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Recent developments in wireless ad-hoc and sensor networking motivates the inves-

tigation of sophisticated phenomena that arise in such networks from an information

theoretic point of view. In this dissertation, we focus on two of these phenomena:

correlation and cooperation. In wireless networks, correlation mainly originates from

the correlated observations of different users, while cooperation is enabled by the

wireless medium, which lets third-party users obtain part of the information from the

transmitter in order to help deliver it to the destination.

We first study the effects of source correlation in multi-user networks. More

specifically, we study the distributed source and channel coding problem for correlated

sources, e.g., multiple access channel with correlated sources and multi-terminal rate-

distortion problem. In these problems, it is often needed to characterize the joint

probability distribution of a pair of random variables satisfying an n-letter Markov

chain. An exact characterization of such probability distributions is intractable. We

propose a new data processing inequality, which provides us a single-letter necessary



condition for the n-letter Markov chain. Our new data processing inequality yields

outer bounds for the multiple access channel with correlated sources and the multi-

terminal rate-distortion region.

Next, we investigate the role of correlation in cooperative multi-user networks. We

consider the basic three-node relay channel, which is the simplest model for coopera-

tive communications. We propose a new coding scheme for the relay channel, which is

in the form of block Markov coding and is based on preserving the correlation in the

channel inputs from the transmitter and the relay. The analysis of the error events

provides us with three conditions containing mutual information expressions involv-

ing infinite letters of the underlying random process. We lower bound these mutual

informations to obtain three single-letter conditions. We show that the achievable

rates with the classical compress-and-forward (CAF) scheme is a special case of the

achievable rates in our new coding scheme. We therefore conclude that our proposed

coding scheme yields potentially larger rates than the CAF scheme.

Finally, we focus on the diamond channel, which is a four-node cooperative com-

munication network. We study a special class of diamond channels, which consists of

a transmitter, a noisy relay and a noiseless relay, and a destination. We determine

the capacity of this class of diamond channels by providing an achievable scheme and

a converse. The capacity we show is strictly smaller than the cut-set bound. Our

result also shows the optimality of a combination of decode-and-forward (DAF) and

CAF at the noisy relay node. This is the first example where a combination of DAF

and CAF is shown to be capacity achieving. We also uncover a duality between this

diamond channel coding problem and the Kaspi-Berger source coding problem.
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Chapter 1

Introduction

The field of information theory entered the multi-user era in 1961 when Shannon

studied the two-way channel [34]. The area of multi-user information theory blos-

somed in 1970s with celebrated results, such as the capacity region of the multiple

access channel by Ahlswede [1] and Liao [28] in 1971, the lossless distributed source

coding region by Slepian and Wolf [35] in 1973, the capacity region of the degraded

broadcast channel by Bergmans [5] and Gallager [19] in 1974, etc. However, most

problems in multi-user information theory remain open today, including the capacity

regions of the two way channel, general broadcast channel, interference channel, relay

channel, and the lossy distributed source coding region, etc.

As we entered the new century, the theoretical research in multi-user information

theory has had a stronger connection with, and therefore, has been stimulated by, the

thriving practical developments in wireless communication networks. For example, in

cellular networks and wireless LANs, which are mature commercial wireless commu-

nication technologies, the uplinks and downlinks can be modeled as multiple access

and broadcast channels, which have been studied extensively in multi-user informa-

tion theory. Recently, the research emphasis has shifted to more complicated wireless
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networks, e.g., ad hoc and sensor networks. The complication in the structure of

such wireless networks introduces more sophisticated phenomena to be considered in

a theoretical context, e.g., correlation, cooperation, etc. Correlation in these scenar-

ios mainly comes from the correlated observations of different users. For example,

in sensor networks, neighboring sensors obtain correlated observations. Cooperation,

on the other hand, is enabled by the wireless medium, which lets third-party users

obtain part of the information from the transmitter in order to help deliver it to the

destination.

We begin our work by studying the effects of source correlation in multi-user infor-

mation theory. More specifically, we study the distributed source and channel coding

problem for correlated sources, e.g., multiple access channel with correlated sources

and multi-terminal rate-distortion region. There has been a significant amount of

effort directed towards solving the multi-terminal rate distortion problem since the

milestone paper of Wyner and Ziv [42] on the rate-distortion function of a single source

with side information at the decoder, which is a special case of the multi-terminal

rate-distortion problem. Among all the attempts made on this difficult problem, the

notable works by Tung [37] and Housewright [22] (see also [4]) provide inner and

outer bounds for the rate-distortion region. A more recent progress on this problem

has been made by Wagner and Anantharam in [39], where a tighter outer bound was

given. The multiple access channel with correlated sources was first studied by Cover,

El Gamal and Salehi in [9] (a simpler proof was given in [2]), where an achievable

region expressed by single-letter entropies and mutual informations was given. This

achievable region was shown to be suboptimal by Dueck [16]. Cover, El Gamal and
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Salehi [9] also provided a capacity result with both achievability and converse in the

form of some incomputable n-letter mutual informations.

In distributed source and channel coding for correlated sources, it is often needed

to characterize the joint probability distribution of a pair of random variables satisfy-

ing an n-letter Markov chain. An exact characterization of such probability distribu-

tions is intractable. In Chapter 2, we propose a new data processing inequality, which

provides us a single-letter necessary condition for the n-letter Markov chain. Our new

data processing inequality yields outer bounds for the multiple access channel with

correlated sources and the multi-terminal rate-distortion region.

Next, we study the role of correlation in cooperative multi-user networks. We

focus on the relay channel. As the simplest model for cooperative communications,

relay channel has attracted plenty of attention since 1971, when it was introduced

by van der Meulen [38]. In 1979, Cover and El Gamal proposed two major coding

schemes for the relay channel [8]. These two schemes are widely known as Decode-

And-Forward (DAF) and Compress-And-Forward (CAF) today; see [25] for a recent

review. In our work, we focus on the CAF scheme. In CAF, correlation is created

between the transmitter and the relay, through the channel between them, and this

correlation is utilized to improve the achievable rates. The shortcoming of the CAF

scheme is that the correlation offered by the block coding structure is not utilized

effectively, since in each block, the channel inputs from the transmitter and the relay

are independent, as the transmitter sends the message only once. We know that

the essence of good coding schemes in multi-user systems with correlated sources

(e.g., [2, 9]) is to preserve the correlation of the sources in the channel inputs.
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Motivated by this basic observation, in Chapter 3, we propose a new coding scheme

for the relay channel, which is in the form of block Markov coding and preserves the

correlation in the channel inputs from the transmitter and the relay. At the decod-

ing stage, we perform joint decoding for the entire B blocks. The analysis of the

error events provides us three conditions containing mutual information expressions

involving infinite letters of the underlying random process. To obtain a computable

result, we lower bound these mutual informations by noting some Markov structure

in the underlying random process. This operation gives us three conditions to be sat-

isfied by the achievable rates which involve eleven variables. We finish our analysis

by revisiting the CAF scheme. First, we develop an equivalent representation for the

achievable rates given in [8] for the CAF scheme. We then show that this equivalent

representation for the achievable rates for the CAF scheme is a special case of the

achievable rates in our new coding scheme, which is obtained by a special selection

of the eleven random variables mentioned above. We therefore conclude that our

proposed coding scheme yields potentially larger rates than the CAF scheme. More

importantly, our new coding scheme creates more possibilities, and therefore a spec-

trum of new achievable schemes for the relay channel through the selection of the

underlying probability distribution.

We then focus on the diamond channel, a relatively simple cooperative network,

which consists of four nodes: one transmitter, two relays and one receiver. The

diamond channel was first proposed by Schein in his Ph.D. dissertation [32]. The

diamond channel may be viewed as more complicated than the standard three-node

relay channel as it contains one more node; however, it may also be viewed as simpler
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than the standard relay channel as it does not have a direct link from the source to

the destination, simplifying the temporal aspects of the coding problem. In addition,

the diamond channel may be viewed as the most simple generalization of the standard

relay channel to multi-relay ad-hoc wireless communication channels. The capacity

of the general diamond channel is an open problem. Schein [32] studied several

special classes of diamond channels. Among them, we will focus on a special class

of diamond channels, in which the channels from the two relays to the receiver are

specified as two finite-rate, noiseless, orthogonal links, and one of the branches of the

broadcast channel from the transmitter to the two relays is noiseless. Schein proposed

two achievability schemes for this class of diamond channels without showing the

optimality of them.

In Chapter 4, we prove the capacity of this class of diamond channels by providing

an achievable scheme and a converse. The capacity we show is strictly smaller than

the cut-set bound. Our result also shows the optimality of a combination of DAF

and CAF at the noisy relay node. This is the first example where a combination of

DAF and CAF is shown to be capacity achieving. Finally, we note that there exists

a duality between this diamond channel coding problem and the Kaspi-Berger source

coding problem.

The rest of this dissertation is organized as follows. In Chapter 2, we discuss our

work on distributed coding of correlated sources, where we develop a new data pro-

cessing inequality and apply it to distributed source and channel coding. In Chapter 3,

we present our new coding scheme for the relay channel. In Chapter 4, we present

our work on the capacity of a class of diamond channels. We present our conclusions

5



in Chapter 5.
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Chapter 2

A New Data Processing Inequality and Its Applications in

Distributed Source and Channel Coding

2.1 Problem Formulation

In this chapter, we consider a pair of correlated discrete source sequences with length

n, (Un, V n) = {(U1, V1), . . . , (Un, Vn)}, which are independent and identically dis-

tributed (i.i.d.) in time, i.e.,

p(un, vn) =
n
∏

i=1

p(ui, vi) (2.1)

and

p(ui, vi) = p(u, v), i = 1, . . . , n (2.2)

where the single-letter joint distribution p(u, v) is defined on the alphabet U ×V. Let

(X1, X2) be two random variables such that (X1, X2, U
n, V n) satisfies

p(x1, x2, u
n, vn) = p(un, vn)p(x1|un)p(x2|vn) (2.3)
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or equivalently1,

X1 −→ Un −→ V n −→ X2

This Markov chain appears in some problems involving the distributed coding of

correlated sources. For example, in distributed rate-distortion problem [4, 22, 37],

(X1, X2) is used to reconstruct, (Ûn, V̂ n), an estimate of the sources (Un, V n), and

in the problem of multiple access channel with correlated sources [2, 9], (X1, X2) is

sent though a multiple access channel in one channel use. Although these specific

problems have been studied separately in their own contexts, the common nature of

these problems, the distributed coding of correlated sources, enables us to conduct a

general study, which will be applicable to these specific problems.

The study of the converse proofs of (or the necessary conditions for) the above

specific problems raises the following question. We know that the correlation between

(X1, X2) is limited, if a single-letter Markov chain X1 −→ U −→ V −→ X2 is to be

satisfied. With the help of more letters of the sources, i.e., X1 −→ Un −→ V n −→ X2

with n larger than 1, the correlation between (X1, X2) may increase. The question

here is how correlated (X1, X2) can be, when n increases. More specifically, can they

be arbitrarily correlated? To answer this question, we need to determine the set of

all “valid” joint probability distributions p(x1, x2), if X1 −→ Un −→ V n −→ X2 is

to be satisfied for some n, i.e., for given source pair (U, V ), we need to determine the

1X1 = f1(U
n) and X2 = f2(V

n) is a degenerate case.
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following set2

SX1X2 ,

{p(x1, x2) :∃n∈N
+, p(x1|un), p(x2|vn), s.t. p(x1, x2) =

∑

un,vn

p(x1|un)p(un, vn)p(x2|vn)}

(2.4)

with p(un, vn) satisfying (2.1) and (2.2).

We note that it is practically impossible to exhaust the elements in the set SX1X2

by searching over all conditional distribution pairs (p(x1|un), p(x2|vn)) for all possible

positive integer n. In other words, determining the set of all possible probability

distributions p(x1, x2) satisfying the n-letter Markov chain X1 −→ Un −→ V n −→

X2, i.e., the set SX1X2, seems computationally intractable. To avoid this problem,

we seek a single-letter necessary condition for the n-letter Markov chain X1 −→

Un −→ V n −→ X2. The resulting set, say S ′
X1X2

, characterized by this computable

single-letter constraints, will contain the target set SX1X2.

The most intuitive necessary condition for a Markov chain is the data processing

inequality [11, p. 32], i.e., if X1 −→ Un −→ V n −→ X2, then

I(X1; X2) ≤ I(Un; V n) = nI(U ; V ) (2.5)

Since I(Un; V n) increases linearly with n, the constraint in (2.5) will be loose when n

is sufficiently large. Although the data processing inequality in its usual form does not

2We are also interested in determining the set of all “valid” probability distributions
p(x1, x2, u1, v1), if this Markov chain constraint is to be satisfied.
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prove useful in this problem, we will still use the basic methodology of employing a

data processing inequality to find a necessary condition for the n-letter Markov chain

under consideration. For this, we will introduce a new measure of correlation, and

develop a new data processing inequality based on this new measure of correlation.

Spectral method has been instrumental in the study of some properties of pairs of

correlated random variables, especially, those of i.i.d. sequences of pairs of correlated

random variables, e.g., common information in [41] and isomorphism in [29]. In this

chapter, we use spectral method to introduce a new data processing inequality, which

provides a single-letter necessary condition for the joint distributions satisfying the

n-letter Markov chain.

2.2 Main Results

2.2.1 Some Preliminaries

In this section, we provide some basic results which will be used in our later develop-

ment. The concepts used here are originally introduced by Witsenhausen in [41] in

the context of operator theory. Here, we focus on the finite alphabet case, and derive

our results in matrix form.

We first introduce our matrix notation for probability distributions. For a pair of

discrete random variables X and Y , which take values in X and Y , respectively, the

|X | × |Y| joint probability distribution matrix PXY is defined as

PXY (i, j) , Pr(X = xi, Y = yj) (2.6)
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where PXY (i, j) denotes the (i, j)-th element of the matrix PXY . The marginal dis-

tribution matrix of a random variable X, PX , is defined as a diagonal matrix with

PX(i, i) , Pr(X = xi) (2.7)

and the vector-form marginal distribution, pX , is defined as3

pX(i) , Pr(X = xi) (2.8)

or equivalently pX = PXe, where e is the vector of all ones. pX can also be defined as

pX , PXY for some degenerate random variable Y whose alphabet size |Y| is equal

to one. For convenience, we define

p
1
2
X , P

1
2

Xe (2.9)

For conditional distributions, we define matrix PXY |z as

PXY |z(i, j) , Pr(X = xi, Y = yj |Z = z) (2.10)

The vector-form conditional distribution pX|z is defined as

pX|z(i) , Pr(X = xi|Z = z) (2.11)

or equivalently, pX|z , PXY |z for some degenerate random variable Y whose alphabet

3In this chapter, we only consider the case where pX is a positive vector.

11



size |Y| is equal to one.

We define a new matrix, P̃XY , which will play an important role in the rest of the

chapter, as

P̃XY , P
− 1

2
X PXY P

− 1
2

Y (2.12)

Since pX , PXY for some degenerate random variable Y whose alphabet size |Y| is

equal to one, we define

p̃X = P
− 1

2
X PXY P

− 1
2

Y = P
− 1

2
X pX = p

1
2
X (2.13)

The counterparts for conditional distributions, P̃XY |z and p̃X|y, can be defined simi-

larly.

A valid joint distribution matrix, PXY , is a matrix whose entries are non-negative

and sum to 1. Due to this constraint, not every matrix will qualify as a P̃XY corre-

sponding to a joint distribution matrix as defined in (2.12). A necessary and sufficient

condition for P̃XY to correspond to a joint distribution matrix is given in Theorem

2.2.1 below, which identifies the spectral properties of P̃XY . Before stating the the-

orem, we provide a lemma and a definition regarding stochastic matrices, which will

be used in the proof of the theorem.

Definition 2.2.1 [6, p. 48] A square matrix T of order n is called (row) stochastic

if

T (i, j) ≥ 0 i, j = 1, . . . , n,
n
∑

j=1

T (i, j) = 1 i = 1, . . . , n (2.14)
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Lemma 2.2.1 [6, p. 49] The spectral radius of a stochastic matrix is 1. A non-

negative matrix T is stochastic if and only if e is an eigenvector of T corresponding

to the eigenvalue 1.

Theorem 2.2.1 Assume a pair of given marginal distributions PX and PY . A non-

negative matrix P is a joint distribution matrix with marginal distributions PX and

PY , i.e., Pe = pX , PXe and P Te = pY , PY e, if and only if the singular value de-

composition (SVD) of the non-negative matrix P̃ , which is defined as P̃ , P
− 1

2
X PP

− 1
2

Y

satisfies

P̃ = MΛNT = p
1
2
X(p

1
2
Y )T +

l
∑

i=2

λiµiν
T
i (2.15)

where M , [µ1, . . . , µl] and N , [ν1, . . . , νl] are two matrices such that MT M = I

and NT N = I, Λ , diag[λ1, . . . , λl] and l = min(|X |, |Y|); µ1 = p
1
2
X , ν1 = p

1
2
Y , and

λ1 = 1 ≥ λ2 ≥ · · · ≥ λl ≥ 0. That is, all of the singular values of P̃ are between 0 and

1, the largest singular value of P̃ is 1, and the corresponding left and right singular

vectors are p
1
2
X and p

1
2
Y .

Proof: We begin with the “if” part. We want to show that for any non-negative

matrix P where the corresponding P̃ , P
− 1

2
X PP

− 1
2

Y satisfies (2.15), P is a joint distri-
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bution matrix with marginal distributions pX and pY . Let P̃ satisfy (2.15), then

Pe = P
1
2

X P̃P
1
2

Y e

= P
1
2

X

(

p
1
2
X(p

1
2
Y )T +

l
∑

i=2

λiµiν
T
i

)

p
1
2
Y

= P
1
2

Xp
1
2
X(p

1
2
Y )T p

1
2
Y + P

1
2

X

l
∑

i=2

λiµiν
T
i ν1

= pX (2.16)

Similarly, P Te = pY . Thus, the non-negative matrix P is a joint distribution matrix

with marginal distributions pX and pY .

Now we turn to the “only if” part. We want to show that for any joint distribution

matrix P with marginal distributions pX and pY , (2.15) should be satisfied. We

consider a joint distribution P with marginal distributions pX and pY . We need to

show that the singular values of P̃ lie in [0, 1], the largest singular value is equal to 1,

and p
1
2
X and p

1
2
Y , respectively, are the left and right singular vectors corresponding to

the singular value 1. To this end, we first construct a Markov chain X −→ Y −→ Z

with PXY = PZY = P (this construction comes from [41]). Note that this also

implies PX = PZ , P̃XY = P̃ZY = P̃ , and PX|Y = PZ|Y . The special structure of the
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constructed Markov chain provides the following:

PX|Z = PX|Y PY |Z

= PX|Y PY |X

= PP−1
Y P T P−1

X

= P
1
2

X(P
− 1

2
X PP

− 1
2

Y )(P
− 1

2
Y P TP

− 1
2

X )P
− 1

2
X

= P
1
2

X P̃ P̃ T P
− 1

2
X (2.17)

which implies that the matrix PX|Z is similar to the matrix P̃ P̃ T [20, p. 44]. Therefore,

all the eigenvalues of PX|Z are the eigenvalues of P̃ P̃ T as well, and if ν is a left

eigenvector of PX|Z corresponding to an eigenvalue λ, then P
1
2

Xν is a left eigenvector

of P̃ P̃ T corresponding to the same eigenvalue.

We note that P T
X|Z is a stochastic matrix, therefore, from Lemma 2.2.1, e is a

left eigenvector of PX|Z corresponding the eigenvalue 1, which is equal to the spectral

radius of PX|Z . Since PX|Z is similar to P̃ P̃ T , we have that p
1
2
X is a left eigenvector

of P̃ P̃ T with eigenvalue 1, and all the eigenvalues of P̃ P̃ T lie in [−1, 1]. In addition,

P̃ P̃ T is a symmetric positive semi-definite matrix, which implies that the eigenvalues

of P̃ P̃ T are real and non-negative. Since the eigenvalues of P̃ P̃ T are non-negative,

and the largest eigenvalue is equal to 1, we conclude that all of the eigenvalues of

P̃ P̃ T lie in the interval [0, 1].

The singular values of P̃ are the square roots of the eigenvalues of P̃ P̃ T , and the

left singular vectors of P̃ are the eigenvectors of P̃ P̃ T . Thus, the singular values of

15



P̃ lie in [0, 1], the largest singular value is equal to 1, and p
1
2
X is a left singular vector

corresponding to the singular value 1. The corresponding right singular vector is

ν
T
1 = µ

T
1 P̃ = (p

1
2
X)T P

− 1
2

X PP
− 1

2
Y = eT PP

− 1
2

Y = pT
Y P

− 1
2

Y = (p
1
2
Y )T (2.18)

which concludes the proof. �

This theorem implies that there is a one-to-one mapping between all joint distri-

bution matrices P and all non-negative matrices P̃ satisfying (2.15). It is easy to

see from (2.12) that there is a corresponding P̃ for every P . Conversely, any given

non-negative matrix P̃ satisfying (2.15) gives a unique pair of marginal distributions

(PX , PY ), which is specified by the left and right positive singular vectors correspond-

ing to its largest singular value4. Then, from (2.12), using P̃ and (PX , PY ) given by

its singular vectors, we obtain a corresponding P as

P = P
1
2

X P̃P
1
2

Y (2.19)

Because of this one-to-one relationship, exploring all possible joint distribution ma-

trices P is equivalent to exploring all possible non-negative matrices P̃ satisfying

(2.15).

Here, λ2, . . . , λl can be viewed as a group of quantities, which measures the cor-

relation between random variables X and Y . We note that when λ2 = · · · = λl = 1,

X and Y are fully correlated, and, when λ2 = · · · = λl = 0, X and Y are indepen-

4We observe that there may exist multiple singular values equal to 1, but µ1 and ν1 are the only
non-negative singular vectors.
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dent. In all the cases between these two extremes, X and Y are arbitrarily correlated.

Moreover, Witsenhausen showed that X and Y have a common data if and only if

λ2 = 1 [41]. In the next section, we will propose a new data processing inequality

with respect to these new measures of correlation, λ2, . . . , λl. By utilizing this new

data processing inequality, we will provide a single-letter necessary condition for the

n-letter Markov chain X1 −→ Un −→ V n −→ X2.

2.2.2 A New Data Processing Inequality

In this section, first, we introduce a new data processing inequality in the following

theorem. Here, we provide a lemma that will be used in the proof of the theorem.

Lemma 2.2.2 [21, p. 178] For matrices A and B

λi(AB) ≤ λi(A)λ1(B) (2.20)

where λi(·) denotes the i-th largest singular value of a matrix.

Theorem 2.2.2 If X −→ Y −→ Z, then

λi(P̃XZ) ≤ λi(P̃XY )λ2(P̃Y Z) ≤ λi(P̃XY ) (2.21)

where i = 2, . . . , rank(P̃XZ).
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Proof: From the structure of the Markov chain, and from the definition of P̃XY in

(2.12), we have

P̃XZ = P
− 1

2
X PXZP

− 1
2

Z

= P
− 1

2
X PXY P

− 1
2

Y P
− 1

2
Y PY ZP

− 1
2

Z

= P̃XY P̃Y Z (2.22)

Using (2.15) for P̃XZ , we obtain

P̃XZ =p
1
2
X(p

1
2
Z)T +

l
∑

i=2

λi(P̃XZ)µi(P̃XZ)νi(P̃XZ)T (2.23)

and applying (2.15) to P̃XY and P̃Y Z yields

P̃XY P̃Y Z

=

(

p
1
2
X(p

1
2
Y )T +

l
∑

i=2

λi(P̃XY )µi(P̃XY )νi(P̃XY )T

)

×

×
(

p
1
2
Y (p

1
2
Z)T +

l
∑

i=2

λi(P̃Y Z)µi(P̃Y Z)νi(P̃Y Z)T

)

=p
1
2
X(p

1
2
Z)T +

(

l
∑

i=2

λi(P̃XY )µi(P̃XY )νi(P̃XY )T

)(

l
∑

i=2

λi(P̃Y Z)µi(P̃Y Z)νi(P̃Y Z)T

)

(2.24)

where the two cross-terms vanish because p
1
2
Y plays the roles of both ν1(P̃XY ) and

µ1(P̃Y Z), and therefore, p
1
2
Y is orthogonal to both νi(P̃XY ) and µj(P̃Y Z), for all i, j 6= 1.
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Using (2.22) and equating (2.23) and (2.24), we obtain

l
∑

i=2

λi(P̃XZ)µi(P̃XZ)νi(P̃XZ)T

=

(

l
∑

i=2

λi(P̃XY )µi(P̃XY )νi(P̃XY )T

)(

l
∑

i=2

λi(P̃Y Z)µi(P̃Y Z)νi(P̃Y Z)T

)

(2.25)

The proof is completed by applying Lemma 2.2.2 to (2.25) and also by noting that

λ2(P̃Y Z) ≤ 1 from Theorem 2.2.1. �

Theorem 2.2.2 is a new data processing inequality in the sense that the processing

from Y to Z reduces the correlation measure λi, i.e., the correlation between X and Z,

λi(P̃XZ), is less than or equal to the correlation measure between X and Y , λi(P̃XY ).

We note that this theorem is similar to the data processing inequality in [11, p. 32]

except instead of mutual information, we use λi(P̃XY ) as the correlation measure. In

the sequel, we will show that this new data processing inequality helps us develop a

necessary condition for the n-letter Markov chain while the data processing inequality

in its usual form [11, p. 32] is not useful in this context.

2.2.3 A Necessary Condition for the n-letter Markov Chain

Now, we switch our attention to i.i.d. sequences of correlated sources. Let (Un, V n) be

a pair of i.i.d. (in time) sequences, where each letter of these sequences satisfies a joint

distribution PUV . Thus, the joint distribution of the sequences is PUnV n = P⊗n
UV , where

A⊗1 , A, A⊗k , A⊗A⊗(k−1), and ⊗ denotes the Kronecker product of matrices [20].
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From (2.12), we know that

PUV = P
1
2

U P̃UV P
1
2

V (2.26)

Then,

PUnV n = P⊗n
UV = (P

1
2

U P̃UV P
1
2

V )⊗n = (P
1
2

U )⊗nP̃⊗n
UV (P

1
2

V )⊗n (2.27)

We also have PUn = P⊗n
U and PV n = P⊗n

V . Thus,

P̃UnV n , P
− 1

2
Un PUnV nP

− 1
2

V n

= (P
− 1

2
U )⊗n(P

1
2

U )⊗nP̃⊗n
UV (P

1
2

V )⊗n(P
− 1

2
V )⊗n

= P̃⊗n
UV (2.28)

Now, applying SVD to P̃UnV n , we have

P̃UnV n = MnΛnN
T
n = P̃⊗n

UV = M⊗nΛ⊗n(N⊗n)T (2.29)

From the uniqueness of the SVD, we know that Mn = M⊗n, Λn = Λ⊗n and Nn = N⊗n.

Then, the ordered singular values of P̃UnV n are

{1, λ2(P̃UV ), . . . , λ2(P̃UV ), . . . }

where the second through the n + 1-st singular values are all equal to λ2(P̃UV ).

From Theorem 2.2.2, we know that if X1 −→ Un −→ V n −→ X2, then, for i = 2,
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. . . , min(|X1|, |X2|),

λi(P̃X1X2) ≤ λ2(P̃X1Un)λi(P̃UnV n)λ2(P̃V nX2) (2.30)

We showed above that λi(P̃UnV n) ≤ λ2(P̃UV ) for i ≥ 2. Therefore, for i = 2, . . . ,

min(|X1|, |X2|), we have

λi(P̃X1X2) ≤ λ2(P̃X1Un)λ2(P̃UV )λ2(P̃V nX2) (2.31)

From Theorem 2.2.1, we know that λ2(P̃X1Un) ≤ 1 and λ2(P̃V nX2) ≤ 1.

Based on the above discussion, we have the following theorem.

Theorem 2.2.3 If X1 −→ Un −→ V n −→ X2, then, for i = 2, . . . , min(|X1|, |X2|),

λi(P̃X1X2) ≤ λ2(P̃UV ) (2.32)

We note that for a given finite n, the above theorem can be strengthened by

developing a tighter upper bound for λ2(P̃X1Un) and λ2(P̃V nX2) in (2.31). However,

we will show in Appendix 2.A that the smallest upper bound for λ2(P̃X1Un) and

λ2(P̃V nX2) that is valid for all n ∈ N
+ is equal to 1.

Theorem 2.2.3 provides a single-letter necessary condition for the n-letter Markov

chain X1 −→ Un −→ V n −→ X2 on the joint probability distribution p(x1, x2). The

set characterized by this single-leter condition is defined as follows.

S ′
X1X2

, {p(x1, x2) : λi(P̃X1X2) ≤ λ2(P̃UV ), for i = 2, . . . , min(|X1|, |X2|)} (2.33)
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From Theorem 2.2.3, we have

SX1X2 ⊆ S ′
X1X2

(2.34)

where SX1X2 is defined in (2.4).

Theorem 2.2.3 also answers the question we posed in Section 2.1. Our question

was whether (X1, X2) can be arbitrarily correlated, when we allow n to take any value

in N
+. Theorem 2.2.3 shows that (X1, X2) cannot be arbitrarily correlated, as the

correlation measures between (X1, X2), λi(P̃X1X2), are upper bounded by, λ2(P̃UV ),

the second correlation measure of the single-letter sources (U, V ), no matter what

value n takes.

As we mentioned in Section 2.1, the data processing inequality in its usual form

[11, p. 32] is not helpful in this problem, while our new data processing inequal-

ity, i.e., Theorem 2.2.2, provides a single-letter necessary condition for this n-letter

Markov chain. The main reason for this difference is that while the mutual informa-

tion, I(Un; V n), the correlation measure in the original data processing inequality,

increases linearly with n, λi(P̃UnV n), the correlation measure in our new data pro-

cessing inequality, is bounded as n increases, and therefore, makes the problem more

tractable.

Theorem 2.2.3 is valid for all discrete random variables. To illustrate the utility

and also the limitations of Theorem 2.2.3, we will study a binary example in detail

in Appendix 2.B. In this example, (U, V, X1, X2) are all binary random variables.

For this specific binary example, we will apply Theorem 2.2.3 to obtain a necessary

condition for the n-letter Markov chain. Moreover, the special structure of this binary
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example will enable us to provide a sharper necessary condition than the one given

in Theorem 2.2.3. We will compare these two necessary conditions and a sufficient

condition for this binary example.

2.2.4 General Result

Theorem 2.2.3 in Section 2.2.3 provides a necessary condition for joint probability

distributions p(x1, x2), which satisfy the Markov chain X1 −→ Un −→ V n −→ X2.

In certain specific problems, e.g., multiple access channel with correlated sources and

multi-terminal rate-distortion problem, in addition to p(x1, x2), the distributions of

(X1, X2) conditioned on parts of the n-letter sources may be needed5, e.g., p(x1, x2|u1, v1).

In this section, we will develop a result similar to that in Theorem 2.2.3 for conditional

distributions.

For a pair of i.i.d. sequences (Un, V n) of length n, we define U as an arbitrary

subset of {U1, . . . , Un}, i.e.,

U , {Ui1 , . . . , Uil} ⊂ {U1, . . . , Un} (2.35)

and similarly,

V , {Vj1, . . . , Vjk
} ⊂ {V1, . . . , Vn} (2.36)

In the following theorem, we propose an upper bound for λi(P̃X1X2|uv), when X1 −→

Un −→ V n −→ X2 is satisfied.

5The reader may wish to consult Sections 2.3 and 2.4 for further motivations to consider condi-
tional probability distributions.
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Theorem 2.2.4 Let (Un, V n) be a pair of i.i.d. sequences of length n, and let

the random variables X1, X2 satisfy X1 −→ Un −→ V n −→ X2. Then, for i =

2, . . . , min(|X1|, |X2|),

λi(P̃X1X2|uv) ≤ λ2(P̃UV ) (2.37)

where U ⊂ {U1, . . . , Un} and V ⊂ {V1, . . . , Vn}.

Proof: We consider a special case of (U, V ) as follows. We define U , {U1, . . . , Ul}

and V , {V1, . . . , Vm, Vl+1, . . . , Vl+k−m}. We also define the complements of U and V

as: U c , {U1, . . . , Un}\U and V c , {V1, . . . , Vn}\V . If U and V take other forms, we

can transform them to the form we defined above by permutations. We know that

p(x1, x2, u
c, vc|u, v) = p(x1|uc, u, v)p(uc, vc|u, v)p(x2|vc, v, u) (2.38)

In other words, given U = u and V = v, (X1, U
c, V c, X2) form a Markov chain. Thus,

from (2.22),

P̃X1X2|uv = P̃X1Uc|uvP̃UcV c|uvP̃V cX2|uv (2.39)

Furthermore,

P̃UcV c|uv =p̃T
V l

m+1|ul
m+1
⊗ p̃U l+k−m

l+1 |vl+k−m
l+1

⊗ P̃Un
l+k−m+1V n

l+k−m+1
(2.40)

As mentioned earlier, a vector marginal distribution can be viewed as a joint dis-

tribution matrix with a degenerate random variable whose alphabet size is equal to
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1. Since the rank of a vector is 1, from Theorem 2.2.1, the sole singular value of

p̃V l
m+1|ul

m+1
(and of p̃U l+k−m

l+1 |vl+k−m
l+1

) is equal to 1. Then,

λi(P̃UcV c|uv) = λi(P̃Un
l+k−m+1V n

l+k−m+1
) (2.41)

Combining (2.21), (2.39), and (2.41), we obtain

λi(P̃X1X2|uv) ≤ λ2(P̃UV ) (2.42)

which completes the proof. �

Now we focus on the conditional distribution p(x1, x2|u1, u2). We are interested in

the set of all possible conditional distributions p(x1, x2|u, v) satisfying X1 −→ Un −→

V n −→ X2, i.e., the following set

SX1X2|UV ,















p(x1, x2|u1, v1) :
∃n ∈ N

+, p(x1|un), p(x2|vn), s.t.

p(x1, x2|u1, v1) =
P

u2,...,un,v2...,vn
p(x1|un)p(x2|vn)p(un,vn)

p(u1,v1)















(2.43)

with p(un, vn) satisfying (2.1) and (2.2). Here, we simplify the notation by omitting

the subscripts in U1 and V1 in SX1X2|UV , i.e., We note that p(x1, x2), p(x1, x2|u1) and
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p(x1, x2|v1) are all functions of p(x1, x2|u1, v1) for given p(u1, v1), i.e.,

p(x1, x2) =
∑

u1,v1

p(x1, x2|u1, v1)p(u1, v1) (2.44)

p(x1, x2|u1) =
∑

v1

p(x1, x2|u1, v1)p(u1, v1) (2.45)

p(x1, x2|v1) =
∑

u1

p(x1, x2|u1, v1)p(u1, v1) (2.46)

Thus, λi(P̃X1X2), λi(P̃X1X2|U1), λi(P̃X1X2|V1), as well as λi(P̃X1X2|U1V1) are all functions

of p(x1, x2|u1, v1) for given p(u1, v1). We define the set S ′
X1X2|UV as follows

S ′
X1X2|U1V1

,















































p(x1, x2|u1, v1) :

λi(P̃X1X2) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|)

λi(P̃X1X2|U1
) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|)

λi(P̃X1X2|V1) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|)

λi(P̃X1X2|U1V1) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|)















































(2.47)

By applying Theorem 2.2.4 on p(x1, x2), p(x1, x2|u1), p(x1, x2|v1) and p(x1, x2|u1, v1),

respectively, we obtain

SX1X2|UV ⊆ S ′
X1X2|UV (2.48)

2.3 Example I: Multiple Access Channel with Correlated Sources

The problem of determining the capacity region of the multiple access channel with

correlated sources can be formulated as follows. Given a pair of i.i.d. correlated
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sources (U, V ) described by the joint probability distribution p(u, v), and a dis-

crete, memoryless, multiple access channel characterized by the transition probability

p(y|x1, x2), what are the necessary and sufficient conditions for the reliable transmis-

sion of n samples of the sources through the channel, in n channel uses, as n −→∞?

2.3.1 Existing Results

The multiple access channel with correlated sources was studied by Cover, El Gamal

and Salehi in [9] (a simpler proof was given in [2]), where an achievable region ex-

pressed by single-letter entropies and mutual informations was given as follows.

Theorem 2.3.1 [9] A source (U, V ) with joint distribution p(u, v) can be sent with

arbitrarily small probability of error over a multiple access channel characterized by

p(y|x1, x2), if there exist probability mass functions p(s), p(x1|u, s), p(x2|v, s), such

that

H(U |V ) < I(X1; Y |X2, V, S) (2.49)

H(V |U) < I(X2; Y |X1, U, S) (2.50)

H(U, V |W ) < I(X1, X2; Y |W, S) (2.51)

H(U, V ) < I(X1, X2; Y ) (2.52)

where

p(s, u, v,x1, x2, y) = p(s)p(u, v)p(x1|u, s)p(x2|v, s)p(y|x1, x2) (2.53)

27



and

w = f(u) = g(v) (2.54)

is the common information in the sense of Gacs and Korner (see [41]).

The above region can be simplified if there is no common information between U and

V as follows [9]

H(U |V ) < I(X1; Y |X2, V ) (2.55)

H(V |U) < I(X2; Y |X1, U) (2.56)

H(U, V ) < I(X1, X2; Y ) (2.57)

where

p(u, v, x1, x2, y) = p(u, v)p(x1|u)p(x2|v)p(y|x1, x2) (2.58)

This achievable region was shown to be suboptimal by Dueck [16].

Cover, El Gamal and Salehi [9] also provided a capacity result with both achiev-

ability and converse in the form of some incomputable n-letter mutual informations.

Their result is restated in the following theorem.

Theorem 2.3.2 [9] The correlated sources (U, V ) can be communicated reliably over

the discrete memoryless multiple access channel p(y|x1, x2) if and only if

[H(U |V ), H(V |U), H(U, V )] ∈
∞
⋃

n=1

Cn (2.59)
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where

Cn =































[R1, R2, R3] :

R1 < 1
n
I(Xn

1 ; Y n|Xn
2 , V n)

R2 < 1
n
I(Xn

2 ; Y n|Xn
1 , Un)

R3 < 1
n
I(Xn

1 , Xn
2 ; Y n)































(2.60)

for some

p(un,vn, xn
1 , x

n
2 , y

n) = p(xn
1 |un)p(xn

2 |vn)

n
∏

i=1

p(ui, vi)

n
∏

i=1

p(yi|x1i, x2i) (2.61)

i.e., for some Xn
1 and Xn

2 that satisfy the Markov chain Xn
1 −→ Un −→ V n −→ Xn

2 .

Some recent results on the transmission of correlated sources over multiple access

channels can be found in [27, 30].

2.3.2 A New Outer Bound

We propose a new outer bound for the multiple access channel with correlated sources

as follows.

Theorem 2.3.3 If a pair of i.i.d. sources (U, V ) with joint distribution p(u, v) can

be transmitted reliably through a discrete, memoryless, multiple access channel char-

acterized by p(y|x1, x2), then

H(U |V ) ≤ I(X1; Y |X2, U, Q) (2.62)

H(V |U) ≤ I(X2; Y |X1, V, Q) (2.63)

H(U, V ) ≤ I(X1, X2; Y |Q) (2.64)
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where random variables X1, X2 and Q are such that

p(x1,x2, y, u, v, q) = p(q)p(u, v)p(y|x1, x2)p(x1, x2|u, v, q) (2.65)

and for every given q,

p(x1, x2|u, v, Q = q) ∈ SX1X2|UV (2.66)

with SX1X2|UV defined in (2.43).

Note that every quantity in this theorem is in the form of a single-letter except

the conditional distribution p(x1, x2|u, v, Q = q) ∈ SX1X2|UV , which will be relaxed to

a single-letter form in the next section.

Proof: Consider a given block code of length n with encoders f1 : Un 7−→ X n
1 and

f2 : Vn 7−→ X n
2 and decoder g : Yn 7−→ Un × Vn. From Fano’s inequality [11, p. 39],

we have

H(Un, V n|Y n) ≤ n log2 |U × V|Pe + 1 , nǫn (2.67)
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For a code, for which Pe −→ 0, as n −→∞, we have ǫn −→ 0. Then,

nH(U |V ) = H(Un|V n)

= I(Un; Y n|V n) + H(Un|Y n, V n)

≤ I(Un; Y n|V n) + H(Un, V n|Y n)

1
≤ I(Un; Y n|V n) + nǫn

= H(Y n|V n)−H(Y n|Un, V n) + nǫn

2
= H(Y n|Xn

2 , V n)−H(Y n|Xn
1 , Xn

2 , Un, V n) + nǫn

3
= H(Y n|Xn

2 , V n)−H(Y n|Xn
1 , Xn

2 ) + nǫn

4
=

n
∑

i=1

[

H(Yi|Xn
2 , V n, Y i−1)−H(Yi|X1i, X2i)

]

+ nǫn

5

≤
n
∑

i=1

[

H(Yi|X2i, Vi)−H(Yi|X1i, X2i)
]

+ nǫn

6
=

n
∑

i=1

[

H(Yi|X2i, Vi)−H(Yi|X1i, X2i, Vi)
]

+ nǫn

=

n
∑

i=1

I(X1i; Yi|X2i, Vi) + nǫn (2.68)

where

1. from Fano’s inequality in (2.67);

2. from the fact that Xn
1 is a deterministic function of Un and Xn

2 is a deterministic

function of V n;

3. from p(yn|xn
1 , x

n
2 , u

n, vn) = p(yn|xn
1 , x

n
2 );

4. from the chain rule and the memoryless nature of the channel;
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5. from the property that conditioning reduces entropy;

6. from p(yi|x1i, x2i, vi) = p(yi|x1i, x2i).

Using a symmetrical argument, we obtain

nH(V |U) ≤
n
∑

i=1

I(X2i; Yi|X1i, Ui) + nǫn (2.69)

Moreover,

nH(U, V ) = H(Un, V n)

= I(Un, V n; Y n) + H(Un, V n|Y n)

≤ I(Un, V n; Y n) + nǫn

≤ I(Xn
1 , Xn

2 ; Y n) + nǫn

= H(Y n)−H(Y n|Xn
1 , Xn

2 ) + nǫn

=
n
∑

i=1

[

H(Yi|Y i−1)−H(Yi|X1i, X2i)
]

+ nǫn

≤
n
∑

i=1

[

H(Yi)−H(Yi|X1i, X2i)
]

+ nǫn

=
n
∑

i=1

I(X1i, X2i; Yi) + nǫn (2.70)

We note that the following three expressions, I(X1i; Yi|X2i, Vi), I(X2i; Yi|X1i, Ui), and

I(X1i, X2i; Yi), only depend on the marginal conditional distribution p(x1i, x2i|ui, vi)

with given p(ui, vi) and p(yi|x1i, x2i). We also note that X1i is a function of Un

and X2i is a function of V n. Thus X1i −→ Un −→ V n −→ X2i, and therefore

p(x1i, x2i|ui, vi) ∈ SX1X2|UV .

32



We introduce a time-sharing random variable Q [11, p. 397] as follows. Let Q be

uniformly distributed on {1, . . . , n} and be independent of U , V , i.e.,

p(u, v, q) = p(q)p(u, v) (2.71)

Define random variables X1 and X2 to be such that

p(x1, x2|u, v, Q = i) = p(x1i, x2i|ui, vi) (2.72)

and p(x1, x2|u, v, Q = i) ∈ SX1X2|U1V1 for all i = 1, . . . , n. Then,

n
∑

i=1

I(X1i; Yi|X2i, Vi) = nI(X1; Y |X2, V, Q) (2.73)

n
∑

i=1

I(X2i; Yi|X1i, Ui) = nI(X2; Y |X1, U, Q) (2.74)

n
∑

i=1

I(X1i, X2i; Yi) = nI(X1, X2; Y |Q) (2.75)

Combining (2.73), (2.74) and (2.75) with (2.68), (2.69) and (2.70) completes the proof.

�

2.3.3 A New Necessary Condition

It can be shown that the outer bound in Theorem 2.3.3 is equivalent to the following

H ∈ R(SX1X2|UV ) , co
{

⋃

p∈SX1X2|UV

R(p)
}

(2.76)
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where

H , [H(U |V ), H(V |U), H(U, V )] (2.77)

p , p(x1, x2|u, v) (2.78)

R(p) ,































[R1, R2, R3] :

R1≤ I(X1; Y |X2, V )

R2≤ I(X2; Y |X1, U)

R3≤ I(X1, X2; Y )































(2.79)

and co{·} represents the closure of the convex hull of the set argument.

From Section 2.2.4, we know that

SX1X2|UV ⊆ S ′
X1X2|UV (2.80)

Then, we obtain a single-letter outer bound for the multiple access channel with

correlated sources as follows.

Theorem 2.3.4 If a pair of i.i.d. sources (U, V ) with joint distribution p(u, v) can

be transmitted reliably through a discrete, memoryless, multiple access channel char-

acterized by p(y|x1, x2), then

H(U |V ) ≤ I(X1; Y |X2, V, Q) (2.81)

H(V |U) ≤ I(X2; Y |X1, U, Q) (2.82)

H(U, V ) ≤ I(X1, X2; Y |Q) (2.83)
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where random variable Q independent of (U, V ), and random variables X1, X2 with

conditional distribution p(x1, x2|u, v, q) are such that, for any given Q = q

λi(P̃X1X2|q) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.84)

λi(P̃X1X2|u1q) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.85)

λi(P̃X1X2|v1q) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.86)

λi(P̃X1X2|u1v1q) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.87)

Equivalently,

H ∈ R(S ′
X1X2|UV ) , co

{

⋃

p∈S′
X1X2|UV

R(p)
}

(2.88)

2.3.4 Numerical Example

In this section, we give some simple numerical examples to show the improvement our

proposed outer bound provides with respect to the cut-set bound [11]. For simplicity,

we only consider the sum-rate here. Assume a multiple access channel where the

alphabets of X1, X2 and Y are all binary, and the channel transition probability

matrix p(y|x1, x2) is given as

Y \X1X2 11 10 01 00

1 1 1/2 1/2 0

0 0 1/2 1/2 1
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The following is the cut-set bound for the sum-rate, which we provide as a benchmark,

H(U, V ) < max
p(x1,x2)

I(X1, X2; Y ) = 1 (2.89)

where the maximization is over all binary bivariate distributions. The maximum

is achieved by P (X1 = 1, X2 = 1) = P (X1 = 0, X2 = 0) = 1/2. We note that

the cut-set bound does not depend on the source distribution. We specify the single-

letter necessary condition we proposed in Section 2.3.3 and obtain the following upper

bound on the sum-rate

H(U, V ) < max
p(x1,x2):λ2(P̃X1X2

)≤λ2(P̃UV )
I(X1, X2; Y ) (2.90)

Note that we are using a weakened version of our outer bound in Theorem 2.3.4.

Theorem 2.3.4 restricts probability distribution p(x1, x2, u1, v1) by imposing four con-

straints in (2.84), (2.85), (2.86) and (2.87). We weaken our outer bound by imposing

only (2.84) on probability distribution p(x1, x2).

We also consider the achievable sum-rate proposed in [9]

H(U, V ) ≤ max
X1−→U−→V −→X2

I(X1, X2; Y ) (2.91)

First, we consider a binary source (U, V ) with the following joint distribution
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p(u, v)

U\V 1 0

1 1/3 1/6

0 1/6 1/3

In this case, H(U, V ) = 1.92. We first note by using the cut-set bound in (2.89) that

it is impossible to transmit this source through the given channel reliably. The upper

bound we developed in this chapter gives 2/3 for this source. We also note that, for

this case, our upper bound coincides with the single-letter achievability expression.

Therefore, for this case, our upper bound on sum-rate is tight, as it matches the

achievability expression.

Next, we consider a binary source (U, V ) with the following joint distribution

p(u, v)

U\V 1 0

1 0 0.1

0 0.1 0.8

In this case, H(U, V ) = 0.92, the single-letter achievability in (2.91) reaches 0.51 and

our upper bound is 0.56. We note that, in this case, the cut-set bound in (2.89) fails

to test whether it is possible to have reliable transmission or not, while our upper

bound determines conclusively that reliable transmission is not possible.

Finally, we consider a binary source (U, V ) with the following joint distribution
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p(u, v)

U\V 1 0

1 0 0.85

0 0.1 0.05

In this case, H(U, V ) = 0.75, the single-letter achievability expression in (2.91) gives

0.57 and our upper bound is 0.9. We note that the joint entropy of the sources falls

into the gap between the achievability expression and our upper bound, which means

that we cannot conclude whether it is possible (or not) to transmit these sources

through the channel reliably.

2.4 Example II: Multi-terminal Rate-distortion Region

Ever since the milestone paper of Wyner and Ziv [42] on the rate-distortion function

of a single source with side information at the decoder, there has been a significant

amount of efforts directed towards solving a generalization of this problem, the so

called multi-terminal rate-distortion problem. Among all the attempts on this difficult

problem, the notable works by Tung [37] and Housewright [22] (see also [4]) provide

the inner and outer bounds for the rate-distortion region. A more recent progress on

this problem is by Wagner and Anantharam in [39], where a tighter outer bound is

given. A very recent result can be found in [33].

The multi-terminal rate-distortion problem can be formulated as follows. Consider

a pair of discrete memoryless sources (U, V ), with joint distribution p(u, v) defined

on the finite alphabet U × V. The reconstruction of the sources is built on another
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finite alphabet Û ×V̂ . The distortion measures are defined as d1 : U×Û 7−→ R
+∪{0}

and d2 : V × V̂ 7−→ R
+ ∪ {0}. Assume that two distributed encoders are functions

f1 : Un 7−→ {1, 2, . . . , M1} and f2 : Vn 7−→ {1, 2, . . . , M2} and a joint decoder is the

function g : {1, 2, . . . , M1}×{1, 2, . . . , M2} 7−→ Ûn ˆ×Vn, where n is a positive integer.

A pair of distortion levels D , (D1, D2) is said to be R-attainable, for some rate pair

R , (R1, R2), if for all ǫ > 0 and δ > 0, there exist, some positive integer n and a set of

distributed encoders and joint decoder (f1, f2, g) with rates6 ( 1
n

log2 M1,
1
n

log2 M2) =

(R1 + δ, R2 + δ), such that the distortion between the sources (Un, V n) and the de-

coder output (Ûn, V̂ n) satisfies
(

Ed1(U
n, V̂ n), Ed2(V

n, V̂ n)
)

≤ (D1 + ǫ, D2 + ǫ) where

d1(U
n, Ûn) , 1

n

∑n
i=1 d1(Ui, Ûi) and d2(V

n, V̂ n) , 1
n

∑n
i=1 d2(Vi, V̂i). The problem

here is to determine, for a fixed D, the set R(D) of all rate pairs R, for which D is

R-attainable.

2.4.1 Existing Results

We restate the inner bound provided in [37] and [22] in the following theorem.

Theorem 2.4.1 [22, 37] R(D) ⊇ Rin(D), where Rin(D) is the set of all R such

that there exists a pair of discrete random variables (X1, X2), for which the following

three conditions are satisfied:

1. The joint distribution satisfies

X1 −→ U −→ V −→ X2 (2.92)

6By (A, B) < (C, D), we mean both A < B and C < D, and (A, B) ≤ (C, D) is defined in the
similar manner.
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2. The rate pair satisfies

R1 ≥ I(U, V ; X1|X2) (2.93)

R2 ≥ I(U, V ; X2|X1) (2.94)

R1 + R2 ≥ I(U, V ; X1, X2) (2.95)

3. There exists
(

Û(X1, X2), V̂ (X1, X2)
)

such that
(

Ed1(U, Û), Ed2(V, V̂ )
)

≤ D.

An outer bound is also given in [37] and [22] as follows.

Theorem 2.4.2 [22,37] R(D) ⊆ Rout,1(D), where Rout,1(D) is the set of all R such

that there exists a pair of discrete random variables (X1, X2), for which the following

three conditions are satisfied:

1. The joint distribution satisfies

X1 −→ U −→ V (2.96)

U −→ V −→ X2 (2.97)

2. The rate pair satisfies

R1 ≥ I(U, V ; X1|X2) (2.98)

R2 ≥ I(U, V ; X2|X1) (2.99)

R1 + R2 ≥ I(U, V ; X1, X2) (2.100)
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3. There exists
(

Û(X1, X2), V̂ (X1, X2)
)

such that
(

Ed1(U, Û), Ed2(V, V̂
)

) ≤ D.

A tighter upper bound was recently proposed by Wagner and Anantharam as

follows7.

Theorem 2.4.3 [39] R(D) ⊆ Rout,2(D), where Rout,2(D) is the set of all R such

that there exists a pair of discrete random variables (X1, X2), for which the following

three conditions are satisfied:

1. The joint distribution satisfies

p(x1, x2|u, v) :∃ random variable W,

p(x1, x2|u, v) =
∑

w

p(w)p(x1|w, u)p(x2|w, v) (2.101)

This distribution may be represented by the following Markov chain like notation

X1 −→ U −→ V −→ X2

ց ր

W

(2.102)

2. The rate pair satisfies

R1 ≥ I(U, V ; X1|X2) (2.103)

R2 ≥ I(U, V ; X2|X1) (2.104)

R1 + R2 ≥ I(U, V ; X1, X2) (2.105)

7This is a simplified version of [39] with the assumption that there is no non-trivial hidden source
behind (Un, V n).
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3. There exists
(

Û(X1, X2), V̂ (X1, X2)
)

such that
(

Ed1(U, Û), Ed2(V, V̂
)

) ≤ D.

We note that the above three bounds agree on both the second condition, i.e., the

rate constraints in terms of some mutual information expressions, and the third

condition, i.e., the reconstruction functions. However, the first condition in these

three bounds constraining the underlying probability distributions p(x1, x2|u, v) are

different. It is easy to see that the Markov chain condition in the inner bound,

i.e., X1 −→ U −→ V −→ X2, implies the Markov chain conditions in the outer

bound in Theorem 2.4.3, i.e., (2.102), while (2.102) implies the Markov chain condi-

tion in the outer bound in Theorem 2.4.2, i.e., X1 −→ U −→ V and U −→ V −→ X2.

2.4.2 A New Outer Bound

We propose a new outer bound for the multi-terminal rate-distortion region as follows.

Theorem 2.4.4 R(D) ⊆ Rout,3(D), where Rout,3(D) is the set of all R such that

there exist some positive integer n, and discrete random variables Q, X1, X2 for which

the following three conditions are satisfied:

1. The joint distribution satisfies

p(u,v, x1, x2, q) = p(q)p(x1, x2|u, v, q)p(u, v) (2.106)

where for given Q = q

p(x1, x2|u, v, Q = q) ∈ SX1X2|UV (2.107)
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with SX1X2|UV defined in (2.43).

2. The rate pair satisfies

R1 ≥ I(U, V ; X1|X2, Q) (2.108)

R2 ≥ I(U, V ; X2|X1, Q) (2.109)

R1 + R2 ≥ I(U, V ; X1, X2|Q) (2.110)

3. There exists
(

Û(X1, X2, Q), V̂ (X1, X2, Q)
)

such that
(

Ed1(U, Û), Ed2(V, V̂ )
)

≤

D.

Note that every quantity in this theorem is in the form of a single-letter except the

conditional distribution p(x1, x2|u, v, Q = q) ∈ SX1X2|U1V1 , which will be relaxed to a

single-letter form in the next section. We also note that the outer bound provided in

Theorem 2.4.4 contains a time-sharing random variable Q, which is not needed in the

two existing outer bounds given in Theorem 2.4.2 and 2.4.3. We will compare our

new outer bound with the existing bounds later.

Proof: We consider an arbitrary block code of two distributed encoders and one joint

decoder with reconstructions

(Û , V̂ )n ,
(

(Û , V̂ )1, . . . , (Û , V̂ )n

)

=
(

g1(Y, Z), . . . , gn(Y, Z)
)

(2.111)
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where Y = f1(U
n) and Z = f2(V

n), such that the distortions satisfy

(

Ed1(U
n, V̂ n), Ed2(V

n, V̂ n)
)

,

(

1

n
E

n
∑

i=1

d1(Ui, Ûi),
1

n
E

n
∑

i=1

d2(Vi, V̂i)

)

= (∆1, ∆2)

< (D1 + ǫ, D2 + ǫ) (2.112)

Here, we define M1 = |Y| and M2 = |Z|, where Y and Z are alphabets of Y and Z,

respectively.

44



We define the auxiliary random variables X1i = (Y, U i−1) and X2i = (Z, V i−1).

Then, we have

log2 M1 ≥ H(Y )

= I(Un, V n; Y )

1
≥ I(Un, V n; Y |Z)

=

n
∑

i=1

I(Ui, Vi; Y |Z, U i−1, V i−1)

=

n
∑

i=1

I(Ui, Vi; Y, Z|U i−1, V i−1)− I(Ui, Vi; Z|U i−1, V i−1)

2
=

n
∑

i=1

I(Ui, Vi; Y, Z|U i−1, V i−1)− I(Ui, Vi; Z|V i−1)

=

n
∑

i=1

I(Ui, Vi; Y, Z, U i−1|V i−1)− I(Ui, Vi; U
i−1|V i−1)− I(Ui, Vi; Z|V i−1)

3
=

n
∑

i=1

I(Ui, Vi; Y, Z, U i−1|V i−1)− I(Ui, Vi; Z|V i−1)

=

n
∑

i=1

I(Ui, Vi; Y, U i−1|Z, V i−1)

=

n
∑

i=1

I(Ui, Vi; X1i|X2i) (2.113)

where

1. follows from the fact that Y −→ Un −→ V n −→ Z. We observe that the

equality holds when Y is independent of Z;

2. follows from the fact that

p(z|ui, vi, v
i−1) = p(z|ui, vi, u

i−1, vi−1) (2.114)
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3. follows from the memoryless property of the sources.

Using a symmetrical argument, we obtain

log2 M2 ≥
n
∑

i=1

I(Ui, Vi; X2i|X1i) (2.115)

Moreover,

log2 M1M2 ≥H(Y, Z)

=I(Un, V n; Y, Z)

=

n
∑

i=1

H(Ui, Vi)−H(Ui, Vi|Y, Z, U i−1, V i−1)

=

n
∑

i=1

I(Ui, Vi; X1i, X2i) (2.116)

We define the reconstruction function as follows

(Ûi, V̂i) = g′
i(X1i, X2i) = g′

i

(

(Y, U i−1), (Z, V i−1)
)

= gi(Y, Z) (2.117)

where gi is defined in (2.111). Then, the expected distortion is

(

Ed1(U
n, V̂ n), Ed2(V

n, V̂ n)
)

=

(

1

n

n
∑

i=1

Ed1(Ui, Ûi),
1

n

n
∑

i=1

Ed2(Vi, V̂i)

)

= (∆1, ∆2)

(2.118)

We note that the three mutual information expressions, i.e., I(Ui, Vi; X1i|X2i),

I(Ui, Vi; X2i|X1i), and I(Ui, Vi; X1i, X2i), and the two distortion expressions, i.e.,

Ed1(Ui, Ûi) and Ed1(U2, Û2), only depend on the marginal conditional distribution
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p(x1i, x2i|ui, vi) and function g′
i with given p(ui, vi). We also note that X1i is a func-

tion of Un and X2i is a function of V n. Thus X1i −→ Un −→ V n −→ X2i, and

therefore p(x1i, x2i|ui, vi) ∈ SX1X2|U1V1
.

We introduce a time-sharing random variable Q, which is uniformly distributed

on {1, . . . , n} and independent of U and V , i.e.,

p(u, v, q) = p(u, v)p(q) (2.119)

Define random variables X1 and X2 be such that

p(x1i, x2i|ui, vi) = p(x1, x2|u, v, Q = i) (2.120)

and therefore p(x1, x2|u, v, Q = i) ∈ SX1X2|U1V1 for all i = 1, . . . , n. Then,

n
∑

i=1

I(Ui, Vi; X1i|X2i) = nI(U1, V1; X1|X2, Q) (2.121)

n
∑

i=1

I(Ui, Vi; X2i|X1i) = nI(U1, V1; X2|X1, Q) (2.122)

n
∑

i=1

I(Ui, Vi; X1i, X2i) = nI(U1, V1; X1, X2|Q) (2.123)

Define a reconstruction function g(X1, X2, Q) = (Û , V̂ ) to be such that

g(X1, X2, Q = i) = g′
i(X1, X2) (2.124)
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Then,

n
∑

i=1

Ed1(Ui, Ûi) = nEd1(U, Û) = n∆1 (2.125)

n
∑

i=1

Ed1(Vi, V̂i) = nEd1(V, V̂ ) = n∆2 (2.126)

So far we have shown that

(R1 + δ, R2 + δ) = (
1

n
log2 M1,

1

n
log2 M2) ∈ Rout,3

(

(∆1, ∆2)
)

(2.127)

We know that (∆1, ∆2) ≤ (D1+ǫ, D2+ǫ). Because of the monotonicity of the function

Rout,3(·), we have

(R1 +δ, R2 +δ) = (
1

n
log2 M1,

1

n
log2 M2) ∈ Rout,3

(

(∆1, ∆2)
)

⊆ Rout,3

(

(D1+ǫ, D2 +ǫ)
)

(2.128)

Let δ −→ 0 and ǫ −→ 0. Due to the continuity of the function Rout,3(·), which will

be proven in Appendix 2.D, we have [37, 42]

(R1, R2) ∈ Rout,3

(

(D1, D2)
)

(2.129)

�

Next, we state and prove that our outer bound given in Theorem 2.4.4 is tighter

than Rout,2(D) given in Theorem 2.4.3.
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Theorem 2.4.5

Rout,3(D) ⊆ Rout,2(D) (2.130)

Proof: We have two proofs for this theorem. We will provide the first proof here and

leave the second proof to Section 2.4.4. We prove this theorem by construction. For

every (R1, R2) point in Rout,3(D), there exist random variables Q, X1, X2 satisfying

(2.106), (R1, R2) pair satisfying (2.108), (2.109) and (2.110), and a reconstruction

pair
(

Û(X1, X2, Q), V̂ (X1, X2, Q)
)

such that
(

Ed1(U, Û), Ed2(V, V̂ )
)

≤ D. According

to [22], let X ′
1 = (X1, Q) and X ′

2 = (X2, Q). Then, p(x′
1, x

′
2|u, v) satisfies the condition

(2.102). Moreover,

R1 ≥ I(U, V ; X1|X2, Q) = I(U, V ; X ′
1|X ′

2) (2.131)

and similarly,

R2 ≥ I(U, V ; X2|X1, Q) = I(U, V ; X ′
2|X ′

1) (2.132)

and finally,

R1 + R2 ≥ I(U, V ; X1, X2|Q)

= H(U, V |Q)−H(U, V |X1, X2, Q)

1
= H(U, V )−H(U, V |X1, X2, Q)

= H(U, V )−H(U, V |X ′
1, X

′
2)

= I(U, V ; X ′
1, X

′
2) (2.133)
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where 1. follows from the fact that Q is independent of (U, V ). (Û , V̂ ) is a function

of (X1, X2, Q), and, therefore, it is a function of (X ′
1, X

′
2) =

(

(X1, Q), (X2, Q)
)

.

Hence, for every rate pair (R1, R2) ∈ Rout,3(D), there exist random variables

X ′
1, X

′
2 such that p(x′

1, x
′
2|u1, v1) satisfies (2.102), (R1, R2) pair satisfies the mutual

information constraints, and the reconstruction satisfies the distortion constraints. In

other words, (R1, R2) ∈ Rout,2(D), proving the theorem. �

2.4.3 A New Necessary Condition

From Section 2.2.4, we know that

SX1X2|UV ⊆ S ′
X1X2|UV (2.134)

Then, we obtain a single-letter outer bound for the multi-terminal rate-distortion

region as follows.

Theorem 2.4.6 R(D) ⊆ Rout,4(D), where Rout,4(D) is the set of all R such that

there exist discrete random variable Q independent of (U, V ), and discrete random

variables X1, X2 for which the following three conditions are satisfied:

1. The joint distribution satisfies,

p(u,v, x1, x2, q) = p(q)p(x1, x2|u, v, q)p(u, v) (2.135)
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where for given Q = q, p(x1, x2|u, v, Q = q) satisfies

λi(P̃X1X2|q) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.136)

λi(P̃X1X2|uq) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.137)

λi(P̃X1X2|vq) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.138)

λi(P̃X1X2|uvq) ≤ λ2(P̃UV ) i = 2, . . . , min(|X1|, |X2|) (2.139)

i.e., p(x1, x2|u, v, Q = q) ∈ S ′
X1X2|UV for every q.

2. The rate pair satisfies

R1 ≥ I(U, V ; X1|X2, Q) (2.140)

R2 ≥ I(U, V ; X2|X1, Q) (2.141)

R1 + R2 ≥ I(U, V ; X1, X2|Q) (2.142)

3. There exists
(

Û(X1, X2, Q), V̂ (X1, X2, Q)
)

such that
(

Ed1(U, Û), Ed2(V, V̂ )
)

≤

D.

2.4.4 Comparison of the Bounds

All of the inner and outer bounds we discussed above are in general incomputable due

to the lack of bounds on the sizes of the alphabets of the involved auxiliary random

variables. Thus, we are not able to compare these bounds numerically. In this section,

we will establish some relationships between these bounds by comparing the different
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feasible sets of the probability distributions involved in these bounds.

We begin with the inner bound. Using the time-sharing argument, a convexifica-

tion of the inner bound Rin(D) yields another inner bound R′
in(D), which is larger

than Rin(D). We define the set

Sin , {p(x1, x2|u, v) : X1 −→ U −→ V −→ X2} (2.143)

Then, this new inner bound may be expressed as a function of Sin and D as follows,

Rin(D) ⊆ R′
in(D) = F(Sin,D) ⊆ R(D) (2.144)

where F(Sin,D) is defined as,

F(Sin,D) ,
⋃

p∈P(Sin,D)

C(p) (2.145)

p ,p(x1, x2, q|u, v) = p(x1, x2|u, v, Q = q)p(q) (2.146)

P(Sin,D) ,































p :

∀q, p(x1, x2|u, v, Q = q) ∈ Sin;

∃
(

Û(X1, X2, Q), V̂ (X1, X2, Q)
)

,

s.t.
(

Ed1(U, Û), Ed2(V, V̂ )
)

≤ D































(2.147)

C(p) ,































(R1, R2) :

R1 ≥ I(U, V ; X1|X2, Q)

R2 ≥ I(U, V ; X2|X1, Q)

R1 + R2 ≥ I(U, V ; X1, X2|Q)































(2.148)

In [22], it was shown that Rout,1(D) is convex. Thus, the outer bound Rout,1(D)
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can be represented in terms of function F as well, i.e.,

Rout,1(D) = F(Sout,1,D) (2.149)

where

Sout,1 , {p(x1, x2|u, v) : X1 −→ U −→ V and U −→ V −→ X2} (2.150)

The result by Wagner and Anatharam [39] can also be expressed by using the

function F as

Rout,2(D) = F(Sout,2,D) (2.151)

where

Sout,2 , {p(x1, x2|u, v) : ∃w, p(x1, x2, w|u, v) = p(w)p(x1|w, u)p(x2|w, v)} (2.152)

From the definition of the function F , we can see that F is monotone with respect

to the set argument when the distortion argument is fixed, i.e.,

F(A,D) ⊆ F(B,D), if A ⊆ B (2.153)

Therefore, since

Sin ⊆ Sout,2 ⊆ Sout,1 (2.154)
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we have

Rin(D) = F(Sin,D) ⊆ Rout,1(D) = F(Sout,1,D) ⊆ Rout,2(D) = F(Sout,2,D) (2.155)

We conclude that the gap between the inner and the outer bounds comes only from

the difference between the feasible sets of the probability distributions p(x1, x2|u, v).

In Theorem 2.4.5, we have shown Rout,3(D) ⊆ Rout,2(D). Here, we provide an

alternative proof which comes from the comparison of the feasible sets of probability

distributions p(x1, x2|u, v). We note that X1 −→ Un −→ V n −→ X2 implies the

Markov chain like condition in (2.102) by taking U1 = U , V1 = V and (Un
2 , V n

2 ) = W ,

which means that

Sout,3 , SX1X2|UV ⊆ Sout,2 (2.156)

and because of the monotonicity of F(·,D) in (2.153), we have

F(Sout,3,D) = Rout,3(D) ⊆ Rout,2(D) = F(Sout,2,D) (2.157)

From Section 2.2.4, we have that

Sout,3 ⊆ Sout,4 , S ′
X1X2|UV (2.158)

and therefore

Rout,3(D) = F(Sout,3,D) ⊆ Rout,4(D) = F(Sout,4,D) (2.159)
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Figure 2.1: Different sets of probability distributions p(x1, x2|u, v).

So far, we have not been able to determine whether Sout,4 ⊆ Sout,2 or Sout,2 ⊆ Sout,4,

however, we know that there exists some probability distribution p(x1, x2|u1, v1),

which belongs to Sout,2, but does not belong to Sout,4. For example, assume λ2(P̃UV ) <

1 and some random variable W independent to (U, V ). Let X1 = (f1(U1), W ) and

X2 = (f2(V1), W ). We note that (X1, X2, U1, V1) satisfies the Markov chain like

condition in (2.102), i.e., p(x1, x2|u1, v1) ∈ Sout,2. But, (X1, X2) contains common

information W , which means that λ2(P̃X1X2) = 1 > λ2(P̃UV ) [41], and therefore,

p(x1, x2|u1, v1) /∈ Sout,4. Based on this observation, we note that introducing Sout,4

helps us rule out some unachievable probability distributions that may exist in Sout,2.

The relation between different feasible sets of probability distributions p(x1, x2|u1, v1)

is illustrated in Figure 2.1.

Finally, we note that we can obtain a tighter outer bound in terms of the function
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F(·,D) by using a set argument which is the intersection of Sout,2 and Sout,4, i.e.,

Rout,2∩4(D) , F(Sout,2 ∩ Sout,4,D) (2.160)

It is straightforward to see that this outer bound Rout,2∩4(D) is in general tighter

than the outer bound F(Sout,2,D).

2.5 Conclusion

In this chapter, we studied the problem of distributed source and channel coding for

correlated sources. In the distributed coding on correlated sources, the problem of

describing a joint distribution involving an n-letter Markov chain arises. By using a

spectral method, we provided a new data processing inequality based on new measures

of correlation, which gave us a single-letter necessary condition for the n-letter Markov

chain. We applied our results to two specific examples involving distributed coding

of correlated sources: the multiple access channel with correlated sources and the

multi-terminal rate-distortion region, and proposed two new outer bounds for these

two problems.
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2.A A Tight Upper Bound for λ2(P̃X1Un) over all n

Let F (n, PX1) be the set of all joint distributions for X1 and Un with a given marginal

distribution for X1, PX1. Then, we will show

sup
F (n,PX1

), n=1,2,...

λ2(P̃X1Un) = 1 (2.161)

To find sup
F (n,PX1

), n=1,2,...

λ2(P̃X1Un), we need to exhaust the sets F (n, PX1) with n ≥

1. In the following, we show that it suffices to check only the asymptotic case.

For any joint distribution PX1Un ∈ F (n, PX1), we attach an independent U , say

Un+1, to the existing n-sequence, and get a new joint distribution PX1Un+1 = PX1Un⊗

pU , where pU is the marginal distribution of U in the vector form. By arguments

similar to those in Section 2.2.4, we have that λi(P̃X1Un+1) = λi(P̃X1Un). Therefore,

for every PX1Un ∈ F (n, PX1), there exists some PX1Un+1 ∈ F (n + 1, PX1), such that

λi(P̃X1Un+1) = λi(P̃X1Un). Thus,

sup
F (n,PX1

)

λ2(P̃X1Un) ≤ sup
F (n+1,PX1

)

λ2(P̃X1Un+1) (2.162)

From (2.162), we see that sup
F (n,PX1

)

λ2(P̃X1Un) is monotonically non-decreasing in n.

We also note that λ2(P̃X1Un) is upper bounded by 1 for all n, i.e., λ2(P̃X1Un) ≤ 1.

Therefore,

sup
F (n,PX1

), n=1,2,...

λ2(P̃X1Un) = lim
n−→∞

sup
F (n,PX1

)

λ2(P̃X1Un) (2.163)

To complete the proof, we need the following lemma.
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Lemma 2.A.1 [41] λ2(P̃XY ) = 1 if and only if PXY decomposes. By PXY decom-

poses, we mean that there exist sets S1 ∈ X , S2 ∈ Y, such that P (S1), P (X − S1),

P (S2), P (Y − S2) are positive, while P ((X − S1)× S2) = P (S1 × (Y − S2)) = 0.

In the following, we will show by construction that there exists a joint distribution

that decomposes asymptotically.

For a given marginal distribution PX1, we arbitrarily choose a subset S1 from the

alphabet of X1 with positive P (S1). We find a set S2 in the alphabet of Un such

that P (S1) = P (S2) if it is possible. Otherwise, we pick S2 with positive P (S2) such

that |P (S1)−P (S2)| is minimized. We denote L(n) to be the set of all subsets of the

alphabet of Un and we also define Pmax = maxPr(s) for all s ∈ U . Then, we have

min
S2⊂L(n)

|P (S2)− P (S1)| ≤ P n
max (2.164)

We construct a joint distribution for X1 and Un as follows. First, we construct

the joint distribution P i corresponding to the case where X1 and Un are independent.

Second, we rearrange the alphabets of X1 and Un and group the sets S1, X1− S1, S2

and Un − S2 as follows

P i =









P i
11 P i

12

P i
21 P i

22









(2.165)

where P i
11, P i

12, P i
21, P i

22 correspond to the sets S1×S2, S1× (Un−S2), (X1−S1)×S2,

(X1 − S1) × (Un − S2), respectively. Here, we assume that P (S2) ≥ P (S1). Then,

we scale these four sub-matrices as P11 =
P i

11P (S1)

P (S1)P (S2)
, P12 = 0, P21 =

P i
21(P (S2)−P (S1))

(1−P (S1))P (S2)
,
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P22 =
P i

22(1−P (S2))

(1−P (S1))(1−P (S2))
, and let

P =









P11 0

P21 P22









(2.166)

We note that P is a joint distribution for X1 and Un with the given marginal distri-

butions. Next, we move the mass in the sub-matrix P21 to P11, which yields

P ′,









P ′
11 0

0 P22









= P + E =









P11 0

P21 P22









+









E11 0

−E21 0









(2.167)

where E21 , P21, E11 ,
P i

11(P (S2)−P (S1))

P (S1)P (S2)
, and P ′

11 = P11P (S2)
P (S1)

. We denote P ′
X1

and P ′
Un

as the marginal distributions of P ′. We note that P ′
Un = PUn and P ′

X1
= PX1M where

M is a scaling diagonal matrix. The elements in the set S1 are scaled up by a factor

of P (S2)
P (S1)

, and those in the set X1 − S1 are scaled down by a factor of 1−P (S2)
1−P (S1)

. Then,

P̃ ′ = M− 1
2 P̃ + M− 1

2 P
− 1

2
X1

EP
− 1

2
Un (2.168)

We will need the following lemmas in the remainder of our derivations. Lemma 2.A.3

can be proved using techniques similar to those in the proof of Lemma 2.A.2 [36].

Lemma 2.A.2 [36] If A′ = A + E, then |λi(A
′) − λi(A)| ≤ ||E||2, where ||E||2 is

the spectral norm of E.

Lemma 2.A.3 If A′ = MA, where M is an invertible matrix, then ||M−1||−1
2 ≤

λi(A
′)/λi(A) ≤ ||M ||2.

59



Since P ′ decomposes, using Lemma 2.A.1, we conclude that λ2(P̃
′) = 1. We upper

bound ||P− 1
2

X1
EP

− 1
2

Un ||2 as follows,

||P− 1
2

X1
EP

− 1
2

Un ||2 ≤ ||P
− 1

2
X1

EP
− 1

2
Un ||F (2.169)

where || · ||F is the Frobenius norm. Combining (2.165) and (2.167), we have

||P− 1
2

X1
EP

− 1
2

Un ||F ≤
(P (S2)− P (S1))

P ′
1P (S2)

||P− 1
2

X1
P iP

− 1
2

Un ||F (2.170)

where P ′
1 , min(P (S1), 1 − P (S1)). Since P i corresponds to the independent case,

we have ||P− 1
2

X1
P iP

− 1
2

Un ||F = 1 from (2.15). Then, from (2.164), (2.169) and (2.170), we

obtain

||P− 1
2

X1
EP

− 1
2

Un ||2 ≤ c1P
n
max (2.171)

where c1 , 1
P ′

1P (S2)
.

From Lemma 2.2.2, we have

||M− 1
2 P

− 1
2

X1
EP

− 1
2

Un ||2 = |λ1(M
− 1

2 P
− 1

2
X1

EP
− 1

2
Un )| ≤

(

1− P (S1)

1− P (S2)

)
1
2

c1P
n
max , c2P

n
max

(2.172)

From Lemma 2.A.2, we have

1− c2P
n
max ≤ λ2(M

− 1
2 P̃ ) ≤ 1 + c2P

n
max (2.173)
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We upper bound ||M 1
2 ||2 as follows

||M 1
2 ||2 =

√

P (S2)

P (S1)
≤ 1 +

√

P (S2)− P (S1)

P (S1)
≤ 1 +

P
n/2
max

√

P (S1)
, 1 + c3P

n/2
max (2.174)

Similarly, ||M− 1
2 ||−1

2 ≥ 1− c4P
n/2
max. From Lemma 2.A.3, we have

(1− c4P
n/2
max) ≤

λ2(P̃ )

λ2(M
− 1

2 P̃ )
≤ (1 + c3P

n/2
max) (2.175)

Since P is a joint distribution matrix, from Theorem 2.2.1, we know that λ2(P̃ ) ≤ 1.

Therefore, we have

(1− c4P
n/2
max)(1− c2P

n
max) ≤ λ2(P̃ ) ≤ 1 (2.176)

When Pmax < 1, corresponding to the non-trivial case, limn−→∞ P
n/2
max = 0, and using

(2.163), (2.161) follows.

The case P (S2) < P (S1) can be proved similarly. �

2.B An Illustrative Binary Example

In this section, we will study a specific binary example in detail. The aims of this

study are, first, to ilustrate the single-letter necessary condition we proposed for

the n-letter Markov chain in Section 2.2.3, second, to develop a sharper necessary

condition in this specific case, and finally, to compare different necessary conditions

and a sufficient condition in this specific example.
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The binary example under consideration is as follows. Let U , V , X1 and X2 be

binary random variables, which take values from {0, 1}. We assume that (U, V ) are

a pair of binary symmetric sources, i.e.,

Pr(U = 0) = Pr(U = 1) = Pr(V = 0) = Pr(V = 1) =
1

2
(2.177)

From (2.12) and (2.15), we have

P̃UV =









1√
2

1√
2









[

1√
2

1√
2

]

+ λ2(P̃UV )µ2(P̃UV )ν2(P̃UV )T (2.178)

Here we focus on the symmetric case, i.e.,

µ2(P̃UV ) = ν2(P̃UV ) =









1√
2

− 1√
2









(2.179)

In addition, we assume the following marginal distributions for X1 and X2,

pX1 =









a2

1− a2









(2.180)

pX2 =









b2

1− b2









(2.181)
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where 0 ≤ a, b ≤ 1. Then, from (2.12) and (2.15), we have

P̃X1X2 =









a

√
1− a2









[

b
√

1− b2

]

+ λ2(P̃X1X2)µ2(P̃X1X2)ν2(P̃X1X2)
T (2.182)

We note that

µ2(P̃X1X2)ν2(P̃X1X2)
T = σ









√
1− a2

−a









[

√
1− b2 −b

]

(2.183)

where σ ∈ {1,−1}. For the simplicity of the derivation in the sequel, we let λ =

σλ2(P̃X1,X2). Then, we have

P̃X1X2 =









a

√
1− a2









[

b
√

1− b2

]

+ λ









√
1− a2

−a









[

√
1− b2 −b

]

(2.184)

From Theorem 2.2.1, we know that the entries of P̃X1X2 are non-negative, i.e.,

P̃X1X2 =









ab + λ
√

(1− a2)(1− b2) a
√

1− b2 − λb
√

1− a2

b
√

1− a2 − λa
√

1− b2
√

(1− a2)(1− b2) + λab









≥ 0 (2.185)

which implies that

−ξ2 ≤ λ ≤ ξ1 (2.186)
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where

ξ1 ,
min(a2, b2) min(1− a2, 1− b2)

ab
√

(1− a2)(1− b2)
≤ 1 (2.187)

ξ2 ,
min(1− a2, b2) min(a2, 1− b2)

ab
√

(1− a2)(1− b2)
≤ 1 (2.188)

From Theorem 2.2.3, we have

−λ2(P̃UV ) ≤ λ ≤ λ2(P̃UV ) (2.189)

Thus, from above, we have

−min(ξ2, λ2(P̃UV )) ≤ λ ≤ min(ξ1, λ2(P̃UV )) (2.190)

A sharper bound in this special case can be obtained as follows.

Theorem 2.B.1 If X1 −→ Un −→ V n −→ X2, and (X1, X2, U
n, V n) satisfies the

above settings, then for sufficiently large n,

−min

(

ξ2, λ2(P̃UV )
1 + ξ2

2

)

≤ λ ≤ min

(

ξ1, λ2(P̃UV )
1 + ξ1

2

)

(2.191)

The proof of Theorem 2.B.1 is given in Appendix 2.C.

The bound in (2.191) is tighter than the one in (2.190) because ξ1 ≤ 1 and

therefore 1+ξ1
2
≤ 1. A similar argument holds for the other side of the inequality as

well.
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In the above derivation, we provided two necessary conditions for the n-letter

Markov chain X1 −→ Un −→ V n −→ X2, where n −→ ∞, in this special case

of binary random variables. In other words, we provided two outer bounds for λ,

where the joint distributions p(x1, x2, u
n, vn) satisfy the n-letter Markov chain X1 −→

Un −→ V n −→ X2 with n −→ ∞ and satisfy the fixed marginal distributions given

in (2.180) and (2.181).

For reference, we give a sufficient condition for X1 −→ Un −→ V n −→ X2, or

equivalently, an inner bound for λ satisfying this n-letter Markov chain. This inner

bound is obtained by noting that if (X1, X2) satisfies X1 −→ U −→ V −→ X2, then

it satisfies X1 −→ Un −→ V n −→ X2. In this case, using Theorem 2.2.1 we have

λ = λLλ2(P̃UV )λR (2.192)

where λL and λR are such that

P̃X1U ,









a

√
1− a2









[

1√
2

1√
2

]

+ λL









√
1− a2

−a









[

1√
2
− 1√

2

]

≥ 0 (2.193)

P̃V X2 ,









1√
2

1√
2









[

b
√

1− b2

]

+ λR









1√
2

− 1√
2









[

√
1− b2 −b

]

≥ 0 (2.194)
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Due to the non-negativity of the matrices P̃X1U and P̃V X2, we have

−min(a2, 1− a2)

a
√

1− a2
≤ λL ≤

min(a2, 1− a2)

a
√

1− a2
(2.195)

−min(b2, 1− b2)

b
√

1− b2
≤ λR ≤

min(b2, 1− b2)

b
√

1− b2
(2.196)

Thus, we have

−λ2(P̃UV )ξ3 ≤ λ ≤ λ2(P̃UV )ξ3 (2.197)

where

ξ3 ,
min(a2, 1− a2) min(b, 1− b2)

ab
√

(1− a2)(1− b2)
(2.198)

Then, combining (2.190), (2.191), and (2.197), we have the two outer bounds and one

inner bound for λ as follows

λ2(P̃UV )ξ3 ≤ sup
X1−→Un−→V n−→X2

λ ≤ min(ξ1, λ2(P̃UV )
1 + ξ1

2
) ≤ min(ξ1, λ2(P̃UV ))

(2.199)

−min(ξ2, λ2(P̃UV )) ≤ −min(ξ2, λ2(P̃UV )
1 + ξ2

2
) ≤ inf

X1−→Un−→V n−→X2

λ ≤ −λ2(P̃UV )ξ3

(2.200)

We illustrate these three bounds with λ2(P̃UV ) = 0.5 in Figure 2.2.
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Figure 2.2: (i) Outer bound 1, (ii) outer bound 2, and (iii) inner bound for λ.
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2.C Proof of Theorem 2.B.1

From (2.178), we know

P̃UV =









1√
2

1√
2









[

1√
2

1√
2

]

+ λ2(P̃UV )









1√
2

− 1√
2









[

1√
2
− 1√

2

]

(2.201)

From (2.29), we know

P̃UnV n = P̃⊗n
UV =

1

2n

















1

...

1

















[

1 · · · 1

]

+

2n
∑

i=2

λ2(P̃UV )liµi(P̃UnV n)νT
i (P̃UnV n)

(2.202)

where li ∈ {1, 2, . . . , n}, for i = 2, . . . , 2n. Due to the symmetric structure of P̃UnV n ,

we have

µi(P̃UnV n) = νi(P̃UnV n), i = 2, . . . , 2n (2.203)

We also have

P̃X1Un =
1

2n/2









a

√
1− a2









[

1 · · · 1

]

+









√
1− a2

−a









cT (2.204)
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where c is the product of the second singular value and the second right singular

vector of P̃X1Un . Similarly,

P̃V nX2 =
1

2n/2

















1

...

1

















[

b
√

1− b2

]

+ d

[

√
1− b2 −b

]

(2.205)

From (2.24), we know that

P̃X1X2 =P̃X1UnP̃UnV nP̃V nX2

=









a

√
1− a2









[

b
√

1− b2

]

+









√
1− a2

−a









cT

(

2n
∑

i=2

λ2(P̃UV )liµi(P̃UnV n)νi(P̃UnV n)

)

d

[

√
1− b2 −b

]

(2.206)

Thus, we conclude that,

λ = cT

(

2n
∑

i=2

λ2(P̃UV )liµi(P̃UnV n)νT
i (P̃UnV n)

)

d (2.207)

Consider the following optimization problem,

max λ = max
c,d

cT

(

2n
∑

i=2

λ2(P̃UV )liµi(P̃UnV n)νT
i (P̃UnV n)

)

d (2.208)
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We define

γi , cT
µi(P̃UnV n), i = 2, . . . , 2n (2.209)

δi , dT
νi(P̃UnV n), i = 2, . . . , 2n (2.210)

Then,

λ =
2n
∑

i=2

λ2(P̃UV )liγiδi (2.211)

We partition the set {2, . . . , 2n} into two disjoint subsets, L+ and L−, such that

i ∈















L+ if γiδi ≥ 0

L− if γiδi < 0

i = 1, . . . , 2n (2.212)

Hence,

λ =
∑

i∈S+

λ2(P̃UV )liγiδi +
∑

i∈S−

λ2(P̃UV )liγiδi

1

≤ λ2(P̃UV )
∑

i∈S+

γiδi

2

≤ λ2(P̃UV )

4

∑

i∈S+

(γi + δi)
2

3

≤ λ2(P̃UV )

4

2n
∑

i=2

(γi + δi)
2

4
=

λ2(P̃UV )

4
(c + d)T (c + d)

=
λ2(P̃UV )

2

(

cTc + dT d

2
+ cTd

)

5

≤ λ2(P̃UV )

2
(1 + cTd) (2.213)
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where

1. because of the definition of L+ and L− in (2.212) and 0 ≤ λ2(P̃UV ) ≤ 1;

2. because for non-negative γiδi,

(γi − δi)
2 = γ2

i + δ2
i − 2γiδi ≥ 0 (2.214)

Hence, by adding 4γiδi to both sides of the above inequality, we have

(γi + δi)
2 ≥ 4γiδi (2.215)

3. due to the fact that (γi + δi)
2 is non-negative for i ∈ L−;

4. comes from the following derivation

2n
∑

i=2

(γi + δi)
2 =

2n
∑

i=2

(

cT
µi(P̃UnV n) + dT

νi(P̃UnV n)

)2

=

2n
∑

i=2

(

(c + d)T
µi(P̃UnV n)

)2

(a)
=

2n
∑

i=1

(

(c + d)T
µi(P̃UnV n)

)2

=(c + d)T MMT (c + d)

(b)
=(c + d)T (c + d) (2.216)

where

(a) because both the vectors c and d are within the subspace spanned by
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singular vectors [µ2(P̃UnV n), · · · , µ2n(P̃UnV n)], thus

(c + d)T
µ1(P̃UnV n) = 0 (2.217)

(b) because

MMT = I (2.218)

5. because cTc = λ2(P̃X1Un)2 and dTd = λ2(P̃V nX2)
2 and from Theorem 2.2.1, we

know that the square of λ2 is less than or equal to 1.

From the above discussion, we conclude that

max λ ≤ max
c,d

λ2(P̃UV )

2
(1 + cTd) (2.219)

Thus, we can upper bound λ by maxc,d
λ2(P̃UV )

2
(1 + cTd).

From (2.12), we know that P̃X1Un is a non-negative matrix, i.e.,

P̃X1Un =









1
2n/2 ae

T +
√

1− a2cT

1
2n/2

√
1− a2eT − acT









≥ 0 (2.220)

where e is defined as a vector where all its elements are equal to 1, and for matrix

A and B, by A ≥ B, we mean all the entries of the matrix A −B are non-negative.

This property implies that

1

2n/2

1

a
√

1− a2
e ≥ c̄ ,

1

2n/2

a√
1− a2

e + c ≥ 0 (2.221)
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Figure 2.3: Subset of simplex satisfying (2.221).

We know that c is orthogonal to e, i.e.,

cTe =
2n
∑

i=1

ci = 0 (2.222)

Hence, we see that the vector c̄ is on the hyperplane that contains the point 1
2n/2

a√
1−a2 e

and is orthogonal to the vector e. On the other hand, (2.221) shows that each

coordinate of c̄ is non-negative and less than or equal to 1
2n/2

1
a
√

1−a2 . Thus, the vector

c̄ lies on a subset of simplex. See Figure 2.3 for a three-dimension illustration.

By a symmetric argument, we have

1

2n/2

1

b
√

1− b2
e ≥ d̄ ,

1

2n/2

b√
1− b2

e + d ≥ 0 (2.223)
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Since c̄ , 1
2n/2

a√
1−a2 e + c and d̄ , 1

2n/2
b√

1−b2
e + d,

c̄T d̄ =

(

1

2n/2

a√
1− a2

e + c

)T (
1

2n/2

b√
1− b2

e + d

)

=
ab

√

(1− a2)(1− b2)
+

1

2n/2

a√
1− a2

eTd +
1

2n/2

b√
1− b2

eTc + cTd

=
ab

√

(1− a2)(1− b2)
+ cTd (2.224)

Then,

max
c,d

cTd = max
c̄,d̄

c̄T d̄− ab
√

(1− a2)(1− b2)
(2.225)

The feasible sets of c̄ and d̄ are defined as follows,

C ,

{

x :
1

2n/2

1

a
√

1− a2
e ≥ x ≥ 0 and eTx = 2n/2 a√

1− a2

}

(2.226)

D ,

{

x :
1

2n/2

1

b
√

1− b2
e ≥ x ≥ 0 and eT x = 2n/2 b√

1− b2

}

(2.227)

Consider the following optimization problem

max
c̄∈C,d̄∈D

c̄T d̄ (2.228)

In the following, we will show that there exist C′ ⊆ C and D′ ⊆ D such that

max
c̄∈C,d̄∈D

c̄T d̄ = max
c̄∈C′,d̄∈D′

c̄T d̄ (2.229)
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If we assume that

max
c̄∈C

c̄T d̄ = max
c̄∈C′

c̄T d̄ ∀d̄ ∈ D (2.230)

max
d̄∈D

c̄T d̄ = max
d̄∈D′

c̄T d̄ ∀c̄ ∈ C (2.231)

and we also assume that the set C′ (D′ respectively) does not depend on the value of

d̄ (c̄), then we have

max
c̄∈C,d̄∈D

c̄T d̄ = max
c̄∈C

max
d̄∈D

c̄T d̄

1
= max

c̄∈C
max
d̄∈D′

c̄T d̄

2
= max

d̄∈D′
max
c̄∈C

c̄T d̄

3
= max

d̄∈D′
max
c̄∈C′

c̄T d̄

= max
c̄∈C′,d̄∈D′

c̄T d̄ (2.232)

where

1. because of (2.231);

2. because we assume that the set D′ does not depend on the value of c̄;

3. because of (2.230).

Now we need to show our assumptions, (2.230) and (2.231), are valid, for which we

need the following lemma.
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Lemma 2.C.1 [7, p. 722] Let C be a convex subset of R
n, and let C∗ be the set of

minima of a concave function f : C 7−→ R over C. If C is closed and contains at least

one extreme point, and C∗ is nonempty, then C∗ contains some extreme point of C.

Here the extreme point is defined as follows:

Definition 2.C.1 [7, p. 721] A vector x is said to be an extreme point of a convex

set C if x belongs to C and there do not exist vectors y ∈ C and z ∈ C, with y 6= x and

z 6= x, and a scalar α ∈ (0, 1) such that x = αy + (1− α)z. An equivalent definition

is that x cannot be expressed as a convex combination of some vectors of C, all of

which are different from x.

Thus, if we assume

C′ , {extreme points of C} (2.233)

D′ , {extreme points of D} (2.234)

(2.230) and (2.231) will be satisfied. We observe that the set C′ (respectively, the set

D′), which consists of all the extreme points in the set C (in the set D ), does not

depend on the value of d̄ (c̄).

Next, we determine the extreme point set C′ in the following lemma.

Lemma 2.C.2 The set C′ consists of all the vectors, each of which contains 2na2

non-zero entries with value 1
2n/2

1
a
√

1−a2 , when n is sufficiently large.

Proof: We define the set C′′ as the set where each element contains 2na2 non-zero

entries equal to 1
2n/2

1
a
√

1−a2 . It is easy to see that every vector in C′′ is within the set C.
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We need to show that any vector in the set C is a convex combination of some vectors

in C′′. This can be proven by induction. It is easy to see that, if a vector such that

2n − 1 out of 2n entries take values from {0, 1
2n/2

1
a
√

1−a2}, the last entry will converge

to 0, when n goes to infinity. Let s ∈ C such that l out of 2n entries take values in

(0, 1
2n/2

1
a
√

1−a2 ). Then, we choose any 2 out of these l entries, which are equal to α

and β, respectively. If α + β ≤ 1
2n/2

1
a
√

1−a2 , then

[

· · · α · · · β · · ·
]

=
β

α + β

[

· · · 0 · · · α + β · · ·
]

+
α

α + β

[

· · · α + β · · · 0 · · ·
]

(2.235)

If α + β ≥ 1
2n/2

1
a
√

1−a2 , then

[

· · · α · · · β · · ·
]

=

1
2n/2

1
a
√

1−a2 − β
2

2n/2
1

a
√

1−a2 − α− β

[

· · · 1
2n/2

1
a
√

1−a2 · · · α + β − 1
2n/2

1
a
√

1−a2 · · ·
]

+

1
2n/2

1
a
√

1−a2 − α
2

2n/2
1

a
√

1−a2 − α− β

[

· · · α + β − 1
2n/2

1
a
√

1−a2 · · · 1
2n/2

1
a
√

1−a2 · · ·
]

(2.236)

which means that s can be expressed as a convex combination of two vectors. These

two vectors belong to set C and both of them have l−1 out of 2n entries takes value in

(0, 1
2n/2

1
a
√

1−a2 ). By induction, we can show that every vector in set C can be expressed

as a convex combination of some vectors in C′′. On the other hand, it is easy to see

that any vector s in C′′ cannot be expressed as a convex combination of some vectors
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in the set C other than s itself. Thus we conclude that C′ = C′′. �

Similarly, the set D′ consists all the vectors, each of which contains 2nb2 non-zero

entries with value 1
2n/2

1
b
√

1−b2
. Then,

max
c̄∈C,d̄∈D

c̄T d̄ = max
c̄∈C′,d̄∈D′

c̄T d̄ = min(a2, b2)
1

a
√

1− a2

1

b
√

1− b2
(2.237)

and,

max
c,d

cTd = max
c̄∈C,d̄∈D

c̄T d̄− ab
√

(1− a2)(1− b2)

= min(a2, b2)
1

ab
√

(1− a2)(1− b2)
− ab
√

(1− a2)(1− b2)

= min(a2, b2) min(1− a2, 1− b2)
1

ab
√

(1− a2)(1− b2)
(2.238)

Hence,

λ ≤ λ2(P̃UV )
1 + cTd

2
≤ λ2(P̃UV )

1 + min(a2,b2)min(1−a2,1−b2)

ab
√

(1−a2)(1−b2)

2
(2.239)

The lower bound of λ can be derived in a similar manner. We rewrite (2.206) in the

following form

P̃X1X2 =









a

√
1− a2









[

b
√

1− b2

]

+ (−λ)









√
1− a2

−a









[

−
√

1− b2 b

]

(2.240)
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By the same arguments as above, we obtain

−λ ≤ λ2(P̃UV )
1 + min(1−a2,b2)min(a2,1−b2)

ab
√

(1−a2)(1−b2)

2
(2.241)

Combining (2.239) and (2.241), we have

−λ2(P̃UV )
1 + min(1−a2,b2)min(a2,1−b2)

ab
√

(1−a2)(1−b2)

2
≤ λ ≤ λ2(P̃UV )

1 + min(a2,b2)min(1−a2,1−b2)

ab
√

(1−a2)(1−b2)

2

(2.242)

�

2.D Some Properties of Function F

Function F(·, ·) has two arguments, the probability set argument and the distortion

argument. We recall the definition of F as follows.

F(S,D) ,
⋃

p∈P(S,D)

C(p) (2.243)

p ,p(x1, x2, q|u, v) = p(x1, x2|u, v, Q = q)p(q) (2.244)

P(S,D) ,































p :

∀q, p(x1, x2|u, v, Q = q) ∈ Sin;

∃
(

Û(X1, X2, Q), V̂ (X1, X2, Q)
)

,

s.t.
(

Ed1(U, Û), Ed2(V, V̂ )
)

≤ D































(2.245)

C(p) ,































(R1, R2) :

R1 ≥ I(U, V ; X1|X2, Q)

R2 ≥ I(U, V ; X2|X1, Q)

R1 + R2 ≥ I(U, V ; X1, X2|Q)































(2.246)
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From the definition, we note that for the probability set argument, if A ⊆ B, then

P(A,D) ⊆ P(B,D) (2.247)

and therefore

F(A,D) =
⋃

p∈P(A,D)

C(p) ⊆ F(B,D) =
⋃

p∈P(B,D)

C(p) (2.248)

which means that function F is monotone in the probability set argument.

Similarly, if D1 ≤ D2, then

P(S,D1) ⊆ P(S,D2) (2.249)

and therefore

F(S,D1) =
⋃

p∈P(S,D1)

C(p) ⊆ F(S,D2) =
⋃

p∈P(S,D2)

C(p) (2.250)

which means that function F is monotone in the distortion argument.

Consider two distortions D1 and D2 such that

D = λD1 + (1− λ)D2 (2.251)

where 0 ≤ λ ≤ 1. Assume rate pairs R1 ∈ F(S,D1) and R2 ∈ F(S,D2). We

note that there exists p1 ∈ P(S,D1) and p2 ∈ P(S,D2) such that R1 ∈ C(p1)
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and R2 ∈ C(p2). We define a binary random variable Λ with Pr(Λ = 1) = λ and

Pr(Λ = 2) = 1− λ and we define Q′ = (Q, Λ) and p , p(x1, x2, q
′|u, v), where

p(x1, x2, q, Λ = i|u, v) = pi(x1, x2, q|u, v) i = 1, 2. (2.252)

It is easy to check that R , λR1 + (1− λ)R2 ∈ C(p) and p ∈ P(S,D). Thus,

R ∈ F(S,D) (2.253)

i.e., F is convex in the distortion argument.

By a similar argument, we can show that if R1 and R2 are both in the set F(S,D),

then R , λR1 + (1− λ)R2 ∈ F(S,D), i.e., F(S,D) is a convex set.

Finally, we will show the continuity of F(S,D). We assume that S includes the

conditional probability corresponding to the deterministic case where X1 = U and

X2 = V . In this case, F(S, 0) is inner bounded by the Slepian-Wolf region. Due the

the monotonicity of F(S,D) in D, the boundary of F(S,D) for any D lies outside of

the Slepian-Wolf region. We also note that for any point on the boundary of F(S,D),

the distance between this point and the Slepian-Wolf region is upper bounded by

a finite number, say l, where the distance here is the Euclidean distance in two-

dimansional space, and therefore, the distance between this point and F(S, (D1 −

a, D2 − a)) with 0 < a < min(D1, D2) is also upper bounded by l. Because of the

convexity of F(S,D) in D, the distance between this point and F(S, (D1−ǫ, D2−ǫ))

with ǫ < α is upper bounded by ǫl
α
, which proves the continuity of F(S,D).
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Chapter 3

A New Achievable Scheme for the Relay Channel

3.1 Introduction

As the simplest model for cooperative communications, relay channel has attracted

plenty of attention since 1971, when it was first introduced by van der Meulen [38].

In 1979, Cover and El Gamal proposed two major coding schemes for the relay chan-

nel [8]. These two schemes are widely known as Decode-And-Forward (DAF) and

Compress-And-Forward (CAF) today; see [25] for a recent review. These two coding

schemes represent two different types of cooperation. In DAF, the cooperation is

relatively obvious, where the relay decodes the message from the transmitter, and

the transmitter and the relay cooperatively transmit the constructed common infor-

mation to the receiver in the next block. In CAF, the cooperation spirit is less easy

to recognize, as the message is sent by the transmitter only once. However, the relay

cooperates with the transmitter by compressing and sending its signal to the receiver.

The rate gains in these achievable schemes are due to the fact that, through the chan-

nel from the transmitter to the relay, correlation is created between the transmitter

and the relay, and this correlation is utilized to improve the rates.

82



In the DAF scheme, correlation is created and then utilized in a block Markov

coding structure. More specifically, a full correlation is created by decoding the

message fully at the relay, which enables the transmitter and the relay to create any

kind of joint distribution for the channel inputs in the next block. The shortcoming

of the DAF scheme is that by forcing the relay to decode the message in its entirety,

it limits the overall achievable rate by the rate from the transmitter to the relay.

In contrast, by not forcing a full decoding at the relay, the CAF scheme does not

limit the overall rate by the rate from the transmitter to the relay, and may yield

higher overall rates. The shortcoming of the CAF scheme, on the other hand, is that

the correlation offered by the block coding structure is not utilized effectively, since

in each block the channel inputs X and X1 from the transmitter and the relay are

independent, as the transmitter sends the message only once.

However, the essence of good coding schemes in multi-user systems with correlated

sources (e.g., [2,9]) is to preserve the correlation of the sources in the channel inputs.

Motivated by this basic observation, in this chapter, we propose a new coding scheme

for the relay channel, that is based on the idea of preserving the correlation in the

channel inputs from the transmitter and the relay. We will show that our new coding

scheme may be viewed as a more general version of the CAF scheme, and therefore,

our new coding scheme may potentially yield larger rates than the CAF scheme. Our

proposed scheme can be further combined with the DAF scheme to yield rates that

are potentially larger than those offered by both DAF and CAF schemes, similar in

spirit to [8, Theorem 7].

Our new achievability scheme for the relay channel may be viewed as a variation
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of the coding scheme of Ahlswede and Han [2] for the multiple access channel with a

correlated helper. In our work, we view the relay as the helper because the receiver

does not need to decode the information sent by the relay. Also, we note that the

relay is a correlated helper as the communication channel from the transmitter to the

relay provides relay for free a correlated version of the signal sent by the transmitter.

The key aspects of the Ahlswede-Han [2] scheme are: to preserve the correlation

between the channel inputs of the transmitter and the helper (relay), and for the

receiver to decode a “virtual” source, a compressed version of the helper, but not the

entire signal of the helper.

Our new coding scheme is in the form of block Markov coding, as in [8,10,40]. The

transmitter uses a superposition Markov code, similar to the one used in the DAF

scheme [8], except in the random codebook generation stage, a method similar to the

one in [9] is used in order to preserve the correlation between the blocks. Thus, in each

block, the fresh information message is mapped into a codeword conditioned on the

codeword of the previous block. Therefore, the overall codebook at the transmitter

has a tree structure, where the codewords in block l emanate from the codewords in

block l−1. The depth of the tree is B−1. A similar strategy is applied at the relay side

where the compressed version of the received signal is mapped into a two-block-long

codeword conditioned on the codeword of the previous block. Therefore, the overall

codebook at the relay has a tree structure as well. As a result of this coding strategy,

we successfully preserve the correlation between the channel inputs of the transmitter

and the relay. However, unlike the DAF scheme where a full correlation is acquired

through decoding at the relay, our scheme provides only a partially correlated helper
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at the relay by not trying to decode the transmitter’s signal fully. From [2, 9], we

note that the channel inputs are correlated through the virtual sources in our case,

and therefore, the channel inputs between the consecutive blocks are correlated. This

correlation between the blocks will surely hurt the achievable rate. The correlation

between the blocks is the price we pay for preserving the correlation between the

channel inputs of the transmitter and the relay within any given block.

At the decoding stage, we perform joint decoding for the entire B blocks after all

of the B blocks have been received, which is different compared with the DAF and

CAF schemes. The reason for performing joint decoding at the receiver is that due to

the correlation between the blocks, decoding at any time before the end of all the B

blocks would decrease the achievable rate. We note that joint decoding increases the

decoding complexity and the delay as compared to DAF and CAF, though neither

of these is a major concern in an information theoretic context. The only problem

with the joint decoding strategy is that it makes the analysis difficult as it requires

the evaluation of some mutual information expressions involving the joint probability

distributions of up to B blocks of codes, where B is very large.

The analysis of the error events provides us three conditions containing mutual

information expressions involving infinite letters of the underlying random process.

Evaluation of these mutual information expressions is very difficult, if not impossible.

To obtain a computable result, we lower bound these mutual informations by noting

some Markov structure in the underlying random process. This operation gives us

three conditions to be satisfied by the achievable rates. These conditions involve

eleven variables, the two channel inputs from the transmitter and the relay, the two
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channel outputs at the relay and the receiver and the compressed version of the

channel output at the relay, in two consecutive blocks, and the channel input from

the transmitter in the previous block.

We finish our analysis by revisiting the CAF scheme. We develop an equivalent

representation for the achievable rates given in [8] for the CAF scheme. We then

show that this equivalent representation for the achievable rates for the CAF scheme

is a special case of the achievable rates in our new coding scheme, which is obtained

by a special selection of the eleven variables mentioned above. We therefore conclude

that our proposed coding scheme yields potentially larger rates than the CAF scheme.

More importantly, our new coding scheme creates more possibilities, and therefore

a spectrum of new achievable schemes for the relay channel through the selection of

the underlying probability distribution, and yields the well-known CAF scheme as

a special case, corresponding to a particular selection of the underlying probability

distribution.

3.2 The Relay Channel

Consider a relay channel with finite input alphabets X , X1 and finite output alphabets

Y , Y1, characterized by the transition probability p(y, y1|x, x1). An n-length block

code for the relay channel p(y, y1|x, x1) consists of encoders f, fi, i = 1, . . . , n and a
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decoder g

f :M−→ X n

fi : Y i−1
1 −→ X1, i = 1, . . . , n

g : Yn −→M

where the encoder at the transmitter sends xn = f(m) into the channel, where m ∈

M , {1, 2, . . . , M}; the encoder at the relay at the ith channel instance sends x1i =

fi(y
i−1
1 ) into the channel; the decoder outputs m̂ = g(yn). The average probability of

error is defined as

Pe =
1

M

∑

m∈M
Pr(m̂ 6= m|m is transmitted) (3.1)

A rate R is achievable for the relay channel p(y, y1|x, x1) if for every 0 < ǫ < 1, η > 0,

and every sufficiently large n, there exists an n-length block code (f, fi, g) with Pe ≤ ǫ

and 1
n

ln M ≥ R− η.

3.3 A New Achievability Scheme for the Relay Channel

We adopt a block Markov coding scheme, similar to the DAF and CAF schemes. We

have overall B blocks. In each block, we transmit codewords of length n. We denote

the variables in the lth block with a subscript of [l]. We denote n-letter codewords

transmitted in each block with a superscript of n. Following the standard relay

channel literature, we denote the (random) signals transmitted by the transmitter
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and the relay by X and X1, the signals received at the receiver and the relay by Y

and Y1, and the compressed version of Y1 at the relay by Ŷ1. The realizations of these

random signals will be denoted by lower-case letters. For example, the n-letter signals

transmitted by the transmitter and the relay in the lth block will be represented by

xn
[l] and xn

1[l].

Consider the following discrete time stationary Markov process G[l] , (X, Ŷ1, X1, y,

Y1)[l] for l = 0, 1, . . . , B, with the transition probability distribution

p
(

(x, ŷ1, x1, y, y1)[l]|(x, ŷ1, x1, y, y1)[l−1]

)

= p(x[l]|x[l−1])p(y1[l], y[l]|x[l], x1[l])p(x1[l]|ŷ1[l−1])p(ŷ1[l]|y1[l], x1[l])

(3.2)

The codebook generation and the encoding scheme for the lth block, l = 1, . . . , B−1,

are as follows.

Random codebook generation: Let (xn
[l−1](m[l−1]), x

n
1[l−1], y

n
1[l−1], y

n
[l−1]) denote the

transmitted and the received signals in the (l−1)st block, where m[l−1] is the message

sent by the transmitter in the (l−1)st block. An illustration of the codebook structure

is shown in Figure 3.1.

1. For each xn
[l−1](m[l−1]) sequence, generate M sequences, where xn

[l](m[l]), the

m[l]th sequence, is generated independently according to
∏n

i=1 p(xi[l]|xi[l−1]).

Here, every codeword in the (l − 1)st block expands into a codebook in the

lth block. This expansion is indicated by a directed cone from xn
[l−1] to xn

[l] in

Figure 3.1.
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Figure 3.1: Codebook structure.

2. For each xn
1[l−1] sequence, generate L Ŷ n

1[l−1] sequences independently uniformly

distributed in the conditional strong typical set1 Tδ(x
n
1[l−1]) with respect to the

distribution p(ŷ1[l−1]|x1[l−1]). If 1
n

ln L > I(Y1[l−1]; Ŷ1[l−1]|X1[l−1]), for any given

yn
1[l−1] sequence, there exists one ŷn

1[l−1] sequence with high probability when n

is sufficiently large such that (yn
1[l−1], ŷ

n
1[l−1], x

n
1[l−1]) are jointly typical according

to the probability distribution p(y1[l−1], ŷ1[l−1], x1[l−1]). Denote this ŷn
1[l−1] as

ŷn
1[l−1](y

n
1[l−1], x

n
1[l−1]). Here, the quantization from yn

1[l−1] to ŷn
1[l−1], parameterized

by xn
1[l−1], is indicated in Figure 3.1 by a directed cone from yn

1[l−1] to ŷn
1[l−1], with

a straight line from xn
1[l−1] for the parameterization.

3. For each ŷn
1[l−1], generate one xn

1[l] sequence according to
∏n

i=1 p(x1i[l]|ŷ1i[l−1]).

This one-to-one mapping is indicated by a straight line between ŷn
1[l−1] and xn

1[l]

in Figure 3.1.

Encoding: Let m[l] be the message to be sent in this block. If we assume that

(xn
[l−1](m[l−1]), x

n
1[l−1]) are sent and yn

1[l−1] is received in the previous block, we choose

1Strong typical set and conditional strong typical set are defined in [13, Definition 1.2.8, 1.2.9].
For the sake of simplicity, we omit the subscript which is used to indicate the underlying distribution
in [13].
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(xn
[l](m[l]), ŷn

1[l−1](y
n
1[l−1], x

n
1[l−1]), xn

1[l]) according to the code generation method de-

scribed above and transmit (xn
[l](m[l]), xn

1[l]). In the first block, we assume a vir-

tual 0th block, where (xn
[0], x

n
1[0], ŷ

n
1[0]), as well as xn

1[1], are known by the transmitter,

the relay and the receiver. In the Bth block, the transmitter randomly generates

one xn
[B] sequence according to

∏n
i=1 p(xi[B]|xi[B−1]) and sends it into the channel.

The relay, after receiving yn
1[B], randomly generates one ŷn

1[B] sequence according to

∏n
i=1 p(ŷ1i[B]|y1i[B], x1i[B]). We assume that the transmitter and the relay reliably

transmit xn
[B] and ŷn

1[B] to the receiver using the next b blocks, where b is some finite

positive integer. We note that B + b blocks are used in our scheme, while only the

first B − 1 blocks carry the message. Thus, the final achievable rate is B−1
B+b

1
n

ln M

which converges to 1
n

ln M for sufficiently large B since b is finite.

Decoding: After receiving B blocks of yn sequences, i.e., yn
[1], . . . , y

n
[B], and assuming

xn
1[1], xn

[B] and ŷn
1[B] are known at the receiver, we seek xn

[1], . . . , x
n
[B−1], ŷn

1[1], . . . , ŷ
n
1[B−1],

xn
1[2], . . . , x

n
1[B], such that

(

xn
[1], . . . , x

n
[B], ŷ

n
1[1], . . . , ŷ

n
1[B], x

n
1[1], . . . , x

n
1[B], y

n
[1], . . . , y

n
[B]

)

∈ Tδ

according to the stationary distribution of the Markov process G[l] in (3.2).

The differences between our scheme and the CAF scheme are as follows. At the

transmitter side, in our scheme, the fresh message m[l] is mapped into the codeword

xn
[l] conditioned on the codeword of the previous block xn

[l−1], while in the CAF scheme,

m[l] is mapped into xn
[l], which is generated independent of xn

[l−1]. At the relay side,

in our scheme, the compressed received signal ŷn
1[l−1] is mapped into the codeword
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xn
1[l], which is generated according to p(x1[l]|ŷ1[l−1]), while in the CAF scheme, xn

1[l] is

generated independent of ŷn
1[l−1]. The aim of our design is to preserve the correlation

built in the (l − 1)st block in the channel inputs of the lth block. At the decoding

stage, we perform joint decoding for the entire B blocks after all of the B blocks have

been received, while in the CAF scheme, the decoding of the message of the (l− 1)st

block is performed at the end of the lth block.

Probability of error: When n is sufficiently large, the probability of error can be

made arbitrarily small when the following conditions are satisfied.

1. For all j such that 1 ≤ j ≤ B − 1,

1

n
(B − j) ln M + (B − j)I(Ŷ1[l]; Y1[l]|X1[l], X[l])

< I(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]; Y

[B]
[j] , Ŷ1[B], X[B]|X[j−1], X1[j]) (3.3)

2. For all j, k such that 1 ≤ j < k ≤ B − 1,

1

n
(B − j) ln M + (B − k)I(Ŷ1[l]; Y1[l]|X1[l], X[l])

< I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[j] , Ŷ1[B], X1[B], Ŷ

[k−1]
1[j] , X

[k]
1[j+1]|X[j−1], X[j]) (3.4)

3. For all j, k such that 1 ≤ k < j ≤ B − 1,

(j − k)I(Ŷ1[l]; Y1[l]|X1[l], X[l]) +
1

n
(B − j) ln M + (B − j)I(Ŷ1[l]; Y1[l]|X1[l], X[l])

< I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[k] , Ŷ1[B], X[B]|X [j−1]

[k] , X1[k]) (3.5)
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where the subscript [l] on the left hand sides of (3.3), (3.4) and (3.5) indicates that

the corresponding random variables belong to a generic sample g[l] of the underlying

random process in (3.2). The details of the calculation of the probability of error

where these conditions are obtained can be found in Appendix 3.A. The derivation

uses standard techniques from information theory, such as counting error events, etc.

In the above conditions, we used the notation A
[B]
[j] as a shorthand to denote

the sequence of random variables A[j], A[j+1], . . . , A[B]. Consequently, we note that

the mutual informations on the right hand sides of (3.3), (3.4) and (3.5) contain

vectors of random variables whose lengths go up to B, where B is very large. In

order to simplify the conditions in (3.3), (3.4) and (3.5), we lower bound the mutual

information expressions on the right hand sides of (3.3), (3.4) and (3.5) by those that

involve random variables that belong to up to three blocks. The detailed derivation of

the following lower bounding operation can be found in Appendix 3.B. The derivation

uses standard techniques from information theory, such as the chain rule of mutual

information, and exploiting the Markov structure of the involved random variables.

1. For all j such that 1 ≤ j ≤ B − 1,

(B − j)

(

1

n
ln M + I(Ŷ1[l]; Y1[l]|X1[l], X[l])

)

< (B − j)I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.6)
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2. For all j, k such that 1 ≤ j < k ≤ B − 1,

(k − j)
1

n
ln M + (B − k)

(

1

n
ln M + I(Ŷ1[l]; Y1[l]|X1[l], X[l])

)

< (k − j)I(X[l]; Y[l], Ŷ1[l]|X1[l], Y[l−1], Ŷ1[l−1], X1[l−1], X[l−2])

+ (B − k)I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.7)

3. For all j, k such that 1 ≤ k < j ≤ B − 1,

(j − k)I(Ŷ1[l]; Y1[l]|X1[l], X[l]) + (B − j)

(

1

n
ln M + I(Ŷ1[l]; Y1[l]|X1[l], X[l])

)

< (j − k)I(Y[l]; Ŷ1[l], X1[l]|X[l], X[l−1], X1[l−1], Y[l−1])

+ (B − j)I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.8)

We can further derive sufficient conditions for the above three conditions in (3.6),

(3.7) and (3.8) as follows. We define the following quantities:

C1 ,
1

n
ln M + I(Ŷ1[l]; Y1[l]|X1[l], X[l]) (3.9)

C2 ,
1

n
ln M (3.10)

C3 , I(Ŷ1[l]; Y1[l]|X1[l], X[l]) (3.11)

D1 , I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.12)

D2 , I(X[l]; Y[l], Ŷ1[l]|X1[l], Y[l−1], Ŷ1[l−1], X1[l−1], X[l−2]) (3.13)

D3 , I(Y[l]; Ŷ1[l], X1[l]|X[l], X[l−1], X1[l−1], Y[l−1]) (3.14)
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Then, the sufficient conditions in (3.6), (3.7) and (3.8) can also be written as,

1. For all j such that 1 ≤ j ≤ B − 1,

(B − j)C1 < (B − j)D1 (3.15)

2. For all j, k such that 1 ≤ j < k ≤ B − 1,

(k − j)C2 + (B − k)C1 < (k − j)D2 + (B − k)D1 (3.16)

3. For all j, k such that 1 ≤ k < j ≤ B − 1,

(j − k)C3 + (B − j)C1 < (j − k)D3 + (B − j)D1 (3.17)

We note that the above conditions are implied by the following three conditions,

C1 < D1 (3.18)

C2 < D2 (3.19)

C3 < D3 (3.20)
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or in other words, by,

R− η ≤ 1

n
ln M < I(X[l]; Y[l], Ŷ1[l]|X1[l], Y[l−1], Ŷ1[l−1], X1[l−1], X[l−2])

(3.21)

I(Ŷ1[l]; Y1[l]|X1[l], X[l]) < I(Y[l]; Ŷ1[l], X1[l]|X[l], X[l−1], X1[l−1], Y[l−1]) (3.22)

R− η + I(Ŷ1[l]; Y1[l]|X1[l], X[l]) < I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.23)

The expressions in (3.21), (3.22) and (3.23) give sufficient conditions to be satisfied

by the rate in order for the probability of error to become arbitrarily close to zero.

We note that these conditions depend on variables used in three consecutive blocks,

l, l − 1 and l − 2. With this development, we obtain the main result of this chapter

which is stated in the following theorem.

Theorem 3.3.1 The rate R is achievable for the relay channel, if the following con-

ditions are satisfied

R ≤I(Y, Ŷ1; X|X1,
˜̂
Y1, Ỹ , X̃1,

˜̃X) (3.24)

I(Ŷ1; Y1|X1, X) <I(Y ; Ŷ1, X1|X, Ỹ , X̃, X̃1) (3.25)

R + I(Ŷ1; Y1|X1, X) ≤I(Y ; Ŷ1, X1, X|Ỹ , X̃1,
˜̃X) (3.26)
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where

˜̃X −→ (X̃,
˜̂
Y1,X̃1, Ỹ , Ỹ1) −→ (X, Ŷ1, X1, Y, Y1) (3.27)

p(x, ŷ1, x1, y, y1, x̃) = p(x̃, ˜̂y1, x̃1, ỹ, ỹ1, ˜̃x) (3.28)

p(x, ŷ1, x1, y, y1|x̃, ˜̂y1, x̃1, ỹ, ỹ1) = p(x|x̃)p(x1|˜̂y1)p(y1, y|x, x1)p(ŷ1|y1, x1) (3.29)

In the above theorem, the notations˜and˜̃are used to denote the signals belonging

to the previous block and the block before the previous block, respectively, with

respect to a reference block. Therefore, we see that the achievable rate in the relay

channel, using our proposed coding scheme, needs to satisfy three conditions that

involve mutual information expressions calculated using eleven variables which satisfy

the Markov chain constraint in (3.27), the marginal distribution constraint in (3.28),

and the additional inter-block probability distribution constraint in (3.29).

In the next section, we will revisit the well-known CAF scheme proposed in [8].

First, we will develop an equivalent representation for the well-known representation

of the achievable rate in the CAF scheme. We will then show that the rates achievable

by the CAF scheme can be achieved with our proposed scheme by choosing a certain

special structure for the joint probability distribution of the eleven random variables

in Theorem 3.3.1 while still satisfying the three conditions in (3.27), (3.28) and (3.29).

3.4 Revisiting the Compress-And-Forward (CAF) Scheme

In [8], the achievable rates for the CAF are characterized as in the following theorem.
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Theorem 3.4.1 ( [8]) The rate R is achievable for the relay channel, if the following

conditions are satisfied

R ≤ I(X; Y, Ŷ1|X1) (3.30)

I(Y1; Ŷ1|X1, Y ) < I(X1; Y ) (3.31)

where

p(x, x1, y, y1, ŷ1) = p(x)p(x1)p(y, y1|x, x1)p(ŷ1|y1, x1) (3.32)

In the following theorem, we present three equivalent forms for the rate achievable

by the CAF scheme.

Theorem 3.4.2 The following three conditions are equivalent.

1. For some p(x, x1, y, y1, ŷ1) = p(x)p(x1)p(y, y1|x, x1)p(ŷ1|y1, x1)

R− I(X; Ŷ1|X1) ≤ I(X; Y |Ŷ1, X1) (3.33)

I(Y1; Ŷ1|X1) < I(Ŷ1; Y |X1) + I(X1; Y ) (3.34)

2. For some p(x, x1, y, y1, ŷ1) = p(x)p(x1)p(y, y1|x, x1)p(ŷ1|y1, x1)

R− I(X; Ŷ1|X1) ≤ I(X; Y |Ŷ1, X1) (3.35)

R− I(X; Ŷ1|X1) + I(Y1; Ŷ1|X1) ≤ I(X, Ŷ1; Y |X1) + I(X1; Y ) (3.36)
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3. For some p(x, x1, y, y1, ŷ1) = p(x)p(x1)p(y, y1|x, x1)p(ŷ1|y1, x1)

R − I(X; Ŷ1|X1) ≤ I(X; Y |Ŷ1, X1) (3.37)

I(Ŷ1; Y1|X1, X) < I(Ŷ1; Y |X1, X) + I(X1; Y |X) (3.38)

R− I(X; Ŷ1|X1) + I(Y1; Ŷ1|X1) ≤ I(X, Ŷ1; Y |X1) + I(X1; Y ) (3.39)

The proof of the above theorem is given in Appendix 3.C.

We rewrite the final equivalent representation in (3.37), (3.38) and (3.39) in the

following more compact form in order to compare the rates achievable with our pro-

posed scheme and the rates achievable with the CAF scheme in the next section.

R ≤ I(X; Y, Ŷ1|X1) (3.40)

I(Ŷ1; Y1|X1, X) < I(Ŷ1, X1; Y |X) (3.41)

R + I(Y1; Ŷ1|X1, X) ≤ I(X, Ŷ1, X1; Y ) (3.42)

3.5 Comparison of the Achievable Rates with Our Scheme and with

the CAF Scheme

We note that the conditions on the achievable rates with our scheme given in Theo-

rem 3.3.1, i.e., (3.24), (3.25), (3.26), are very similar to the final equivalent form for

the conditions on the achievable rates with the CAF scheme, i.e., (3.40), (3.41), (3.42),

except for two differences. First, the channel inputs of the transmitter and the relay,

i.e., X and X1, in our proposed scheme can be correlated, while in the CAF scheme
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they are independent, and second, in our scheme there are some extra random vari-

ables, which mutual information expressions are conditioned on, e.g., X̃, X̃1, Ỹ ,
˜̂
Y1,

˜̃X.

These two differences come from our coding scheme where we introduced correlation

between the channel inputs of the transmitter and the relay in a block, and between

the variables across the blocks. The correlation between the channel inputs from the

transmitter and the relay in any block is an advantage, as for channels which fa-

vor correlation, this translates into higher rates. However, the correlation across the

blocks is a disadvantage as it decreases the efficiency of transmission, and therefore

the achievable rates. In fact, the price we pay for the correlation between the chan-

nel inputs in any given block is precisely the correlation we have created across the

blocks. For a given correlation structure, it is not clear which of these two opposite

effects will overcome the other. That is, the rate of our scheme for a certain correlated

distribution may be lower or higher than the rate of the CAF scheme. However, we

note that the CAF scheme can be viewed as a special case of our proposed scheme

by choosing an independent distribution, i.e., by choosing the following conditional

distribution in (3.29)

p(x, ŷ1, x1, y, y1|x̃, ˜̂y1, x̃1, ỹ, ỹ1) = p(x)p(x1)p(y1, y|x, x1)p(ŷ1|x1, y1) (3.43)

In this case, the expressions in Theorem 3.3.1, i.e., (3.24), (3.25), (3.26), degenerate

into the third equivalent form for the CAF scheme in Theorem 3.4.2, i.e., (3.40),

(3.41), (3.42). The above observation implies that the maximum achievable rate with

our proposed scheme over all possible distributions is not less than the achievable rate
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of the CAF scheme. Thus, we can claim that this chapter offers more choices in the

achievability scheme than the CAF scheme, and that these choices may potentially

yield larger achievable rates than those offered by the CAF scheme.

3.6 Conclusion

In this chapter, we proposed a new achievability scheme for the general relay channel.

This coding scheme is in the form of a block Markov code. The transmitter uses

a superposition Markov code. The relay compresses the received signal and maps

the compressed version of the received signal into a codeword conditioned on the

codeword of the previous block. The receiver performs joint decoding after it has

received all of the B blocks. We showed that this coding scheme can be viewed as a

generalization of the well-known CAF scheme proposed by Cover and El Gamal. Our

coding scheme provides options for preserving the correlation between the channel

inputs of the transmitter and the relay, which is not possible in the CAF scheme.

Thus, our proposed scheme may potentially yield a larger achievable rate than the

CAF scheme.

3.A Appendix: Probability of Error Calculation

The average probability of decoding error can be expressed as follows,

Pe = Pr(E1 ∪E2) = Pr(E1) + Pr(E2 ∩Ec
1) (3.44)
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where

E1 ,
(

xn
[1,...,B], ŷ

n
1[1,...,B], x

n
1[1,...,B], y

n
[1,...,B]

)

/∈ Tδ (3.45)

E2 ,
⋃

“

x̄n
[1,...,B]

, ¯̂yn
1[1,...,B−1]

”

6=
“

xn
[1,...,B]

,ŷn
1[1,...,B−1]

”

(

x̄n
[1,...,B],

¯̂yn
1[1,...,B], x̄

n
1[1,...,B], y

n
[1,...,B]

)

∈ Tδ

(3.46)

where (x̄n
[1,...,B],

¯̂yn
1[1,...,B−1], x̄

n
1[2,...,B]) is another codeword that is generated according

to the rules of our scheme.

From (3.2), we note the following Markov properties:

1. conditioned on (Ŷ1[l], X[l], X1[l]), Y[l] is independent of G[...,l−1] and G[l,... ];

2. conditioned on (X[l−1], Ŷ1[l−1]), G[l,... ] is independent of G[...,l−1].

Here, and in the sequel, subscript [l] refers to a generic block within overall B blocks.

Pr(E1) can be upper bounded as follows:

Pr(E1) ≤
B
∑

l=1

(

Pr
(

(xn
[l], x

n
1[l], y

n
[l], y

n
1[l], g

n
[...,l−1]) /∈ Tδ|gn

[...,l−1] ∈ Tδ

)

+ Pr
(

(ŷn
1[l], x

n
[l], x

n
1[l], y

n
[l], y

n
1[l], g

n
[...,l−1]) /∈ Tδ|(xn

[l], x
n
1[l], y

n
[l], y

n
1[l], g

n
[...,l−1]) ∈ Tδ

))

(3.47)

From the way the code is generated, we have

Pr
(

(xn
[l], x

n
1[l], y

n
[l], y

n
1[l], g

n
[...,l−1]) /∈ Tδ|gn

[...,l−1] ∈ Tδ

)

≤ ǫ (3.48)
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The compression from yn
1[l] to ŷn

1[l] is a conditional version of a rate-distortion code. If

R′ > I(Y1; Ŷ1|X1), then, when n is sufficiently large, we have

Pr
(

(ŷn
1[l], x

n
[l], x

n
1[l], y

n
[l], y

n
1[l], g

n
[...,l−1]) /∈ Tδ|(xn

[l], x
n
1[l], y

n
[l], y

n
1[l], g

n
[...,l−1]) ∈ Tδ

)

≤ ǫ (3.49)

Thus,

Pr(E1) ≤ 2Bǫ (3.50)

Now we switch to the error event E2.

Pr(E2 ∩Ec
1)

=
∑

“

xn
[1,...,B]

,ŷn
1[1,...,B]

,xn
1[1,...,B]

,yn
[1,...,B]

”

∈Tδ

p(xn
[1,...,B], ŷ

n
1[1,...,B], x

n
1[1,...,B], y

n
[1,...,B])

× Pr
(

E2|(xn
[1,...,B], ŷ

n
1[1,...,B], x

n
1[1,...,B], y

n
[1,...,B]) sent

)

≤ max
“

xn
[1,...,B]

,ŷn
1[1,...,B]

,xn
1[1,...,B]

,yn
[1,...,B]

”

∈Tδ

Pr
(

E2|(xn
[1,...,B], ŷ

n
1[1,...,B], x

n
1[1,...,B], y

n
[1,...,B]) sent

)

(3.51)

From our proposed coding scheme, we note that the codebooks at both transmitter

and relay have tree structures with B−1 stages. A correct codeword xn
[1,...,B−1] can be

viewed as a path in the tree-structured codebook at the transmitter. Similarly, for the

codeword ŷn
1[1,...,B−1] at the relay. An error occurs when we diverge from the correct
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path at a certain stage in the tree. Thus, the error event E2 can be decomposed as

E2 =
⋃

j=2,...,B−1

k=2,...,B−1

⋃

(x̄n
[1]

,...,x̄n
[j−1]

, ¯̂yn
1[1]

,..., ¯̂yn
1[k−1])=(xn

[1]
,...,xn

[j−1]
,ŷn

1[1]
,...,ŷn

1[k−1])

(x̄n
[j]

, ¯̂yn
1[k]) 6=(xn

[j]
,ŷn

1[k])

(

x̄n
[1], . . . , x̄

n
[B],

¯̂yn
1[1], . . . ,

¯̂yn
1[B], x̄

n
1[1], . . . , x̄

n
1[B], y

n
[1], . . . , y

n
[B]

)

∈ Tδ (3.52)

where each term in the union in the above equation represents the error event that

results when we diverge from the correct paths at the jth stage at the transmitter

and at the kth stage at the relay.

Let us define F1 to be the set consisting of all feasible codeword pairs (xn
[j], ŷ

n
1[j])

for the jth block for a given xn
[j−1] and xn

1[j]. Then, we have

F1 , |F1| ≤M exp(n(H(Ŷ1[j]|X[j], X1[j]) + 2ǫ))
L

(1− ǫ) exp(n(H(Ŷ1[j]|X1[j])− 2ǫ))

≤M exp(n(H(Ŷ1[j]|X[j], X1[j]) + 2ǫ))
exp(n(I(Ŷ1[j]; Y1[j]|X1[j]) + ǫ))

(1− ǫ) exp(n(H(Ŷ1[j]|X1[j])− 2ǫ))

≤M exp(n(I(Ŷ1[j]; Y1[j]|X1[j], X[j]) + 6ǫ)) (3.53)

We also define F2 to be the set consisting of all feasible codewords xn
[j] for the jth

block for a given xn
[j−1]. Then,

F2 , |F2| = M (3.54)

Similarly, we define F3 to be the set consisting of all feasible codewords ŷn
1[j] for the
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jth block for a given xn
[j] and xn

1[j]. Then,

F3 , |F3| ≤ L
exp(n(H(Ŷ1[j]|X1[j], X[j]) + 2ǫ))

(1− ǫ) exp(n(H(Ŷ1[j]|X1[j])− 2ǫ))

≤ exp(n(I(Ŷ1[j]; Y1[j]|X1[j], X[j]) + 6ǫ)) (3.55)

We define the error event E2jk

E2jk ,
⋃

(x̄n
[1]

,...,x̄n
[j−1]

, ¯̂yn
1[1]

,..., ¯̂yn
1[k−1])=(xn

[1]
,...,xn

[j−1]
,ŷn

1[1]
,...,ŷn

1[k−1])

(x̄n
[j]

, ¯̂yn
1[k]) 6=(xn

[j]
,ŷn

1[k])

(

x̄n
[1], . . . , x̄

n
[B],

¯̂yn
1[1], . . . ,

¯̂yn
1[B], x̄

n
1[1], . . . , x̄

n
1[B], y

n
[1], . . . , y

n
[B]

)

∈ Tδ (3.56)

Then, we have

Pr(E2 ∩Ec
1) ≤

B−1
∑

j=2

B−1
∑

k=2

Pr(E2jk ∩ Ec
1) (3.57)

and

Pr(E2jk ∩Ec
1) ≤ |Ajk| max

(x̄n
[1]

,...,x̄n
[B−1]

, ¯̂yn
1[1]

,..., ¯̂yn
1[B−1]

)∈Ajk

P1(x̄
n
[1], . . . , x̄

n
[B−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[B−1])

(3.58)

104



where

Ajk ,































codeword (x̄n
[1], . . . , x̄

n
[B−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[B−1]) :

(

x̄n
[1], . . . , x̄

n
[j−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[k−1]

)

=
(

xn
[1], . . . , x

n
[j−1], ŷ

n
1[1], . . . , ŷ

n
1[k−1]

)

(

x̄n
[j],

¯̂yn
1[k]

)

6=
(

xn
[j], ŷ

n
1[k]

)































(3.59)

P1(x̄
n
[1], . . . , x̄

n
[B−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[B−1])

, Pr((x̄n
[1], . . . , x̄

n
[B],

¯̂yn
1[1], . . . ,

¯̂yn
1[B], x̄

n
1[1], . . . , x̄

n
1[B], y

n
[1], . . . , y

n
[B]) ∈ Tδ) (3.60)

given
(

xn
[1], . . . , x

n
[B], ŷ

n
1[1], . . . , ŷ

n
1[B], x

n
1[1], . . . , x

n
1[B], y

n
[1], . . . , y

n
[B]

)

∈ Tδ.

In order to have the probability of such error events go to zero, we need the

following conditions to hold.

When j = k, from the structure of the block Markov code and (3.53), we have

|Ajk| = F B−j
1 ≤MB−j exp(n(B − j)(I(Ŷ1[l]; Y1[l]|X1[l], X[l]) + 6ǫ)) (3.61)
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and

P1(x̄
n
[1], . . . , x̄

n
[B−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[B−1])

≤ exp(n(H(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]|Y

[B]
[j] , Ŷ1[B], X[B], X[j−1], X1[j]) + 2ǫ))

× exp(−n(H(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]|X[j−1], X1[j])− 2ǫ))

= exp(n(−I(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]; Y

[B]
[j] , Ŷ1[B], X[B]|X[j−1], X1[j]) + 4ǫ)) (3.62)

When j < k, we have

|Ajk| = F k−j
2 F B−k

1 ≤MB−j exp(n(B − k)(I(Ŷ1[l]; Y1[l]|X1[l], X[l]) + 6ǫ)) (3.63)

and

P1(x̄
n
[1], . . . , x̄

n
[B−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[B−1])

≤ exp(n(H(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]|Y

[B]
[j] , Ŷ1[B], X[B], Ŷ

[k−1]
1[j] , X[j−1], X

[k]
1[j]) + 2ǫ))

× exp(−n(H(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]|X[j−1], X1[j])− 2ǫ))

= exp(n(−I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[j] , Ŷ1[B], X[B], Ŷ

[k−1]
1[j] , X

[k]
1[j+1]|X[j−1], X1[j]) + 4ǫ))

(3.64)

When j > k, we have

|Ajk| = F j−k
3 F B−j

1 ≤ exp(n(j − k)(I(Ŷ1[j]; Y1[j]|X1[j], X[j]) + 6ǫ))

×MB−k
l exp(n(B − k)(I(Ŷ1[l]; Y1[l]|X1[l], X[l]) + 6ǫ)) (3.65)
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and

P1(x̄
n
[1], . . . , x̄

n
[B−1],

¯̂yn
1[1], . . . ,

¯̂yn
1[B−1])

≤ exp(n(H(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]|Y

[B]
[k] , Ŷ1[B], X[B], X

[j−1
k] , X1[k]) + 2ǫ))

× exp(−n(H(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]|X

[j−1]
[k] , X1[k])− 2ǫ))

= exp(n(−I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[k] , Ŷ1[B], X[B]|X [j−1]

[k] , X1[k]) + 4ǫ)) (3.66)

Thus, when n is sufficiently large, using (3.58) and (3.61) through (3.66), we have

Pr(E2jk ∩ Ec
1) ≤ ǫ, j, k = 2, . . . , B − 1 (3.67)

if the following conditions are satisfied:

1. For all j such that 1 ≤ j ≤ B − 1,

1

n
(B − j) ln M + (B − j)I(Ŷ1[l]; Y1[l]|X1[l], X[l])

< I(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]; Y

[B]
[j] , Ŷ1[B], X[B]|X[j−1], X1[j]) (3.68)

2. For all j, k such that 1 ≤ j < k ≤ B − 1,

1

n
(B − j) lnM + (B − k)I(Ŷ1[l]; Y1[l]|X1[l], X[l])

< I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[j] , Ŷ1[B], X1[B], Ŷ

[k−1]
1[j] , X

[k]
1[j+1]|X[j−1], X[j]) (3.69)
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3. For all j, k such that 1 ≤ k < j ≤ B − 1,

(j − k)I(Ŷ1[l]; Y1[l]|X1[l], X[l]) +
1

n
(B − j) ln M + (B − j)I(Ŷ1[l]; Y1[l]|X1[l], X[l])

< I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[k] , Ŷ1[B], X[B]|X [j−1]

[k] , X1[k]) (3.70)

Therefore, we have

Pe = Pr(E1) + Pr(E2 ∩ Ec
1) ≤ (2B + B2)ǫ (3.71)

When n is sufficiently large, (2B + B2)ǫ can be made arbitrarily small.
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3.B Appendix: Lower Bounding the Mutual Informations in (3.3),

(3.4), (3.5)

For the right hand side of (3.3), we have

I(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]; Y

[B]
[j] , Ŷ1[B], X[B]|X[j−1], X1[j])

1
=

B−1
∑

l=j

I(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]; Y[l]|X[j−1], X1[j], Y

[l−1]
[j] )

+ I(X
[B−1]
[j] , Ŷ

[B−1]
1[j] , X

[B]
1[j+1]; Y[B], Ŷ1[B], X[B]|X[j−1], X1[j], Y

[B−1]
[j] )

2
= I(Y[j]; X[j], Ŷ1[j]|X1[j], X[j−1]) +

B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X[j−1], X1[j], Y
[l−1]
[j] )

+ I(Y[B], Ŷ1[B], X[B]; X1[B], X[B−1]|X[j−1], X1[j], Y
[B−1]
[j] )

3
=

B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X[j−1], X1[j], Y
[l−1]
[j] ) + I(Y[B]; X[B], Ŷ1[B]|X1[B], X[B−1])

+ I(Y[B], Ŷ1[B], X[B]; X1[B], X[B−1]|X[j−1], X1[j], Y
[B−1]
[j] )

4
≥

B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X[j−1], X1[j], Y
[l−1]
[j] )

+ I(Y[B]; X[B], Ŷ1[B]|X1[B], X[B−1], X[j−1], X1[j], Y
[B−1]
[j] )

+ I(Y[B]; X1[B], X[B−1]|X[j−1], X1[j], Y
[B−1]
[j] )

=

B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X[j−1], X1[j], Y
[l−1]
[j] )

+ I(Y[B]; X[B], Ŷ1[B], X1[B], X[B−1]|X[j−1], X1[j], Y
[B−1]
[j] )

5
=

B
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X[j−1], X1[j], Y
[l−1]
[j] )

6

≥ (B − j)I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.72)
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where

1. follows from the chain rule;

2. because of Markov properties 1 and 2;

3. because of the stationarity of the random process and the property that condi-

tioning reduces entropy;

4. because of Markov property 2;

5. because of Markov property 1;

6. because of Markov property 2 and the stationarity of the random process.
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For the right hand side of (3.4), we have

I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[j] , Ŷ1[B], X[B], Ŷ

[k−1]
1[j] , X

[k]
1[j+1]|X[j−1], X1[j])

1
= I(X

[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[j], Ŷ1[j]|X[j−1], X1[j])

+

k−1
∑

l=j+1

I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[l], Ŷ1[l], X1[l]|X[j−1], Y

[l−1]
[j] , Ŷ

[l−1]
1[j] , X

[l−1]
1[j] )

+ I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[k], X1[k]|X[j−1], Y

[k−1]
[j] , Ŷ

[k−1]
1[j] , X

[k−1]
1[j] )

+

B−1
∑

l=k+1

I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[l]|X[j−1], Y

[l−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

+ I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[B], Ŷ1[B], X[B]|X[j−1], Y

[B−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

2
≥ I(X[j]; Y[j], Ŷ1[j]|X[j−1], X1[j]) +

k−1
∑

l=j+1

I(X[l]; Y[l], Ŷ1[l]|X[j−1], Y
[l−1]
[j] , Ŷ

[l−1]
1[j] , X

[l]
1[j])

+ I(X[k], Ŷ1[k]; Y[k]|X[j−1], Y
[k−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

+

B−1
∑

l=k+1

I(X[l], Ŷ1[l], X1[l]; Y[l]|X[j−1], Y
[l−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

+ I(X[B−1], X1[B]; Y[B], Ŷ1[B], X[B]|X[j−1], Y
[B−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

3
=

k−1
∑

l=j+1

I(X[l]; Y[l], Ŷ1[l]|X[j−1], Y
[l−1]
[j] , Ŷ

[l−1]
1[j] , X

[l]
1[j])

+
B−1
∑

l=k+1

I(X[l], Ŷ1[l], X1[l]; Y[l]|X[j−1], Y
[l−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

+ I(X[B]; Y[B], Ŷ1[B]|X[B−1], X1[B])

+ I(X[B], Ŷ1[B]; Y[B]|X[j−1+B−k], Y
[B−1]
[j+B−k], Ŷ

[B−1]
1[j+B−k], X

[B]
1[j+B−k])

+ I(X[B−1], X1[B]; Y[B], Ŷ1[B], X[B]|X[j−1], Y
[B−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

4
≥

k−1
∑

l=j+1

I(X[l]; Y[l], Ŷ1[l]|X[j−1], Y
[l−1]
[j] , Ŷ

[l−1]
1[j] , X

[l]
1[j])
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+
B−1
∑

l=k+1

I(X[l], Ŷ1[l], X1[l]; Y[l]|X[j−1], Y
[l−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

+ I(X[B]; Y[B], Ŷ1[B]|X1[B], S) + I(X[B], Ŷ1[B], X1[B]; Y[B]|S)

5
≥ (k − j)I(X[l]; Y[l], Ŷ1[l]|X1[l], Y[l−1], Ŷ1[l−1], X1[l−1], X[l−2])

+ (B − k)I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.73)

where

S , (X[j−1+B−k], Y
[B−1]
[j+B−k], Ŷ

[B−1]
1[j+B−k], X

[B−1]
1[j+B−k], X[j−1], Y

[B−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j]) (3.74)

and

1. follows from the chain rule;

2. because of Markov properties 1 and 2;

3. because of the stationarity of the random process;
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4. because of the following derivation

I(X[B]; Y[B], Ŷ1[B]|X[B−1], X1[B])

+ I(X[B], Ŷ1[B]; Y[B]|X[j−1+B−k], Y
[B−1]
[j+B−k], Ŷ

[B−1]
1[j+B−k], X

[B]
1[j+B−k])

+ I(X[B−1], X1[B]; Y[B], Ŷ1[B], X[B]|X[j−1], Y
[B−1]
[j] , Ŷ

[k−1]
1[j] , X

[k]
1[j])

≥ I(X[B]; Y[B], Ŷ1[B]|X[B−1], X1[B], S) + I(X[B], Ŷ1[B]; Y[B]|X1[B], S)

+ I(X[B−1], X1[B]; Y[B], Ŷ1[B]|S)

≥ I(X[B]; Y[B], Ŷ1[B]|X[B−1], X1[B], S) + I(X[B], Ŷ1[B]; Y[B]|X1[B], S)

+ I(X[B−1]; Y[B], Ŷ1[B]|X1[B], S) + I(X1[B]; Y[B]|S)

= I(X[B]; Y[B], Ŷ1[B]|X1[B], S) + I(X[B], Ŷ1[B], X1[B]; Y[B]|S) (3.75)

5. because of Markov property 1 and 2 and the stationarity of the random process.
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For the right hand side of (3.5), we have

I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y

[B]
[k] , Ŷ1[B], X[B]|X [j−1]

[k] , X1[k])

1
=

B−1
∑

l=k

I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[l]|X [j−1]

[k] , X1[k], Y
[l−1]
[k] )

+ I(X
[B−1]
[j] , Ŷ

[B−1]
1[k] , X

[B]
1[k+1]; Y[B], Ŷ1[B], X[B]|X [j−1]

[k] , X1[k], Y
[B−1]
[k] )

2
≥ I(Y[k]; Ŷ1[k]|X[k], X1[k]) +

j−1
∑

l=k+1

I(Y[l]; Ŷ1[l], X1[l]|X [l]
[k], X1[k], Y

[l−1]
[k] )

+ I(Y[j]; X[j], Ŷ1[j], X1[j]|X [j−1]
[k] , X1[k], Y

[j−1]
[k] )

+

B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X [j−1]
[k] , X1[k], Y

[l−1]
[k] )

+ I(Y[B], Ŷ1[B], X[B]; X
[B−1]
[j] , X1[B]|X [j−1]

[k] , X1[k], Y
[B−1]
[k] )

3
=

j−1
∑

l=k+1

I(Y[l]; Ŷ1[l], X1[l]|X [l]
[k], X1[k], Y

[l−1]
[k] )

+
B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X [j−1]
[k] , X1[k], Y

[l−1]
[k] ) + I(Y[B]; Ŷ1[B]|X[B], X1[B])

+ I(Y[B]; X[B], Ŷ1[B], X1[B]|X [B−1]
[k+B−j], X1[k+B−j], Y

[B−1]
[k+B−j])

+ I(Y[B], Ŷ1[B], X[B]; X
[B−1]
[j] , X1[B]|X [j−1]

[k] , X1[k], Y
[B−1]
[k] )

4
≥

j−1
∑

l=k+1

I(Y[l]; Ŷ1[l], X1[l]|X [l]
[j], X1[k], Y

[l−1]
[k] )

+
B−1
∑

l=j+1

I(Y[l]; X[l], Ŷ1[l], X1[l]|X [j−1]
[k] , X1[k], Y

[l−1]
[k] )

+ I(Y[B]; Ŷ1[B], X1[B]|X [B]
[j] , S ′) + I(Y[B]; X[B], Ŷ1[B], X1[B]|S ′)

5
≥ (j − k)I(Y[l]; Ŷ1[l], X1[l]|X[l], X[l−1], X1[l−1], Y[l−1])

+ (B − j)I(Y[l]; X[l], Ŷ1[l], X1[l]|X[l−2], X1[l−1], Y[l−1]) (3.76)

114



where

S ′ , (X1[k+B−j], Y
[B−1]
[k] , X

[j−1]
[k] , X1[k]) (3.77)

and

1. follows from the chain rule;

2. because of Markov properties 1 and 2;

3. because of the stationarity of the random process;

4. because of the following derivation

I(Y[B]; Ŷ1[B]|X[B], X1[B]) + I(Y[B]; X[B], Ŷ1[B], X1[B]|X [B−1]
[k+B−j], X1[k+B−j], Y

[B−1]
[k+B−j])

+ I(Y[B], Ŷ1[B], X[B]; X
[B−1]
[j] , X1[B]|X [j−1]

[k] , X1[k], Y
[B−1]
[k] )

≥ I(Y[B]; Ŷ1[B]|X[B], X1[B], S
′) + I(Y[B]; X[B], Ŷ1[B], X1[B]|X [B−1]

[j] , S ′)

+ I(Y[B], Ŷ1[B], X[B]; X
[B−1]
[j] , X1[B]|S ′)

= I(Y[B]; Ŷ1[B]|X[B], X1[B], S
′) + I(Y[B]; X[B], Ŷ1[B], X1[B]|X [B−1]

[j] , S ′)

+ I(Y[B], Ŷ1[B], X[B]; X1[B]|X [B−1]
[j] , S ′) + I(Y[B], Ŷ1[B], X[B]; X

[B−1]
[j] |S ′)

≥ I(Y[B]; Ŷ1[B]|X[B], X1[B], X
[B−1]
[j] , S ′) + I(Y[B]; X[B], Ŷ1[B], X1[B]|X [B−1]

[j] , S ′)

+ I(Y[B]; X1[B]|X[B], X
[B−1]
[j] , S ′) + I(Y[B]; X

[B−1]
[j] |S ′)

= I(Y[B]; Ŷ1[B], X1[B]|X [B]
[j] , S ′) + I(Y[B]; X[B], Ŷ1[B], X1[B]|S ′) (3.78)

5. because of Markov property 1 and 2 and the stationarity of the random process.
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3.C Appendix: Proof of Theorem 3.4.2

First, we note that condition 1 is equivalent to the expression in Theorem 3.4.1. We

also note that condition 2 is seemingly weaker than condition 1 because (3.36) is

implied by (3.33) and (3.34), and condition 3 is seemingly stronger than condition 2

because condition 3 consists of every element in condition 2 plus (3.38). Even though

they seem different, these three conditions are indeed equivalent. The equivalence of

conditions 2 and 3 is shown in [2]. Here, we use a similar proof technique to show the

equivalence of conditions 1 and 2 as follows2. For a given distribution p(x, x1, y, y1, ŷ1),

condition 1 is stronger than condition 2, which means that an arbitrary rate R sat-

isfying condition 1 will also satisfy condition 2. Conversely, for a rate R satisfying

condition 2, if (3.34) is satisfied, then condition 1 is satisfied. If (3.34) is not satisfied,

i.e.,

I(Y1; Ŷ1|X1) ≥ I(Ŷ1; Y |X1) + I(X1; Y ) (3.79)

we know that R ∈ [0, R∗], where

R∗ − I(X; Ŷ1|X1) ≤ I(X; Y |Ŷ1, X1) (3.80)

R∗ − I(X; Ŷ1|X1) + I(Y1; Ŷ1|X1) = I(X, Ŷ1; Y |X1) + I(X1; Y ) (3.81)

2A similar result is given in [14] by means of time-sharing.
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That is, R∗ is defined such that (3.36) is satisfied with equality. We may rewrite

(3.80) and (3.81) as

R∗ ≤ I(X; Y |X1) + I(X; Ŷ1|Y, X1) (3.82)

R∗ = I(X, X1; Y )− I(Y1; Ŷ1|X, X1, Y ) (3.83)

We define a new random variable Ŷ ′
1 such that Ŷ ′

1 has the same marginal distri-

bution as Ŷ1 and Ŷ ′
1 → Ŷ1 → (Y1, X, X1, Y ). Due to the continuity of mutual in-

formation, there exists a choice of Ŷ ′
1 such that I(X; Ŷ ′

1 |Y, X1) = A for any A ∈

[0, I(X; Ŷ1|Y, X1)]. If R∗−I(X; Y |X1) > 0, we choose Ŷ ′
1 such that R∗ = I(X; Y |X1)+

I(X; Ŷ ′
1 |Y, X1). We note that, in this case, I(Y1; Ŷ1|X, X1, Y ) ≥ I(Y1; Ŷ

′
1 |X, X1, Y ).

Thus,

R∗ = I(X; Y |X1) + I(X; Ŷ ′
1 |Y, X1) (3.84)

R∗ ≤ I(X, X1; Y )− I(Y1; Ŷ
′
1 |X, X1, Y ) (3.85)

which means that R∗ satisfies condition 1 with joint distribution p(x, x1, y, y1, ŷ
′
1)

and so does any R ≤ R∗. If R∗ − I(X; Y |X1) ≤ 0, we choose Ŷ ′
1 independent of

(Ŷ1, X, X1, Y1, Y ). In this case,

R∗ ≤ I(X; Y |X1) + I(X; Ŷ ′
1 |Y, X1) = I(X; Y |X1) (3.86)

0 = I(Y1; Ŷ
′
1 |X1) ≤ I(Ŷ ′

1 ; Y |X1) + I(X1; Y ) (3.87)
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Therefore, in this case, R∗ satisfies condition 1 with joint distribution p(x, x1, y, y1, ŷ
′
1)

and so does any R ≤ R∗.

As we mentioned above the equivalence between condition 2 and 3 is shown in [2].

For completeness, we restate their proof here as follows. For a given distribution

p(x, x1, y, y1, ŷ1), condition 3 is stronger than condition 2, which means that an arbi-

trary rate R satisfying condition 3 will also satisfy condition 2. Conversely, for a rate

R satisfying condition 2, if (3.38) is satisfied, then condition 3 is satisfied. If (3.38)

is not satisfied, i.e., the following inequalities are satisfied

R− I(X; Ŷ1|X1) ≤ I(X; Y |Ŷ1, X1) (3.88)

I(Ŷ1; Y1|X1, X) ≥ I(Ŷ1; Y |X1, X) + I(X1; Y |X) (3.89)

R− I(X; Ŷ1|X1) + I(Y1; Ŷ1|X1) ≤ I(X, Ŷ1; Y |X1) + I(X1; Y ) (3.90)

then the following inequalities are satisfied also, since we simply drop the first in-

equality,

I(Ŷ1; Y1|X1, X) ≥ I(Ŷ1; Y |X1, X) + I(X1; Y |X) (3.91)

R− I(X; Ŷ1|X1) + I(Y1; Ŷ1|X1) ≤ I(X, Ŷ1; Y |X1) + I(X1; Y ) (3.92)
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By combining (3.91) and (3.92), we have

R ≤I(X; Ŷ1|X1)− I(Y1; Ŷ1|X1) + I(Ŷ1; Y1|X1, X)

+ I(X, Ŷ1; Y |X1) + I(X1; Y )− I(Ŷ1; Y |X1, X)− I(X1; Y |X)

≤I(X; Y |X1)− (I(X1; Y |X)− I(X1; Y ))

≤I(X; Y |X1) (3.93)

which implies condition 3, i.e., (3.37), (3.38) and (3.39), with Ŷ1 set to be a constant.
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Chapter 4

Capacity of a Class of Diamond Channels

4.1 Problem Statement and the Result

The diamond channel was first introduced by Schein in 2001 [32]. The diamond

channel consists of one transmitter, two relays and a receiver, where the transmitter

and the two relays form a broadcast channel as the first stage and the two relays and

the receiver form a multiple access channel as the second stage. The capacity of the

diamond channel in its most general form is open. Schein explored several special

cases of the diamond channel, one of which [32, Section 3.5] is specified as follows

(see Figure 4.1). The multiple access channel consists of two orthogonal links with

rate constraints R1 and R2, respectively. The broadcast channel contains a noisy

branch and a noiseless branch, i.e., with input X and two outputs X and Y . We refer

to the relay node receiving Y as the noisy relay and the relay node receiving X as

the noiseless relay. Schein provided two achievable schemes for this class of diamond

channels. In this chapter, we will prove the capacity of this special class of diamond

channels.

The formal definition of the problem is as follows. Consider a channel with in-
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(Relay 2)Xn

Y n

R1

R2

Noisy relay
(Relay 1)

DecoderEncoder

Noiseless relay

Xn

Figure 4.1: The diamond channel.

put alphabet X and output alphabet Y , which is characterized by the transition

probability p(y|x). Assume an n-length block code consisting of (f, g, h, ϕ) where

f :{1, 2, . . . , M} 7→ X n (4.1)

g :Yn 7→ {1, 2, . . . , |g|} (4.2)

h :{1, 2, . . . , M} 7→ {1, 2, . . . , |h|} (4.3)

ϕ :{1, 2, . . . , |g|} × {1, 2, . . . , |h|} 7→ {1, 2, . . . , M} (4.4)

Here f denotes the encoding function at the transmitter, g and h denote the processing

functions at the noisy and noiseless relays, respectively, and ϕ denotes the decoding

function at the receiver.

The encoder sends xn = f(m) into the channel, where m ∈ {1, 2, . . . , M}. The

decoder reconstructs m̂ = ϕ(g(Y n), h(m)). The average probability of error is defined

as

Pe ,
1

M

M
∑

m=1

Pr(m̂ 6= m|m is sent) (4.5)

The rate triple (R, R1, R2) is achievable if for every 0 < ǫ < 1, η > 0 and every
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sufficiently large n, there exists an n-length block code (f, g, h, ϕ), such that Pe ≤ ǫ

and

1

n
ln M ≥ R− η (4.6)

1

n
ln |g| ≤ R1 + η (4.7)

1

n
ln |h| ≤ R2 + η (4.8)

The following theorem characterizes the capacity of the class of diamond channels

considered in this chapter.

Theorem 4.1.1 The rate triple (R, R1, R2) is achievable in the above channel if and

only if the following conditions are satisfied

R ≤ I(U ; Y ) + H(X|U) (4.9)

R1 ≥ I(Z; Y |U, X) (4.10)

R2 ≥ H(X|Z, U) (4.11)

R1 + R2 ≥ R + I(Y ; Z|X, U) (4.12)

for some joint distribution

p(u, z, x, y) = p(u, x)p(y|x)p(z|u, y) (4.13)
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with cardinalities of alphabets satisfying

|U| ≤ |X |+ 4 (4.14)

|Z| ≤ |U||Y|+ 3 ≤ |X ||Y|+ 4|X |+ 3 (4.15)

4.2 The Achievability

Assume a given joint distribution

p(u, z, x, y) = p(u, x)p(y|x)p(z|u, y) (4.16)

and consider that the information theoretic quantities on the right hand sides of (4.9),

(4.10), (4.11) and (4.12) are evaluated with this fixed joint probability distribution.

Consider a message W with rate R. If R ≤ H(X|Z, U), reliable transmission can

be achieved by letting g(Y n) = φ (constant) and h(W ) = W , i.e., by sending the

message through the noiseless relay. Thus, we will only consider the case where

H(X|Z, U) < R ≤ I(U ; Y ) + H(X|U) (4.17)

We will show that the message can be reliably transmitted with a pair of functions

(g, h) such that ( 1
n

ln |g|, 1
n

ln |h|) lies in the inverse pentagon1 with corners a and b

in Figure 4.2. However, we instead prove reliable transmission with ( 1
n

ln |g|, 1
n

ln |h|)
1By “inverse pentagon” with corner points a and b, we mean the region in the (R1, R2) space

that is to the “north-east” of line segment [a, b]. More specifically, this is the region described by
inequalities in (4.10), (4.11) and (4.12).
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H(X|U, Z)

b

a

b′

a′

R1

R + I(Z; Y |U, X)R − I(U ; Y ) − I(X; Z|U)
R2

R

R + I(Z; Y |U, X) − H(X|U,Z)

I(U ; Y ) + I(Y ; Z|U)

I(Z; Y |U, X)

Figure 4.2: Rate region of (R1, R2) when H(X|U, Z) ≤ R ≤ I(U ; Y ) + I(X; Z|U).

lying in the inverse pentagon with corners a′ and b′, which contains the inverse pen-

tagon with corners a and b and thus imposes a stronger condition to prove. It is

straightforward to have reliable transmission with the rate pair at point b′ by let-

ting g(Y n) = φ (constant) and h(W ) = W . Thus, it remains to prove that reliable

transmission is possible with the rate pair at point a′, i.e.,

R1 = I(U ; Y ) + I(Y ; Z|U) (4.18)

R2 = R− I(U ; Y )− I(X; Z|U) (4.19)

Let us assume that the message W is decomposed as W = (Wa, Wb, Wc). For a
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positive number ǫ, let us define

Ma , |Wa| = exp(n(I(U ; Y )− 3ǫ)) (4.20)

Mb , |Wb| =
M

MaMc

= exp(ln M − n(I(U ; Y ) + I(X; Z|U) + 6ǫ)) (4.21)

Mc , |Wc| = exp(n(I(X; Z|U)− 3ǫ)) (4.22)

Random codebook generation: We use a superpostion code structure. The size of

the inner code is Ma. For each inner codeword, we independently generate Mb outer

codes. The size of each outer code is Mc.

• Independently generate Ma sequences, un(1), un(2), . . . , un(Ma), according to

∏n
i=1 p(ui) where p(ui) = p(u), for i = 1, 2, . . . , n.

• For un(j), j = 1, 2, . . . , Ma, independently generate Mb codebooks, C(j, 1), C(j, 2),

. . . , C(j, Mb).

• In the codebook C(j, k), j = 1, 2, . . . , Ma, k = 1, 2, . . . , Mb, independently gener-

ate Mc codewords xn(j, k, 1), xn(j, k, 2), . . . , xn(j, k, Mc) according to
∏n

i=1 p(xi|

Ui = ui(j)), where p(xi|U = ui(j)) = p(x|u), for i = 1, 2, . . . , n, j = 1, 2, . . . , Ma,

k = 1, 2, . . . , Mb.

There will be no overlapping codebooks with high probability when n is sufficiently

large, because

1

n
ln MbMc < H(X|U) (4.23)

Encoding at the transmitter : Let W = (Wa, Wb, Wc) be the message. We send
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codeword Xn = f(Wa, Wb, Wc) , xn(Wa, Wb, Wc) into the channel.

Processing at the noisy relay : First, after having received Y n, seek

Ûn = un(Ŵa) ∈ {un(1), un(2), . . . , un(Ma)} (4.24)

such that

(Ûn, Y n) ∈ T n
[UY ] (4.25)

where the definition of strong typical set can be found in [13, Section 1.2]. If there is

not any such Ûn, then let Ûn be an arbitrary sequence in {un(1), un(2), . . . , un(Ma)}.

Secondly, construct a conditional rate distortion code according to
∏n

i=1 p(zi, yi|ûi)

with encoding function g′(Y n, Ûn) and |g′| = L = exp(n(I(Y ; Z|U) + τ)). Finally

send Ûn and Zn , g′(Y n, Ûn) to the destination, i.e.,

g(Y n) = (Ûn, Zn) (4.26)

where

|g| = Ma × L ≤ exp(n(I(U ; Y ) + I(X; Z|U) + τ − 3ǫ)) (4.27)

Processing at the noiseless relay : Let h(f(Wa, Wc, Wb)) = Wb where

|h| = Mb = exp(ln M − n(I(U ; Y ) + I(X; Z|U) + 6ǫ)) (4.28)

Decoding : Decoder collects (Ûn, Zn) from the noisy relay and Wb from the noiseless

relay. The decoder seeks a codeword xn(Wa, Wb, i) from the codebook C(Wa, Wb) such
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that

(xn(Ŵa, Wb, i), Z
n) ∈ T n

[XZ|U ](Û
n) (4.29)

Probability of error : The error occurs when (Û , X̂) 6= (U, X). The average prob-

ability of error can be decomposed into

Pr(E) ≤ Pr(E1 ∪E2 ∪E3) = Pr(E1) + Pr(E2 ∩Ec
1) + Pr(E3 ∩ Ec

1 ∩Ec
2) (4.30)

where

E1 , (Un, Xn, Y n, Zn) /∈ T n
[UXY Z] (4.31)

E2 ,
⋃

ūn 6=Un,ūn∈{un(1),un(2),...,un(Ma)}
(ūn, Y n) ∈ T n

[UY ] (4.32)

E3 ,
⋃

x̄n 6=Xn,x̄n∈C(Wa,Wb)

(x̄n, Zn) ∈ T n
[XZ|U ](U

n) (4.33)

We note that

Pr(E1) ≤Pr(Un /∈ T n
[U ]) + Pr((Y n, Zn) /∈ T n

[Y Z|U ](U
n))+

Pr(Xn /∈ T n
[X|Y ZU ](Y

n, Zn, Un)) (4.34)

where

• Un is generated in an i.i.d. fashion with probability p(u). Thus, when n is

sufficiently large, we have

Pr(Un /∈ T n
[U ]) ≤ ǫ (4.35)
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• Zn is a conditional rate distortion code for Y n conditioned on Un. Thus, when

n is sufficiently large, L = exp(nI(Y ; Z|U) + τ), and Un ∈ T n
[U ], we have

Pr((Y n, Zn) /∈ T n
[Y Z|U ](U

n)) ≤ ǫ (4.36)

• Xn can be viewed as being generated according to an i.i.d. conditional proba-

bility p(x|u, y) with respect to (Un, Y n). Thus, when n is sufficiently large and

(Y n, Zn, Un) ∈ T n
[Y ZU ],

Pr(Xn /∈ T n
[X|Y ZU ](Y

n, Zn, Un)) ≤ ǫ (4.37)

From the above calculation, we have

Pr(E1) = Pr((Un, Xn, Y n, Zn) /∈ T n
[UXZ]) ≤ 3ǫ (4.38)

128



For the second error event, we note that Ma = exp(n(I(U ; Y )− 3ǫ) and

Pr(E2 ∩ Ec
1) = Pr





⋃

ūn 6=Un,ūn∈{un(1),un(2),...,un(Ma)}
(ūn, Y n) ∈ T n

[UY ]|(Y n) ∈ T n
[Y ]





≤
Ma
∑

i=1

Pr((un(i), Y n) ∈ T n
[UY ]|Y n ∈ T n

[Y ])

≤ MaPr(un(i) ∈ T n
[U |Y ](Y

n))

≤ Ma exp(−nH(U) + nǫ) exp(nH(U |Y ) + nǫ)

= exp(−nǫ)

≤ ǫ (4.39)

for sufficiently large n. We note that Mc = exp(n(I(X; Z|U)− 3ǫ), then

Pr(E3 ∩Ec
1) = Pr





⋃

x̄n 6=Xn,x̄n∈C(Wa,Wb)

(x̄n, Zn) ∈ T n
[XZ|U ](U

n)|(Zn, U) ∈ T n
[ZU ]





≤
Mc
∑

i=1

Pr((x(Ma, Mb, i), Z
n) ∈ T n

[XZ|U ](U
n)|(Zn, Un) ∈ T n

[ZU ])

≤McPr(x(Ma, Mb, i) ∈ T n
[X|ZU ](Y

n))

≤Mc exp(−nH(X|U) + nǫ) exp(nH(X|Z, U) + nǫ)

= exp(−nǫ)

≤ ǫ (4.40)

for sufficiently large n. Thus, the average probability error is upper bounded as

Pr(E) ≤ 3ǫ + ǫ + ǫ = 5ǫ (4.41)
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which goes to zero when n goes to infinity.

4.3 The Converse

Define Zi , g and Ui , (Y i−1, Xn
i+1). We note that

p(ui, xi, yi, zi) = p(ui, xi)p(yi|xi)p(zi|yi, ui) (4.42)

We have

ln M = H(Xn)

=

n
∑

i=1

H(Xi|Xn
i+1)

≤
n
∑

i=1

I(Y i−1; Yi) + H(Xi|Xn
i+1)

=

n
∑

i=1

I(Y i−1, Xn
i+1; Yi)− I(Xn

i+1; Yi|Y i−1) + H(Xi|Y i−1, Xn
i+1) + I(Y i−1; Xi|Xn

i+1)

1
=

n
∑

i=1

I(Y i−1, Xn
i+1; Yi) + H(Xi|Y i−1, Xn

i+1)

=

n
∑

i=1

I(Ui; Yi) + H(Xi|Ui) (4.43)

where

1. Because of the following equality [12, Lemma 7]

n
∑

i=1

I(Xn
i+1; Yi|Y i−1) =

n
∑

i=1

I(Y i−1; Xi|Xn
i+1) (4.44)
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We have

ln |g| ≥ H(g)

≥ H(g|h)

≥ H(g|h)−H(g|h, Y n)

= I(g; Y n|h)

=

n
∑

i=1

I(g; Yi|h, Y i−1)

=

n
∑

i=1

I(g, Xn
i+1; Yi|h, Y i−1)− I(Xn

i+1; Yi|g, h, Y i−1)

1
=

n
∑

i=1

I(g, Xn
i+1; Yi|h, Y i−1)− I(Y i−1; Xi|g, h, Xn

i+1)

≥
n
∑

i=1

I(g, Xn
i+1; Yi|h, Y i−1)−H(Xi|g, h, Xn

i+1)

= −H(Xn|g, h) +

n
∑

i=1

I(g, Xn
i+1; Yi|h, Y i−1)

2

≥
n
∑

i=1

I(g, Xn
i+1; Yi|h, Y i−1)− ǫ

≥
n
∑

i=1

I(g; Yi|h, Y i−1, Xn
i+1)− ǫ

3

≥
n
∑

i=1

I(g; Yi|h, Y i−1, Xn
i+1, Xi)− ǫ

4
=

n
∑

i=1

I(g; Yi|Y i−1, Xn
i+1, Xi)− ǫ

=

n
∑

i=1

I(Zi; Yi|Ui, Xi)− ǫ (4.45)

where
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1. Because of the following equality [12, Lemma 7]

n
∑

i=1

I(Xn
i+1; Yi|g, h, Y i−1) =

n
∑

i=1

I(Y i−1; Xi|g, h, Xn
i+1) (4.46)

2. Due to Fano’s inequality.

3. g is a deterministic function of Y n. Due to the memoryless property, we have

H(g|Yi, h, Y i−1, Xn
i+1, Xi) = H(g|Yi, h, Y i−1, Xn

i+1) (4.47)

4. g is a deterministic function of Y n and h is a deterministic function of Xn. Due

to the memoryless property, we have

H(g|h, Y i−1, Xn
i+1, Xi) = H(g|Y i−1, Xn

i+1, Xi) (4.48)

H(g|h, Y i−1, Xn
i+1, Xi, Yi) = H(g|Y i−1, Xn

i+1, Xi, Yi) (4.49)
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We have

ln |h| ≥ H(h|g)

≥ I(h; Xn|g)

= H(Xn|g)−H(Xn|g, h)

1
≥ H(Xn|g)− nǫ

=

n
∑

i=1

H(Xi|Xn
i+1, g)− ǫ

≥
n
∑

i=1

H(Xi|Y i−1, Xn
i+1, g)− ǫ

=

n
∑

i=1

H(Xi|Ui, Zi)− ǫ (4.50)

where

1. Due to Fano’s inequality.
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We have

ln |g|+ ln |h| ≥ H(g, h)

≥ I(g, h; Xn, Y n)

≥ I(Xn; g, h) + I(Y n; g, h|Xn)

= H(Xn)−H(Xn|g, h) + I(Y n; g, h|Xn)

1

≥ ln M − nǫ + I(Y n; g, h|Xn)

2
= ln M − nǫ + I(Y n; g|Xn)

= ln M +

n
∑

i=1

−ǫ + I(Yi; g|Xn, Y i−1)

3
= ln M +

n
∑

i=1

−ǫ + I(Yi; g|Xi, Y
i−1, Xn

i+1)

= ln M +

n
∑

i=1

−ǫ + I(Yi; Zi|Xi, Ui) (4.51)

1. Due to Fano’s inequality.

2. h is a deterministic function of Xn

3. g is a deterministic function of Y n. Due to the memoryless property, we have

H(g|Xi, Y
i−1, Xn

i+1, X
i−1) = H(g|Xi, Y

i−1, Xn
i+1) (4.52)

H(g|Yi, Xi, Y
i−1, Xn

i+1, X
i−1) = H(g|Yi, Xi, Y

i−1, Xn
i+1) (4.53)
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We note that 1
n

ln M ≥ R − η, 1
n

ln |g| ≤ R1 + η and 1
n

ln |h| ≤ R2 + η, for an

arbitrary η > 0. Assume ǫ→ 0, then from (4.43), (4.45), (4.50) and (4.51), we have

R ≤ 1

n

n
∑

i=1

I(Ui; Yi) + H(Xi|Ui) (4.54)

R1 ≥
1

n

n
∑

i=1

I(Zi; Yi|Ui, Xi) (4.55)

R2 ≥
1

n

∑

i=1

H(Xi|Ui, Zi) (4.56)

R1 + R2 ≥ R +
1

n

n
∑

i=1

I(Yi; Zi|Xi, Ui) (4.57)

Define a time-sharing random variable Q, which is uniformly distributed on {1, 2, . . . , n}.

Also define a set of random variables (X, Y, Ũ , Z̃) such that

Pr(X = x, Y = y, Ũ = u, Z̃ = z|Q = i) = p(Xi = x, Yi = y,Ui = u, Zi = z),

i = 1, 2, . . . , n (4.58)

Define U = (Ũ , Q) and Z = (Z̃, Q), then

R ≤ 1

n

n
∑

i=1

I(Ui; Yi) + H(Xi|Ui)

= I(Ũ ; Y |Q) + H(X|Ũ , Q)

≤ I(Ũ , Q; Y ) + H(X|Ũ , Q)

= I(U ; Y ) + H(X|U) (4.59)
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R1 ≥
1

n

n
∑

i=1

I(Zi; Yi|Ui, Xi)

= I(Z̃; Y |Ũ , Q, X)

= I(Z; Y |U, X) (4.60)

R2 ≥
1

n

∑

i=1

H(Xi|Ui, Zi)

= H(X|Ũ, Z̃, Q)

= H(X|U, Z) (4.61)

R1 + R2 ≥ R +
1

n

n
∑

i=1

I(Yi; Zi|Xi, Ui)

= R + I(Z̃; Y |Ũ , X, Q)

= R + I(Z; Y |U, X) (4.62)

where (4.59), (4.60), (4.61) and (4.62) are the same as (4.9), (4.10), (4.11) and (4.12),

concluding the proof.

Finally, we note that the bounds on the cardinalities of the alphabets in (4.14)

and (4.15) can be proven in a way similar to [23, Appendix D].

4.4 Remarks

We have several remarks regarding this result as follows:
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1. The capacity is strictly smaller than the cut-set bound [11], because first

R ≤ R1 + R2 − I(Y ; Z|U, X) (4.63)

An operational interpretation is that when the noisy relay cannot fully decode

the message, or in other words, when the noisy relay cannot remove the noise

completely, the data going through the link from the noisy relay to the receiver

contains noise. Thus, the useful information flowing through the multiple access

cut will be strictly less than R1 + R2. Secondly, we note that

R ≤ I(U ; Y ) + H(X|U) ≤ H(X) (4.64)

An operational interpretation is that when the noisy relay decodes the message

with a positive rate, the rate of information flowing through the broadcast cut

becomes strictly less than H(X).

Consider the following example. Let X and Y be binary and

Y = X ⊕W (4.65)

where the sum is a modulo-2 sum and W has a Bernoulli distribution with

entropy 0.5 bits. We assume R1 = R2 = 0.5 bits. The cut-set bound in this

example is 1 bit, which is not achievable. Because if R is equal to 1 bit, we
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have,

R = I(U ; Y ) + H(X|U) = H(X) = 1 (4.66)

then, U has to be independent of X and Y . Also, we have

R = R1 + R2 − I(Y ; Z|U, X) = R1 + R2 = 1 (4.67)

then, Z has to be independent of X and Y if U is independent of X and Y .

However, if U and Z are independent of X and Y , we arrive at the following

contradiction,

0.5 = R2 ≥ H(X|Z, U) = H(X) = 1 (4.68)

which means that the cut-set bound is not achievable in this example. We note

that, even in this binary example where |X | = |Y| = 2, the cardinalities of the

auxiliary random variables U and Z are |U| ≤ 6 and |Z| ≤ 15. These large

cardinality bounds make it practically impossible to evaluate the capacity of

this diamond channel. However, we note that, even though we were not able

to compute the exact value of the capacity in this example, we were able to

conclude that the capacity is strictly less than the cut-set bound, which is 1 bit.

We know that the capacity of a diamond channel with four orthogonal links

is equal to the cut-set bound in this channel. Our result shows that introduc-

ing the broadcast node will reduce the capacity of this all-orthogonal diamond

channel. Networks with broadcast nodes have been studied recently from dif-

ferent perspectives, e.g., information theory and network coding [15,26,31]. We
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note that our diamond channel model is a simple example of a general network

with a broadcast node. Thus, we conclude that the cut-set bound in general is

not tight in networks with broadcast nodes.

2. The processing at the noisy relay includes two operations: decode the inner

code Un and compress the channel output Y n to Zn conditioned on Un. This

processing is essentially the same as Theorem 7 in [8], i.e., combination of DAF

and CAF. DAF [8, Theorem 1] has been shown to be optimal in the degraded

relay channel [8]. Partial DAF, a special case of [8, Theorem 7] without com-

pression, has been shown to be optimal in semi-deterministic relay channel [17]

and the relay channel with orthogonal transmitter-relay link [18]. Recently,

CAF [8, Theorem 6] has been shown to be optimal in two special relay chan-

nels [3, 24]. To our knowledge, we are the first to show the optimality of the

combination of DAF and CAF in some specific channel, even though the channel

we consider is not a three-node relay channel in the strict sense, i.e., as in [8].

3. If we assume R = H(X)−R0, then Theorem 4.1.1 can be rewritten as follows

R ≤ I(U ; Y ) + H(X|U) ←→ R0 ≥ I(U ; X|Y ) (4.69)

R1 ≥ I(Z; Y |U, X) ←→ R1 ≥ I(Z; Y |U, X) (4.70)

R2 ≥ H(X|Z, U) ←→ R2 ≥ I(X; X|Z, U) (4.71)

R1 + R2 ≥ R + I(Y ; Z|X, U) ←→ R0 + R1 + R2 ≥ I(X, Y ; U, X, Z)

(4.72)
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for some joint distribution

p(u, z, x, y) = p(u, x)p(y|x)p(z|u, y) (4.73)

We note that the right hand sides of (4.69), (4.70), (4.71) and (4.72) in addition

to the distribution constraint in (4.73) are the same as the rate region of the

rate-distortion problem studied by Kaspi and Berger as shown in Figure 4.3 [23,

Theorem 2.1, Case C].

This duality between our diamond channel coding problem and the Kaspi-

Berger source coding problem is similar to the duality between the single-user

channel coding problem and the Slepian-Wolf source coding problem [13, Sec-

tion 3.1] by viewing the codebook information in the channel coding problem as

the information sent to all the terminals in the source coding problem, e.g., the

information with rate R0 in Figure 4.3. Thus, the achievability of our diamond

channel coding problem can be obtained from the achievability of Kaspi-Berger

source coding problem, in the same way that the achievability of the multiple

access channel coding problem can be obtained from the achievability of fork

network coding problem [13, Section 3.2].

4.5 Conclusion

In this chapter, we studied a special class of diamond channels which was introduced

by Schein in 2001. In this special class, each diamond channel consists of a trans-
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Figure 4.3: Kaspi-Berger rate distortion problem.

mitter, a noisy relay, a noiseless relay and a receiver. We proved the capacity of this

class of diamond channels by providing an achievable scheme and a converse. The

capacity we showed is strictly smaller than the cut-set bound. Our result also shows

the optimality of a combination of DAF and CAF at the noisy relay node. This

is the first example where a combination of DAF and CAF is shown to be capacity

achieving. Finally, we noted that there exists a duality between this diamond channel

coding problem and the Kaspi-Berger source coding problem.
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Chapter 5

Conclusion

In this dissertation, we studied correlation and cooperation, two important phenom-

ena that arise in the context of multi-user information theory. In wireless networks,

correlation mainly originates from the correlated observations of different users, while

cooperation is enabled by the wireless medium, which lets third-party users obtain

part of the information from the transmitter in order to help deliver it to the desti-

nation.

We first studied the effects of source correlation in multi-user networks. More

specifically, we studied the distributed source and channel coding problem for corre-

lated sources, e.g., multiple access channel with correlated sources and multi-terminal

rate-distortion problem. In these problems, it is often needed to characterize the joint

probability distribution of a pair of random variables satisfying an n-letter Markov

chain. An exact characterization of such probability distributions is intractable. We

proposed a new data processing inequality, which provided us a single-letter neces-

sary condition for the n-letter Markov chain. Our new data processing inequality

yielded outer bounds for the the multiple access channel with correlated sources and

multi-terminal rate-distortion region.
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Next, we investigated the role of correlation in cooperative multi-user networks.

We considered the basic three-node relay channel, which is the simplest model for

cooperative communications. We proposed a new coding scheme for the relay channel,

which is in the form of block Markov coding and is based on preserving the correlation

in the channel inputs from the transmitter and the relay. The analysis of the error

events provided us with three conditions containing mutual information expressions

involving infinite letters of the underlying random process. We lower bounded these

mutual informations to obtain three single-letter conditions. We showed that the

achievable rates with the classical CAF scheme is a special case of the achievable

rates in our new coding scheme. We therefore concluded that our proposed coding

scheme yields potentially larger rates than the CAF scheme.

Finally, we focused on the diamond channel, which is a four-node cooperative

communication network. We studied a special class of diamond channels, which

consists of a transmitter, a noisy relay and a noiseless relay, and a destination. We

determined the capacity of this class of diamond channels by providing an achievable

scheme and a converse. The capacity we showed is strictly smaller than the cut-set

bound. Our result also showed the optimality of a combination of DAF and CAF

at the noisy relay node. This is the first example where a combination of DAF and

CAF is shown to be capacity achieving. We also uncovered a duality between this

diamond channel coding problem and the Kaspi-Berger source coding problem.

143



BIBLIOGRAPHY

[1] R. Ahlswede. Multi-way communication channels. In Proc. Second International

Symp. on Information Transmission, Tsahkadsor, Armenia, USSR, 1971.

[2] R. Ahlswede and T. S. Han. On source coding with side information via a

multiple-access channel and related problems in multi-user information theory.

IEEE Trans. Inform. Theory, 29(3):396–412, 1983.

[3] M. Aleksic, P. Razaghi, and W. Yu. Capacity of a class of modulo-sum re-

lay channels. Submitted to IEEE Transactions on Information Theory, 2007,

http://arxiv.org/pdf/0704.3591.

[4] T. Berger. Multi-terminal source coding. Chapter in The Information Theory

Approach to Communications (G. Longo, ed.), Springer-Verlag, 1978.

[5] P. P. Bergmans. A simple converse for broadcast channels with additive white

Gaussian noise. IEEE Trans. Inform. Theory, 20:279–280, 1974.

[6] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical

sciences. Academic Press, 1979.

[7] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2 edition, 1999.

[8] T. M. Cover and A. El Gamal. Capacity theorems for the relay channel. IEEE

Trans. Inform. Theory, 25:572–584, Sep. 1979.

[9] T. M. Cover, A. El Gamal, and M. Salehi. Multiple access channel with arbi-

trarily correlated sources. IEEE Trans. Inform. Theory, 26:648–657, Nov. 1980.

144



[10] T. M. Cover and C. S. K. Leung. An achievable rate region for the multiple-access

channel with feedback. IEEE Trans. Inform. Theory, 27(3):292–298, 1981.

[11] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley

and Sons, 1991.

[12] I. Csiszár and J. Körner. Broadcast channels with confidential messages. IEEE

Trans. Inform. Theory, 24(3):339–348, 1978.

[13] I. Csiszár and J. Körner. Information Theory: Coding Theorems for Discrete

Memoryless Systems. Academic Press, 1981.

[14] R. Dabora and S. Servetto. On the role of estimate-and-

forward with time-sharing in cooperative communications. Sub-

mitted to IEEE Transactions on Information Theory, 2006,

http://cn.ece.cornell.edu/publications/papers/20060529/pp.pdf.

[15] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros. Capacity of

wireless erasure networks. IEEE Trans. Inform. Theory, 52(3):789–804, 2006.

[16] G. Dueck. A note on the multiple access channel with correlated sources. IEEE

Trans. Inform. Theory, 27:232–235, Mar. 1981.

[17] A. El Gamal and M. Aref. The capacity of the semideterministic relay channel.

IEEE Trans. Inform. Theory, 28(3):536, 1982.

[18] A. El Gamal and S. Zahedi. Capacity of a class of relay channels with orthogonal

components. IEEE Trans. Inform. Theory, 51(5):1815–1817, 2005.

145



[19] R. G. Gallager. Capacity and coding for degraded broadcast channels. Problems

of information transmission, pages 185–193, Jul.- Sep. 1974.

[20] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge, 1985.

[21] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge, 1991.

[22] K. B. Housewright. Source Coding Studies for Multiterminal Systems. PhD

thesis, University of California, Los Angeles, 1977.

[23] A. H. Kaspi and T. Berger. Rate-distortion for correlated sources with partially

separated encoders. IEEE Trans. Inform. Theory, 28(6):828–840, 1982.

[24] Y. H. Kim. Capacity of a class of deterministic relay channels. IEEE Trans.

Inform. Theory, 53(3):1328–1329, 2008.

[25] G. Kramer, M. Gastpar, and P. Gupta. Cooperative strategies and capacity

theorems for relay networks. IEEE Trans. Inform. Theory, 51(9):3037–3063,

September 2005.

[26] G. Kramer, S. M. S. Tabatabaei Yazdi, and S. A. Savari. Network coding on

line networks with broadcast. In Proc. Conf. Inf. Sciences and Systems (CISS),

Princeton, NJ, Mar. 2008.

[27] A. Lapidoth and S. Tinguely. Sending a bi-variate Gaussian source over a Gaus-

sian MAC. In Proc. IEEE International Symp. on Information Theory (ISIT),

Seattle, WA, Jul. 2006.

[28] H. Liao. Multiple-access channel. PhD thesis, University of Hawaii, 1972.

146



[29] K. Marton. The structure of isomorphisms of discrete memoryless corre-

lated sources. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,

56(3):317–327, 1981.

[30] S. S. Pradhan, S. Choi, and K. Ramchandran. A graph-based framework for

transmission of correlated sources over multiple access channels. IEEE Trans.

Inform. Theory, 53(12):4583–4604, 2007.

[31] N. Ratnakar and G. Kramer. The multicast capacity of deterministic relay net-

work with no interference. IEEE Trans. Inform. Theory, 52(6):2425–2432, 2006.

[32] B. E. Schein. Distributed Coordination in Network Information Theory. PhD

thesis, Massachusetts Institute of Technology, 2001.

[33] S. Servetto. The region of achievable rates for multiterminal source cod-

ing. Submitted to the IEEE Transactions on Information Theory, 2006,

http://cn.ece.cornell.edu/publications/papers/20060228/pp1.pdf.

[34] C. E. Shannon. Two-way communication channels. In Proc. 4th Berkeley Symp.

Prob. Stat., Berkeley, CA, 1961.

[35] D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources.

IEEE Trans. Inform. Theory, 49(4):471–480, 1973.

[36] G. W. Stewart. On the early history of the singular value decomposition. SIAM

Review, 35:551–566, Dec. 1993.

[37] S. Y. Tung. Multiterminal Source Coding. PhD thesis, Cornell University, 1978.

147



[38] E. C. van der Meulen. Three-terminal communication channels. Adv. App. Prob.,

3:120–154, 1971.

[39] A. B. Wagner and V. Anantharam. An improved outer bound for the multiter-

minal source coding problem. IEEE Trans. Inform. Theory, 54(5):1919–1937,

2008.

[40] F. M. J. Willems. The feedback capacity for a class of discrete memoryless

multiple access channels. IEEE Trans. Inform. Theory, 28(1):93–95, 1982.

[41] H. S. Witsenhausen. On sequences of pairs of dependent random variables. SIAM

Journal on Applied Mathematics, 28:100–113, Jan. 1975.

[42] A. D. Wyner and J. Ziv. The rate-distortion function for source coding with side

information at the decoder. IEEE Trans. Inform. Theory, 22(1):1–10, 1976.

148


