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 Neural networks mediate human cognitive functions, such as sensory 

processing, memory, attention, etc. Computational modeling has been proved as a 

powerful tool to test hypothesis of network mechanisms underlying cognitive 

functions, and to understand better human neuroimaging data. The dissertation 

presents a large-scale neural network modeling study of human brain visual/auditory 

processing and how this process interacts with memory and attention. 

We first modeled visual and auditory objects processing and short-term 

memory with local microcircuits and a large-scale recurrent network. We proposed a 

biologically realistic network implementation of storing multiple items in short-term 

memory. We then realized the effect that people involuntarily switch attention to 

salient distractors and are difficult to distract when attending to salient stimuli, by 



  

incorporating exogenous and endogenous attention modules. The integrated model 

could perform a number of cognitive tasks utilizing different cognitive functions by 

only changing a task-specification parameter. Based on the performance and 

simulated imaging results of these tasks, we proposed hypothesis for the neural 

mechanism beneath several important phenomena, which may be tested 

experimentally in the future. 

 Theory of complex network has been applied in the analysis of neuroimaging 

data, as it provides a topological abstraction of the human brain. We constructed 

functional connectivity networks for various simulated experimental conditions. A 

number of important network properties were studied, including the scale-free 

property, the global efficiency, modular structure, and explored their relations with 

task complexity. We showed that these network properties and their dynamics of our 

simulated networks matched empirical studies, which verifies the validity and 

importance of our modeling work in testing neural network hypothesis. 
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Chapter 1: Introduction 

1. 1 Techniques for studying brain functions and thesis motivation 

The past few decades have witnessed an explosion of studies on brain neural 

networks of human and other primates. Due to the complexity and importance of the 

human brain, these studies came from a number of different fields, such as 

neuroscience, psychology, mathematics and physics, and the area of brain research 

has become a testing ground for interdisciplinary techniques. 

Several types of data can be collected from studies of human/non-human 

primates cognitive functions using different techniques. Behavioral studies usually 

concern the performance of subjects doing cognitive tasks: accuracy and response 

time. Psychological studies have designed a number of cognitive tasks that tried to 

isolate and test certain brain function, such as recognition, categorization, short-term 

memory encoding, etc. Some general but important features and patterns can be 

summarized out of behavioral data, e.g., the capacity of human working memory is 

7±2 items (G. A. Miller, 1956). The limitation of behavioral data is obvious: the 

detailed mechanisms of the human brain mediating these functions and behaviors 

cannot be observed.  

Anatomical studies (including lesion studies) can help on determining the 

connectivity between human brain regions and understanding how one region 

contributes to brain cognitive functions. Lesions (abnormalities or damages) occurred 

in human/nonhuman primates have been widely used and have provided a lot of 

fundamental knowledge. For example, lesions of prefrontal cortex severely impair the 
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performance of subjects on short-term memory related tasks (Levy & Goldman-Rakic, 

1999), which proves that the prefrontal cortex plays a prominent role in short-term 

memory storage and processing. Studies using anatomical/lesions techniques assume 

that brain regions affect different cognitive functions independently and a lesion 

locally does not affect other undamaged brain regions. However, the complex 

network structure of primate cortical network determines that a small change of one 

region (i.e., a node in the complex network), can cause significant changes in other 

regions. Furthermore, to understand how human neural networks mediate cognitive 

functions one needs to know the temporal dynamics of neurons/regions, which 

anatomical studies obviously cannot capture. 

Electrophysiological and imaging techniques make it possible to record the 

neural activity while performing cognitive tasks. Electrophysiological techniques are 

usually invasive thus can only be used in monkey studies and occasionally in patients, 

while imaging techniques are mostly used in human studies. There are many 

techniques available now to record brain activity. Fig. 1.1 shows the spatial and 

temporal resolutions of these techniques.  

Electroencephalography (EEG) and magnetoencephalography (MEG) are two 

popular neuroimaging techniques. EEG measures voltage fluctuations due to ionic 

current within neurons during synaptic transmission using electrodes placed on the 

scalp, while MEG measures the magnetic fields induced by the ionic currents. The 

most common magnetometer used in MEG is SQUIDs (superconducting quantum 

interference devices). EEG/MEG can detect changes over milliseconds but the spatial 
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resolution is poorer than functional magnetic resonance imaging, which arose in the 

1990s.   

Functional magnetic resonance imaging (fMRI) is the most popular 

neuroimaging technique in the study of cognitive functions. It measures brain activity 

by detecting changes associated with blood flow, because blood flow to one region 

increases if the region is in use. The blood-oxygen-level dependent (BOLD) signal is 

primarily used. In 1990, Seiji Ogawa and colleagues showed that hemoglobin has 

different magnetic properties in its oxygenated and deoxygenated forms 

(deoxygenated hemoglobin is paramagnetic and oxygenated hemoglobin is 

diamagnetic) (Ogawa, Lee, Kay, & Tank, 1990). The BOLD signals reflect mainly 

the inputs to brain regions and the integrative processing within, rather than the 

output firing of neurons (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001).  

The spatial resolution of fMRI is its main advantages over EEG/MEG. Voxels, 

three-dimensional cuboids, are the smallest units that fMRI can measure. The sizes of 

voxels are set by the slice thickness and the grid imposed on the slice by the scanning 

process. Smaller voxels contain fewer neurons and less blood flow, hence are more 

difficult for scanning. The temporal resolution of fMRI is poorer than EEG/MEG. 

The sampling time is typically 1 or 2 seconds. In principle, the sampling time can be 

smaller but it cannot add additional information, because of the blurred intrinsic 

hemodynamic response (the change in the MR signal from neural activity is called the 

hemodynamic response) and finite signal-to-noise ratio (S. G. Kim, Richter, & 

Ugurbil, 1997). 
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Figure 1.1 The spatial and temporal resolutions of different neuroimaging techniques. 
The figure is adopted from Sejnowski, Churchland and Movshon, 2014, Nature 
Neuroscience (Sejnowski, Churchland, & Movshon, 2014). 
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Another important technique is single-unit recording. Currently, single-unit 

recording can provide single-neuron resolution while the aforementioned imaging 

techniques cannot. However, single-unit recording is invasive thus can only be 

applied a limit brain region, and to nonhumans or else to human patients undergoing 

neurosurgery. 

The data collected from the aforementioned methods, however, often appear 

to be unrelated or even contradictory. One cannot easily explain a set of behavioral 

data with functional magnetic resonance imaging (fMRI) data, or vice versa. This is 

due to the fact that the purposes, experimental conditions, and temporal and spatial 

resolutions of different techniques are usually different. Therefore, modeling 

techniques can be powerful tools for addressing such issues. Computational modeling 

of human brain relates the data from anatomical, behavioral, electrophysiological and 

imaging studies, and can be used to test theoretical hypothesis of brain cognitive 

functions. In this thesis, the author will show how we achieved these goals with a 

large-scale neural network model of cortical processing of visual/auditory objects.  

In the rest of this chapter we will review the related literature of neuroscience 

(including anatomical, electrophysiological and imaging studies), computational 

efforts and complex network theory of the human brain.  

 

1. 2 Background review of brain functions of interest 

In this section, I provide a brief review of some important background 

knowledge for our modeling work. Since the thesis is a biologically realistic 

modeling study of a human neural network, it is necessary to start with the anatomical 
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correspondence of the model. Memory and visual/auditory objects processing are the 

two main components in our model, which will be reviewed in the following. 

 

1. 2. 1 Anatomy of human brains 

In human and other primates, the cerebrum (the cerebellum is not of interest in 

this thesis) is covered by cerebral cortex, a highly folded sheet of neurons with an 

average thickness of approximately 3 mm. The cerebral cortex controls our sensory 

processing, memory, attention, language and many other functions, which is also 

what we are trying to model (part of the cortex though). The cerebral cortex can be 

divided and labeled into different regions, across its surface, based on their functions; 

on the other hand, the cerebral cortex can be divided into several layers, 6 in most 

regions, and each layer contains a unique distribution of cell types and connection 

paradigm.  

The cerebral cortex conventionally can be divided into 4 lobes (5 or 6 by some 

authors): frontal lobe, parietal lobe, occipital lobe, temporal lobe(Squire et al., 2012). 

See Fig. 1.2 for the locations of each lobe.  

The parietal lobe is more focused on spatial sensory information processing 

which is not dealt with in this thesis (object processing). The frontal lobe is 

responsible for high order processing and contains many dopamine-responsive 

neurons, thus playing an important role in reward, motivation, decision-making, 

attention and short-term memory maintenance. The occipital lobe contains the early-

stage visual processing areas: primary visual cortex (V1), secondary visual cortex (V2) 

and extrastriate cortex (V3, V4, V5/MT). The temporal lobe is the major region for a 
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number of functions including auditory information processing, visual features 

integration (information received from early stage areas in occipital lobe), 

multisensory information integration, etc., and is also associated with short-term 

memory encoding and maintenance, long-term memory encoding, storage and 

retrieval. Limbic lobe and insular cortex sometimes are considered as lobes in 6-lobe 

classification. The limbic lobe is related to long-term memory consolidation and 

emotional processing, which contains the hippocampus, amygdala, etc. The insular 

cortex is widely believed to be involved consciousness related processing like 

emotion, self-awareness and interpersonal experience.  

 

1. 2. 2 Memory 

Understanding memory is a key to understanding other higher cognitive 

functions. The past three decades have witnessed an explosion of studies on memory 

in both humans and other primates. Memory can be classified by different standards 

for various purposes, such as declarative memory, procedural memory, etc. For our 

interest, memory is categorized into short-term memory and long-term memory. 

Short-term memory was originally defined as a storage place before the information 

is consolidated into long-term memory (Atkinson & Shiffrin, 1968). Now this notion 

has been updated to the concept of “working memory”, which was proposed by 

Baddeley and Hitch (Alan D. Baddeley & Hitch, 1974). Working memory is defined 

as a cognitive process that includes not only the transient holding but also the 

manipulation of information. The information processed in working memory is 

involved in decision making, language, selective attention and guiding future 
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planning (A. Baddeley, 1986).  

Anatomically, two brain regions are thought to be essential for object working 

memory maintenance: the prefrontal cortex (PFC) and the inferior temporal cortex 

(IT). PFC has been considered to play the central role. A large number of nonhuman 

primate studies using single-neuron recordings (Funahashi, Bruce, & Goldman-Rakic, 

1989; J. Fuster, Bauer, & Jervey, 1982; E. K. Miller, Erickson, & Desimone, 1996) 

and lesions (Levy & Goldman-Rakic, 1999) have supported the involvement of the 

PFC in working memory-related processes.  Human brain-imaging studies (Courtney, 

Petit, Maisog, Ungerleider, & Haxby, 1998; D'Esposito et al., 1995; Haxby, 

Ungerleider, Horwitz, Rapoport, & Grady, 1995; Husain, Tagamets, Fromm, Braun, 

& Horwitz, 2004; Riley & Constantinidis, 2015), using positron emission tomography 

(PET) and functional magnetic resonance imaging (fMRI), have also revealed the 

crucial role that PFC plays in both object and spatial working memory.  

The inferior temporal area is also believed to play some complementary role 

in working memory maintenance. Fuster and Jervey (J. M. Fuster & Jervey, 1982) 

first revealed in primate single-unit recording studies that inferior temporal neurons 

exhibit sustained, increased activity during the short delay of a delay match-to-sample 

task (detailed in next paragraph). A number of later studies have also supported the 

notion that inferior temporal cortex is important for the maintenance of visual object 

information (Horel, Pytko-Joiner, Voytko, & Salsbury, 1987; Petrides, 2000; 

Ranganath & D'Esposito, 2005). 

A series of cognitive tasks using working memory, such as the delayed match-

to-sample (DMS) task and Sternberg’s recognition task (Sternberg, 1966, 1969), have 
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been designed to test different aspects of human/monkey working memory. The DMS 

task, sometimes a specific type of delayed response task, consists of two stimuli with 

a short delay period between them. The subjects are required to decide whether the 

second stimulus is the same as the first stimulus. The delay period makes the task a 

test of working memory. One can increase the difficulty by adding distractors during 

the delay period, or use mixed visual auditory stimuli. The Sternberg’s task is more 

difficult as it requires the subjects to remember a list of items and decide, after a short 

delay period, whether a probe is a match of one the list of items.  

These tasks have been extensively used in the study of the behavior of 

neurons and microcircuits related to working memory maintenance in the PFC 

(Funahashi, Inoue, & Kubota, 1993; J. M. Fuster & Alexander, 1971, 1973; Kubota & 

Niki, 1971; Schon, Ross, Hasselmo, & Stern, 2013). However, the underlying 

neurobiological mechanisms for the brain activations seen in these studies and the 

interactions between PFC and other brain regions, such as inferior temporal cortex, to 

support working memory operations are not well understood.  

 

1. 2. 3 “What” and “where” pathways 

This section provides a brief answer to the following question: how is 

visual/auditory information transported to the working memory system from 

eyes/ears? In 1982, Mishkin and Ungerleider (Ungerleider & Mishkin, 1982) first 

found from monkey lesion studies that visual features and spatial information are 

processed separately. After the first-stage processing in early visual cortex (V1, V2), 

visual information follows two main pathways (“streams” by some authors). The 
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ventral “what” pathway, proceeds ventrally in the brain (through visual area V4, the 

inferior temporal cortex, see Fig. 1.2 and Fig. 2.1C for more details), and is 

responsible for object feature identification and recognition, such as shape, color, 

texture, etc. The dorsal “where” pathway begins from V1/V2, goes dorsally through 

V5, V6 and into the posterior parietal cortex. The “where” pathway is related to the 

processing of spatial information, such as the object relative location, motion and the 

control of eye movements. 

The visual ventral pathway processes an object by decomposing the object’s 

visual information by its natural features (lines, colors, shape, etc.) and then 

integrating them into a distributed representation of the object. Some factors, other 

than those natural stimuli features that have been decomposed in visual cortex, can 

significantly influence the ventral visual processing. Attention, working memory, and 

the saliency level of incoming stimulus are some of these factors.  

The processed information of the visual ventral pathway can be further 

forwarded into working memory (given a certain attention condition and stimulus 

salience fit for working memory encoding). The visual ventral pathway is also 

strongly associated with long-term memory through the connection between the 

inferior temporal cortex in the pathway and the medial temporal lobe which is 

involved with storing long-term memories.  

Recently, there is increasing evidence showing that humans possess two, 

ventral and dorsal, auditory pathways as well. Similar to visual processing, the 

auditory ventral pathway is responsible for auditory objects (words, phonemes,  
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Figure 1.2 The ventral (red arrows) and dorsal (blue arrows) pathways of human 
visual processing. The ventral pathway is involved in the processing of visual 
features, which is of interest in our modeling. The figure is adopted from 
http://mikeclaffey.com/psyc170/notes/notes-vision.html. 
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natural sounds) recognition (DeWitt & Rauschecker, 2012). The auditory dorsal 

pathway was originally studied for its role in spatial information processing as the 

visual dorsal pathway, but later has been shown to play a more general role in 

sensorimotor integration and control, i.e., mapping auditory sensory representations 

onto articulatory motor representations. 

In the present work, we only model the ventral “what” pathways for both 

visual and auditory processing, their interactions with short-term memory, and how 

attention and stimulus saliency can affect the processes.  

 

1. 3 Computational Efforts 

1. 3. 1 Notable large-scale neural network models 

Because vision, audition and memory are such important processes, many 

research groups have developed conceptual or computational models for these 

processes. We and others have argued that large-scale neural network models can be 

powerful tools for addressing such issues (Chaudhuri, Knoblauch, Gariel, Kennedy, 

& Wang, 2015; Corchs & Deco, 2002; Garagnani, Wennekers, & Pulvermuller, 2008; 

Gisiger & Kerszberg, 2006; Tagamets & Horwitz, 1998). The word “large-scale” 

indicates that the model is not confined within a local brain region.  

One of the most well-known large-scale brain models is the Human Brain 

Project with the Blue Brain Project as its centerpiece, funded by the European Union. 

With the ultimate goal stated as “tracking the emergence of intelligence” and 

simulating the entire human brain (Markram, 2006), the project so far has modeled 

the whole brain of rodents. The whole model to date has included about a million 
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neurons and each neuron is modeled with complex details, such as spatial 

morphology and ion channel composition.  

Spaun is a large-scale model developed by Eliasmith and his collegues 

(Eliasmith et al., 2012). The number of neurons in the model is approximately 2.5 

million. The single neuron model it uses is a version of a spiking model, which is 

simpler than the Blue Brain Project’s neuronal model. The model includes the ventral 

visual processing pathway, motor control regions and decision-making regions so that 

it could perceive visual inputs and generate output by moving its mechanical arm. 

Spaun is a task-based model that can perform eight different cognitive tasks, whereas 

the HBP cannot. 

Izhikevich and Edelman (Izhikevich & Edelman, 2008) developed one large-

scale thalamo-cortical model that consists of 100 million neurons. The model was 

used to study spontaneous activity and rhythms of spiking activity. Compass is 

another large-scale model, as part of the DARPA Synapse project. Recently they 

reported a simulator with 500 billion neurons, which is 5 times of the number in 

human brains (Preissl et al., 2012). 

Except for these whole-brain scale models with millions of simulated neurons, 

there are many other large-scale models focusing on specific brain functions, such as 

working memory (J. D. Murray, Jaramillo, & Wang, 2017; Tagamets & Horwitz, 

1998), long-term memory (Gisiger & Kerszberg, 2006), spontaneous decision-making 

(Garagnani et al., 2008), etc. These models aim to test large-scale hypothesis for the 

networks mediating specific cognitive tasks.  
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1. 3. 2 The large-scale neural model (LSNM) in the Horwitz lab 

Horwitz has pioneered applying neural network modeling to functional 

neuroimaging (e.g., PET, fMRI, MEG) data (Horwitz, Duara, & Rapoport, 1984; 

Horwitz et al., 1992). The large-scale neural model (LSNM) proposed by Tagamets 

and Horwitz in 1998 was based on the visual ventral pathway and hypothetical 

working memory circuits that simulated a DMS task for visual objects (Horwitz & 

Tagamets, 1999; Tagamets & Horwitz, 1998). The model aimed to understand better 

the neural substrate of different cognitive tasks and human imaging studies using PET 

and fMRI.  

LSNM was later updated for transcranial magnetic stimulation (TMS), 

structural equation modeling, function magnetic resonance imaging (fMRI) and 

magnetoencephalography (MEG) simulations (Horwitz & Banerjee, 2012; Husain et 

al., 2002; J. Kim & Horwitz, 2009). A similar model was also developed to perform 

auditory tasks for fMRI simulations (Husain et al., 2004) based on the hypothesis that 

the sensory cortices involved in visual and auditory object processing perform similar 

operations but act on different features.  

Ulloa and Horwitz (Antonio Ulloa & Barry Horwitz, 2016) embedded the 

visual LSNM model into a whole brain framework using The Virtual Brain (TVB) 

software package (Sanz Leon et al., 2013). TVB is a simulator that combines: (i) 

white matter structural connections among brain regions to simulate long-range 

connections, (ii) a neuronal population model to simulate local brain activity, and 

forward models that convert simulated neural activity into simulated functional 

neuroimaging data.   
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Table 1.1 A comparison between our model and some other notable large-scale 
models  
 

	 Neurons	 Tasks/behaviors	 Neuron	

complexity	

LSNM	 1	×	104	 ~20	tasks	 Low/high	
HBP	 1	×	106	 Neural	behaviors	 High	
Spaun	 2.5	×	106	 6	tasks	 Low	
Izhikevich	 5	×	1011	 Neural	behaviors	 Low	

 
 

TVB whole brain framework makes possible the observations of how task 

execution networks (our models) can affect the intrinsic network (non-task nodes in 

TVB connectome). Ulloa and Horwitz (Ulloa & Horwitz, 2018) quantified the 

changes between passive states and task-evoked intrinsic activity using graph 

theoretical metrics. 

Recently, we extended the model with: (i) a gating mechanism so that the 

model can handle distractors or store multiple items in short-term memory (Liu, 

Ulloa, & Horwitz, 2017); (ii) integrate the visual and auditory models so that visual-

auditory bimodal objects can be processed; (iii) incorporate an exogenous attention 

module in order to simulate saliency capture and crossmodal attention switch. 

A brief comparison between LSNM and some other notable large-scale 

models is shown in Table 1. For our purposes, the number of neurons included does 

not need to be very large as we only process simplified information (2D geometric 

shapes and tonal contours). The reason or the benefit of such simplification is that we 

do not need complicated inputs to test the mechanism beneath object processing, so 

the saved computational resources can be used to extend the model to implement 
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more complicated cognitive functions such as attention and memory. Our modeling 

framework, unlike many of the others, is capable of simulating neural data, 

behavioral performance data, and functional neuroimaging data, and is embedded in 

an anatomical human brain model. 

1. 4 Complex network measures 

A network is a set of items, which are called as vertices or sometimes nodes, 

with connections between them, called edges or simply connections. In the 

mathematical literature this is often defined as a “graph” (in the following text, 

“graph” and “complex network” are used interchangeably). In recent years, the 

analysis of networks has been massively applied in the study of social networks, the 

Internet, biology and many social sciences fields (Newman, 2003). 

Horwitz et al. (Horwitz et al., 1984) studied the functional connectivity 

between different brain regions using glucose metabolic rates. The inception of fMRI 

in early 1990s brought more researchers to the field of brain functional connectivity 

studies. Friston (K. Friston, 1994) distinguished functional connectivity, effective 

connectivity and structural connectivity: the structural connectivity refers to physical 

attachment or anatomical tracts that link two nodes (neurons, brain regions); the 

functional connectivity (FC) is defined as the temporal correlation among the activity 

of different neurons/regions, and was measured by cross-relating the time-series of 

their activity; effective connectivity represents direct or indirect causal influences of 

one region on another. Later, McIntosh and colleagues (McIntosh et al., 1994; 

McIntosh, Nyberg, Bookstein, & Tulving, 1997) demonstrated that transition between 

cognitive states not only changes pattern of brain activation, but also changes co-
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activation and connectivity, which suggested that the functionality of brain region has 

to be interpreted in the network context (Sporns, 2012). These experimental findings 

and theoretical constructions led naturally to the possibility of applying graph 

(complex network) theory in the field of brain connectivity analysis (Bassett et al., 

2010).  

In constructing a network for human brains, nodes/vertices can be neurons, 

cortical columns or brain regions/subregions, and edges/connections can be any type 

of connectivity between structural, functional and effective connectivity. In chapter 4, 

we will go back to this issue with more details.  

The application of network theories has some unique advantages over 

traditional analytic techniques in cognitive neuroscience. First, complex network 

theory provides a reductionistic perspective to the study of human brains.  Graphs 

give a topological abstraction of neural networks that can reduce the complexity in a 

number of ways. By parceling the brain into nodes/vertices, network analysis hides 

many features and details that are not required in the study of whole brain 

organizations and dynamics. Second, by using the network abstraction we ignore 

most of the variability between subjects, which helps on identifying the stable 

properties among human brains. Furthermore, the parceling scheme can be of 

different scales, from neurons to brain regions, which facilitates the comparison of 

structural connectivity and functional connectivity. 

Many famous and interesting properties of human brain networks have been 

reported using network analysis, such as small-worldness, the scale-free property, etc 

(Watts & Strogatz, 1998). In Chapter 4, with more knowledge about our model, we 



 

 18 
 

will see how network metrics, based on our simulation, can reflect and predict human 

cognitive behavior which in turn verifies the validity of the model. 

1. 5 Contributions of the author 

1. 5. 1 Modeling the neural mechanism of managing multiple items in working 

memory 

 
The original models (Husain et al., 2004; Tagamets & Horwitz, 1998) 

successfully simulated auditory and visual ventral processing and the maintenance of 

working memory, yet some limitations existed and one of them was that only one 

item could be held in the working memory at a time. The author extended the visual 

model by incorporating a “gating” mechanism to solve the problem of storing 

multiple items in working memory (Qin et al., 2017), which will be detailed in 

Chapter 2. 

We successfully implemented multiple working memory tasks using the same 

model and produced neuronal patterns in visual cortex, IT and PFC that match 

experimental findings.  These working memory tasks can include distractor stimuli, 

or can require that multiple items be retained in mind during a delay period 

(Sternberg’s task). Besides electrophysiology data and behavioral data, we also 

generated fMRI BOLD time-series from our simulation. Our results support the 

involvement of inferior temporal cortex for the working memory maintenance and 

suggest the cortical architecture that reflects the neural mechanism by which the brain 

performs particular working memory tasks. Furthermore, we noticed during 

simulations of memorizing a list of objects, the first and the last item in the sequence 
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were recalled best, which may implicate the neural mechanism behind this important 

psychological effect (i.e., the primacy and recency effects). 

 

1. 5. 2 Modeling visual-auditory bimodal processing and crossmodal attention capture 

of salient stimuli 

 
The neural mechanisms underlying endogenous (top-down) and exogenous 

(bottom-up) attention, and how attention is controlled or allocated in crossmodal 

perception are poorly understood. The word “top” refers to higher order brain regions, 

such as prefrontal cortex, and “bottom” refers to early-stage processing areas. The 

author investigated these issues by integrating the visual and auditory large-scale 

neural network models. We then modeled and incorporated into our visual-auditory 

object-processing model the neuronal mechanisms for the control of endogenous and 

exogenous attention (Liu et al., in preparation).  

 The model successfully performed various bimodal working memory tasks, 

and produced behavioral, electrophysiological and fMRI results that matched 

experimental findings. Furthermore, in our visual-auditory bimodality simulations, 

we found that working memory load in one modality would reduce the distraction 

from the other modality, and a possible network mediating this effect is proposed 

based on our model. This part is shown in Chapter 3. 

 
 



 

 20 
 

1. 5. 3 Analyzing the network changes with experimental conditions using complex 

network measures 

 
We ran simulations using our model embedded in a high-resolution 

connectome which parcels the brain into 998 nodes, and constructed functional 

connectivity networks for different cognitive tasks with various complexity. These 

tasks include passive viewing/listening, delayed match-to-sample task with one item 

stored in working memory (visual or auditory), Sternberg’s task which requires a list 

of items to be remembered and visual-auditory attention switching task which 

requires both visual and auditory regions to be involved.  

We used simulated synaptic activity to calculate functional connectivity (FC) 

matrices and generated FC networks. We power scaled the connection strength 

distribution and showed the scale-free property of FC networks for different task-

evoked intrinsic activity. Some important network theoretical metrics were computed 

using FC matrices and how these metrics change with task complexity was shown 

with different thresholds. We studied temporal dynamics of these metrics and found 

that: working memory load reduces the global efficiency of functional connectivity 

networks, while salient stimuli perception increases the global efficiency. In Chapter 

4, we will discuss in detail these issues. 

Currently, the model includes 26 modules representing different brain regions 

and 10752 simulated neurons. The model can successfully perform 16 different 

(although conceptually related) cognitive tasks (see Chapter 5 for a complete list). 

When constructing the model, a module is not designed specifically for certain tasks 

per se. We first make hypotheses based on the experimental literature about how 
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cognitive tasks of interest are performed and what brain regions are involved. Then 

we build new modules to represent new brain regions. In training the model to 

perform tasks, we do not use supervised or reinforcement learning methods, which 

are typically used in deep learning fields but are not biologically realistic. Parts of the 

connection weights in our model are determined using an unsupervised learning 

algorithm, and the rest of the connections are hand-wired based on experimental 

results. 

In Chapter 5, we will present a summary of all the author’s works and 

ongoing projects. 
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Chapter 2: Visual ventral processing and managing multiple 
objects in working memory 
 

In this chapter, I will present a large-scale neural network model that can 

perform multiple short-term memory tasks for novel objects, with the simulated 

neuronal behaviors and simulated fMRI patterns matching experimental data. The 

model successfully implemented three versions of delayed matched-to-sample (DMS) 

tasks with or without distractors, and a variation of Sternberg’s recognition task that 

required the model to hold multiple items in working memory. A primacy/recency 

effect emerged during the simulations of memorizing a list of objects, i.e., the first 

and the last item in the sequence were recalled best, which may implicate the neural 

mechanisms behind this important psychological effect. Finally, we have placed our 

model in a whole-brain connectome framework (Antonio Ulloa & Barry Horwitz, 

2016). In this chapter, we will restrict our attention to the visual processing model. 

2. 1 The neuronal microcircuit 

A flavor of the Wilson-Cowan model is used as the neuronal microcircuit, 

namely the basic units of our model. As shown in Fig. 2.1A, the employed modified 

Wilson-Cowan unit consisting of an interacting excitatory and inhibitory pair of 

elements (Tagamets & Horwitz, 1998; Wilson & Cowan, 1972), which can be 

considered as a simplified representation of a cortical column. The excitatory 

elements correspond to the pyramidal neuronal populations and the inhibitory 

elements correspond to the inhibitory interneurons. The model involves only 

simulated neurons, modified Wilson-Cowan units, which are coupled with each other, 
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and there is no other outside decision-making or computation process. 

 

The input synaptic activity to each microcircuit can also be evaluated and 

combinations of this activity were related to the fMRI or MEG/EEG signals via a 

forward model. The simulated electrical activity of the ith excitatory unit and the ith 

inhibitory unit at time t are given by the following equations (2.1) and (2.2) 

respectively: 

!!!(!)
!" =  ∆ !!(!! ! , !! ! , !!!" ! )− !!!(!)                      �2.1� 

!!!(!)
!" = ∆ !! !! ! , !! ! , !!!" ! − !!!(!)                        �2.2� 

where ∆ is the rate of change, ! is the decay rate, and !!!"(!), !!!"(!) are the 

incoming inputs from other nodes.. Thus, the activity variables !!(!) and !!(!) follow 

first-order kinetics with the inverse of !.  !! and  !! are functions of the activity 

variables !!(!) and !!(!), and also incoming inputs from other nodes. These two 

functions control the nonlinearities, which are usually chosen to be sigmoidal in order 

to reflect neuronal behaviors realistically. Now, Eqs. (2.1) and (2.2) become: 

!!!(!)
!" =  ∆ 1

1+ !!!! !!!!! ! !!!"!! ! !!!!" ! !!!!!(!) − !!!(!)   �2.3� 

and 

!!!(!)
!" = ∆ 1

1+ !!!! !!"!! ! !!!!" ! !!!!!(!) − !!!(!)           �2.4� 

where !! ,!! are gain constants, !!! ,!!" ,!!" are the connectivity weights within 

one neuronal unit, !! ,!! are the input threshold, !(!) is the noise. !!!" !  is given 

by: 
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Fig. 2.1 Neuronal microcircuit and structural model. A. Structure of a Wilson-Cowan 
microcircuit, which can be considered as a simplified representation of a cortical 
column. Each microcircuit consists of an excitatory and an inhibitory element with 
the excitatory element corresponding to the pyramidal neuronal population in a 
column and the inhibitory element corresponding to the inhibitory interneurons. B. 
The phase trajectories of a Wilson-Cowan unit. The red dots are solutions without 
noise. The black dots are solutions with noise. C. Network diagram of the original 
visual model of Tagamets and Horwitz (1998). Arrows denote excitatory connections; 
lines ending in circles denote inhibitory connections. See text for details. 
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!!!" ! = !!"!!! !
!

+ !!"! !!(!)
!

+ !!"!!"!!!(!)
!

                 �2.5� 

where !!"! and !!"!  are the weights for connections from the excitatory (E) and 

inhibitory (I) elements of !th LSNM unit to the excitatory element of !th LSNM unit, 

!! is the electrical activity of the connectome excitatory unit ! connected to LSNM 

unit !, and !!!!  is the connection weight. !!" is a coupling term obtained by the 

Gaussian pseudo-random number generator of Python. !!!"(!) is given by: 

!!!" ! = !!"! !!(!)
!

+ !!"! !!(!) 
!

                             �2.6� 

where !!"!  and !!"!  are the weights for connections from the excitatory (E) and 

inhibitory (I) elements of !th LSNM unit to the excitatory element of !th LSNM unit. 

In Fig. 2.1A, excitatory (E) connections are marked as arrows and inhibitory (I) 

connections are marked as circles. 

 The differential equations (2.3) and (2.4) are solved for each neuronal unit on 

each time step of simulation. The time step is typically set to be 5 milliseconds. The 

simulated Wilson-Cowan units are coupled with each other through E-E, E-I or I-E 

connections. Figure 2.1B shows the phase portrait (the activity of one excitatory unit 

versus its corresponding inhibitory unit) of one simulated neuronal unit. The red 

trajectory is simulated without noise while the black trajectories are simulated with 

noise. The value selections of parameters in equations (3) and (4) aim to reflect the 

mean features of neuronal populations in the real world. Please refer to Wilson and 

Cowan (1972) and Tagamets and Horwitz (1998) for more details. 
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2. 2 The structural model 

The structural network of the visual model is shown in Fig. 2.1C. Each 

neuronal population in our model consisted of 81 microcircuits, which will be 

explained in detail in the following. Shape is the feature used in the model to 

characterize a visual object. Model neurons in modules representing early visual 

cortex were assumed to be orientation selective (for simplicity, horizontal and vertical 

orientations were used). Beginning in striate visual cortex, the ventral processing 

pathway extends into the inferior temporal lobe and projects into ventrolateral 

prefrontal cortex. The modules that comprise the visual model include ones 

representing primary and secondary visual cortex (V1/V2), area V4, anterior 

inferotemporal cortex (IT), and prefrontal cortex (PFC). Each of these regions 

contains one or more neural populations with different functional attributes (discussed 

below).  The response properties of the simulated neuronal populations employed 

were based on known monkey neural electrophysiological data (e.g., (Funahashi, 

Bruce, & Goldman-Rakic, 1990).  An important assumption for the visual model, 

inferred from such experimental data, was that the spatial receptive field of neurons 

increased along the ventral processing pathway. 

In the model, the early visual areas V1 and V2 are combined and are designed 

to consist of orientation selective units (for simplicity we have only employed 

horizontal selective units and vertical selective units). Single-neuron recording 

experiments in primates have confirmed that neurons exist in both V1 and V2 areas 

that respond preferentially to visual features such as line orientation, edges and colors 
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(Hubel, Wiesel, & Stryker, 1977; Peterhans & von der Heydt, 1993; Roe & Ts'o, 

1995).  This formulation is unchanged from the original Tagamets & Horwitz 

(Tagamets & Horwitz, 1998) model.  

The V4 area is designed as a continuation of the shape processing pathway 

and consists of three populations of units: horizontal selective units, vertical selective 

units and corner selective units. They are constructed to have an increased spatial 

receptive field relative to V1/V2, i.e., they respond to longer horizontal and vertical 

line segments, and also corners formed by adjacent pairs of horizontal and vertical 

lines. Experimental studies provide the basis for this design; neurons in area V4 share 

similar properties with earlier areas but appear to encode more complex properties of 

shape (Desimone & Schein, 1987; Gallant, Braun, & Van Essen, 1993). As with 

V1/V2, this module is the same as in the original model.  We did add one new item, 

however; there is now feedback connectivity from V4 to V1/V2. 

The next processing module of the model corresponds to inferior temporal 

cortex and is denoted by IT. The IT module functions as a feature integrator and 

generates the initial rough representation of a percept. In single-neuron recordings, as 

we mentioned in the introduction, IT areas exhibit various active behaviors during the 

short delay periods that might be relevant to visual feature selective activity and 

visual information maintenance (Fuster et al., 1982; Horel et al., 1987; Miyashita, 

1988; Petrides, 2000; Ranganath & D'Esposito, 2005).  IT was also a module in the 

original model. 

In our new model, we have added a new module - the entorhinal cortex - to 

serve as a gate between IT and PFC in order to prevent new information overwriting  
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A 

 
 

B 

 
Fig. 2.2 The structural design of extended vLSNM. A. The network structure of the 
modified vLSNM. Compared to the original vLSNM structure (Tagamets & Horwitz, 
1998; Ulloa & Horwitz, 2016), (1) a gating module (GA) has been added, which is 
tentatively located in the entorhinal cortex; (2) multiple sets of working memory 
modules (D1 and D2 in PFC) are used, instead of one set of D1 and D2 units in the 
original model. B. The entorhinal cortex and additional working memory modules are 
designed to act as a gate between IT and PFC. Multiple groups of entorhinal neurons 
and prefrontal cortex neurons are incorporated to hold multiple items in short-term 
memory. The entorhinal neurons competitively inhibit each other so that a group of 
gating neurons will be activated when a stimulus comes in and inhibits other groups 
of gating neurons. Once the item is stored, an inhibitory feedback from PFC to 
entorhinal cortex will suppress the active gating neurons and release other gating 
neurons so that the remaining gating neurons are ready for new stimuli. 
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previous PFC storage. We designed the gating mechanism by incorporating several 

groups of neurons in entorhinal cortex that competitively inhibit one another (see Fig. 

2.1B). The purpose of such a mechanism is to avoid the working memory of one 

stimulus being overwritten by later incoming stimuli. The involvement of entorhinal 

cortex in working memory encoding has been supported by multiple experimental 

studies (for a review, see (Lech & Suchan, 2014), although the actual neural 

mechanisms remain unclear. In our design, a group of gating neurons will be 

activated when a stimulus comes in and inhibits other groups of gating neurons. Once 

the item is stored in this working memory buffer, an inhibitory feedback from PFC to 

entorhinal cortex will suppress the active gating neurons and release other gating 

neurons so that the remaining gating neurons are ready for new stimuli. By such a 

design, we are assuming that each group of entorhinal gating neurons could be used 

only once during a task trial. 

Model neurons in the PFC module, in a short-term memory task condition, 

can be delineated into four types based on experimental data acquired by Funahashi et 

al. (Funahashi et al., 1990). In our model (see Fig. 2.2A), the submodule FS contains 

cue-sensitive units that in general reflect the activities in the IT module. D1 and D2 

submodules form the short-term memory units by exciting one another during the 

delay period. In our modified model, we now have multiple sets of D1 and D2 

submodules built into the model such that holding more than one item in short-term 

memory is possible (see Fig. 2.2B). R serves as a response module (output). It 

responds when a displayed stimulus (probe) matches the cue stimulus that is being 

held in short-term memory. Note that we assume that there are a limited number of 
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gating units and a similar limited number of D1-D2 units, since empirical studies 

indicate that only a limited number of items can be simultaneously kept in short-term 

memory (e.g., the so-called 7±2 (G. A. Miller, 1956)).  For computational simplicity, 

in this paper we will employ no more than three items. 

Although arbitrary, a task specification module is located in the superior 

frontal gyrus of the Virtual Brain model. The module provides a low-level, diffuse 

incoming activity to the D2 module in the prefrontal area which can be interpreted as 

an attention level. The attention level/task parameter can be modulated and is 

specified before each trial in a simulation. When the attention level is low, the 

working memory modules are not able to hold a stimulus throughout the delay period.  

Ulloa and Horwitz (Antonio Ulloa & Barry Horwitz, 2016) embedded the 

vLSNM into a whole brain framework using The Virtual Brain (TVB) software 

package (Sanz Leon et al., 2013).  TVB is a simulator that combines: (i) white matter 

structural connections among brain regions to simulate long-range connections, (ii) a 

neuronal population model to simulate local brain activity, and forward models that 

convert simulated neural activity into simulated functional neuroimaging data.  In the 

current paper, TVB neurons provide neural noise to the embedded vLSNM.  The 

structural connectome we employ is that due to Hagmann et al. (Hagmann et al., 

2008), which comprises 998 regions of interest (ROIs), and the simulated neuronal 

microcircuits at each TVB node are Wilson-Cowan units.  

We first found the hypothetical regions of interest (ROIs) corresponding to 

each module in our LSNM and the connected nodes in Hagmann’s connectome. Then 

we embedded our revised model of microcircuits and network structure into the  
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Fig. 2.3 Embedded model in Hagmann’s connectome (Hagmann et al., 2008). We 
first found hypothetical locations for our model’s regions of interest (ROIs) and the 
connected nodes in the connectome (small dots connected to ROIs). We embedded 
our model of microcircuits and network structure into the structural connectome 
model of Hagmann et al. (2008).  See Ulloa and Horwitz (2016) for details. 
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connectome. We ran the simulations using our in-house simulator in parallel with 

Hagmann’s connectome using the Virtual Brain software (Sanz Leon et al., 2013). 

Fig. 2.3 shows the embedded model in the Hagmann’s connectome. Overall, the 

vLSNM embedded in TVB was able to perform the DMS task, generated simulated 

neural activities in the various brain regions that match empirical data from non-

human preparations, and produced simulated functional neuroimaging data that 

generally agree with human experimental findings (see Ulloa and Horwitz, 2016, for 

details). 

 

Table 2.1 The Talairach coordinates (Talairach, 1988) and the closest node in the 
Hagmann’s connectome (Hagmann et al., 2008) corresponding to visual LSNM 
modules. Note that the locations of FS, D1, D2 and FR are not explicitly known (see 
text) and were chosen only to demonstrate validity of the method. 
 
Modules Talairach location Source Host connectome node 
V1/V2 (18, -88, 8) Haxby et al., 1995 (14, -86, 7) 
V4 (30, -72, -12) Haxby et al., 1995 (33, -70, -7) 
IT (28, -36, -8) Haxby et al., 1995 (31, -39, -6) 
EC (25, -12, -25) Hagmann et al., 2008 (25, -12, -25) 
FS Location selected for illustrative purposes (47, 19, 9) 
D1 (42, 26, 20) Haxby et al., 1995 (43, 29, 21) 
D2 Location selected for illustrative purposes (42, 39, 2) 
FR Location selected for illustrative purposes (29, 25, 40) 
 

 

The Talairach coordinates (Talairach, 1988) and the closest node in 

Hagmann’s connectome for each of the vLSNM modules discussed above were 

identified (see Table 1), based on visual experimental findings (Haxby et al., 1991). 

As to the prefrontal module, which contains four submodules (FS, D1, D2, R), we 

used the Talairach coordinates of the prefrontal cortex in Haxby et al. (1995) for the 

D1 submodule and assigned the locations of adjacent nodes for the rest of the 
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submodules (FS, D2, R) (see Table 2.1). This arrangement is due to the fact, as 

mentioned above, that the four types of neuronal populations were based on the 

experimental findings in monkey PFC during a delayed response task (Funahashi, 

Bruce, & Goldman-Rakic, 1990). It is not known if these four neuronal types were 

found in separate anatomical locations in PFC or were found in the same brain region. 

 

2. 3 Simulated experiments 

We use the extended model to perform a number of simulated experiments 

that can include not only one stimulus, but others as well, some of which can be 

considered to be distractors.  The complete set of simulated experiments is the 

following: 

Experiment 1: Single stimulus 

We first displayed a single stimulus to the model as a test to observe the 

responses of different modules of the model to a transient visual input. No response is 

required.  The attention/task parameter is set to a high value (0.3).  

Experiment 2: Delayed match-to-sample task 

This experiment implemented the original delayed match-to-sample (DMS) 

task to demonstrate that the new model (with an added node – the entorhinal cortex) 

continues to perform the DMS task and gives the same results as the original model 

(Antonio Ulloa & Barry Horwitz, 2016). One typical DMS trial consists of the 

presentation of a stimulus, an ensuing delay period, a presentation of a probe (the 

same or a new stimulus) and at the end of it, the simulated subjects need to decide 
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whether the probe is the same as the first stimulus presented (see Fig. 2.4A). The 

attention/task parameter is set to high (0.3) during a trial. 

Experiment 3: Delayed match-to-sample task with distractors 

We implemented a version of DMS task with intervening distractors. The 

simulated subjects were shown two distractors before the probe was displayed (see 

Fig. 2.4B). The attention/task parameter is set to high (0.3) for the first stimulus and 

decreased to low (0.05) following the presentation of the distractors. 

Experiment 4: “ABBA” task 

A special version of the distractor task (the “ABBA” task) is used. The 

“ABBA” task was employed by Miller et al. (E. K. Miller, Gochin, & Gross, 1993) in 

monkey electrophysiology experiments. The model is supposed to hold its response 

when repeated distractors (“B”) are shown and to respond only to the matched 

stimulus (“A”) (see Fig. 2.4C). 

Experiment 5: Sternberg’s recognition task 

A variant of Sternberg’s recognition task (Sternberg, 1966, 1969) was used. 

On each trial of the simulation, three stimuli were presented sequentially, followed by 

a delay period and then a probe. The subjects’ task was to decide whether the probe 

was a match to any of the three stimuli presented earlier (see Fig. 2.4D). The 

Sternberg paradigm with visual objects has been used in many studies, and thus 

allows us to compare our simulated results with experimental results. 

A top-down task control is also used before each trial. The top-down task 

control informs the model that the trial is a DMS task, DMS task with distractors, an 

“ABBA” task, in which only the first stimulus is the target to be remembered, or a  
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Fig. 2.4 Timeline designs of implemented tasks. A. The timeline and task-
parameter/attention level of a single delayed match-to-sample trial. The simulated 
subjects’ task is to identify whether the probe is a match with the first stimulus. B. 
The timeline for a single trial of a DMS task with distractors. The simulated subjects 
need to ignore the two intervening distractors and only respond to the probe. C. The 
timeline for a single trial of an “ABBA” task, i.e., a DMS task with two repeated 
distractors. D. The timeline for a single trial of Sternberg’s recognition task. The 
simulated subjects are shown a list of stimuli and their task is to decide, after a delay, 
whether the probe is a match with any stimulus in the list. 
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Sternberg’s recognition task, in which there are multiple targets to remember. The 

top-down control doesn’t change the network structure; it only controls the attention 

module so as to apply high attention to targets and low attention to distractors.												

	

2. 4 Simulating fMRI 

The integrated synaptic activity is computed prior to computing fMRI BOLD 

activity, by spatially integrating over each LSNM module and temporally integrating 

over 50 ms (Horwitz & Tagamets, 1999):	

!"#$ = !!!(!)                                                       (2.7) 

where !!!(!) is the sum of absolute values of inputs to the excitatory and inhibitory 

elements of unit !, at time !: 

!!! ! = !!!!! ! + !!"!! ! + !!"!! ! + !!"!!(!)
!,!

          (2.8) 

The last term is the sum of synaptic connections from all other LSNM units and 

connectome nodes to the !th unit in LSNM. There are 81 such units in each module 

(except attention modules which will be discussed later). 

In simulating an fMRI study, the model alternately implements a block of 

DMS task trials (three trials) and a block of control task trials (three trials). The 

control task used degraded shapes and each trial of the control task followed the 

design of the DMS task in Experiment 2, except that the attention/task parameter is 

set to a low value. We first computed the integrated synaptic activity for select 

regions of interests (ROIs) (Ulloa & Horwitz, 2016). Using the integrated synaptic 

activity of ROIs as the input to the fMRI BOLD balloon model of hemodynamic 
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response (Stephan, Weiskopf, Drysdale, Robinson, & Friston, 2007; Antonio Ulloa & 

Barry Horwitz, 2016), we calculated the simulated fMRI signal time-series for all our 

ROIs and then down sampled the time-series to correspond to a TR value of 2 

seconds. 

In each of the tasks, the simulated stimulus was on for 2 seconds (one time 

step in the model is considered to have a duration of 5 ms) followed by a 4 seconds 

delay period. After each trial, the model was reset in the intertrial interval. When 

performing the tasks, we varied the connectivity weights between brain regions by 

slight amounts to create multiple “subjects” (see (Antonio Ulloa & Barry Horwitz, 

2016)). In both the DMS task and the Sternberg’s recognition task, the short delay 

periods between the presentations of stimuli and the probe are the main elements that 

make the two tasks tests of short-term memory. 

 

2. 5 Results 

2. 5. 1 Response to a single stimulus 

Fig. 2.5 shows the responses of the different modules of the model when a 

single visual input (a shape composed of horizontal and vertical line segments) was 

displayed. The attention level was set to high. Each module of the model exhibited 

proper behaviors in the simulation. Early visual cortex (V1/V2) responded quickly to 

the stimulus and displayed a sharp decrease in activity when the stimulus 

disappeared. As the visual input propagated deeper into the network, the average 

activity displayed slower and smoother responses. For instance, the average activity  
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Fig. 2.5 Response of the model to a single stimulus. One stimulus is shown to the 

model for 2 seconds, followed by a 4-second delayed period before resetting. The 

vertical axis is the normalized mean neuronal activity (i.e., normalized firing rate) in 

the different modules.  

 

 

 

 

 



 

 41 
 

of working memory modules (D1, D2) slowly climbed during the presentation of the 

stimulus and displayed persistent activity in the delay period when the stimulus 

disappeared. The response module (R) showed only noise since only one stimulus 

was presented. 

 

2. 5. 2 Delayed match-to-sample task 

We ran simulations of the delayed match-to-sample condition using both our 

extended vLSNM and the original vLSNM (Tagamets & Horwitz, 1998; Ulloa & 

Horwitz, 2016). The simulated neuronal activities of the extended vLSNM and the 

original vLSNM are shown in Fig. 2.6A. As shown in Table 2.2, the accuracy of 

simulations run using the extended model is as high as the simulations run using the 

original model.  

The new model also improved the performance of the inferotemporal and 

prefrontal areas compared with the original model (see Fig. 2.6B). The module 

representing the inferotemporal area showed higher-than-baseline mean activation 

level during the delay periods in the delayed match-to-sample task, which eliminated 

the discrepancy between previous simulation and experimental results. As pointed out 

in the Introduction, the neurons of the IT module of the original LSNM of Tagamets 

and Horwitz (Tagamets & Horwitz, 1998) did not show increased activity during the 

delay period of a DMS trial, in contradiction with nonhuman electrophysiological 

findings (J. Fuster et al., 1982). To address this small yet important disagreement, we 

added a feedback connection from the D2 module in PFC to IT.  Fig. 2.6A shows the  
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A  

 
B 

 
 
Fig. 2.6 A. Neuronal activities of the excitatory neurons in the different modules 
during one trial of the DMS task simulated using the extended model. B. The 
excitatory neuronal activities of the different modules during one trial of DMS task 
simulated using the original model. In the simulations with the new model, the IT 
module showed activity during the delay period, which does not occur for the original 
model. Each line corresponding to one simulated neuronal unit. 
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Table 2.2 Performances of 10 simulated subjects during 4 tasks (DMS task, DMS 
task with distractors, ABBA task, Sternberg’s recognition task). Performances are 
measured by counting the number of neuronal units in the decision-making module 
(R) firing above a certain threshold during the response period. 
 
Subject  DMS  DMS w/ 

distractors 
ABBA  Sternberg  

S1 92.3% 90.5% 88.7% 90.3% 
S2 81.0% 80.5% 80.7% 78.7% 
S3 92.0% 92.0% 89.7% 87.0% 
S4 86.5% 84.0% 82.3% 82.0% 
S5 88.5% 89.0% 87.0% 87.7% 
S6 77.5% 75.5% 75.7% 73.0% 
S7 81.0% 79.5% 79.0% 78.7% 
S8 73.0% 69.5% 68.0% 69.3% 
S9 79.0% 79.5% 79.0% 78.0% 
S10 84.0% 81.0% 81.7% 79.7% 

 
Mean 84.5% 82.1% 81.2% 80.4% 
Standard 
deviation 

6.02% 6.63% 6.15% 6.22% 

 
mean activities of selected modules in a simple delayed match-to-sample task from 

which the delay activation of the inferotemporal area can be seen. 

When looking into individual behaviors of inferotemporal neurons of the 

extended model, we noticed that these neurons exhibited selectivity to different 

stimuli (Fig. 2.7). Among activated inferotemporal neurons, most responded to all 

stimuli with or without delay activity, but neurons with selective activity can be 

observed in each trial. The data for the multiple-item holding Sternberg’s task also 

displayed similar behaviors of stimulus-selectivity. We did not observe similar 

behaviors in PFC. This difference between the model’s IT and PFC is consistent with 

experimental results (E. K. Miller et al., 1996) and shows that PFC is mostly involved 

in working memory and decision-making and thus supporting the idea that PFC 

neurons have little or no contribution in coding complex visual features. 
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Fig. 2.7 Different types of excitatory neuronal activity and selectivity behaviors of 
simulated inferotemporal neurons during one DMS trial. Each of the gray stripes 
represents the presentation of one stimulus and the white stripes between them 
represent the delay periods. We observed that the simulated neurons in the IT module 
exhibited several different activity patterns and selectivity to different stimuli. Most 
of activated inferotemporal neurons responded to both stimuli with or without delay 
activity (top panel), but in each trial we observed neurons that responded only to the 
first or the second stimulus (middle and bottom panels); neurons with delay activity 
are shown in the bottom panel). 
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A 

 
B 

 
Fig. 2.8 A. Neuronal activities for DMS task with two intervening distractors. B. The 
neuronal activities for the “ABBA” task. The two distractors were held in PFC with 
low attention (the persistent activities in D1 and D2 modules). The response module 
in both tasks properly avoided the distractors and responded when the probe was a 
match of the first stimulus. 
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2. 5. 3 DMS task with distractors and the “ABBA” task 

The model performed the DMS task with distractors and the “ABBA” task at 

a slightly lower accuracy rate than the simple DMS task (see Table 2.2). Fig. 2.8 

shows the simulated neuronal activities of the different modules.  Note that the 

response units display activity greater than background noise only to the stimulus that 

matches the target.  

During the simulation shown in Figs. 2.8A and 2.8B, four separate groups of 

entorhinal neuronal units responded respectively to the four items and passed the 

information to prefrontal cortex for storage and comparison. The target (first 

stimulus) and intervening distractors are all stored in working memory modules (D1 

and D2), but in separate groups of neuronal units during the simulation. The target is 

stored with high attention while the intervening distractors are stored with lower 

attention. Consequently, the storage of distractors is weaker than the storage of targets, 

i.e., fewer simulated neuronal units in their D1 and D2 modules showed persistent 

activity throughout the trial. 

 

2. 5. 4 Sternberg’s recognition task 

Fig. 2.9 shows the simulated neuronal activity of each module in three trials of 

Sternberg’s recognition task, in which the model successfully responded to two 

matched cases and rejected 1 non-matched case. The average accuracy rates of 10 

simulated subjects can be found in Table 2.3. 
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Fig. 2.9 Neuronal activities for Sternberg’s task. Three trials of Sternberg’s 
recognition task are shown. In each trial, the first three stimuli are the targets that the 
model needs to hold in working memory. In the first and last trial, the probe (last 
stimulus) was a match of one of the targets (the first and the second, respectively) and 
the response module R made proper responses. In the second trial shown, the probe 
was not a match of any of the targets and R didn’t respond to it. 
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In the simulated results of the Sternberg’s recognition task, we noticed a 

significant primacy/recency effect. When the test stimulus is a match with the first or  

the last item of the three items remembered, the model has a greater chance to make a 

correct response than when the test stimulus is a match with the second item (see 

Table 2.3). The recency effect is stronger than the primacy effect. We will discuss our 

tentative explanation of this finding in the Discussion. 

 
Table 2.3. Performances of 10 simulated subjects during Sternberg’s task when the 
probe is a match of the first, the second and the third target, respectively. 

 
 Target 1 Target 2 Target 3 

S1 91% 87% 93% 
S2 81% 76% 79% 
S3 86% 85% 90% 
S4 81% 80% 85% 
S5 88% 87% 88% 
S6 72% 70% 77% 
S7 78% 79% 79% 
S8 70% 66% 72% 
S9 78% 77% 79% 
S10 79% 78% 82% 

 
Mean 80% 79% 82% 

Standard 
deviation 

6.28% 6.53% 6.17% 

 
 

In simulating the holding of multiple items in short-term memory, one 

interesting finding related to the feedback from PFC to IT is that many simulated 

neurons in both PFC and IT displayed a progressive increase in activity level across 

the DMS trial with multiple distractors and the Sternberg task (Fig. 2.10). This type 

of behavior could not be observed once we removed the feedback from PFC to IT.  
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A 

 
 

B 
 

 
 

Fig. 2.10 Simulated neurons with climbing activities during one trial of Sternberg’s 
task. A. Activity of one neuron found in the PFC module. B. Activity of one neuron 
found in the IT module. Each of the grey stripes indicates the presentation of one 
stimulus and the white stripes between the grey are delay periods. 
 



 

 50 
 

We found neurons with climbing activity in both PFC and IT while monkey 

physiological studies have reported such activity only in PFC (Miller et al., 1996). 

 

2. 5. 5 Simulated fMRI BOLD signal 

As discussed in the Methods section, we implemented an experiment that 

consisted of alternative blocks of DMS trials and control trials (passive viewing of 

degraded shapes), and then calculated the integrated synaptic activity and fMRI 

BOLD time series for select regions of interest (ROIs). Fig. 2.11A and Fig. 2.11B 

show the integrated synaptic activity and fMRI BOLD signal, respectively, for ROIs 

during three blocks of DMS task (grey) and three blocks of the control task (white). 

Each block consists of three trials. We can conclude from the figures that the modules 

of higher order show more signal change between the DMS and control tasks. Early 

visual cortex V1/V2 did not show much change between DMS trials and control 

trials, but higher order modules such as PFC module and entorhinal cortex module 

displayed much larger changes.   

Fig. 2.11C shows a comparison, using signals from V4 module as an example, 

between the integrated synaptic activity and fMRI BOLD signal. From the figure we 

see that using such a block design, the simulated BOLD signal cannot isolate the 

detailed response profile for each stimulus, as is well known to the experimental 

research community. 

We also performed a simulated event-related experiment by extending the 

delay period to 20 seconds in order to show a more complete response curve in 

BOLD signal for each incoming stimulus. Fig. 2.12 shows the simulated fMRI BOLD  
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Fig. 2.11 A simulated experiment with three blocks of alternative DMS trials (gray 
stripes) and control trials (white stripes) was implemented. Each block consisted of 
three trials. A. The integrated synaptic activity of different modules. B. The simulated 
fMRI BOLD signal of the different modules. Modules of higher order have larger 
difference in activity between the DMS and control tasks. C. A comparison of the 
simulated synaptic activity and the fMRI BOLD signal of the V4 module during the 
simulated experiment for one task and one control block. 
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Fig. 2.12 The simulated fMRI BOLD signals of different modules of an event-related 
experiment.  Each gray bar represents the presentation of a stimulus. The experiment 
consists of one DMS trial (first two gray bars), one DMS trial with two distractors 
(the middle four gray bars) and one trial of Sternberg’s task (the last four gray bars). 
Passive viewing of 4 stimuli separates each of these task trials. The V4 (orange), IT 
(blue), EC (black) and PFC (red) modules showed higher fMRI BOLD signals when 
the working memory load increased (DMS vs. Sternberg’s task). 
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signal for an event-related design that consists of a DMS trial, a DMS trial with two 

intervening distractors and a Sternberg’s task trial. The signal differences between 

these tasks and the control task (passive viewing) were calculated and are shown in 

Table 2.4.  

 
Table 2.4. The mean signal change (in percentage) of specific task from control task 
(passive viewing). Both integrated synaptic activity and fMRI data of different brain 
regions are shown. Paired t-test was used for the signal difference and * = p<0.05. 
 
 Integrated synaptic activity fMRI 
 DMS DMS 

w/distractors 
Sternberg’s 

task 
DMS DMS 

w/distractors 
Sternberg’s 

task 
V1 6.533* 5.318* 8.702* 2.739  1.841 3.028 
V4 25.786* 27.861* 29.250* 23.034* 25.548* 26.947* 
IT 13.318* 16.470* 18.852* 11.750* 14.824* 15.773* 
EC 8.161* 8.803* 10.182* 5.709* 8.871* 9.098* 

PFC 25.083* 28.915* 32.594* 20. 
623* 

23.647* 26.992* 

 
 

By employing such a design, we could examine the effect of working memory 

load (by comparing the DMS task with the Sternberg task) and the effect of attention 

(by comparing the Sternberg’s task with the DMS task with distractors). The V1/V2 

module did not show statistically significant differences in terms of mean fMRI 

BOLD signals between the DMS tasks and the control tasks.  We observed that the 

entorhinal cortex displayed greater activity, compared with the control task, during 

encoding (stimuli presentations) and retrieval (probe presentations) but not during 

maintenance (delay periods), which was consistent with experimental findings (Schon, 

Quiroz, Hasselmo, & Stern, 2009). V4, IT and PFC showed increased activity during 

the delay periods, which indicated their roles in working memory maintenance. The 

activity of PFC increases when multiple items are stored, which agrees with the 
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experimental evidence for both visual working memory (Cairo, Liddle, Woodward, & 

Ngan, 2004; Druzgal & D'Esposito, 2003; Rypma, Berger, & D'Esposito, 2002; 

Rypma & D'Esposito, 1999) and verbal working memory (Veltman, Rombouts, & 

Dolan, 2003). We also noticed the effect of working memory load for V4 and IT 

during encoding and maintenance (stimuli presentations and delay periods), but not 

during the retrieval phase (probe presentation). 

 

2. 6 Discussion 

We have presented a simulation study of several short-term memory tasks 

using an extended version of a previously constructed large-scale neural model. We 

successfully implemented multiple short-term memory tasks using this extended 

model and produced neuronal patterns in visual cortex, IT, EC and PFC that match 

experimental findings.  These short-term memory tasks can include distractor stimuli, 

or can require that multiple items be retained in mind during a delay period.   

Fuster and Jervey (J. M. Fuster & Jervey, 1982) first revealed in primate 

single-unit recording studies that inferior temporal neurons exhibit sustained, 

increased activity during the short delay of a delay match-to-sample task. A number 

of later studies have also supported the notion that inferior temporal cortex is 

important for the maintenance of visual object information (Horel et al., 1987; 

Petrides, 2000; Ranganath & D'Esposito, 2005). The neuronal behaviors in IT across 

short delays in DMS trials were indicated to be relevant to object-selective activity 

and associative learning (Erickson & Desimone, 1999; E. K. Miller et al., 1993; 

Miyashita, 1988). The extended version of our large-scale neural model, compared to 
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the original version, explicitly implements this critical role for IT, which is important 

for extending our model to incorporate a long-term memory component.  

Fuster and colleagues first reported the presence of PFC neurons with 

climbing activity across delay periods in DMS trials without distractors (Quintana & 

Fuster, 1992). Similar behavior was also observed in DMS trials with distractors (E. 

K. Miller et al., 1996). Fuster and colleagues interpreted the climbing activity as 

expectation. Our model doesn’t have expectation built-in; rather, our simulations 

suggest that the climbing activity is related to feedback from PFC to IT, i.e., a 

recurrent loop is formed with feedback from PFC to IT so that the information stored 

in PFC can strengthened itself through the loop, and it represents the working 

memory distributed in the network.  These two notions of the neural mechanism for 

the observed climbing behavior may in fact complement one another. 

We modeled working memory using the D1-D2 microcircuit as a fixed state. 

Meanwhile, the recurrent connectivity between PFC and IT in our model enables a 

network dependent mechanism of working memory represented by the “climbing 

neurons” we observed. There is experimental evidence for both views of working 

memory. Persistent activity of neurons in PFC was observed during the delay period 

by Funahashi et al. (Funahashi et al., 1990), while some neuronal activity in PFC 

declined and was reactivated during delay period (Barak, Tsodyks, & Romo, 2010; 

Rainer & Miller, 2002), indicating the existence of a dynamic mechanism for working 

memory.  

In the simulations of DMS with distractors and the “ABBA” task, we assumed 

that the intervening distractors are also stored in the prefrontal cortex. Due to the low 
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attention level applied, the storage of distractors is weaker than the storage of targets. 

Experimental studies in visual search and incidental learning supports our assumption 

that the distractors are stored in working memory (Goolsby, Shapiro, & Raymond, 

2009; Williams, Henderson, & Zacks, 2005). We used separate working memory 

modules to handle distractors in the DMS task based on the fact that the attention paid 

to the distractors is lower than the target and the target has a special status in working 

memory that is not shared by the distractors (Peters, Goebel, & Roelfsema, 2009). 

The structural network of multiple working memory modules was inspired by a 

similar scheme proposed by Ulloa et al. in an auditory model that dealt with long-

duration tonal patterns (Ulloa et al., 2008).  The capacity limit of working memory is 

implemented by limiting the number of memory pools (we used three, but the number 

is arbitrary). Once the memory pools are all filled, further items will not be stored and 

the corresponding BOLD signal will reach a plateau.  This was instantiated in our 

model for simplicity, but future research could aim toward determining whether or 

not this assumption is warranted.    

Whereas the classic view is that working memory has a limited number of 

slots (Cowan, 2001), some recent experimental and modeling studies propose 

working memory as a continuous resource that is distributed among all remembered 

items (Bays & Husain, 2008; Fougnie, Suchow, & Alvarez, 2012; Keshvari, van den 

Berg, & Ma, 2013; Ma, Husain, & Bays, 2014).  According to this view, the precision 

of memory, which decreases as more items are remembered, is the key metric of 

working memory limits instead of the quantity of memory items. In our model, the 
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working memory representations of different items are stored in non-overlapping PFC 

modules, which, in the future, could be integrated into one continuous module. 

Even though we did not explicitly set out to incorporate a primacy and 

recency effect in our model, nonetheless, we observed such effects in our simulation 

results.  In our model, the observed primacy effect in the Sternberg task was a result 

of decayed attention. In our simulated experimental design, the attention applied to 

the prefrontal area decays with time and higher attention helps the working memory 

network encoding for new items. The neural basis underlying the experimentally 

observed recency effect has been debated (A. D. Baddeley & Hitch, 1993). Based on 

our simulation, we suggest that the gating mechanism, specifically competitive 

inhibition and the inhibitory feedback from PFC to entorhinal cortex, may contribute 

to the recency effect. The inhibitory feedback from PFC to entorhinal area reduces the 

competition level among gating neurons; thus, later incoming stimuli have less 

inhibition and stronger representations in working memory. Previous experiments 

have shown that these effects are sensitive to the duration of the delay periods 

(Wright, 1999), which we have not observed in our simulation study, possibly due to 

a lack of a “forgetting” mechanism in the current version of the model. 

Because working memory is such an important cognitive process, many 

research groups have developed models of this process.  They range from purely 

cognitive models (A. Baddeley, 1992) to computational models of varying levels of 

complexity (e.g., (D. J. Amit, Fusi, & Yakovlev, 1997; Ashby, Ell, Valentin, & 

Casale, 2005; Dehaene & Changeux, 1989; Rolls, Dempere-Marco, & Deco, 2013); 

for reviews, see (Barak & Tsodyks, 2014; Durstewitz, Seamans, & Sejnowski, 2000; 
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Maex & Steuber, 2009). Many computational models aimed to account for both 

behavioral and neural activity observed in monkey electrophysiological studies 

during the delay portion of a delayed response task.  For instance, one approach, 

exemplified by Amit and colleagues (e.g., (D. J. Amit et al., 1997) employed 

recurrent excitatory connections in a cell assembly to maintain stable activity patterns 

(i.e., attractors). In initial studies, Hebb-like learning methods were employed to 

generate synaptic weights that reinforced the connections between specific neurons.  

These attractor models initially dealt with maintaining in short-term memory one or 

more previously learned images.  More recent work has extended these models so that 

novel images can also be handled (e.g., (Y. Amit, Yakovlev, & Hochstein, 2013).  

Although a number of modeling efforts addressing working memory have focused on 

the prefrontal cortex, a substantial number have also argued that the basal ganglia 

play an important role as well (e.g., (Ashby et al., 2005; Monchi & Taylor, 1999).  

The modeling framework proposed by Ashby et al. (Ashby et al., 2005) is of 

particular interest because, like the model we presented in this paper, it also provides 

a distributed neurocomputational model that incorporates multiple, interacting brain 

regions, and aims to account for both neurophysiological data and behavioral data.  

Furthermore, the authors argue that this approach, like ours, also can account for 

human neuroimaging data (Ashby & Valentin, 2007).      

The basal ganglia and the thalamus have been implicated in working memory 

function. Lesions of caudate and medial dorsal nuclei of the thalamus can severely 

impair working memory capacity (Kubat-Silman, Dagenbach, & Absher, 2002).  

However, as pointed out by Ashby et al. (2005), lesions of the caudate and medial 
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dorsal nuclei of the thalamus can impair but will not abolish working memory, and 

this has been found experimentally (e.g., Gabrieli et al, 1996; Janahashi et al., 2002).  

It is worth noting that the examples used in this paper deal with a rather limited 

working memory capacity (i.e., no more than three objects).      

The interactions between the PFC and the basal ganglia and the thalamus have 

also been interpreted as a gating mechanism (Braver & Cohen, 2000; J. D. Cohen, 

Braver, & O'Reilly, 1996; O'Reilly & Frank, 2006). For example, the O’Reilly-Frank 

working memory model incorporates a prefrontal cortex that controls both itself and 

other brain areas in a task-dependent manner.  It does this by employing learning 

mechanisms that involve a number of subcortical structures including the basal 

ganglia that act as a gating mechanism for updating working memory.   However, the 

EC is considered to be directly involved in the visual ventral (object) processing 

pathway and declarative memory encoding (Preston & Eichenbaum, 2013).  

In the current paper, we chose parameters for the added components of the 

model so as to provide a reasonable match to the electrophysiological data, although 

we did not employ explicit model-fitting to any particular data set.  As pointed out by 

Ashby et al. (2005), there is much variability between cells in monkey 

electrophysiological data, which may preclude quantitative data fitting.  Moreover, 

another reason that explicit data-fitting was not employed was that there are 

numerous data sets (behavioral performance, electrophysiological data in multiple 

brain regions, fMRI activation and connectivity data, MEG/EEG data) that we want 

our model to account for.  These data have different featural and temporal 

characteristics.  It is not clear to us how in principle one should go about fitting all 
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these data simultaneously.  In fact, as far as the neuroimaging data is concerned, other 

researchers (e.g., Friston, Preller et al., in press) have just begun to develop a 

systematic approach to this problem.   

Some caveats of our work include: the attention level and the top-down task 

control we used in the model are not realistically modeled; we hypothesized that the 

entorhinal cortex was responsible for a gating process, which needs to be confirmed 

by experiments; the locations we chose for prefrontal nodes (D1, D2, FS, R) in the 

Virtual Brain are somewhat arbitrary.  

In summary, we have performed several short-term memory tasks using one 

large-scale neural network model, and studied various neuronal behaviors in the 

inferotemporal cortex and prefrontal cortex. We modeled working memory with local 

microcircuits (D1, D2) and a large-scale recurrent network (PFC, IT), which 

produced neuronal behaviors that matched experimental findings. For generating a 

brain-like environment, we embedded the model into The Virtual Brain framework. 

The model in the future can be extended to incorporate more brain regions and 

functions, such as long-term memory. Our results indicate that computational 

modeling can be a powerful tool for interpreting human and nonhuman primate 

neuroimaging data. 

 

   



 

 62 
 

Chapter 3: Modeling visual-auditory bimodal processing and 

crossmodal attention capture of salient stimuli 

 

3. 1 Attention 

Attention is a crucial cognitive function for humans to select goal-relevant 

information among vast sensory stimuli in the environment. On the other hand, 

attention can be captured by salient goal-irrelevant distractors.  This mechanism 

allows us to focus on behavioral goals while staying vigilant to environmental 

changes, which is usually described as two separate types of attention: endogenous 

(voluntary/goal-driven) attention and exogenous (involuntary/stimulus-driven) 

attention (Posner & Cohen, 1984). Endogenous attention is thought to be controlled 

by a top-down process, starting from frontal lobe and connecting back to early 

sensory areas. In contrast, exogenous attention behaves primarily in a bottom-up 

manner, triggered by distractions which are task irrelevant but salient in a given 

context (Hopfinger & West, 2006; Yantis & Jonides, 1990). 

Working memory, where selected information is temporarily stored, relies on 

endogenous attention for protection from distractions. However, working memory is 

not completely protected and is capable of handling unexpected and salient 

distractions mediated by exogenous attention. Early studies on the relationship 

between working memory and attention focused mostly on the role of endogenous 

attention in working memory encoding and maintenance (A. Baddeley, 1986, 1996). 

Later, some EEG and behavioral studies have shown that working memory can also 
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control exogenous attention and reduce distractions (Berti & Schroger, 2003; 

SanMiguel, Corral, & Escera, 2008), yet little is known about the brain network 

mediating such effect. The present study aimed to investigate and propose a possible 

neural mechanisms of how endogenous and exogenous attention interact with each 

other, and how working memory controls exogenous attention switching. 

As we have shown in Chapter 1, the large-scale neural model of visual object 

processing is a powerful tool for testing the neural mechanisms mediating cognitive 

functions. Later an auditory object processing model was built in parallel with the 

visual model (Husain et al., 2004). The two large-scale neural models were designed 

to perform a short-term recognition memory delayed match-to-sample (DMS) task. 

During each trial of the task, a stimulus S1 is presented for a certain amount of time, 

followed by a delay period in which S1 has to be kept in short-term memory. When a 

second stimulus (S2) is presented, the model has to respond as to whether S2 matches 

S1. Recently, the visual model was extended to be able to manage distractors and 

multiple objects in short-term memory (Liu et al., 2017). The extended visual model 

successfully performed the DMS task with distractors and Sternberg’s recognition 

task (where subjects are asked to remember a list of items and indicate whether a 

probe is on the list). 

In this chapter, we present a simulation study of crossmodal attention capture, 

and how working memory load can affect this process. We first extend the 

aforementioned large-scale neural model with “endogenous attention” and 

“exogenous attention”. Attention is the neuronal activity in attention modules that are 

connected to working memory. We add a pair of modules representing the 
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“exogenous attention” for auditory and visual processing. These two modules 

compete with each other based on the salience of auditory and visual stimuli, and 

assign the value of attention together with endogenous attention. The endogenous 

attention is set according to task specification before each simulation. Then we 

simulate crossmodal attention allocation and various bimodal (i.e., auditory and 

visual) short-term memory tasks. Simulations show the “working memory load 

effect”, i.e., higher working memory load in one modality reduces the distraction 

from another modality, which has been reported in a number of experimental studies 

(Berti & Schroger, 2003; SanMiguel et al., 2008). In the present study, we interpret 

saliency as the amplitude of an input signal. 

Furthermore, we also note that higher working memory load can increase 

distraction from the same modality. We propose the neural mechanisms that underlie 

crossmodal attention switch and how working memory load modulates attention 

allocation between different modalities.  

 

3. 2 The structural network of auditory processing and attention 

The structural network of the combined auditory and visual model is shown in 

Fig. 3.1. We use a flavor of Wilson-Cowan units as the basic units of our model, 

which consists of one excitatory unit and one inhibitory unit (see Fig. 2.1A). One 

basic unit can be considered as a simplified representation of a cortical column. Each 

module of the auditory network is explained in detail in the following. Submodules of 

A1 and A2 are organized as 1×81 arrays of basic units, and all the other modules are  
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Figure 3.1 The network diagram of the large-scale auditory-visual neural model. 
Arrows denote excitatory connections; lines ending in circles denote inhibitory 
connections. The anterior cingulate (the red dot) (A. Ulloa & B. Horwitz, 2016) (A. 
Ulloa & B. Horwitz, 2016) performs as the exogenous attention module and where 
the visual-auditory attention competition occurs. See text for details. 
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9×9 arrays of basic units. For the details of the visual model, please see (Liu et al., 

2017; Tagamets & Horwitz, 1998).                       

A1 

In the auditory model, the early cortical auditory areas are combined as A1, 

which is analogous to the V1/V2 module in the visual model. A1 corresponds to the 

core/belt area in monkeys (Kaas & Hackett, 1999; Rauschecker, 1998) and the 

primary auditory area in the transverse temporal gyrus in human or Brodmann Area 

41 (Talairach, 1988). Based on experimental evidence that the neurons in primary 

auditory area are responsive to the direction of frequency modulated sweeps (Bieser, 

1998; Mendelson & Cynader, 1985; S. A. Shamma, Fleshman, Wiser, & Versnel, 

1993), module A1 is designed to consist of two types of neuronal units: upward-

sweep selective and downward-sweep selective units. The two submodules are 

organized as 1×81 arrays of basic units due to the fact that in auditory cortex sounds 

are represented on a frequency-based, one-dimensional (tonotopic) axis (Schreiner, 

Read, & Sutter, 2000; S. Shamma, 2001).   

 A2 

The A2 module is designed to be a continuation of A1 and consists of three 

populations of units: upward sweep selective units, downward sweep selective units 

and contour selective units. The upward sweep selective units and downward sweep 

selective units have a longer spectro-temporal window of integration than those in A1 

so that they are selective for longer frequency sweeps. The contour selective units are 

selective to changes in sweep directions, which are analogous with the corner 

selective units in the visual model.  The A2 module represents the lateral belt/parabelt 
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areas of primate auditory cortex. In experiments, parabelt neurons are found to be 

selective to band-pass noise stimuli and FM sounds of a certain rate and direction 

(Rauschecker, 1997).   

ST 

The third processing module of the auditory model is ST which stands for 

superior temporal cortex, including superior temporal gyrus and/or sulcus and the 

rostral supratemporal plane. Functionally, ST is equivalent to the IT (inferior 

temporal) module in the visual model, and acts as a feature integrator, containing a 

distributed representation of the presenting stimulus (Hackett, 2011; Tagamets & 

Horwitz, 1998). This functional equivalency is supported by experimental studies that 

neurons in ST respond to complex features of stimuli (Kikuchi, Horwitz, & Mishkin, 

2010) and a lesion of ST impairs auditory delayed match-to-sample performance 

(Colombo, Rodman, & Gross, 1996; Fritz, Mishkin, & Saunders, 2005).  

 

MTL 

The module MTL represents the medial temporal lobe which serves as a gate 

between ST and PFC. The gating mechanism is incorporated to avoid the working 

memory of one stimulus being overwritten by later-arriving stimuli. Anatomical 

studies on monkeys (Munoz, et al. 2009) have revealed that medial temporal lobe 

ablation disconnects the rostral superior temporal gyrus from its downstream targets 

in thalamus and frontal lobe.   

Several groups of neurons in MTL are designed to competitively inhibit one 

another so that only one group of gating neurons will be activated when a stimulus 
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comes in. Once the item is stored in this working memory buffer, an inhibitory 

feedback from PFC to MTL cortex will suppress the active gating neurons and release 

other gating neurons so that the remaining gating neurons are ready for new stimuli. 

We are assuming that each group of entorhinal gating neurons could be used only 

once during a task trial. 

PFC 

The module PFC represents the prefrontal cortex in both visual and auditory 

models. In the visual model, neurons in the PFC module can be delineated into four 

types based on experimental data acquired by Funahashi et al. (Funahashi et al., 1990). 

In our auditory model, the same four types of neuronal populations were employed 

analogously (Husain et al., 2004). Submodule FS contains cue-sensitive units that in 

general reflect the activities in the IT (ST) module. D1 and D2 submodules form the 

short-term memory units by exciting one another during the delay period. Recently, 

we have built in multiple sets of D1 and D2 submodules into the visual model (Liu et 

al., 2017) and successfully implemented tasks that held more than one item in short-

term memory, and in the present study we employ the same extension in the auditory 

model. R serves as a response module (output). It responds when a displayed stimulus 

(probe) matches the cue stimulus that is being held in short-term memory. Note that 

we assume that there are a limited number of gating units and a similar limited 

number of D1-D2 units, since empirical studies indicate that only a limited number of 

items can be simultaneously kept in short-tem memory (e.g., the so-called 7±2 (G. A. 

Miller, 1956); others have proposed a more limited capacity such as 3 or 4 (Cowan, 

2001)).  For computational simplicity, in this paper we will employ no more than 
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three items.           

Anterior cingulate cortex (ACC) 

The newly added ACC is represented by a pair of modules where the outputs 

of visual and auditory processing stream are taken as inputs and used to generate 

exogenous attention. The anterior cingulate is known for its possible role in 

integrating sensory information from different brain regions for salience computation 

(Etkin, Egner, & Kalisch, 2011; Menon & Uddin, 2010). In our model, ACC receives 

its inputs from IT in the visual model and ST in the auditory model, and assigns 

values to the visual and auditory attention/task-specific unit. In the current study, 

ACC processes the visual-auditory bimodality competition that leads to involuntary 

attention switch. ACC is also potentially crucial in modeling the processing of visual-

auditory association (Wang, Tse, & Morris, 2012). 

Fig. 3.2 shows the embedded visual and auditory models in the Hagmann’s 

connectome. We first found the hypothetical regions of interest (ROIs) corresponding 

to each module in our model and the connected nodes in Hagmann’s connectome. 

Then we embedded our revised model of microcircuits and network structure into the 

connectome (see Ulloa and Horwitz, 2016, for details). We ran the simulations using 

our in-house simulator in parallel with Hagmann’s connectome using the Virtual 

Brain software (Sanz Leon et al., 2013). 

In both the visual and auditory models, a task specification module is used to 

provide low-level, diffuse incoming activity to the D2 module in the prefrontal area 

which can be interpreted as an attention level.  The module is located arbitrarily in the  
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Figure 3.2 Embedded model in Hagmann’s connectome (Hagmann et al., 2008). We 
first found hypothetical locations for our model’s regions of interest (ROIs) and the 
connected nodes in the connectome (small dots connected to ROIs). We embedded 
our model of microcircuits and network structure into the structural connectome 
model of Hagmann et al. (2008). See Ulloa and Horwitz (2016) for details.  
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superior frontal gyrus of the Virtual Brain model. The attention level/task parameter 

can be modulated by the outputs of the ACC module. When the attention level is low, 

the working memory modules are not able to hold a stimulus throughout the delay 

period. 

3. 3 Simulated experiments 

We use the extended auditory model and the combined auditory-visual model 

to perform a number of simulated experiments that can include not only one stimulus, 

but others as well, some of which can be considered to be distractors.  The complete 

set of simulated experiments is the following: 

3. 3. 1 Auditory short-term memory simulation experiments 

a. Auditory delayed match-to-sample task. This experiment implemented the 

original delayed match-to-sample (DMS) task to demonstrate that the new auditory 

model (with an added module – the entorhinal cortex, and the linkage between visual 

and auditory models) continues to perform the DMS task and gives the same results 

as the original model (Antonio Ulloa & Barry Horwitz, 2016). One typical DMS trial 

consists of the presentation of a stimulus, an ensuing delay period, a presentation of a 

probe (the same or a new stimulus) and at the end of it, the simulated subjects need to 

decide whether the probe is the same as the first stimulus presented (see Fig. 3.3B). 

The attention/task parameter is set to high (0.3) during a trial. 

b. Auditory delayed match-to-sample task with distractors. The simulated 

subjects were shown two distractors (visual or auditory) before the probe was  
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Figure 3.3 Timeline designs of implemented tasks. A. Two examples of the auditory 
objects (tonal contours) we used as stimuli of cognitive tasks. B. The timeline for a 
single trial of auditory delayed match-to-sample (DMS) task. The simulated subjects’ 
task is to identify whether the probe is a match with the first stimulus. C. The timeline 
for a single DMS trial with distractors. The simulated subjects need to ignore the 
intervening distractors and only respond to the probe. D. The timeline for a single 
trial of the auditory Sternberg’s recognition task. The simulated subjects need to 
remember a list of tonal contours and their task is to decide whether the probe is a 
match with any stimulus in the list.  
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displayed (see Fig. 3.3C). The attention/task parameter is set to high (0.3) for the first 

stimulus and decreased to low (0.05) following the presentation of the distractors. 

c. Auditory version of Sternberg’s recognition task. An auditory variant of 

Sternberg’s recognition task (Sternberg, 1966, 1969) was used. On each trial of the 

simulation, three auditory stimuli were presented sequentially, followed by a delay 

period and then a probe. The subjects’ task was to decide whether the probe was a 

match to any of the three stimuli presented earlier (see Fig. 3.3D). The Sternberg 

paradigm with visual/auditory objects has been used in many studies, and thus allows 

us to compare our simulated results with experimental results. 

 

3. 3. 2 Visual-auditory bimodality experiments 

a. Bimodality DMS task with various attention settings: endogenous attention 

only, exogenous attention only, both endogenous and exogenous attention, see Fig. 

3.4A. A block of visual DMS trials and a block of auditory DMS trials were 

implemented simultaneously. The saliency of visual stimuli and auditory stimuli 

varied from trial to trial. The attention/task parameter assigned to each modality was 

determined based on the real-time output of the anterior cingulate module. In general, 

higher saliency of one stimulus will result in higher attention in the corresponding 

modality. 

b. Bimodality distraction task with different working memory load, see Fig. 

3.4B. The simulated subjects were asked to remember 1~3 visual stimuli before an  
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Figure 3.4 Designs of bimodality tasks. A. Bimodality Delayed Match-to-sample task: 
Auditory and visual stimuli of different saliency levels are presented simultaneously. 
Case 1 (endogenous + exogenous attention). The simulated subjects are required to 
attend auditory stimuli only and need to decide whether the second stimulus is the 
same as the first. Visual stimuli are distractors. Case 2 (exogenous attention only). 
The simulated subjects can choose to attend to auditory or visual stimuli based on the 
saliency. B. Bimodality distraction task with different working memory load. The 
model is asked to remember one to three visual items and decide if the final probe is a 
match of any stimulus in its working memory. An auditory distractor is presented 
before the probe. 
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auditory distractor occurred.  The endogenous attention is set to attend to visual 

stimuli. 

3. 3. 3 fMRI experiments 

Simulated fMRI signals can be calculated for each of the tasks discussed 

above. The direct outputs are the electrical activity of simulated neuronal units. Prior 

to generating fMRI BOLD time series, we first calculate the integrated synaptic 

activity by spatially integrating over each module and temporally over 50 ms 

(Tagamets & Horwitz, 1998). Using the integrated synaptic activity of select regions 

of interests (ROIs) as the input to the fMRI BOLD balloon model of hemodynamic 

response (Stephan et al., 2007; A. Ulloa & B. Horwitz, 2016), we calculated the 

simulated fMRI signal time-series for all our ROIs and then down-sampled the time-

series to correspond to a TR value of 2 seconds. For more mathematical and other 

technical details, see Appendix and Ulloa and Horwitz, 2016 (A. Ulloa & B. Horwitz, 

2016). 

In simulating an fMRI experiment for the aforementioned cognitive tasks we 

implement two types of design schemes: block design and event-related design. In an 

experiment with block design, one stimulus is followed by a 2-second delay period, 

and the model alternately performs a block of task trials (3 trials) and a block of 

control trials (3 trials). The control trials use degraded shapes and random noises. 

While with event-related design, the delay period that follows each stimulus is 

extended to 20 seconds in order to show a more complete response curve in the 

BOLD signal.  
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Figure 3.5 Simulated neural activities of the excitatory neurons in selected modules 
during a single auditory DMS trial. The probe in this trial is a match with the stimulus, 
the R (response) module successfully fired during the probe presentation. 
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3. 4 Simulation results 

3. 4. 1 Auditory short-term memory experiments 

The model successfully performed the auditory DMS task (with and without 

distractors) and Sternberg’s recognition task (see Table 3.1), with accuracy similar to 

the visual tasks (Liu et al., 2017; Tagamets and Horwitz, 1998). Fig. 3.5 shows the 

electrical activities of simulated neuronal units of the different modules during a 

DMS task using the extended auditory model. The input stimuli, represented by MGN 

activity, are first processed by feature-selective modules in A1 and A2.  A2 has 

longer spectro-temporal windows of integration than A1 and thus is responsive to 

longer frequency sweeps. The ST module contains the distributed representation of 

the presenting stimulus and feeds the presentation forward to the gating module MTL 

and then PFC. A working memory representation is held in the D1 and D2 modules 

through the delay period. The probe is a match with the presented stimulus so that the 

R module responds. The model also can handle DMS task with distractors, for which 

the electrical activities are illustrated in Fig. 3. 6. The first stimulus is the target that 

the model needs to remember and it is followed by two distractors. The endogenous 

attention/task-specification unit is set to a high level, but if the probe stimuli don’t 

match the first stimulus, the attention value is reduced to a low value following each 

probe stimulus. The distractors also evoke some activity in the working memory  
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Figure 3.6 Simulated neural activities of the excitatory neurons in selected modules 
during a single auditory DMS trial with two intervening distractors. The model 
properly avoided the distractors and responded when the probe was a match of the 
first stimulus. 
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Table 3.1 Mean performances of 10 simulated subjects doing three cognitve tasks. 
Performances are measured by counting the number of neuronal units in the decision-
making module (R) firing above a certain threshold during the response period. 

 
Tasks	 DMS	 DMS	w/	

distractors	

Sternberg’s		task	

Accuracy	 83.9%	 81.8%	 78.7%	
Standard	deviation	 5.71%	 6.73%	 6.05%	

 

modules (D1, D2), but not strong enough to overwrite the representation of the first 

stimulus as the model successfully holds its response until the matched probe appears. 

Fig. 3.7 demonstrates how the model implements the auditory version of 

Sternberg’s recognition task and handles multiple auditory objects in short-term 

memory. The first three items are held in short-term memory (D1, D2), which is 

shown in Fig. 3.7B, and when the probe matches any of the remembered three items 

the R module is activated (Fig. 3.7A). Different groups of neurons in the gating 

module MTL responded to each of the stimuli and prevented the representations in 

working memory from overwriting one other.  

In the visual model, we reported that we observed enhanced activity in the IT 

module during the delay period which helped short-term memory retention and was 

consistent with experimental findings (J. Fuster et al., 1982). In the current study, we 

also modeled this type of neuronal activity in ST, as can be seen in Figs. 4 and 6, and 

this enhanced activity has been reported in auditory experiments (Colombo et al., 

1996; Scott, Mishkin, & Yin, 2014). 
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Figure 3.7 Neural activity during Sternberg’s task. A. The responses of the model in 
three trials of the Sternberg’s task. In the first and second trials shown, the response 
module made proper responses as the probes were matches with one of the three 
remembered items. B. Snapshots of working memory module D2 during the 
presentations of three stimuli and the probe.  
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Figure 3.8 A. Bimodality DMS task trials with endogenous + exogenous attention. 
The endogenous/top-down task signal is set to attend auditory stimuli and regard 
visual stimuli as distractors. The auditory stimuli are stored in working memory 
modules (D1/D2) successfully. As the saliency level of visual stimuli increases, the 
exogenous attention for visual stimuli increases and the auditory attention decreases. 
Some working memory neurons are fired for visual distractors if they are salient 
compared to auditory stimuli. 
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Figure 3.8 B. Bimodality DMS task trials with exogenous attention only. The model 
decides itself to attend visual or auditory stimuli based on the saliency. Working 
memory can be formed for salient stimuli as shown in the figure. 
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3. 4. 2 Visual-auditory bimodality experiments 

Fig. 3.8A and 3.8B show the simulated crossmodal attention switch caused by 

input saliency changes. During the experiment, the attentional inputs into working  

memory module D2 were both the endogenous attention and the exogenous attention 

(outputs of multisensory integration module ACC). In the experiment shown in Fig. 

3.8A, 5 DMS trials were implemented. The model’s endogenous attention was set to 

attend to auditory stimuli (the auditory attention/task parameter is set to ‘high’) and 

not to attend to visual stimuli. The model attended auditory stimuli and treated visual 

stimuli as distractors in the first three DMS trials during which the saliency of 

auditory stimuli is higher than the visual stimuli, but started to attend to the visual 

stimuli because the saliency of visual stimuli was enhanced significantly but the 

model still could encode auditory stimuli into working memory. In the experiment 

shown in Fig.3.8B, the endogenous attention was set to ‘low’ for both visual and 

auditory stimuli (i.e., no task/goal is specified to the model) and the attentional input 

to D2 was only the exogenous attention generated in ACC. The model encoded 

salient visual or auditory stimuli successfully into working memory. 

 

3. 4. 3 Working memory load reduces crossmodal distractions 

During simulations we noticed that it is easier to distract one modality with 

distractors in the other modality during the working memory encoding phase than in 

the maintenance phase, as shown in Table 3.2. When implementing a visual DMS 

task (there is one item held in the working memory during the delay period) with an 

auditory distractor in the delay period, 32% auditory working memory neurons fired 
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for the distractor. However, when we increased the working memory load to 2 and 3 

items, 23.7% and 19.26% of auditory working memory neurons fired for the 

distractor, respectively. This phenomenon shows that the working memory formed in  

Table 3.2 Neurons fired for crossmodal distractors under different WM load. 
 

Memory	load	 1	item	 2	items	 3	items	

Neurons	fired	for	

the	distractor	

32%	 23.7%	 19.26%	

Standard	deviation	 2.94%	 1.64%	 2%	
 

 

the model is stable and this is also consistent with experimental findings that higher 

working memory load in one modality reduces distraction from another modality 

(SanMiguel et al., 2008). 

However, little is known about the underlying neural mechanism mediating 

these phenomena. In our model, two pathways can conduct the working memory load 

changes to exogenous attention: working memory – V4 – ST/IT – ACC – exogenous 

attention, and working memory – ST/IT – ACC – exogenous attention. When the 

feedback connections from PFC to V4 and IT/ST are removed, we no longer observe 

this working memory load effect. 

3. 4. 3 Simulated fMRI experiments 

As discussed previously, fMRI BOLD time series are generated for select 

regions of interests (ROIs) using integrated synaptic activity, and for each task we 

implement the experiment using either a block design or an event-related design. The 

event-related scheme has longer duration of delay periods than experiments using 
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block design. Thus, the event-related experiment can show a more complete response 

curve in the BOLD signal for each incoming stimulus. 

Fig. 3.9 shows the simulated BOLD signal for a block-design auditory DMS 

task, which successfully replicates the results from Husain, et al. (Husain et al., 2004). 

In the experiment one block of DMS trials is follow by a block of control trials in 

which random noises are used. Modules representing early auditory areas A1 and A2 

responded equally to DMS stimuli and noises. Higher order modules such as MTL 

and PFC showed much larger signal changes, which indicate the distinction between 

meaningful stimuli and irrelevant stimuli are processed in higher order regions. 

Fig. 3.10 shows one event-related fMRI BOLD time-series of three visual 

DMS trials. During the second and the third trials, auditory distractors were played in 

the delay periods. Early auditory area A1 responded to the auditory distractors, but 

did not cause much signal changes in auditory PFC regions compared with visual 

regions. The model finished all three trials correctly, but the presence of auditory 

stimuli lowered the BOLD activity in visual PFC modules. 

One fMRI experiment of visual-auditory crossmodal attention allocation 

(salient stimuli capture) was also implemented. The BOLD signals of ROIs are 

displayed in Fig. 3.11. No task instructions were given prior to the simulation, i.e., the 

endogenous attention was excluded. The model reacted to visual and auditory stimuli 

purely based on exogenous attention capture.  The model first attended to visual 

stimuli as the BOLD signal for visual PFC spiked (see Fig. 3.11A) and then switched 

to attend to salient auditory stimuli as the BOLD signal for auditory PFC module 

increased (see Fig. 3.11B). The ACC module controls the switch by playing the role  
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Figure 3.9 Simulated BOLD signal for a block-design auditory delayed match-to-
sample (DMS) task. The experiment consists of one block of 3 DMS trials using tonal 
contours, and one block of 3 control trials using random noise. Modules representing 
early auditory areas A1 and A2 responded equally to DMS stimuli and noises. Higher 
order modules such as MTL and PFC showed much larger signal changes. 
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Figure 3.10 Simulated BOLD signal for visual DMS task with auditory distractors. 
The experiment consists of three visual DMS trials. During the second and the third 
trials, auditory distractors were played in the delay periods. A. BOLD signal for ROIs 
in the visual model. B. BOLD signal for ROIs in the auditory model. Early auditory 
area A1 responded to auditory distractors, but did not cause much signal changes in 
auditory PFC regions compared with visual regions. However, the presence of 
auditory stimuli lowered the BOLD activity in visual PFC modules. 
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Figure 3.11 Simulated BOLD signal for visual-auditory crossmodal attention 
allocation experiment. No task instructions were given prior to the simulation, i.e., the 
model reacted to visual and auditory stimuli purely based on exogenous attention 
captures.  A. BOLD signal for ROIs in the visual model. The model attended to visual 
stimuli in the beginning of the test and the BOLD signal for visual PFC spiked. B. 
BOLD signal for ROIs in the auditory model. The model, after attending visual 
stimuli in the beginning, switched to attend to salient auditory stimuli as the BOLD 
signal for auditory PFC module increased. The ACC module controls the switch by 
playing the role of exogenous attention.  
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of exogenous attention. 

3. 5 Discussion 

In this chapter, we first presented a simulation study using a large-scale 

auditory neural network model. Several cognitive tasks of short-term memory were  

successfully implemented with auditory stimuli. These short-term memory tasks can 

include auditory or visual distractor stimuli, or can require that multiple items be 

retained in mind during a delay period. Second, we added an exogenous module that 

connected the auditory model and the visual large-scale neural model, and embedded 

the combined model into a whole brain connectome. We simulated the crossmodal 

attention capture by presenting salient auditory distractors in a visual DMS task or 

salient visual distractors in an auditory task. We also simulated involuntary attention 

switch by presenting visual and auditory stimuli simultaneously with different 

saliency levels. At last, we investigated how working memory load in one modality 

could reduce the exogenous attention capture from the other modality 

The salience level of one stimulus is typically detected based on the contrast 

between the stimulus and its surrounding environment. However, the “contrast” can 

be defined on different metrics, for example, the luminance of visual objects and the 

loudness of auditory objects which are used in our modeling. There are other metrics 

based on sensory features to define a salient object, such as bright colors, fast moving 

stimuli in a static background, etc.  An object can also be conceptually salient. A 

theory has been proposed that schizophrenia may arise out of the aberrant assignment 

of salience to external or internal objects (Kapur, 2003). In our simulation, stimuli 

that resulted in high working memory load may also be considered as conceptually 
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salient, as the effect of high working memory load is similar with high endogenous 

attention.(Posner & Cohen, 1984) 

Several brain regions are thought to be involved in the multisensory 

integration process. The perirhinal cortex is proposed based on monkey anatomical 

studies (E. A. Murray & Richmond, 2001; Simmons & Barsalou, 2003; Suzuki & 

Amaral, 1994), whereas the left posterior superior temporal sulcus/middle temporal 

gyrus is suggested to be where the multisensory integration takes place based on 

some human functional imaging findings (Amedi, von Kriegstein, van Atteveldt, 

Beauchamp, & Naumer, 2005; Beauchamp, 2005; Calvert, 2001). In our study, we 

mainly focused on the crossmodal attention competition based on bottom-up salience, 

as opposed to crossmodal integration, so we assigned the anterior cingulate cortex as 

the module responsible for the exogenous attention computation and visual-auditory 

competition; as discussed in the methods section, the anterior cingulate cortex is 

thought to play a major role in salience computation. 

In our visual model, we assigned the entorhinal cortex to be the gating module 

between inferior temporal area and PFC based on a series of experimental results. 

However, experimental evidence for the corresponding brain region that implements 

the auditory gating function is less specific. We based our MTL choice for the 

auditory gating module on a study of Munoz et al. (Munoz, Mishkin, & Saunders, 

2009) that shows that ablation of MTL can result in disconnections between the 

rostral superior temporal gyrus and its downstream targets in thalamus and frontal 

lobe.  
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In summary, we investigated the neural mechanisms underlying endogenous 

(top-down) and exogenous (bottom-up) attention, and how salient stimuli draw more 

attention, using a large-scale neural network model of visual-auditory object 

processing with short-term memory. We modeled and incorporated into our visual-

auditory object-processing model the neuronal mechanisms for the control of 

endogenous and exogenous attention. The model successfully performed various 

bimodal working memory tasks, and produced behavioral, electrophysiological and 

fMRI results that matched experimental findings. Furthermore, in our visual-auditory 

bimodality simulations, we found that working memory load in one modality would 

reduce the distraction from the other modality, and a possible network mediating this 

effect is proposed based on our model. 
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Chapter 4: Quantifying the functional network changes with 

task conditions using complex network measures 

 

In the past two decades, the theory of networks has been applied in a number 

of fields, such as social networks, the Internet, biology and many social sciences 

fields (M. E. Newman, 2003). A network is a set of items, which are called vertices or 

sometimes nodes, with connections between them, called edges or simply connections 

(in the mathematical literatures this is often defined as “graph”). Thus, using the 

theory of complex networks to study neural networks is a natural choice.  

As discussed in section 1.4, the application of network theories has some 

unique advantages over traditional analytic techniques in cognitive neuroscience. 

First, complex network theory provides a reductionistic perspective to the study of 

human brains by giving a topological abstraction of neural networks. A number of 

parcellation schemes exist that divide the brain into nodes/vertices. Thus many 

microscopic features and details, which are not required on the scale of whole brain 

organization and dynamics, can be neglected. Second, by using the network 

abstraction we can quantify some of the variability between subjects. Furthermore, 

the parcellation scheme can be of different scales, from neurons to brain regions, 

which facilitates the comparison of structural connectivity and functional connectivity. 

. 
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4. 1 Functional connectivity networks 

As we have seen in previous chapters, the human brain is a complex network 

consisting of many nodes (vertices). Depending on the scale we are discussing, one 

node can be a neuron, a cortical column or a region/subregion. In the large-scale 

network constructed using empirical data, nodes are usually brain regions/subregions, 

and edges between nodes can represent one of three types connections: structural, 

functional or effective connections. 

The choice of how to parcellate the brain into nodes in the network should be 

done carefully, as the nature of nodes can strongly influence the biophysical 

interpretation of the neural network topology (Butts, 2009). A good parcellation 

needs to represent brain regions with coherent patterns of functional connections. 

Studies using different node parcellation schemes usually result in significantly 

different network properties and cannot be quantitatively compared. In our study, we 

used the 998-node Hagmann’s connectome as a high-resolution parcellation scheme. 

Structural connectivity refers to physical attachment or anatomical tracts that 

link two nodes (neurons, brain regions). Structural connections are undirected and 

usually binary in analysis due to experimental limitations (weighted in real brains). 

Functional connectivity is defined as the temporal correlation between the activity of 

different neurons/regions, and is measured by cross-relating the time-series of their 

activity (Horwitz, 2003). Effective connectivity represents direct or indirect causal 

influences of one region on another so that the corresponding network is weighted 

and directed (Friston, Harrison, & Penny, 2003). The networks of interest in this 

chapter are functional connectivity networks which are weighted, undirected. 
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A connection/edge in functional connectivity networks is defined by the 

correlation of the nodes it connects. The connections are weighted signed upon 

construction, but weak connections and negative connections can obscure the network 

properties of interest, thus thresholding of the connectivity matrix is necessary. In 

general, a negative edge weight implies segregation or antagonism (Fornito, 2016). If 

we do not want to quantify this feature, negative connections should all be removed 

before further analysis. Thresholds are often decided arbitrarily, but the network 

properties should hold across a range of thresholds. Sometimes functional networks 

are simplified to binary networks. In this chapter, we are going to construct functional 

networks for a 998-node connectome under different conditions: resting state, passive 

viewing, DMS task, and auditory-visual bimodal attention switching.  

One common caveat in traditional functional connectivity analysis is that the 

functional networks are assumed to be static. However, some recent studies have 

shown that human functional network architecture can change in a short time and 

these changes are closely related to human cognitive functions such as memory, 

attention, sleep and learning (Bassett et al., 2011; Horovitz et al., 2008), and may 

even be related to consciousness (Hutchison et al., 2013).  

A number of powerful tools adopted from engineering fields have been used 

to perform dynamic functional connectivity analysis, including the wavelet transform, 

time-frequency analysis, independent component analysis, etc. For example, 

independent component analysis has been applied to divide fMRI data into different 

spatial and temporal components with similar patterns (Weissman-Fogel, Moayedi, 

Taylor, Pope, & Davis, 2010). Another set of methods is contributed by applied 
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mathematics such as dynamic graph theory (Sizemore & Bassett, 2017). In our 

modeling, we have dynamic changes in the functional networks. Thus, we will assess 

how the graph theoretical measures change as a task proceeds. In this chapter, we are 

going to apply sliding window analysis to explore the temporal dynamics of the graph 

theory measures of interest. 

 

4. 2 Basic measures of functional networks 

A series of measures can be calculated once we construct a functional network 

(Rubinov & Sporns, 2010). These measures assess the network’s properties from 

three scales: local, global and regional. Local measures characterize the properties of 

individual nodes and can also refer to its relation with the neighborhood of one node. 

Global scale measures depict the aggregate properties of the given network, i.e., 

consider the network as a whole. Cognitive functions mediated by local or regional 

networks can cause changes in other parts of the functional network, though they are 

not directly involved in performing the functions. Global scale measures are useful to 

quantify such types of phenomena. Global measures are also important for comparing 

artificial neural networks with empirical “benchmark” networks to test the validity of 

models. Regional measures are mesoscale, which are used when group segregation 

exists, usually when we choose the high-resolution node parcellation scheme. 

4. 2. 1 Degree 

Given one node, the number of nodes connected to it (the sum of incoming 

and outgoing for directed networks) is called the “degree” of this node. In weighted 

networks, degree is termed connection strength, which is the sum of all incoming and 



 

 99 
 

outgoing weights. Some nodes in a complex network are considered as “hubs” of the 

network, i.e., these nodes have much higher degrees than most other nodes. The 

degree distribution will possess a long tail if a network has many hub nodes.  

One important class of networks characterized by the presence of large hubs is 

scale-free networks, whose degree distribution follows a power law. The fraction 

!(!) of nodes in the network (the frequency of occurrence in real-world networks) 

having ! degrees is expressed as 

! ! = !!!!                                                          (4.1) 

where the exponent  ! is a parameter and C is a constant. The scale-free property is 

related to another famous network property “small-worldness” which states that most 

nodes can be reached from any given node within a small number of steps (Latora & 

Marchiori, 2001). 

4. 2. 2 Efficiency  

The efficiency of a network measures how efficiently it exchanges 

information (Latora & Marchiori, 2001). Path is a key concept for efficiency related 

measures. Paths are potential routes of connecting pairs of nodes, and lengths of paths 

count the number of distinct nodes and links on the routes. Shorter lengths indicate 

stronger ability to integrate information or higher efficiency. The average path length, 

also termed as characteristic path length, is commonly used as a key metric of 

complex networks.  

Global efficiency is a measure of the functional integration, the ability to 

integrate specific information that is distributed in the brain. To mathematically 
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define global efficiency for a network G, one needs to examine the average 

efficiency, which is define as: 

!!"# ! =  1
!(! − 1)

1
!(!, !)

!!!∈!
                                       (4.2) 

where ! is the total number of nodes and !(!, !) denotes the length of the shortest 

path for the pair ! and !. The global efficiency then can be defined as: 

!!"#$%" ! =  !!"#(!)!(!!"#$%)                                                 (4.3) 

where !!"#$% is a network with the same number of nodes as ! and all possible edges 

exist. The “ideal” network with all nodes connected to each other has a global 

efficiency of 1, the largest value possible. The network with no edges at all has a 

global efficiency of 0, which means  no information exchange can occur in the 

network. 

The local efficiency of one node ! is defined on the local subgraph !! which 

consists of all the immediate neighbors of !, but ! itself is not included. The mean 

local efficiency for a network thus can be expressed as: 

!!"# ! =  1! !(!!)
!∈!

                                             (4.4) 

 

The global efficiency is comparable to the inverse characteristic (average) path length 

1 !, which measures the efficiency of moving information through the given 

network. As the definitions imply, the characteristic path length is more influenced by 

long paths while the global efficiency is more influenced by short paths.  
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4. 2. 3 Segregation measures 

Besides the integration measures discussed above, another set of import 

metrics is segregation measures. The human brain is able to implement complex 

cognitive functions by segregating brain regions into functionally specialized groups, 

known as modules/clusters/communities in different contexts. In functional networks, 

such groups suggest nodes have higher statistical dependencies within one group than 

with nodes in other groups.  

Clustering in a network is defined on the density of triplets of nodes. One 

triplet consists of three connected nodes. If the three nodes are connected to each 

other, then the triplet is closed; otherwise, the triplet is open. The global clustering 

coefficient is thus the number of closed triplets over the total number of triplets (both 

open and closed). The local clustering coefficient of one node in a network is defined 

the fraction of the node’s neighbors that are also neighbors of each other (Watts & 

Strogatz, 1998). Mathematically, let’s define ! !  as the set of directly connected 

neighbor nodes of node i; ! as the set of edges of the network; !! as the number of 

neighbors. Then the clustering coefficient for node i is: 

!! =  ! !!": !! , !!  ∈ ! ! , !!" ∈ !
!!(!! − 1)

                             (4.5) 

where ! is 1 for directed networks, and 2 for undirected networks. The average 

clustering coefficient of a network is an alternative measure to the global clustering 

coefficient. 

The clustering coefficient metric is simple yet flawed in networks with few 

triplet connections and unable to depict the structure and size of these segregated 

groups. A more superior metric is modularity index whose calculation is based on 
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knowledge of the community structure of the given network. Mathematically, 

modularity is defined as the fraction of the connections (edges) that fall inside 

communities minus the expected fraction if connections were generated randomly but 

the degree (connection strength) distribution remained the same. The value of the 

modularity index lies in the range −1, 1 . A higher value of modularity means a 

higher concentration of connections within communities compared with the expected 

concentration of an ensemble of randomized networks with the same degree 

distribution. 

The calculation of modularity index depends on the knowledge of given 

community parcellation. The optimal community structure corresponds to the highest 

value of modularity, thus is given by certain optimization algorithms rather than exact 

computations. Girvan and Newman in 2002 provided the first algorithm (Girvan & 

Newman, 2002), which is known to be accurate but slow for large networks. Blondel 

et al. gave a more recent and faster algorithm (Blondel, Guillaume, Lambiotte, & 

Lefebvre, 2008). These algorithms were originally designed for binary networks but 

later were generalized to weighted networks (M. E. J. Newman, 2004). 

 

Some other complex network metrics are also of great importance in 

analyzing certain aspects of brain functional networks, such as small-worldness, 

network motifs, eigenvector centrality, etc. We will restrict our discussion to the 

aforementioned metrics in the rest part of this chapter. 
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4. 3 The intrinsic functional connectivity networks under different task 

conditions 

4. 3. 1 Constructing the intrinsic functional connectivity network 

Intrinsic brain activity refers to the neural states that are produced 

spontaneously by the brain and not as responses to stimulation or immediate reactions 

to the environment (Havlík, 2017). Some authors use the term as an equivalent of 

resting state activity that occurs when a subject is not performing an explicit task. In 

our study, we define intrinsic activity as both the resting state activity and the activity 

of non-task related brain regions when performing cognitive tasks. Unlike the case of 

real empirical data, in our computational modeling study we know explicitly which 

neural populations are participating in the task and which aren’t. Thus, the intrinsic 

functional connectivity network is generated by calculating the correlations between 

connectome nodes excluding the nodes directly mediating the cognitive task. 

We embedded a biophysically realistic large-scale neural model into the Hagmann’s 

connectome of 998 nodes (for details, see Chapter 2). A series of cognitive tasks have 

been successfully implemented, including passive fixation, passive viewing, delayed 

match-to-sample (DMS) task and Sternberg’s list memorization task using 

visual/auditory/visual-auditory bimodal stimuli. The large- scale model is directly 

performing the cognitive tasks, and the 998-node connectome provides brain-like 

neural noise to task nodes (our model) during simulations, and in return receive inputs 

back from the task nodes.  
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Figure 4.1A The adjacency matrix of structural connectivity in 998-node Hagmann’s 
connectome. The y-axis texts and colors show brain regions that the 998 nodes are 
from. The red lines separate right hemisphere and left hemisphere. The upper left 
quarter shows the structural connectivity within right hemisphere. 
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Figure 4.1 B The correlation matrix of the 998 intrinsic brain nodes for the synaptic 
neural activity in a block of auditory DMS trials. It serves as the adjacency matrix in 
constructing the intrinsic functional connectivity network. The 998 nodes are the 
same with Figure 4.1A. 
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Two types of outputs are generated from the simulation: simulated fMRI 

BOLD signals and synaptic activity. As discussed in Chapter 2, we use the absolute 

value of the synaptic activity as the neural substrate that gets convolved with a 

hemodynamic model to generate the simulated fMRI BOLD activity. We can create 

the functional connectivity networks for the tasks of interest based on either synaptic 

activity or fMRI BOLD time series. Simulated fMRI BOLD signals have worse 

temporal resolution than simulated synaptic activity but can be compared with 

empirical data since current techniques are unable to collect synaptic activity with 

comparable spatial resolution as our model. Ulloa and Horwitz (2018) have analyzed 

how the intrinsic functional connectivity network changes under different visual task 

conditions using simulated fMRI BOLD signals. In the present work, we are going to 

extend the analysis to synaptic activity with an updated bimodal model. 

Fig. 4.1A shows the adjacency matrix of structural connectivity using the 998-

node Hagmann’s connectome, and Fig. 4.1B shows the adjacency matrix of the 

functional connectivity network for a block of auditory DMS trials. Connections in 

the network are calculated based on simulated synaptic activity.  

 

4. 3. 2 Power scaling 

Human brain functional connectivity networks have been shown to be scale-

free networks in a number of studies (Barabasi & Albert, 1999; Bonifazi et al., 2009). 

The scaling parameter ! was found to be 2.0 in human fMRI with voxels as the nodes 

in the functional network (Eguiluz, Chialvo, Cecchi, Baliki, & Apkarian, 2005). 

However, the value of ! varies depending on a number of factors including the scale 

of interest, parcellations of brain regions, etc.  
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We generated functional connectivity networks for both synaptic and fMRI 

BOLD time series using our model implementing different cognitive tasks (see 

section 4. 3. 1). The values of ! were found by first evaluating the connection 

strength distribution (namely the degree distribution in a binary network) !(!) and 

then fitting log (! ! ) against log (!), as for a power law distribution these data 

points should lie on a straight line with slope !.  

Fig. 4.2A shows the connection strength distribution for the functional 

connectivity network generated from integrated synaptic activity. The data were 

collected from the simulation of a block of the auditory DMS task (consisting of three 

DMS trials and three passive listening trials). The fitting of log (! ! ) versus log (!) 

is shown in Fig. 4.2B and the value of ! was found to be 3.6 using a least squares 

algorithm. The value of ! varies with different thresholds we applied on the 

functional network, and the simulated tasks from which the simulated data were 

collected.  The relationship between ! and threshold value is plotted in Fig. 4.2C, 

which shows the scale-free property holds for a wide range of threshold values. The 

threshold value is the percentage of weakest connections removed. A threshold of 0.4 

means the bottom 40% connections are ignored in further analysis. 

We also fitted the functional networks generated from simulated fMRI BOLD 

time series into a power law distribution. The degree distribution of a BOLD 

functional network (data collected from a block of DMS task) is shown in Fig. 4.3A 

and the attempt to fit the distribution to a power law is shown in Fig. 4.3B. The value 

of power exponent ! corresponding to different thresholds is shown in Fig. 4.3C. The  
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Figure 4.2 Power scaling of synaptic FC networks A. The connection strength 
distribution of the intrinsic functional connectivity network generated from simulated 
synaptic activity. The connection strength of one node is the sum of its incoming and 
outgoing weights. B. The power law fitting of connection strength distribution. C. 
The value of power-law exponent dependency on threshold of the functional matrix.  
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Figure 4.3 Power scaling of fMRI BOLD FC networks. A. The connection strength 
distribution of the intrinsic functional connectivity network generated from simulated 
fMRI BOLD activity. The connection strength of one node is the sum of its incoming 
and outgoing weights. B. The power law fitting of connection strength distribution 
(BOLD). C. The value of power-law exponent dependency on threshold of the 
functional matrix (BOLD).  
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! value matches empirical results (Eguiluz et al., 2005) when the threshold is 0.5, i.e., 

half of the connections in the network were ignored, but the value does not converge 

with the increase of threshold as in the synaptic network (Fig. 2C). Given the fact that 

synaptic time-series have better temporal resolution than the BOLD signals (5 ms vs. 

2 secs), in the following discussion we will use synaptic networks. 

 

4. 3. 3 Quantify the changes between the passive and task-evoked intrinsic functional 

networks 

We used four experimental conditions: passive viewing, visual DMS, visual 

Sternberg’s task and visual-auditory DMS task. During passive viewing the 

model/subjects watch degraded visual shapes but take no action; thus it can be used to 

generate the passive intrinsic functional network. Visual DMS is the simplest task 

condition while the visual Sternberg’s task and visual-auditory DMS task are more 

complex tasks. increasing either the working memory load or the number of brain 

regions directly involved in the task. To quantify the intrinsic network activity 

differences between the passive and task evoked conditions, and the changes between 

different task complexities, we calculated network metrics of synaptic functional 

connectivity (FC) matrices under different conditions. We choose global efficiency as 

an example of functional integration metrics, and clustering coefficient as an example 

of functional segregation metrics. 

 

a. Global efficiency 

Ulloa and Horwitz (Ulloa & Horwitz, 2018) have shown, using the visual 

model, that the global efficiency of task-evoked FC networks is higher than passive 
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FC networks. Specifically, the value of global efficiency is higher for DMS than for 

passive viewing, and for passive viewing than for passive fixation. The FC networks 

in their study were generated from simulated fMRI BOLD time series. As we have 

seen from the power scaling section, because the functional networks generated from 

integrated synaptic activity have a more realistic degree distribution, we analyze the 

changes of network metrics on synaptic functional networks. Furthermore, we 

investigate the metrics’ dependencies on task complexity (Sternberg’s task, visual-

auditory bimodal tasks, etc.) using the auditory-visual bimodal model.  

Fig. 4.4A shows the global efficiency of task-evoked functional networks is 

higher than passive intrinsic functional networks, which is consistent with Ulloa and 

Horwitz (2018). The figure also shows that the global efficiency increases with the 

complexity of cognitive tasks. The visual-auditory bimodal DMS task has higher 

values of global efficiency than other single modal working memory tasks. The 

dependency on task complexity has been reported experimentally (Cohen & 

D'Esposito, 2016). This is expected in our simulation because the increase in 

complexity may arise from: either higher working memory load (Sternberg’s task) 

which causes higher neural activity in prefrontal cortex, of which the nodes are 

connected to a wide range of nodes in the intrinsic network; or more task-involved 

nodes (bimodal DMS task) that have connection strengths much higher than the 

average. 
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Figure 4.4 Complex network metrics for each experimental condition and for 
different threshold values. The threshold value represents the percentage of 
connections we ignored. A. The global efficiency for synaptic FC networks in 4 
different task conditions with different threshold values. B. The clustering coefficient 
for synaptic FC networks in 4 different task conditions with different threshold 
values. 
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b. Increases in modularity and clustering coefficient 

Our simulation showed a higher modularity index and clustering coefficient 

for task-evoked networks than for passive networks. However, modularity and 

clustering coefficient did not show task complexity dependencies as did the efficiency 

related network metrics (See Fig. 4.4B). Corresponding to the modularity index, the 

number of modules of task-evoked networks is smaller than the passive FC network, 

i.e., the networks are highly modular with less modules in non-passive tasks. The 

modular structures for passive FC network and task-evoked network are shown in Fig. 

4.5. 

4. 4 The whole-brain functional networks 

In the previous discussion, all nodes directly executing the tasks were 

excluded in order to study the intrinsic brain activity. What if we include these tasks 

nodes and thus have a whole-brain functional network? The functional networks 

discussed in this section are all defined by the synaptic activity. 

Since most of the task nodes are highly active during the task, which is 

characterized by long-range functional connections (e.g., V1 is correlated with visual 

working memory nodes), they possess high connection strengths and act as functional 

hubs. Therefore, these nodes extend the long tail in the connection strength 

distribution. 

 



 

 116 
 

 
 
Figure 4.5 The modular structure of two example synaptic FC networks under 
different task conditions. The upper plot represents the modular structure of FC 
network in passive viewing task and contains 6 modules. The lower plot is for a DMS 
task, which has 3 modules in the FC network. The nodes are arranged using radial 
axis layout. Modules are represented by arcs and the radiuses of the arcs are 
proportional to the size of modules. The plot is generated using software Gephi. 
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Similarly, the whole-brain functional network shows a greater local efficiency, 

a lower characteristic path length, a greater clustering coefficient and modularity than 

the intrinsic functional network under same experimental conditions.  

4. 5 The temporal dynamics of network measures 

4. 5. 1 Global efficiency 

We performed a sliding window analysis on global efficiency of the 

functional network generated from a block of the visual DMS task. The simulation 

corresponds to a 70 second simulated experimental session. Each time window is 

chosen to be 2 seconds so there are 35 windows in total. In calculating the global 

efficiency, we used the weighted functional connectivity network and only top 50 

percent of the connections were kept. 

The experiment is designed to have four visual DMS trials with stimuli of 

different saliency levels and different noise settings: in the first trial two salient visual 

stimuli and in the second trial two less salient stimuli were used; in the third and 

fourth trials, the stimuli and paradigm were the same as the first and second, but 

auditory distractors were presented. We ran the experiment using 10 simulated 

subjects, and Fig. 4.6 shows results from one of the ten.  

Interestingly, we found that the maintenance of working memory decreases 

the global efficiency. This phenomenon is consistent with the notion that working 

memory needs to be encapsulated and protected which can be achieved by decreasing 

the network efficiency. We also noted that salient stimuli onsets could increase the  
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Figure 4.6 The sliding window analysis of global efficiency. Two visual DMS trials 
and two visual DMS trials with auditory distractors were implemented. The stimuli 
used were of different saliency levels. The global efficiency decreases for working 
memory maintenance and increases for salient stimuli onsets. 
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global efficiency. The input of distractors from the other modality will blur these 

effects (see Fig. 4.6). 

 

4. 5. 2 Temporal community structure and spontaneous task switching 

We simulated spontaneous task switching in which a stream of visual DMS 

tasks and a stream of auditory DMS tasks were presented simultaneously. The model 

spontaneously chooses to perform either the visual or the auditory DMS task. The 

decisions are “spontaneous” in the sense that the model receives no task instruction 

and the decision as to which task to perform is purely base on bottom-up 

saliency/exogenous attentional capture.  

The whole simulated experiment consists of 5 stages: three trials and two 

inter-trial intervals. We found the community structures of the functional network 

(based on synaptic activity) for each stage, using an optimization algorithm to 

maximize the modularity index (Blondel et al., 2008). During task execution stages, 

the modularity index is generally higher than during intertrial intervals (see section 4. 

2) and the number of communities is in the range 8~11, while during intertrial 

intervals the number of communities can be as high as 16.  

Fig. 4.7 shows the temporal community structures of some of the important 

task nodes. Non-task related nodes (intrinsic nodes) are not shown. If the model chose 

to do the visual task during a trial (shown as ‘visual’ in the figure), the visual task 

nodes would appear in the same community which indicated they are functionally 

specialized in this stage; in auditory trials, auditory task node would also be in the 

same community. During intertrial intervals the previous task specialized community  
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Figure 4.7 The temporal community structure for task execution nodes in a visual-
auditory attention-switching task. The experiment session is divided into five stages 
and the community structure for each stage is shown. The exogenous attention is in 
the same community with visual (auditory) nodes while performing visual (auditory) 
tasks, which is highlighted in yellow color. Different gray scales represent other 
communities.  
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Table 4.1 The flexibility of task execution nodes in the network during a visual-
auditory attention-switching task. 
 

 
 Nodes/Regions Flexibility Mean 

Attention Exo. attention 0.100 0.100 

Early-stage 

processing nodes 

A1 0.350 0.369 

A2 0.400 

V1/V2 0.350 

V4 0.375 

Integration  ST 0.750 0.688 

IT 0.625 

Working memory aD1 0.750 0.794 

aD2 0.800 

vD1 0.750 

vD2 0.875 

 

collapsed, and both visual and auditory task nodes showed little modular behavior as 

most of them appeared in different communities with other non-task related nodes. 

 
However, the exogenous attention node stayed in the same community 

throughout the entire experiments. Some of the early stage processing nodes would be 

in the same community with the exogenous attention which indicated they were still 

functionally correlated during the intertrial intervals. For example, in the simulated 

experiment shown in Fig. 4.7, V4 in the first intertrial interval and A1 and A2 in the 
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second intertrial interval stayed in the same community with the exogenous attention 

node. If we define the flexibility of one node as: 

!! =  !
! − 1                                                               (4.6) 

where m is the number of times the node changes community and T is the total 

stages/time windows. The exogenous attention node thus has very low flexibility (0 in 

this case). Higher order task nodes (IT, ST and prefrontal task nodes) have higher 

flexibility than early processing task nodes (see Table 4.1). 

The neural explanation for this phenomenon is related to the wirings of the 

exogenous attention in our model, which is directly connected with V4, A2 and D2. 

In the intertrial intervals intervening task executions, early stage processing nodes 

V1/V2, V2, A1, A2 and the exogenous attention node are the only nodes that stay 

responsive to simulated environmental noise. Therefore even in the intertrial intervals 

the early visual or auditory nodes tend to be in the same community with exogenous 

attention node. 

 

In summary, we have simulated neural activity in both intrinsic and task-

execution nodes under different task conditions. We calculated several important 

graph theoretical measures for simulated functional connectivity networks. We 

quantitatively compared the changes of these graph measures with task complexity 

and analyzed their temporal dynamics within one task. We were able to relate the 

changes to the underlying model mechanism, which shows our work is useful in the 

design of empirical studies and the test of large-scale hypothesis of brain functions. 
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Chapter 5:  Summary 
 
 

We have presented a simulation study of human brain visual/auditory 

processing and how this process interacts with memory and attention.  Although 

many experiments have been done to understand different aspects of these issues, 

some of the results are controversial and the detailed neural substrates remained 

unclear. In the previous chapters, we have demonstrated how our modeling and 

simulation studies can try to relate behavioral and neuroimaging results, and can 

provide a unique resolution that cannot be achieved by experiments so far. The model 

can perform a number of cognitive tasks utilizing different cognitive functions with 

the same structural network and only changing task-specification parameter. Based on 

the performance and simulated imaging results of these tasks, we proposed a 

hypothesis for the neural mechanism underlying several important phenomena, which 

may be tested experimentally in the future. 

The present model contains 26 modules representing different brain regions. 

Each module contains 81 Wilson-Cowan units, namely 162 simulated neurons 

(except attention modules which contain 4 neurons in each). The model is embedded 

in Hagmann’s connectome, which consists of 998 nodes (1996 neurons) to represent 

non-task brain regions. The model has 10752 simulate neurons in total. Table 5.1 

shows the counts of modules and neurons in our model. The model can perform 16 

different cognitive tasks by only changing a task parameter. Table 5.2 gives a list of 

cognitive tasks that have been successfully implemented so far. 
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Table 5.1 Modules and neurons in the model 

Models Modules Neurons * 
Auditory processing MGN 

A1 (up-sweep selective) 
A1 (down-sweep selective) 
A2 (up-sweep selective) 
A2 (down-sweep selective) 
A2 (corner selective) 
ST 

1134 

Visual processing LGN 
V1 (horizontal selective) 
V1 (vertical selective) 
V4 (horizontal selective) 
V4 (vertical selective) 
V4 (corner selective) 
IT 

1134 

Auditory working memory 
and decision** 

EC  
FS 
D1 
D2 
R 

3240 

Visual working memory 
and decision** 

EC  
FS 
D1 
D2 
R 

3240 

Attention Endogenous attention 
Exogenous attention 

8 

Non-task	nodes	 Hagmann’s	connectome	 1996	
Total	number	 54	 10752	
*One Wilson-Cowan unit is counted as two neurons. 
**Modules in this category can have multiple duplicates in order to deal with 
multiple items. Typically we have 4 duplicates of each module for visual and 4 for 
auditory objects. 

 

We first proposed a network implementation of storing multiple items in 

working memory and a potential explanation for primacy and recency effects, which 

states that human remember the beginning and ending items best in memorizing a list 

of items. We modeled working memory with local microcircuits (D1, D2) and a 
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large-scale recurrent network (PFC, IT). We studied various neuronal behaviors in the 

inferior temporal cortex and prefrontal cortex, which matched experimental findings, 

and discussed the possible functions related to these behaviors. For generating a 

brain-like environment, we embedded the model into The Virtual Brain framework. 

This part of research has been detailed in Chapter 2. 

The effect has been studied experimentally that people involuntarily switch 

attention to salient distractors and are difficult to distract when attending to salient 

stimuli. We realized the effect by incorporating a pair of exogenous attention modules 

(one for visual and one for auditory objects) and one endogenous attention module. 

We then integrated our visual model and auditory model, and simulated spontaneous 

attention switching between visual and auditory stimuli with different salience. We 

also proposed a neural network explanation for the “working memory load effect”, 

which suggests higher working memory load in one modality can decrease 

distractions from another modality. This work can be found in Chapter 3. 

Complex network (graph) theory has been applied in the analysis of 

neuroimaging data, as it provides a topological abstraction of the human brain. We 

constructed a functional connectivity networks for various simulated experimental 

conditions using a high spatial-resolution model. We studied a number of important 

network properties, including the scale-free property, the global efficiency, modular 

structure, and explored their relations with task complexity. We showed that these 

network properties and their dynamics of our simulated networks matched empirical 

studies, which verifies the validity and importance of our modeling work. Please refer 

to Chapter 4 for more information. 
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Table 5.2 Cognitive tasks that the model can perform 

Task Name 
Visual fixation 

Auditory fixation 

Passive viewing 

Passive listening 

Visual delayed match-to-sample (DMS) 

Auditory delayed match-to-sample (DMS) 

Visual DMS with distractors 

Visual DMS abba task	

Auditory DMS with distractor	

Auditory DMS abba task	

Visual Sternberg’s task 

Auditory Sternberg’s task 

Auditory-visual DMS task 

Auditory-visual DMS task with bimodal distractors 

Auditory-visual Sternberg’s task 

Auditory-visual involuntary attention switching task 

 

In summary, our results indicate that computational modeling can be a 

powerful tool for interpreting human and nonhuman primate neuroimaging data.  

Some caveats still remain unsolved. First, although the structural network is 

modeled biologically realistically, the endogenous attention level and the top-down 

task control we used in the model are parameters set prior to each simulation and 

therefore are not realistically modeled. Second, we assigned the modules to represent 

different brain regions based on experimental literature; however some of them are 

still controversial or may be corresponding to more than one region. For example, we 
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hypothesized that the entorhinal cortex is responsible for a gating process in multiple 

item memorization, but some authors argue this process is governed by basil ganglia 

(Ashby et al., 2005). Finally, the working memory model that involved 4 prefrontal 

cortex regions is based on monkey electrophysiological experiments (Funahashi et al., 

1989). The locations we chose for prefrontal nodes (D1, D2, FS, R) in the Virtual 

Brain are somewhat arbitrary.  

A major extension of the model we are still working on is to incorporate a 

long-term memory component. In the model, working memory can be consolidated 

into long-term storages using an unsupervised Hebbian algorithm (Garagnani et al., 

2008). The same mechanism can be used to train the model to remember the 

associations between different objects, thus the model can implement related 

cognitive tasks, such as a paired associate task, categorization and naming. 
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