
1 IntroductionThe general problem of achieving correspondence, or optical 
ow as it is known in the motionliterature, is to recover the 2D displacement �eld between points across two images. Typicalapplications for which full correspondence (that is correspondence for all image points) isinitially required include the measurement of motion, stereopsis, structure from motion, 3Dreconstruction from point correspondences, and recently visual recognition, active vision andcomputer graphics animation.In this paper we focus on two problems|one theoretical and the other more practical.On the practical side, we address the problem of establishing the full point-wise displacement�eld between two views (grey-level images) of a general 3D object. We achieve this by �rstconsidering a theoretical problem of establishing a quadric surface reference frame on theobject. In other words, given any two views of some unknown textured opaque quadricsurface in 3D projective space P3, is there a �nite number of corresponding points acrossthe two views that uniquely determine all other correspondences coming from points on thequadric? A constructive answer to this question readily suggests that we can associate avirtual quadric surface with any 3D object (not necessarily itself a quadric) and use it fordescribing shape, but more importantly, for achieving full correspondence between the twoviews.On the conceptual level we propose combining geometric constraints, captured fromknowledge of a small number of corresponding points (manually given, for example), and pho-tometric constraints captured by the instantaneous spatio-temporal changes in image lightintensities (conventional optical 
ow). The geometric constraints we propose, are relatedto the virtual quadric surface mentioned above. These constraints lead to a transformation(a nominal quadratic transformation) that is applied to one of the views with the result ofbringing both views closer together. The remaining displacements (residuals) are recoveredby using the spatial and temporal derivatives of image light intensity|either by correlationof image patches or by optical 
ow techniques.2 The Quadric Reference SurfaceWe consider object space to be the 3D projective space P3, and image space to be the 2Dprojective space P2|both over the �eld C of complex numbers. Views are denoted by  i,indexed by i. The epipoles are denoted by v 2  1 and v0 2  2, and we assume their locationis known (for methods, see [6], for example). The symbol �= denotes equality up to a scale,GLn stands for the group of n � n matrices, PGLn is the group de�ned up to a scale, andSPGLn is the symmetric specialization of PGLn.1



Result 1. Given two arbitrary views  1;  2 � P2 of a quadric surface Q 2 P3(C) withcenters of projection at O;O0 2 P3, and O;O0 2 Q, then �ve corresponding points acrossthe two views uniquely determine all other correspondences.Proof. Let (x0; x1; x2) and (x00; x01; x02) be coordinates of  1 and  2, respectively, and (z0; : : : ;z3) be coordinates of Q. Let O = (0; 0; 0; 1); then the quadric surface may be given asthe locus z0z3 � z1z2 = 0, and  1 as the projection from O = (0; 0; 0; 1) onto the planez3 = 0. In case where the centers of projection are on Q, the line through O meets Q inexactly one other point, and thus the mapping  1 7! Q is generically one-to-one, and sohas a rational inverse: (x0; x1; x2) 7! (x20; x0x1; x0x2; x1x2). Because all quadric surfaces ofthe same rank are projectively equivalent, we can perform a similar blow-up from  2 withthe result (x020 ; x00x01; x00x02; x01x02). The projective transformation A 2 PGL4 between the tworepresentations of Q can then be recovered from �ve corresponding points between the twoimages.The result does not hold when the centers of projection are not on the quadric surface.This is because the mapping between Q and P2 is not one-to-one (a ray through the centerof projection meets Q in two points), and therefore, a rational inverse does not exist. We areinterested in establishing a more general result that applies when the centers of projectionare not on the quadric surface. One way to enforce a one-to-one mapping is by making\opacity" assumptions, de�ned below.De�nition2 (Opacity Constraint). Given an object Q = fP1; : : : ; Png, we assume thereexists a plane through the camera center O that does not intersect any of the chords PiPj(i.e.,Q is observed from only one \side" of the camera). Secondly, we assume that the surfaceis opaque, which means that among all the surface points along a ray from O, the closestpoint to O is the point that also projects to the second view ( 2). The �rst constraint,therefore, is a camera opacity assumption, and the second constraint is a surface opacityassumption; together, we call them the opacity constraint.With an appropriate re-parameterization of P3 we can obtain the following result:Theorem3. Given two arbitrary views  1;  2 � P2 of an opaque quadric surface Q 2 P3;then nine corresponding points across the two views uniquely determine all other correspon-dences.The following auxiliary propositions are used as part of the proof.2



Lemma4 (Relative A�ne Parameterization). Let po; p1; p2; p3 and p0o; p01; p02; p03 be fourcorresponding points coming from four non-coplanar points in space. Let A be a collineationof P2 determined by the equations Apj �= p0j, j = 1; 2; 3, and Av �= v0. Finally let v0 be scaledsuch that p0o �= Apo + v0. Then, for any point P 2 P3 projecting onto p and p0, we havep0 �= Ap+ kv0: (1)The coe�cient k = k(p) is independent of  2, i.e., is invariant to the choice of the secondview, and the coordinates of P are (x; y; 1; k).The lemma, its proof and its theoretical and practical implications are discussed in detailin [10]. The scalar k is called a relative a�ne invariant and can be computed with the aid ofa second arbitrary view  2. For future reference, let � stand for the plane passing throughP1; P2; P3 in space.Proof of Theorem: From Lemma 4, any point P can be represented by the coordinates(x; y; 1; k) and k can be computed from Equation 1. Since Q is a quadric surface, then thereexists H 2 SPGL4 such that P>HP = 0, for all points P of the quadric. Because His symmetric and determined up to a scale, it contains only nine independent parameters.Therefore, given nine corresponding image points we can solve for H as a solution of alinear system; each corresponding pair p; p0 provides one linear equation in H of the form(x; y; 1; k)H(x; y; 1; k)> = 0.Given that we have solved for H, the mapping  1 7!  2 due to the quadric Q canbe determined uniquely (i.e., for every p 2  1 we can �nd the corresponding p0 2  2) asfollows. The equation P>HP = 0 gives rise to a second order equation in k of the formak2 + b(p)k + c(p) = 0, where the coe�cient a is constant (depends only on H) and thecoe�cients b; c depend also on the location of p. Therefore, we have two solutions for k,and by Equation 1, two solutions for p0. The two solutions for k are k1; k2 = �b�r2a , wherer = pb2 � 4ac. The �nding, shown in the next auxiliary lemma, is that if the surface Q isopaque, then the sign of r is �xed for all p 2  1. Therefore, the sign of r for po that leads toa positive root (recall that ko = 1) determines the sign of r for all other p 2  1.Lemma5. Given the opacity constraint, the sign of the term r = pb2 � 4ac is �xed for allpoints p 2  1.Proof. Let P be a point on the quadric projecting onto p in the �rst image, and let theray OP intersect the quadric at points P 1; P 2, and let k1; k2 be the roots of the quadraticequation ak2+ b(p)k+ c(p) = 0. The opacity assumption is that the intersection closer to Ois the point projecting onto p and p0. 3



Recall that Po is a point (on the quadric in this case) used for setting the scale of v0 (inEquation 1), i.e., ko = 1. Therefore, all points that are on the same side of � as Po havepositive k associated with them, and vice versa. There are two cases to be considered: eitherPo is between O and � (i.e., O < Po < �), or � is between O and Po (i.e., O < � < Po)|thatis O and Po are on opposite sides of �. In the �rst case, if k1k2 � 0 then the non-negative rootis closer to O, i.e., k = max(k1; k2). If both roots are negative, the one closer to zero is closerto O, again k = max(k1; k2). Finally, if both roots are positive, then the larger root is closerto O. Similarly, in the second case we have k = min(k1; k2) for all combinations. BecausePo can satisfy either of these two cases, the opacity assumption gives rise to a consistencyrequirement in picking the right root: either the maximum root should be uniformly chosenfor all points, or the minimum root.In the next section we will show that Theorem 3 can be used to surround an arbitrary3D surface by a virtual quadric, i.e., to create quadric reference surfaces, which in turn canbe used to facilitate the correspondence problem between two views of a general object. Theremainder of this section takes Theorem 3 further to quantify certain useful relationshipsbetween the centers of two cameras and the family of quadrics that pass through arbitrarycon�gurations of eight points whose projections on the two views are known.Theorem6. Given a quadric surface Q � P3 projected onto views  1;  2 � P2, with centersof projection O;O0 2 P3, there exists a parameterization of the image planes  1;  2 thatyields a representation H 2 SPGL4 of Q such that h44 = 0 when O 2 Q, and the sum of theelements of H vanishes when O0 2 Q.Proof. The re-parameterization described here was originally introduced in [10] as part ofthe proof of Lemma 4. We �rst assign the standard coordinates in P3 to three pointson Q and to the two camera centers O and O0 as follows. We assign the coordinates(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0) to P1; P2; P3, respectively, and the coordinates (0; 0; 0; 1);(1; 1; 1; 1) to O;O0, respectively. By construction, the point of intersection of the line OO0with � has the coordinates (1; 1; 1; 0).Let P be some point on Q projecting onto p; p0. The line OP intersects � at the point(�; �; 
; 0). The coordinates �; �; 
 can be recovered (up to a scale) by the mapping  1 7! �,as follows. Given the epipoles v and v0, we have by our choice of coordinates that p1; p2; p3and v are projectively (in P2) mapped onto e1 = (1; 0; 0); e2 = (0; 1; 0); e3 = (0; 0; 1) ande = (1; 1; 1), respectively. Therefore, there exists a unique element A1 2 PGL3 that satis�esA1pj �= ej, j = 1; 2; 3, and A1v �= e. Denote A1p = (�; �; 
). Similarly, the line O0Pintersects � at (�0; � 0; 
0; 0). Let A2 2 PGL3 be de�ned by A2p0j �= ej, j = 1; 2; 3, andA2v0 �= e. Further, let A2p0 = (�0; �0; 
0). 4



It is easy to see that A �= A�12 A1, where A is the collineation de�ned in Lemma 4.Likewise, the homogeneous coordinates of P are transformed into (�; �; 
; k). With this newcoordinate representation the assumption O 2 Q translates to the constraint that h44 =0 ((0; 0; 0; 1)H(0; 0; 0; 1)> = 0), and the assumption O0 2 Q translates to the constraint(1; 1; 1; 1)H(1; 1; 1; 1)> = 0.Corollary 7. Theorem 6 provides a quantitative measure of proximity of a set of eight 3Dpoints, projecting onto two views, to a quadric that contains both centers of projection.Proof. Given eight corresponding points we can solve for H with the constraint (1; 1; 1; 1)H(1; 1; 1; 1)> = 0. This is possible since a unique quadric exists for any set of nine points ingeneral position (the eight points and O0). The value of h44 is then indicative of how closethe quadric is from the other center of projection O.Note that when the camera center O is on the quadric, then the leading term of ak2 +b(p)k+c(p) = 0 vanishes (a = h44 = 0), and we are left with a linear function of k. We see thatit is su�cient to have a bi-rational mapping between Q and only one of the views withoutemploying the opacity constraint. This is because of the asymmetry introduced in ourmethod: the parameters of Q are reconstructed with respect to the frame of reference of the�rst camera (i.e., relative a�ne reconstruction in the sense of [10]) rather than reconstructedprojectively. Also note the importance of obtaining quantitative measures of proximity of aneight-point con�guration of 3D points to a quadric that contains both centers of projection;this is a necessary condition for observing a \critical surface". A su�cient condition is thatthe quadric is a hyperboloid of one sheet [3, 7]. Theorem 6 provides, therefore, a tool foranalyzing part of the question of how likely are typical imaging situations within a \criticalvolume".3 Achieving Full Correspondence between Views of a General3D ObjectIn this section we derive an application of Theorem 3 to the problem of achieving full cor-respondence between two grey-level images of a general 3D object. The basic idea, similarto [8, 9], is to treat the correspondence problem as composed of two parts: a nominaltransformation with the aid of a small number of known correspondences, and a residual dis-placement �eld that is recovered using instantaneous spatio-temporal derivatives of imageintensity values. along epipolar lines. This paradigm is general in the sense that it appliesto any 3D object. However, it is useful if the nominal transformation brings the two viewscloser together. 5



Consider, for example, the case where the nominal transformation is a homography ofP2 of some plane �. In that case, the residual �eld is simply the relative a�ne invariantk of Equation 1. In other words, if the object is relatively 
at, then the k-�eld is small,and thereby the nominal transformation (which is Ap) brings the two views closer to eachother. If the object is not 
at, however, then the residual �eld may be large within regionsin the image that correspond to object points that are far away from �. This situation isdemonstrated in the second row display in Figure 1. Three points were chosen (two eyesand the right mouth corner) for the computation of the planar nominal transformation. Theoverlay of the second view and the transformed �rst view demonstrate that the central regionof the face is brought closer at the expense of regions near the boundary (which correspondto object points that are far away from the virtual plane passing through both eyes and themouth corner).This example naturally suggests that a nominal transformation based on placing a virtualquadric reference surface on the object would give rise to a smaller residual �eld (note that theplanar transformation is simply a particular case of a quadric transformation). The \nominalquadratic transformation" can be formalized as a corollary of Theorem 3 as follows:Corollary 8 (of Theorem 3). A virtual quadric surface can be �tted through any 3D sur-face, not necessarily a quadric surface, by observing nine corresponding points across twoviews of the object.Proof. First, it is known that there is a unique quadric surface through any nine points in gen-eral position. This follows from a Veronese map of degree two, v2 : Pn �! P(n+1)(n+2)=2�1,de�ned by (x0; : : : ; xn) 7! (: : : ; xI; : : :), where xI ranges over all monomials of degree two inx0; : : : ; xn. For n = 3, this is a mapping from P3 to P9 taking hypersurfaces of degree twoin P3 (i.e., quadric surfaces) into hyperplane sections of P9. Thus, the subset of quadricsurfaces passing through a given point in P3 is a hyperplane in P9, and since any nine hy-perplanes in P9 must have a common intersection, there exists a quadric surface throughany given nine points. If the points are in general position this quadric is smooth (i.e., H isof full rank).Therefore, by selecting any nine corresponding points across the two views we can applythe construction described in Theorem 3 and represent the displacement between correspond-ing points p and p0 across the two views as follows:p0 �= (Ap+ kqv0) + krv0; (2)where k = kq + kr, kq is the relative a�ne structure of the virtual quadric and kr is theremaining parallax which we call the residual. The term within parentheses is the nominal6



Figure 1. Row 1 : Two views of a face,  1 on the left and  2 on the right. Row 2 : Theleft-hand display shows the overlayed edges of the two views above. The right-hand displayshows the overlay of the a�ne transformed  1 and  2. The three points chosen were the twoeyes and the right mouth corner. Notice that the displacement across the center region ofthe face was reduced, at the expense of the peripheral regions that were taken farther apart.Row 3 : The left-hand display shows  1 followed by the nominal quadratic transformation.The right-hand display shows the overlay of edges of the display on the left and  2. Noticethat the original displacements between  1 and  2 are reduced to about 1{2 pixels. Row 4 :The display on the left shows the overlay of the target view  2 on the transformed view 1 (nominal quadratic followed by residual 
ow). The right-hand display shows the e�ectof a nominal quadric transformation due to a hyperboloid of two sheets. This unintuitivesolution due to an unsuccessful choice of sample points creates the mirror image on the rightside. 7



quadratic transformation, and the remaining term krv0 is the unknown displacement alongthe known direction of the epipolar line. Therefore, Equation 2 is the result of representingthe relative a�ne structure of a 3D object with respect to some reference quadric surface,namely, kr is a relative a�ne invariant (because k and kq are both invariants by Theorem 3).Note that the corollary is analogous to describing shape with respect to a reference plane[4, 8, 10]|instead of a plane we use a quadric and use the tools described in the previoussection in order to establish a quadric reference surface. The overall algorithm for achievingfull correspondence given nine corresponding points po; p1; : : : ; p8 is summarized below:1. Determine the epipoles v; v0 using eight of the corresponding points, and recover thecollineation A from the equations Apj �= p0j , j = 1; 2; 3, and Av �= v0. Scale v0 to satisfyp0o �= Apo + v0.2. Compute kj , j = 4; : : : ; 8 from the equation p0j �= Apj + kjv0.3. Compute the quadric parameters from the nine equations (xj; yj; 1; kj)H(xj; yj; 1; kj)> =0 (ko = 1, j = 1; : : : ; 8). Note that k1 = k2 = k3 = 0.4. For every point p compute kq as the appropriate root of k of ak2+b(p)k+c(p) = 0, wherethe coe�cients a; b; c follow from (xq; yq; 1; kq)H(xq; yq; 1; kq)> = 0, and the appropriateroot follows from the sign of r for ak2o + b(po)ko + c(po) = 0 consistent with the rootko = 1.5. Warp  1 according to the nominal transformation �p �= Ap+ kqv0.6. The remaining displacement (residual) between p0 and �p consists of an unknown displace-ment kr along the known epipolar line. The spatio-temporal derivatives of image lightintensity can be used to recover kr.In case (and only then) the ray OP does not intersect the quadric, the solutions for thecorresponding k are complex numbers (i.e., p cannot be reprojected onto �p due to Q). Thiscase can be largely avoided when the nine sample points are spread as far apart as possibleon the view  1 of the object (see [11] for analytic results and computer simulations on theexistence and distribution of \complex pockets").Also, a tight �t of a quadric surface onto the object can be obtained by using manycorresponding points to obtain a least squares solution for H. Note that from a practicalpoint of view we would like the quadric to lie as close as possible to the object; otherwisethe algorithm, though correct, would not be useful, i.e., the residuals may be larger than theoriginal displacement �eld between the two views.8



4 Experimental Results on Real ImagesWe have implemented the method described in the previous section for purposes of computersimulation and for application in a real image situation. The computer simulations are shownin [11], and some of the real image experiments are shown here.Figure 1, top row, shows two images of a face taken from two distinct viewpoints. Achiev-ing full correspondence between two views of a face is extremely challenging for two reasons.First, a face is a complex object that is not easily parameterized. Second, the texture ofa typical face does not contain enough image structure for obtaining point-to-point corre-spondence in a reliable manner. There are a few points (on the order of 10{20) that canbe reliably matched, such as the corners of the eye, mouth and eyebrows. We rely on thesefew points to perform the quadratic nominal transformation and the epipolar geometry, andthen apply optical 
ow techniques to \�nish o�" the correspondence everywhere else. Theoptical 
ow method we used was a modi�cation on the technique described in [1, 8], whichis a coarse-to-�ne gradient-based method following [5].The epipoles were recovered using the algorithm described in [2, 6] using a varying numberof points. The results presented here used the minimal number of nine points, but similarperformance was obtained using more than nine points with a least squares solution for H.From Figure 1, second row, left-hand display, we see that typical displacements betweencorresponding points around the center region of the face vary around 20 pixels. Figure 1,third row, left-hand display, shows the quadric nominal transformation applied to the view 1. The overlay of the edges of view  2 and the transformed view are shown in the right-handdisplay. One clearly sees that both the center of the face and the boundaries are broughtcloser together. Typical displacements have been reduced to around 1{2 pixels. The optical
ow algorithm restricted along epipolar lines was applied between the transformed view andthe second view. The �nal displacement �eld (nominal transformation due the quadric plusthe residuals recovered by optical 
ow) was applied to the �rst view to yield a synthetic imagethat, if successful, should look much like the second view. In order to test the similaritybetween the synthetic image and the second view, the overlay of the edges of the two imagesis shown in the fourth row of Figure 1, left-hand display.Finally, to illustrate that a quadric surface may yield unintuitive results, we show inthe fourth row of Figure 1, right-hand display, the result of having a hyperboloid of twosheets as a quadric reference surface. This is accidental, but evidently can happen with anunsuccessful choice of sample points. 9



5 SummaryPart of this paper addressed the theoretical question of establishing a one-to-one mappingbetween two views of an unknown quadric surface. We have shown that nine correspondingpoints are su�cient to obtain a unique map, provided we make the assumption that thesurface is opaque. We have also shown that an appropriate parameterization of the imageplanes facilitates certain questions of interest such as the likelihood that eight correspondingpoints will be coming from a quadric lying in the vicinity of both centers of projection.On the practical side, we have shown that the tools developed for quadrics can be appliedto any 3D object by setting up a virtual quadric surface lying in the vicinity of the object. Thequadric serves as a reference frame, but also to facilitate the correspondence problem. Wehave shown that one view can be transformed toward the second view, which is equivalent to�rst projecting the object onto the quadric and then projecting the quadric onto the secondview. For example, in the implementation section we have shown that two views of a facewith typical displacements of around 20 pixels are brought closer, to around a 1{2 pixeldisplacement, by the transformation. Most optical 
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