A FRAMEWORK FOR DYNAMIC RECONFIGURATION
OF DISTRIBUTED PROGRAMS

Christine R. Hofmeister James M. Purtilo
Computer Science Department

University of Maryland, College Park, MD 20742

ABSTRACT

Current techniques for a software engineer to change a computer program are limited to static activities — once
the application begins executing, there are few reliable ways to reconfigure it. We have developed a general
framework for reconfigurating application software dynamically. A sound method for managing changes in a
running program allows developers to perform maintenance activities without loss of the overall system’s service.
The same methods also support some forms of load balancing in a distributed system, and research in software
fault tolerance. Our goal has been to create an environment for organizing and effecting software reconfiguration
activities dynamically. First we present the overall framework within which reconfiguration is possible, then we
describe our formal approach for programmers to capture the state of a process abstractly. Next, we describe
our implementation of this method within an environment for experimenting with program reconfiguration. We
conclude with a summary of the key research problems that we are continuing to pursue in this area.

This research was supported by a grant from the National Science Foundation, contract NSF CCR-9021222.
An earlier and shorter version of this paper appeared as “Dynamic Reconfiguration of Distributed Programs,”
Proceedings of the 11th International Conference on Distributed Computing Systems, pp. 560-571, 1991.

1 OVERVIEW

Capabilities for managing dynamic software reconfiguration — changes to the implementation of a running pro-
gram — are increasingly in demand. Users of highly-available systems must perform maintenance on software
components in-place; managers may discover the need to instrument some application only after it has been
placed in operation; and both users and managers alike may desire to relocate parts of a running program in
order to improve its performance (e.g., the task could be relocated from a local workstation to a remote super-
computer when executing the computationally demanding portions of a program.) Whereas techniques for static
control of application programs have been available for years — under the software engineering label configuration
management — dynamic techniques have not been widely addressed.

We view a software application as being a system of interoperating processes, where each process is implemented
by one module, i.e.; a collection of individual data and program units. Module interfaces that are bound to one
another represent communication channels between the processes. These communication channels, or bindings,
together with the modules themselves, comprise the application structure. The application’s geometry describes
how this structure is mapped onto a heterogeneous distributed architecture. Within this distributed application
framework, programmers need reliable techniques to manage three general types of changes:

1. Module implementations. The system’s overall structure remains the same, but a user may require
alteration to one of the individual modules. For example, experimenters may wish to replace some program



unit with another that implements a different algorithm, in order to study the impact on performance at
run time; system administrators may wish to replace or repair device drivers without loss of service; and
software engineers, responsible for enhancing a long-running program, may need to extend an application’s
functionality without losing persistent state within the executing program.

2. Structure. The system’s logical structure (also called either the modular structure or the topology) may
change. The bindings between module interfaces may be altered, new modules may be introduced, and
other modules may be removed. Of course, structural changes may in turn require alterations to the
implementation of modules, as described above. Users may introduce entirely new capabilities to an existing
application.

3. Geometry. The logical application structure may remain fixed, but the mapping of that structure onto
a distributed architecture — that is, the geometry — may change. Geometric reconfiguration is useful for
load balancing, software fault tolerance, adaptation to changes in available communication resources, and
relocation of processes in order for them to access guarded resources.

Our research provides a coherent framework for considering all three forms of reconfiguration in the presence of
heterogeneity, as would be required for the sample applications cited above. First, we motivate the various forms
of dynamic reconfiguration that programmers need, and describe other work towards providing such capabilities.
Then we describe our approach to solving a key subproblem, that of capturing the state of an executing task
so that it may be re-established elsewhere or in other forms. Qur prototype environment for demonstrating and
experimenting with dynamic reconfiguration is then described, after which we conclude with a summary of the
additional research problems that we continue to pursue.

2 MOTIVATION

This section presents a concrete example to motivate the reconfiguration problem. The example, a distributed
version of the well-known dining philosophers problem, will help us describe the requirements for a dynamic
reconfiguration system, and also describe the many scientific problems that must be solved in order to obtain the
benefits of reconfiguration.

The dining philosophers problem is a resource allocation problem in which mutual exclusion must be preserved
and resources must be allocated fairly. The resources in this case are forks, each of which is shared between a
pair of philosophers. The group of dining philosophers is seated around a circular table with a single fork between
each pair (Figure 1, left). Each diner thinks for a while, then gets hungry and tries to eat. In order to eat, a
diner must have exclusive use of its two adjacent forks, so no neighboring philosophers can eat at the same time.
After eating, the diner returns to thinking, thus beginning the cycle again.

Our implementation of this problem uses the decentralized algorithm developed by Chandy and Misra [4]. The
details of this algorithm are not critical to our purpose here, so we show only the pseudo-code for a diner in Figure
2. Our original example has four diners, each a separate process, passing forks and requests for forks on bindings
between two diners (Figure 1, right). Because the algorithm is decentralized, the protocol for sharing forks is
contained in each diner, and i1s based entirely on its own local state.

We illustrate this problem in terms of an existing distributed programming system, POLYLITH [15]. In order
to run this example on a heterogeneous network using POLYLITH, the user needs to provide a simple descrip-
tion of the application’s modular structure, in terms of a module interconnection language (MIL). Once that
is done, POLYLITH is responsible for packaging and invoking processes, and for coercing data representation,
synchronization, and marshalling of data during communication.

Figure 3 shows the MIL declaration necessary for the user to implement this distributed application. By providing
this text to the POLYLITH packaging system, the user’s C source files would be accessed and compiled, then
linked with automatically generated network stubs (i.e., procedures that intercept the call in the local process and
perform a remote procedure call through the network; this activity is described in detail in [15].) The user could
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Figure 1: The Dining Philosopher problem.

then directly execute this application, as POLYLITH is responsible for invoking the executables and establishing a
communication channel between the tasks. All the user sees is that the application works ‘as expected.’

We can now describe each of the possible forms of reconfiguration in terms of this example:

1. Module implementations. An example of individual module reconfiguration is to replace one of the
diners with a verbose diner, one that displays detailed information about its activities. Whereas the original
diner says only whether it is eating, thinking, or hungry, the verbose diner also provides information about
the forks and requests for forks. In order to perform this replacement without losing the fair allocation and
mutual exclusion properties of the application, the old diner’s state information must be used to initialize
the verbose diner.

2. Structure. One way to change the structure of this application is to add a new diner. Again, in or-
der to preserve the mutual exclusion properties, the new diner must be initialized with appropriate state
information. But in this case the new diner’s initial state is based on the state of its two future neighbors.

3. Geometry. An example of geometric reconfiguration is to move a diner from its original host to another
host. If both hosts are of like architecture and operating system, then the migration is a straightforward
engineering operation. However, heterogeneity defeats existing migration techniques. To deal with this
problem, we use the same technique as for changing a module implementation: we capture the diner’s state
before removing it, then use that state information to initialize a new version created on the target machine.

Throughout these changes, the user should see no interruption of service — the program must continue to ‘meet
spec’ except possibly for timing constraints, which we do not address in our research at this time.

Kramer and Magee describe a formalism that characterizes precisely when a distributed program may be reconfig-
ured, and in what way; furthermore, they describe an experimental implementation in Conic [11]. Their approach
focuses upon changes that are primarily either creation or deletion of nodes, plus connection establishment
and removal between those nodes. Their work is compelling, and our research 1s influenced by it as we focus upon
the next questions: how can persistent state contained within the process be exposed for transmission to another



initialize diner state to HUNGRY;
initialize left fork state;
initialize right fork state;

main() {

if (status is special) set initial values so that graph is acyclic;
while (1) {

update left fork state;

update right fork state;

if (HUNGRY and conditions are right) start EATING;

else if (done EATING) start THINKING;
else if (done THINKING) become HUNGRY;

¥
¥
Figure 2: Pseudo-code for diner.c.
service "diner" : {
implementation : { binary : "/world/Users/crh/diner.out" }
algebra : { "STATUS=($S)" }
client "left" : { string } returns { string }
function "right" : { string } returns { string }
}
orchestrate "diners" : {
tool "Jim" : "diner $S=special”
tool "Christine" : "diner $S=regular"
tool "Liz" : "diner $S=regular'
tool "Jack" : "diner $S=regular"
bind "Jim left" '"Christine right"
bind "Christine left" "Liz right"
bind "Liz left" "Jack right"
bind "Jack left'" "Jim right"
}

Figure 3: MIL declaration for Dining Philosophers.

process? At what points during a program’s execution can its state be reliably captured for later restoration?
And how can this all proceed transparent to source programs, written in arbitrary languages? Section 3 will begin
to address these questions.

3 RECONFIGURATION FRAMEWORK

Our objective is to provide a robust framework for dynamically reconfiguring a distributed application, even when
the execution environment is itself diverse and heterogeneous. We focus on mechanisms that are ezternal to the
application program, not internal; that is, we are interested in changing the application based on requests from
outside the currently-executing program, whether initiated by the user or another program. Focusing on internal
mechanisms would be too restrictive, in that all possible future configurations would have to be anticipated and
represented in the initial software source, hence denying us from incorporating new software components that did
not exist at initiation time. (A good example of a system that provides only internal reconfiguration is NIL, with
its later implementation called Hermes [17].)



There are a large number of activities that must be coordinated before a user can begin to capture and manipulate
the state of a running process. Any environment to support general dynamic program reconfiguration in the
presence of heterogeneity must meet the following requirements:

e Users need an easy way to configure and invoke a (possibly distributed) application.

e Users must have a notation for identifying the program components or attributes that they wish to recon-
figure. They must be able to name both individual modules and aggregates of modules composed into a
structure.

e Users must be able to visualize the current state and geometry of a running program. There can be no
reliable way for users to reconfigure a program if they do not understand what processes are currently being
employed and where they are running.

e Especially because of the presence of heterogeneity of architectures and languages, programmers need a
reliable way to coerce the representation of data that is transmitted during both normal communication
and any reconfiguration.

e The execution environment must ensure programmers that all communication between processes can be
controlled by the external agent responsible for reconfiguration. If processes are allowed to communicate by
a private channel, then a subsequent reconfiguration involving one of the processes may fail to update all
dependencies — as a result, a module may find itself trying to access a non-existent resource.

e Similarly, any reconfiguration mechanism in the execution environment must ensure that all information
characterizing a process is captured and represented. This includes state information that is cached on behalf
of the process in the underlying operating system. The primary example of this type of information is the
table of open file descriptors that the operating system maintains for each process. The ideal behavior would
be for all such kernel-based information to be adapted during migration, transparent to the application’s
execution (except for possible differences in performance). For homogeneous distributed systems, then
there is strong evidence from other projects (such as Charlotte [1]) this ideal can be achieved. However,
this objective is unlikely to be met in highly diverse distributed systems, especially when the developer is
not given the freedom to adapt the operating system — our objective is to provide reconfiguration without
requiring modification of the underlying operating systems.

e The execution environment needs a way to mark some of the processes as non-relocatable, recognizing that
some modules must necessarily act as guards to private resources. For example, access to the file system
would most reasonably be handled by incorporating one non-relocatable process. It will still be possible
to replace such a guard, but only when the developer is able to design the module so that it can later be
updated; only the designer can make decisions about how to re-establish, say, access to a file that might
have been changed externally during the reconfiguration step.

Our approach to meeting the above requirements is to build upon the existing POLYLITH software interconnection
system [15]. POLYLITH already provides users with an environment for easily constructing large (and possibly
distributed) applications for use in heterogeneous execution environments. For these reasons, POLYLITH is a
natural starting point for investigating how applications might later be reconfigured.

The POLYLITH bus organization satisfies our requirements concerning coercion of data’s representation in a
heterogeneous system. The bus already manages data transformation during normal communication; therefore,
by showing how to capture the state of an executing process into a reasonable data structure (by techniques to
be discussed), then this same coercion mechanism serves equally well in the relocation of process state to other
hosts.

The bus abstraction also helps us assure programmers that processes do not communicate by private channels.
All modules built using the POLYLITH system will only communicate via the bus. The bus protocol notifies
each process of its symbolic name, but never passes it an ‘absolute’ name for other modules. Since, by design,



no application component communicates directly with other modules, these components cannot be affected by
reconfiguration of other modules. Once a new incarnation of some module has been invoked, the bus will simply
direct subsequent communication to the new version, abandoning the old version. It is possible for programmers
to devise an application that defeats this principle, but one must try very hard to do so.

All requirements for a reconfiguration environment that have been discussed so far can be met by extending
the POLYLITH interconnection system. However, our remaining requirement is by no means the least: how to
characterize the state of an executing process so that it may be either altered or relocated? Moreover, how can we
provide this capability at the minimum cost to programmers? Can it even be provided completely transparent to
the application source code? Can it be provided without loss of run-time performance? The first of these questions
is addressed in Section 4, where we describe the method abstractly. The latter questions can only be addressed
experimentally, which is why we have constructed a set of extensions the POLYLITH software interconnection
system. These extensions provide a workbench for us to build and study the reconfiguration of distributed
applications.

4 ADT FORMULATION OF PROCESS

Our approach to reconfiguration of individual processes is based on formulating them in terms of abstract data
types (ADTSs): reconfiguration of a software process is performed using an abstract characterization of the com-
ponent, to be captured at run time. This idea contrasts with previous approaches to migration in homogeneous
systems [1, 5], because those methods relocate a process by moving its actual representation in the operating
system, not an abstraction. The actual representation is architecture-dependent, and for this reason these ap-
proaches do not directly apply to a heterogeneous computing system. The only object of study in previous work
is the binary representation of a process; moreover, there is no framework available for users to even name a
component that they wish to be reconfigured. In contrast, our approach is based on having a way to extract the
abstract state of a process independent of its host architecture. This abstraction can then guide the subsequent
invocation of a comparable implementation of that task.

The problem then is to find how to characterize the process state abstractly at run-time. To accomplish this we
use a generalization of the approach to transmission of ADTs that was presented in [8]. In Herlihy’s work, two
new operations, encode and decode, are added to the ADT, and the developer provides a suitable implementation
of these operations for each host. When the ADT is to be transmitted, these new accessors are used by the system
to extract the internal state of the data type into an external representation that can be shared among all valid
implementations of the data type.

Such a transmission scheme is effective for the usual formulations of ADTs found in most applications. However,
it alone is not sufficient for our use in reconfiguration. Each instance of an ADT that we wish to transmit is not
a passive datum to be operated on by an application at its leisure — the process has a thread of control and will
change its state rapidly. Worse yet, the necessary state information is not contained just within the executable
image, but rather is cached on its behalf of the process within the CPU registers, program counters and many OS
data structures. The ADT transmission scheme must be generalized to account for this dispersed process state.

In our approach to modeling processes as instances of a process ADT, each source module defines an ‘abstract
type,” and each executing process corresponds to an implementation of that type. The process run-time structures
characterize the value of that instance, and therefore the state can be extracted at execution time via a suitable
representation function. Reconfiguration begins when some agent within the application framework stops normal
activity and causes a process to invoke its representation function, divulging a characterization of its state in an
external format. This can be used by an inverse representation function to parameterize the invocation of any
other valid implementation of that same ADT.

For purposes of this paper, programmers must provide representation functions for modules manually, and all of
our examples of the use of our enhanced POLYLITH system are presented as such. We now present details con-
cerning the environment we have constructed for experimenting with reconfiguration. First, Section 4.1 describes



PRIMITIVES FOR SYNCHRONIZING RECONFIGURATION

mh_hold_cap (&hcap,applname) Get capability for holding interfaces and/or objects in application applname
mh_edit_hold (&hcap,NULL,obj,iface) Hold interface iface of module obj

mh_edit_hold (&hcap,NULL,obj,NULL) Hold module obj

mh_hold (&hcap) Apply all holds specified in &hcap

mh_rlse (&hcap) Release all holds specified in &hcap

PRIMITIVES FOR ALTERING MODULES

mh_obj_cap (&ocap,obj) Get capability to module obj

mh_obj_cap (&ocap,NULL) Get capability to a new module

mh_edit_objattr (&ocap,"add",attrib,val) Insert or replace value of specified attribute for module &ocap
mh_edit_objattr (&ocap,'del",attrib,NULL) Remove specified attribute from module &ocap

mh_edit_if (&ocap,"add",iface) Add specified interface to module &ocap

mh_edit_if (&ocap,'del",iface) Remove specified interface from module &ocap

mh_edit_ifattr (&ocap,"add",if,attrib,val) Add or replace value of specified attribute for interface if of module &ocap

mh_edit_ifattr (&ocap,'del",if,attrib,NULL) Remove specified attribute from interface if of module &ocap

mh_chg_obj (&ocap,"add") Add module &ocap
mh_chg_obj (&ocap,'del") Remove module &ocap
mh_objstatemove (&ocapl,ifl,&ocap2,if2) Induce module &ocap1 to divulge its state via if1; forward it to &ocap2 if2

PRIMITIVES FOR ALTERING BINDINGS
mh_bind_cap (&bcap,applname) Get capability for altering bindings in application applname
mh_edit _bind (&bcap,'"add",objl,ifl,0bj2,if2) Add a new binding between interfaces objl ifl and obj2 if2
mh_edit_bind (&bcap,'"del",objl,ifl,0bj2,if2) Delete binding between interfaces obj1l ifl and obj2 if2

mh_edit_bind (&bcap,'"cpo',objl,ifl,0bj2,if2) Copy messages queued for interface obj1l ifl to interface obj2 if2

mh_rebind (&bcap) Apply all binding changes specified in &bcap

Figure 4: Polylith Reconfiguration Primitives

the extensions to POLYLITH needed to support our experimental activities. Then Section 4.2 describes the use of
these extensions for the ADT framework portrayed above.

4.1 RECONFIGURATION PRIMITIVES

The extensions to POLYLITH were intended to support experimentation with reconfiguration tasks. They allow
us to suspend communication between modules during reconfiguration, alter the structure of the application, and
transfer state information from one module to another. The reconfiguration can be initiated by any module of the
application, or by a third party. All reconfiguration changes are accomplished by invoking a series of POLYLITH
primitives; these are described in Figure 4. The three groups of reconfiguration primitives use the same approach
to applying changes: first get a capability for applying the change (mh_hold_cap, for example), next make a series
of edits to describe the change (mh_edit_hold), then apply the change atomically (mh_hold).

The first group of primitives provides synchronization for reconfiguration by holding interfaces or modules at
the application level. When a hold is applied to an interface, the module attempting communication over that
interface is blocked. Similarly, a held module is blocked upon attempting any POLYLITH bus service. An additional
parameter to mh_edit hold (which we do not describe here) indicates whether unread messages will be moved to
another interface.

Purely structural changes (adding or deleting modules, and changing bindings) can be done without any support
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Figure 5: Replacing a diner with a verbose diner.

from within the modules’ implementations. But many reconfiguration changes involve changes at the module
level, either to replace the implementation of the module, or to move the module to another host. These module-
level changes require the module’s participation in capturing its process state. The mh_objstate move command
induces the old module to encode its state, then manages the transfer of state from old to new. Because POLYLITH
controls the application configuration, it manages the application-level changes of creating, moving, or removing
modules and adjusting bindings between them. Thus the modules need only local knowledge of their own behavior,
and have no global knowledge of any other module in the application.

Module Implementations. In Section 2 we described a scenario where one of the diners is dynamically
replaced with a verbose diner. Here we give the details of this reconfiguration activity. The replacement is
accomplished by creating a new verbose diner module, copying the state from the old diner to the new, binding
the verbose diner into the application, and removing the old diner (Figure 5).

The reconfiguration events, shown in Figure 6, begin with acquiring access to the old diner and creating a new
diner. The BINARY attribute specifies the implementation of the new diner as a verbose diner, and the STATUS
attribute indicates how the new diner should initialize its state.

Next the old diner is told to divulge its state on interface encode. It complies then blocks indefinitely. The old
diner’s state is sent to the decode interface of the new diner, which is not yet active. This accomplishes the state
transfer from the old module to the new, except for messages that may be queued for the old diner. These queued
messages are copied to the new diner in the rebinding phase: here the old module’s bindings are removed, bindings
for the new module are added, and queued messages are copied from the old to the new. The binding changes
are described with a series of mh_edit _bind commands, and applied atomically with the mh_rebind command.

Applying the binding changes atomically simplifies the reconfiguration task, both by reducing the number of steps
required and by making it easier to reason about the reconfiguration. Notice that we did not need any mh_hold
primitives in this scenario: the old module blocks after encoding its state, effectively holding itself. But the
modules bound to this old module can continue sending messages to it, and without atomic rebinding, we would
have to hold both ends of each binding destined for replacement.

Now that the state of the old diner and its bindings has been copied to the new diner, the old module is deleted and
the new one is started up. The sequence of events for this example may look daunting, but the task of replacing a
module by one with the same interfaces can be standardized, and we have written a generic replacement routine
that takes care of all these details, requiring only the names of the module and the new implementation. We have



mh_obj_cap (&old,diner); /* get access to old diner and create new */
mh_obj_cap (&new,diner);
mh_edit_objattr (&new,'"add","BINARY",'"verbose_diner.out");
mh_edit_objattr (&new,'"add","STATUS","clone");
/* get state from old diner and send it to new */
mh_objstate_move (&old,'encode'",&new,'decode");
/* remove bindings for old diner */
mh_bind_cap (&bcap,NULL);
mh_edit_bind (&bcap,''del",&old,"right", right_neighbor,"left");
mh_edit_bind (&bcap,''del",right_neighbor,"left",&old,"right");
mh_edit_bind (&bcap,'del", &old,"left", left_neighbor,"right");
mh_edit_bind (&bcap,''del",left_neighbor, "right",&old,"left");
/* add bindings for new diner */
mh_edit_bind (&bcap,'add",&new,'"right", right_neighbor,"left");
mh_edit_bind (&bcap,'"add",right_neighbor,"left",&new,"right");
mh_edit_bind (&bcap,'"add",&new,"left", left_neighbor,"right");
mh_edit_bind (&bcap,'add",left_neighbor, "right",&new,'"left");
/* copy messages in transit */
mh_edit_bind (&bcap,'cpo",&o0ld,"left", &new,"left");
mh_edit_bind (&bcap,'cpo",&old,"right", &new,"right");
mh_rebind (&bcap);
/* start up new diner and remove old */
mh_chg_obj (&new,'add");
mh_chg_obj (&old,"del");

Figure 6: Reconfiguration events for replacing a diner.

not yet discussed the old and new diners’ participation in this replacement scenario; the details of capturing and
restoring their process state are given in Section 4.2.

Structure. The example we gave in Section 2 of a structural change was to add a diner to the application.
This is done by creating a new diner, binding it into the application, and giving it an appropriate initial state.
One approach to initializing the new diner is to wait until its future neighbors reach some known state then
initialize the new diner accordingly. Our approach is instead to initialize the new diner with a composite of its
two neighbors’ states, as shown in Figure 7. The shaded portion of the initial application configuration (left)
corresponds to the state we are capturing. This shaded portion is duplicated to arrive at the final configuration
(right). The advantage of this approach is that the new diner can be added immediately, without waiting for the
application to reach some predetermined state.

The sequence of events in this reconfiguration scenario are shown in Figure 8. The new module looks just like
the other diners, except for its NAME and STATUS attributes. In this example we use the state of two modules
plus the state of the binding between them to initialize the new diner; this composite state must be consistent,
meaning that it must reflect a correct application state. The mh_objstatemove primitive must be invoked for
each neighbor, and there 1s no guarantee that the two diners will divulge their state at the same time. Thus we
must freeze that portion of the application by holding the affected interfaces as specified in the two mh_edit hold
commands, which are applied atomically when the mh_hold is invoked.

In addition to removing the existing (bi-directional) binding and adding two new ones, the binding changes include
copying queued messages to the appropriate interface of the new diner. Whereas in our prior example applying
the binding changes atomically was critical, in this example, because the interfaces are being held, the atomicity is
not important. We know that mutual exclusion and fair allocation have been preserved because the new module’s
initial state is consistent with each of its neighbors’ states, its diner state of HUNGRY is compatible with all fork
states, and after initialization it follows the same protocol rules as all other diners.
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Figure 7: Adding a new dining philosopher.

mh_obj_cap (&new,left_neighbor); /* create the new diner */
mh_edit_objattr (&new,'"add","NAME" ,newname);
mh_edit_objattr (&new,'"add","STATUS",'"composite");
/* hold right side of left neighbor and left side of right neighbor */
mh_hold_cap (&hcap,NULL);
mh_edit_hold (&hcap,NULL,left_neighbor,"right");
mh_edit_hold (&hcap,NULL,right_neighbor,"left");
mh_hold (&hcap);
/* remove binding between left and right neighbors */
mh_bind_cap (&bcap,NULL);
mh_edit_bind (&bcap,'del",left_neighbor,"right",right_neighbor,"left");
mh_edit_bind (&bcap,'del",right_neighbor,"left",left_neighbor,"right");
/* bind new diner to neighbors */
mh_edit_bind (&bcap,'add",left_neighbor,'"right" newname,'"left");
mh_edit_bind (&bcap,'add",newname,"left",left_neighbor,"right");
mh_edit_bind (&bcap,'"add",newname,"right",right_neighbor,"left");
mh_edit_bind (&bcap,'"add",right_neighbor,'"left" newname,"right");
/* copy messages in transit when hold was applied */
mh_edit_bind (&bcap,'cpo",right_neighbor,"left" ,newname,'"left");
mh_edit_bind (&bcap,'"cpo',left_neighbor,"right" newname,"right");
mh_rebind (&bcap);
/* get state from neighbors and send it to new diner */
mh_objstate_move (left_neighbor,"right_fork_state",newname,'"right_fork_state");
mh_objstate_move (right_neighbor,"left_fork_state",newname,'left_fork_state");
/* start up new diner and release neighbors */
mh_chg_obj(&new,"add") ;
mh_rlse (&hcap);

Figure 8: Reconfiguration events for adding a diner.
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Geometry. The third and final scenario described in Section 2 is to move a diner to another host. This
reconfiguration is almost identical to replacing a module with another implementation; the difference is that
instead of changing the BINARY attribute, we change the MACHINE attribute to specify a different host name. The
POLYLITH platform, designed to accomodate heterogeneity, handles all underlying details.

These first two reconfiguration scenarios demonstrate two different ways of synchronizing reconfiguration activities.
In the first example (as well as the third), synchronization is accomplished by blocking the old module after it has
divulged its state, then altering the binding and copying messages in transit atomically. In the second scenario,
synchronization is achieved by holding the interfaces of the two modules that will divulge state information. This
keeps the modules and the binding between them in the same state: each module is free to execute until it tries
to communicate on the held interface, and any messages in transit when the hold occurred are copied to the new
bindings.

4.2 CAPTURE/RESTORE PROCESS STATE

To support reconfiguration we must be able to characterize the state of an executing process and capture that
state. Our ultimate goal of automatic capture of process state requires that we fill in the abstract representation
of the process state without explicit help from the process. If we do not use semantic information about the
application to selectively preserve only data that is relevant to the process state, then all data must be captured.
This includes static variables from the data area, dynamic variables from the stack, programmer-allocated data
from the heap, file descriptor and signal handler information stored by the operating system, and such things as
process priority and cumulative cpu time.

The other major aspect of process state capture and restore deals with the execution thread. The first issue 1s
determining when during execution we can capture sufficient state information to allow the process to restart;
when is the process in a reconfigurable state. If the abstract state capture does not explicitly include the program
counter, then the only reconfigurable states are program states where execution could safely resume at the
beginning of the program. In this case the execution thread is captured implicitly, with an implicit value of 0
(the beginning of the program, for purposes of discussion here). A second issue is that when the process state
includes the program counter, capturing and restoring the thread of execution may entail capturing and restoring
the activation record stack, so that procedure/function returns and non-local data references can be handled
correctly in the resumed process.

Kramer and Magee define a reconfigurable state as one in which all modules involved in the change are quies-
cent: they will not initiate any new communication, and have provided all services needed for other modules
to reach their quiescent state [11]. They prove that this quiescent state is reachable for all modules involved
in a reconfiguration. However, the communication between modules is limited to certain types of interactions,
primarily rpc-type interactions. Because we do not restrict the types of interactions between modules, we cannot
guarantee that in any application all modules will be able to reach a reconfigurable state. It is possible to write
an application where a module would be prevented from reaching its reconfigurable state because 1t depended on
interaction with another module already blocked in its reconfigurable state.

Our first two reconfiguration scenarios present distinctly different approaches to capturing and restoring state.
In the first example, where the module 1s being replaced, we capture and restore the full state of the module,
including the program counter. In the second example, we capture the partial state of two different modules,
and do not capture the program counter. But in intializing the new module, we use the two partial states and
appropriate default values to create a composite state.

Figure 9 shows what we add to diner.c and verbose_diner.c in order to support state capture and restoration
for both reconfiguration scenarios. (When comparing this to Figure 2, the amount of new code may seem
substantial; but while we abstracted away all details of the original algorithm, we included the details of the
reconfiguration aspects.) To support replacement, our approach is to have the module provide encode and decode
operations to capture and restore its own process state. Ultimately, these could be generated automatically when
the module is compiled, but for now we rely on encode and decode operations provided by the programmer.
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initialize diner state to HUNGRY;
initialize left fork state;
initialize right fork state;
reconfig requested = O;

catchreconfig() {
if (leftfork_state is requested) send left fork state on interface left fork state;
if (right fork_state is requested) send right fork state on interface right fork_state;
if (encode is requested) reconfig requested = 1;

}
main() {
if (status is special) set initial values so that graph is acyclic;
else if (status is composite) {
recetve left fork state on interface left fork_state;
recetve right fork state on interface right fork state;
}
else if (status is clone) recetve diner state, left fork state, and right fork state on interface decode;
signal (SIGHUP,catchreconfig);
while (1) {
update left fork state;
update right fork state;
if (HUNGRY and conditions are right) start EATING;
else if (done EATING) start THINKING;
else if (done THINKING) become HUNGRY;
if (reconfigrequested) {
send diner state, left fork state, and right fork state on interface encode;
block;
}
}
}

Figure 9: Reconfigurable version of diner.c.

During reconfiguration, the mh_objstate move(&old,"encode",&new, "decode") command first binds the first
module’s encode interface to the new module’s decode interface, then signals the first module to divulge its state.
The diner module has been prepared to receive that signal with procedure catch reconfig() (Figure 9), and
because the encode operation was requested, it turns on a flag, reconfig requested. The purpose of this flag is to
delay the encode operation until the diner reaches a reconfigurable state. After returning from the signal handler,
the diner continues normal execution until it reaches the bottom of the main while loop, where it performs the
encode operation and blocks. By delaying the encode operation, we have in effect defined the process state to
include the program counter, with its value set to the end of the loop.

Because this diner’s encode interface is temporarily bound to the new diner’s decode interface, the process state
is sent to the new diner. Recall that the final reconfiguration steps are to remove the old diner and start up the
new. The new diner has a STATUS attribute of clone, so when it is started up, its first action is to perform the
decode operation. Since the program counter was at the end of the main while loop when the state was captured,
we don’t bother with an explicit goto the end of the loop, we just allow execution to resume at the beginning of
the loop.

In the second reconfiguration scenario, the mh_objstate move(&left neighbor,"right fork state" ,newname,
"right fork_state") command binds the two right _fork_state interfaces together, and signals the left neighbor
to divulge its right fork state. A similar command is directed to the right neighbor. Upon receiving the signal,
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each diner sends its fork state immediately, then resumes normal execution. The new diner, with a STATUS of
composite, begins by getting each fork state from the appropriate interface. Its initial diner state is defined to
be HUNGRY, since this state 1s compatible with any combination of fork states.

Our experiences to date are that use of the POLYLITH bus organization does not necessarily result in performance
loss compared to a manually constructed version of the same distributed application. Using the POLYLITH reconfig-
uration techniques described here, the cost of replacing bindings is insignificant, and the cost of creating or deleting
modules reduces to the cost of creating or deleting processes in the underlying operating system. For replacing
a module, in addition to the creation/deletion cost incurred, there is a cost in capturing/transmitting/restoring
process state, which is heavily dependent on the size and complexity of that state. In the reconfiguration scenar-
1i0s presented in this paper, the abstract process state is fully described by a few boolean variables, so the cost
of capturing, transmitting, and restoring the process state is negligible. It is important to note that the entire
application need not be suspended for a reconfiguration; we can hold just the affected portion of the application,
allowing the rest to proceed with its normal processing.

5 RELATED WORK

Only parts of this spectrum of capabilities have been addressed in the past. Geometric reconfiguration (but
only between processors of like architecture and operating systems) has been considered in the form of process
migration, e.g. [5, 1]. More recent research provides some reconfiguration of system structure, e.g. [3]. The most
important previous work in this area is the formalism exposed within the Conic system [11].

Our approach is based upon the software bus abstraction as currently implemented in the POLYLITH system [15].
This project is related to a large body of previous technologies. Much work has been done in primitive data
representation in the presence of heterogeneity. For example, our approach benefited from review of previous
experiences with Courier. Sun Microsystem’s XDR is a similar approach, as is UTS, a ‘universal type system’
internal to the MLP (Mixed Language Programming) system [7]. More abstractly, transmission of abstract data
types (ADTs) is presented in [8]; Herlihy’s ADT transmission mechanism inspired our work on capturing and
transmitting the state of an executing process.

POLYLITH’s previous focus was on simple data structures for interfaces. This stems from a design principle
established early in the project, that any instance of a sufficiently rich data type deserves to be given its own
module (and hence can be packaged in its own process space in appropriate environments). The POLYLITH
language binds the instance’s accessors into those modules using it, and thereafter those modules transact capability
to that instance, rather than ‘flattening’ it for transmission. This approach is very similar to that shown in [9],
where a call by object-reference method is described in detail.

Structure-oriented languages were used to control a distributed programming environment in several earlier
projects, notably CLU [12] and MESA [19]. Both support distributed programming by coupling their nota-
tion with their supporting systems. Each of these systems represent a significant step forward in the area’s ability
to realize the vast potential of distributing a computation. Subsequently, Matchmaker [10] provided a transfor-
mational approach to the problem of integrating distributed components: an application would be written in a
synthesis of, say, Pascal and a higher-level ‘specification language.” This source would be transformed into ordi-
nary Pascal code having accessors to the host communication system inserted explicitly, again for static control
of distribution.

Especially appropriate for multiprocessor configurations are Camelot [2] (a transaction facility built on top of
Mach) and Avalon (a language resource constructed using Camelot.) The V Kernel [5] implements a distributed-
and parallel-programming resource appropriate for a homogeneous set of hosts. The HCS project [14] shows one
way to provide a heterogeneous RPC capability in a distributed environment. Concert [20] and Marionette [18] are
more variations on a theme. Several early projects emphasized a network filesystem approach (such as Locus [16].)
An interesting approach to cross-architecture procedure call using a common backing-store is given by Essick [6].
Finally, the Durra system allows for some forms of dynamic reconfiguration within the Ada environment [3], while
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the Mercury system supports heterogeneity in applications by managing a networked object repository [13].

6 CONCLUSION

We have described a broad framework that organizes software reconfiguration activities, specifically within a
distributed programming environment. In order to run experiments within this framework, we have constructed
an execution environment containing a few, fundamental reconfiguration capabilities. This paper has exposed our
overall approach; described our workbench for evaluating diverse, reconfigurable applications; and demonstrated
its utility in sample programs. The collection of primitives given to programmers for utilizing our system represents
a type of ‘assembly language’ for dynamic reconfiguration; like an assembly language, these primitives are quite
flexible, but also perhaps best employed through automatic generation from more abstract declarations. Therefore,
and as a result of our experiences with this system, we are continuing our research by investigating abstractions
to better help programmers direct dynamic reconfigurations within our framework. In addition, we are studying
techniques for automatically identifying and introducing the representation functions to extract process state
during reconfiguration operations.
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