1 Introduction

The general problem of achieving correspondence, or optical flow as it is known in the motion
literature, is to recover the 2D displacement field between points across two images. Typical
applications for which full correspondence (that is correspondence for all image points) is
initially required include the measurement of motion, stereopsis, structure from motion, 3D
reconstruction from point correspondences, and recently visual recognition, active vision and
computer graphics animation.

In this paper we focus on two problems—one theoretical and the other more practical.
On the practical side, we address the problem of establishing the full point-wise displacement
field between two views (grey-level images) of a general 3D object. We achieve this by first
considering a theoretical problem of establishing a quadric surface reference frame on the
object. In other words, given any two views of some unknown textured opaque quadric
surface in 3D projective space P2, is there a finite number of corresponding points across
the two views that uniquely determine all other correspondences coming from points on the
quadric? A constructive answer to this question readily suggests that we can associate a
virtual quadric surface with any 3D object (not necessarily itself a quadric) and use it for
describing shape, but more importantly, for achieving full correspondence between the two
views.

On the conceptual level we propose combining geometric constraints, captured from
knowledge of a small number of corresponding points (manually given, for example), and pho-
tometric constraints captured by the instantaneous spatio-temporal changes in image light
intensities (conventional optical flow). The geometric constraints we propose, are related
to the virtual quadric surface mentioned above. These constraints lead to a transformation
(a nominal quadratic transformation) that is applied to one of the views with the result of
bringing both views closer together. The remaining displacements (residuals) are recovered
by using the spatial and temporal derivatives of image light intensity—either by correlation

of image patches or by optical flow techniques.

2 The Quadric Reference Surface

We consider object space to be the 3D projective space P?, and image space to be the 2D
projective space P*—both over the field C of complex numbers. Views are denoted by ;,
indexed by 7. The epipoles are denoted by v € 1 and v' € 1), and we assume their location
is known (for methods, see [6], for example). The symbol = denotes equality up to a scale,
G L, stands for the group of n x n matrices, PG L, is the group defined up to a scale, and
SPGL, is the symmetric specialization of PG L,.
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Result 1. Given two arbitrary views i,y C P? of a quadric surface Q € P3(C) with
centers of projection at O,0" € P? and 0,0’ € Q, then five corresponding points across

the two views uniquely determine all other correspondences.

Proof. Let (2, 21, x9) and (x(, 2], 25) be coordinates of ¢y and )y, respectively, and (zo, ...,
z3) be coordinates of (). Let O = (0,0,0,1); then the quadric surface may be given as
the locus zgzs — z122 = 0, and ¢ as the projection from O = (0,0,0,1) onto the plane
z3 = 0. In case where the centers of projection are on (), the line through O meets () in
exactly one other point, and thus the mapping ¥y — @ is generically one-to-one, and so
has a rational inverse: (wq,x1,22) +— (23, x0Ty, ToT2, T173). Because all quadric surfaces of
the same rank are projectively equivalent, we can perform a similar blow-up from ¢, with
the result (z{, zfa, vhah, xjy). The projective transformation A € PGLy between the two

representations of () can then be recovered from five corresponding points between the two

images. []

The result does not hold when the centers of projection are not on the quadric surface.
This is because the mapping between () and P? is not one-to-one (a ray through the center
of projection meets () in two points), and therefore, a rational inverse does not exist. We are
interested in establishing a more general result that applies when the centers of projection
are not on the quadric surface. One way to enforce a one-to-one mapping is by making

“opacity” assumptions, defined below.

Definition 2 (Opacity Constraint). Given an object QQ = {Fy,..., P,}, we assume there
exists a plane through the camera center O that does not intersect any of the chords P, P;
(i.e., Q) is observed from only one “side” of the camera). Secondly, we assume that the surface
is opaque, which means that among all the surface points along a ray from O, the closest
point to O is the point that also projects to the second view (t3). The first constraint,
therefore, is a camera opacity assumption, and the second constraint is a surface opacity

assumption; together, we call them the opacity constraint.
With an appropriate re-parameterization of P? we can obtain the following result:

Theorem 3. Given two arbitrary views 11,19 C P* of an opaque quadric surface QQ € P3;
then nine corresponding points across the two views uniquely determine all other correspon-

dences.

The following auxiliary propositions are used as part of the proof.



Lemma4 (Relative Affine Parameterization). Let p,, p1, p2, ps and p, p, py, py be four
corresponding points coming from four non-coplanar points in space. Let A be a collineation
of P? determined by the equations Ap; = pl., j =1,2.3, and Av = v'. Finally let v’ be scaled
such that p!, = Ap, + v'. Then, for any point P € P? projecting onto p and p', we have

p = Ap+ kv’ (1)

The coefficient k = k(p) is independent of 1y, i.e., is invariant to the choice of the second

view, and the coordinates of P are (x,y,1, k).

The lemma, its proof and its theoretical and practical implications are discussed in detail
in [10]. The scalar k is called a relative affine invariant and can be computed with the aid of
a second arbitrary view 5. For future reference, let 7 stand for the plane passing through

Py, P>, Ps in space.

Proof of Theorem: From Lemma4, any point P can be represented by the coordinates
(x,y,1,k) and k can be computed from Equation 1. Since @ is a quadric surface, then there
exists I € SPGL4 such that PTHP = 0, for all points P of the quadric. Because H
is symmetric and determined up to a scale, it contains only nine independent parameters.
Therefore, given nine corresponding image points we can solve for H as a solution of a
linear system; each corresponding pair p, p’ provides one linear equation in H of the form
(x,y, 1, k)H (z,y,1,k)" = 0.

Given that we have solved for H, the mapping 1 — 9 due to the quadric ) can
be determined uniquely (i.e., for every p € ¢ we can find the corresponding p’ € ) as
follows. The equation PTHP = ( gives rise to a second order equation in k of the form
ak® + b(p)k + ¢(p) = 0, where the coefficient @ is constant (depends only on H) and the

coefficients b, ¢ depend also on the location of p. Therefore, we have two solutions for £,

—btr
2a 7

r = b? — 4ac. The finding, shown in the next auxiliary lemma, is that if the surface ) is
opaque, then the sign of r is fixed for all p € ¥;. Therefore, the sign of r for p, that leads to

and by Equation 1, two solutions for p’. The two solutions for k are k', k? = where

a positive root (recall that k, = 1) determines the sign of r for all other p € ;. ]

Lemmab. Given the opacity constraint, the sign of the term r = \/b* — dac is fived for all
points p € .

Proof. Let P be a point on the quadric projecting onto p in the first image, and let the
ray OP intersect the quadric at points P!, P2, and let k', k? be the roots of the quadratic

equation ak® +b(p)k + c(p) = 0. The opacity assumption is that the intersection closer to O
is the point projecting onto p and p'.



Recall that P, is a point (on the quadric in this case) used for setting the scale of v’ (in
Equation 1), i.e., k, = 1. Therefore, all points that are on the same side of = as P, have
positive k associated with them, and vice versa. There are two cases to be considered: either
P, is between O and 7 (i.e., O < P, < 7), or 7 is between O and P, (i.e., O < 7 < P,)—that
is O and P, are on opposite sides of 7. In the first case, if £'4? < 0 then the non-negative root
is closer to O, i.e., k = max(k', k*). If both roots are negative, the one closer to zero is closer
to O, again k = max(k', k?). Finally, if both roots are positive, then the larger root is closer
to O. Similarly, in the second case we have & = min(k*, k?) for all combinations. Because
P, can satisfy either of these two cases, the opacity assumption gives rise to a consistency
requirement in picking the right root: either the maximum root should be uniformly chosen

for all points, or the minimum root. []

In the next section we will show that Theorem 3 can be used to surround an arbitrary
3D surface by a virtual quadric, i.e., to create quadric reference surfaces, which in turn can
be used to facilitate the correspondence problem between two views of a general object. The
remainder of this section takes Theorem 3 further to quantify certain useful relationships
between the centers of two cameras and the family of quadrics that pass through arbitrary

configurations of eight points whose projections on the two views are known.

Theorem 6. Given a quadric surface Q C P? projected onto views 1y, C P?, with centers
of projection O,0" € P>, there exvists a parameterization of the image planes i,y that
yields a representation H € SPGLy of Q) such that hyy = 0 when O € @), and the sum of the
elements of H vanishes when O' € ().

Proof. The re-parameterization described here was originally introduced in [10] as part of
the proof of Lemma4. We first assign the standard coordinates in P? to three points
on () and to the two camera centers O and O’ as follows. We assign the coordinates
(1,0,0,0),(0,1,0,0),(0,0,1,0) to P, P, Ps, respectively, and the coordinates (0,0,0,1),
(1,1,1,1) to O, ', respectively. By construction, the point of intersection of the line OO’
with 7 has the coordinates (1,1,1,0).

Let P be some point on Q projecting onto p,p’. The line OP intersects 7= at the point
(a, 3,7,0). The coordinates «, 3, can be recovered (up to a scale) by the mapping o1 — ,
as follows. Given the epipoles v and v’, we have by our choice of coordinates that p, ps, p3
and v are projectively (in P?) mapped onto e; = (1,0,0),e5 = (0,1,0),e3 = (0,0,1) and
e = (1,1,1), respectively. Therefore, there exists a unique element A; € PG/Ls that satisfies
Aip; & e, 7 = 1,2,3, and Ajv & e. Denote A;p = (a,f3,7). Similarly, the line O'P
intersects © at (o, ,9/,0). Let Ay € PGL3 be defined by Agp’ = ¢;, j = 1,2,3, and
Agqv’ = e. Further, let Ayp’ = (o, 5,7).



It is easy to see that A = A;'A;, where A is the collineation defined in Lemma 4.
Likewise, the homogeneous coordinates of P are transformed into (o, 3,7, k). With this new
coordinate representation the assumption O € @) translates to the constraint that hy =
0 ((0,0,0,1)H(0,0,0,1)T = 0), and the assumption O’ € @ translates to the constraint
(1,1,1,1)H(1,1,1,1)T = 0. []

Corollary 7. Theorem 6 provides a quantitative measure of proximity of a set of eight 3D

points, projecting onto two views, to a quadric that contains both centers of projection.

Proof. Given eight corresponding points we can solve for H with the constraint (1,1,1,1)
H(1,1,1,1)T = 0. This is possible since a unique quadric exists for any set of nine points in
general position (the eight points and O'). The value of hyy is then indicative of how close

the quadric is from the other center of projection O. []

Note that when the camera center O is on the quadric, then the leading term of ak? +
b(p)k+c(p) = 0 vanishes (a = hyq = 0), and we are left with a linear function of k. We see that
it is sufficient to have a bi-rational mapping between () and only one of the views without
employing the opacity constraint. This is because of the asymmetry introduced in our
method: the parameters of () are reconstructed with respect to the frame of reference of the
first camera (i.e., relative affine reconstruction in the sense of [10]) rather than reconstructed
projectively. Also note the importance of obtaining quantitative measures of proximity of an
eight-point configuration of 3D points to a quadric that contains both centers of projection;
this is a necessary condition for observing a “critical surface”. A sufficient condition is that
the quadric is a hyperboloid of one sheet [3, 7]. Theorem 6 provides, therefore, a tool for
analyzing part of the question of how likely are typical imaging situations within a “critical

volume”.

3 Achieving Full Correspondence between Views of a General
3D Object

In this section we derive an application of Theorem 3 to the problem of achieving full cor-
respondence between two grey-level images of a general 3D object. The basic idea, similar
to [8, 9], is to treat the correspondence problem as composed of two parts: a nominal
transformation with the aid of a small number of known correspondences, and a residual dis-
placement field that is recovered using instantaneous spatio-temporal derivatives of image
intensity values. along epipolar lines. This paradigm is general in the sense that it applies
to any 3D object. However, it is useful if the nominal transformation brings the two views

closer together.



Consider, for example, the case where the nominal transformation is a homography of
P? of some plane 7. In that case, the residual field is simply the relative affine invariant
k of Equation 1. In other words, if the object is relatively flat, then the k-field is small,
and thereby the nominal transformation (which is Ap) brings the two views closer to each
other. If the object is not flat, however, then the residual field may be large within regions
in the image that correspond to object points that are far away from w. This situation is
demonstrated in the second row display in Figure 1. Three points were chosen (two eyes
and the right mouth corner) for the computation of the planar nominal transformation. The
overlay of the second view and the transformed first view demonstrate that the central region
of the face is brought closer at the expense of regions near the boundary (which correspond
to object points that are far away from the virtual plane passing through both eyes and the

mouth corner).

This example naturally suggests that a nominal transformation based on placing a virtual
quadric reference surface on the object would give rise to a smaller residual field (note that the
planar transformation is simply a particular case of a quadric transformation). The “nominal

quadratic transformation” can be formalized as a corollary of Theorem 3 as follows:

Corollary 8 (of Theorem 3). A virtual quadric surface can be fitted through any 3D sur-
face, not necessarily a quadric surface, by observing nine corresponding points across two

views of the object.

Proof. First, it is known that there is a unique quadric surface through any nine points in gen-

eral position. This follows from a Veronese map of degree two, vy : P* — Pr)(n+2)/2-1

I ranges over all monomials of degree two in

defined by (zg,...,7,) — (..., 2%, ...), where z
To,...,2T,. For n = 3, this is a mapping from P? to P taking hypersurfaces of degree two
in P? (i.e., quadric surfaces) into hyperplane sections of P?. Thus, the subset of quadric
surfaces passing through a given point in P? is a hyperplane in P?, and since any nine hy-
perplanes in P? must have a common intersection, there exists a quadric surface through

any given nine points. If the points are in general position this quadric is smooth (i.e., H is

of full rank).

Therefore, by selecting any nine corresponding points across the two views we can apply
the construction described in Theorem 3 and represent the displacement between correspond-

ing points p and p’ across the two views as follows:
p = (Ap + k') + kv, (2)

where k = k;, + k,, k, 1s the relative affine structure of the virtual quadric and k, is the

remaining parallax which we call the residual. The term within parentheses is the nominal
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Figure 1. Row I: Two views of a face, ¢; on the left and 1, on the right. Row 2: The
left-hand display shows the overlayed edges of the two views above. The right-hand display
shows the overlay of the affine transformed vy and 3. The three points chosen were the two
eyes and the right mouth corner. Notice that the displacement across the center region of
the face was reduced, at the expense of the peripheral regions that were taken farther apart.
Row 3: The left-hand display shows iy followed by the nominal quadratic transformation.
The right-hand display shows the overlay of edges of the display on the left and ;. Notice
that the original displacements between 1y and ), are reduced to about 1-2 pixels. Row 4:
The display on the left shows the overlay of the target view 15 on the transformed view
Y1 (nominal quadratic followed by residual flow). The right-hand display shows the effect
of a nominal quadric transformation due to a hyperboloid of two sheets. This unintuitive
solution due to an unsuccessful choice of sample points creates the mirror image on the right
side.



quadratic transformation, and the remaining term k,v" is the unknown displacement along
the known direction of the epipolar line. Therefore, Equation 2 is the result of representing
the relative affine structure of a 3D object with respect to some reference quadric surface,

namely, k. is a relative affine invariant (because k and k, are both invariants by Theorem 3).

[

Note that the corollary is analogous to describing shape with respect to a reference plane
[4, 8, 10]—instead of a plane we use a quadric and use the tools described in the previous
section in order to establish a quadric reference surface. The overall algorithm for achieving

full correspondence given nine corresponding points p,, p1, ..., ps is summarized below:

1. Determine the epipoles v,v" using eight of the corresponding points, and recover the
collineation A from the equations Ap; = p’, j = 1,2,3, and Av = v'. Scale v’ to satisfy
P, = Ap, + 0"

2. Compute k;, j = 4,...,8 from the equation p: = Ap; + k;v’.

3. Compute the quadric parameters from the nine equations (z;,y;, 1, k;)H(z;,y;,1,k;)7T =
0(k,=1,7=1,...,8). Note that k; = ky = k5 = 0.

4. For every point p compute k, as the appropriate root of k of ak?+b(p)k+c(p) = 0, where
the coefficients a, b, ¢ follow from (,,y,, 1, k) H(2g,y,, 1, k)T = 0, and the appropriate
root follows from the sign of r for ak? + b(p,)k, + ¢(p,) = 0 consistent with the root
k, = 1.

5. Warp ¢y according to the nominal transformation p = Ap + k,v'.

6. The remaining displacement (residual) between p’ and p consists of an unknown displace-
ment k. along the known epipolar line. The spatio-temporal derivatives of image light

intensity can be used to recover k,.

In case (and only then) the ray OP does not intersect the quadric, the solutions for the
corresponding k are complex numbers (i.e., p cannot be reprojected onto p due to @)). This
case can be largely avoided when the nine sample points are spread as far apart as possible
on the view ; of the object (see [11] for analytic results and computer simulations on the

existence and distribution of “complex pockets”).

Also, a tight fit of a quadric surface onto the object can be obtained by using many
corresponding points to obtain a least squares solution for H. Note that from a practical
point of view we would like the quadric to lie as close as possible to the object; otherwise
the algorithm, though correct, would not be useful, i.e., the residuals may be larger than the

original displacement field between the two views.



4 Experimental Results on Real Images

We have implemented the method described in the previous section for purposes of computer
simulation and for application in a real image situation. The computer simulations are shown

in [11], and some of the real image experiments are shown here.

Figure 1, top row, shows two images of a face taken from two distinct viewpoints. Achiev-
ing full correspondence between two views of a face is extremely challenging for two reasons.
First, a face is a complex object that is not easily parameterized. Second, the texture of
a typical face does not contain enough image structure for obtaining point-to-point corre-
spondence in a reliable manner. There are a few points (on the order of 10-20) that can
be reliably matched, such as the corners of the eye, mouth and eyebrows. We rely on these
few points to perform the quadratic nominal transformation and the epipolar geometry, and
then apply optical flow techniques to “finish off” the correspondence everywhere else. The
optical flow method we used was a modification on the technique described in [1, 8], which

is a coarse-to-fine gradient-based method following [5].

The epipoles were recovered using the algorithm described in [2, 6] using a varying number
of points. The results presented here used the minimal number of nine points, but similar

performance was obtained using more than nine points with a least squares solution for H.

From Figure 1, second row, left-hand display, we see that typical displacements between
corresponding points around the center region of the face vary around 20 pixels. Figure 1,
third row, left-hand display, shows the quadric nominal transformation applied to the view
1. The overlay of the edges of view )3 and the transformed view are shown in the right-hand
display. One clearly sees that both the center of the face and the boundaries are brought
closer together. Typical displacements have been reduced to around 1-2 pixels. The optical
flow algorithm restricted along epipolar lines was applied between the transformed view and
the second view. The final displacement field (nominal transformation due the quadric plus
the residuals recovered by optical flow) was applied to the first view to yield a synthetic image
that, if successful, should look much like the second view. In order to test the similarity
between the synthetic image and the second view, the overlay of the edges of the two images

is shown in the fourth row of Figure 1, left-hand display.

Finally, to illustrate that a quadric surface may yield unintuitive results, we show in
the fourth row of Figure 1, right-hand display, the result of having a hyperboloid of two
sheets as a quadric reference surface. This is accidental, but evidently can happen with an

unsuccessful choice of sample points.



5 Summary

Part of this paper addressed the theoretical question of establishing a one-to-one mapping
between two views of an unknown quadric surface. We have shown that nine corresponding
points are sufficient to obtain a unique map, provided we make the assumption that the
surface is opaque. We have also shown that an appropriate parameterization of the image
planes facilitates certain questions of interest such as the likelihood that eight corresponding

points will be coming from a quadric lying in the vicinity of both centers of projection.

On the practical side, we have shown that the tools developed for quadrics can be applied
to any 3D object by setting up a virtual quadric surface lying in the vicinity of the object. The
quadric serves as a reference frame, but also to facilitate the correspondence problem. We
have shown that one view can be transformed toward the second view, which is equivalent to
first projecting the object onto the quadric and then projecting the quadric onto the second
view. For example, in the implementation section we have shown that two views of a face
with typical displacements of around 20 pixels are brought closer, to around a 1-2 pixel
displacement, by the transformation. Most optical flow methods can deal with such small

displacements quite effectively.
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