientific principles. Over

many millennia animals have been optimized to perform in their respective environments

through natural pathways. Many animals move through complicated natural environments

and perform complex tasks by exploiting soft structures. The overwhelming majority

of the animal world is soft bodied, or comprised primarily of soft tissues and fluid [1].

Soft structures are highly versatile and are a growing area of interest in robotics. The

use of soft structures could expedite the ability of robotics to interact with humans and

perform medical tasks [1]. Robotic systems with flexible rather than rigid components

have decreased weight, size, and mechanical complexity [2]. Flexible robots are used in soft

gripping applications [3] as well as in underwater locomotion [4]. However, flexible systems

are challenging to model because they may be highly nonlinear, have infinite degrees of

freedom, and are generally described by partial differential equations [5]. This structural

complexity, coupled with the complexity of interacting with dynamic environments, such

as an ambient fluid, make the modeling and control of flexible manipulators a rich problem

to be solved. Model-based design can be used to explore parameter space for performance

where it would be difficult or expensive to vary parameters experimentally. Simplified

models for fluid-structure interactions may help to shed light on optimal control and

design characteristics for underwater robotics.
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1.2 Relation to state of the art

Fluid-structure interactions are immensely important in underwater robotics. Ex-

isting literature such as [4] neglect the structural dynamics and chose to assume a shape

approximated by a Joukowsky airfoil undergoing periodic oscillations in camber ratio. The

resulting forces on the body are then obtained through the use of potential flow theory

and vortex models. Additionally, numerical methods such as computational fluid dynam-

ics (CFD) have been used to study the deformation and thrust production of flexible

propulsors in [6]. Using CFD for closed loop control of an underwater fish is infeasible

because of on-board computational power requirements and the time needed to obtain a

solution. Experimental approaches have been used in [7] and [8] to determine the thrust

production and propulsive efficiency of rigid and flexible pitching plates respectively. Fluid

added mass is used in Quinn et al.’s [9] in connection with Euler-Bernoulli beam theory to

experimentally investigate the mode shapes and thrust production of a heaving plate. This

approach is closely connected with the large amplitude elongated body theory (LAEBT)

developed by Lighthill in [10], where change in the momentum of the fluid control vol-

ume around the submerged body is used to calculate resultant fluid forces. This method

is improved and reformulated by Porez et al. in [11] to be applied in robotic multibody

systems. This work has implemented the Improved Lighthill model (ILM) from [11] to

compare the predicted loads on a pitching rigid foil to experimental data. An attempt

was made to implement the ILM for a flexible silicone rubber airfoil modeled as a planar

discrete elastic rod (PDER), though further work must be done to properly model the

fluid forces for use with the PDER framework.

In the field of flexible manipulators much of the existing literature focuses on rela-
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tively stiff structures with sufficiently well-defined vibration modes such that the Assumed

Modes Method (AMM) [12] is a good approximation for the behavior of the system. How-

ever, existing models break down when soft materials such as silicone rubber undergo

large deformations [12]. Nonetheless, state-space modeling and principled control design

is possible using elastic rod theory [13].

As a representative problem to investigate control design, this work considers an

inverted flexible pendulum with a torque input at the base. The nonlinear behavior

and complexity of existing models that describe the dynamics of flexible beams make

traditional control design complicated [14]. Prior work has been done in modeling inverted

cantilever beams on carts with tip masses [15], [16]. In other work, [17], [18], [19], the

pendulum is free to rotate at a pivot on a moving cart. Singla [20] models a cart-pole

system as a series of two rigid rods linked by torsional springs. We will adapt the method

from [20] and model a flexible pendulum as a series of six rigid rods linked by nonlinear

torsional springs.

1.3 Contributions of thesis

This work is the first that I am aware of to apply the Improved Lighthill model

of hydrodynamic forces to study the propulsion thrust of a flexible airfoil modeled us-

ing discrete elastic rods. Experiments are performed to measure the thrust produced by

pitching rigid and flexible airfoils in water around the quarter chord at varying amplitudes

and frequencies. Experiments suggest that higher thrust is achieved at higher frequencies

and higher amplitudes for both the rigid and flexible airfoils. Validation of PDER nu-

merical modeling is performed using a molded silicone rubber airfoil undergoing periodic

deformations. The ILM is used to attempt to predict fluid forces on a rigid airfoil.
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The contributions of the work on the flexible pendulum are (1) a state-space descrip-

tion of a flexible pendulum with torque input using planar discrete elastic rod theory; (2) a

state-feedback hybrid control design for balancing the inverted flexible pendulum; (3) and

a dynamic output-feedback hybrid control design using a linear observer that relies only on

measurements of the position and angular velocity of the base of the rod. Performance is

illustrated using numerical simulations of a PDER pendulum. The pendulum parameters

are chosen to satisfy the conventional self-buckling condition; simulations suggest that the

feedback control design balances some rods that buckle under zero input. To model the

pendulum dynamics we employ a PDER formulation in state-space form [13]. We design

a full-state feedback controller for the system linearized about the up equilibrium and

apply that controller to the full nonlinear system. Additionally, an open-loop swing-up

controller is implemented using the natural frequency of a rigid pendulum of the same

length. We design a linear observer using a standard Kalman filter design and stabilize

the up equilibrium using observer-based feedback with measurements collected only at the

base of the pendulum.

1.4 Outline of thesis

Chapter 2 presents background and notation for planar discrete elastic rods and

briefly presents the background for Lighthill’s large amplitude elongated body theory as

well as Porez et al.’s Improved Lighthill model. Chapter 3 presents the experimental

platform and procedure used to compare the thrust generation potential of a flexible vs

rigid airfoil. Chapter 4 presents the linearized model and state feedback control design

for stabilizing a flexible inverted pendulum then extends the framework to include and

output feedback control design. Chapter 5 summarizes the results and future work.
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Chapter 2: Modeling of structural and fluid forces

2.1 Planar Discrete Elastic Rods

This chapter will provide the background for planar discrete elastic rod (PDER)

theory, drawing heavily from the work done by Jawed et al. [21]. First, the discretization

scheme and notation will be introduced. The next sections will describe the physical

parameters of the rod. Finally, the energies pertaining to the rod and the forces arising

from the elastic energies are described.

An elastic rod is a continuum structure with an infinite number of degrees of freedom

[16]. In order to characterize the behavior of a rod we utilize a discrete model. The

behavior of the elastic rod is suitably approximated using a planar discrete elastic rod

formulation [13], which is a specialization of three-dimensional discrete elastic rod theory

[22].

A rod is discretized into a series of N nodes and N − 1 edges as shown in Fig.

2.1. The greater the number of nodes, the more closely the PDER agrees with analytical

models [21].

Figure 2.1: Notation for labeling edges and nodes [13]
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2.1.1 Kinematics

The position vector of each node is given in the inertial frame where the ith node is

located at

xi = xiE1 + yiE2, (2.1)

where xi and yi are Cartesian coordinates, E1 is a unit vector in the horizontal direction,

and E2 is a unit vector in the vertical direction. It follows that E3 = E1 ×E2 is directed

out of the plane. Edge ei connects nodes xi and xi+1. (Note, edges are denoted with

superscript indexing and nodes are denoted by subscript indexing.) An edge is defined

in [13] as

ei = xi+1 − xi, ti =
ei

‖ei‖
, and ni = E3 × ti. (2.2)

where the vectors ti and ni are the unit tangent and unit normal of the ith edge, respec-

tively, given in the inertial frame. The relative orientation of edges is defined by their

turning angle ϕi, which can also be represented as curvature κi, [13] i.e.,

ϕi = cos−1
(
ti−1 · ti

)
κi =

`i
Ri

= 2 tan
(ϕi

2

)
,

(2.3)

for i = 2, . . . , N − 1

where `i = 1
2(‖ei−1‖ + ‖ei‖) is the length of the Voronoi region of the ith node and

Ri = `i
2 cot(ϕi2 ) is the radius of the osculating circle seen in Fig. 2.2.
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Figure 2.2: Osculating circle of radius Ri = `i
2 cot(ϕi2 ) is tangent to two lines of length `i

and represents the discrete approximation for curvature of continuous rod [21].

2.1.2 Physical parameterization

The undeformed shape of a PDER is defined by the set of intrinsic lengths l̄i of each

edge and intrinsic curvatures κ̄i at nodes i = 2, . . . , N − 1. Following Bergou et al. [22],

the ith edge has a mass mi defined by the volume integral over the region of the body

represented by that edge.

mi =

∫ ∫ ∫
ρ(s1, s2, s3) ds1ds2ds3, i = 1, . . . , N − 1 (2.4)

where s1, s2, and s3 are the body frame coordinates of each edge. The mass associated

with the ith node, mi, is the average mass of the edges meeting at this node, i.e.,

m1 =
1

2
m1

mi =
1

2

(
mi +mi−1) , i = 2, . . . , N − 1

mN =
1

2
mN−1.

(2.5)
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The node mass matrix M takes the form

M =



m1 0 . . . 0 0

0 m1 . . . 0 0

...
...

. . .
...

...

0 0 . . . mN 0

0 0 . . . 0 mN


. (2.6)

The cross sectional area of an edge is given by Ai where

Ai =
1

2
(Ai +Ai+1) (2.7)

and Ai is the cross sectional area of the undeformed body cut at the ith node. The moment

of inertia across the ith edge is defined by the volume integral in Eq. (2.8) where the s1,

s2, s3 are the body frame coordinates that corresponds to the tangent, normal, and out

of plane directions respectively.

Ii =
1

mi

∫ ∫ ∫
ρ(s1, s2, s3)s

2
2 ds1ds2ds3, i = 1, . . . , N − 1 (2.8)

The area moment of inertia of the ith node is based on the average area moment of inertia

between the edges meeting at that node [13].

Ii =
1

2

(
Ii + Ii−1

)
(2.9)
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2.1.3 Energies and Forces

The PDER dynamics incorporate the various forms of potential energy within the

system as follows. The curvature κk determines the bending energy Eb. The change in

length of each edge determines the stretching energy Es. These two energies, bending and

stretching, combine to form the elastic energy Ee. The elastic energy together with the

gravitational potential energy Eg is the total potential energy Et [13] : i.e.,

Ee = Es + Eb

Et = Ee + Eg,

(2.10)

where [13]

Es =
1

2

N−1∑
k=1

EAk
(
‖ek‖
‖ēk‖

− 1

)2

‖ēk‖

Eb =
1

2

N−1∑
j=2

EIj
¯̀
j

(κj − κ̄j)2

Eg = g

N∑
i=1

miyi

(2.11)

and E is the elastic modulus of the pendulum, Ak is the average cross-sectional area of

the kth edge, Ij is the area moment of inertia of the jth node, and ¯̀
j = 1

2(‖l̄j‖ + ‖l̄j−1‖)

is the undeformed length of the Voronoi region of the jth node.

2.1.3.1 Stretching energy

The stretching energy arises from strain along the tangent vector of an edge. We

can express stretching force acting on each node as the sum of the partial derivatives of

9



the stretching energy with respect to each connected edge.

Fs1 =
∂Es
∂e1

= EA1

(
‖e1‖
‖ē1‖

− 1

)
t1,

Fsj = − ∂Es
∂ej−1

+
∂Es
∂ej

= −EAj−1
(
‖ej−1‖
‖ēj−1‖

− 1

)
tj−1 + EAj

(
‖ej‖
‖ēj‖

− 1

)
tj ,

FsN = − ∂Es
∂eN−1

= −EAN−1
(
‖eN−1‖
‖ ¯eN−1‖

− 1

)
tN−1

(2.12)

The first and last node are only subject to the forces from one edge, while the internal

nodes are subject to the forces of the preceding and prior edges.

2.1.3.2 Bending energy

The bending energy arises from rotational strain illustrated by a difference between

the intrinsic and current curvature. We can express bending force acting on each node

as a sum of the partial derivatives of the bending energy with respect to each connected

edge.

Fb1 =
∂Eb
∂e1

,

Fbi = − ∂Eb
∂ei−1

+
∂Eb
∂ei

,

FbN = − ∂Eb
∂eN−1

,

(2.13)

where
∂Eb
∂ek

=
EIk2

¯̀
k

[
(κk − κ̄k)

∂κk
∂ek

]
. . .

+
EIk+12

¯̀
k+1

[
(κk+1 − κ̄k+1)

∂κk+1

∂ek

]
.

(2.14)
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We note that Eq. (2.14) depends on the partial derivatives of the curvature with respect

to the edge where those partial derivatives are given by

∂κk+1

∂ek
= − 2

lk(1 + tk · tk+1)
nk,

∂κk
∂ek

=
2

lk(1 + tk−1 · tk)
nk. (2.15)

Due to the fact that curvature is defined by the turning angle between two edges, the

bending force applied at the ith node is determined by the relative positions of the four

edges, ei−2 through ei+1.

This PDER formulation is a useful tool to characterize the behavior of highly flexible

structure. The discrete nature of this formulation provides a simple and intuitive method

for principled control design. This formulation is versatile and can be simply coupled with

other discrete models.

2.2 Improved Lighthill model

This section will begin by providing the background for the Improved Lighthill model

(ILM), drawing heavily from the work done by Porez et al. [11]. We will also discuss the

backwards Euler numerical integration method used to solve the equations of motion.

Lighthill is responsible for developing the large-amplitude elongated-body theory

(LAEBT) which calculates the forces acting on submerged bodies undergoing fish-like

swimming [10]. The fluid around the fish, or in this case an airfoil, can be considered

inviscid due to the high Reynolds numbers involved in fish-like swimming [11]. This

assumption means that the fluid can only exert pressure forces, i.e. there is no shearing

stress. However, as in [11], we include the modeling of viscous forces through a Taylor-like

11



resistive model from [23]. In LAEBT, thrust is generated via deformations in body shape

over time that accelerate fluid along the body until it is shed into the wake at the caudal

fin, i.e. the trailing edge [24].

In the ILM there are two types of hydrodynamic forces: reactive and resistive.

Reactive forces are exerted by the acceleration of the fluid around the submerged body.

Resistive forces are exerted by the viscous stresses applied at the boundary layer of the

submerged body.

Following from PDER, in this work the submerged body is discretized into N nodes

and N − 1 edges as in Fig. 2.1. The total external hydrodynamic force exerted on the jth

edge is the sum of the reactive and resistive forces [25].

F j
ext = F j

reac + F j
res (2.16)

where F j
ext =

(
f jText cjText

)T
is a (6× 1) vector containing the forces and moments acting

on the jth edge. F j
reac and F j

res are (6 × 1) vectors containing the forces and moments

from the reactive and resistive forces respectively. The state vector in this formulation of

LAEBT, developed by [11], stores the translational and rotational velocities of each edge

and is given as

ηj =

V j

Ωj

 (2.17)

where ηj is a (6×1) vector containing the inertial velocity expressed in the body frame of

the jth link. V j and Ωj are the translational and rotational velocities respectively. The

translational velocity of the jth edge is the velocity of the jth node.

In order to make this formulation of the fluid forces compatible with the PDER

12



state space, the forces on the edge are split in half and applied to the two nodes that

comprise the edge. The torque is converted into a pair of equal and opposite forces that

act along parallel lines of action.

Fext,1 =
1

2
f1
ext −

1

l1
n1c1Z

Fext,j =
1

2

(
f jext + f j−1ext

)
− 1

lj
njcjZ +

1

lj−1
nj−1cj−1Z , i = 2, . . . , N − 1

Fext,N =
1

2
fN−1ext +

1

lN−1
nN−1cN−1Z

(2.18)

where cjZ is the moment acting on the jth edge in the E3 direction. This expression is

then rotated into the inertial frame and used in the backwards Euler integration scheme.

Figure 2.3: Control volume of the jth body.

2.2.1 Reactive forces

The reactive force on an edge is calculated by determining the change in momentum

of the control volume of fluid that surrounds that edge as seen in Fig. 2.3. This includes

the acceleration of the fluid contained in the control volume as well as the fluid pressure
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acting along the surface of the control volume. The reactive force is given by Eq. (2.19)

F j
reac = −Mj

reacη̇
j − βjreac − βj−reac − βj+reac (2.19)

where Mj
reac is the added mass tensor, and the βjreac terms are the combination of the

flux of fluid momentum and the pressure forces exerted at the boundary of each control

volume. The added mass tensor is given by Eq. (2.20)

Mj
reac =


M j
f −S̆jf

S̆jf Ijf

 =


ljM̄ j

f − lj2

2 M̄
j
f t̆
j

lj2

2 M̄
j
f t̆
j lj3

3 t̆
jT M̄ j

f t̆
j + lj Ījf


M̄ j
f =

Cmρfπh
2

4
(njnj

T
) ; Ījf = 03×3

(2.20)

Here the (̆·) operator denotes a skew symmetric matrix such that (ă)b = a × b, lj is the

length of segment, ρf is the fluid density, Cm = 0.5 is a dimensionless shape coefficient,

h is the height of the segment in the E3 direction, tj and nj are the tangent and normal

vectors respectively. The reactive forces produced by the added mass accelerated by the

Coriolis and centrifugal accelerations are given by

βjreac =

−Ω̂j(S̆jfΩ
j) + Ω̆j(M̄ j

fV
j)

Ω̆j(IjfΩ
j) + S̆jf (Ω̆jV j)

+

 03×1

V̆ j(M̄ j
fV

j)

 . (2.21)

The boundary effects that account for the pressure on the control volume as well as the

flux of momentum through the control volume is given by

βj−reac = −

(M̄ j
fV

j)tj
T
V j

03×1

 (0) +
1

2

(V jT M̄ j
fV

j + ΩjT ĪjfΩ
j)(0)tj

03×1

 (2.22)
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and

βj+reac = AdTlj


(M̄ j

fV
j)tj

T
V j

03×1

 (lj)− 1

2

(V jT M̄ j
fV

j + ΩjT ĪjfΩ
j)(lj)tj

03×1


 (2.23)

where

AdTs =

13×3 03×3

st̆j 13×3

 (2.24)

2.2.2 Resisitive forces

The ILM developed by Porez et. al. [11] includes the viscous forces through a

Taylor-like resistive model from [23]. The resistive force is characterized by four constants.

These constants, C1 = CfρfP , C2 = Cdρfh, C3 = 0, C4 = 0 are empirically determined

constants from [26]. Here Cf and Cd are dimensionless coefficients relating to friction and

drag respectively, ρf is the fluid density, P is the average cross section perimeter, and h is

the height of the submerged body. The resistive hydrodynamic forces are parameterized

by Cf and Cd. The resistive force on the jth edge is given by Eq. (2.25)

F jres =
1

2

∫ lj

0
AdTs

(C1V
j
X |V

j
X |)tj + (C2V

j
Y |V

j
Y |)nj + (C3V

j
Z |V

j
Z |)bj

(C4|Ωj
X |Ω

j
X)tj

 ds (2.25)

As in [11], C3 and C4 are forced to zero because the motion of the airfoil is assumed to be

planar.
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2.3 Numerical integration method

This is a non-trivial problem to solve numerically due to the implicit nature of

the coupling between the fluid forces and structural deformations. The PDER model is

solved in parallel using a backwards Euler scheme to improve numerical stability. The

approximations are propagated through

dz

dt
= f(z, t), z(i+ 1) = z(i) + ∆tf(z(i+ 1), t+ ∆t) (2.26)

where z is an arbitrary state vector and ∆t is the time step. The block diagram for the

integration scheme is shown in Fig. 2.4. In practice, the node positions, velocities and the

forces on each node are solved for simultaneously using fsolve() in Matlab. Using this

integration scheme we are able to easily compute the constraining forces.

Figure 2.4: Block diagram showing the backwards Euler scheme used to solve the system
of equations implicitly. The fluid forces are assumed to be zero in air.
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Chapter 3: Experimental thrust of rigid and flexible pitching airfoils

This chapter aims to compare the thrust generation ability between a rigid and

flexible airfoil in water. The chapter will discuss the experimental setup, procedure, and

results of oscillating a rigid and flexible airfoil in water to generate thrust. We will then

compare the experimental data to the thrust calculated by the Improved Lighthill model

(ILM) and discuss the results.

3.1 Experimental setup

The respective airfoil is fabricated around MakerBeam supports such that the airfoil

is being actuated around its quarter chord. The two supports in each airfoil are spaced

at 20 mm. Each airfoil is actuated using a Savox SV-0235MG servo being powered at 12

volts. The servo is controlled using an Arduino Uno which communicates serially with

Matlab. The servo chassis is suspended by two TAL221 load cells, which are being read

using a National Instruments NI SCC-68 board and a National Instruments NI USB-6225

data acquisition system. A schematic of the experimental setup can be seen in Figs. 3.1

and 3.2.

Each airfoil is submerged in a cross section of a flow tank made by Loligo Systems

with variable flow speed. The cross section of the flow tank measures 25×25 cm. To avoid

surface effects of the fluid, the airfoil is submerged 3 cm below the surface of the water.

High contrast visual markers were placed evenly spaced at 20 mm increments along the

bottom side of the submerged airfoil as seen in Fig. 3.3. Images of the bottom of the airfoil
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Figure 3.1: Experimental Schematic showing the load cells suspending the servo and airfoil
from a rigid support. The camera is attached to the bottom of the flow tank and views
the bottom of the airfoil. The load cells are read using a National Instruments board and
the servo is controlled via an Arduino Uno. The National Instruments board, Arduino
Uno and underwater camera all interface with Matlab.

Figure 3.2: Experimental setup showing the viewing angle of the underwater camera and
and the suction cup mount used to attach it to the flow tank. The servo chassis and load
cell array are shown mounted to a rigid beam with the airfoil attached to the control arm
of the servo.
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Figure 3.3: Sequential images of deformed flexible airfoil in water (read from left to right).
The white circles show the position of the centroid of the markers, which are identified
via computer vision. The red line shows the midline of the flexible airfoil. The blue line
shows the overlay of the midline of a rigid foil at the same servo command angle.

were collected by a submerged camera. The camera being used was an IceCap REEF-cam

with a resolution of 720p (1280 × 720) using 0.9 effective mega pixels. The images were

collected at a frame rate of 30 frames per second. The camera was affixed to the bottom

of the flow tank and angled up to view the bottom of the airfoil. Due to the limited size of

the flow tank the camera took images of the airfoil at an angle. This angle was corrected

for using the computer vision Matlab toolbox and the Single Camera Calibrator app in

Matlab. Calibration is done to obtain intrinsic and extrinsic parameters that correct for

lens distortion and localize the position of the camera respectively. From calibration, the
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mean reprojection error of the corrected images is 1.43 pixels as can be seen in Fig. 3.4.

Additional information on camera calibration can be found in appendix A.

Figure 3.4: Reprojection Error of calibration images. The mean reprojection error of the
corrected images is 1.43 pixels. Images taken at at an angle and images taken near the
edges of the field of view of the camera result in larger reprojection errors

3.2 Discretization of airfoil using planar discrete elastic rod theory

The airfoil is modeled as a planar discrete elastic rod (PDER) where the midline of

the airfoil takes the form of a series of nodes and edges with N = 8. The cross sectional

area corresponding to the node is based on the profile of the airfoil. We assume a naturally

straight rod with an intrinsic curvature, κ̄i = 0 at all nodes. The nodes are evenly spaced

with intrinsic edge lengths of l̄i = 20 mm for all edges. The third node, x3, is fixed

at the origin and edge e3, rotates about the fixed node at a fixed radius. The input to

the airfoil is a prescribed rotation of the edge, e3. A silicone rubber airfoil was cast for

experimentation, the measurements of the profile of the airfoil were taken every 20 mm

and are provided in Table 3.1. The height of the airfoil is h = 115 mm and has an aspect

ratio of AR = Height
Length = 0.82.
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Table 3.1: Airfoil parameters measured every 20 mm from nose to tail

Index j 1 2 3 4 5 6 7 8
(Nose) (Tail)

X-Position [mm] 0 20 40 60 80 100 120 140
Width [mm] 0 18.5 18.5 16.8 13.4 9.9 3.6 0
Aj [mm2] 0 2133.0 2133.0 1933.0 1544.0 1144.0 414.0 0

Ij [mm4 × 106] 0 802 802 601 305 123 5.91 0

The cross sectional area used in calculations is the cross sectional area of the slice at

the corresponding node. The mass of each edge is found while the airfoil is undeformed by

assuming constant density and approximating the shape of the airfoil between two nodes

as a trapezoidal prism (see Fig. 2.3). The elastic modulus is chosen as a tuning parameter

for the PDER because of the inherent uncertainty in the elastic modulus of highly flexible

materials. The stress/strain relationship of silicone-rubber is nonlinear [27], though as

we will show in Sec. 3.4, assuming a linear stress/strain relationship near 0% elongation

provides agreement between the model and experimental data. The flexural stiffness, EI

is compared to the measured flexural stiffness of a sunfish [28] in Fig. 3.5

Figure 3.5: Comparison between flexural stiffness of silicone-rubber airfoil to sunfish model
[28]
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3.3 Experimental methods

This section details the methods used for data collection. Calibration was performed

for the two load cells which suspend the servo and for the underwater camera used for

computer vision. We also describe the testing procedure and analyze the results obtained

from experimentation.

3.3.1 Load cell calibration

The load cells used in the experimental test bed are TAL221 load cells. The load

cells attached to the chassis above the flow tank were then calibrated by applying a known

load to the mid-height of the airfoil. The obtained load cell calibration curve is shown

in Fig. 3.6. It is assumed that by summing the load cell signals only the thrust force

is measured, i.e. that the force applied transverse to the airfoil is not coupled with the

thrust measurement. Taking the difference of the load cell signals provides the signal that

contains the torque applied to the body and the transverse force, though these signals are

coupled. This coupling can be seen in the illustration in Fig. 3.7.

Figure 3.6: Load cell calibration curve showing the known applied known applied loads
against voltage. A linear fit is used to determine the calibration coefficient of 1058 [NV ]
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Figure 3.7: The components of the loads being measured by each load cell. Summing the
signals provides only the thrust measurement while differencing the signals provides the
torque and transverse force (coupled).

3.3.2 Data collection routine

Experiments are performed at frequencies ranging from 0.5 Hz to 2 Hz at 0.5 Hz

increments, and amplitudes from 4 degrees to 10 degrees at increments of 2 degrees. The

tests are performed with an ambient flow speed of 5 cm s−1, corresponding to Re ≈

6900. The servo is controlled via an Arduino Uno with an internal timing circuit and

the National Instruments data acquisition system collects data at 300 Hz. To synchronize

the timestamps of the Arduino, the National Instruments data acquisition system, and

the images collected by the underwater camera, each device communicates serially with

Matlab. The automated procedure for collecting and synchronizing data can be seen in

Algorithm 1 in appendix B. Before the test is performed a manual calibration of the

camera extrinsic parameters is performed. Additional information on camera calibration

can be found in appendix A. The marker positions are extracted from the images collected

during the experiment and converted into real world coordinates using the computer vision

toolbox in Matlab.
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3.4 Experimental results

This sections discusses the results of the validation the PDER model using a flexible

airfoil in air, then analyzes the experimental and predicted hydrodynamic forces on a rigid

foil. Finally, we discuss the propulsion thrust produced by a flexible airfoil in water.

3.4.1 Flexible airfoil in air

The first of the experiments is performed with the flow tank drained of water such

that the airfoil is suspended in the air. This is done as a validation of the PDER model

structural model where only forces arising from structural deformations are simulated, i.e

the without fluid forces. The position of the airfoil is measured in each of the experiments

using computer vision. Using fminsearch() the simulation is fit to experimental data

with the numerical damping, ζ, and elastic modulus, E as tuning parameters. The curve

fitting routine was driven by reducing the cost function Eq. (3.1)

J =

Nexp∑
j=1

√√√√ N∑
i=1

(ymeas,i,j − ysim,i,j)T (ymeas,i,j − ysim,i,j) (3.1)

where Nexp is the total number of experiments in the test matrix, ymeas,i and ysim,i are

the y-position of the ith node through time measured in the experiment and in simulation

respectively. The fitting parameters were found to be: E = 8.1112 MPa and ζ = 0.1238.

The agreement between the experimental and simulated node position agree very well and

an example can be seen in Fig. 3.8. The root-mean squared (RMS) error per measurement

for each test case can be seen in Fig. 3.9. We note that the error is minimized at a low

frequency and low amplitude and that error increases with both frequency and amplitude.
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Figure 3.8: Time series for one of the points in parameter space (Amplitude: 10 deg
Frequency: 1.5 Hz) comparing the experimental and simulated position of flexible airfoil
in air for the best case tuning parameters.

Figure 3.9: Heatmap of RMS position error per measurement (30 Hz) for the flexible
airfoil in air. Model and experimental data agree most at low frequencies and amplitudes.
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3.4.2 Rigid airfoil in water

The rigid foil is actuated with a sinusoidally changing angle. The thrust force is

measured for each test condition. The signal from the load cell array is filtered using a

band-stop filter designed in Matlab using the designfilt() function. An infinite impulse

response band-stop filter is designed with two stop bands. The first stop band is from 6

to 8 Hz and the second is from 50 to 60 Hz; these ranges correspond to the oscillations

arising from the experimental test bed. The thrust is approximately sinusoidal where

the net offset corresponds to the average thrust. We note from Fig. 3.11 that the thrust

generated by oscillating the rigid foil in water is approximately sinusoidal with a frequency

of 2 times the driving frequency. The peak in thrust occurs twice over the course of one

oscillation as the airfoil is briefly parallel with the E1 direction (where phase = 0, π, 2π).

It is possible to solve for the fluid forces on the rigid foil analytically by the ILM.

The resulting prediction of the thrust is shown plotted against the thrust measured exper-

imentally in Fig. 3.11 where the thrust is sinusoidal with a frequency of double the driving

frequency. The peaks in thrust predicted by the model are phase shifted π
2 from the ex-

perimental data and the maximum thrust predicted by the model occurs when the foil is

at the maximum angle, i.e. when the angular acceleration is greatest (phase = π
2 ,

3π
2 ).

The ILM does not show good agreement with experimental data, as the curves are π
2 out

of phase with one another and the amplitude of the curves are different in magnitude.
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Figure 3.10: Heatmap showing the thrust produced by a rigid foil (in newtons) for fre-
quencies ranging from 0.5 to 2 Hz and amplitudes ranging from 4 to 10 degrees. The
maximum thrust observed in experiments is generated using an amplitude of 10 degrees
and a frequency of 1.5 Hz

Figure 3.11: Rigid airfoil phase averaged thrust measured for amplitudes 4-10 deg at a
frequency of 1.5 Hz. The thrust is approximately sinusoidal with maximums at phase =
0, π, 2π. The shading around the blue curve shows the 2σ error bounds for the phase
averaged thrust. The yellow curve shows the fluid force predicted from the ILM given the
prescribed rigid body motion.
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3.4.3 Flexible airfoil in water

After testing the rigid airfoil, we transition to performing experiments at the same

frequencies and amplitudes from Sec. 3.3.2 for a flexible foil. The flexible foil is actuated

with a sinusoidally changing angle. The thrust force is again measured for each test

condition. The signal from the load cell array is filtered using a band-stop filter designed

in Matlab using the designfilt() function. An infinite impulse response band-stop filter

is designed with two stop bands. The first stop band is from 6 to 8 Hz and the second is

from 50 to 60 Hz; these ranges correspond to the oscillations arising from the experimental

test bed. The thrust is approximately sinusoidal with a net offset that corresponds to the

average thrust. We can see in Fig. 3.13 the flexible airfoil has significantly lower amplitude

oscillations in thrust than the rigid airfoil. Again, the thrust is approximately sinusoidal

where the net offset corresponds to the average thrust. We again note that the thrust

generated by oscillating the rigid foil in water is approximately sinusoidal with a frequency

of 2 times the driving frequency. The peak in thrust occurs twice over the course of one

oscillation as the airfoil is briefly parallel with the E1 direction (where phase = 0, π, 2π).

The predicted fluid forces on the flexible foil are calculated using the ILM with

the position data measured using computer vision (as seen in Fig. 3.3). The resulting

prediction of the thrust is shown plotted against the thrust measured experimentally in

Fig. 3.13 where the predicted thrust is approximately sinusoidal with a frequency of double

the driving frequency. As in the rigid foil case, the peaks in thrust predicted by the model

are phase shifted π
2 from the experimental data and the maximum thrust predicted by the

model occurs when the foil is at the maximum angle (phase = π
2 ,

3π
2 ). For both the rigid

and flexible foil, the model does not provide good agreement with the experimental data.
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In both cases the curves are π
2 out of phase with one another and the amplitude of the

curves are different in magnitude.

While thrust produced by a rigid airfoil experiences much higher amplitudes than

that of a flexible airfoil, the flexible airfoil produces a greater amount of average thrust

than the rigid airfoil. The average thrust produced by the rigid and flexible airfoils can

be seen in Figs. 3.10 and 3.12 respectively. Fig. 3.14 shows the percent increase in average

thrust generated by a flexible airfoil compared to a rigid airfoil. This trend may also be

seen in Fig. 3.15 which plots the coefficient of thrust, CT , against the Strouhal number,

St. The coefficient of thrust and Strouhal number are given by

CT =
Thrust

1
2ρfU

2
∞Ltoth

, St =
fW

U∞
(3.2)

where U∞ is the ambient flow speed, and W is the width of the wake (assumed to be the

peak to peak amplitude of the trailing edge). Fig. 3.15 shows that for a given Strouhal

number, the flexible foil used in experimentation will produce more thrust than a rigid

foil of the same geometry.

3.5 Discussion

This chapter presented the experimental setup, procedure and results of oscillating

a rigid and flexible airfoil in water to generate thrust. This experimental thrust was then

compared to the thrust calculated by the ILM. Neither the thrust generated by the rigid

airfoil or flexible airfoil (as measured experimentally) shows good agreement to the thrust

calculated by the ILM. The maximum experimental thrust is phase shifted by π
2 from the

maximum thrust predicted using the ILM. This disagreement between experimental data
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and the ILM may be explained because one of the core mechanisms of thrust production

in LAEBT and subsequently the ILM is the acceleration of fluid along the length of a

submerged body. The geometry (namely the aspect ratio) of the airfoil used in this work

may not have allowed for an adequate amount of attached flow which accelerates the fluid

along the length of the airfoil and into the wake. Additionally, the summation of the

signals from the load cells may contain coupling between the thrust and transverse force

that was summed to be zero.
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Figure 3.12: Heatmap showing the thrust produced by a flexible foil (in newtons) for
frequencies ranging from 0.5 to 2 Hz and amplitudes ranging from 4 to 10 degrees. The
maximum thrust observed in experiments is generated using an amplitude of 10 degrees
and a frequency of 1.5 Hz

Figure 3.13: Flexible airfoil phase averaged thrust measured for amplitudes 4-10 deg
at a frequency of 1.5 Hz. The thrust is approximately sinusoidal with maximums at
phase = 0, π, 2π. The shading around the blue curve shows the 2σ error bounds for
the phase averaged thrust. The yellow curve shows the fluid force predicted from the
ILM given the measured structural deformations. The yellow shading shows the 2σ error
bounds for the ILM fluid force. Lighthill fluid force omitted for amplitude of 4 degrees.
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Figure 3.14: Heatmap shows the percent increase in thrust generated by a flexible foil over
a rigid foil with the same geometry, amplitude and frequency. The greatest improvement
appears at low frequencies, where the rigid foil produces nearly zero thrust.

Figure 3.15: Coefficient of thrust against Strouhal number for a rigid foil and flexible foil.
The ambient flow is 5 cm s−1 corresponding to Re ≈ 6900. The plot suggests that thrust
increases with Strouhal number, and that for an equal Strouhal number, the flexible foil
produces more thrust.
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Chapter 4: Feedback control of inverted elastic pendulum

As a method of exploring the control strategies that might be applied to flexible

robotics, we first turn to the classic problem of the inverted pendulum. The flexible

system is highly nonlinear and poses a challenge to traditional control strategies. For this

work we will assume a naturally straight rod with an intrinsic curvature, κ̄i = 0 at all

nodes. The nodes will be evenly spaced with intrinsic edge lengths of l̄i = l for all edges.

The control input will be a torque applied to the base of the pendulum.

Figure 4.1: The PDER model of a flexible pendulum represents a continuous rod using
discrete edges and nodes. Edges are modeled as linear elastic springs and nodes are
modeled as nonlinear elastic torsional springs. The input to the system is a torque at the
base of the pendulum.

33



4.1 State-space modeling of a planar discrete elastic rod

To write the pendulum dynamics in state-space form, let the state vector q =

[x1 y1 . . . xN yN ]T represent the Cartesian coordinates of all of the nodes. The state-

space model of the PDER is [13]

q̇ = v

v̇ = −M−1
(
∂Et
∂q

+ ζv + Fext

)
= −M−1

(( ∂Ee
∂ei+1

− ∂Ee
∂ei

)
+
∂Eg
∂q

+ ζv + Fext

) (4.1)

where Fext is the column matrix containing the components of all external forces acting

on the nodes and ζ is a damping coefficient. For the pendulum with node 1 fixed in place,

the only external forces are the forces of constraint acting at node 1 and the force at node

2 that produce the input torque. The stretching, bending, and gravitational forces at

each node are conservative and arise from the partial derivative with respect to q of the

corresponding potential energy as can be seen in Sec. 2.1.3

We simulate the PDER equations of motion numerically with a backwards Euler

scheme and the parameter values listed in Table 4.1. Fig. 4.2 shows the pendulum being

released from horizontal initial conditions and allowed to swing freely without input. Note

that with time step ∆t = 1×10−4 there is minimal numerical damping and the total energy

system is conserved.

4.2 State feedback hybrid control design

This section presents a hybrid controller that consists of a linear feedback controller

near the up equilibrium and an open-loop swing-up controller. The design of the linear
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Table 4.1: PDER pendulum simulation parameters

Name Parameter Value Units
# of nodes N 7 [ ]

Time step size ∆t 1× 10−4 [s]
Gravitational accel. g -9.81 [m

s2
]

Total length Ltot 0.3 [m]
Rod width w 0.007− 0.009 [m]

Density ρ 1.5× 103 [ kg
m3 ]

Elastic Modulus E 1.0× 107 [Pa]
Stretching stiffness EA 4.9× 102 [N]
Bending stiffness EI 2.0× 10−3 [Nm2]
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Figure 4.2: Open-loop simulation of a rod with w = 0.7 [cm] and time step ∆t = 1× 10−4

[s] under zero input, starting from rest at horizontal initial angle.

controller uses a PDER state-space representation of an inextensible, flexible pendulum.

Simulation results show the swing up and stability behavior of the controlled system for

rods above and below the self-buckling criterion.

4.2.1 Inextensible pendulum state-space form

Although the PDER model provides a suitable approximation to the elastic rod,

for the design of a controller we have opted to further simplify the model as a multi-link

pendulum with inextensible links and nonlinear torsional springs at the nodes. The edge

length of the multi-link pendulum is constant, i.e., ‖ei‖ = ‖ēi‖ = li, where li is the length
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of the ith link. The equations of motion for the inextensible pendulum model are found

using the PDER potential energy Eq. (2.10), neglecting the stretching energy, which is

one or more orders of magnitude smaller than the bending energy (see Fig. 4.2).

The simplified equations of motion for the elastic pendulum follow a recursive pat-

tern that allows the equations to be written for any number of nodes. However, the

equations in Cartesian coordinates quickly become very cumbersome, which hampers the

ability to manipulate them symbolically. Therefore, the rigid-link pendulum model is de-

rived with polar coordinates. In order to convert from the PDER state vector (q,v) to

the state vector used in the sequel define θ =

[
θ1, . . . , θN−1

]T
and θ̇ =

[
θ̇1, . . . , θ̇N−1

]T
,

where

θi = tan−1
(
−yi + yi−1
xi − xi−1

)
,

θ̇i =
ẋi − ẋi−1
‖ei‖

cos θi +
ẏi − ẏi−1
‖ei‖

sin θi,

(4.2)

for i = 1, . . . , N − 1.

The Lagrange-Euler formulation of Eq. (4.1) yields the following equations of mo-

tion:

θ̈ = h(θ, θ̇, T ) = −I−1(θ)
(
C(θ, θ̇) + V(θ)−F(T )

)
. (4.3)

The terms, I, C,V, and F in Eq. (4.3) generalize to N links in the following form:

Iij = lilj cos(θi − θj)
N∑

k=max(i,j)+1

mk (4.4)

Ci =
N−1∑
j=1

lilj θ̇j2 sin(θi − θj)
N∑

k=max(i,j)+1

mk

 (4.5)
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V1 = gl1 sin(θ1)
N∑
k=2

mk

+ 2
EI2
¯̀
2

tan

(
θ1 − θ2

2

)
sec2

(
θ2 − θ2

2

)

Vi = gli sin(θi)

N∑
k=i+1

mk

− 2
EIi
¯̀
i

tan

(
θi−1 − θi

2

)
sec2

(
θi−1 − θi

2

)
+ 2

EIi+1

¯̀
i+1

tan

(
θi − θi+1

2

)
sec2

(
θi − θi+1

2

)
(4.6)

VN−1 = glN−1 sin(θN−1)

N∑
k=N

mk

− 2
EIN−1
¯̀
N−1

tan

(
θN−2 − θN−1

2

)
sec2

(
θN−2 − θN−1

2

)
and

F =

[
T . . . 0

]T
(4.7)

where T is the torque input at the base of the pendulum. Let qθ =

[
θ θ̇

]T
. The

state-space representation of the inextensible pendulum dynamics is

q̇θ = f(θ, θ̇, T ) =

 θ̇

h(θ, θ̇, T )

 , (4.8)

where h(θ, θ̇, T ) is from Eq. (4.3).

4.2.2 Linear control design

For the purpose of stabilizing the up equilibrium, Eq. (4.8) is linearized about q∗θ =

(θi, θ̇i) = (π, 0) for all i and T ∗ = 0. Define the coordinate transformation z = qθ − q∗θ
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and u = T − T ∗. Linearization about the up equilibrium yields

ż = Az +Bu (4.9)

where A = ∂f
∂qθ

∣∣∣
(q∗
θ ,T

∗)
and B = ∂f

∂T

∣∣∣
(q∗
θ ,T

∗)
are

A =

 0N−1×N−1 IN−1×N−1

EI

ml3
Ab +

g

l
Ag 0N−1×N−1

 and B =



0N−1×1

1
ml2

− 1
ml2

0N−3×1


, (4.10)

with banded matrices

Ab =



−2 3 −1 0 · · · 0

3 −6 4 −1 0

−1 4 −6 4 −1 0
...

0
. . .

. . .
. . .

. . .
. . . 0

... 0 −1 4 −6 4 −1

0 −1 4 −6 3

0 · · · 0 −1 5 −4



(4.11)

and

Ag =



a1 b1 0 0

c1
. . .

. . . 0

0
. . .

. . . bN−2

0 0 cN−2 aN−1


, (4.12)
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having entries a1 = N− 3
2 , aN−1 = 3

2 , ai = 2(N−1−i)+1 for i = 2, .., N−2; bi = i−N+ 3
2 ;

and ci = i−N + 1
2 , for i = 1, ..., N − 2.

The rows of matrix Ab represent the forces due to bending take the form of finite

difference coefficients for the fourth spatial derivative, such that the linearized system

may be considered a spatial discretization of the linear Euler-Bernoulli model for deflec-

tion of a beam [29]. The resulting system must satisfy the controllability rank condition

rank([BABA2B . . . AN−1B]) = N for the feedback control laws to stabilize the pendulum.

The resulting linearized model, Eq. (4.9), is used to design a Linear Quadratic

Regulator (LQR). The LQR control design seeks to minimize the cost function [30]

J =

∫ ∞
0

(
zTQz + uTRu

)
dt, (4.13)

where Q and R are weighting matrices on the state and input, respectively. The feedback

control law that minimizes J is u = −Kx, where K = R−1BTP . The matrix P is found

by solving the continuous time algebraic Riccatti equation [30]. In practice, the state

feedback gain matrix K is calculated using the Matlab function lqr, with

Q =

QθIN−1×N−1 0N−1×N−1

0N−1×N−1 Qθ̇IN−1×N−1

 , (4.14)

where Qθ = 100, Qθ̇ = 0.01, and R = 1.

4.2.3 Swing-up and hybrid control design

An open-loop swing-up controller drives the state of the pendulum to the effective

region of the LQR controller. The swing-up controller simulates the zero-input response of
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a rigid pendulum from the horizontal initial conditions. The natural frequency ω =
√

g
Ltot

is used as the driving frequency for the swing-up controller

T = A cos(ωt), (4.15)

where A = 0.025 is the amplitude of the swing-up input. The LQR controller

activates when the base edge is within ±60◦ of the up equilibrium.

The problem of stabilizing an inverted flexible pendulum becomes more challenging

when the rod is itself inherently unstable. At certain points in parameter space, the rod

is subject to a phenomena known as self-buckling, i.e., when it fails to stand under its

own weight with no other loads applied. A fixed-free vertical column with a square cross

section, density ρ, Young’s modulus E, and height hc, will buckle at [31]

wcrit =

√
16h3c
3B2

ρg

E
(4.16)

where g is the acceleration due to gravity and B is the first zero of the Bessel function

of the first kind of order -1/3. The analytical buckling expression Eq. (4.16) predicts self

buckling for a critical width of wcrit = 0.78 [cm]. (PDER simulation results with for N = 7

show that buckling occurs for width less than wcrit ≈ 0.81 [cm].)

Fig. 4.3 shows the pendulum at various times during swing up and stabilization.

The simulations are performed using the entire PDER model, while only the controller

assumes the behavior of the inextensible linearized system. The pendulum is in the swing-

up stage from t = 0 to t ≈ 0.75. The state feedback controller successfully stabilizes the

simulated pendulum of N = 7 nodes at the up equilibrium and stabilizes some rods that

would buckle under zero input. Fig. 4.4 shows that for rods of w & 0.5 [cm] the state

error converges to zero as the up equilibrium is stabilized.
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Figure 4.3: Simulation of a rod with w = 0.7 [cm] and time step ∆t = 1× 10−4 [s] using
a state feedback hybrid control design.
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Figure 4.4: The state-feedback control performance of various rods with same initial
conditions (θi, θ̇i) = (0, 0) for all i. The rod of w = 0.9 [cm] is above the buckling width,
the rod of width w = 0.81 [cm] is at the critical buckling width, and the rod of width
w = 0.7 [cm] is below the buckling width i.e., it buckles if the base is held fixed.
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4.3 Observer-based feedback hybrid control

In practice it is unlikely to have perfect knowledge of the state of the system and

more likely to be reliant on information from sensors. Assume a linear output y = Cz.

The filtered sensor data, in conjunction with the model of the system, yields an estimate

of the state using a Luenberger observer [30]:

˙̂z = Aẑ +Bu+ L(y − ŷ) (4.17)

where ẑ is the estimated state, ŷ = Cẑ is the estimated output and L is the observer

gain matrix such that A− LC is Hurwitz, i.e. that the eigenvalues fall in the left half of

the imaginary plane. The observer gain matrix L is chosen optimally using the Matlab

function kalman and the values Qn = 0.001 and Rn = I2×2. The C matrix used to design

the observer assumes measurements of only the angle, and angular velocity of the base of

the rod, i.e,

C =

1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 1 0 · · · 0

 , (4.18)

where the middle entry is centered at the N th column. (The (A,C) pair is observable.)

Let e = z− ẑ. Implementing the observer, Eq. (4.17), for the linearized state-space

system, Eq. (4.8), yields

ż
ė

 =

A−BK BK

0 A− LC


z
e

 . (4.19)

which is Hurwitz as long as A−BK and A−LC are Hurwitz. Fig. 4.5 shows the output-

feedback hybrid controller stabilizing the up equilibrium of the PDER simulation.
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Fig. 4.6 shows the estimation error e for rods of varying widths. (The observer

activates when the base edge is within±60◦ of the up equilibrium, using the initial estimate

(θi, θ̇i) = (θ1, θ̇1) for all i). The simulations are performed using the entire PDER model,

while only the controller assumes the behavior of the inextensible linearized system. The

estimated state converges to the state of the system sufficiently fast to stabilize the up

equilibrium. The nonlinear behavior of the model causes the linear observer to quickly

converge near the up equilibrium and then diverge as the pendulum overshoots the up

equilibrium. This behavior causes the sequential bumps in Fig. 4.6 most notable in the

angle error of the w = 0.81 [cm] rod at t > 1.25 [s].

4.4 Discussion

This chapter provides a state-space description of a flexible pendulum using a planar

discrete elastic rod. State-feedback and output-feedback hybrid controllers stabilize the

up equilibrium with measurements taken only at the base of the rod. Simulations suggest

that the state-feedback hybrid control and output-feedback hybrid control designs are

successful at swinging up and stabilizing the up equilibrium, even for some rods that

would otherwise buckle. Future work would seek to extend the result so that the control

design can accommodate a PDER simulation that exceeds the number of nodes in the

control model; the current implementation fails if the PDER simulation is higher fidelity

than the model.
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Figure 4.5: Simulation of a rod with w = 0.7 [cm] and time step ∆t = 1× 10−4 [s] using
a output-feedback hybrid control design.
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Figure 4.6: Output-feedback control performance of various rods with the initial conditions
(θi, θ̇i) = (0, 0) for all i.
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Chapter 5: Conclusion

In the continued effort to improve and optimize the performance of man-made de-

signs, this thesis turns towards the investigation of modeling and control of bio-inspired

flexible structures. Many animals are capable of performing complicated tasks through

the exploitation of soft structures. Soft structures are highly versatile and are a growing

area of interest in robotics because they can have decreased weight, size, and mechanical

complexity than more traditional rigid robotics [2]. However, flexible systems are chal-

lenging to model because they may be highly nonlinear, have infinite degrees of freedom,

and are generally described by partial differential equations [5]. This structural complex-

ity, coupled with the complexity of interacting with dynamic environments, such as an

ambient fluid, make the modeling and control of flexible manipulators a rich problem to

be solved.

5.1 Summary of contributions

This work is the first that I am aware of to apply the Improved Lighthill model

(ILM) of hydrodynamic forces to study the propulsion thrust of a flexible airfoil modeled

using discrete elastic rods. Experiments are performed to measure the thrust produced by

pitching rigid and flexible airfoils around the quarter chord in water at varying amplitudes

and frequencies. Validation of PDER numerical modeling is performed using a molded

silicone rubber airfoil undergoing periodic deformations in air. Experiments suggest that
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higher thrust is achieved in water by oscillating flexible airfoils instead of a rigid foil of the

same geometry at the same frequency and amplitude. The experimental thrust produced

by both the rigid, and flexible foil increase with Strouhal number. The ILM is used to

attempt to predict fluid forces on a rigid and flexible airfoil. For both the rigid and

flexible foil, the ILM does not provide good agreement with the experimental data under

the operating conditions in this work.

This work also provides a state-space description of a flexible pendulum with torque

input using planar discrete elastic rod theory, a state-feedback hybrid control design for

balancing the inverted flexible pendulum and a dynamic output-feedback hybrid control

design using a linear observer that relies only on measurements of the position and angular

velocity of the base of the rod. Performance of the control strategy for stabilizing a PDER

pendulum is illustrated using numerical simulations. The pendulum parameters are chosen

to satisfy the conventional self-buckling condition; simulations suggest that the feedback

control design balances some rods that buckle under zero input.

5.2 Suggestions for future work

In future work we would suggest validating the thrust measurements against a more

simplified hydrodynamic forces model that doesn’t assume attached flow. Acceleration of

fluid along the length of a submerged is one of the core mechanisms of thrust production

in LAEBT and subsequently the ILM. The geometry of the airfoil used in this work may

not have allowed for an adequate amount of attached flow which accelerates the fluid along

the length of the airfoil and into the wake. We would also seek to include a propulsive

efficiency metric as in [7].

Regarding the control of soft structures, we would suggest preparing an experimen-
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tal testbed for the inverted flexible pendulum to validate the stability results suggested

by simulation. We would also seek to extend the stability results of the inverted pen-

dulum such that the control design can accommodate a PDER simulation that exceeds

the number of nodes in the control model; the current implementation fails if the PDER

simulation is higher fidelity than the model. Additionally, we would seek to study the

controllability of the linearized pendulum model as a function of geometric and structural

parameters such as aspect ratio and flexural stiffness.
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Appendix A: Camera calibration

The procedure used for this work follows the camera calibration method in the

Matlab computer vision toolbox [32]. The camera is calibrated for intrinsic parameters in

air and in water before calibrating the extrinsic parameters before each experiment.

A.1 Intrinsic parameters

The underwater camera intrinsic parameters were estimated by taking numerous

images containing a checkerboard pattern of a known dimension. Enough images were

taken such that the field of view of the camera was covered completely. This intrinsic

calibration was done with the camera in air as well as submerged in water. The checker-

board pattern used for calibration was 10 by 7 cells. The calibration algorithm locates

the interior vertices of the pattern, which results in 54 nodes being identified. All images

were taken approximately 20 cm from the checkerboard pattern with each cell measuring

7.34× 7.34 mm. The intrinsic parameters calculated for the camera in air and water are

given in Table A.1. The intrinsic parameters form the intrinsic matrix, K, given in [32]

by

K =


fx 0 0

s fy 0

cx cy 1

 (A.1)

where [fx fy] is the focal length, [cx cy] is the principle point, and s is the skew. The

intrinsic parameters are then used to correct for distortions before calculating extrinsic
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Table A.1: Camera parameters

Name Air Water Units
# of Images 30 25 [ ]
Focal Length [801.17 789.65] [1087.2 1082.6] [pixels]

Principle Point [605.94 358.89] [614.88 336.99] [pixels]
Skew 0 0 [%]

Radial Distortion [−0.2770 0.0660] [−0.1454 − 0.0514] [%]
Tangential Distortion [0 0] [0 0] [%]

Mean Re-projection Error 0.8672 1.4340 [pixels]

parameters and before performing measurements within an image. The effect of correcting

the distortion caused by the camera can be seen in Fig. A.1.

Figure A.1: Image before and after correcting for camera distortion
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A.2 Extrinsic parameters

Once the intrinsic parameters have been calculated for the camera in air and water,

the extrinsic parameters are found. The extrinsic parameters correspond to the relative

location of the camera to the plane that we intend to image. The extrinsic parameters

were found by affixing the checkerboard pattern to the base of the airfoil, capturing an

image and calculating the translation and rotation of the camera. The transformation

from the checkerboard frame to the world frame is given in [32] by

s [x y 1] = [X Y Z 1]

R
t

K (A.2)

where [x y] are the image points, [X Y Z] are the world coordinates in the checker-

board frame, R is the rotation matrix, t is the translation vector and K is the intrinsic

matrix. Due to the fact that the camera is mounted on a swivel and subject to small

changes in position between experiments, these parameters are recalculated before each

experiment to ensure proper calibration.
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Appendix B: Data collection routine

Algorithm 1 Data Collection

1: Define Test Matrix;
2: Open Communication with NI Board;
3: Define Sample Rate and Test Duration;
4: Connect to Arduino;
5: for Test Matrix do
6: Perform Tare;
7: Send Command String;
8: while Begin flag = false do
9: if Arduino Begin Test then

10: Start National instruments clock;
11: Start Matlab clock;
12: else
13: Begin flag = false;
14: end if
15: end while
16: while Current Time < Test Duration do
17: Collect image;
18: Read servo angle from Arduino;
19: Collect Matlab timestamp;
20: end while
21: Collect load data with timestamps from National Instruments board;
22: Store images, load data, servo angle, and test conditions in structure;
23: end for
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