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Dynamic Data Driven Application Systems (DDDAS) are an important class of

systems in which computations on data and instrumentation components for acquiring

the data are incorporated within a feedback control loop. In DDDAS, the modeling and

data-driven adaptation of instrumentation is incorporated as an important aspect of the

design process. Due to its potential to enhance capabilities of accurate analysis, dynamic

decision making, and scalable simulation, the DDDAS paradigm plays an increasingly

important role in innovative systems for a wide variety of applications. This thesis devel-

ops new model-based, software design tools to support the design and implementation of

DDDAS. The methods are developed in the context of two application domains in which

DDDAS principles are highly relevant — multispectral/hyperspectral video processing,



and wireless-integrated factory automation systems.

Recent advances in multispectral and hyperspectral video capture technology along

with system design trade-offs introduced by these advances present new challenges and

opportunities in the area of DDDAS for video analytics. Video analytics plays an im-

portant role in a wide variety of defense-, monitoring- and surveillance-related systems

for air and ground environments. In this context, multispectral video processing is at-

tracting increased interest in recent years, due in part to technological advances in video

capture. Compared with monochromatic video, multispectral video offers better spectral

resolution, and different bands of multispectral video streams can enhance video analytics

capabilities in different ways.

Video processing systems that incorporate multispectral technology involve novel

trade-offs among system design complexities such as spectral resolution, equipment cost,

and computational efficiency. The design space of multispectral video processing systems

is enriched by considering only the required subset of spectral bands to process as a

parameter that can be adjusted dynamically based on data characteristics and constraints

involving accuracy, communication, and computation.

Based on this view of selectively-processed bands from multispectral video data, we

introduce in this thesis a novel system design framework for dynamic, data-driven video

processing using lightweight dataflow (LD) techniques. Our proposed framework, called

LDspectral, applies LD, which is an approach for model-based design of signal and infor-

mation processing systems. LD facilitates efficient and reliable real-time implementation.

LD is “lightweight” in the sense that it is based on a compact set of application program-

ming interfaces, and can be integrated relatively easily into existing design processes. We



develop a framework for adaptively configuring multispectral video processing configu-

rations in LDspectral, and develop a prototype implementation using LD methods that are

integrated with OpenCV, which is a popular library of computer vision modules.

We demonstrate and evaluate the performance of LDspectral capabilities using a

background subtraction application. As compared to a standard video processing pipeline,

the capabilities in LDspectral for optimized selection and fusion of spectral bands enhance

trade-offs that can be realized between video processing accuracy and computational ef-

ficiency. Using the DDDAS paradigm, the elements of sensor measurements, statistical

processing, target modeling, and system software are analyzed by frequency bands, video

analytics, environmental analysis, and dataflow techniques, respectively.

In this thesis, the LDspectral framework is also extended to hyperspectral video,

which offers great spectral resolution and has significant potential to enhance the effec-

tiveness of information extraction from image scenes. An important challenge in the

development of hyperspectral video systems is managing the high computational load

and storage requirements required to process the large volumes of data that are acquired

by these systems.

We also investigate DDDAS-inspired methods in context of distributed, smart fac-

tory systems that are equipped with wireless communication capability. We refer to this

class of systems as wireless-integrated factory systems (WIFSs). An important challenge

in the development of this class of systems is ensuring reliable, low latency communica-

tion under the harsh wireless channel conditions of factory environments.

To support the application of the DDDAS paradigm in WIFSs, we develop a model-

based software tool for design space exploration. We refer to this tool as the Wireless-



Integrated factory System Evaluator (WISE). WISE supports the rapid simulation-based

evaluation of interactions among the placement of factory subsystems, the partitioning

of factory subsystems into nodes of a wireless network, the performance of the wireless

network, and overall factory system performance. WISE also incorporates a new graph-

ical model called the cyber-physical flow graph, which provides integrated modeling for

the flow of physical entities (such as parts that are processed in a factory) and the flow

of information. The cyber-physical flow graph also models distributed flows in which

information is communicated across multiple network nodes.
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Chapter 1

Introduction

Dynamic Data Driven Application Systems (DDDAS) are an important class of

systems in which computations on data and instrumentation components for acquiring

the data are incorporated within a feedback control loop [2]. In DDDAS, the model-

ing and data-driven adaptation of instrumentation is incorporated as an important aspect

of the design process. Due to its potential to enhance capabilities of accurate analysis,

dynamic decision making, and scalable simulation, the DDDAS paradigm plays an in-

creasingly important role in innovative systems for a wide variety of applications [3].

This thesis develops new model-based, software design tools to support the design and

implementation of DDDAS. The methods are developed in the context of two application

domains in which DDDAS principles are highly relevant — multispectral/hyperspectral

video processing, and wireless-integrated factory automation systems.

1.1 Multispectral and Hyperspectral Video Stream Processing

The additional spectral bands available in multispectral and hyperspectral video

streams offer the potential for more accurate knowledge extraction, but also increase costs

associated with real-time processing, energy consumption, and storage requirements. In

this thesis, we develop data-driven models and methods that address these trade-offs to

systematically perform design optimization of multispectral and hyperspectral video pro-
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cessing systems. For concreteness, we develop and demonstrate these methods in the con-

text of a specific video processing application — that of background subtraction, which is

widely-used in many application areas that require automated detection of moving targets.

Multispectral imaging is related to hyperspectral imaging in that both provide in-

creased spectral discrimination compared to traditional imaging methods. The difference

is primarily in the number of bands employed and the degree of spectral resolution (e.g.,

see [4]). Whereas multispectral imaging generally refers to a number of bands in the

range of about 3–10, hyperspectral imaging uses significantly larger numbers of bands —

e.g., hundreds, thousands or more — and narrower bandwidths.

Video analytics plays an important role in a wide variety of defense-, monitoring-

and surveillance-related systems for air and ground environments. In this context, multi-

spectral and hyperspectral video processing is attracting increased interest in recent years,

due in part to technological advances in video capture. Compared to monochromatic

video, multispectral/hyperspectral video streams offers better spectral resolution, and dif-

ferent bands of such video streams can enhance video analytics capabilities in different

ways. For example, the infra-red bands can provide better separation of shadows from

objects, and improved spatial resolution in scenes that are impaired by fog or haze [5].

In the remainder of this section, we first introduce a novel design framework that

we have developed in this thesis for multispectral video processing systems. Then we

introduce extensions that we have made to the design framework to the more complex

domain of hyperspectral video processing.
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1.1.1 LDspectral for Multispectral Video Processing

Multispectral video acquisition technology introduces novel opportunities and chal-

lenges for applying the paradigm of DDDAS to design and implementation of video an-

alytics systems. The subset of available multispectral bands that is stored and processed,

and the hardware and software configurations that are used to perform the processing

introduce a complex design space.

The most effective operating point in the design space associated with a multispec-

tral video processing system is in general dependent on the specific application scenario

and data characteristics that are encountered at a given point in time during system oper-

ation. For example, when system accuracy is of greatest importance, it may be desirable

to operate on the full set of available bands, while in situations where resource constraints

are critical (e.g., due to failures in certain subsystems or limited energy capacity), it may

be most effective to select a proper subset of the available bands and process the selected

bands in a way that optimizes accuracy subject to the given resource limitations.

Based on this view of selectively-processed bands from multispectral video data,

we introduce in this thesis a novel system design framework for dynamic, data-driven

video processing. A central part of our framework is the application of model-based de-

sign methods based on dataflow techniques to represent and transform the functionality of

multispectral video processing systems. This allows us to leverage existing knowledge on

dataflow techniques, which are employed for design optimization in a wide variety of sig-

nal processing application areas, including speech processing, wireless communications,

and video processing (e.g., see [6]).
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The approach that we develop in this thesis supports the development of new

DDDAS methods to dynamically select subsets of multispectral bands to process, and dy-

namically reconfigure the dataflow within the targeted video processing system to achieve

the required processing on the selected subset of bands. As discussed previously, DDDAS

is a paradigm that unifies computational and instrumentation aspects of applications sys-

tems, and thereby promotes deeply integrated approaches to modeling, sensing, control,

and data processing. DDDAS principles have great relevance to aerospace applications

(e.g., see [7, 8, 9]). In the methods developed in this thesis, we model and optimize video

processing trade-offs across algorithm and implementation aspects through the DDDAS

paradigm. Using the DDDAS paradigm, our proposed methods are designed to apply per-

formance data that is collected through execution time instrumentation, and adapt video

processing configurations dynamically according to their trade-off models, and according

to constraints on real-time performance.

We refer to our proposed new approach for multispectral image processing as LD-

spectral, where “LD” here stands for lightweight dataflow [10, 11]. LD is a lightweight

design methodology that facilitates cross-platform prototyping, experimentation and de-

sign optimization of signal processing systems. Lightweight dataflow is “lightweight”

in the sense that it is based on a compact set of application programming interfaces that

can be retargeted to different platforms and integrated into different design processes rela-

tively easily. The lightweight dataflow environment (LIDE) is a software tool that supports

the lightweight dataflow design methodology, and that we apply in this work [11].

We prototype LDspectral using LIDE together with OpenCV, and present results

of extensive experimentation with this prototype to demonstrate the utility of LDspec-
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tral. OpenCV provides a large library of software components for video processing (e.g.,

see [12]), including specialized capabilities that are complementary to the capabilities of

LIDE for model-based design and implementation. In particular, the dataflow-based em-

bedded software components (actors) that we employ to implement LDspectral incorpo-

rate calls to relevant OpenCV functions to perform specific image processing operations.

We demonstrate and evaluate the performance of LDspectral capabilities using a

background subtraction application, along with a recently-introduced data set for exper-

imenting with multispectral background subtraction techniques [1]. As compared to a

standard image processing pipeline, the dynamic, integrated adjustment of data flow and

spectral band selection provides systematic trade-off optimization among computational

efficiency and multispectral video processing accuracy.

1.1.2 Extensions for Hyperspectral Processing

In Section 1.1.1, we introduced the complex design space that is involved in de-

velopment of advanced systems for multispectral video processing. This design space

becomes even more complex in the case of hyperspectral video processing, where the

number of spectral bands involved may be orders of magnitude higher. To help address

this challenge, we have developed extensions for optimized hyperspectral processing to

the LDspectral system discussed in Section 1.1.1.

In particular, we incorporated new methods for dynamic system-level reconfigu-

ration and multithreading acceleration into LDspectral. These methods enable efficient

processing of hyperspectral images on resource-constrained platforms. In our developed

5



multithreaded configuration, image partitioning and image stitching are incorporated to

partition the image into subframes, thereby helping to increase the concurrency of the

image analysis operations. To balance the load on different threads, a distributor subsys-

tem is designed to allocate subsets of bands to processing threads on the target platform.

We design table-driven algorithms to efficiently adapt real-time embedded processing

configurations based on accuracy and performance under constraints involving accuracy

and energy consumption. To demonstrate the effectiveness of the proposed hyperspec-

tral system, we experiment with its application to background subtraction on an Android

platform.

While the methods for efficient multispectral and hyperspectral video processing

developed in the thesis are demonstrated concretely in the context of background sub-

traction, the underlying approaches are more general and can be adapted to other video

analysis contexts. Investigation of such adaptations is a useful direction for future work.

1.2 Wireless-Integrated Factory Automation Systems

The incorporation of increasing amounts of wireless communication capabilities in

manufacturing systems brings increasing requirements for stable wireless networks that

can simultaneously provide reliable and low latency communications. There exist many

considerations in the design of industrial wireless communication systems including la-

tency and reliability, as mentioned above, as well as additional factors, such as energy

consumption and scalability.

A variety of different standards may be considered for industrial wireless networks;
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some examples are IEEE80211a/ac/b/g/n. The design of factory communication systems

involves many parameters, such as the modulation type, coding rate, data rate and rate

control manager. These parameters in general have complex interactions among them-

selves, as well as with physical aspects of a factory layout. In this thesis, we have explored

model-based methods that enable efficient design space exploration across the complex

parameter combinations and interactions that are involved in design and optimization of

factory communication systems.

In particular, we have developed a novel software tool for model-based design space

exploration of factory systems that are integrated with wireless communication capabil-

ities. The tool involves a novel graphical representation called a cyber-physical flow

graph, which captures both the flow of information and physical entities, such as parts

that transported across assembly lines.

The proposed tool supports not only the autogeneration of different factory sim-

ulation models with different layouts, but also the dynamic reconfiguration of wireless

network parameters. Factory control models and wireless communication models are

integrated by systematically interfacing between dataflow and discrete event simulation

engines, respectively. The autogeneration of low-level simulation code is from high-level

abstract models, which allows designers to rapidly experiment across alternative config-

urations and iteratively explore the design space. In this thesis, we demonstrate the usage

of the proposed new tools for factory system design space exploration through exten-

sive experiments with different factory layout parameters and various wireless network

configurations.
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1.3 Contributions of this Thesis

In this thesis, we have developed new model-based software tools to support proto-

typing, design space exploration, and optimization of Dynamic Data Driven Applications

Systems (DDDAS). We have focused concretely on two application domains in which

DDDAS principles are highly relevant — multispectral/hyperspectral video processing,

and wireless-integrated factory automation systems.

The specific contributions of this thesis are summarized as follows. First, we have

developed a novel framework called LDspectral for design and implementation of multi-

spectral and hyperspectral video processing systems based on lightweight dataflow (LD)

techniques. LDspectral enables the efficient implementation of image processing and

video analytics in part through its support for adapting image analysis functionality to

operate on subsets of selected multispectral or hyperspectral bands. The methods devel-

oped in LDspectral also provide flexible optimization and adaptation of video processing

configurations based on dynamically changing performance objectives and operational

constraints.

Second, we have developed a novel software tool for model-based design space

exploration of factory systems that are integrated with wireless communication capabil-

ities. The tool, called Wireless-Integrated factory System Evaluator (WISE), integrates

the design perspectives of physical factory layouts, factory process flows, and wireless

communications, including protocol functionality and channel characteristics.
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1.4 Outline of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces our

first-version development of the LDspectral framework, which is targeted to multispec-

tral image and video processing. Chapter 3 presents extensions to LDspectral that make

the framework more useful in the context of DDDAS. Chapter 4 extends LDspectral to

support hyperspectral image and video processing, and to enable efficient implementa-

tion on resource-constrained platforms. Chapter 5 presents a software tool, called the

Wireless-Integrated factory System Evaluator (WISE), for applying DDDAS methods to

the area of smart factory systems that are equipped with wireless communication capabil-

ity. Chapter 6 summaries the thesis and discusses possible directions for future work that

are motivated by the thesis.
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Chapter 2

The LDspectral Framework for Multispectral Image and Video Processing

In this section, we present our first-version development of the LDspectral frame-

work, which was introduced in Chapter 1. This first-version of LDspectral is targeted to

multispectral image and video processing.

Image and video processing applications, such as object detection, image classifi-

cation, and object tracking, are playing increasingly important roles in numerous areas.

In these areas, traditional imagery, with only RGB sensors, is commonly used. However,

the restriction to use of RGB sensors can result in loss of information with the loss being

particularly pronounced under certain conditions. For example, analysis that is restricted

to RGB bands may perform poorly on images that are captured from dark environments,

whereas use of near infra-red (NIR) spectral bands can significantly enhance the poten-

tial for accurate analysis of images captured from such environments. In situations like

these, multispectral imaging technology offers more information such as that provided

by NIR bands. Thus, multispectral image and video processing technology has gained

significant popularity during recent years. However, design and implementation of mul-

tispectral image and video processing systems presents important challenges, including

the problem of efficient knowledge extraction from the significantly increased volumes of

data that are involved in multispectral systems compared to RGB systems. In this chap-

ter, we present the first-version of the LDspectral framework, which facilitates design and
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implementation of efficient multispectral image and video processing systems.

Material in this chapter was published in preliminary form in [13]

2.1 Introduction

Multispectral sensor technology is used in a variety of applications for monitoring

and surveillance in ground and air environments, such as land cover classification, and

thermal mapping. Figure 2.1 provides an illustration of multispectral image capture in

which a camera captures seven different bands for the same scene. Multispectral images

typically cover three to ten spectral bands that range from near infrared to visible light. In

recent years, advances in sensor technology have helped to increase the effectiveness and

decrease the cost of multispectral imaging systems, and make these systems practical to

employ in an increasing variety of applications (e.g., see [14]).

Figure 2.1: An illustration of multispectral image capture.

Like hyperspectral imaging, multispectral imaging provides increased spectral dis-
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crimination compared to traditional imaging methods. However, multispectral imaging

systems employ much fewer spectral bands — in the range of 3 to about 10 — while hy-

perspectral imaging systems can involve hundreds, thousands or even more bands [14]. In

addition to being more numerous, the bands employed in hyperspectral imaging systems

also have narrower bandwidths. Although the contributions of this chapter are introduced

in the context of multispectral imaging systems, they have the potential for adaptation

to hyperspectral systems. Investigating such adaptations is a useful direction for future

work.

Benezeth et al. [1] present a publicly available collection of multispectral video

sequences that includes ground truth annotation of moving objects. They also apply this

data set to demonstrate improvements in background subtraction accuracy when using

multispectral video streams compared to RGB streams. Additionally, they provide an

evaluation of alternative background subtraction techniques that operate on multispectral

video.

We demonstrate the capabilities of the proposed DDDAS-motivated LDspectral

system using the multispectral data set introduced in [1]. Figure 2.2 shows an example of

the data associated with a single video frame within the employed multispectral data set.

Specifically, Figure 2.2 shows 7 different images corresponding to the 7 different bands

for the same scene and the foreground result of this scene.

Our work on LDspectral is different from the methods discussed in [1] in its empha-

sis on integrating DDDAS methods into multispectral video processing, and specifically,

on supporting flexible optimization involving the subset of available multispectral bands

that is processed, and the associated trade-offs between accuracy and computational cost.
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Figure 2.2: An example of a single video frame in the employed multispectral data set.
Images 1–6 show the 6 visible bands, Image 7 corresponds to the near-infrared band, and
Image 8 is the corresponding foreground result that is derived using LDspectral.
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Additionally, pixel-level fusion in the front-end of the processing chain for background

subtraction is investigated. Pixel-level fusion improves computational efficiency, and re-

duces the execution time costs incurred by incorporating additional bands (i.e., larger

subsets of the available bands) into the video processing pipeline.

While pixel-level fusion is applied in our demonstration of LDspectral, the LDspec-

tral framework does not require use of pixel-level fusion, nor any other specific form of

multi-band processing. This flexibility allows for integration and experimentation with

alternative methods for fusion and analysis of video data across multiple bands (e.g.,

see [15, 16, 5]) that may enhance the available operating points and overall system adap-

tivity in terms of accuracy, throughput, and other relevant metrics. Exploration of such

alternative methods in the context of LDspectral is an interesting direction for further

study to develop multi-spectral image fusion systems with user interaction [17].

The developments in this thesis provide new models and methods that are promising

for integration in cloud-computing frameworks for information fusion, such as the class of

frameworks reviewed in [18]. Exploration of such integration is another useful direction

for further investigation.

2.2 Methodology

Compared to traditional imaging method, multispectral imaging provides increased

spectral discrimination which can exploit increasing spectral resolution and spectral di-

versity. Conventional approaches assume that all of the available bands are employed for

the video processing tasks. When system accuracy is of the greatest importance, it may
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be desirable to use all bands. However, it may be most effective to select a proper subset

of all the available bands in situation where resource constraints are critical due to failures

in certain subsystems or limited energy capacity.

In the DDDAS-driven video processing system design problem that we target in

this thesis, we assume the availability of multispectral data that comes from a set Z =

{B1,B2, . . . ,BN} of spectral bands, where N denotes the total number of available bands.

In resource- or heavily performance-constrained scenarios where it may not be desirable

or feasible to process all bands, this leads a problem of strategically selecting a subset

S ∈ 2Z , where 2Z is the power set of Z — that is, the set of all subsets of Z.

We assume that we are given a constraint Cr (in units of time) on execution time

performance for a particular video processing scenario. Our problem then is to select the

set S ∈ 2Z to store and process, and the associated strategy to process this selected subset

of bands such that video analysis accuracy is maximized subject to the constraint Cr. In

this Thesis, we focus on the former aspect of this problem — the selection of S ∈ 2Z —

while laying a foundation for incorporating the second aspect as a useful direction for

future work.

Figure 2.3 illustrates our first version system design for LDspectral, which is de-

signed to address the design optimization problem described above. Here, video pro-

cessing configurations are re-evaluated periodically with the period of re-evaluation be-

ing equal to the value of the reconfiguration interval parameter Tr. Lower values of

Tr correspond to the possibility for more frequent reconfiguration at the expense of in-

creased overhead due to more frequent operations for reconfiguration management. The

reconfiguration management overhead includes computations for dynamically determin-
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Figure 2.3: Block diagram of the design flow in LDspectral.

ing whether or not to reconfigure the system, and determining and applying the new oper-

ational parameters, including the band subset S, when reconfiguration is to be performed.

The block in Figure 2.3 labeled Band Subset Selection (BSS) is invoked at time

intervals determined by the reconfiguration interval parameter Tr, subject to application

specifications. The BSS block attempts to optimize the subset of bands that is to be em-

ployed during the next interval of video processing. In this optimization process, offline

data (Subset Selection Profiles) pertaining to the effectiveness of selected subsets of bands

is considered along with recent results from performance evaluation, and the current op-

erational constraint Cr.

The output of Band Subset Selection is a vector indicating the bands S =

{Bs1,Bs2, . . . ,Bsm} (m ≤ N or equivalently, S ⊂ Z) that are to be processed during the

next video processing interval.

We perform pixel-level fusion, where the selected bands in a given multi-spectral
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image are combined pixel-by-pixel into a single image. In our fusion approach, each

pixel in the combined image is derived from a weighted sum of the corresponding pixels

in the individual bands. Compared to feature-level fusion, pixel-level fusion can have

significantly reduced computational cost since features are extracted from the combined

image rather than separately from each individual band (e.g., see [19, 20]). On the other

hand, feature-level fusion allows for optimization of feature extraction algorithms for

each band [21]. Extension of the LDspectral framework to include feature-level fusion

and adaptive selection between pixel- and feature-level fusion is a useful direction for

future work.

The video processing functionality performed on the selected bands is represented

by the block in Figure 2.3 labeled Band Subset Processing. Further discussion on band

subset processing in this work is given in Section 2.3.

We demonstrate the importance of careful band subset selection, which is a core as-

pect of the LDspectral design methodology discussed in Section 2.2. We demonstrate this

through a case study involving background subtraction. The two metrics that we consider

in this evaluation are the accuracy Fmeasure (defined in Section 2.3) of the background

subtraction (foreground extraction) results, and the average execution time tave to extract

the foreground. We focus on quantifying trade-offs consisting of singleton (one-band)

and two-band subsets, and demonstrate significant variations in performance trade-offs

among different subsets. Analysis and optimization of band subset selection trade-offs

among larger subsets (i.e., where the subset size exceeds 2) are motivated through this

preliminary study as useful directions for future work.

The band subset processing subsystem for this multispectral background subtrac-
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Figure 2.4: Block diagram of band subset processing in the background subtraction sys-
tem.

tion case study is illustrated in Figure 2.4. In the context of this case study, this illustration

represents the internal functionality associated with the block in Figure 2.3 that is labeled

Band Subset Processing. In the dataflow graph subsystem depicted in Figure 2.4, each

actor reads a pointer to an image from its input buffer, and outputs a pointer to the image

that results from the image processing operation performed by the actor.

We use LIDE to develop a prototype implementation of the band subset processing

subsystem in Figure 2.4, and we apply calls to selected OpenCV functions in some of the

actors within this implementation. The Image Read actor in Figure 2.4 is used to inject a

stream of pointers to successive images into the subsystem so that background subtraction

can be performed separately on each image that is referenced (pointed to) in the stream. At

the output of the Image Read actor, each image contains a set of m separate components,

where each component corresponds to one of the selected spectral bands (i.e., an element

of the set S, as defined in Section 2.2). The Image Combination actor then performs pixel-

level fusion to combine the components associated with the selected bands into a singled

“fused” image. More details on the fusion operation performed by this actor are discussed

in Section 2.3.
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The Background Subtraction actor then computes an initial background subtraction

result and passes the extracted foreground through the image pointer produced on its out-

put. The core background subtraction operation applied by this actor is carried out by the

OpenCV function called BackgroundSubtractorMOG2, which applies a Gaussian

mixture model(GMM) [22, 23].

The Foreground Filter actor in Figure 2.4 is designed to remove noise from the out-

put of the Background Subtraction actor. In the Foreground Filter actor, we use two mor-

phological operations — erosion and dilation — through their respective implementations

in OpenCV. Intuitively, the erosion function helps to remove objects in the foreground that

are smaller than the filter-size (a parameter of the erosion function), and dilation helps to

more completely identify boundaries of detected objects. Erosion may lead to distortion

in object boundaries; dilation is applied after erosion as a corrective operation to address

this potential for distortion.

The Foreground Binarization actor takes the output of the the foreground filter, and

converts it into a binary form, where each pixel is classified as being either a foreground or

background pixel. This conversion is performed by applying a threshold, and classifying

pixels as foreground whenever the corresponding pixel values exceed the threshold. The

specific threshold that is employed is determined empirically (off-line) in an effort to

enhance classification accuracy. The resulting binary image is then processed by the

Foreground Output actor to store the classification results for each image as a separate

file in a given output directory. The files generated in this output directory are indexed so

that they can easily be matched up with their corresponding input frames from the given

multispectral data set.
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We performed experiments applying LDspectral with the background subtraction

subsystem shown in Figure 2.4. These experiments were performed using a laptop com-

puter equipped with an AMD A8-4500M CPU, 4GB RAM, and the Ubuntu 14.04 LTS

operating system. Results from these experiments are discussed in the following section.

2.3 Results

In our experiments involving band subset selection in conjunction with background

subtraction, we applied the novel data set for multispectral background subtraction that

has been published recently by Benezeth et al. [1]. From this data set, we experimented

with multispectral video input that contains 1102 images, where each image contains

separate components in 7 different spectral bands. Among these 7 bands, 6 are in the

visible spectrum and the remaining one is in the near-infrared spectrum. We divided this

set of images into 735 images (approximately 2/3) for training and 367 images for testing.

Here, the training phase is applied to optimize the performance of each two-band

subset. Given a band subset {bs1,bs2}, training is used to optimize the relative weight-

ings for these bands when they are fused in the Image Combination actor described in

Section 2.2. More specifically, suppose that x1 and x2 are two corresponding pixel values

(pixel values at the same image coordinates (a,b)) in bands bs1 and bs2, respectively, and

let y denote the pixel value at coordinates (a,b) in the output of the Image Combination

actor. Then y is derived by:

y = α× x1 +(1−α)× x2, (2.1)
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where α (0 ≤ α ≤ 1) is a parameter of the Image Combination actor that is used to

control the relative weightings of the two input bands. We refer to this parameter α as the

pairwise band combination (PBC) parameter.

Based on this formulation of pixel-level fusion for a two-band subset, our training

phase is used to optimize the image combination parameter α . This training process

is carried out for each distinct pair {bs1,bs2} of bands to yield a corresponding PBC

parameter value A(s1,s2) that controls the relative weighting of pixels when combining

bands bs1 and bs2.

For each distinct pair {bs1,bs2} of bands, the training phase involves performing

an exhaustive search across α ∈ {0,0.1,0.2, . . . ,1}, and then selecting a value for the

PBC (with ties broken arbitrarily) that leads to the highest average accuracy for the back-

ground subtraction subsystem of Figure 2.4. This selected value is then used in the testing

phase to assess the accuracy produced by using the band subset {bs1,bs2} for background

subtraction.

The measure of accuracy employed in these experiments is the harmonic mean per-

formance measure of background subtraction accuracy, which is motivated, for example,

in [1]. This measure is defined as

Fmeasure = 2× recall×precision
recall+precision

. (2.2)

Here, precision and recall are defined by:

precision = nc
n f

, and recall = nc
ng

,

where nc is the number of correctly classified foreground pixels, n f is the number of pixels
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classified as foreground, and ng is the number of foreground pixels in the ground truth.

Table 2.1 and Table 2.2 show experimental results using the offline analysis capabil-

ities of LDspectral to evaluate processing trade-offs among different one- and two-band

combinations (i.e., where the set of selected bands is restricted to contain only one or

two elements). Table 2.1 shows the background subtraction accuracy that is experimen-

tally observed for different one- and two-band combinations, while Table 2.2 shows the

processing times for different combinations. In each of these tables, the diagonal entries

give the results for single-band processing, while each entry at row a and column b when

a 6= b gives the results from joint processing of the bands indexed by a and b. In each of

these tables, elements below the diagonal are not shown since they are symmetric with

respect to the diagonal. As mentioned above, we employ 1102 images in each of these

experiments. These 1102 images form the complete set of images from the employed

multispectral data set [1] that have ground truth available as part of the data set.

From Table 2.1, we see that the accuracy provided by LDspectral is significantly

higher on average compared to the results presented in [1] for the same video data set.

This demonstrates the effectiveness of LDspectral in optimizing the accuracy of back-

ground subtraction.

Experimentally derived data of the form shown in Table 2.1 and Table 2.2 can be

used as the subset selection profiles to guide band subset selection, as illustrated in Fig-

ure 2.3. Additionally, the results in Table 2.2 define lower limits on how short the recon-

figuration interval Tr (See Section 2.2) can be.

Table 2.3 shows the optimized values for the PBC parameters that were derived

through the training procedure for processing of two-band subsets. The rows and columns

22



Table 2.1: Accuracy results for different one- and two-band combinations using LDspec-
tral, and (in the last three rows) the results from [1] with three different algorithms.

band 1 2 3 4 5 6 7

1 0.934 0.940 0.944 0.945 0.943 0.943 0.933
2 0.931 0.942 0.936 0.942 0.937 0.930
3 0.939 0.939 0.943 0.940 0.939
4 0.929 0.940 0.932 0.930
5 0.942 0.938 0.937
6 0.919 0.925
7 0.886

Mahalanobis
distance

0.689

Spectral
angle

0.897

SID
similarity

0.896

Table 2.2: Execution times for different single- and dual-band combinations. The results
here are given in milliseconds. Each entry in the table represents the average time to
perform background subtraction (including the entire processing chain shown in Figure
2.4 on a single input image).

band 1 2 3 4 5 6 7

1 62.5 68.4 67.2 66.9 67.5 68.4 66.5
2 62.3 68.2 68.4 68.0 69.7 68.2
3 62.8 67.4 66.9 68.5 66.9
4 63.1 67.4 69.0 66.8
5 63.0 68.8 66.8
6 62.2 68.4
7 63.4
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Table 2.3: Derived values for PBC parameters (rounded to tenths).

band 2 3 4 5 6 7

1 0.7 0.4 0.6 0.3 0.7 0.9
2 0.3 0.7 0.4 0.5 0.8
3 0.9 0.5 0.7 0.9
4 0.4 0.5 0.9
5 0.5 0.9
6 0.8

of Table 2.3 correspond, respectively, to x1 and x2 in Equation 2.1. For example, when

S consists of Bands 2 and 3, we use α = 0.3, and when S consists of Bands 1 and 4, we

use α = 0.6. The diversity of the values in this table demonstrates the utility of optimiz-

ing the PBC parameter separately for each two-band subset rather than using a balanced

weighting (α = 0.5) or some other uniform PBC parameter setting for all subsets.

We also see from Table 2.3 that the optimized α values are relatively high when x2

is taken to be Band 7, which is the near-infrared band. This results in correspondingly

low weightings given to Band 7. This trend matches intuitively with the data in Table 2.1,

which shows that Band 7 in isolation has significantly lower accuracy compared to all of

the other one-band subsets.

Overall, the results in Table 2.1 and Table 2.2 help to motivate the utility of careful

selection of band combinations as there is significant variation in accuracy among differ-

ent pairs of bands. The results also help to quantify the trade-off — in terms of increased

execution time — when a single band is augmented with a second band to help increase

background subtraction accuracy. For the implemented pixel-level fusion approach, this

increase is found to be relatively low (within 13% in all cases). This is because increasing

the number of bands increases the computational load for only a small subset of the ac-
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tors in Figure 2.3 and Figure 2.4 — in particular, the actors for band selection and image

combination.

2.4 Summary

In this chapter, we have introduced a novel system design framework for dynamic,

data-driven processing of multispectral video streams using lightweight dataflow tech-

niques. The framework is motivated by the need for efficient and accurate video pro-

cessing in a wide variety of systems for air and ground environments. This framework is

designed to incorporate selection of subsets of bands as a core, front-end step in the video

processing process. This emphasis on band subset selection opens up a large design space

for data-driven adaptation that influences key metrics, including accuracy and computa-

tional efficiency. We have demonstrated a prototype implementation of LDspectral ap-

plied to a background subtraction application. Through experiments with this prototype

on a relevant data set, we have demonstrated the utility of flexible, optimized band sub-

set selection in the navigation of operational trade-offs for multispectral video processing

systems.

The LDspectral framework uses pixel level fusion with weighting coefficients that

are optimized to combine selected bands. With the optimized weighting coefficients, the

accuracy is significantly improved compared to the accuracy provided by single-band in-

put. In addition to or instead of pixel level fusion, we can incorporate feature level or

decision level fusion in LDspectral. Chapter 3 extends LDspectral by adding capabilities

of feature level fusion and dynamic reconfigurability. Chapter 4 further extends LDspec-
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tral by adding support for hyperspectral image and video processing.
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Chapter 3

Extensions to LDspectral for Dynamic Data-Driven Video Processing

In Chapter 2, we introduced the LDspectral framework for design and implemen-

tation of multispectral video processing systems. We demonstrated methods to select

pairs of multispectral bands to process in a manner that optimizes accuracy while provid-

ing streamlined computational requirements due to the use of only a small subset of the

available bands.

In this chapter, we improve the LDspectral framework in two major aspects. First,

we develop a greedy algorithm that considers band subsets of arbitrary size rather than

limiting the design space to only two-band subsets. More specifically, the algorithm is

designed to select a subset of bands that contains a pre-specified number of bands, where

the pre-specified number is any integer between 1 and the total number of available bands.

The objective of the algorithm is to optimize video analysis accuracy subject to the given

constraint on the number of bands. In addition to selecting the bands, the algorithm

optimizes the weighting coefficients of the bands.

Second, we introduce feature level fusion into LDspectral, which improves the flex-

ibility of multispectral information processing. Feature level fusion is applied in LDspec-

tral using a pooling strategy for decision making.

The distinguishing aspects of the contributions in this chapter compared to the re-

lated work include their (1) focus on integrating DDDAS methods into trade-off opti-
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mization between accuracy and real-time performance in multispectral video processing

systems, and (2) emphasis on supporting flexible optimization involving the subset of

available multispectral bands that is processed, and the associated algorithm and dataflow

configurations.

Material in this chapter was published in preliminary form in [24]

3.1 Introduction

In the extraction of knowledge from the diverse channels provided by multispec-

tral and hyperspectral imaging sensors, image fusion is an important class of algorithms.

Liu et al. present a comparative study of different multiresolution algorithms for image

fusion [17]. Bhateja et al. develop a non-subsampled contourlet transform approach for

multispectral image fusion in medical applications [25]. Wei et al. propose an image

fusion method for multispectral and hyperspectral images that is based on a sparse rep-

resentation, and results in less spectral error and spectral distortion compared to related

fusion techniques [26]. Chen et al. develop an approach for fusing low-spatial-resolution

hyperspectral images and high-spatial-resolution multispectral images of the same scene

using pan-sharpening methods [27].

Benezeth et al. have performed an extensive experimental investigation on the

application of multispectral video processing to the detection of moving objects [1].

Benezeth’s contributions also include a publicly available dataset with foreground truth

for experimenting with multispectral background subtraction techniques. Uzkent, Hoff-

man, and Vodacek have developed a DDDAS framework for controlling hyperspectral
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data collection [28]. Sobral et al. proposed an online stochastic tensor decomposition

algorithm for robust background subtraction. Sobral’s results demonstrate that red-green-

blue (RGB) features are not sufficient to handle color saturation, illumination variations

and problems due to shadows, while incorporating six visible spectral bands together

with one near-infra-red band helps to address these limitations [29]. Reddy et al. present

a multispectral video visualization method, and propose in this context a fusion technique

to retain color, texture, relative luminance and sharpness [30]. Recently, Aved et al. [31]

applied a difference criteria to weight hyperspectral bands.

The design methodologies and tools developed in this chapter are largely comple-

mentary to the methods surveyed above in the area of image fusion, and in our exper-

imental evaluation (Section 3.3), we apply the dataset mentioned above that has been

introduced by Benezeth et al.

3.2 System Design

As motivated in Section 3.1, this chapter develops new capabilities in LDspectral,

which is a software tool for optimized design and implementation of multispectral video

processing systems. The objective of LDspectral is to enable efficient, dynamic pro-

cessing across the available bands based on constraints imposed by the given operational

scenario, and instrumentation data collected from the underlying embedded platform.

In the class of DDDAS-driven video processing systems that is targeted by LDspec-

tral, the input data comes from a set Z = {B1,B2, . . . ,BN}, where N is the total number

of available spectral bands. The multispectral image stream with this number of bands
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is processed by a given dataflow graph G = (V,E), where V is the set of graph vertices

(actors), which correspond to functional modules, and E is the set of edges. Each edge

e ∈ E corresponds to a first-in-first-out (FIFO) communication channel that buffers data

as it passes from the output of one actor to the input of another. The actors and edges in G

have associated sets of parameters Pv and Pe, respectively. Parameters of an edge may in-

clude a Boolean “activation parameter”, in the spirit of Boolean parametric dataflow [32].

Such activation parameters allow edges to be enabled and disabled. In this context, dis-

abling an edge means effectively removing the associated connection (between the edge’s

source and sink actors) from the graph. Such use of dynamic parameter adjustment can

be used to configure dataflow within the system model.

We assume a given constraint Cr (in units of time) on execution time performance

for a particular video processing scenario. The run-time system for video processing is

equipped with instrumentation for periodically determining the execution time perfor-

mance of the current video processing configuration. The problem addressed by LDspec-

tral is to select the subset S ∈ 2Z of spectral bands to store and process, and an assign-

ment of valid parameter values for all dataflow graph parameters in (Pv ∪Pe) such that

video processing accuracy is maximized subject to the real-time constraint specified by

Cr. Here, 2Z denotes the power set of Z.

The LDspectral tool addresses novel video processing design spaces introduced by

multispectral image acquisition technology. It enables efficient experimentation and data-

driven optimization of video processing configurations for multispectral video analytics.

The remainder of this chapter discusses details on design optimization models and meth-

ods employed in LDspectral, and demonstrates the tool through a case study involving
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background subtraction for moving object detection.

3.2.1 Run Time System

Figure 3.1 shows a block diagram of the run-time system model that is targeted by

LDspectral. We refer to this model as the LDspectral Run-time System Model (LRSM).

In the LRSM, Dataflow Configuration Profiles refer to performance profiles of alternative

actor configurations. These profiles provide estimates of accuracy and execution time for

alternative algorithmic configurations associated with selected functional modules in the

given video processing application system. The profiles are determined at design time,

through simulation or through instrumented execution on the targeted embedded platform.

Similarly, the Subset Selection Profiles provide estimates of trade-offs between ac-

curacy and execution time for different subsets of spectral bands. Each entry in this

collection of profiling data corresponds to a subset S ∈ 2Z of the available spectral bands,

and provides estimates of the achievable accuracy and the execution time cost when sub-

set S is used as input for the core video processing functionality (and the remaining bands

(Z−S) are discarded or ignored). In the current version of LDspectral, one subset is se-

lected for each cardinality value in the range of 1,2, . . . ,N, where N is the total number of

available bands in the multispectral sensor subsystem. An entry is then stored within the

Subset Selection Profiles for each of these selected subsets. Methods used to select and

evaluate these subsets are discussed further in Section 3.2.3.

The Subset Selection Profiles and Dataflow Configuration Profiles are used at run-

time to adapt algorithmic and dataflow parameters associated with the core video process-
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Figure 3.1: Block diagram of the LDspectral Run-time System Model (LRSM).
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ing functionality of the targeted embedded system. This core functionality is represented

by the block in Figure 3.1 labeled Band Subset Processing (BSP). Details about the BSP

subsystem are discussed in Section 3.2.2. The dynamic, data-driven adaptation of sys-

tem parameters in the LRSM is performed by the blocks in Figure 3.1 that are labeled

Dataflow Parameter Reconfiguration and Band Subset Selection. Dataflow Parameter

Reconfiguration is performed using techniques that involve parameterized dataflow [33]

and Boolean parametric dataflow [32]. The Band Subset Selection block takes as input

design time information provided by the Subset Selection Profiles, and run-time informa-

tion derived from Performance (execution time) Instrumentation. Band Subset Selection

produces as output the subset σ(i) ∈ 2Z of multispectral bands that are to be processed in

the next iteration i of LRSM execution. This subset is taken from among the entries in

the Subset Selection Profiles as the band subset that provides the highest accuracy while

satisfying the current Operational Constraint Cr.

3.2.2 Band Subset Processing

This section details the BSP subsystem, which was introduced in Section 3.2.1

as one of the blocks in Figure 3.1. A dataflow representation of the BSP subsystem

is illustrated in Figure 3.2, including pixel-level fusion (PLF) and feature-level fusion

(FLF) [34].

The BSP subsystem in LDspectral is designed through integrated used of the

lightweight dataflow environment (LIDE) and OpenCV. LIDE is a model-based tool for

design and implementation of embedded software and firmware using coarse-grained
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Figure 3.2: Dataflow representation of the band subset processing (BSP) subsystem
shown in Figure 3.1.
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dataflow representations [11, 35]. OpenCV is a computer vision software framework

that includes a large library of software components for video processing (e.g., see [12]).

In the integrated use of LIDE and OpenCV employed in BSP, actors in LIDE incorporate

calls to relevant OpenCV functions that perform selected image/video processing oper-

ations. This approach provides an efficient means for integrating model-based system

design techniques with the large library of image/video processing implementations in

OpenCV.

As shown in Figure 3.1, the BSP subsystem consists of several actors. The Input

Interface actor provides an interface for accessing and operating on input image frames

for a given invocation I of the BSP subsystem. These input frames correspond to the

selected subset of spectral bands that are to be accessed during invocation I.

The Background Subtraction actor computes an initial background subtrac-

tion result that is further refined in later stages of the BSP subsystem. The

core operation applied by this actor is carried out by the OpenCV function

called BackgroundSubtractorMOG2, which applies a Gaussian Mixture Model

(GMM) [36, 22, 23].

The Foreground Filter actor is used to remove noise from the output of the Back-

ground Subtraction actor. Such noise can result from the moving of background objects,

such as trees that are shaken by the wind. This actor applies two morphological opera-

tions — erosion and dilation — through their implementations in OpenCV. The erosion

function removes objects in the foreground that are smaller than the filter-size (a param-

eter of the BSP subsystem), while the dilation function corrects distortion at foreground

object boundaries that results from the erosion operation.
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The Foreground Binarization actor takes the output of the foreground filter, and

converts it into a binary form, where each pixel is classified as being either a foreground or

background pixel. This actor applies a threshold that is determined empirically (off-line)

to optimize classification accuracy. In BSP, the OpenCV function called cvThreshold

is employed for foreground binarization.

The BSP subsystem provides two different fusion methods — PLF and FLF — to

fuse the individual images from different bands in the subset of selected bands. PLF is

applied to the input image before applying background subtraction, while FLF is applied

to the result of preliminary background subtraction from each band. Using the config-

urable dataflow capabilities in the BSP subsystem (represented by the dashed edges in

Figure 3.2), designers or the LDspectral run-time system can select flexibly between PLF

and FLF.

For a band subset with two elements, a “pairwise band combination” parameter α

is used to configure PLF in the BSP subsystem. The value of α must be a real number in

the range [0,1]. The parameter α is used to configure the fusion operation by:

y = α× x1 +(1−α)× x2, (3.1)

where x1 and x2 are two corresponding pixel values (at the same image coordinates) in

the two input bands, and y is the pixel value at same coordinate in the output.

This fusion approach is extended to band subsets having arbitrary size N using an N-

dimensional vector α(N) = (α1,α2, . . . ,αN), where ∑i αi = 1. A vector α(N) of this form

is referred to a PLF weight vector. When subsets of bands are constructed incrementally,
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as they are constructed in LDspectral, the vectors {α(N)} can be computed efficiently

using grid search. More details about the grid search approach employed in this work are

provided in Section 3.2.3.

Following [1], we apply a pooling strategy for FLF:

Zt(s) =


1 ∑iYi,t(s)> ρ

0 otherwise
, (3.2)

where Yi,t represents the input image for fusion at frame t and spectral band i; Zt represents

the tth output frame derived by FLF; and ρ , called the majority parameter, provides a

threshold for the fusion operation. The symbol s in Equation 3.2 represents a given pixel

index. The value of ρ ranges from 1 (a logical OR operation) to the total number bands

(a logical AND operation). Each binary pixel value Zt(s) in the fused result represents a

prediction about whether the pixel corresponds to foreground (1) or background (0).

3.2.3 Band Subset Selection

As described in Section 3.2.1, the Subset Selection Profiles in Figure 3.1 are derived

at design time to provide a set, called bandseq, of strategic multispectral input configura-

tions (subsets of the available multispectral bands) that are made available to the LRSM

for dynamic, data-driven adaptation. We first discuss the approach used in LDspectral

for deriving Subset Selection Profiles based on PLF, and then the approach is extended to

incorporate both PLF and FLF.

The derived set of Subset Selection Profiles bandseq contains one carefully-selected

subset of bands for each cardinality value in the range of 1,2, . . . ,Nb, where Nb is the total
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number of available bands in the multispectral sensor subsystem. Thus, bandseq can be

viewed as a sequence or array whose ith element is the subset of selected bands that has

cardinality i. Along with each subset of bands, an optimized PLF weight vector is derived

to heuristically maximize the accuracy of PLF for the associated subset of bands.

Algorithm 1 provides a pseudocode sketch of the algorithm employed in LDspectral

to derive the Subset Selection Profiles bandseq along with the array of associated PLF

weight vectors alpha. For each i, bandseq[i] is derived to be an i-element set of selected

multispectral bands. The algorithm presented here is a greedy algorithm in that for each

j = 2,3, . . . ,Nb, bandseq[ j] is derived by extending bandseq[ j− 1] with one band from

(bands−bandseq[ j−1]), where bands represents the complete set of available bands in

the multispectral video processing system. Thus, bandseq[ j][k] = bandseq[ j− 1][k] for

k < j.

The weight vector for each bandseq[ j] is derived using the constraint that:

alpha[ j][k] = g×alpha[ j−1][k] for k < j, and some coefficient g ∈ [0,1]. (3.3)

A grid search is then performed, using a training dataset for evaluation, to optimize the

value of g. This evaluation, represented by the call to evaluateBSP in Algorithm 1, is per-

formed by invoking the BSP subsystem (Figure 3.2) on all images in the training dataset to

assess the average accuracy using the given band subset and PLF weights. Accuracy eval-

uation is performed in terms of the harmonic mean performance measure Fmeasure. The

average Fmeasure computed across the training set is returned from the call to evaluateBSP.

This metric is discussed in more detail in Section 3.3.3.
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Since the components of alpha[ j−1] sum to 1 (see Section 3.2.2) and the compo-

nents of alpha[ j] must also sum to 1, the last component of alpha[ j] can be derived during

the grid search as

alpha[ j][ j] = (1−g). (3.4)

The constraint in Equation 3.3 is imposed during the search process to reduce the

search complexity. Investigating efficient ways to relax this constraint and achieve more

thorough search, while keeping the overall time required for optimization in an acceptable

range, is a useful direction for future work.

In our experiments, we use a grid spacing (the grid spacing parameter in Algo-

rithm 1) of 0.1.

Algorithm 1
parameter Nb: number of available spectral bands
parameter bands: set of spectral bands
parameter grid spacing: granularity for grid search
output bandseq[Nb]: sequence of selected bands
output alpha[Nb]: weight vectors for band subsets
unprocessed = bands
processed = /0
for i = 1; i≤ Nb; i++ do

fM =−1
for u ∈ unprocessed do

S = processed
⋃
{u}

for g = 0; g≤ 1; g+=grid spacing do
w = ((g×alpha[i−1]),(1−g))
fm = evaluateBSP(S,w)
if fm > fM then

u = u
w = w

bandseq[i] = u
alpha[i] = w
measure[i] = fM
unprocessed −= {u}
processed += {u}
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Algorithm 1 is adapted for FLF by configuring the dataflow in the BSP subsystem to

perform fusion at the feature level, and replacing the grid search to optimize PLF weights

with a grid search to optimize the majority threshold ρ (see Equation 3.2). This is a

relatively straightforward replacement of one kind of grid search with another grid search

having a similar form. We omit the details for brevity. This replacement allows us derive

an optimized sequence of band subsets using FLF along with an accuracy-optimizing

majority value rho[i] for each subset cardinality i.

LDspectral Band Subset Selection (LBSS) operates by first applying both Algo-

rithm 1 and the adapted version of Algorithm 1 that employs FLF instead of PLF. We

refer to the resulting band subsets (bandseq outputs) as βplf and βflf , respectively. Simi-

larly, the resulting average accuracy results (measure outputs) are denoted Mplf and Mflf ,

respectively.

Then for each band subset cardinality i ∈ {2,3, . . . ,Nb}, LBSS selects either βplf [i]

(along with the associated weight vector alpha[i]) or βflf [i] (along with the associated ma-

jority value rho[i]) depending on whether Mplf [i]≥Mflf [i] or Mplf [i]< Mflf [i], respectively.

For i = 1, there is no fusion involved so the singleton subset selected by LBSS is simply

equal to the common value of βplf [1] and βflf [1].

3.3 Results

3.3.1 Experimental Setup

Multispectral video sequences used for training and testing in our experiments were

obtained from a multispectral dataset published by Benezeth et al. [1]. The parts of this
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dataset that we used include foreground truth to enable assessment of background sub-

traction accuracy.

The video data in this dataset was acquired from a commercial multispectral cam-

era, the FD-1665-MS from FluxData, Inc. The dataset incorporates 7 bands in total,

including 6 different channels in the visible spectrum (B1 through B6) with wavelengths

ranging from 400 nm to 700 nm, and one near-infrared band (B7) with a wavelength in

the range of 700 nm to 1000 nm.

We used 1,102 multispectral images from the dataset described above. We divided

this set of images into 735 images (approximately 2/3) for training and 367 images for

testing.

Our experiments were performed using a desktop computer equipped with a

3.10GHz Intel i5-2400 CPU, 4GB RAM, and the Ubuntu 15.10 LTS operating system.

Results from these experiments are discussed in Section 3.3.3 and Section 3.3.4.

3.3.2 Example Images

Figure 3.3 shows a composite (all-band) scene; 7 different images corresponding to

single-band foreground results on the 7 available multispectral bands; and the foreground

result that is derived by LDspectral using background subtraction along with PLF across

all 7 bands. This scene is selected here from Benezeth’s dataset as an example to illustrate

techniques for fusion and background subtraction that are employed in LDspectral. The

foreground fusion result derived by LDspectral is shown in the image at the bottom right

corner of Figure 3.3.
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Figure 3.3: An example from Benezeth’s dataset that is used to illustrate the techniques
for fusion and background subtraction that are employed in LDspectral: the scene, 7
bands, and foreground fused image.

42



Examination of these images shows that performing background subtraction in con-

junction with image fusion yields more accurate results compared to the results of per-

forming background subtraction on individual bands in isolation — for example, the hol-

low portions in the single band results are largely filled in within the fused result.

While it is intuitively clear and concretely illustrated in the example of Figure 3.3

that fusion can significantly improve accuracy, the overall objective of LDspectral is to

enable efficient, dynamic adaptation across video processing configurations that trade-

off accuracy and real-time performance subject to operational constraints. The utility of

LDspectral for performing such trade-off optimization is demonstrated in the remainder

of this section.

3.3.3 Accuracy Evaluation

Table 3.1 shows foreground accuracy results for all possible one- and two-band

subsets for both PLF and FLF. The results shown here are derived using search processes

within the LBSS algorithm presented in Section 3.2.3. Each off-diagonal table entry in

Table 3.1 consists of two values that are stacked vertically — the top value corresponds

to PLF and the bottom value to FLF. The entries on the diagonal correspond to singleton

(one-band) subsets, while each off-diagonal entry at row i and column j represents the

two-band subset {Bi,B j}. The values in the table are the average Fmeasure values computed

across the training part of our multispectral dataset. The boldface values in Table 3.1 show

the accuracy values for FLF in cases where FLF achieves higher accuracy than PLF.

These results show that FLF achieves higher accuracy compared to PLF in only a
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Table 3.1: Accuracy results for different one- and two-band subsets using LDspectral with
both PLF and FLF. In each off-diagonal table entry, the top value corresponds to PLF, and
the bottom value corresponds to FLF.

band 1 2 3 4 5 6 7

1 0.934
0.940 0.943 0.945 0.943 0.943 0.933
0.942 0.944 0.940 0.947 0.946 0.933

2 0.931
0.942 0.936 0.942 0.937 0.930
0.942 0.937 0.942 0.937 0.926

3 0.939
0.939 0.943 0.940 0.939
0.938 0.941 0.937 0.935

4 0.929
0.940 0.932 0.930
0.937 0.929 0.926

5 0.942
0.938 0.937
0.937 0.933

6 0.919
0.925
0.922

7 0.843

small fraction of the evaluated band subsets. Furthermore, as we show in Section 3.3.4,

FLF requires significantly higher execution time on our experimental platform compared

to PLF. Thus, for the remaining experiments reported in this section (Section 3.3.3), we

“turn off” or disable FLF in LBSS so that only weight-optimized configurations of PLF

are considered. However, the option of enabling FLF in LBSS may be useful in general

for other target platforms, such as platforms that have more parallelism available to speed

up the performance of the FLF-enabled BSP dataflow graph.

From the results in Table 3.1, we also see that when the number of bands increases

from one to two, a significant improvement in accuracy results. This helps to confirm

and quantify the utility of maintaining progressively larger subsets of spectral bands as

alternative configurations for dynamic adaptation in LDspectral.

Table 3.2 shows the results of incremental band subset construction using the LBSS
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Table 3.2: Results of incremental band subset construction using the LBSS algorithm in
LDspectral.

Band(s) 1-4 1-4-6 1-4-6-3 1-4-6-3-5 1-4-6-3-5-2

1 - - - - -
2 0.948 0.957 0.957 0.958 -
3 0.946 0.957 - - -
4 - - - - -
5 0.949 0.950 0.957 - -
6 0.949 - - - -
7 0.918 0.935 0.938 0.940 0.961

algorithm in LDspectral. The columns correspond to progressively larger subsets of bands

that are derived by LBSS, while the rows correspond to individual bands that are incre-

mentally added and evaluated in the search process. For example, the entry corresponding

to Row 3 and Column 1-4-6 shows the best accuracy achieved (across all PLF configu-

rations that are evaluated through grid search) for the band subset {B1,B3,B4,B6}.

The boldface values in Table 3.2 correspond to the best configurations represented

in the corresponding columns. These are the configurations that are “picked up” by the

search process in LBSS. For example, band B6 exhibits the best accuracy when combined

with bands B1,B4 (the tie here with band B5 is broken arbitrarily or based on less signif-

icant digits that are not shown in the table), and thus, the union {B1,B4,B6} of these two

subsets is taken as the best 3-element subset. This subset is then represented in the next

column of the table (labeled 1-4-6).

The results in Table 3.2 are shown based on the band subset {B1,B4} as a starting

point — i.e., as the initial two-band sequence that defines the first column of data in the

table. This pair of bands is selected because it corresponds to the best two-band PLF

results in Table 3.1, and as motivated above, we have disabled FLF in LBSS for this part
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Table 3.3: Accuracy improvement compared with results from [1] using the same multi-
spectral dataset.

Precision Recall F measure

LDspectral 0.969 0.953 0.961
[Benezeth 2014] 0.870 0.925 0.897

Improvement 11.4% 3.0% 7.1%

of the experimental evaluation.

From the results in Table 3.2, we see that, as expected, Fmeasure increases as the

cardinality of the set of selected bands increases. The improvement is larger at first (when

constructing smaller band subsets), and then becomes smaller when constructing larger

subsets. These trends are important as they influence trade-offs between the increased

accuracy provided by processing additional bands and the increased computational cost

incurred by such processing. The execution time aspects of these trade-offs are investi-

gated in Section 3.3.4.

Table3.3 shows the improvement in accuracy provided by LDspectral compared to

related methods reported in the literature that are evaluated on the same multispectral

dataset. These results are for the full set of (7) available multispectral bands. The Fmeasure

value is improved by 7.1% through methods in LDspectral. This is a relatively large

improvement given that an upper bound on the achievable improvement (represented by

Fmeasure = 1) is (1−0.897)/0.897 = 11.4%. Factors that contribute to this improvement

include the integrated use in LDspectral of a GMM model for PLF, and the grid search

optimization of the PLF configurations.
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Table 3.4: Variation in execution time for different numbers of processed bands and dif-
ferent fusion modes. The units of execution time in this table are milliseconds/frame.

1 2 3 4 5 6 7

PLF 31.1 34.9 38.8 43.0 47.5 51.6 55.4
FLF 31.1 52.7 81.3 93.7 101.8 121.0 138.5

3.3.4 Execution Time Evaluation

Table 3.4 shows the variation in execution time for different numbers of processed

bands and different fusion modes. These results are given in terms of milliseconds

per video frame that are required to execute the BSP dataflow graph (Figure 3.2). The

columns in the table correspond to different band subset sizes. The first column corre-

sponds to the execution time required for BSP when only one spectral band is involved,

and hence no fusion is performed. Thus, the execution times reported in both rows are the

same for the first column.

The execution times reported in Table 3.4 are obtained by averaging over ten itera-

tions through the training dataset for a band subset of each given cardinality. These results

demonstrate that the execution time of FLF exhibits a significantly more rapid increase

compared to PLF as the number of bands increases. For example, from the trends shown

in Table 3.4, we see that the execution time required to perform FLF on 2 bands exceeds

the time required to perform PLF on 6 bands. This kind of result further highlights the

need for careful, joint selection of fusion configurations and band subsets in a system that

is geared toward optimizing trade-offs between accuracy and real-time performance.
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3.4 Summary

In this chapter, we have developed new methods for integrated band subset selec-

tion and video processing parameter optimization in LDspectral, which is a software tool

for model-based system design, prototyping, and optimization of data-driven, multispec-

tral video processing systems. LDspectral is developed for optimization in the context

of novel video processing design spaces introduced by multispectral image acquisition

techniques. The methods developed in this chapter enable experimentation with and opti-

mization of data-driven video processing for DDDAS. The methods are demonstrated in

terms of accuracy and execution time using a case study involving background subtrac-

tion, and a relevant multispectral data set for this application.

Both pixel level fusion and feature level fusion are implemented in LDspectral. In

pixel level fusion, a greedy selection algorithm is designed to fully explore the space of

all possible band subsets. The weighting coefficients are optimized as an integral part of

the band selection process. Improvements in accuracy at the cost of increased execution

time are observed with increases in the number of selected bands.
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Chapter 4

Hyperspectral Video Processing on Resource-Constrained Platforms

In this chapter, we extend LDspectral to support hyperspectral image and video

processing. Moreover, we optimize the system for efficient implementation on resource-

constrained platforms. First, we develop a multithreaded version of LDspectral to enhance

the execution speed of the system on resource constrained platforms that are equipped

with multicore processors. The number of actors devoted to each thread is carefully con-

figured to distribute the workload in a balanced manner across the available processor

cores.

Second, we present a novel adaptive video processing system that is derived from

the LDspectral framework. The system exploits the flexibility of band-subset selection to

efficiently handle time-varying requirements on the frame rate and video analysis accu-

racy.

Material in this chapter was published in preliminary form in [37] and [38]

Background on hyperspectral image and video processing systems can be found in

a variety of tutorials in the literature. For example, Birk and McCord provide a review of

many different airborne hyperspectral sensing systems, and also provide a detailed com-

parison of their system specifications [39]. Matteoli, Diani, and Corsini present a survey

of methods for processing hyperspectral imagery to detect small human-made anomalies

that are relevant in defense and surveillance applications [40].
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4.1 Introduction

Hyperspectral video processing systems (HVPSs) offer advanced capabilities for

scene analytics and knowledge extraction due to their high levels of spectral diversity and

spectral resolution compared to conventional video technologies. With the advancement

of video acquisition techniques, HVPSs are playing increasingly important roles in video

processing applications. Hyperspectral video streams provide high spectral diversity due

to their high density of sampling rate in the wavelength dimension, and their capacity to

incorporate diverse regions of the spectrum. Major application areas for hyperspectral

image and video processing include remote sensing [41], agriculture [42], vehicle track-

ing [28], and medical diagnostics [43]. However, the high density of bands involved in

HVPSs brings challenges in exploiting the potential of hyperspectral imaging technology.

These challenges are especially severe in the context of resource-constrained, embed-

ded deployment, where limited memory and computational resources are available due to

constraints on size, weight, power or cost.

Figure 4.1 shows a hyperspectral cube of a scene in a dataset that we use in our

experiments in this chapter. The dataset is generated by the Digital Imaging and Remote

Sensing Image Generation (DIRSIG) system, which contains 110 frames with 110 bands

in the range of visible light and infrared (from 400 nm to 1000 nm with 10 nm spectral

resolution) with a spatial resolution of 1200x800 [28]. In recent years, the development

of hyperspectral photogrammetry has increased requirements on real-time hyperspectral

video processing. There are many published works on airborne hyperspectral video pro-

cessing applications, such as ecological monitoring using drones [44].
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Figure 4.1: A hyperspectral cube of a scene in a dataset that we use in our experiments in
this chapter.

We develop systematic methods for optimizing real-time performance subject to

stringent resource constraints, and for efficiently trading-off real-time performance and

video analysis accuracy. We demonstrate our design methods through an implementation

case study involving a background subtraction application that is mapped to a low-cost

Android platform.

In this chapter, we develop new system design methods to address these challenges,

thereby contributing novel capabilities for deploying HVPS technology in a wider variety
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of applications. The design methods include strategic selection of band subsets to reduce

processing requirements without major loss in video analysis accuracy. Applying these

design methods, we design and implement a prototype HVPS on an Android platform,

and conduct experiments using a relevant hyperspectral video dataset. The experimental

results demonstrate the capability of the proposed system to provide optimized hyperspec-

tral video processing operation subject to stringent resource constraints, and to efficiently

trade off real-time performance and video analysis accuracy.

In recent years, advances in hyperspectral sensor technology have helped to increase

the availability of hyperspectral imaging systems, which results in an increasing variety

of applications for hyperspectral image and video processing (e.g., see [14]). Generally,

hyperspectral imaging systems can involve hundreds, thousands or even more bands for

the same scene. In addition to being more numerous, the bands employed in hyperspec-

tral imaging systems have narrower bandwidths, thereby offering greater spectral reso-

lution. Along with this increased resolution, however, comes the increased potential for

redundancy across different bands. Thus, a natural mechanism for reducing processing

requirements (e.g., to improve real-time performance or energy efficiency) in an HVPS is

to select a proper subset of the available bands that provides sufficient accuracy and mini-

mizes the storage and processing of spectral information that is redundant or is otherwise

not of high relevance for the required video analysis tasks.

Various methods have been reported in the literature that are relevant to extraction of

useful information from the diverse channels provided by hyperspectral imaging sensors.

For example, Liu et al. provide a comparative study of different multiresolution algo-

rithms for image fusion [17]. Wei et al. present an image fusion method for multispectral
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and hyperspectral images. Their method leads to less spectral error and spectral distortion

compared to related fusion techniques [26]. Lin et al. compare four state-of-the-art meth-

ods for fusion of hyperspectral images [45]. Chen et al. demonstrate a pan-sharpening ap-

proach for fusing low-spatial-resolution hyperspectral images and high-spatial-resolution

multispectral images of the same scene [27].

In our previous work, we demonstrated a multispectral video processing system for

dynamically reconfigurable band-subset selection [13]. The system optimizes trade-offs

between video analysis accuracy and processing speed. This chapter goes beyond the

previous work in its focus on the more challenging requirements of hyperspectral video

processing, and its targeting of highly resource-constrained devices that enable less costly,

more widespread deployment.

Uzkent et al. have developed a framework for controlling hyperspectral data col-

lection [28]. They also introduced a publicly available hyperspectral video dataset for

vehicle tracking. Sobral et al. propose a stochastic tensor decomposition algorithm for

robust background subtraction. Sobral’s results show that red-green-blue (RGB) features

are not sufficient to handle color saturation, illumination variations and problems due to

shadows, while incorporating six visible spectral bands together with one near-infra-red

band helps to address these limitations [29].

The distinguishing aspects of our work include its emphasis on jointly optimizing

accuracy and real-time performance in HVPSs under stringent resource constraints, with

specific use of an Android smartphone platform to demonstrate the proposed methods.

This chapter also introduces a novel adaptive video processing system that exploits the

flexibility of band-subset selection to efficiently handle time-varying requirements on the
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frame rate and video analysis accuracy.

4.2 Design Methods

A core aspect of our proposed design methods is the emphasis on strategically se-

lecting the subsets of bands to store and process at run-time. We refer to this problem as

the band subset selection problem for HVPS design. The band subset selection problem

captures the problem in resource-constrained design contexts where there is insufficient

time (under real-time constraints) or insufficient resources to process all of the available

spectral bands in an HVPS.

In the version of the band subset selection problem that we study in this chapter,

we assume that the available hyperspectral data comes from a set Z = {B1,B2, . . . ,BN}

of spectral bands, where N denotes the total number of available bands. The problem is

to choose an S ∈ 2Z so that processing of this selected subset of bands (while discarding

all other bands) maximizes video analysis accuracy subject to a real-time performance

constraint Cr, where Cr specifies the maximum allowable latency for processing a single

video frame. Other versions of this problem can be formulated, for example, by replacing

Cr by a constraint on energy consumption or by a weighted sum of the run-time and

energy consumption.

Band subset selection tries to optimize the subset of bands that is to be processed

during the interval of video processing. The output of band subset selection is a subset

S ⊂ Z of the bands that are to be stored and processed, while all of the other bands (the

bands in (Z−S)) are ignored. Band subset selection is performed initially at design time
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or during system initialization, and then the selection process can generally be repeated

periodically at run-time based on some reconfiguration interval parameter Tr.

In Chapter 2, we introduced a system design framework, called LDspectral, for

efficient processing of multispectral video streams. Here, “LD” stands for lightweight

dataflow, which is a design methodology and software tool for model-based design and

implementation of signal and information processing systems [10]. LDspectral applies

lightweight dataflow and integrates on top of it novel methods for efficient processing of

multispectral video streams. In this chapter, we build on LDspectral and extend its ca-

pabilities in two major ways. First, we extend it for use on hyperspectral video streams.

Second, we develop methods to map the framework into efficient implementations on

resource-constrained platforms. We demonstrate the results of our optimized hyperspec-

tral video processing framework on a background subtraction application that is imple-

mented on a low-cost Android framework.

The tools that we used to implement the Android version of LDspectral in-

clude the Android Native Development Kit (NDK), Android Debug Bridge (ADB),

OpenCV4Android SDK, DICE [46], and LIDE [47]. NDK is a cross-compiler devel-

oped for the Android platform that supports the integration of native code (C/C++) into

Android applications. ADB allows communication between an Android device and a de-

velopment machine so that the application can be developed and executed using the Linux

command-line environment, which in turn allows the design process to be integrated with

the signal processing software development features of the DICE Package. For more

details about DICE, we refer the reader to [46] The OpenCV4Android SDK provides a

handful of libraries that can be used along with the NDK to build applications or libraries
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for Android applications.

In our experimental setup, the LDspectral system is designed and trained off-line

on a desktop computer. This is illustrated in Figure 4.2. Then the trained model, in-

cluding the optimized PBC parameters, is pushed to the Android device through ADB.

The real-time execution uses the trained parameters from a look-up table and dynami-

cally reconfigures the system based on considerations of real-time performance, energy

consumption, and accuracy.

Figure 4.2: Experimental setup for applying LDspectral to Android-based hyperspectral
video processing implementation.

The proposed new design flow using LDspectral is summarized as follows. First, a

dataflow model of the given HVPS is developed using OpenCV on the development ma-

chine (host computer), and functional testing is performed using DICE. Then LDspectral

is compiled using the NDK cross-compiler and OpenCV4Android SDK so that it can be

ported to an Android device. Finally, ADB is used to transfer the compiled program to the
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targeted mobile device, and provide a DICE-integrated environment for in-device testing

and measurement of the implemented HVPS.

In this section, we introduce an efficient real-time HVPS that is targeted to an An-

droid platform, and we present the underlying system design methods, which are centered

on band-subset selection. The system implements background subtraction as a concrete

video analysis application. The background subtraction (back-end) component of the

system can readily be replaced or augmented with other video analysis techniques. This

capability allows system designers to utilize in different ways the framework’s capabili-

ties for adaptive, resource-constrained hyperspectral video processing.

An important feature of the proposed HVPS is its efficiency and configurability for

processing streams of hyperspectral image inputs. The proposed HVPS maintains a pri-

ority list of spectral bands that is determined through an off-line training process. The

priority list is created based on each band’s contribution to the overall accuracy when the

bands are equally weighted. At run-time, the HVPS accesses the priority list to select Nb

bands that have the highest priority, where Nb is determined based on the current real-time

constraint and a constraint on video analysis accuracy. These constraints are assumed to

be system parameters that can be changed dynamically. The real-time constraint speci-

fies the minimum number of frames per second (fps) at which the system is expected to

process its hyperspectral input stream.

Figure 4.3 illustrates the dataflow for a small-scale example configuration of the se-

quential, fixed-configuration (non-adaptive) first-version HVPS from [37], which we used

as a starting point in this work. The dataflow graph shown in Figure 4.3 corresponds to

a configuration in which five bands are selected for the enclosing background subtraction
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application, while all other available bands are ignored.

Figure 4.3: Dataflow graph for an example configuration of the first-version HVPS.

Each circle in Figure 4.3 represents an actor (signal processing module) in the

dataflow graph. Brief descriptions of the actors are as follows: IR — Image Read, PLF

— Pixel-Level Fusion, BS — Background Subtraction, FF — Foreground Filter, FB —

Foreground Binarization, FA — Foreground Accuracy computation (for measurement and

diagnostic purposes), and IW — Image Write. In each iteration of the dataflow graph, the

IR actor reads from a set of files the selected bands of the next input image, and injects

the image into the dataflow graph for processing.

Figure 4.4 illustrates the dataflow for a multithreaded version of Figure 4.3, which

provides improved processing efficiency on the targeted multicore Android platform. This

version allows more bands to be processed under a given real-time constraint, thereby im-

proving background subtraction accuracy. The dataflow graph is composed of two parts,

which we refer to as the pixel-level fusion (PLF) section (Threads 1–3) and background

subtraction (BS) section (Thread 4). These sections are denoted, respectively, as Sp and

Sb.
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Figure 4.4: Multithreaded version of Fig. 4.3 for mapping onto the targeted Android
platform.

The PLF section performs pixel-level fusion to integrate pixel values from different

spectral bands into a single image. The BS section then uses a Gaussian Mixture Model to

perform background subtraction on the fused image. We pipeline the PLF section, using

a simple pipeline of three stages, where each thread corresponds to a single stage. The

three stages apply different steps of the PLF section concurrently across three successive

frames of the input video stream, thereby helping to improve the achievable frame rate.

The BS stage operates as an additional (fourth) pipeline stage, which processes the most

recent image frame that has passed through all stages of the PLF section.

The pipelining process used in this design method is generalized naturally to han-

dle arbitrary numbers of threads (e.g., for systems in which smaller or larger numbers of

processing cores are available), arbitrary numbers of spectral bands, and the possibility

of adding multithreading to the BS section. In the generalized form, let P, Qp and Qb re-

spectively denote the total number of available threads, the number of threads allocated to

the PLF section Sp, and the number of threads allocated to the BS section Sb. We assume

that the available threads are utilized fully in the system design so that P = Qp +Qb. The
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decomposition of the available P threads into Qp and Qb is performed through experi-

mentation — e.g., a binary search on Qp can be used to arrive at a decomposition through

a low-complexity experimentation process. More systematic approaches to performing

this decomposition represent an interesting direction for future work.

Now if Qp evenly divides Nb, then the number of bands allocated to each thread

in Sp is simply Nb/Qp. Otherwise, each Sp thread is assigned either flr(Nb/Qp) or

clg(Nb/Qp) bands with the assignment performed in such a way that the sum of the band-

to-thread assignments across Sp equals Nb. Here, flr and clg represent the floor and ceiling

functions, respectively. This simple approach to distributing the processing of bands helps

to keep the load of the pipeline stages balanced, which is important for throughput opti-

mization. Here, we have assumed that P < Nb. The approach can be adapted easily to

accommodate the case in which P≥ Nb; we omit the details for brevity.

Figure 4.5 illustrates a multithreaded design of the proposed HVPS for P = 6, and

Qp = Qb = 3. The multithreaded configuration of the BS section incorporates two ad-

ditional actors, denoted IP (Image Partitioning) and IS (image stitching). These actors,

respectively, partition an image into subframes for processing across multiple threads, and

integrate the different results of subframe processing into a single result.

Another important aspect of the proposed HVPS is the capability to dynamically

adapt band-subset selection based on changes in real-time processing requirements or

requirements in the level of video analysis accuracy (e.g., based on switching between

high- and low-criticality modes of operation). Algorithm 2 gives a pseudocode sketch

of the algorithm used for top-level configuration control and processing in the proposed

HVPS. The while-loop (“infinite loop”) in the algorithm simply indicates continuous op-
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Figure 4.5: Multithreaded version of Fig. 4.3 for P = 6, and Qp = Qb = 3.

eration that keeps processing input until the system is terminated through some sort of

external/asynchronous control, such as a power-down operation.

The changed(p) function returns a Boolean value indicating whether or not the dy-

namic parameter p has changed (by some process external to the procedure) since system

initialization (the first time the changed function is called on a given parameter) or since

the previous call to the changed function (for all subsequent calls).

The video analysis accuracy metric used in the proposed HVPS can be defined

based on the associated back-end video analysis functionality that is employed. For our

background-subtraction-based HVPS prototype, we use the Fmeasure metric, which is a

commonly-used metric for assessing results of background subtraction (e.g., see [1]). We

use fm throughout the remainder of this chapter as a shorthand for Fmeasure.
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Algorithm 2 A pseudocode sketch of the algorithm used for top-level configuration con-
trol and processing.
parameterCr: frame rate (throughput) constraint.
parameter fM: accuracy constraint.
parameter T : configuration monitoring interval.
parameter P: number of available threads.

1: procedure HVPS-TOPLEVEL(Cr, fM,T,P)
2: while true do
3: if changed( fM) then
4: Nb1 = lookup1(T1, fM)

5: if changed(Cr) then
6: Nb2 = lookup2(T2,Cr)

7: Nb = max(Nb1,Nb2)
8: process frames(Nb,T,P)

The algorithm utilizes two lookup tables, denoted T1 and T2. The table T1 tabulates

for different values of the accuracy metric ( fm) an estimate of the minimum numbers

of spectral bands (band-subset size) that are required to achieve the specified accuracy

levels. The table T2, on the other hand, tabulates for different throughput (fps) levels,

estimates on the maximum values of Nb that can be utilized without having performance

fall below the throughput levels. The estimates stored in T1 and T2 are determined off-line

through experimentation and stored in a sorted form for fast retrieval of the information

at run-time. The function lookup1(x) shown in Algorithm 2 returns the smallest value of

Nb from lookup table T1 that can achieve the specified accuracy level x. Similarly, the

function lookup2(x) returns the largest value of Nb from lookup table T2 that can achieve

the throughput level specified by x.

The two table-lookups described above result in two candidate values for Nb, which

are denoted, respectively by Nb1 and Nb2. Algorithm HVPS-Toplevel then sets Nb by

taking the maximum of these two candidate values, which effectively gives priority to
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the accuracy criterion. By changing this maximum operation to a different function, the

designer can change the way the two criteria are considered in the HVPS configuration

process (e.g., by prioritizing the throughput metric or applying a weighted combination

to achieve a composite priority function).

After determining Nb, Algorithm HVPS-Toplevel calls process frames, which en-

capsulates the core processing functionality (dataflow graph) of the HVPS. The function

is called by passing the total number P of threads, and the band-subset size Nb that should

used for the processing. The function is also called with a parameter T , which specifies

the number of frames for which processing should continue before control is returned

to the top-level control/configuration process represented by Algorithm HVPS-Toplevel.

The parameter T effectively specifies the periodicity with which the system configura-

tion is re-examined for a possible change in system constraints (Cr or fM) and subsequent

adaptation of processing parameters in response to such a change.

4.3 Results

We use an Oppo N3 Android phone as the testing platform for our proposed HVPS.

Oppo N3 features a Qualcomm MSM8974AA Snapdragon 801 Quad-core ARM CPU

with a maximum frequency of 2.3 GHz, 2GB of RAM, and 32GB internal storage capac-

ity. The Android OS version is 4.4.4 and Linux kernel version is 3.4.0. The hyperspectral

dataset we use is generated by the DIRSIG model [28]. The dataset has 110 frames of

video, where each frame has 61 spectral bands. More details on the dataset can be found

in [37, 28].
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Table 4.1: Derived energy consumption, execution time, and CPU usage on Android
device for sequential version.

Nb 7 14 28 56

Ce (mAh) 16.20 22.18 33.65 63.94
Ct (s) 94.16 133.88 209.74 397.22

Cu (%) 32.18 28.05 28.41 26.55

Table 4.1 shows results on our background subtraction application for the average

energy consumed Ce in mAh, average runtime Ct in seconds, and average CPU usage Cu

as a percentage. The results are shown for different values of the number of bands Nb.

The results show a clear trend of increasing energy consumption and increasing runtime

for increasing values of Nb. On the other hand, there is relatively little variation in CPU

utilization seen for the different values of Nb. We anticipate that this is because we limited

the number of threads in the CPU implementation to 1 in the experiments reported in

Table 4.1.

For the first experiment, we collect average accuracy and frame rate results deliv-

ered by the proposed HVPS. The results are presented in terms of fm across different

values of Nb, and different multithreading configurations for each value of Nb. The data is

collected for Nb ∈ Zb, where Zb = {10,20, . . . ,60}, and summarized in Figure 4.6. Each

bar in Figure 4.6 represents the frame rate for a specific multithreaded or sequential con-

figuration (Qp,Qb), denoted in the form “Qp +Qb”, and for a specific value of Nb ∈ Zb

(the bars for each Nb ∈ Zb are grouped together in the figure). Each of the six dark-shaded

diamonds shows the accuracy for a given value of Nb based on the vertical-axis scale

provided on the right side of the figure. The fps values displayed in Figure 4.6 are aver-

aged over 50 executions for each (Nb,Qb,Qp) combination, and the accuracy values are
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averaged over all five sets of 50 executions for each Nb setting.
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Figure 4.6: Frame rate and accuracy for different Nb and different multithreading config-
urations.

The figure shows that the accuracy increases monotonically with increasing Nb ∈

Zb, and quantifies this trend of increasing accuracy. For a given (Qp,Qb) configuration,

we see that throughput also decreases monotonically with increasing Nb. However, for

a given Nb, there is no general monotonic trend of throughput in terms of the number

P = Qp+Qb of allocated threads. We expect that this is due to nonlinear effects related to

thread allocation, such as overhead due to contention and communication across threads.

To provide more detailed insight on video processing throughput in our Android-

based HVPS, a tabulation of the experimental results for the frame rate (fps) is shown

in Table 4.2. As mentioned previously, each configuration is executed 50 times in our
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experiments; each row of the table shows key statistics across the 50 executions associ-

ated with a given configuration. In particular, the table shows the maximum, minimum,

mean, median, and standard deviation σ of measured fps for each of the configurations

represented in Figure 4.6. From the results in Table 4.2, we see that beyond the through-

put trends discussed above in relation to Figure 4.6, the data in Table 4.2 demonstrates

that variations in the frame rate are typically small for a given configuration (e.g., with

relatively low deviation between the minimum and maximum measured values), leading

to production of hyperspectral video analysis results at a fairly consistent rate.

In general, for a given value of Nb, all multithreaded versions achieved better frame

rates compared to the corresponding sequential versions (P = 1). However, multithread-

ing in the BS section resulted a performance degradation. This is observed when com-

paring the results for Qp = 3,Qb = 1 to the corresponding results for Qp = 3,Qb = 2.

We anticipate that this is because the calculation for the Gaussian Mixture Model used in

the BS actor, which is the core computation of the BS section, is not a bottleneck of the

HVPS.

While the achieved frame rate levels, as reported in Figure 4.6 and Table 4.2, are

relatively low, they are sufficient for applications of resource-constrained sensing where

the scene changes slowly or response time is not critical — for example, scenarios at the

network edge in which the resource constrained system is used as a first-level of analysis,

and is to be followed by more communication- or resource-intensive analysis at a base

station if certain types of events are detected.
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Table 4.2: Statistics on the measured frame rates for different operational configurations.
The unit for each entry in the table is frames per second (fps).

Configuration max. min. mean median σ

Nb = 10, 3+1 threads 6.30 5.92 6.12 6.12 9.42×10−2

Nb = 10, 4+1 threads 5.95 5.52 6.80 5.80 8.71×10−2

Nb = 10, 5+1 threads 5.02 4.80 4.90 4.89 5.38×10−2

Nb = 10, 3+2 threads 4.65 4.04 4.19 4.13 1.84×10−1

Nb = 10, Sequential 2.44 2.34 2.42 2.42 3.14×10−2

Nb = 20, 3+1 threads 3.59 3.29 3.48 3.48 3.18×10−2

Nb = 20, 4+1 threads 3.39 3.09 3.29 3.31 7.55×10−2

Nb = 20, 5+1 threads 3.36 3.06 3.21 3.21 6.94×10−2

Nb = 20, 3+2 threads 2.04 1.98 2.00 1.99 1.77×10−2

Nb = 20, Sequential 1.41 1.40 1.40 1.41 0.91×10−2

Nb = 30, 3+1 threads 2.43 2.39 2.41 2.41 1.23×10−2

Nb = 30, 4+1 threads 2.46 2.35 2.42 2.43 3.37×10−2

Nb = 30, 5+1 threads 2.41 2.25 2.32 2.32 5.32×10−2

Nb = 30, 3+2 threads 1.24 1.21 1.22 1.23 7.10×10−3

Nb = 30, Sequential 1.00 0.97 0.99 0.99 7.90×10−3

Nb = 40, 3+1 threads 1.73 1.69 1.71 1.72 1.61×10−2

Nb = 40, 4+1 threads 1.80 1.72 1.77 1.78 2.34×10−2

Nb = 40, 5+1 threads 1.82 1.73 1.78 1.78 2.47×10−2

Nb = 40, 3+2 threads 0.96 0.93 0.94 0.94 6.60×10−3

Nb = 40, Sequential 0.69 0.66 0.67 0.67 9.60×10−3

Nb = 50, 3+1 threads 1.30 1.23 1.28 1.29 2.02×10−2

Nb = 50, 4+1 threads 1.35 1.33 1.34 1.34 6.60×10−3

Nb = 50, 5+1 threads 1.41 1.37 1.39 1.39 1.46×10−2

Nb = 50, 3+2 threads 0.74 0.72 0.73 0.73 4.59×10−3

Nb = 50, Sequential 0.55 0.53 0.53 0.53 6.19×10−3

Nb = 60, 3+1 threads 1.18 1.16 1.17 1.17 7.93×10−3

Nb = 60, 4+1 threads 1.17 1.13 1.15 1.16 1.06×10−2

Nb = 60, 5+1 threads 1.19 1.17 1.18 1.18 7.90×10−3

Nb = 60, 3+2 threads 0.63 0.62 0.62 0.62 4.28×10−3

Nb = 60, Sequential 0.45 0.44 0.44 0.44 4.06×10−3
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4.4 Additional Experiments

In this section, we present additional experiments beyond the main experimental

results of this chapter, which were presented in Section 4.3. The results in this section

provide additional insight into the methods and tools developed in this chapter.

Figure 4.7 shows measurements of how accuracy varies with variation of the num-

ber of selected bands Nb. Similarly, Figure 4.8 shows measurements of how battery con-

sumption and execution time per frame vary with Nb.

Figure 4.7: Variation in measured accuracy (Fmeasure) for different values of Nb.

As shown in Figure 4.7, and as expected, the accuracy increases with the increasing

of number of selected bands. The F measure value increases by 27% when the number of

bands increases to 61 from 1. From Figure 4.8, we can see that the average battery power

consumed Ce and average execution time per frame Ct of our background subtraction

application on the Android device is positively correlated to the number of selected bands
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Figure 4.8: Variation in battery consumption and execution time per frame for different
values of Nb.

Nb. The energy consumption increases from 11.9 mAh to 59.7 mAh as Nb increases from

1 to 61, while the execution time per frame increases from 0.57 seconds to 3.43 seconds.

Both of these figures of merit increase monotonically, as expected, with the increase of

Nb.

The system derived from LDspectral is dynamically reconfigurable in that Nb

can be adjusted automatically to ensure that the system stays within a predefined con-

straint on the system power consumption. The reconfiguration is performed by period-

ically monitoring the real-time current drawn from the battery by using the ADB com-

mand dumpsys batteryproperties and calculating the average current over non-

overlapping windows of 110 video frames. Since the system voltage remains approxi-

mately constant, the maximum power consumption constraint can easily be translated to
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Table 4.3: Frame rate (frames per second) for different multithreading configurations.

Qp +Qb\Nb 10 20 30 40 50 60
3+1 6.12 3.48 2.40 1.71 1.28 1.17
4+1 5.80 3.29 2.41 1.77 1.34 1.15
5+1 4.90 3.21 2.32 1.78 1.39 1.18
3+2 4.90 3.21 2.32 1.78 1.39 1.18
Sequential 2.41 1.40 0.98 0.67 0.53 0.44

a constraint Imax on the current consumption.

In our experiments to validate the power-constrained reconfiguration capability of

LDspectral, we simulate video inputs by repetitively iterating through the DIRSIG dataset

and performing background subtraction continuously at run-time. The step size we chose

for testing is 15 bands. This means that if the real-time current is above the given current

threshold Imax, then the system will reduce Nb by 15 in the next reconfiguration round.

The reconfiguration process terminates when the real-time current is less than or equal to

the threshold Imax, which indicates that the system is running within the predefined power

consumption level. During our experiments, we observed that the voltage stays at 4.2 V

while the current drawn from the battery varies depending on Nb, as expected.

The frame rate generally increases when multithreading is enabled for pixel level

fusion (PLF). Measured variations in frame rate across different PLF multithreading con-

figurations are summarized in Table 4.3. Each entry in the table is the measured frame rate

(frames per second) for a specific combination of Qp, Qb, and Nb. The 3+1 multithreading

configuration has higher frame rate compared to other configurations when Nb < 30. For

Nb > 30, the 5+1 configuration performs the best in terms of the frame rate. However,

for such larger values of Nb, the frame rate differences between different multithreaded

configurations are very small.
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We also compared results from applying Algorithm 2 under different operational

constraints (constraints on Cr and fM) and different configurations QP = {3,4,5} and

Qb = 1. Here, fM denotes the constraint on the minimum acceptable value for fm. The re-

sults are shown in Figure 4.9 and Figure 4.10. The figures show variations in the achieved

frame rate with the number of dataflow graph iterations that are executed.

In these two figures, red, blue, and green curves correspond to QP = {3,4,5}. In

Figure 4.9, the black line shows the constraint on Cr, while a similar line does not appear

in Figure 4.10 because its value falls outside of (above) the vertical axis limit in the

figure. In Figure 4.9, all three configurations are able to satisfy the constraint on Cr

when fM = 0.9. On the other hand, in Figure 4.10, none of the three configurations

meet the Cr = 5 requirement, which means that the constraint pair (Cr, fM) = (5.0,0.95)

cannot be satisfied simultaneously for this Android device. We anticipate that the frame

rate decrease over time, which is pronounced in Figure 4.10, is caused by significant

temperature increase in the device.

4.5 Summary

In this chapter, we have developed new system design methods for deploying hy-

perspectral video processing systems (HVPSs) on highly resource-constrained platforms.

Using these design methods, we have prototyped an HVPS for background subtraction on

an Android platform, and conducted experiments using the prototype. The experimental

results validate capabilities in the proposed HVPS framework to enable efficient design

space exploration for hyperspectral video processing on resource-constrained platforms.
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Figure 4.9: Results from applying Algorithm 2 under specific operational constraints:
(Cr, fM) = (1.3,0.9).

The supported exploration demonstrated in these experiments involves complex factors,

including band-subset selection, and multithreading configurations, and their impact on

trade-offs between video analysis accuracy and achievable frame rate.
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Figure 4.10: Results from applying Algorithm 2 under specific operational constraints:
(Cr, fM) = (5.0,0.95).
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Chapter 5

Design Space Exploration for Wireless-Integrated Factory Automation

Systems

In Chapter 2, Chapter 3, and Chapter 4, we developed methods and tools for dy-

namic data-driven application systems (DDDAS) in the area of multispectral and hyper-

spectral image and video processing. In this chapter, we examine a different application

area that is also ripe for development of DDDAS methods. This is the area of smart fac-

tory systems that are equipped with wireless communication capability. We refer to this

application domain more concisely as the domain of wireless-integrated factory systems.

The increased use of wireless communication capabilities in manufacturing systems

brings challenging new requirements for stable wireless networks that can operate reliably

under harsh communication conditions [48]. In this chapter, we develop new methods for

modeling, simulating, and analyzing networked embedded systems to aid in system-level

optimization of wireless-integrated factory systems.

A major contribution of this chapter is a novel software tool for model-based de-

sign space exploration of wireless-integrated factory systems. The tool, called Wireless-

Integrated factory System Evaluator (WISE), integrates the design perspectives of physi-

cal factory layouts, factory process flows, and wireless communications, including proto-

col functionality and channel characteristics.

Material in this chapter was published in preliminary form in [49]
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5.1 Introduction

Modern factory automation systems are equipped with advanced wireless commu-

nications capability. Integration of such capability provides important potential advan-

tages, such as lower cost to deploy and maintain networking capabilities within factories,

and the ability to install sensors and monitoring functionality in parts of factories that are

not possible to be efficiently instrumented using wired communications (e.g., see [48]).

Along with these potential advantages, integration of wireless communications in-

troduces new challenges and novel constraints in the analysis and design of factory au-

tomation systems. A major source of these new challenges and constraints is the complex

interaction among the factory layout and configuration. This interaction includes the

placement of factory subsystems and their partitioning into nodes of the wireless network

(network nodes); the performance of the wireless network that connects network nodes;

and overall factory system performance. These factors lead to complex design spaces,

which are composed of factory layouts, wireless communication networks, and interac-

tions between them in system configuration and operations. We refer to these design

spaces as wireless-integrated factory system (WIFS) design spaces.

We develop new models and evaluation tools for understanding and experimenting

with WIFS design spaces. Since evaluating these design spaces by physically constructing

the different layout/networking combinations is in general infeasible, we present a new

simulation-based design space exploration tool called WISE (Wireless-Integrated factory

System Evaluator). WISE is designed for model-based simulation of factory automa-

tion subsystems that are equipped with wireless communications capability, and rapid
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simulation-based evaluation of alternative networked factory system designs.

Here, by model-based, we mean that the modeling techniques that underlie the tool

are based on formal models of computation rather than on ad-hoc, tool-specific techniques

that are difficult to precisely understand or to adapt to other modeling and simulation

environments. Model-based design is a useful concept for many areas of cyber-physical

systems and signal and information processing (e.g., see [50, 6]). The specific forms

of model-based design emphasized in WISE are dataflow modeling for factory process-

flows, and systematic interfacing of dataflow models with arbitrary network simulators

that are based on discrete-event modeling.

The emphasis on dataflow is useful due to the utility of dataflow modeling across

the areas of signal processing, control, and machine learning [6], which are all relevant

to design and implementation of factory automation systems. This allows not only the

high-level process-flow behavior of process networks to be modeled naturally and for-

mally with WISE, but also lower level subsystems of the process-flows. Such a unified,

model-based approach across levels of design hierarchy is useful for enhancing design

modularity, analysis, and optimization.

Important features of WISE include capabilities for automatically generating (au-

togenerating) complex lower-level simulation models from compact representations at

higher levels of abstraction. WISE also applies a new concept of cyber-physical flow

graphs (CPFGs) as a graph-theoretic model for factory process-flows and other flow-

oriented types of cyber-physical systems. We demonstrate WISE through extensive ex-

periments that highlight its utility for exploring complex WIFS design spaces.
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5.2 Related Work

A significant body of the existing literature is relevant to modeling and simulation of

factory automation systems that are equipped with wireless communication capabilities.

Some of these works are based on novel applications of existing simulation frameworks.

For example, Liu et al. apply the OMNET++ simulation library to develop an integrated

framework for factory process control simulation and wireless network simulation [51].

Marghescu et al. study the simulation of Zigbee-based wireless sensor networks using OP-

NET to evaluate and optimize the various network parameters [52]. Harding et al. develop

a simulator that incorporates mathematical modeling and feedback control by developing

an interface between MATLAB and OPNET [53].

Other works emphasize new models or simulation methods. For example, Vogel-

Heuser et al. present approaches for modeling real-time requirements and properties of

networked automation systems [54]. Schlick discusses advances, such as component-

based automation and self-organizing production systems, in cyber-physical systems for

factory automation [55]. Kurte et al. introduce a simulator for wireless sensor and actu-

ator networks that allows simulation of heterogeneous systems through a novel interface

abstraction for the operation of physical radio hardware [56]. Chaves et al. present a de-

sign environment for simulation and testing that is based on a service-oriented software

architecture [57].

The novelty of the contribution in this chapter centers on the development and ap-

plication of WISE to explore complex WIFS design spaces. Compared to related work

such as the works summarized above, distinguishing characteristics of WISE include its
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model-based architecture, which systematically integrates dataflow-based modeling of

factory process-flows with discrete event modeling of wireless communication networks.

WISE also provides autogeneration of low-level simulation code from high-level models,

and cyber-physical flowgraph modeling, which further enhance the utility of the tool for

WIFS design space exploration.

5.3 Design Flow of Cosimulator

Figure 5.1 illustrates the design flow associated with applying WISE for WIFS

design space exploration.

Blocks with solid borders in the figure represent designer input, while dashed bor-

ders indicated subsystems or autogenerated, lower-level models that are used within the

toolset.

As illustrated in Figure 5.1, WISE builds upon a recently-introduced co-simulation

tool called Tau Lide Factory Sim (TLFS) [58]. TLFS provides dataflow-based mod-

eling of factory process-flows and systematic integration of the resulting process-flow

models with arbitrary discrete event tools for network simulation. As illustrated in Fig-

ure 5.1, WISE introduces and integrates with TLFS two new software tools, called the

Network Model Generator and the CPFG Generator, and one new intermediate repre-

sentation (graphical modeling data structure), called the CPFG Model. Additionally, the

implementation of TLFS is extended in this work to support details of the CPFG Model.

In Figure 5.1, designer input, intermediate representations, and software tools are repre-

sented with thin-solid, dashed, and thick-solid borders, respectively.
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Figure 5.1: An illustration of the new design flow involved in applying WISE for WIFS
design space exploration.

5.3.1 Model-Based Architecture

The model-based architectures of WISE and TLFS emphasize dataflow-based mod-

eling of factory process-flows and systematic interfacing between the process-flow mod-

els and arbitrary discrete-event simulators for communication architectures. Due to the

abstract, model-based architectures of WISE and TLFS, the co-simulation and design

space exploration techniques can be adapted readily to different dataflow-based design

tools (for the process-flow modeling), and different communication network simulators.

A specific configuration of WISE involves two “plug-in” components for dataflow

and communication network simulation. We refer to the two plug-ins as the dataflow

79



simulation plug-in and network simulation plug-in, respectively. WISE systematically in-

tegrates the given pair of plug-ins into a model-based environment for exploring WIFS

design spaces. In our experiments, which we report on in Section 5.5, we utilize two spe-

cific dataflow and network simulation tools as plug-ins. These tools are, respectively, (1)

the lightweight dataflow environment (LIDE) [59], and (2) the NS3 network simulation

tool [60]. However, as described above, the model-based design of the WISE architecture

enables retargeting the design space exploration techniques to other tools for dataflow

and network simulation. This retargetability is useful because both of these areas for tool

development — dataflow and network simulation tool development — are active areas for

research and innovation.

5.3.2 Designer Input

The blocks in Figure 5.1 labeled Factory Dataflow Graph, Network Mapping, and

Network Configuration refer to simulation model input that is provided by the designer to

represent the WIFS that is currently being studied.

The Factory Dataflow Graph models the factory process-flow between factory sub-

systems as a dataflow graph. The Factory Dataflow Graph is specified in a manner

that is independent of the wireless network that is used for communication across dis-

tributed subsystems of the factory. Instead, the partitioning of Factory Dataflow Graph

components into nodes of a wireless communication network, and the configuration of

the network are specified separately. These specifications, represented by the blocks in

Figure 5.1 labeled Network Mapping and Network Configuration, are elaborated on in
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Section 5.3.4. More details about Factory Dataflow Graph models are discussed in Sec-

tion 5.3.3.

The separation of concerns among the Factory Dataflow Graph, Network Mapping,

and Network Configuration representations improves the efficiency and automation with

which the system designer can explore different ways of integrating wireless communi-

cation functionality into a given factory process-flow. In particular, the designer does

not have to modify the Factory Dataflow Graph when the communication architecture

changes; instead, only the relevant parts of the Network Mapping and Network Config-

uration specifications need to be changed. Then the detailed factory/communication co-

simulation model is generated automatically. This separation of concerns and associated

autogeneration capability is a major advance of WISE beyond TLFS.

5.3.3 Factory Dataflow Graphs

Formally, a Factory Dataflow Graph is a directed graph G = (V,E), where the ver-

tices (elements of V ) represent factory subsystems such as machines, rails, parts genera-

tors, and machine/rail controllers. Directed edges (elements of E) in G represent the flow

of information or physical entities (such as manufacturing parts) between factory subsys-

tems. In the general terminology of dataflow graphs, the graph vertices are referred to as

actors. Thus, actors in the Factory Dataflow Graph correspond to factory subsystems.

A dataflow graph executes by repeatedly executing actors that are ready (enabled)

for execution, where the dataflow model provides a precise formulation for this form of

readiness. As actors execute, they exchange packets of information (tokens) across the
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edges in the graph. These packets can have arbitrary data types associated with them,

ranging from primitive types such as integers or floating point values to composite data

types that correspond to user-defined objects (in an object-oriented programming sense).

In Factory Dataflow Graphs, tokens may, for example, encapsulate information associated

with the flow of physical parts, control messages, or instrumentation data.

Execution of a dataflow actor is decomposed into well-defined quanta of execution,

called firings. Each firing is associated with characterizations of the amount of input data

(number of tokens on the input edges) that is consumed by the firing, and the number

of output tokens that is produced by the firing. These amounts of input and output data

are referred to, respectively, as the consumption and production rates associated with the

firing. An actor is said to be enabled for execution when there is a sufficient quantity of

tokens buffered on its input edges, and a sufficient amount of empty buffer space available

on its output edges to support the firing, as determined by the buffer sizes associated with

the edges and the consumption and production rates of the firing.

For more background on the use of dataflow methods to model factory process-

flows, we refer the reader to the detailed presentation of TLFS [58]. A notable differ-

ence, however, between the Factory Dataflow Graph of WISE and the dataflow graphs

employed in TLFS is that Factory Dataflow Graphs do not incorporate any information

about the communication architecture. These graphs are therefore simpler for the de-

signer to work with. Furthermore, in conjunction with the separation of concerns de-

scribed in Section 5.3.2 and the new automated model generation capabilities in WISE,

Factory Dataflow Graphs are part of a more efficient approach for WIFS design space ex-

ploration. We elaborate on the automation capabilities further in Section 5.4, along with
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their utility in supporting design space exploration.

5.3.4 Network Mapping and Configuration

As shown in Figure 5.1, the Network Mapping and Network Configuration are the

two designer-provided inputs to specify the communication architecture that is to be inte-

grated with the Factory Dataflow Graph for a given WIFS co-simulation (factory/network

co-simulation). The Network Configuration input includes aspects related to factory lay-

out.

Intuitively, the Network Mapping specifies how the given factory process-flow

(as represented by the Factory Dataflow Graph) is distributed across different network

nodes that communicate through wireless communication. The Network Mapping M

for a Factory Dataflow Graph G = (V,E) can therefore be represented as as a partition-

ing M = N1,N2, . . . ,Nm (m ≥ 1) of V — that is, the Nis are mutually disjoint subsets

(Ni ∩N j = /0 for all i 6= j), and N1 ∪N2 ∪ . . .∪Nm = V . To represent a fully centralized

process-flow (with no wireless communication involved), one can simply set m = 1 so

that the Network Mapping consists of just a single set N1 =V . This type of mapping can

be useful, for example, as a baseline to assess basic trade-offs associated with introducing

wireless communication into the factory system.

The Network Configuration is another component of designer-provided input to

WISE, as illustrated in Figure 5.1. This input includes wireless communication pa-

rameter settings, such as the type of protocol and the propagation loss model. The

desired Network Configuration settings are provided by the designer in a simple text

83



file called net_parameters.txt. These parameter values are then converted to

corresponding settings associated with the network simulation plug-in. To run a fam-

ily of simulations with varying network parameters, the designer can easily edit the

net_parameters.txt file or auto-generate a collection of files that can be iterated

through for a set of simulation runs.

The parameters that can be specified in the net_parameters.txt file include

the wireless communication protocol, propagation loss model, antenna transmitter gain,

antenna receiver gain, noise figure for the noise signal, and others.

A Network Configuration specification for WISE also includes factory layout set-

tings, which pertain to the spatial layout of factory subsystems, and can have significant

impact on communication system performance. Factory layout settings in WISE network

configurations are discussed in more detail in Section 5.5.

5.3.5 Lower Level Models and Auto-generation

The input provided by the designer (user of WISE) is at a high-level of abstraction.

This facilitates design space exploration because the models are easier to manipulate and

reason about. However, to perform complete system simulation, the high level models

must be translated into a lower-level form, which includes the simulation input to the

network simulation plug-in, and details of interfacing between the dataflow simulation

plug-in and the network simulation plug-in. Such details are autogenerated in WISE by

the blocks in Figure 5.1 that are labeled Network Model Generator and CPFG Generator,

respectively.
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The output models that are generated by these two autogeneration subsystems are

called the Network Model and CPFG Model, respectively. These two autogenerated mod-

els can be simulated together using WISE to achieve WIFS cosimulation between the

given factory process-flow model and wireless networking capability that is integrated

with the process-flow based on the given Network Mapping.

The structure and format of the generated network model are determined by the

network simulation plug-in. As discussed previously, we presently employ NS3 as the

network simulation plug-in. Thus, the Network Model Generator frees the designer from

having to write NS3 code. The NS3 model is generated automatically from the designer’s

dataflow-based specification of the factory process-flow together with the Network Map-

ping and Network Configuration information.

The CPFG model includes special components, called communication interface ac-

tors, that model sending and communication of data between subsystems in a process-

flow model. Communication interface actors model the exchange of data across a wireless

communication network, and provide an abstract, modular interface between the dataflow

simulation plug-in and the network simulation plug-in [58].

In Section 5.4, we discuss CPFG modeling concepts further, and provide an exam-

ple of the CPFG model and parameterized network model that are generated from a given

Factory Dataflow Graph and Network Mapping.
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5.4 Dataflow and Wireless Communication Models

In this section, we introduce details of the CPFG model, and its use as an inter-

mediate representation in WISE. Second, we discuss communication link modeling for

wireless channels in WISE. We also present a WIFS modeling example to illustrate the

autogeneration of CPFG models and NS3 network models from the higher-level models

provided as input to WISE.

5.4.1 Cyber Physical Flow Graph

The CPFG model is a specialized form of dataflow model that is useful for modeling

and simulating WIFSs. In addition to its suitability for WIFSs, as we demonstrate in

this chapter, the CPFG model is applicable to a broad variety of modeling scenarios in

cyber-physical systems. The CPFG model formulated here generalizes and formalizes an

integrated, dataflow-based modeling approach for networked factory process-flows that

was presented in preliminary form in [58].

Additionally, in this chapter we introduce capabilities in WISE for autogenerating

CPFG models from higher level representations. This is an important feature in stream-

lining the design process so that complex WIFS design spaces can be explored more

efficiently, and more accurately.

A CPFG Gcp = (Vcp,Ecp) is a dataflow graph whose actors can be partitioned into

three subsets Vp,Vc,Vi, which are called the physical, computational, and communication

interface actors of Gcp, respectively. The computational actors correspond to actors in

the usual sense of actors in signal processing oriented dataflow graphs (dataflow process
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networks) [61]. Such actors represent computational modules that represent discrete units

of computation, called firings, as described in Section 5.3.3.

Whereas an actor in a conventional signal processing oriented dataflow graph repre-

sents a computational module, a physical actor in a CPFG represents a physical subsystem

or device, such as a factory machine or rail. A physical actor may encapsulate computa-

tional processing within it (e.g., processing that determines when to input a new part into

a machine).

What distinguishes physical actors in the CPFG modeling approach is that any given

physical actor must consume or produce physical tokens on at least one actor input or

output, respectively. A physical token in turn models a discrete physical form of output

(such as a generated or partially-processed part in a factory) rather than a packet of data,

which is what a conventional dataflow token models. If a CPFG edge carries physical

tokens, it is is referred to as a physical edge, otherwise, we call it a cyber edge.

As described in Section 5.3.5, a communication interface actor (i.e., an element

of Vi) models the sending or receiving of data across a communication network. In the

CPFGs that we are concerned with in this work, the communication interface actors model

wireless communication across distributed subsystems within a WIFS.

In WISE, communication interface actors provide a modular, model-based interface

between the dataflow simulation plug-in and network simulation plug-in. For example,

to retarget a CPFG to a different network simulator, one only has to change the imple-

mentations of the communication interface actor types. In WISE, we use only two types

of communication actors, called send interface actors (SIAs) and receive interface actors

(RIAs). Thus, only these two software components need to be retargeted to adapt a CPFG

87



in WISE to work with a different network simulator.

As their names suggest, SIAs and RIAs model the sending and receiving of data,

respectively, between dataflow actors across a communication network. For more back-

ground on SIAs and RIAs, we refer the reader to [58].

An example of CPFG modeling and associated use of SIAs and RIAs is presented

in Section 5.4.3.

In summary, the CPFG model is distinguished by the partitioning of actors into

physical, computational, and communication interface actors, and a dichotomy of edges

as physical or cyber edges. A CPFG can apply general dataflow process networks [61] as

the underlying dataflow model of computation or any specialized form of signal process-

ing oriented dataflow that is compatible with the modeling requirements of communica-

tion interface actors. In this chapter, we employ core functional dataflow (CFDF) [62] as

the underlying dataflow model of computation. Background on CFDF and its utility in

modeling factory process-flows is discussed in [58].

5.4.2 Communication Link Modeling

Figure 5.2 illustrates different components of communication link modeling in

WISE. Parameters associated with these components are configured by the designer as

part of the Network Configuration block in Figure 5.1, as described in Section 5.3.4. Dif-

ferent antenna models are available for reception and transmission; the antenna is modeled

as isotropic by default.

For the experiments reported on in this chapter (Section 5.5), signal noise is char-
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Figure 5.2: Communication link modeling in WISE.

acterized as additive white Gaussian noise (AWGN). For the propagation loss model, a

two-segment log distance model is applied. For multipath fading, Ricean and Raleigh

models are used. For calculation of packet loss, the error rate is modeled based on a

model presented by Miller [63], and subsequently validated by Pei and Henderson [64].

5.4.3 Autogeneration Example

In this section, we illustrate the models and autogeneration capabilities in WISE

with a simple WIFS example.

Figure 5.3 illustrates a Factory Dataflow Graph that is used to model a small-scale,

pipeline-structured factory process-flow. The actor P represents a parts generator, which

generates parts that are processed by the factory pipeline. The actors M1 and M2 model

two machines that process parts, one by one, to add specific features to the parts. Parts

are sent to and from each machine through rails, which are represented by the actors R1
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and R2. The last stage in the pipeline is represented by the actor K. This actor, called

the parts sink, represents a subsystem that collects and stores the parts after they are fully

processed by the pipeline.

Figure 5.3: An example of a Factory Dataflow Graph.

The actors D1 and D2 in Figure 5.3 represent dual-rail, single machine (DRSM)

controllers. A DRSM controller is a factory subsystem controller that is designed to in-

terface with a single machine, a rail connected to the input of this machine, and a rail or

parts sink that is connected to the machine output. Each DRSM controller sends com-

mands to coordinate the flow of parts through the set of subsystems that it controls. For

more details on the operation and modeling of DRSM controllers, we refer the reader

to [58].

Figure 5.4 illustrates the CPFG that is autogenerated by WISE for the Factory

Dataflow Graph of Figure 5.3 together with an example Network Mapping M. The map-

ping M involves seven distinct network nodes N1,N2, . . . ,N7, and assigns the actors P, R1,

M1, D1, R2, M2, D2, K, respectively to network nodes N1,N1,N2,N6,N3,N4,N7,N5. The

solid edges in Figure 5.4 carry physical tokens, while the dashed edges carry conventional
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dataflow tokens. In WISE, the determination of whether or not a given CPFG edge is a

physical edge can be made automatically from the type of data that is associated with the

Factory Dataflow Graph.

Figure 5.4: Autogenerated CPFG.

The actors labeled SIA and RIA in Figure 5.4 are communication interface actors

that are automatically inserted by WISE in the process of autogenerating the CPFG. For

each cyber edge whose source and sink actors are mapped to different network nodes, the

communication associated with the edge is modeled with a separate (SIA, RIA) pair. For

example, R2 sends data to D1, as shown by the edge (R2,D1) in Figure 5.3, and these

actors are mapped by M to distinct network nodes, N3 and N6, respectively. Accordingly

an SIA S is connected to R2 to model the sending of data to D1 through a wireless channel,
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and a corresponding RIA is connected to D1 to model the reception of data that is sent by

S.

In WISE, all wireless communication is modeled in the autogenerated CPFGs

through SIA-RIA pairs. Thus, all cyber edges in the CPFGs are associated with wired

communication. In the current version of WISE, the latency of wired communication is

assumed to be negligible compared to the latency of wireless communication and the ex-

ecution time of machines. However, WIFS can readily be extended to incorporate latency

models for wired communication — for example, by adding additional interfaces to the

network simulation plug-in or by adding actors in the CPFG that model wired communi-

cation delays.

Figure 5.5 illustrates the network model that is autogenerated by WISE for the

CPFG in Figure 5.4. This graph shows the structure of the NS3 simulation model that

is generated for co-simulation by TLFS with the generated CPFG. Each vertex Ni in

Figure 5.5 corresponds to a network node and each edge corresponds to a communication

channel. The vertex Ap represents a single access point that is associated with the network

nodes.

Figure 5.5: The network model that is autogenerated by WISE for the example associated
with Figure 5.3 and Figure 5.4.
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Even for this simple, small-scale example, we see that the complexity of the CPFG

together with the network model is significantly higher than that of the Factory Dataflow

Graph, which is the designer’s primary interface for working with WISE. This increase in

complexity includes larger model sizes (more vertices and edges in the graph), as well as

detailed software code that must be provided to correctly specify the lower-level models

and ensure their consistency. The new models and autogeneration capabilities in WISE

free the designer from the burden of managing this lower level design complexity.

5.5 Results

In this section, we demonstrate the utility of WISE through extensive experiments

related to exploration of WIFS design spaces. We apply WISE in experiments with rep-

resentative factory scenarios. Our experiments are performed using a desktop computer

equipped with a 3.10 GHz Intel i5-2400 CPU, 4GB RAM, and the Ubuntu 16.04 LTS

operating system.

5.5.1 Factory Layout Parameters

Presently, WISE assumes that a factory layout is in the form of one or more

pipelines. Machines that belong to the same pipeline are arranged “horizontally”, while

different pipelines are arranged “vertically”. Factory layout is therefore specified in terms

of two distance-related parameters dx and dy, which respectively specify uniform (hor-

izontal) spacing between successive subsystems (e.g., machines and rails) of a given

pipeline, and uniform (vertical) spacing between successive pipelines in the vertical ar-
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rangement. Two additional layout-related parameters, Np and Nm, specify the number of

pipelines, and the number of factory machines within a given pipeline, respectively.

In most experiments in this section, we assume that each pipeline is assumed to

have its own access point (AP), with a dedicated wireless channel assigned to each AP. It

is assumed that if Np > 1, then all of the dataflow occurs within the individual pipelines;

that is, there is no communication across the pipelines. In Section 5.5.7, we experiment

with a set of scenarios in which all pipelines share a common access point.

The parameterized model of factory layouts supported in WISE represents a large

class of factory systems with which capabilities of WISE can be demonstrated and ex-

perimented with. Also, the parameterized structure of the supported class of layouts is

useful for demonstrating scalability-related factory performance trends. The extensible

architecture of WISE makes it readily generalizable to support larger classes of factory

layouts, such as layouts in which different pipelines have different numbers of machines,

horizontal or vertical spacing between adjacent subsystems is non-uniform, or the over-

all layout structure does not necessarily involve horizontally-arranged pipelines. Such

generalization is a useful direction for future work in WISE.

Figure 5.6 shows an example of a factory layout of the form currently supported in

WISE. In this example, Np = 2, Nm = 3, and each pipeline has its own access point. Here,

each Mi, j, Ri, j, and Di, j represents the jth machine, jth rail, and jth DRSM controller,

respectively, for the ith pipeline. Each Pi, Ki, and Ai represents, respectively, the parts

generator, parts sink, and access point for the ith pipeline.
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Figure 5.6: Factory layout example.

5.5.2 Experiment Parameters

For each type of factory configuration simulated, we ran 50 WISE simulations inde-

pendently and averaged the results. In each experiment, the simulation involved the pro-

duction of 100 parts by each parts generator in each of the Np pipelines, and the complete

processing by the machines in each pipeline of the parts generated by the corresponding

parts generator. The working time of each machine (the time required to process a given

part) was determined randomly by the simulator using a designer-specified mean working

time parameter µ . More specifically, the time for a given machine to process a given part

was determined from a uniform distribution on [0.9µ,1.1µ]. Each simulation terminated

after the Np parts sinks had each received 100 fully-processed parts.

Table 5.1 summarizes the other key simulation parameters used in our experiments.

A given data point in the experiments is derived by executing a simulation with the same
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Table 5.1: Simulation parameters.

Parameters Values (Options)

Parts Generated Per Pipeline N j 100
Number of Simulation Iterations Ns 10

Machine Processing Time tm 10 sec
Rail Transfer Time tr 4 sec

Part Generation Interval ti 10 sec
Channel Frequency 2.4 GHz

Large Scale Path Loss Model Log-distance
Decay Exponent α 3

Distance Reference d0 1 m
Loss at Reference L0 46.6777 dB

settings Ns times, and averaging the results over the Ns executions. Each such simulation

involves N j generated parts for each Parts Generator actor in the factory dataflow graph.

The simulation completes when all of the generated parts are fully processed in their

respective pipelines. Since there is one Parts Generator actor per pipeline, this means that

each simulation involves processing a total of (Np×N j) parts.

The values of tm and tr give, respectively, the estimated execution time values used

in the simulation models for a machine to process a part, and for a rail r to move a part

from one end of r to the other end. Similarly, ti is the estimated time required to generate

a new part after the previous part has been generated. The values of tm, tr, and ti are used

in the execution time estimation functions (θs) for the relevant actors.

The parameters α , d0, and L0 in Table 5.1 are related to the simulation of propaga-

tion path loss. In our simulations, we apply features in NS-3 for using the log-distance

path loss model to estimate signal loss in communication channels. The log-distance

model is often used to estimate path loss within buildings. In this model, the power loss

at the receiver side when transmitting over a distance d is calculated by
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L = L0 +10αlog10(
d
d0

)+Z, (5.1)

where L0 is the path loss at the reference distance, d0 is the reference distance, α is the

decay exponent, and Z is the log-normal shadowing.

The wireless communication protocol employed in all of the experiments reported

on in this section is IEEE 802.11b. Since the protocol can be conveniently configured as

part of the Network Configuration input to WISE, the experiments discussed here can be

easily adapted to other protocols of interest.

WISE measures the communication delay associated with a packet P as tr(P)−

ts(P), where ts(P) is the time when P is sent by the corresponding SIA (see Section 5.4.1),

and tr is the time when P is received by the corresponding RIA. The average communi-

cation delay for a given simulation experiment is computed by averaging the difference

tr(P)− ts(P) over all communication packets.

5.5.3 Variation of Communication Delay with Np

Figure 5.7 shows how the average communication delay varies with the number

of pipelines Np. In this experiment, the Wi-Fi manager is configured to be the CARA

(Collision-Aware Rate Adaptation) algorithm; dx = 10 meters (m); dy = 10 m; and Nm =

3.

As shown in Figure 5.7, the results for each Np value are summarized in the form

of a box plot. The endpoints of the vertical line segment for each plot extend from the

minimum observed value to the maximum observed value. The three horizontal lines
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Figure 5.7: Variation in average communication delay with Np.

in each large box represent, from top to bottom, the 75th percentile, median, and 25th

percentile of the corresponding set of 50 measurements. The small box inside each large

box represents the mean value.

As shown in Figure 5.7, the number of pipelines Np has little influence on aver-

age communication delay for the class of factory systems considered in this experiment.

This is because we allocate an independent access point for each pipeline and there is no

communication between different pipelines.

5.5.4 Variation of Communication Delay with Both Nm and Np

Figure 5.8 shows results from an experiment where we have varied both the number

of machines Nm and number of pipelines Np. The variation is performed such that Nm =
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Figure 5.8: Variation in average communication delay with Np = Nm = K.

Np. This allows us to visualize the effects of layout-complexity scaling in terms of a

single parameter K, which is defined as the common value of Np and Nm. The Wi-Fi

manager algorithm is configured to be CARA as in Section 5.5.3, and all other experiment

parameters are as specified in Section 5.5.2. The distance parameters are again configured

as dx = 10 m and dy = 10 m.

As shown in Figure 5.8, the average communication delay increases with larger K.

This trend is largely due to two factors. First, the length of each pipeline increases with K,

and correspondingly, the average distance from communication transceivers to the access

point in each pipeline increases with K. Second, longer pipelines with more subsystems

introduce more contention in the access points. The simulation results in this experiment

provide specific insights on how communication delays vary and corresponding real-time

performance issues are affected as a function of K, while other factory layout parameters
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are fixed.

5.5.5 Varying the Distance Parameters dx and dy

Figure 5.9 presents a histogram of average communication delay, as determined by

WISE simulation, with varying values of the distance parameters dx and dy. Each bar of

the histogram is determined by averaging across 50 simulation runs. In this experiment,

Np = 1 and Nm = 3. The Wi-Fi manager algorithm is again configured to be CARA, and

all other experiment parameters are as summarized in Section 5.5.2.

Figure 5.9: Histogram of average communication delay with varying dx, dy.

This experiment shows a gradual trend toward increasing communication delay for

dx,dy ∈ {10 m,20 m,30 m}, while for values of dx,dy ∈ {40 m,50 m}, we see steeper
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rates of increase. We expect that this accelerated increase arises due to nonlinear effects

such as the way in which the Wi-Fi manager downgrades the data rate when a significant

frequency of communication failures is encountered.

When dx = 60 m, the simulation does not progress for any value of dy ∈

{10 m,20 m, . . . ,50 m}. In other words, wireless communication throughout the simu-

lated factory network fails, and therefore, the factory is not capable of processing parts.

Such results are useful in exploring the limits to which factory subsystems can be sepa-

rated while preserving system functionality.

5.5.6 Varying the Wi-Fi Manager Algorithm

Figure 5.10 shows changes in the average communication delay with changes in the

Wi-Fi manager algorithm and number of machines Nm. For these experiments, Np = 1,

and dx = dy = 10 m. All other parameters are set as summarized in Section 5.5.2. The Wi-

Fi manager algorithms investigated in this experiment are: Collision-Aware Rate Adapta-

tion (CARA), Adaptive Auto Rate Fallback (AARF), collision detection for adaptive auto

rate fallback (AARFCD), and Adaptive Multi Rate Retry (AMRR) [65].

5.5.7 Shared Access Point across Pipelines

In this section, we revisit the experimental setup of Section 5.5.3 with one change:

we use a single, shared access point across all pipelines instead of a separate access point

for each pipeline. Thus, the total number of access points in a given factory layout is

reduced from Np to 1.
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Figure 5.10: Variation in average communication delay with the Wi-Fi manager algorithm
and number of machines Nm.

As in Section 5.5.3, the Wi-Fi manager algorithm is configured to be CARA; dx =

dy = 10 m; and Nm = 3. All other experiment settings are as described in Section 5.5.2.

Figure 5.11 shows how the average communication delay varies with variation in

the number of pipelines Np under a single, shared access point configuration. We see in

Figure 5.11 a clear trend toward increasing average communication delay with increasing

Np. We anticipate that this is because with a single access point across all pipelines,

increasing Np results in more contention in the access point. Moreover, since dx and dy

are fixed in this experiment, the average distance between communication transceivers

and the access point increases with increasing Np (see Figure 5.6).
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Figure 5.11: Variation in average communication delay with Np when a single, shared
access point is used across all pipelines.

5.6 Additional Experiments

In Section 5.5, we presented the main experimental results from our evaluation of

WISE. In this section, we present additional experiments that provide further demonstra-

tion of the capabilities of WISE.

Figure 5.12 shows the measured relationship between the average communication

delay and the distance between adjacent network nodes for a specific factory configura-

tion. The results are aggregated over 100 experiment repetitions for the same distance.

The communication protocol used in the experiments is IEEE802.11b. The factory model

is that of a single pipeline with 3 machines and 100 products to be processed. The WiFi

Manager is CaraWifiManager, and the average machine working time is 10 seconds.
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Figure 5.12: Measured relationship between the average communication delay and the
distance between adjacent network nodes for a specific factory configuration.

Figure 5.13 shows the relationship between the average packet retransmission rate

and the distance between adjacent nodes under the same experimental setup as the ex-

periment associated with Figure 5.12. As shown in Figure 5.13, both the average com-

munication delay and packet retransmission rate increase with increases in the inter-node

distance. We anticipate that this trend results from the signal strength decay caused by

increased distances.

Keeping the data rate constant while increasing the distance can cause major degra-

dation of communication performance. We conduct experiments to explore this trend

and its dependence on the WiFi manger (rate control algorithm) using WISE. Figure 5.14

illustrates the measured relationship between the average communication delay and the

selected rate control algorithm for a relatively large inter-node spacing of 20 meters. The
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Figure 5.13: Measured relationship between the average packet retransmission rate and
the distance between adjacent nodes.

selected rate control algorithms in this experiment are cara, aarf, aarfcd, amrr, and aparf,

as shown in the horizontal axis labels of Figure 5.14. The results are aggregated over 100

experiment iterations for each rate control algorithm. The protocol employed in these

experiments is IEEE802.11a. The factory model is again a pipeline with 3 machines and

100 products to be processed. The average machine working time is set to be 10 seconds.

Figure 5.15 shows the relationship between the average packet retransmission rate

and the rate control manager algorithm under the same experimental setup as that asso-

ciated with Figure 5.14 . The results in Figure 5.14 and Figure 5.15 show the potential

for significant variation in communication performance depending on the rate control al-

gorithm. Quantitative insight on such variation, as provided by WISE, can be useful to

designers in selecting the WiFi manager algorithm for a given network setup or configu-
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Figure 5.14: Measured relationship between the average communication delay and the
selected rate control algorithm for an inter-node spacing of 20 meters.

ration.

5.7 Summary

In this chapter, we have developed new models and computer-aided design tools

that help in understanding and experimenting with complex, wireless-integrated factory

system (WIFS) design spaces. The models and tools developed in this chapter build upon

a recently-introduced co-simulation tool called Tau Lide Factory Sim (TLFS) [58]. The

developed tools are integrated into a novel framework called called Wireless-Integrated

factory System Evaluator (WISE), which integrates the design perspectives of physical

factory layouts, factory process flows, and wireless communications, including protocol

functionality and channel characteristics. Important features of WISE include capabili-
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Figure 5.15: Relationship between the average packet retransmission rate and the rate
control manager algorithm.

ties for automatically generating (autogenerating) complex lower-level simulation models

from compact representations at higher levels of abstraction. Through extensive experi-

ments, we have demonstrated the utility of WISE in exposing insights and performance

trends involving multidimensional interactions among factory layout and communication

system parameters.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the contributions of this thesis and discuss directions

for future work that are motivated by the thesis.

6.1 Conclusions

In this thesis, we have developed new methods for modeling, simulating, and op-

timizing dynamic data-driven application systems (DDDAS). We have developed new

methods for integrated band subset selection and video processing parameter optimiza-

tion in LDspectral, which is a software tool for model-based system design of data-driven

systems for multispectral and hyperspectral video processing. LDspectral is developed

for optimization in the context of novel video processing design spaces introduced by

multispectral and hyperspectral image acquisition techniques. The methods developed in

this thesis enable experimentation with and optimization of data-driven video processing

adaptation for multispectral and hyperspectral video analytics. The methods are demon-

strated in terms of accuracy and execution time using relevant multispectral and hyper-

spectral applications and datasets. The developed LDspectral system provides a prototype

software tool for dynamically reconfigurable multispectral and hyperspectral video pro-

cessing applications.

We have also developed a software tool for applying DDDAS methods to the area of
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smart factory systems that are equipped with wireless communication capability. We refer

to this application area as the domain of wireless-integrated factory systems. The software

tool that we have developed provides novel capabilities for model-based design space

exploration of wireless-integrated factory systems. The tool, called Wireless-Integrated

factory System Evaluator (WISE), integrates the design perspectives of physical factory

layouts, factory process flows, and wireless communications, including protocol func-

tionality and channel characteristics. WISE applies a new concept of cyber-physical flow

graphs (CPFGs) as a graph-theoretic model for factory process-flows and other flow-

oriented types of cyber-physical systems. We have demonstrated WISE through extensive

experiments that highlight its utility for exploring complex design spaces associated with

wireless-integrated factory systems.

6.2 Future Work

6.2.1 Generalization of LDspectral

There are a number of useful directions for generalizing the models and methods

developed in LDspectral. Such generalization will help to establish design methodologies

and system architectures that are applicable across broader classes of image and video

processing systems.

First, it useful to integrate capabilities in LDspectral for handling images that are

not aligned. The current version of LDspectral is developed for input streams in which

the multispectral images are well-aligned across the different bands. The band subset

processing subsystem in LDspectral can readily be augmented to incorporate image reg-
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istration, which would be useful to extend the capabilities of the overall system to handle

images that are not aligned. Such extension together with the integrated optimization of

associated operational trade-offs is an interesting direction for future work.

A second interesting direction for investigation is development of extensions to in-

corporate energy consumption systematically into the design evaluation space considered

in LDspectral. Such investigation may include methods to jointly optimize video process-

ing accuracy and energy efficiency subject to constraints on real-time performance. Such

investigation may also involve characterizing the energy efficiency of alternative video

processing configurations in LDspectral, and integrating the resulting characterizations

as part of the design optimization processes within the framework.

Third, extensions to LDspectral may be investigated for design and implementa-

tion of networked video processing systems. Such extensions will consider constraints

and characteristics of communication channels and network protocols in the design and

implementation process. Work in this direction is motivated, for example, by networked

video processing applications that monitor a region from multiple viewpoints, and per-

form communication and distributed analytics to extract knowledge from the captured

images. Useful topics include investigation of systematic methods to take into account

characteristics of communication channels and processing techniques for multiview im-

age fusion within the framework of LDspectral.
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6.2.2 Multiple Objective Optimization Using WIFS

Useful directions for future work involving WIFS include developing optimization

strategies, such as those based on randomized search (e.g., evolutionary algorithms or par-

ticle swarm optimization), for strategically iterating through families of simulations using

our new WIFS-oriented models and tools. Multiobjective optimization strategies could

be investigated in conjunction with such an effort to systematically derive Pareto fronts in

multi-dimensional design spaces associated with wireless-integrated factory systems. Ex-

amples of strategies for multiobjective optimization that may be applied in such an inves-

tigation include the strength Pareto evolutionary algorithm (SPEA) and SPEA-2 [66, 67];

multiobjective evolutionary algorithm based on decomposition (MOEA/D) [68]; and sim-

plified multi-objective particle swarm optimization (SMPSO) [69].
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