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Intraspecific clinal systems are ideal for investigating the how divergence occurs in the 

presence of gene flow because they represent a balance between selection and gene flow 

prior to speciation.  High dispersal marine species with clinal variation are particularly 

informative to test for divergent selection because selection likely is strong enough to 

counteract high gene flow.  The degree of population structure varies considerably among 

loci, such that the genome acts as a sieve allowing gene flow at neutral loci and impeding 

it at selected loci, creating a genomic mosaic of differentiation.  In this study, I examine 

genomic and geographic patterns of differentiation among parapatric populations of the 

eastern oyster (Crassostrea virginica) along their contact zone in Florida estuaries.  The 

planktotrophic larval phase of this species gives it the potential for regular long-distance 

dispersal and genetically homogeneous populations.  However Florida populations at the 

center of its range exhibit a sharp step cline at some loci, suggesting a role for divergent 

selection.  Using 217 AFLP loci, including seven candidate loci for differential selection 



 

between the two populations, I genotyped 1,011 spat over two seasons and 274 adults at 

sites along the contact zone.  I examined: (1) whether genome scans can detect divergent 

selection in a clinal system, (2) the genomic and geographic patterns of differentiation 

along the cline at neutral and selected loci, and (3) regional patterns of differentiation and 

genotypic distributions among the life stages.  Results demonstrated: (1) candidate loci 

for regionally divergent selection, (2) a genomic and geographic mosaic of 

differentiation, (3) regional and localized selection at a non-trivial portion of loci, (4) 

lower recruitment and some mortality in the center of the cline, and (5) strong exogenous, 

post-settlement viability selection against intermediate and non-native-like genotypes.  

While a combination of neutral and adaptive processes likely shape genomic and 

geographic patterns of differentiation, this study revealed evidence for divergent selection 

in an estuarine species with high potential for gene flow.  Overall, these results point to a 

major role for post-zygotic, environment-dependent selection in the maintenance of the 

contact zone between Atlantic and Gulf-type oyster populations. 
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GENERAL INTRODUCTION 

 

Describing the process of divergence has been a major goal of evolutionary biologists.  It 

has been more challenging to explain how adaptive divergence occurs in the presence of 

gene flow (i.e., sympatry and parapatry) because divergent selection must be strong 

enough to overcome just one successful migrant per generation (Wright 1931).  

Examining divergence at different points along the continuum leading to speciation can 

help illuminate the underlying process and forces involved in developing reproductive 

barriers.  Intraspecific clinal systems, or species whose distribution includes a geographic 

shift between populations differentiated in phenotype or genotype frequencies, are ideal 

for investigating the process of divergence because they represent a balance between 

selection and gene flow at a stage prior to incipient speciation. 

 

Hybrid zones are natural laboratories for investigating how selection and dispersal 

interact to maintain divergence (Harrison 1990).  They are often the result of secondary 

contact and are frequently located in regions of environmental transition, which provide 

opportunities for selection gradients to act (Arnold 1997).  Selection can act through two 

pathways to maintain divergence in such zones of contact between differentiated 

populations:  endogenous selection against genetic incompatibilities in hybrids and 

exogenous selection for genotypes conferring higher fitness in their respective habitats 

(Arnold 1997).  These two pathways are the basis for hybrid zone maintenance models.  

In the former, a balance between dispersal and intrinsic selection against hybrids 
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produces an environment-independent, clinal “tension zone” (Barton & Hewitt 1985).  In 

contrast, the latter model states that environmental selection gradients maintain hybrid 

zones (Slatkin 1973; Moore 1977; Endler 1977).  Under this environment-dependent 

model, genotypes are not necessarily distributed in clines but loosely follow the 

distribution of critical environmental features.   

 

Both of these models have difficulty explaining sharp marine clines in high gene flow 

species without assuming very strong selection or barriers to dispersal.  For example, 

cohort analyses indicated that a narrow Mytilus edulis-M. galloprovincialis hybrid zone is 

maintained by exogenous viability selection through differential vulnerability to wave 

action (Wilhelm & Hilbish 1998).  Nonrandom hydrographic dispersal barriers also seem 

to play a role (Gilg & Hilbish 2003).  The endogenous and exogenous models are not 

mutually exclusive (Arnold 1992).  A combination of intrinsic and extrinsic selection 

agents has been demonstrated in both terrestrial (reviewed in Arnold 1997) and marine 

(e.g., Mercenaria in Bert & Arnold 1995) hybrid zones.   

 

High dispersal marine species with clinal variation offer particularly informative systems 

to test for divergent selection because selection is likely to be strong to counteract high 

gene flow.  For example, viability selection maintains leucine aminopeptidase allele 

frequency differences in the face of high dispersal along a narrow, estuarine salinity 

gradient in Mytilus edulis (Koehn et al. 1980).  Indeed, stressful environmental conditions 

found in intertidal (e.g., extreme temperature fluctuations, desiccation) and estuarine 

(e.g., extreme salinity fluctuations, limited dissolved oxygen) habitats impose strong 
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selection on inhabitants (Gardner 1997).  Selection gradients producing clinal variation 

across broad species distributions offer opportunities to study geographic patterns of 

differentiation (e.g., latitudinal physiological races in oyster reproductive timing in 

Loosanoff & Nomejko 1951; Barber et al. 1991).  Where historical and/or contemporary 

processes amplify latitudinal clines, investigation into those processes becomes more 

tractable and potentially relevant to parapatric speciation. 

 

Both historical and contemporary forces must be considered to explain population 

structure (Hilbish 1996).  Secondary contact is a particularly interesting historical legacy 

that could result in a contemporary signal of strong population divergence in species with 

high dispersive potential (Avise 1992).  During vicariance, isolated subpopulations 

escape the homogenizing effects of gene flow and differentiate through drift or 

differential selection (Coyne & Orr 2004).  If vicariance occurs within an environmental 

gradient, divergent adaptations can arise where gene flow previously prevented them 

(Conner & Hartl 2004).  After secondary contact forms a zone of transition between 

subpopulations, differential introgression erodes the accumulated neutral differentiation 

while selection maintains differences over evolutionary time (Barton & Gale 1993).  If 

sufficient time has passed to allow homogenization through gene flow at non-adaptive 

genes, genomic patterns can illuminate the filtering effects of divergent selection.  

Disentangling the effects of historical legacy and contemporary selection continues to 

present a major challenge, especially along ecotones.  Therefore, the genome will reflect 

strong differentiation in regions subject to strong divergent selection across environments 

or between genetic incompatibilities and will appear as a single structured population in 
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neutral regions (Beaumont 2005).  These selected regions are the unit of adaptation.  As 

the populations diverge, the portion of the genome experiencing restricted gene flow 

expands.  This theory has led to a ‘genic view of speciation’ (Wu 2001), where the 

process of adaptive speciation can be informed by examining genomic patterns resulting 

from differentiation in the face of gene flow. 

 

Through empirical studies of model organisms, we are only beginning to uncover the 

genetic basis of adaptation (Orr 2005).  Experiments looking for quantitative trait loci, 

examining the roles of candidate genes, and using association mapping have led to 

specific discoveries of the genetic basis of adaptive traits (e.g., Szabo & Burr 1996; 

Albertson et al. 2003; Nachman et al. 2003; Caicedo et al. 2004; Colosimo et al. 2005; 

Tishkoff et al. 2007).  These approaches, however, require a great deal of prior 

knowledge of the genome and/or gene functions, typical of model organisms.  In 

addition, the limitations to model organisms makes it difficult to assess how applicable 

these discoveries are to all organisms.   

 

Population Genomics 

 

Separating genome-wide neutral patterns from locus-specific patterns of selection can 

increase understanding of how evolutionary forces work to create and maintain 

differentiation in the presence of gene flow.  Neutral theory has gone far to explain and 

emphasize the role of random drift in generating genetic polymorphism and 

differentiation (e.g., Kimura 1968).  Recently, however, the argument for selection 
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playing a prominent role in generating and maintaining divergence has strengthened 

through theoretical (Doebeli & Dieckmann 2003; Doebeli et al. 2005; Gavrilets & Vose 

2005) and empirical (e.g., Wilhelm & Hilbish 1998; Schneider et al. 1999; Wilding et al. 

2001; Ogden & Thorpe 2002; Riginos & Cunningham 2005) lines of evidence.  

Capitalizing on the advances in neutral theory as a null model, evolutionary genomics can 

now address outstanding questions in evolutionary genetics of how and why divergence 

varies across the genome (Orr 2005).   

 

Population genomics is defined as the simultaneous sampling of many loci across a 

genome to understand how evolutionary processes shape genetic variation across 

genomes and populations (Black et al. 2001; Luikart et al. 2003).  It combines genomic 

concepts and technical approaches with population genetic theory and statistics to 

separate genome-wide effects (i.e., random genetic drift, gene flow, and inbreeding) from 

locus-specific effects (i.e., selection, mutation, assortative mating, and recombination).  

Of interest here, is the ability of this contrast to identify loci that indicate selective 

divergence despite gene flow at other loci.  This genome scan process can be summarized 

in four basic steps (Luikart et al. 2003).  (1) Sample many individuals from populations 

of interest.  (2) Genotype many loci, ideally tens to hundreds.  (3) Test for outlier loci 

using neutral theory of molecular evolution as a basis for the null hypothesis (Lewontin 

& Krakauer 1973).  For this test, simulations create a null distribution of neutral 

divergence due to mutation against which to compare the empirical genetic variation 

(Beaumont & Nichols 1996; Beaumont & Balding 2004).  Outlier loci that do not 

conform statistically to the expected null distribution are indicators of non-neutral 
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processes, whereas neutrally behaving loci are informative regarding demography and 

phylogenetic history.  This test assumes that: genes evolve independently due to 

pervasive recombination; enough loci have been sampled to accurately represent the 

genomic variation; and genome-wide effects influence all parts of the genome equally 

(Black et al. 2001).  (4) Use the outlier loci putatively under selection for further study to 

confirm and investigate selection. 

 

For non-model organisms, genome scans offer an alternative approach to address 

questions about the genetic basis of adaptive divergence (Luikart et al. 2003; Beaumont 

& Nichols 1996; Beaumont 2005; Hedrick 2006; Butlin 2010).  By comparing 

differentiation measured by hundreds of anonymous amplified fragment length 

polymorphisms (AFLP) to a neutral model of divergence, an investigator can: (1) identify 

candidate regions in the genome that are under the influence of divergent selection, either 

directly or through tight physical linkage, (2) assess the role selection plays in 

contributing to population differentiation, (3) evaluate how the effects of selection vary 

across the genome, and (4) compare patterns of selection on a geographic scale.  An 

increasing number of studies have used the genome scan approach to detect candidate 

loci under the influence of selection (Wilding et al. 2001; Emelianov et al. 2004; 

Campbell & Bernatchez 2004; Bonin et al. 2006; Savolainen et al. 2006; Egan et al. 

2008; Eveno et al. 2008; Nosil et al. 2008; Mariac et al. 2011). 

 

Although genome scans have been applied to a wide variety of organisms including 

various plants (e.g., Savolainen et al. 2006; Oetjen & Reusch 2007; Minder & Widmer 
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2008; Mariac et al. 2011), invertebrates (e.g., Wilding et al. 2001; Emelianov et al. 2004; 

Murray & Hare 2006; Egan et al. 2008; Nosil et al. 2008), and vertebrates (e.g., Campbell 

& Bernatchez 2004; Bonin et al. 2006), the range in methodologies utilized to study 

divergent populations has not been consistent.  Different applications have included: a 

single pair of populations; multiple, evolutionarily replicated pairs of populations 

analyzed separately; a single analysis incorporating multiple populations; varying 

arbitrary significance levels; and adjustments to address multiple comparisons.  The 

selection of any given approach often proceeds with little justification, but can have a 

large effect on the conclusions that can be drawn.  Therefore, these studies should be 

interpreted with caution, particularly when performing meta-analyses (e.g., Nosil et al. 

2009).   

 

Some generalizations are possible, however, that provide a window on the genomic 

landscape of divergent selection.  In a 2009 review of 20 genome-scan studies, Nosil and 

colleagues report an average of 8.5% of loci were putatively under the influence of 

selection (range: 0.4-24.5%).  This suggests that a considerable proportion of the genome 

may be affected by divergent selection.  A study not utilizing a genome scan supports this 

finding that selective divergence is heterogeneous across the genome (Payseur et al. 

2004).  For studies examining the genomic distribution of outlier loci via genetic maps 

and quantification of linkage disequilibruim, Nosil and colleagues found mixed evidence 

supporting genomic dispersion and genomic clustering among outliers.  In addition, 

nearly 50% of outliers were detected for multiple population pairs (Nosil et al. 2009).  

This suggests the same adaptive allele often either is selected in parallel repetition or 
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spreads through migratory gene flow.  In fact, accumulating examples demonstrate 

parallel divergence when independent origins of replicated ecotypes are known (Wilding 

et al. 2001; Campbell & Bernatchez 2004; Nosil 2008).  Another pattern emerging from 

genome scans is one of genealogical discordance between population trees based on non-

outlier loci and those based on outlier loci (Wilding et al. 2001; Bonin et al. 2006; Egan 

et al. 2008).  This corroborates theory of divergence with gene flow, where neutral gene 

trees reflect geographic patterns of demography, gene flow, and drift while gene trees of 

adaptive loci reflect the ecologically and genomically adaptive constraints.  Finally, to 

lend credence to the genome scan approach, QTL and outlier loci do collocate on genetic 

maps in some cases (Rogers & Bernatchez 2007; Via & West 2008).  

 

Amplified fragment length polymorphism (AFLP) assays combine the replicability of 

RFLPs with the power of PCR to offer a genomic alternative for non-model organisms 

that is useful for genome scans.  The assay generates many dominant loci with random 

genomic coverage, mostly from non-coding nuclear DNA (Vos et al. 1995).  AFLPs are 

used to evaluate many aspects of population genetics including: gene flow, dispersal, 

outcrossing, introgression, hybridization, DNA fingerprinting, parentage, genome-wide 

variation, and selection (Mueller & Wolfenbarger 1999; Meudt & Clarke 2007).  While 

AFLPs have been extensively reviewed (Mueller & Wolfenbarger 1999; Bonin et al. 

2007; Meudt & Clarke 2007), their limitations and advantages are of interest here.  As 

dominant markers, individual loci are less informative, but the large number of loci 

generated can easily overcome this (Bonin et al. 2007).  Because Hardy-Weinberg 

equilibrium is not testable directly in dominant loci, estimating allele frequencies requires 
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an assumption of equilibrium based on prior information or that Bayesian procedures be 

used (Zhivotovsky 1999).  Although this requires larger sample sizes, AFLPs are cheap, 

easy, fast, and reliable, with a reproducibility of 2-5% (Meudt & Clarke 2007; Zhang & 

Hare 2012).  They require little tissue and no prior knowledge of genomic composition or 

sequence, making them ideal for non-model and small organisms.  Very efficient for a 

given assay, AFLPs generate a large number of markers and high polymorphism.  Their 

advantages make them ideal for studies investigating genomic patterns of adaptive 

divergence between populations in non-model organisms. 

 

Study System 

 

The eastern oyster, Crassostrea virginica, is a high dispersal species that can be 

especially informative because it has a sharp intraspecific cline located within a relatively 

narrow ecotonal transition between temperate and subtropical communities.  Several 

features of the oyster system facilitate a test for divergent selection in this high gene flow 

species.  First, the genetic cline along eastern Florida is sharp relative to its dispersal 

potential (Hare and Avise 1996).  Second, the sessile nature of the oyster facilitates 

investigation of local adaptation.  Third, phylogeographic concordance among broadly 

distributed estuarine species in eastern Florida strongly suggests that divergence at this 

biogeographic province boundary is the result of historical vicariance and secondary 

contact but is now maintained by contemporary selection gradients (Avise 1992; Avise 

2004).  Thus, the oyster cline involves a contact zone between historically and genetically 
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distinct subpopulations and presents an intriguing system in which to study the role of 

selection in maintaining sharp differentiation in a high gene flow species. 

 

Oyster Biology 

In the intertidal and subtidal estuarine environment, sessile organisms like the oyster 

encounter strong environmental and biological gradients spatially and temporally 

(Pennings & Bertness 2001).  Under a scenario where the spatial scale of gene flow 

surpasses the scale at which selection varies, generalist traits or phenotypic plasticity are 

expected (Slatkin 1973; Grosberg & Cunningham 2001).  However, in some marine 

species with extensive dispersal potential, population genetics show new recruits to be 

well mixed over local scales at most loci while other loci associated with physiological 

tolerances diverge among environmental patches due to recurrent post-settlement 

diversifying selection (Koehn et al. 1980; Schmidt & Rand 1999). 

 

The eastern oyster is a broadly distributed, economically and ecologically important 

estuarine bivalve.  As a reef-builder, C. virginica is a keystone species in estuaries across 

the American Atlantic and Gulf of Mexico coasts.  It plays a critical role in the ecology of 

these systems by providing food, habitat, substrate, and shelter to a variety of organisms 

(e.g., worms, crabs, tunicates, small fish, other bivalves, amphipods, and algae; personal 

observation; Galtsoff 1964; White & Wilson 1996).  The eastern oyster also reduces 

turbidity and deposits nutrients to the bottom as it filters about 10 L of water per hour 

(Newell & Langdon 1996) to clean it of silt and phytoplankton.  Oyster reef structures 

slow water currents and prevent erosion ashore (Galtsoff 1964).  While it provides proper 
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habitat conditions for other organisms, the eastern oyster as a species lives in a range of 

salinities (5-40 ppt; Shumway 1996), temperatures (-2 - 36oC; Shumway 1996), and 

latitudes (18-49oN).   

 

The geographic range of the eastern oyster stretches from the Gulf of St. Lawrence in 

Canada to the Yucatan Peninsula in Mexico (Carriker & Gaffney 1996).  The distribution 

of the oyster is controlled by synergistic tolerances of salinity and temperature and by 

biotic factors like predators, parasites, and disease (Shumway 1996).  Various studies 

have demonstrated a range of salinity tolerance and the control temperature has over 

oyster growth, development, and reproduction (reviewed in Shumway 1996).  Spanning a 

latitudinal temperature gradient and biogeographic province boundaries, the oyster has 

been called a generalist characterized by phenotypic plasticity that enables it to tolerate 

and thrive in a variety of environments.  Not mutually exclusive to its generalist 

characteristics, local to regional adaptation may contribute to the ability of the eastern 

oyster to inhabit such a broad geographic range.  Indeed, physiological races exist 

between geographically separated populations, sometimes in relatively close proximity 

(Barber et al. 1991; Dittman 1997; Dittman et al. 1998).  The life cycle of C. virginica 

also supports long distance dispersal and large genetic variation, enabling oysters to reach 

and be fit in many places. 

 

The oyster life cycle begins with adult oysters synchronously spawning gametes into the 

water column.  Over the next two to three weeks, planktonic fertilized eggs develop into 

swimming veliger larvae that eventually develop an eye spot and foot.  These 
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pediveligers locate and explore the bottom environment and settle onto hard substrate, 

preferably existing adult oyster shell, and metamorphose into the juvenile spat stage.  

Over the next one to three years, these spat develop into reproductively competent adults, 

usually protandrously beginning as males and changing to females when they reach a 

large enough size (Thompson et al. 1996).  The age at which oysters reach reproductive 

competency varies geographically and with growth rate.  For oysters in more temperate 

environments like those found in the Northeast, first reproduction occurs a year after 

settlement.  In contrast, the warmer climate of the Southeast supports faster growth and 

first reproduction within the spat’s first season.  Like the timing of reproductive 

competency, the number of broods per season varies latitudinally with only one brood in 

the Northeast and two in the Southeast.  As with many organisms, fecundity increases 

with size such that females can produce a range of approximately 2-100 million eggs per 

season (Shumway 1996).   

 

Through sexual recombination, the great fecundity of oysters produces a wide variety of 

genotypes on which selection can act.  For organisms like many trees and bivalves that 

face intense attrition in early phases of the life cycle, this genetic variation is highly 

advantageous (Williams 1975).  For the oyster, Williams estimated that 90% of progeny 

perish in the plankton and that 90% of the remaining individuals die from non-selective 

factors (1975).  Settling at a much higher density that the area can support, competition 

occurs among adjacent individuals.  Slight disadvantages in viability and fitness-related 

traits suffered over extended periods in some leads to the best genotypes surviving.  The 

high fecundity and resulting high genetic diversity maximizes the probability that at least 
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one offspring will survive.  Those that survive are slightly more efficient at using 

resources and can tolerate local conditions better. 

 

In the natural mode of dispersal for this sessile benthic bivalve, the two to three weeks 

spent as planktotrophic larvae gives the eastern oyster a great potential for long-distance 

dispersal and gene flow.  While practical challenges exist for directly tracking actual 

dispersal distance in many planktonic larvae, population genetics present alternative 

approaches to studying planktonic dispersal on evolutionary time scales.  In a meta-

analysis of marine larval dispersal, clear positive correlation between dispersal distance 

and larval period translates to 20-120 km dispersal distance for a 14-21 day planktonic 

period (Kinlan & Gaines 2003; Shanks et al. 2003; Siegel et al. 2003; Shanks 2009).  In 

the Chesapeake Bay, the average squared dispersal distance was 479 km2 for the eastern 

oyster specifically (Rose et al. 2006), empirically demonstrating effective gene flow over 

moderate distances in this species. 

 

The Cline at Cape Canaveral, Florida 

For an organism considered a generalist with long distance dispersal living in an aquatic 

environment with no physical barriers to dispersal, there might be an expectation of 

genetic homogeneity among populations (Grosberg & Cunningham 2001).  However, C. 

virginica is composed of two genetically distinct populations in the Atlantic and Gulf of 

Mexico (Reeb & Avise 1990).  Genetic homogeneity observed within each region is 

consistent with high gene flow (Reeb & Avise 1990; Hoover & Gaffney 2005).  Along 

the eastern coast of Florida, a zone of rapid transition in allele frequency connects 
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‘Atlantic’ and ‘Gulf’ populations (Reeb & Avise 1990; Karl & Avise 1992).  Within the 

transition zone hybrids are formed; however, it remains unclear at what frequency.  When 

examined at a finer scale, the cline in allele frequency was quite sharp in comparison to 

potential dispersal distance (Hare & Avise 1996).  Allele frequencies changed by 50-75% 

over a span of only 20 km near Cape Canaveral (Hare & Avise 1996), suggesting a strong 

physical barrier to dispersal or a role for regional selection. 

 

In contrast to mitochondrial (mt)DNA, which shows a clear pattern of reciprocal 

monophyly when distant allopatric oyster populations are compared (Reeb & Avise 

1990), alternate fixation has not been found for any nuclear locus (Hare & Avise 1998).  

In fact, the degree of differentiation varies dramatically among presumed neutral nuclear 

loci (Buroker 1983; Karl & Avise 1992; McDonald et al. 1996).  This variation has 

spurred controversial hypotheses to explain the variance among loci. 

 

In the first study of population structure across the oyster range, populations had high 

genetic similarity (96.2 – 99.7%), interpreted as a result of high gene flow in presumed 

neutral allozyme markers (Buroker 1983).  When DNA markers were examined, they 

began to reveal a very different pattern of genetic structure.  A restriction fragment length 

polymorphism (RFLP) analysis of mtDNA showed a distinct phylogeographic break in 

eastern Florida and homogeneity on either side of the break (Reeb & Avise 1990).  The 

mtDNA results were corroborated by RFLPs at four single-copy nuclear (n)DNA loci 

(Karl & Avise 1992).  Karl and Avise suggested that the disagreement between marker 
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classes was due to uniform balancing selection on allozyme loci, such that they were 

unaffected by the vicariant history registered in DNA polymorphisms.  

 

Sparked by this controversial hypothesis, Cunningham and Collins (1994) reanalyzed the 

allozyme data using phylogeographic methods.  A subtle geographic break was found, 

distinguishing Northern and Southern lineages, but it was located on the Gulf side of 

Florida.  To test whether marker classes truly differ or if the Karl and Avise sampled loci 

were non-representative of DNA variation, McDonald and colleagues (1996) sampled 

polymorphisms at six additional anonymous nDNA loci in two populations (Charleston, 

SC and Panacea, FL) and demonstrated allele frequency differentiation no higher than 

observed in the original allozyme data.  From these data, it was evident that the small 

Karl and Avise sample may have been biased toward differentiated loci.  Yet, no 

explanation was offered for the large variance in differentiation measured across loci (FST 

range:  0 – 0.757; McDonald et al. 1996).  Four additional nDNA loci showed 

intermediate levels of Atlantic-Gulf differentiation (Hoover & Gaffney 2005).  Whereas 

Karl and Avise (1992) concluded that different evolutionary forces must shape different 

patterns across marker classes, the same logic now applies to different nuclear loci, but it 

must be tested explicitly. 

 

Patterns Geographically Concordant with the Oyster Cline 

Along eastern Florida, oysters inhabit a system of lagoons joined to the ocean at 11 

narrow inlets and to each other through a stabilized intracoastal waterway.  The extent to 

which larval transport occurs outside the lagoons, via inlet hopping, remains unknown.  
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However, for species that disperse as larvae, the shallow lagoons may create a common 

dispersal barrier because tidal mixing is weak, except near inlets (mean tide heights 

within the lagoons is ± 5 cm versus ± 26 cm along the oceanic coast; Smith 1987; Smith 

1993).  In non-tidal lagoons, wind shear can drive water movement, but the resulting 

larval dispersal is unknown.  Other species with similar modes of dispersal might be 

affected by a physical barrier, such as when hydrodynamic circulation is weak as in the 

Florida lagoons or when oceanographic currents prevent migrants from random dispersal 

(e.g., southward migration across the Point Conception biogeographic boundary in Wares 

et al. 2001; and unidirectional migration of M. edulis alleles from the hybrid zone to M. 

galloprovincialis populations in Gilg & Hilbish 2003). 

 

Although the genetic cline is strikingly sharp for a species with such a high potential for 

dispersal and dispersal barriers may play a role, the question of what evolutionary forces 

maintain the cline becomes more interesting in the biogeographic and environmental 

context of eastern Florida.  The eastern oyster is not the only estuarine species in this 

region exhibiting clines (e.g., ribbed mussel in Sarver et al. 1992; killifish in Duggins et 

al. 1995; hard clams in Dillon & Manzi 1989; Bert & Arnold 1995), but these clines are 

centered in different locations in northeastern Florida.  The Atlantic coast of Florida also 

contains a well-recognized biogeographic province boundary defined by clusters of 

species range limits between the Georgia-Florida border and Palm Beach, Florida (Briggs 

1974; Engle & Summers 1999).  The variation in cline locations and the diffuse nature of 

the province boundary implicate species-specific differential responses to selection 

gradients and/or more than a single, strong dispersal barrier.  The transition in species 
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composition across the boundary, coupled with a particularly steep temperature gradient 

generates a dramatic ecotone.  With these properties overlaid onto the step cline, the 

possibility is clear that the environmental gradients (abiotic and biotic) could play a role 

in maintaining differentiation through divergent selection. 

 

The oyster cline likely originated from genetic differences generated by vicariant 

processes that subsequently have come into secondary contact (Reeb & Avise 1990).  

Hybrid zones frequently collocate with regions of secondary contact between previously 

allopatric populations (Hewitt 1989).  Intraspecific phylogeographic concordance among 

multiple marine species (Limulus polyphemus, Malaclemys terrapin, Centropristis 

striata, Ammodramus maritimus) provides powerful evidence for this secondary contact 

hypothesis (Avise 1992).  During at least ten Pleistocene glacial advances and retreats, 

which enlarged the Florida peninsula, Atlantic and Gulf of Mexico populations were 

isolated and able to diverge (Reeb & Avise 1990).  These lines of evidence offer strong 

indications of cline origin and generate a need to understand its maintenance after 

secondary contact. 

 

Possible Explanations for Cline Maintenance 

One potential explanation for the sharpness of this cline is that of recent secondary 

contact, implying that cline shape is not stable.  Recent secondary contact is consistent 

with the ephemeral-zone hypothesis, which predicts the temporary nature of hybrid zones 

to result in either speciation or fusion (Dobzhansky 1940).  Under this hypothesis, the 

sharpness of the oyster cline should erode at a speed that is proportional to gene flow 
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(Barton & Gale 1993; Endler 1977).  However, numerous examples of stable hybrid 

zones exist (Barton & Hewitt 1985), demonstrating that the zones are not always short-

lived.  Indeed, when the oyster populations spanning Cape Canaveral were revisited 11 

years after the documentation of this genetic break, the sharpness of the cline remained 

(Murray & Hare 2006).  These findings suggest that the cline is somewhat stable, 

motivating investigation into the contemporary evolutionary processes maintaining this 

cline over time. 

 

Factors that may be maintaining the oyster cline include:  reduced dispersal, exogenous 

differential selection along the Florida coast, endogenous selection against hybrids, or a 

combination thereof.  Selection is a particularly attractive evolutionary explanation when 

the ecotone along eastern Florida is considered.  It is very possible that the low tidal flux 

(Bert & Arnold 1995) and weak currents (Smith 1987; Smith 1993) in the Florida lagoons 

are operating in concert with selection for local adaptation and/or against hybrids to 

maintain and even sharpen the oyster step cline.  Tests for physical barriers to gene flow 

are outside the scope of this study.  The strength of selection must be greater than the 

migration rate to prevent homogenization (Conner & Hartl 2004).  While both processes 

must be quantified to fully understand cline maintenance, this study focuses on the initial 

step of testing whether divergent selection is acting in this system.  To explore the role of 

selective forces through the following questions, this study uses a combination of 

genomic AFLP data, geographic and temporal sampling, and simulations. 
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 In Chapter 1: 

o Is the expected neutral distribution of differentiation sensitive to the 

details of a secondary contact history? 

o With an increase in the number of loci used to estimate the genomic mean 

FST between Atlantic and Gulf of Mexico oyster populations, can neutral 

migration-drift processes explain the among-locus heterogeneity observed 

in previous studies? 

 In Chapter 2: 

o Does the population structure near the cline center reflect clinal 

expectations of two differentiated populations in parapatry? 

o How does selection shape the genomic pattern of differentiation? 

o Is there a clinal geographic pattern of selection along the ecotone? 

 In Chapter 3: 

o Is there successful recruitment in the Cape Canaveral area? 

o To what extent does hybridization occur between Atlantic and Gulf types? 

o Does selection occur pre-settlement or post-settlement? 

o Is selection endogenous or exogenous?  That is, does selection vary 

geographically across the zone of contact? 
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CHAPTER 1: A Genomic Scan for Divergent Selection in a 

Secondary Contact Zone Between Atlantic and Gulf of Mexico 

Oysters: Crassostrea virginica 

 

 

Note: This chapter is published with this citation. 

Murray, M. C., & Hare, M. P.  (2006).  A genomic scan for divergent selection in a 

secondary contact zone between Atlantic and Gulf of Mexico oysters, Crassostrea 

virginica.  MOLECULAR ECOLOGY, 15(13), 4229-4242. 

 

Abstract 

 

The degree of population structure within species often varies considerably among loci.  

This makes it difficult to determine whether observed variance reflects neutral-drift 

stochasticity or locus-specific selection at one or more loci.  This uncertainty is 

exacerbated when evolutionary equilibrium cannot be assumed and/or admixture 

potentially inflates genomic variance.  Thus, the value of a “genome scan”, where locus-

specific summary statistics are compared with a simulated neutral distribution among 

loci, may be limited in secondary contact zones if the null distribution is sensitive to the 

timing of secondary contact.  Of particular interest here is the wide variance previously 

observed in locus-specific patterns of population structure between Atlantic and Gulf of 
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Mexico populations of eastern oyster, Crassostrea virginica.  To test the robustness of an 

equilibrium null model, we compared among-locus distributions of FST simulated under 

migration-drift equilibrium and several nonequilibrium secondary contact histories.  We 

then tested for evidence of divergent selection between two oyster populations on either 

side of a secondary contact zone using 215 amplified fragment length polymorphism 

(AFLP) loci.  Constant-migration equilibrium and nonequilibrium secondary-contact 

simulations produced equivalent distributions of FST when anchored by the global mean 

FST observed in oysters, 0.0917.  The 99th quantile of simulated neutral FST encompassed 

most of the variation among oyster loci.  Three AFLP loci exhibited FST values higher 

than this threshold.  Although no locus was significant after correcting for multiple tests, 

our results show in geographically clinal organisms: AFLPs can efficiently characterize 

the genomic distribution of FST; equilibrium models can be used to evaluate outliers; 

these procedures help focus research on genomic regions of interest. 
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Introduction 

 

Determining the evolutionary forces that act to generate and maintain genetic diversity in 

natural populations is a fundamental goal of population genetics (Hartl & Clark 1997).  

Molecular markers provide an ever more powerful tool for this endeavor as types of 

polymorphic markers diversify and analytical methods improve (Hey & Machado 2003; 

Avise 2004; Manel et al. 2005).  However, genomic sampling error remains a serious 

limitation to accurate inference of evolutionary processes from genetic patterns in natural 

populations.  In a typically small, random sample of loci compared among populations, 

there easily can be one or two loci that appear to have extreme patterns of population 

differentiation (biship pine, Millar et al. 1988; ponderosa pine, Latta & Mitton 1999; cod 

fish, Pogson et al. 1995; eastern oysters, Karl & Avise 1992; blue mussels, Riginos et al. 

2002).  Demography will have generalized effects across the genome, whereas selection 

will influence variation at localized sections of tightly linked loci in the genome.  Thus, a 

locus-specific pattern of variation over and above the genomic pattern implicates 

selection, provided an accurate estimate of the neutral genomic variance and 

corresponding central moment can be made.  In a small sample of loci, one gene with 

especially high differentiation may indicate divergent selection, or it could reflect a broad 

(and poorly sampled) distribution of neutral variation.  Demographic and historical 

inferences can be very different depending on the set of loci chosen to represent neutral 

variation (Ford 2002).  Proper interpretation of variation among loci requires two things: 

(1) accurate assessment of the neutral drift variance among loci, and (2) an objective 
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basis for discerning whether selection is influencing either or both ends of the distribution 

(balancing or purifying selection). 

 

It has become well known that a large amount of stochastic variation in the evolution of 

independent loci is generated by neutral drift (Knowles & Maddison 2002; Rosenberg & 

Nordberg 2002; Rosenberg 2003).  It is also expected that hybridization and secondary 

contact zones, or any contrast in phylogeographic structure among populations, will 

generate larger among-locus variation in levels of differentiation than expected within a 

set of populations with homogeneous structure (Robertson 1975; Harrison 1990; Latta 

2003).  Thus, surprisingly large heterogeneity in FST among loci is often consistent with 

neutral drift expectations under these evolutionary scenarios (Latta 2003).  In other cases, 

more detailed investigations of outlier loci have strongly supported a causative role for 

selection (e.g., the pantophysin gene in cod; Pogson 2001; Pogson & Mesa 2004; Case et 

al. 2005).  In two cases where genomic sampling error was suspected as the cause of an 

apparent distinction between relatively low-FST allozymes and high-FST DNA markers, 

follow-up studies added more loci to the data set but did not contrast the empirical results 

to an estimate of the expected neutral drift variance (oysters, McDonald et al. 1996; 

mussels, Bierne et al. 2003).  Instead, after estimating a statistic describing locus-specific 

differentiation, a nonparametric test was used to reject homogeneity between marker 

classes (allozyme versus DNA; McDonald et al. 1996; Bierne et al. 2003). 

 

Even when classes of marker show patterns that are not significantly different, the 

variance observed among loci may be elevated above neutral expectations because of 
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selection on individual loci.  To address this, an estimate of the drift variance among loci 

is needed to rigorously identify candidate loci potentially under selection (or linked to 

targets of selection).  A genome scan is an efficient approach for accomplishing this.  The 

procedure involves collecting low-resolution polymorphism data on a large genomic 

scale to more completely sample genomic diversity, identifying “outlier” loci based on 

statistical criteria or by comparison to a null model, and ultimately testing observed data 

against alternative nonequilibrium models of historical demography/selection (Kauer et 

al. 2003; Akey et al. 2004; Storz et al. 2004; Haddrill et al. 2005).  However, genome 

scans may be unreliable if an equilibrium model is used to identify outlier loci in 

nonequilibrium populations (Nei & Maruyama 1975; Robertson 1975; Luikart et al. 

2003).  Of more specific interest here, Bierne et al. (2003) argued that in a secondary 

contact zone, a combination of pre-contact differentiation variance and post-contact 

differential introgression can inflate the FST variance over equilibrium expectations.  

Unfortunately, it is rarely known with any certainty whether population differentiation 

originated in situ or resulted from allopatric divergence and secondary contact at some 

time before present (Endler 1977), or even whether the populations are at drift-migration 

equilibrium.  If the among locus variance is a function of these unknowns, then there is 

little clarification provided by comparison of observed patterns to an equilibrium model 

and little basis for determining the proper nonequilibrium model to apply to clinal 

populations. 

 

Some resolution has been provided for the opposing interpretations of allozyme and DNA 

marker variation in the Scandinavian mussel hybrid zone.  This was accomplished in two 
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ways.  First, because some markers were not alternatively fixed between the parental 

populations (Mytilus edulis and M. trossulus), it was informative to examine allele 

frequency differentiation across the narrow hybrid zone relative to that between allopatric 

parental populations (Riginos & Cunningham 2005).  When scaled by divergence 

between parental species, DNA markers showed less differentiation across the hybrid 

zone as compared to allozyme loci.  While this result may still suffer from biased 

sampling of DNA markers and did not account for the drift variance among loci, it was 

coupled with a second criterion, environmental correlations, to support selection as the 

cause of allele frequency patterns at several allozyme loci (Riginos & Cunningham 

2005). 

 

Here, we focus on the other example of high among-locus variance in FST between 

Atlantic and Gulf of Mexico populations of the eastern oyster, Crassostrea virginica, to 

revisit the question of whether neutral migration-drift processes can explain the genomic 

heterogeneity.  This species has a broad range distribution spanning from New 

Brunswick, Canada to Brazil (Carriker & Gaffney 1996).  Reproduction is by 

synchronous broadcast spawning and external fertilization, followed by a planktonic 

larval stage lasting two to three weeks before permanent settlement on hard estuarine 

substrate (Thompson et al. 1996).  The lengthy planktonic larval stage of eastern oysters 

confers a great potential for long distance dispersal (Kinlan & Gaines 2003).  As a result, 

genetic differentiation found between Atlantic and Gulf of Mexico oyster populations 

was both surprising and intriguing, given their continuous distribution around Florida.  

Reciprocal monophyly was observed for restriction fragment length polymorphisms 
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(RFLPs) of mitochondrial (mt)DNA (Reeb & Avise 1990).  Strong Atlantic-Gulf of 

Mexico allele frequency differentiation was also found in single copy nuclear (scn)DNA 

markers (Karl & Avise 1992).  Based on these macrogeographic studies, relative 

homogeneity of allele frequencies within Atlantic and Gulf of Mexico regions suggested 

that high gene flow indeed was maintained across populations in large parts of the species 

range.  The Atlantic-Gulf of Mexico differentiation, localized primarily along eastern 

Florida, reflects a combination of vicariant history and contemporary barriers to gene 

flow (Reeb & Avise 1990).  Curiously, allozyme loci in the oysters showed a very 

different pattern.  A broad survey examining 21 polymorphic allozyme loci in Atlantic 

and Gulf of Mexico oysters uncovered subtle differentiation between these regions at 

only two loci (Buroker 1983; Cunningham & Collins 1994).  

 

The contrast between allozyme and DNA patterns led Karl & Avise (1992) to 

hypothesize that geographically uniform balancing selection maintained homogeneity of 

allele frequencies at allozyme loci, while population differentiation of DNA 

polymorphisms reflected a history of vicariance.  Because Karl & Avise (1992) reported 

on only four scnDNA markers plus mtDNA, McDonald et al. (1996) examined whether 

genomic sampling error might have created a false dichotomy between patterns of 

differentiation at allozyme and DNA markers.  To accomplish this, McDonald et al. 

(1996) compared the previously published allozyme data with the Karl & Avise (1992) 

markers and seven new scnDNA RFLPs, all analyzed in single representative populations 

from both the Atlantic and Gulf of Mexico.  Strong differentiation was found with the 

Karl & Avise (1992) markers, replicating their results, but the new scnDNA markers 
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exhibited low differentiation comparable to levels found in allozymes (McDonald et al. 

1996).  McDonald et al. (1996) concluded that patterns of Atlantic – Gulf differentiation 

did not differ between marker classes.  Additional studies have contributed data on 

Atlantic – Gulf oyster population structure from yet more DNA markers (Hoover & 

Gaffney 2005), but the hypothesis that genetic drift can explain the among-locus 

heterogeneity in differentiation has never been formally tested. 

 

With more intensive sampling in eastern Florida, it was shown that the transition in 

oyster mtDNA and scnDNA allele frequencies occurred as coincident, sharp step clines 

near Cape Canaveral (Hare & Avise 1996).  Several facts support the hypothesis that this 

is a secondary contact zone.  First, if introgression is ignored by comparing populations 

far removed from the cline, mitochondrial haplotypes in the Atlantic and Gulf of Mexico 

are reciprocally monophyletic with average sequence divergence of 2.6 % between the 

clades (Reeb & Avise 1990).  Similar Atlantic-Gulf of Mexico intraspecific 

phylogeographic breaks in multiple estuarine and marine species provide comparative 

data implicating shared vicariance (Avise 1992; Avise 2000; but see Lee & Ó Foighil 

2004).  Hybridization and clinal variation are also common features between parapatric 

estuarine species in eastern Florida (Duggins et al. 1995; Sarver et al. 1992; reviewed in 

Gardner 1997).  Finally, a well-recognized boundary zone between temperate and 

subtropical faunal provinces occurs along the eastern Florida coast (Briggs 1974).  

Although it is impossible to confirm that the oyster cline originated with secondary 

contact, this likely scenario would produce a large variance among loci in levels of 

differentiation (Bierne et al. 2003).  The narrowness of some oyster clines suggests that 
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they may be maintained by selection (Barton & Hewitt 1985), further adding to the 

among-locus variance in differentiation. 

 

A cline resulting from secondary contact should deteriorate rapidly due to gene flow and 

introgression of neutral markers, unless it is stabilized by biotic or abiotic factors (Endler 

1977; Barton & Hewitt 1985).  Atlantic and Gulf of Mexico oysters are routinely 

interbred for the purposes of aquaculture (X. Guo and S. Allen pers. comm.), indicating 

that any intrinsic genomic incompatibilities may be minimal at the F1 generation and 

beyond.  Local samples along the oyster cline mostly exhibited equilibrium genotype 

frequencies within and among loci, also consistent with a lack of strong reproductive 

barriers between populations on either side of the cline and/or relatively local recruitment 

(Hare & Avise 1996).  These considerations suggest two possible explanations for sharp 

oyster clines: (1) the clines are decaying every generation, but their narrowness reflects 

the recency of secondary contact or the strength of a dispersal barrier at Cape Canaveral; 

(2) divergent selection maintains differentiation at some loci, while gene flow dissipates 

the differentiation at others.  The second process would increase among-locus variance in 

FST, but to detect this in a genome scan would require a suitable null model for neutral 

divergence.  In this report, we supply data on the temporal stability of the cline and 

increase the genomic sampling of polymorphisms ten-fold to test the second hypothesis 

using a genome scan. 

 

Our first goal was to determine whether the neutral distribution of FST was sensitive to 

details of a secondary contact history.  Improving on a test introduced by Lewontin & 
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Krakauer (1973), Beaumont & Nichols (1996) found that simulated distributions of 

neutral FST, anchored on the observed genomic mean FST and plotted against locus 

heterozygosity, provided expectations robust to many features of population structure and 

demography as well as to variation in mutation rates among loci.  Specifically, neutral 

genetic drift produced equivalent distributions of FST in colonization and island models 

with the same overall mean FST.  However, as predicted by Robertson (1975) and Nei & 

Maruyama (1975), models in which more than two subpopulations had different 

divergence times or migration rates showed a broader distribution of FST relative to a 

symmetric island model (Beaumont & Nichols 1996).  Fortunately, restricting analyses to 

pairwise population comparisons nearly eliminates the risk of simulating an overly 

simplistic and narrow null distribution of FST in which outliers would be incorrectly 

identified as non-neutral (Tsakas & Krimbas 1976; Vitalis et al. 2001; Beaumont 2005).  

The neutral distribution of FST may not be as robust in nonequilibrium secondary contact 

populations (Bierne et al. 2003).  Therefore, we utilized simulations to compare the 

neutral distributions of FST in two populations generated under migration-drift 

equilibrium versus different stages of nonequilibrium after secondary contact, using the 

same genomic mean FST in each case. 

 

Our second goal was to increase the number of loci used to estimate the genomic mean 

FST between Atlantic and Gulf of Mexico oyster populations and determine whether 

neutral migration-drift processes can explain the among-locus heterogeneity.  We 

surveyed amplified fragment length polymorphisms (AFLP) in one Atlantic population 

just north of the step cline and one population at the opposite end of the cline in 
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southwestern Florida, just inside the Gulf of Mexico (Hare & Avise 1996).  AFLP 

analysis is ideal for rapidly screening many loci that are randomly distributed throughout 

the genome, allowing a more accurate estimate of the genomic differentiation among 

populations and a more thorough test for portions of the genome under divergent 

selection.  
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Materials and Methods 

 

Sampling and DNA Extraction 

Adult oysters were sampled in two locations along the Florida coast (Fig. 1), New 

Smyrna Beach in 2002 (NSB; 29.0795 N, 80.9559 W) and Port Charlotte in 2004 

(PCH; 26.4286 N, 81.8668 W).  These sample sites were selected as representatives of 

divergent populations in the Atlantic and Gulf of Mexico based on Karl & Avise 1992 

(see Fig. 1).  For 30 individuals from each site, gill or mantle tissue was dissected and 

preserved in 95% ethanol for subsequent DNA extraction. Approximately 20 mg of tissue 

was used for DNA extraction using the DNeasy 96 Tissue kit (Qiagen Inc., Valencia, 

CA) following the manufacturer protocol for animal tissues.  Genomic DNA was diluted 

to 50 ng/l based on spectrophotometry. 

 

RFLP Analysis 

To test the temporal stability of the oyster allele frequencies in the sampled locations, one 

mitochondrial (mtDNA) and two nuclear loci were amplified with the polymerase chain 

reaction (PCR) and digested with restriction enzymes to score RFLPs previously shown 

to be differentiated between Atlantic and Gulf of Mexico populations.  Procedures 

followed Hare et al. (1996) for the CV-32.4 and CV-7.7 loci and Hare & Avise (1996) for 

the mtDNA RFLP in the NADH dehydrogenase 4 gene.  To test for significant deviations 

from Hardy-Weinberg equilibrium, we used permutation tests as implemented in FSTAT 

ver. 2.9.3 (Goudet 2001). 
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AFLP Analysis 

AFLP fragments were generated according to a modified version of the procedure 

outlined by Vos et al. (1995).  Primer and adaptor sequences are provided in Table 1.  For 

each sample, 50 ng of genomic DNA were added to a 50 l total volume solution 

composed of: 1X enzyme buffer, 0.1 mg/ml BSA, 0.2 mM ATP, 1.8 mM dithiothreitol, 

0.05 M MseI adaptor, 0.05 M EcoRI adaptor, 25 U MseI, 10 U EcoRI, and 100 U 

DNA ligase.  To allow for complete digestion and ligation, this reaction was incubated at 

37C for 5 hours and then diluted 1:10 with dH2O.   

 

A pre-selective PCR was then performed on each sample in 10 l reactions containing 

2.0 l 1:10 digestion-ligation product, 1.5 mM MgCl2, 0.125 mM dNTP, 1X PCR buffer, 

0.5 M primer EcoRI-A, 0.5 M primer MseI-C, and 0.5 U Taq polymerase (Invitrogen).  

Pre-selective PCR conditions were: 95C for 1.5 min, then 22 cycles stepping from 95C 

for 0.5 min to 56C for 1 min and 72C for 1 min.  The selective PCR reactions contained 

2.0 l of pre-selective PCR product diluted 1:40, 1.5 mM MgCl2, 0.125 mM dNTP, 1X 

PCR buffer, 0.5 M fluorescently labeled primer EcoRI-ACT, 0.5 M primer MseI-

CXX, and 0.5 U Taq polymerase.  Four different MseI-CAX primers were used (Table 1).  

The selective PCR conditions began with 95C for 1.5 min; then 9 touch-down cycles of 

95C for 0.5 min, 65C for 0.5 min, 72C for 1 min where the annealing temperature 

decreased by 1C per cycle; followed by 22 cycles of 95C for 0.5 min, 56C for 0.5 min 

and 72C for 1 min. 
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AFLP fragments were electrophoresed with an ABI 3100 genetic analyzer (Applied 

Biosystems).  Using GeneScan 3.7 and Genotyper 2.5 software (Applied Biosystems), 

individuals were scored for fragment presence/absence at well-resolved loci with sizes 

between 75 and 490 bp.  AFLP loci were accepted as scorable if, across all gels and all 

individuals (n = 60), the distribution of fragment lengths was unimodal.  Then, a ±0.5 bp 

bin was centered on the mean fragment size for each locus.  Because this bin size 

contained the entire distribution of fragment sizes for each scored locus, and excluded 

fragments from loci of similar size, miscalling fragments of similar size was avoided.  

Triplicate assays on the genomic DNA of several individuals from each population 

demonstrated repeatability with all four primer pairs.  Loci with similar fragment profiles 

across individuals, potentially indicating linkage, were identified using the ‘loci filtering’ 

option of AFLPOP (Duchesne & Bernatchez 2002). 

 

Population Differentiation 

Because most AFLPs are dominant markers, in which heterozygotes cannot be 

distinguished from band-present homozygotes, frequencies of the presence and absence 

alleles for each locus were calculated assuming Hardy-Weinberg equilibrium.  

Monomorphic loci were excluded from analyses.  For each remaining locus, mean allele 

frequency was calculated as the arithmetic average of the band-absent frequency in the 

two populations.  For each locus, genetic differentiation between populations was 

measured in terms of FST, calculated as (1-(HS / HT)), where HS is the mean locus-specific 

heterozygosity within populations and HT is the locus-specific total heterozygosity (Nei 

1973).  In addition, a correction for finite sample size was applied as suggested by Nei & 
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Chesser (1983).  Negative values of FST were converted to zero.  Then global FST, a 

measure of central tendency for the distribution of FST across loci, was calculated as (1-

(mean HS / mean HT)), where mean HS and mean HT are the arithmetic averages across 

loci of HS and HT (Nei & Chesser 1983).  Standard error of FST for individual loci was 

estimated by calculating the FST from a sample of 30 individuals from each of two 

synthetic populations (N=1000 for each population) in Hardy-Weinberg equilibrium, 

where the allele frequencies of these populations were equal to those observed for the 

corresponding AFLP locus, and permuting this process 1000 times. 

 

Previously published codominant allele frequencies for 27 loci were available for 

samples from South Carolina and western Florida, representing Atlantic and Gulf of 

Mexico oysters, respectively.  These included 19 allozyme loci from Buroker (1983) with 

the frequency of the most common allele  0.99 (n = 90-100 individuals per sample), four 

scnDNA RFLPs initially reported by Karl & Avise (1992; n = 21-38), and four scnDNA 

polymorphisms (indel or RFLP) from McDonald et al. (1996; n = 60).  Allele frequencies 

for two of the Karl & Avise (1992) loci were obtained from the reanalysis by Hare et al. 

(1996).  Mean FST between these populations was calculated among loci, weighted by 

their heterozygosities, using the program DATACAL distributed with fdist2 (Beaumont 

& Nichols 1996; http://www.rubic.rdg.ac.uk/~mab/software.html). 

 

AFLP Isolation and Characterization 

For one AFLP locus with high FST, a DNA fragment was isolated from a band-present 

individual on a polyacrylamide gel and sequenced directly using the AFLP primers.  
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Gene-walking PCR was used to amplify segments of genomic DNA flanking the AFLP 

fragment following the recommended procedures in the GenomeWalker kit (BD 

Biosciences Clontech).  Gene-walk amplifications were cloned or directly sequenced, and 

PCR primers were designed to amplify a short segment of DNA containing the 

polymorphic EcoRI site that had generated the AFLP (oyCAA273-R3, 5’-

CCCAAATTCAAAGCTTCA ACG A-3’; oyCAA273-L4, 5’-

ACCCCGTGTGCGACAATTATAC-3’). 

 

Comparison of Equilibrium and Nonequilibrium Secondary Contact FST 

Distributions 

Simulations were conducted to generate the null distributions of FST expected among 

neutral loci under two conditions; an equilibrium between gene flow and drift versus 

nonequilibrium secondary contact between two populations.  The equilibrium simulation 

was performed using the computer program WINK (Wilding et al. 2001).  Drawing 

initially from a uniform distribution of allele frequencies, 500 bi-allelic loci were 

simulated with a mutation rate  in two diploid populations of size N sharing migrants at 

a constant symmetrical rate m.  At generation 10N (i.e., at equilibrium), 30 individuals 

were sampled from each population and their genotypes stored.  Mean allele frequency 

and FST were calculated for each locus in the same manner as for the AFLP data (band 

present is dominant to band-absent).  Repeating this simulation numerous times provided 

a total of 144,331 independent loci.  Monomorphic loci were excluded, and negative 

values of FST were converted to zero.   
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Because the simulated FST distributions are robust to different combinations of population 

size and mutation rate (Beaumont & Nichols 1996; Wilding et al. 2001), these parameters 

were held constant at a 10:1 ratio, calculated based on N estimated from AFLP 

homozygosity (1 – mean HS) using equation 2.7 in Kimura (1968).  Migration rate was 

adjusted in the simulation to produce a global FST similar to, but never below, the 

observed global FST.  As a conservative measure, maintaining a simulated global FST 

above the empirical value reduced the likelihood of false positives, i.e., neutral oyster loci 

with high FST misidentified as targets of divergent selection. 

 

Simulations were also conducted under a non-equilibrium neutral model of secondary 

contact for comparison to the equilibrium null distribution of FST.  A two-stage 

simulation using EASYPOP v1.8 software (Balloux 2001) generated data for two 

populations of 1000 diploid individuals with a constant mutation rate .  Approximately 

1,000 bi-allelic codominant loci were initiated with a random assignment of alleles using 

the ‘maximum variability’ option.  During the first 10,000 generations, m = 0 between 

the populations.  Subsequent generations had a symmetrical constant m > 0 to simulate 

secondary contact.  In separate simulations using identical starting conditions, genotypes 

for 30 individuals were sampled at t generations following secondary contact (t = 100, 

200, 400, 800, 2500) to examine different stages of introgression.  Codominant genotypes 

were converted to dominant presence/absence data.  Simulated secondary contact data 

were analyzed as described above for the equilibrium model, including adjustment of 

migration rate m for each simulation so that at time t, the simulated global FST was 

similar to that observed in the AFLP data.  Binned distributions of FST under different 
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equilibrium and nonequilibrium conditions were compared using the Kolmogorov-

Smirnov non-parametric test with a strict Bonferroni correction for multiple comparisons 

(Sokal & Rolf 1995, pp. 434-439). 

 

Outlier Test for Selection 

For populations diverging by genetic drift, the expected FST and its variance among loci 

depend on the heterozygosity of the loci.  In order to test for selection, the joint 

distribution of FST and heterozygosity is derived by simulation under a null hypothesis of 

neutral genetic drift with migration (Beaumont & Nichols 1996).  To test for selection 

among the previously published codominant loci, coalescent simulations using Fdist2 

(Beaumont & Nichols 1996) under the infinite-allele model were performed for 50,000 

independent loci in two ways: 50 populations or 2 populations simulated.  In either case n 

= 50 individuals were sampled from each of two populations.  The simulation program 

adjusts mutation rate to produce a nearly uniform distribution of heterozygosity and sets 

migration rate to reproduce the empirical weighted mean FST at equilibrium.  Another 

module of the Fdist2 package (cplot) was used to calculate 0.99 quantiles, based on many 

overlapping bins, for the two sets of simulated FST values.  The probability of extreme 

FST observations relative to a simulated distribution was calculated as in Beaumont and 

Nichols (1996; program pv distributed with Fdist2) and compared to a conventional 

Bonferroni correction for an experiment-wide alpha of 0.05.  The FST observed for locus 

CAA-270, the AFLP locus converted to a codominant marker, was then compared to the 

distribution simulated above, which was based on the weighted mean of the previously 
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published loci.  The probability of the CAA-270 FST was calculated relative to the same 

distribution. 

 

For the AFLP loci, we analyzed FST conditioned on the mean frequency of the absent 

allele.  To identify empirical AFLP loci for which the neutral drift model could be 

rejected, the 0.99 quantile of the simulated FST data was plotted against the mean allele 

frequency for the recessive band-absent allele.  The 99th quantile and probability of 

empirical FST was calculated as above.  The null model of neutral divergence was 

rejected for AFLP loci with p-values less than the Bonferroni-corrected 0.05 alpha.  
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Results 

 

Temporal Stability of Allele Frequencies 

Allele frequencies were not significantly different when compared across eleven years (4-

5 generations) at New Smyrna Beach and across 14 years (4-7 generations) at Port 

Charlotte (Fig. 1).  Genotype proportions at the nuclear loci were also consistently very 

close to Hardy-Weinberg expectations (Hare et al. 1996).  This suggests that Hardy-

Weinberg deviations in neutral AFLP markers, if present, would have mostly technical 

rather than biological causes, and therefore relatively small effects. 

 

AFLP Differentiation in Oysters 

A total of 226 AFLP bands (loci) were reliably scorable for polymorphism. Of these, 11 

(4.9%) were monomorphic and excluded from further analysis.  The number of scorable 

AFLP loci varied somewhat among the four primer pairs, but the proportion of 

polymorphic loci within a population was always greater than 80% (Table 2).  A total of 

27 loci had allele frequency differences of at least 0.35 between the Atlantic and Gulf 

samples.  Among these high-differentiation loci, no pair exhibited identical patterns of 

fragment presence and absence across individuals (no tight linkage).  Over all loci, the 

global FST was 0.0917, but varied among primer pairs (Table 2).  
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Comparison of Simulated FST Distribution under Two Evolutionary Histories 

When two populations diverge in allopatry (m = 0), the magnitude of neutral FST at 

equilibrium depends on the balance between drift (Ne) and mutation () (Maruyama 

1970).  In our simulations, this equilibrium global FST preceding secondary contact was 

0.38, obtained after approximately 3000 generations.  For any given level of constant 

gene flow after secondary contact, as expected, the global mean FST decreased 

monotonically over time until a drift-migration-mutation equilibrium was reached (e.g., 

Nm = 2 in Fig. 2a).  Also, the among-locus variance in FST decreased in parallel with FST 

after secondary contact (Fig. 2a).  We were interested in the equilibrium and 

nonequilibrium conditions that could produce the observed global FST = 0.092, and the 

among-locus variance in neutral FST associated with those conditions.  For the parameters 

in our simulation (N = 1000 and  = 0.0001), only Nm = 1.48 produced an equilibrium 

FST of 0.092, obtained after 2500 generations (Fig. 2b).  Higher levels of constant gene 

flow after secondary contact produce FST = 0.092 transiently during the approach to 

equilibrium (Fig. 2b).  For example, with post-contact Nm = 9.0, the global FST quickly 

decreased from 0.38 to 0.092 in t + 50 generations (Fig. 2b).  Lower rates of constant 

gene flow after secondary contact increased the number of generations before FST 

transiently reached 0.092 on the approach to equilibrium (Fig. 2b).  It is usually difficult 

to determine whether populations are at equilibrium or not.  Therefore, the important 

result from these simulations is that every time point and gene flow combination that 

yielded the empirical estimate of global FST = 0.092 also produced the same variance in 

FST that was observed at equilibrium, 0.013 (Fig. 2b).  This result is reinforced by a 

comparison of frequency distributions for binned FST values from different simulations 
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(Fig. 3).  There were no significant differences in pairwise tests among distributions from 

two nonequilibrium and two equilibrium simulations that produced a global FST of 0.092 

(six tests, Bonferroni corrected alpha = 0.008; Fig. 3).  Thus, for a given FST, there was 

no period after secondary contact when neutral processes inflated the among locus 

variance in FST above that expected at equilibrium. 

 

Tests of Selection 

The weighted mean FST among 27 previously published codominant markers was 0.1142  

(range 0 to 0.6647).  In all simulations, the weighted mean FST for simulated data was 

never more than 0.003 higher than the empirical mean.  Compared with the 0.99 quantile 

of simulated values, only one (3.7 %) previously published locus, CV-7.7, had a higher 

FST value than expected under neutral evolution (Fig. 4a).  The probability of the FST 

value at CV-7.7 was 0.0026 or 0.0045, depending on the details of the simulation 

defining the neutral distribution.  Neither p-value was significant after Bonferroni 

correction with an experiment-wise alpha of 0.05 (for 27 loci, corrected alpha = 0.0019). 

    

Because distributions generated under the equilibrium and nonequilibrium models did not 

differ, an equilibrium island model was used to produce the null distribution of FST 

against which the empirical AFLP values could be tested.  The mean homozygosity for 

polymorphic AFLPs, 0.745, was used to estimate Ne = 0.13.  This population-mutation 

parameter value was assumed for all simulations by setting N = 1000 and  = 0.0001.  

After removal of monomorphic loci (13.3 %), a total of 125,091 simulated loci remained.  

The global FST among polymorphic simulated loci was 1.1% higher than the empirical 
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estimate from AFLPs, providing a slightly conservative test for non-neutral FST values.  

The test revealed three AFLP loci (1.4 %) with FST values greater than the 0.99 quantile 

for FST simulated under neutral drift-migration (Fig. 4b).  These three loci are the 

strongest candidates for divergent selection.  However, no locus remained significant 

after Bonferroni correction with an experiment-wise alpha of 0.05 (for 215 loci, corrected 

alpha = 0.0002). 

 

The homology of same-sized AFLP bands was confirmed for locus CAA-270 based on 

DNA sequence comparisons between fragments isolated from the New Smyrna Beach 

and Port Charlotte samples.  Gene walking and sequence analysis revealed that the AFLP 

was caused by a nucleotide substitution in the EcoRI site at one end of the fragment (data 

not shown).  Codominant analysis of this EcoRI RFLP produced allele frequency 

estimates very similar to those calculated from AFLP data.  Also, RFLP genotype 

frequencies did not deviate significantly from Hardy-Weinberg expectations (FIS = -0.033 

and -0.018, P ≥ 0.70 for each sample).  Finally, FST calculated from codominant CAA-

270 data was more extreme than the 0.99 quantile based on previously published 

codominant data (Fig. 4a). 
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Discussion 

 

Genomic Variance after Secondary Contact 

Genome scans have been heralded as an efficient and robust method of evaluating 

among-locus variance in a population genetic statistic, such as FST, relative to the 

variance expected under neutrality.  A major constraint on the use of genome scans, 

however, appeared to be the appropriateness of an equilibrium null model when applied 

to clinal populations that might represent nonequilibrium stages of hybridization or 

secondary contact (Luikart et al. 2003; Bierne et al. 2003).  Yet, these are particular 

contexts in which the statistical evaluation of among-locus variance would be especially 

valuable (e.g., Payseur et al. 2004).  Therefore, we used simulations to test whether a 

history of allopatric divergence and recent secondary contact elevates the neutral variance 

of FST over what would be expected from an equilibrium model for a given genomic 

global FST.  We found no statistically significant distinction between the FST distributions 

simulated under these contrasting models.  This result may not match intuitive 

expectations (Bierne et al. 2003) because it is well known that the distribution of FST has 

a high variance immediately after secondary contact compared with the variance obtained 

once neutral migration-drift equilibrium is reached.  However, our simulations 

demonstrate that non-equilibrium changes in the distribution of FST parallel the reduction 

in global FST that occurs as neutral gene flow homogenizes secondary contact 

populations.  Regardless of how recently secondary contact occurred, whether the oyster 

populations are at equilibrium, or how much constant gene flow is occurring to produce 

the empirical global FST = 0.092, in each case this magnitude of global FST is expected to 
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have the same distribution among loci.  Thus, a reliable test for outliers, when applied 

pairwise to populations in secondary contact, does not hinge on equilibrium status or the 

age of secondary contact.  

  

Another goal of this study was to increase the genomic sampling of oyster loci to 

determine how much among locus variance in FST can be explained by neutral migration-

drift processes.  The genome scan results make it clear that genetic drift and migration 

can explain most of the among-locus variance in FST observed between Atlantic and Gulf 

of Mexico oyster populations to date.  This conclusion is consistent with that of 

McDonald et al. (1996), but is now based on a ten-fold increase in the number of loci 

examined and a comparison to the distribution of FST expected under the null hypothesis 

of neutrality. 

 

In contrast to our conclusions about the large neutral variance of FST and its robustness to 

equilibrium assumptions, our interpretation of individual outlier loci is more equivocal 

until additional independent criteria can be applied to evaluate marginally significant 

non-neutral patterns.  Three aspects of the methods and results contribute to this 

uncertainty: (1) the probability of false positives with multiple testing, (2) small 

population sample sizes and Hardy-Weinberg assumptions with AFLPs, and (3) 

assumptions underlying the genome scan.  A total of four loci (three AFLP, one 

codominant) were significant at the P < 0.01 level.  However, with 215 independent tests 

we expect two loci to fall above the 99th quantile by chance (type I errors), and the 

binomial probability of finding three or more loci above this critical value is P = 0.36.  A 
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standard Bonferroni correction for multiple tests applied to the conventional alpha of 0.05 

yields a critical value of 0.0002 for all 215 AFLPs and 0.0019 for 27 codominant loci.  

Using the procedures of Beaumont & Nichols (1996; pv program) to estimate the 

probability of each empirical FST value relative to the simulated distribution, no locus had 

a p-value below the Bonferroni-corrected alpha (Fig. 4b).  Bonferroni corrections have 

been criticized as too conservative for applications in ecology and genomics (Moran 

2003).  As the number of loci increases, a Bonferroni correction over the entire data set 

becomes prohibitive for an exploratory study aimed at identifying candidate loci that 

exhibit patterns of selection.  Alternative measures of significance in terms of false 

discovery rate have been proposed (Storey & Tibshirani 2003) but do not alter our 

conclusions here.  

 

Ultimately, the biological interpretation of outlier loci in a genome scan is not clarified 

by statistics, but by more focused data collection and analysis of these candidate loci.  In 

this study in particular, the small population sample sizes and low-resolution dominant 

variation created large sampling error around locus-specific estimates of allele frequency 

and FST.  Sampling error was also evident in the widely fluctuating quantiles on the 

simulated null distribution.  These sampling errors were presumably random. In addition, 

Hardy-Weinberg equilibrium was assumed for each AFLP locus to estimate allele 

frequencies.  Although this assumption is justified by genotype proportions at several 

codominant markers and was confirmed for one AFLP locus, bivalves in general and 

oysters in particular have a propensity for heterozygote deficits in natural populations 

(Hare et al. 1996; Gaffney 1996).  We simulated a range of Hardy-Weinberg deviations 
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to explore their potential to affect our results.  Even if the codominant polymorphisms 

underlying oyster AFLPs have a systematic bias toward heterozygote deficits, the impact 

on FST estimated from dominant band presence/absence data depends on the distribution 

of Hardy-Weinberg deviations across the populations.  For example, a downward bias in 

FST results when both populations are deficient in heterozygotes, whereas an upward bias 

is created if only one population is deficient (data not shown).  These considerations 

suggest that our general conclusions regarding the breadth of the neutral variance in FST 

are robust, but strong conclusions about individual loci are not warranted at this time.  

The marginally significant outlier loci provide candidates for more in-depth analyses that 

will be capable of more definitively rejecting neutral evolution should this hypothesis be 

false. 

 

Finally, interpreting outlier loci in a genome scan in terms of selection assumes that the 

observed genomic mean FST is a good approximation of the average level of 

differentiation among neutral loci.  Loci under divergent selection would upwardly bias 

the initial estimate of global FST, creating a more conservative test for this form of 

selection, whereas balancing selection acting on some loci in the sample would have the 

opposite effect.  It is possible, even probable, that balancing selection is influencing 

patterns of differentiation at some oyster loci, as posited by Karl & Avise (1992).  We did 

not test this hypothesis because FST distributions provide low statistical power for 

detecting balancing selection (Beaumont & Balding 2004).  To account for such potential 

biases, genome scans for divergent selection sometimes remove statistically significant 

outliers from the data set to calculate a less upwardly biased estimate of the global mean 
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and rerun simulations to iteratively refine estimates of the neutral variance (Wilding et al. 

2001).  Without being able to test each end of the distribution with equal power, however, 

this one-sided ‘refinement’ of statistical results might simply shift bias rather than 

remove it.  

 

Factors Maintaining the Oyster Step Cline 

This study was partly motivated by the stability in allele frequencies observed over 

several generations of dispersal and reproduction among oysters in eastern Florida (Fig. 

1).  Temporal stability was found at New Smyrna Beach, only 40 km north of the oyster 

step cline, where typical patterns of oyster gene flow (Rose et al. 2006) should have 

generated visible introgression under the null hypothesis of neutrality.  Instead, like many 

other hybrid zones (Barton & Hewitt 1985), this temporal stability suggests that biotic 

and/or abiotic processes are maintaining strong population differentiation at some loci. 

 

Hare & Avise (1996) speculated that the forces maintaining this stepped cline included a 

low density of oysters in the Cape Canaveral lagoons compared to the north and south.  

The low density in this area may reflect relatively poor habitat in these lagoons or 

physical impediments to larval dispersal, both of which would create a barrier to gene 

flow.  This barrier hypothesis has not been tested, but even if these mechanisms are 

responsible for sharpening the cline (Endler 1977) and limiting introgression, their effect 

would be to maintain latitudinal adaptations evolved in allopatry.  A generalist species 

such as the oyster maintains flexibility in its response to environmental heterogeneity by 

generating an abundance of genetically diverse progeny (Williams 1975), each of which 
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is phenotypically plastic (Warner 1997).  With high gene flow among populations 

continuously distributed along a latitudinal gradient, this life history strategy would 

produce ‘local’ adaptation only on very large geographic scales equivalent to climatic 

provinces (Conover & Schultz 1995; Dittman et al. 1998; Whitehead & Crawford 2006).  

If gene flow between climatic provinces is terminated by a vicariant event, then the 

balance shifts from the homogenizing influences of gene flow toward diversifying 

selection for adaptations to regional climate.  Spatially variable selection pressures could 

emerge from any factors likely to co-vary with climate such as species richness, 

community composition, and parasite load.  Secondary contact would bring together 

populations with more latitudinal specialization than would occur elsewhere in the 

species range (where gene flow was never terminated).  In the eastern oyster, this model 

predicts that maintenance of these latitudinal adaptations over a relatively small 

geographic scale depends on dispersal barriers, relative fitness of hybrids, and relative 

fitness of ‘specialist’ genotypes along the environmental and ecological gradients in 

eastern Florida. 

 

The oyster genetic cline is located within a broad ecological gradient where many 

selective agents potentially reinforce population differences that evolved in allopatry.  

Under these circumstances, the exploratory aspect of our genome scan was a desirable 

feature because it identified potentially non-neutral candidate loci without reference to 

phenotypes, coding versus noncoding sequence, or specific models of selection.  
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Our results are a starting point for population genetic and functional analyses, which are 

needed to detect selection and to determine how it is operating.  Previous genome scan 

studies have used parallel testing to substantiate selection acting on outlier loci by 

showing that they have higher than expected FST between two morphotypes in several 

geographic replicates (Wilding et al. 2001; Campbell & Bernatchez 2004).  Such 

geographic replication is not possible with the oyster cline, but cline shape across the 

secondary contact zone can be estimated for each AFLP locus to further test whether FST 

outliers are spurious.  Under the divergent selection hypothesis, loci with high Atlantic – 

Gulf of Mexico FST should be associated with exceptionally steep clines that have a step 

at Cape Canaveral.  In contrast, under the null hypothesis clines should be gradual and 

wide or might show smaller-scale patchy differentiation if genetic variation is shaped by 

habitat heterogeneities within regions.  Conversion of AFLPs into codominant markers 

will permit a more robust analysis of clinal variation to estimate the strength of selection 

opposing introgression (Barton & Gale 1993).  

 

Candidate loci in oysters can be tested for an association with quantitative, fitness-related 

traits in an experimental reciprocal transplant of Atlantic and Gulf of Mexico populations 

and ultimately in the wild hybrid population (Rieseberg & Buerkle 2002).  Where such 

associations exist, we can begin to infer the genetic basis for adaptive variation across the 

oyster cline.  It will be important to supplement these inferences from field populations 

with a more conventional QTL mapping approach using experimental crosses to 

determine whether candidate loci are clustered in regions of low recombination and 
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whether they correspond to QTL for adaptive traits such as growth rate or disease 

resistance (Campbell & Bernatchez 2004). 

 

Differences among chromosomes in ploidy, inheritance patterns, and recombination rates 

can elevate the genomic variance in FST and generate false positive signals of selection 

relative to a null model that does not account for these factors (Charlesworth 1998; Kauer 

et al. 2003; Emelianov et al. 2004).  We are not able to evaluate the impact of these 

factors on our results at this time.  Interestingly, mitochondrial DNA is the only known 

locus that is reciprocally monophyletic between Atlantic and Gulf of Mexico populations 

of eastern oyster (Reeb & Avise 1990; Hare & Avise 1998).  This level of differentiation 

is more extreme than at any nuclear locus identified as an outlier here and has been 

attributed to vicariance and drift (Reeb & Avise 1990).  The smaller effective population 

size of the haploid mitochondrial genome could have caused lineage sorting by neutral 

drift in allopatry without similar consequences at autosomal nuclear loci (Palumbi et al. 

2001; Hudson & Turelli 2003; Rosenberg 2003).  However, this hypothesis does not 

explain why mitochondrial DNA shows one of the steepest allele frequency clines along 

eastern Florida (Hare & Avise 1996).  Also, it is common for populations of Crassostrea 

spp. to have a skewed mitochondrial haplotype frequency spectrum (Beckenbach 1994; 

MPH unpublished data), consistent with a genome subject to recurrent selective sweeps 

(but see Eldon & Wakeley 2006).  Thus, efforts to understand how selection shapes 

genetic diversity in oysters will need to reconcile patterns observed in the mitochondrial 

and nuclear genomes. 
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Conclusions 

 

Evolutionary geneticists working on non-model systems are usually sampling loci in the 

dark, unaware of the genomic heterogeneity in locus-specific patterns that must be 

characterized to properly interpret results.  Under these conditions, AFLPs provide a 

large, random sample of loci that can illuminate the genomic landscape.  By providing a 

more accurate estimate of genomic differentiation, AFLP comparison to a null model 

helps interpret the among-locus variance.  Genome scans provide a statistical framework 

for testing neutrality, but their utility is largely exploratory because underlying 

assumptions are difficult to evaluate.  For the case of pairwise population comparisons 

across a secondary contact zone, we have shown that the genomic distribution of FST is 

not dependent on migration-drift equilibrium, nor on the details of secondary contact. 

 

Most of the among locus variation in FST between Atlantic and Gulf of Mexico C. 

virginica can be explained by neutral migration-drift processes.  Because the oyster cline 

is spatially coincident with phylogeographic breaks in many other estuarine taxa, 

secondary contact is the most likely explanation for a high global mean FST between 

Atlantic and Gulf of Mexico oysters and for a high genomic variance in FST.  This history 

makes it more difficult to detect spatially variable selection based solely on the 

distribution of FST, and strong statistical support was absent for divergent selection here.  

Nonetheless, three AFLPs and one previously published codominant marker had FST 

values above the 99th quantile for the neutral distribution of FST.  We regard these as 
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candidates for divergent selection that help focus future tests using more definitive 

methods.  
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Tables 
 
 
Table 1: Sequences of adaptors and primers used for AFLP ligation and PCR.  Sequences 
are provided 5’ to 3’.  
 

Name Function AFLP stage Sequence 

EcoRI-F Adaptor Digestion-ligation CTC GTA GAC TGC GTA CC 

EcoRI-R Adaptor Digestion-ligation AAT TGG TAC GCA GTC TAC 

MseI-F Adaptor Digestion-ligation GAC GAT GAG TCC TGA G 

MseI-R Adaptor Digestion-ligation TAC TCA GGA CTC AT 

EcoRI-A Primer Pre-Selective PCR GAC TGC GTA CCA ATT CA 

EcoRI-ACT Primer Selective PCR Fam - GAC TGC GTA CCA ATT CAC T 

MseI-C Primer Pre-Selective PCR GAT GAG TCC TGA GTA AC 

MseI-CAA Primer Selective PCR GAT GAG TCC TGA GTA ACA A 

MseI-CAC Primer Selective PCR GAT GAG TCC TGA GTA ACA C 

MseI-CAG Primer Selective PCR GAT GAG TCC TGA GTA ACA G 

MseI-CAT Primer Selective PCR GAT GAG TCC TGA GTA ACA T 

 
 

Maria.Murray
Typewritten Text



54 

 
 
 
 
 
 
Table 2: Summary statistics for the level of polymorphism and differentiation observed 
with four AFLP primer pairs.  The number of AFLP loci with FST greater than the 0.99 
quantile of the neutral simulated distribution is reported. 
 

 EcoRI-MseI primers  

 ACT-CAA ACT-CAC ACT-CAG ACT-CAT Overall 

Number of loci 55 72 51 48 226 

Percent polymorphic (Total) 92.7 98.6 92.2 95.8 95.1 

(NSB) 72.7 88.9 90.2 83.3 84.1 

(PCH) 85.5 86.1 80.4 85.4 84.5 

Number of FST > 0.99 quantile 1 2 0 0 3 

Maximum FST 0.9008 0.8688 0.6561 0.381 0.9008 

Global FST 0.1246 0.0664 0.0882 0.0914 0.0917 
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Fig. 2: Relationship among gene flow, FST, and variance of FST over time after secondary 
contact in simulations under neutrality.  (a) Results of six simulations using the same 
starting conditions and parameter values, N = 1000,  = 0.0001 and Nm = 2, but with 
samples analyzed at different times after secondary contact.  (b) Results of six 
simulations as above but using different constant postcontact Nm values required to 
reproduce the empirical global FST of 0.092 either transiently (Nm = 8.75, 4.80, 2.80, 
1.80, 1.70 for t = 100, 200, 400, 700, 800, respectively) or at equilibrium (Nm = 1.48 for t 
= 2500). 

a 

b 
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Fig. 3: Frequency distributions of loci in 20 FST bins for four simulations.  Two bars 
represent migration-drift equilibria; without vicariance in black and the equilibrium 
reached after vicariance and secondary contact in white.  The other two bars show results 
for nonequilibrium time points after secondary contact.  No significant differences were 
found in pairwise comparisons between the four distributions (Kolmogorov-Smirnov p < 
0.05, Bonferroni corrected).  Note broken y-axis scale.
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Fig. 4: Empirical and simulated FST distributions for previously published codominant 
markers (a) and AFLP loci (b).  Empirical FST values are denoted by triangles (a) and 
dots (b).  Lines depict the 0.99 quantiles of the neutral model based on many overlapping 
bins of simulation data.  P-values denote the probability of observing the FST of the 
outlying loci by chance relative to the simulated neutral distributions.  Results of two 
simulation methods are depicted in (a), where the dashed line corresponds to 50 demes 
simulated and the bold line to two demes simulated, with two demes ultimately sampled 
in both cases (see Methods).  The jagged quantile in (b) reflects sampling error with n = 
30.  For outlying AFLP loci, the error bars indicate one standard error. The AFLP that 
was converted to a codominant marker, CAA-270, is shown as an open circle in (a) and 
(b).
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CHAPTER 2: Geographic and Genomic Patterns of Neutral and 

Adaptive Differentiation along the Eastern Oyster Contact Zone 

 

Abstract 

 

When populations undergo gene flow while maintaining differential adaptations, their 

genomes act as sieves.  At the genic level, gene flow allows free exchange of alleles at 

neutral and uniformly selected genes.  Simultaneously, selection impedes gene flow at 

target genes and closely linked loci.  The resulting genomic mosaic of differentiation 

illuminates the underlying evolutionary processes governing population differentiation, 

particularly in parapatric contact zones.  The geographic pattern of differentiation at 

neutral and selected genes can expose these processes further.  In this study, I examine 

genomic and geographic patterns of differentiation among parapatric populations of the 

eastern oyster (Crassostrea virginica) along their contact zone in Florida estuaries.  The 

planktotrophic larval phase of this species gives it the potential for regular long-distance 

dispersal and genetically homogeneous populations.  However Florida populations at the 

center of its range exhibit a sharp step cline at some loci, suggesting a role for divergent 

selection.  Here, I genotyped 217 AFLP loci at 274 adult oysters from seven locations 

along the cline to ask: (1) whether this cline is generalized across the genome, (2) what 

the genomic pattern of differentiation is at neutral and selected loci, and (3) whether the 

clines observed at some loci are maintained by differential selection.  I used genome 

scans to separate classes of loci that behave neutrally and as though they are under the 
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influence of locally and regionally divergent selection.  I compared levels and geographic 

patterns of differentiation among these locus classes using FST, neighbor-joining trees, 

assignment tests, principal coordinates analysis, and AMOVA.  I also tested for higher 

differentiation between sites spanning the cline over sites on the same side of the cline.   

 

Results demonstrated a mosaic of differentiation among loci and along the transect, 

where differentiation was low at putatively neutral loci and high at loci influenced by 

divergent selection (FST = 0.0263 and 0.1841, respectively).  While, the vast majority of 

loci were not clinal, differentiation was significantly higher for comparisons of 

populations on opposite sides of the cline than those on the same side only for repeated 

outliers.  At a 0.01  level, genome scans identified 24 outlier loci in multiple population 

comparisons.  Four of these putatively selected loci were detected only in comparisons of 

populations on opposite sides of the cline, supporting a role for regional clinal selection 

at some loci despite gene flow at others.  Patchy or localized selection gradients likely 

drive divergence at the remaining 20 outliers.  In general, the data supported a two-

population parapatric model of differentiation, regardless of locus class.  However, the 

strength of the geographic patterns varied among locus classes, being weakest in 

putatively neutral loci.  Some sites south of the step cline (Fort Pierce, Titusville, and 

Port Charlotte) showed patterns of differentiation that contrasted with other sites in the 

same region and suggest a complex substructure based on local selection and/or reduced 

gene flow.  The observed selection-based mosaicism raises questions about the various 

genomic and geographic scales on which environmental divergent selection may be 

acting and how these interact with local gene flow patterns, particularly south of Cape 
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Canaveral.  Selection is certainly occurring on a smaller scale than the dispersal potential 

of planktonic oyster larvae because divergent selection on local and regional scales 

maintains differentiation at some loci despite gene flow over the remainder of the 

genome.  While a combination of neutral and adaptive processes, both historical and 

contemporary, likely shape genomic and geographic patterns of differentiation, this study 

revealed evidence for divergent selection at local and regional scales in an estuarine 

species with high potential for gene flow. 
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Introduction 

 

Elucidating the process of divergence has been a major goal of evolutionary biologists.  

Determining the genetic basis of adaptation can facilitate deeper understanding of some 

evolutionary processes that generate and maintain biological diversity.  The selection that 

generates and maintains divergence can be based on genetic incompatibilities between 

divergent genomes and/or ecological differences in phenotypes.  Either form of selection 

has a genetic basis and can be measured using population genetic tools.   

 

Given the variety of ecological conditions many species encounter within their 

geographic range, locally adaptive differentiation can evolve among populations and 

progress toward reproductive isolation, even in the presence of gene flow (Schilthuizen 

2000; Wu 2001; Ogden & Thorpe 2002; Doebeli & Dieckmann 2003; Rosenblum 2006).  

Environmental gradients can facilitate this branching process, especially those of 

intermediate slope, and can generate geographic patterns of parapatry between adaptively 

diverging populations (Doebeli & Dieckmann 2003).  Further evidence suggests that 

biogeographic province boundaries, range edges, and hybrid zones are strongly 

associated with ecological transition zones, or ecotones (Remington 1968; Endler 1977; 

Arnold 1997; Swenson & Howard 2005).  Indeed, Schilthuizen (2000) proposed that 

ecotones are “speciation-prone” because divergent habitat adaptation can lead to 

parapatric speciation.  Such regions of ecological transition are ideal laboratories in 

which to investigate geographic and genetic patterns of adaptive divergence. 
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Traditionally by Wright’s (1931) rule of thumb, only one migrant per generation on 

average is necessary to eliminate or prevent differentiation caused by neutral genetic 

drift.  In order for differentiation to proceed or be maintained in the presence of gene 

flow, the strength of selection must be greater than the migration rate (Haldane 1930; 

Wright 1931; Bulmer 1972).  From a multilocus point of view, the necessary strength of 

selection on a given locus asymptotically diminishes as the number of loci under 

divergent selection increases (Fry 2003).  As evidence mounts for the theoretical 

probability and empirical reality of divergence in sympatry and parapatry, where gene 

flow is more likely to be greater than one migrant per generation, it is clear that divergent 

selection plays an undeniable role in many instances of biological diversification (e.g., 

Raffaelli 1978; Grant & Grant 1989; Feder 1998; Hatfield & Schluter 1999; Schneider et 

al. 1999; Berlocher 2000; Ogden & Thorpe 2002; Irwin et al. 2005; Grahame et al. 2006).  

One resulting question is:  what is the role of selection in shaping the genomic landscape, 

particularly in cases where divergence exists in the presence of gene flow? 

 

Hybrid Zones 

Examining the genomic patterns of hybrid zones, where divergent populations meet and 

experience gene flow, can help identify genes that matter to ecology and reproductive 

isolation (Schmidt et al. 2008; Nosil et al. 2009).  The majority of theoretical work in 

hybrid zones has been in clinal tension zones (Ross & Harrison 2002).  Allele frequency 

or phenotypic clinal patterns in hybrid zones are the result of the interaction between 

selection and gene flow between divergent populations.  Several conditions attract and/or 

produce clines, such as environmental gradients, ecotones, secondary contact zones, low-
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density areas, and dispersal barriers (Endler 1977; Barton & Hewitt 1985).  Therefore, the 

presence of a cline does not necessarily implicate a role for selection, as allele frequency 

clines can be generated neutrally by chance, history, etc. (Nei & Maruyama 1975; 

Robertson 1975).  If neutral processes generate a cline, it will degrade in the presence of 

gene flow at a rate proportional to the dispersal distance, provided there is no 

physical/genetic barrier to prevent or divergent selection to counteract genetic 

introgression (Endler 1977; Barton & Hewitt 1989).  Therefore, strong clines found in 

hybrid zones of sufficient age and magnitude of gene flow may be strong indicators of 

divergent selection, either in the form of selection against hybrids due to genomic 

incompatibilities or of local adaptation. 

 

Theory states that, regardless of the type of selection, the genomic landscape of divergent 

groups experiencing gene flow, like those found in hybrid zones, is a porous one (Key 

1968; Hodges & Arnold 1994; Feder 1998; Wu 2001; Nosil et al. 2009).  While gene 

flow causes neutral alleles to pass freely between populations, divergent selection 

impedes target alleles from passing between populations (Wu 2001; Beaumont 2005; 

Gavrilets & Vose 2005; Bonin et al. 2006).  Over generations, recombination 

disassociates neutral loci from selected loci.  As a result, loci under divergent selection or 

causing reproductive isolation and those that are closely linked are more strongly 

differentiated than other loci.  Only a few loci will show such a pattern during the early 

stages of divergence, those loci that are directly involved in local adaptation, mate choice, 

or genetic incompatibilities between populations (Butlin 2010).  Over time, these 
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selection-targeted loci affect increasing parts of the genome through coadapted gene 

complexes (Wu 2001).  

 

Comparing geographic patterns of allele frequencies among loci makes it possible to 

detect divergent selection, even when the specific phenotypes underlying ecological 

differences and reproductive isolation are unknown (Bonin et al. 2006; Teeter et al. 

2008).  Along an environmental gradient, ecologically important loci will display a shift 

in allele frequency in response to the gradient, and neutral loci will show relatively small 

changes in allele frequency as a result of genetic drift (Schmidt et al. 2008).  If 

insufficient time has passed to allow for complete breakdown of neutral differentiation in 

a recent secondary contact zone, then neutral alleles might still display weak clines 

(Endler 1977; Barton & Hewitt 1985).  However, divergent selection and reproductive 

barriers will maintain strong clines in target and closely linked loci despite the passage of 

time and gene flow.  Furthermore, the targets of balancing or uniform selection will be 

even more homogeneous between populations than neutral loci (Lewontin & Krakauer 

1973).   

 

Hybrid zones are natural laboratories to make such geographic comparisons of allele 

frequency because neutral loci will introgress between populations more than loci 

involved in divergent selection or reproductive isolation (Rieseberg et al. 1999; Buerkle 

& Rieseberg 2001).  Indeed, hybrid zones have been called windows on the evolutionary 

process because they elucidate the processes governing the continuum of divergence 

(Harrison 1990).  In particular, they offer opportunities to decipher the balance between 
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gene flow and selection (Barton & Hewitt 1985; Hewitt 1988; Harrison 1990; Harrison 

1998).  However, multiple models exist to describe this balance, each distinguished by 

the type of selection and geographic pattern observed in the system (Arnold 1997).  

Tension zones are clinal and maintained by reduced hybrid fitness due to endogenous 

(environmentally independent) selection against genomic incompatibilities (Barton & 

Hewitt 1985).   Ecological gradient hybrid zones also are clinal, but in contrast are 

maintained by exogenous selection along an environmental gradient or ecotone (Endler 

1977).  Mosaic hybrid zones are patchy in structure and maintained by spatially variable 

selection due to patchy environments (Harrison 1990).  Depending on the spatial scale of 

sampling, the same hybrid zone may have clinal or mosaic structure, as observed in 

Gryllus crickets (Ross & Harrison 2002) and Chorthippus grasshoppers (Bridle et al. 

2002).  Therefore, the geographic sampling scheme can affect the inferred model of 

hybrid zones. 

 

Genomic Analysis of Divergence with Gene Flow 

As genomic tools begin to illuminate the evolutionary processes governing contact zones 

at the genetic level, empirical results continue to reflect theory.  Genomes undergoing 

divergence and gene flow are indeed sieves that retain alleles important to ecological 

differences and reproductive isolation while permitting introgression of neutral and 

positively selected alleles (e.g., Rieseberg et al. 1999).  The growing collection of 

genomic studies reveals the complex architecture of divergence in hybrid zones (e.g., 

Teeter et al. 2008).  At divergently selected loci, some studies have demonstrated 

geographic discordance of clines with a wide variation in cline width (e.g., Marshall & 
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Sites 2001; Nikula et al. 2008; Teeter et al. 2008).  As a result, the set of loci chosen to 

examine contact zones can have a large effect on inferences from their geographic 

structure (Ross & Harrison 2002).  Indeed, a multilocus geographic approach in contact 

zones permits discernment among potential evolutionary mechanisms maintaining locus-

specific levels of differentiation. 

 

The genome scan is one genomic approach that has lead to deeper understanding of the 

balance of selection and gene flow during the process of divergence and reproductive 

isolation (Butlin 2010).  The theoretical basis of this statistical approach is that neutral 

expectations for divergence offer a null model against which to test for such adaptive loci 

(Lewontin & Krakauer 1973; Beaumont & Nichols 1996; Luikart et al. 2003; Beaumont 

2005).   This method compares locus-specific empirical estimates of differentiation to a 

simulated distribution of the expected neutral differentiation (Beaumont & Nichols 1996; 

Luikart et al. 2003).  The genome scan is extremely robust to different demographic 

histories (Beaumont and Nichols 1996; Beaumont 2005) and is unaffected by a history of 

secondary contact (Murray & Hare 2006).  Population genomic methods such as this one 

enable researchers to distinguish genome-wide effects from locus-specific effects 

(Luikart et al. 2003).  Processes such as drift, inbreeding, and gene flow are expected to 

affect all neutral variation in genome in the same way (Black et al. 2001).  In contrast, 

locus-specific processes like selection affect only a few loci at a time.  Although most 

loci will fall within the neutral distribution, loci that exhibit particularly strong 

differentiation will fall outside because they are either under divergent selection 

themselves or tightly linked to a gene that is.  For loci exhibiting significantly greater 
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differentiation than the neutral distribution, the null hypothesis of neutral differentiation 

is rejected and divergent selection inferred.   

 

Over the years of application of the genome scan method, authors have assembled an 

informal list of best practices (reviewed in Butlin 2010).  For example, when examining 

multiple sites, pairwise population comparisons should be done to avoid effects of 

differences in gene frequency among subpopulations in the metapopulation (Beaumont 

2005).  Because this can lead to an increased number of loci identified as outliers from 

the neutral distribution, the best candidate loci for divergent selection are those with the 

smallest p-value and identified as outliers in multiple pairwise population comparisons 

(Emelianov et al. 2004; Bonin et al. 2006). 

 

While genome scans have increased in use (e.g., Wilding et al. 2001; Emelianov et al. 

2004; Campbell & Bernatchez 2004; Vasemagi et al. 2005; Bonin et al. 2006; Murray & 

Hare 2006; Savolainen et al. 2006; Yatabe et al. 2007; Egan et al. 2008; Nosil et al. 2008; 

Via & West 2008; Galindo et al. 2009; Gagnaire et al. 2011), they are most often applied 

to species characterized by effective assortative mating, low dispersal, and clear 

phenotypic differences.  However, the method also has the power to detect divergent 

selection in non-model systems where the association between divergent selection and 

target traits is complex and/or cryptic (Bonin et al. 2006).  The vast majority of genome 

scans focus interpretation and conclusions on outliers, though the approach can be used to 

study the behavior of different classes of loci (outliers versus non-outliers) and tease 

apart the various evolutionary forces that govern distinct behaviors.  Such a novel 
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approach to genome scans would be particularly useful in contact zones where divergent 

selection interfaces with gene flow.   

 

More genomic studies of marine hybrid zones are needed because little is known about 

the forces facilitating divergence in marine animals, where the nature of the barriers 

between water masses is largely unknown or speculative, especially for marine organisms 

with planktonic dispersal (Mayr 2001).  As a result of simulations of planktonic larval 

dispersal, Cowen et al. (2006) asserted that a combination of small-scale dispersal, 

distribution of suitable habitat, and oceanographic patterns can create ecologically 

isolated subregions or genetically differentiated biogeographic regions.  Although 

environmental and habitat variability along the species distribution should result in local 

adaptation or phenotypic plasticity, empirical evidence for divergent selection in marine 

bivalves is somewhat limited (Drent 2002).  Limited geographic and genomic sampling 

can oversimplify the spatial scales over which populations are selectively and 

evolutionarily divergent, especially in marine populations (Sotka et al. 2004).  Therefore, 

it is even more critical to have good genomic and geographic sampling in marine animals 

with planktonic larval dispersal.  However, genome scans rarely have been applied to 

such organisms (but see Gagnaire et al. 2011). 

 

The System: The Crassostrea virginica Contact Zone in Florida 

Like many marine species that disperse via a planktonic larval phase, the eastern oyster, 

Crassostrea virginica, has a high potential for long distance dispersal.  In the Chesapeake 

Bay, dispersal distances have been estimated at 497 km2 over a two to three week larval 
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period (Rose et al. 2006).  Although it is not known if these dispersal distances translate 

throughout this oyster’s range from Canada to the Yucatan Peninsula, the potential exists 

for high levels of gene flow.  Despite this high potential for long distance gene flow, 

several loci exhibit coincident and surprisingly steep step clines near Cape Canaveral, 

Florida, dividing the oyster’s range between two morphologically cryptic genetic groups 

termed “Atlantic” and “Gulf” genotypes (Reeb & Avise 1990; Karl & Avise 1992; Hare 

& Avise 1996).  Such genetic homogeneity within broad regions found in juxtaposition to 

a relatively sharp cline indicates that the extent of gene flow in the clinal region is not a 

species-specific characteristic, but rather a reflection of local environmental conditions 

and/or historical events (Sotka et al. 2004).  The oyster step cline is coincident with a 

biogeographic province boundary (Avise 2000; Avise 2004), an ecotone between 

temperate and subtropical communities (Briggs 1974), a narrow canal connecting linear 

lagoons, and a trough in oyster density (Hare & Avise 1996).  Either through ecological 

selection or as incomplete dispersal barriers, all of these characteristics potentially attract 

and sharpen clines (Endler 1977; Barton & Hewitt 1985).  Given the gene flow potential, 

it is unclear what mechanisms maintain the sharp differentiation observed in this system 

(Hare & Avise 1996; Avise 2004).  

 

Although mtDNA shows alternately fixed differences between the centers of the two 

regions (Reeb & Avise 1990), allele frequencies at a few clinal nuclear loci are 

nondiagnostic.  These loci are generally homogeneous among Atlantic-type populations 

between Massachusetts and Cape Canaveral, but are heterogeneous in the Gulf-type 

region between Cape Canaveral and Louisiana (Karl & Avise 1992; Hare & Avise 1996). 
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However, not all nuclear loci show a strong differentiation between Atlantic and Gulf 

regions (Buroker 1983; Karl & Avise 1992; McDonald et al. 1996; Hoover & Gaffney 

2005; Murray & Hare 2006).  A genomic study examining a pair of Florida populations 

(one north of Cape Canaveral, one on the Gulf of Mexico) documented a genetic signal of 

divergent selection at some loci over and above the neutral level of differentiation 

(Murray & Hare 2006).  Currently, this is the strongest evidence for divergent selection 

operating at a few loci in this system.  Due to the great distance between these 

populations, it is unlikely they exchange migrants, making it difficult to assess whether 

divergence is maintained in the face of gene flow.  Although the pair of populations was 

chosen to be representative of the two regions, it is also unclear whether the genomic 

pattern documented between them can be translated to the regions as a whole, particularly 

near the zone of contact where cross dispersal is likely. 

 

As stated above, the genomic and geographic scale of sampling can affect interpretation 

of evolutionary forces (Sotka et al. 2004).  For both the full oyster range and the 

mesogeographic scale of eastern Florida, departures from the classic sigmoid cline shape 

have been observed (Hare & Avise 1996).  Of particular interest are the localized allele 

frequency reversals that occur south of Cape Canaveral because such a pattern can 

indicate mosaic ecological selection (Harrison 1990; Arnold 1997) or contact zone 

movement (Barton & Hewitt 1985).  However, this geographic pattern has only been 

documented in two nuclear and one mtDNA loci (Hare & Avise 1996).  Because these 

few loci were also biased for strong differentiation between Atlantic and Gulf types 

(McDonald et al. 1996), it remains unknown whether the geographic pattern they 
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displayed reflects a broader genomic pattern of localized genetic reversals or anomalies 

in an otherwise clinal system.  In addition, the moderate frequency of Atlantic-type 

alleles along southeastern Florida may indicate high levels of hybridization (a unimodal 

genotypic distribution) or highly mixed locales of pure Atlantic and Gulf types (bimodal 

genotypic distribution) (Jiggins & Mallet 2000).  Hare & Avise (1996) tested for 

disproportionate levels of parental types at a few loci and found nonsignificant excesses 

and deficits of parental genotypes.  More loci may need to be sampled to clarify 

genotypic distribution of populations exhibiting moderate allele frequencies. Having an 

accurate picture of the genomic landscape of population differentiation in the contact 

zone is vital to deciphering the evolutionary processes maintaining it. 

 

In this chapter, I aim to address the following questions by leveraging both genomic and 

geographic approaches. 

1) Does the population structure near the cline center reflect clinal expectations of 

two differentiated populations in parapatry? 

2) How does selection shape the genomic pattern of differentiation? 

3) Is there a clinal geographic pattern of selection along the ecotone? 
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Methods and Materials 

 

Sample Collection 

A total of 274 adult oysters were collected from six locations in lagoons along Florida’s 

Atlantic coast and one location on Florida’s Gulf of Mexico coast (Table 2-1, Fig. 2-1).  

Although collection dates ranged between 2002-2006, previous data indicate allele 

frequencies do not vary significantly in adult oysters over a span of 11-14 years (Murray 

& Hare 2006).  Therefore, the four-year span of collections should not bias results.  

Oysters were put on ice and brought to the lab, where gill tissue was dissected and 

preserved in 95% ethanol.  Tissue samples were refrigerated or frozen until DNA 

extraction.  Whole genomic DNA was extracted from approximately 20 mg of preserved 

gill tissue following the DNeasy animal tissue extraction protocol (QIAGEN Inc.).  To 

equalize DNA concentrations among individuals for further analysis, all samples of DNA 

were diluted to 50 ng/L based on spectrophotometry. 

 

AFLP Data Collection 

To generate AFLP fragments, I used a modified version of the assay outlined by Vos and 

colleagues (1995) (See Murray & Hare 2006 for protocol details).  The fluorescently 

labeled AFLP products of the selective amplification were electrophoresed on an ABI 

Prism 3100 Genetic Analyzer or an ABI 3730xl DNA Analyzer (Applied Biosystems 

Inc.).  I used GeneMapper 4.0 (Applied Biosystems Inc.) to view samples and create bins 

around fragments for further analysis.  Because slight size shifts occur among 
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electrophoretic runs, I overlaid chromatographs of several samples from every run to 

create bins.  Fragments smaller than 75 bp and larger than 490 bp were excluded from 

analysis.  The average bin width was 0.85 bp, and each bin was centered on the average 

peak size.  The ABI 3100 and ABI 3730xl exhibited a difference in peak-sizing of about 

1.2 bp.  Therefore, duplicate samples (see Data Reliability) were used to measure the 

shifts among runs and create correspondingly shifted bins for identical peaks.  After 

creating all bins for each primer pair, GeneMapper generated data tables containing 

binned peak heights for all individuals. 

 

For each primer pair, peak heights were then automatically scored using the program 

AFLPScore (Whitlock et al. 2008).  This software first normalizes peak heights to 

compensate for variance in PCR product concentrations among samples.  It then allows 

the user to optimize the error rate by removing bins that do not meet mean peak height 

thresholds and by creating a genotyping threshold of peak height for the presence allele.  

Using the filter and absolute threshold options that minimized error rate for each primer 

pair, I calculated the overall error rate based on duplicate samples and created a table of 

0/1 (fragment absence / fragment presence) scores.  I manually checked all these 

automated scores by viewing samples in GeneMapper.  I corrected any erroneous peak 

calls and entered blank genotypes whenever the presence or absence of a binned peak 

was ambiguous. 
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Data Reliability 

In order to establish the reliability of this data set, I estimated error rates for each locus 

and the full data set.  For every plate run through electrophoresis, I included four positive 

controls and one negative control.  In addition, I ran 16 samples from the PCH population 

twice for the ACT-CAT primer pair.  I used all these replicates to calculate a locus error 

rate as the ratio of the total number of mismatches divided by the total number of 

replicates (following Pompanon et al. 2005).  To ensure a minimum of 90% repeatability 

for each locus, I removed all loci with error rates higher than 10%.  Then, I used the 

retained loci to estimate the error rate for the entire data set as the ratio of the total 

number of mismatches over all loci to the product of the numbers of replicates and loci 

(Pompanon et al. 2005). 

 

I also removed loci that were not informative or provided similar results due to linkage.  

First I removed all monomorphic loci, which provided no additional information about 

genetic variation.  Next I culled all loci whose allele frequency was less than 0.05 in all 

populations.  These loci do not provide significant information on population differences 

and may have low frequency due to null alleles.  Therefore, what little genetic 

information they do provide may be misleading due to experimental difficulties in 

amplification.  Because AFLP are random genomic markers, some loci may be allelic or 

tightly physically linked and therefore produce redundant, dependent results (Wilding et 

al. 2001).  To avoid as much redundancy and potential resulting bias as possible, I 

calculated a similarity index for every possible pairwise combination of loci (following 
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Gaudeul et al. 2000).  For each locus pair (k, l), the pairwise linkage index was calculated 

as: 

 

Ikl 
1

n
mki 

i

 mli  

where n is the number of individuals, mki is the score (0/1) for individual i at locus k, and 

mli  is the score (0/1) for individual i at locus l.   

 

Because this task created many pairwise locus comparisons, I wrote a program to 

automate the task using MatLab 7.0 (MathWorks, Inc.).  This program calculated the 

pairwise linkage index for the whole data set.  Based on these results, I removed all loci 

with more than 20 pairwise indices greater than 0.95 (those where the same allele 

appeared in both loci very frequently) or less than 0.05 (those where opposite alleles 

appeared at each locus very frequently).  I assumed that these locus pairs were so similar 

as to produce redundant results, possibly skewing the data set (Gaudeul et al. 2000).  

Then I ran the remaining loci through the program again and removed one locus from 

each pair that surpassed the similarity thresholds above, thus producing a final set of loci 

with linkage indices between 0.05 and 0.95. 

 

Tests for Genetic Signals of Selection 

When populations diverge under neutral conditions, the differentiation measured by 

individual loci across the genome has an expected variance and distribution due to the 

stochastic nature of drift (Lewontin & Krakauer 1973).  Simulations can model neutral 
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divergence and provide a null distribution against which to test an empirical distribution 

of differentiation among loci sampled across the genome (Beaumont & Nichols 1996).  

Loci falling within the neutral distribution are likely diverging neutrally.  In contrast, loci 

exhibiting differentiation significantly greater than that expected by the neutral 

distribution are putatively subject to divergent selection, either directly or through 

physical linkage to a selected locus.  

 

To statistically test for significantly differentiated loci, I used the Dfdist package, which 

employs methods developed by Beaumont & Nichols (1996) and Beaumont & Balding 

(2004) and applies them to dominant markers.  This program first uses Bayesian methods 

to estimate allele frequencies for the sampled populations in the empirical data set and 

then calculate the distribution of FST in the data set (Zhivotovsky 1999).  Next, it uses  

simulations to create a null, neutral distribution of differentiation (FST) that has the same 

mean FST as the “trimmed mean” of the empirical data.  The “trimmed mean” is 

calculated from the middle 40% of the empirical data, which should avoid loci under the 

influence of divergent (upper 30%) and uniform selection (lower 30%) (Beaumont 2005).  

The simulations calculate FST conditioned on heterozygosity using an island model of 

subdivided populations through a hierarchical Bayesian approach.  I generated 50,000 

simulated loci for the null distribution.  Finally, the empirical and neutral distributions are 

compared to identify outliers.  I chose to use two  values (0.05 and 0.01), which for a 

one-tailed test equate to the 97.5 and 99.5 quantiles of the null distribution, and the 

default smoothing parameter of 0.04 for graphing purposes.  Empirical loci falling above 

these thresholds were considered outliers and those below were non-outliers.  This 
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approach is robust to a variety of demographic and equilibrium scenarios (Beaumont & 

Nichols 1996; Murray & Hare 2006) and has substantial power to detect loci subject to 

selection (reviewed by Beaumont 2005). 

 

A total of 21 possible pairwise population comparisons were performed in triplicate.  I 

used an in-house program written in LabView 8.5 (National Instruments Corporation) to 

automate the steps of the Dfdist package for the given set of populations.  Then I wrote a 

program in MatLab to process and summarize the “pv” output files, which report the 

heterozygosity, FST, and p-value for each locus.  Specifically, this program calculated the 

mean FST and p-value across each triplicate for each locus.  Because Dfdist is based on 

Bayesian simulations of population divergence, some variation in results may occur from 

run to run.  By calculating mean statistics among triplicates, I reduced the possibility of 

reporting an aberrant outlier that would not be an outlier in subsequent runs.  This 

MatLab program also summarized into a single table the outliers with their mean 

statistics and corresponding population pair.  I then divided loci into four classes: all loci, 

non-outliers, outliers identified in multiple independent comparisons (MI outliers; where 

‘multiple independent’ indicates at least two comparisons that do not have any 

populations in common), and other outliers (SD outliers; loci appearing as outliers in only 

one comparison or in multiple comparisons that all share one population).   

 

It is important to note that the label for ‘multiple independent’ (MI) comparisons does not 

refer to evolutionary independence of contact zones among the population pairs (e.g., 

Wilding et al. 2001).  Replicated contact zones are not possible in the single oyster cline 
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system.  Rather, it indicates a statistical sampling independence where at least two 

comparisons that do not share any sites or sampled individuals returned the same locus as 

an outlier.  Under these criteria, the independent comparisons can include population 

pairs on the same side of the step cline and/or on opposite sides of the cline.  Therefore, 

MI outliers are not necessarily clinal in allele frequency or of higher differentiation 

among regions than within regions. 

 

When dealing with multiple comparisons, it is important to consider the possibility of 

accumulating type I error (Excoffier et al. 2009; Galindo et al. 2009).  The probability 

(pm) of detecting a single locus in x comparisons due to type I error is simply: 

 

pm 
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where  is the alpha value and x is the number of population comparisons.  To evaluate 

the strength of statistical evidence for a role of regional selection between Atlantic and 

Gulf types, I calculated the probability (pr) of detecting a single locus in o comparisons of 

population pairs on different sides of the step cline and no comparisons on the same side 

as the following (adapted from Nosil et al. 2008): 
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where  is the alpha value, o is the number of comparisons of population pairs on 

different sides of the cline in which the locus was observed as an outlier, d is the total 

number of comparisons of population pairs on different sides of the cline, and n is the 

total number of population comparisons.  The number of loci expected as outliers in o 

comparisons of population pairs on different sides of the step cline and no comparisons 

on the same side (le) is simply: 

 

le = pr  x  L 

 

where L is the total number of loci. 

 

Population Structure 

I used the program AFLP-SURV 1.0 (Vekemans 2002), which deals specifically with 

dominant data (Lynch & Milligan 1994), to estimate locus allele frequencies and overall 

and pairwise population genetic differentiation (FST).  I also estimated the pairwise 

population genetic distances as Nei’s D (following Lynch & Milligan 1994).  I used a 

Bayesian method of allele frequency estimation with a non-uniform prior distribution 

because this method delivers the most accurate results and is the most generally 

applicable (Zhivotovsky 1999).  Differences in allele frequencies between adjacent 

population pairs were calculated from the output.  Because prior examination has not 

found Hardy-Weinberg deviations within Florida oyster populations (Hare & Avise 

1996), I chose the option to assume Hardy-Weinberg genotypic proportions.  I repeated 

these analyses separately for each class of loci.  To determine whether genetic 
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differentiation was higher among population pairs on opposite sides of the cline step 

versus on the same side, I performed one-sided t-tests on pairwise FST for each class of 

loci and for all 217 loci with a Bonferroni correction for four tests ( = 0.0125; JMP 

version 9). 

 

In order to visualize these genetic relationships between populations, I constructed 

population trees based on 10,000 bootstrapped matrices of Nei’s D generated by AFLP-

SURV.  Using the programs NEIGHBOR and CONSENSE in PHYLIP 3.68 (Felsenstein 

2005), each category of loci was used to construct separate neighbor-joining consensus 

trees with a 50% majority rule.  I then used the program Dendroscope to plot consensus 

trees, rotate tree branches, and denote bootstrap values (Huson et al. 2007). 

 

In addition to population-level measures of genetic differentiation, the genetic similarity 

between individuals across loci can be used in assignment tests, which remove the 

assumption that a sample site is equivalent to a sampled admixed population.  Such 

individual-based approaches can not only delineate admixed populations, but also 

identify migrants and individuals of mixed ancestry.  The software STRUCTURE v. 2.2.3 

utilizes a Markov Chain Monte Carlo (MCMC) algorithm, with an extension to deal with 

dominant data, to assign individuals into clusters based on their multilocus genotypes 

(Falush et al. 2007).  To determine the number of genetic populations, I ran the model for 

K = 1-7, with 50 runs for each value of K.  Options included the use of the admixture 

model with correlated allele frequencies and no prior information.  Each run incorporated 

a burn-in period of 105 MCMC iterations and a data collection period of 106 iterations.  
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For each K value, results across runs were summarized using the software CLUMPP v. 

1.1.2 (Jakobsson & Rosenberg 2007), which assesses the similarity among runs and 

integrates over them to provide a summary solution.  I then used the software Distruct v. 

1.1 (Rosenberg 2004) to graphically display the final summary solution.  I determined the 

most likely number of K clusters for the full data set using two methods:  the maximum 

log probability of the data (Pr(X|K), Pritchard et al. 2000), and the mode of the rate of 

change in log probability for consecutive K values (Evanno et al. 2005).   I repeated this 

procedure for each of the locus classes and visually interpreted differences in geographic 

assignment patterns between locus classes.   

 

Using all loci, I evaluated the ancestry proportions generated by CLUMPP under the 

most likely number of clusters to determine which sites exhibited the greatest levels of 

admixure.  For each individual, I determined which cluster contributed the most to its 

ancestry as estimated by the ancestry proportions for each cluster.  These highest ancestry 

proportion values for each individual were the maximum ancestry proportions.  I then 

calculated the mean of the maximum ancestry proportions across individuals within a site 

and tested for significant differences in these means across sites using pairwise t-tests 

with Tukey adjustment for all pairwise tests (JMP 9.0). 

 

An alternative individual-based approach to visually identify genetically similar 

populations is the Principal Coordinates Analysis (PCoA), which identifies similarities 

among individuals across loci using multidimensional scaling.  For this analysis, I used 

the Excel macro GenAlEx 6.2 (Peakall & Smouse 2006).  First, I calculated the pairwise 
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linear genetic distances between individuals (following Huff et al. 1993).  The PCoA was 

then conducted on the covariances of these distances using the data standardization 

option.  This analysis measured the percent variation explained by the three major axes, 

both individually and cumulatively.  Individuals that group together are likely to be from 

the same genetic population (Reeves & Richards 2009).  By labeling individuals with 

their collection site, population clusters, hybrids, and migrant individuals can be 

identified (Young et al. 2001).  I performed a separate PCoA on each of the locus classes. 

 

To test for geographic patterns in genetic variation, an analysis of molecular variance 

(AMOVA) was performed in GenAlEx 6.2 for each locus class.  Specifically, I tested for 

three patterns of geographically hierarchical partitioning of variance: (1) a two-region 

model to represent Atlantic and Gulf of Mexico (Gulf) populations, where Atlantic 

populations are north of Cape Canaveral and Gulf populations are in Cape Canaveral and 

to the south (Reeb & Avise 1990); (2) a three-region model of North populations 

(populations north of Cape Canaveral), Cape Canaveral populations, and South 

populations (populations south of Cape Canaveral); (3) the hierarchical grouping 

corresponding to the best K clusters identified by STRUCTURE.  Model 1 corresponds to 

a parapatric genetic distribution.  In contrast, model 2 represents a geographic distribution 

expected by the bounded hybrid superiority hypothesis, in which hybrids are more 

successful than parental types in transitional ecotone habitats (Moore 1977).  Model 3 

tests for an alternatively supported geographic structure, which may be indicative of a 

mosaic zone pattern.  For each geographic pattern, the AMOVA partitioned the variance 
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among the geographic regions, between populations within regions, and within 

populations. 
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Results 

 

Data Reliability 

Locus error rates ranged from 0 to 30% before removing any loci.  However, average 

locus and data-wide error rates were low (Table 2-2; 6.53% and 5.96%, respectively).  

For the ACT-CAT primer pair, error rates were lower (4.55% and 4.52%, respectively) 

and resulted in retaining a higher proportion of loci.  For this primer pair more 

individuals were tested in duplicate to calculate error rate, which represented a larger 

portion of the total individuals examined in this study.  Thus, the proportion of effect on 

error rate that each individual could have was reduced.  Removing the 97 loci with error 

rates above 10% reduced the average locus error rate and the data-wide error rate to 

3.26% and 3.33%, respectively.  This error rate exclusion process left 291 loci with 90% 

or higher repeatability.  After removing highly similar loci (see below), the final set of 

loci resulted in an average locus error rate of 4.03% and a data-wide error rate of 3.96%.  

These error rates are comparable to, or lower than, those found in other population 

genetic studies using AFLPs (e.g., Bonin et al. 2006; Egan et al. 2008; Nosil et al. 2008; 

Galindo et al. 2009).  Blank/missing genotypes comprised 2.58% of the final data set and 

were randomly distributed among individuals. 

 

After removing 17 monomorphic loci (5.84% of the 291 loci) and 29 loci with no 

population allele frequency greater than 0.05 (9.96% of the 291 loci), the pairwise 

linkage index was calculated for the remaining 245 polymorphic loci.  The mean pairwise 

linkage index was 0.4098  0.2412.  Because indices near the extremes (0 and 1) indicate 
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high similarity between loci, the magnitude of the absolute difference from 0.5 provides a 

more direct estimate of similarity, i.e., low absolute differences would indicate low 

similarity and chance of linkage.  The mean absolute difference between Ikl values and 

0.5 was 0.2218  0.1309.  This first set of Ikl values resulted in the removal of 26 loci that 

surpassed the Ikl thresholds in greater than 20 pairwise comparisons.  The second 

calculation run identified two additional loci for removal, leaving the final data set of 217 

remaining loci.  The presence allele was at very low frequency for the majority of loci 

that were removed.  Removing loci made very little difference in the Bayesian allele 

frequency estimates for the final 217 loci.  The mean difference in allele frequency 

estimated for each locus when 291 loci and 217 loci were included in the data set was 

minimal (-0.0005, which corresponds to a median change of -1.45%).  Furthermore, 

retaining these loci would have shifted downward the global and trimmed mean FST 

values used for the null distribution in simulations, resulting in a less stringent test for 

outliers.  For this final set of loci, the means for Ikl and the absolute difference between Ikl 

and 0.5 were 0.4299  0.2202 and 0.1973  0.1202, respectively. 

 

Tests for Genetic Signals of Selection 

At the 0.05 (0.01)  levels, the 21 pairwise population comparisons revealed 85 (49) loci 

as outliers.  Of these outliers, 33 (16) were detected in multiple independent comparisons 

(MI outliers).  The remaining 52 (33) outliers (SD outliers) were divided between 28 (15) 

single-comparison outliers and 24 (18) loci detected in multiple dependent comparisons.  

Results for each population comparison are summarized in Table 2-3 and depicted in 

Figure 2-2.  All population comparisons detected at least one outlier at the 0.05  
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threshold.  However, while the LPA-HOB comparison exhibited only one SD outlier, all 

other comparisons ranged between nine and 29 outliers.  At the 0.01  level, the lone 

LPA-HOB outlier was no longer detected, but the number of outliers in the remaining 

comparisons ranged from two to 21. 

 

Although conducting multiple comparisons raises the possibility of type I error, Dfdist 

corrects for this possibility through Bayesian methods that use the prior distribution 

(Beaumont & Balding 2004).  The number of loci observed in multiple comparisons 

further illustrates that their outlier status is less likely to be due to chance alone.  For 

example, the probability of observing a given locus in two comparisons is 6.25 x10-4 

(2.50 x10-5) and for eight comparisons is 1.53 x10-13 (3.91 x10-19).  Furthermore, there is 

an even greater statistical argument for those outliers detected in multiple comparisons of 

only populations on different sides of the cline.  The probability of detecting one of these 

outliers in eight different-cline-side comparisons is 1.30 x10-17 (8.64 x10-23).  However, 

three (one) such loci were observed. 

 

The ratio of the percents of MI outliers to SD outliers detected in each comparison was 

significantly different between different-cline-side and same-cline-side comparisons (p = 

0.00158 (0.00337), t-test).  Within each comparison type, the average ratio was 1.255 

(1.067) for same-cline-side comparisons, but was 5.487 (4.117) for different cline side 

comparisons.  Within sides, selective differentiation appears to involve different loci.  

The tests indicate population pairs on different sides of the cline are more likely to share 

the same genetic basis of adaptive differentiation than those on the same side because a 
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greater proportion of outliers were detected in MI comparisons.  For the  threshold of 

0.05, the percentage of MI outliers was not different between the two pair types (p = 

0.34240), while the percentage of SD outliers was significantly greater in same-cline-side 

comparisons than in different-side comparisons (p = 0.00033, t-test).  In contrast, the 0.01 

 threshold percentage of MI outliers was marginally significantly greater in different-

cline-side comparisons (p = 0.04779, t-test), while the percentage of SD outliers was 

marginally significantly greater in same-side-cline comparisons (p = 0.04340, t-test). 

 

A handful of loci were detected as outliers in at least four comparisons of population 

pairs on different cline sides but in no same-cline-side comparisons (DSO outliers).  

Because the statistical argument for these loci being under the influence of regionally 

divergent selection is strong, it is helpful to identify them, all of which were MI outliers 

at their given  threshold.  At the  threshold of 0.05, locus 80 was an outlier in four 

different-cline-side comparisons.  This event has a 1.37 x10-8 probability of occurring and 

is expected by chance in 2.97 x10-6 loci.  Loci 13, 31, and 51 were outliers in eight such 

comparisons.  This event has a 3.37 x10-17 probability of occurring and is expected by 

chance in 7.32 x10-15 loci.  For the  threshold of 0.01, locus 31 was an outlier in four 

different cline side comparisons.  This event has a 2.19 x10-11 probability of occurring 

and is expected by chance in 4.76 x10-9 loci.  Loci 13, and 51 were outliers in five such 

comparisons.  This event has a 3.87 x10-14 probability of occurring and is expected by 

chance in 8.40 x10-12 loci.  Finally, locus 64 was an outlier in eight different cline side 

comparisons and no same side comparisons.  This event has an 8.64 x10-23 probability of 

occurring and is expected by chance in 1.87 x10-20 loci. 
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The locus classes determined by the genome scans using the 0.05  value were the focus 

of the remaining analyses to create a more neutral non-outlier data set for comparison to 

the outlier classes.  This allowed for comparison of population genetic patterns among 

locus classes using a non-outlier data set that would be less likely to include loci under 

the influence of divergent selection. 

 

Population Structure 

Through examination of loci with large allele frequency changes/shifts between adjacent 

populations, regional relationships were further revealed (Fig. 2-3).  For loci with only 

one allele frequency shift greater than 0.3 along the transect, the majority of the shifts (14 

loci) occurred at the step cline interval between NSB and TTV.  In addition nearly 20% 

occurred each at the TTV-LPA (5 loci) and HOB-PCH (6 loci) intervals.  The proportion 

of loci with one shift became even more skewed toward the Cape Canaveral region, 

especially the NSB-TTV interval, as the magnitude of the shift increases.  All allele 

frequency shifts greater than 0.6 (2 loci) were located within the NSB-TTV step cline 

interval.  These two loci (loci 13 and 31) were also in the group of loci with only one 

shift greater than 0.3 and were detected in multiple comparisons between population pairs 

on different sides of the step cline and no comparisons of pairs on the same side (see 

above), making them strong candidates for being under the influence of regionally 

divergent selection. 
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Overall population differentiation across all populations for all 217 loci was moderate 

(FST = 0.0756, Table 2-4).  No genetic differentiation was observed between TTV and 

HOB (FST = 0.0000, whereas the greatest differentiation was between two adjacent sites, 

NSB and TTV (FST = 0.1294), which are only 60 km apart and span the interval of the 

previously described step cline (Hare & Avise 1996).  Among locus classes, genetic 

differentiation was greatest for MI outliers and least for non-outliers (FST = 0.1841 and 

0.0263, respectively).  As compared to population pairs on opposite sides of the cline, 

those on the same side of the cline showed remarkably lower differentiation for all 217 

loci and significantly lower differentiation for MI outliers (p = 0.0224 and 0.0027, 

respectively), although the average geographic distance between population pairs was 

similar.  In contrast, within both non-outliers and SD outliers, the average pairwise 

differentiation was nearly equivalent between the two comparison types (p = 0.0991 and 

0.4398, respectively).  Taken together, these results underscore the role divergent 

selection plays in the effects regional geographic patterning have on loci across the 

genome.  Regardless of the distance between populations, the variability in differentiation 

among locus classes demonstrated restricted gene flow at some loci, particularly those 

subject to regional selection, and freer gene flow at others.  Population pairs including 

TTV had the highest FST values within cline side groups for all loci, neutral loci, and SD 

outliers, but not for MI outliers.  These results reveal the distinctiveness of TTV from 

other populations at most loci. 

 

Phylogenetic trees of population genetic distances exhibited different topologies among 

locus classes (Fig. 2-4).  The topologies for all 217 loci and MI outliers were identical 
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with similarly strong bootstrap support.  Remarkably, this topology was not completely 

consistent with cline divisions, grouping southern FTP between the northern clade (WHI 

and NSB) and the remaining populations.  All populations south of the step cline and the 

two northern populations formed well-supported monophyletic groups.  SD outliers 

produced a similar topology with generally weaker bootstrap support and one polytomy 

among TTV, LPA, and HOB.  In contrast, the tree resulting from analysis of non-outlier 

loci was weakly resolved, only showing a high bootstrap value for the (WHI, NSB) node.  

The remainder of the tree consisted of one polytomy and two nodes with less than 60% 

bootstrap support.  All trees exhibited a comparatively longer branch length for PCH.  

These trees provide further support for the FST results by underscoring the greater 

resolution found in the MI outlier data set over the non-outliers and SD outliers and 

strong distinction between populations at the step cline.  The latter is particularly true for 

the non-outlier tree. 

 

Individual-based assignments performed by STRUCTURE and summarized by CLUMPP 

created cluster patterns that differed by locus class (Fig. 2-5).  Sample sites for all 217 

loci and MI outliers clustered similarly to the tree topologies (Fig. 2-5.A and C, 

respectively).  The optimum number of clusters (Fig. 2-6) was either two (one cluster 

grouping WHI, NSB, most of FTP, and some component of PCH; another grouping TTV, 

LPA, HOB, and most of PCH) or four (one cluster grouping WHI, NSB, and most of 

FTP, a second grouped LPA and HOB, and the last two consisted of TTV and PCH as 

one site each).  Three clusters were most likely for the SD outlier data set (Fig. 2-6), but 

mixed ancestry was limited only in WHI, NSB, TTV, and LPA (Fig. 2-5.D).  The WHI-
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NSB cluster dominated FTP and represented about half the individuals in PCH.  TTV 

was its own cluster.  The LPA-HOB cluster dominated these sites and represented the 

other half of PCH individuals.  For non-outlier loci, the optimum number of clusters was 

difficult to evaluate (Fig. 2-6).  The Evanno method (Evanno et al. 2005) cannot evaluate 

K=1 and provided the best support for K=5 and secondary support for K=2.  The high 

proportion of cluster mixing within each site for K=5 suggests this was too many cluster 

divisions (Fig. 2-5.B).  As a result, the likely number of clusters for neutral loci is either 

one or two.  In the case of two clusters, all individuals grouped in a single cluster except 

for most individuals from TTV, which grouped with some individuals of LPA, FTP, and 

HOB.  In this clustering and the higher optimum clusters for the other locus classes, TTV 

formed its own cluster in each case.  In addition, FTP began to form its own cluster at 

K=5 for all 217 loci and for MI outliers.  TTV and FTP likely have some unique, but 

weakly, distinguishing genetic features in the MI data set.  While the clusters created by 

CLUMPP provide additional detail on substructure, focusing on the best K value may 

ignore important information revealed at other K values, particularly if there is an 

alternative K value that has considerable statistical support. 

 

Ancestry proportions generated by CLUMPP using all 217 loci differed between the most 

likely cluster models.  Under the K=2 model, six of the seven sites had very low levels of 

mixed ancestry (mean maximum ancestry > 0.955; Fig. 2-7).  The mean maximum 

ancestry at PCH was significantly lower than all other sites (0.8466).  Although a limited 

number of individuals had mixed ancestry in each site, FTP showed the most mixture of 

clusters in the K=4 model (mean maximum ancestry = 0.8163).  The next lowest mean 



93 

maximum ancestry was 0.0857 at TTV.  All other sites had mean maximum ancestry 

proportions above 0.930.  FTP had significantly higher levels of mixed ancestry than all 

other sites except TTV, which was significantly more mixed than WHI, LPA, HOB, and 

PCH.  Combined with the visual bar plots of ancestry assignment (Fig. 2-5.A), these 

results suggest that: FTP exhibits complex ancestry patterns dominated by Atlantic-type 

alleles; TTV ancestry is largely Gulf-like with some unique differentiation; and PCH 

features unique multilocus ancestry patterns that cannot be captured by the K=2 model. 

 

The PCoA revealed differing population patterns of individual-based genetic distances 

among locus classes (Fig. 2-8).  It is important to note that individual axes are not 

comparable between locus-class data sets and necessarily should not be interpreted as 

describing similar aspects of the underlying data.  Mean eigen vector values for each site 

exhibited the greatest spread for the entire 217 loci data set, followed by the MI outliers.  

This suggests that genetic differences are most discernable and contain the largest 

variance among individuals using the entire 217 loci data set, but particularly for the MI 

outlier loci.  The proportion of variation explained by all three axes was highest for MI 

outliers (0.7308) and lowest for non-outlier loci (0.5611; Fig. 2-9).  Indeed, the error bars 

demonstrate clear differences among sites for the full data set and the MI outliers.  

Groupings from these two analyses are generally in agreement with the STRUCTURE 

K=4 clusters.  For the entire data set, WHI and NSB clustered closely, with FTP 

overlapping their distribution.  Along axis 1, these three populations all differed from 

(i.e., did not overlap with) TTV, LPA, and HOB, with WHI additionally differing from 

PCH.  A similar pattern was found along axis 1 for MI outliers, except FTP and TTV 
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overlapped partially.  Additionally, TTV differed in its distribution from LPA along axis 

2 and from PCH along axis 3 using the entire data set, further corroborating the 

distinctiveness of this population from others.   Meanwhile, no differences existed among 

sites for non-outlier loci.  Only one population differed for SD outliers, where TTV 

differs from WHI, NSB, and FTP along axis 1.  This result strengthens the argument 

against K=5 found in STRUCTURE analyses of non-outlier loci and supports a one-

cluster designation for non-outlier loci, which could not be evaluated above.  For all locus 

classes, WHI, NSB, and FTP had positive mean eigen vector values along axis 1, whereas 

TTV, LPA, HOB, and PCH all had negative values (Fig. 2-8).  The population 

distributions along axis 1 are highly reflective of the groups and bootstrap support 

detected in each phylogenetic analysis.   

 

Due to the magnitude of within-site variance, migrants and hybrids were difficult to 

identify (data not reported here).  This was especially true for non-outlier loci and SD 

outliers, which lacked differential clustering among populations.  Using all loci, only one 

migrant could be identified as having a genetic background similar to TTV at the HOB 

site.  This result corroborated the TTV cluster identity of the HOB individual in the 

STRUCTURE K=4 analysis.   

 

Geographic patterns of genetic variation were similar among locus classes.  For each 

class, the three-region model explained the least amount of variance after AMOVA 

testing (Table 2-5).  The K=4 model had the highest among-region differentiation (RT), 

likely because designating TTV and PCH as individual clusters moved some of the 
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among-population differentiation to among-region differentiation.  The two-region model 

explained similar amounts of variance for among-region and among-populations for all 

data sets except the SD outliers.  Nearly all of the variation was contained within 

populations for non-outlier loci under all models (93-95%), hence the weakest 

hierarchical differentiation was found in non-outlier loci.  In contrast, the MI outliers had 

the highest RT and PR values, which were an order of magnitude greater than those 

found in non-outliers and at least twice those of the SD outliers.  Given the tree and 

AMOVA results, the clusters created by the K=4 value in STRUCTURE may be too 

refined to describe the overarching pattern of parapatry between two differentiated 

groups. 
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Discussion 

 

Here, I used hundreds of anonymous genetic loci randomly spread across the genome to 

examine levels and geographic patterns of divergence among eastern oyster populations 

along an ecotone.  This study supports a general geographic pattern of parapatry across 

putatively neutral loci and those influenced by regionally and localized divergent 

selection.  However, the geographic patterns at the genome level revealed a complex 

substructure of differentiation featuring localized reversals and localized distinctiveness.  

Data from the 217 loci support divergence with gene flow expectations of a porous 

genome, where differentiation is low at putatively neutral loci (suggesting higher gene 

flow) and high at loci influenced by divergent selection (suggesting gene flow is much 

restricted in locus-specific patterns due to selection acting at or near these loci).  My 

results further suggest that regionally divergent selection is playing a role at some of 

these loci in maintaining strong divergence, despite evidence for gene flow at putatively 

neutral loci.  Finally, this study revealed evidence for divergent selection occurring on 

local scales within regions and possibly at the population level.   

 

The patchy genetic and spatial structure found in the eastern oyster Florida populations 

sampled here are two supporting lines of evidence that at least some of this selection is 

exogenous (Arnold 1997).  However, it appears that a combination of neutral and non-

neutral processes, both historical and contemporary, have influenced the geographic and 

genomic patterns of differentation observed in Florida eastern oysters.  This study 

supports and builds on findings from previous investigations (Buroker 1983; Reeb & 



97 

Avise 1990; Karl & Avise 1992; Cunningham & Collins 1994; Hare & Avise 1996; 

Hoover & Gaffney 2005; Murray & Hare 2006).  It also highlights the geographically 

complex role divergent selection can play on the genome in the presence of gene flow 

and how selection can produce a genomic landscape featuring strong differentiation at 

some loci in an estuarine species with high potential for gene flow.  

 

Geographic Patterns of Population Structure 

The first goal of this study was to determine the geographic pattern of population 

structure in a zone of secondary contact using genomic tools.  Given the clinal results of a 

previous transect study (Hare & Avise 1996) and lack of clinal decay over time (Murray 

& Hare 2006), I expected two populations, Atlantic and Gulf of Mexico, to meet at Cape 

Canaveral with potential integradation between them.  In general this pattern was 

supported.  However, the genomic population structure was not completely parapatric, 

but rather more geographically mosaic with definite substructure.  While the northern 

region (WHI and NSB) showed high genetic similarity (FST = 0.0139), the structure 

within the previously described Gulf group was highly heterogeneous (FST range: 0.0000 

– 0.1040).  The strong genetic distinctiveness of TTV and PCH from the other southern 

populations and the similarity between FTP and the northern populations contrasted 

starkly with the near identity between non-adjacent populations separated by 92 km, LPA 

and HOB (FST = 0.0000).  It is unclear what factors drive the population genetic 

heterogeneity observed in the south (Hare & Avise 1996), but the mosaic geographic 

structure implicates a role for exogenous selection (Arnold 1997; Ross & Harrison 2002). 
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Homogeneity in Atlantic-type populations and heterogeneity in Gulf-type populations has 

been observed previously (Hare & Avise 1996).  There are a few of possible explanations 

for the strong genetic similarity among populations north of Cape Canaveral.  Temperate 

communities and their genetic diversity were much more strongly affected by the glacial 

cycles of the Pliocene and Pleistocene (Hewitt 1996).  As glaciers retreated and species 

ranges advanced poleward, newly founded populations and expanding refuges often 

exhibit comparatively genetically depauperate populations toward the poles due to 

bottleneck and expansion effects.  Higher gene flow, either among localities or swamping 

from larger populations further north, is another possible explanation for the low 

differentiation among Atlantic-type populations (Garcia-Ramos & Kirkpatrick 1997; 

Bridle & Vines 2007).  Finally, the selection regime may be stronger and/or more 

homogeneous north of Cape Canaveral, where winter temperatures reach freezing more 

often above the frost line (Hull & the Federal Geodetic Control Committee 1989; 

(Southeast Regional Climate Center, 

http://www.sercc.com/climateinfo/historical/historical_fl.html)). However, results from 

this study alone are insufficient to draw conclusions regarding Atlantic homogeneity 

because only two sites in this region are represented. 

 

The relative distinctiveness of PCH from the other Gulf-type populations sampled here 

was an unexpected discovery.  Using one mitochondrial and two nuclear loci, previous 

allele frequency plots along a transect from Massachusetts to Louisiana showed this 

location to be the overall most Gulf-like (Hare & Avise 1996).  Based on this 

characterization, this population was used to represent the Gulf-type in a genome scan for 
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divergent selection between an Atlantic and a Gulf population (Murray & Hare 2006).  

However, the present study reveals that PCH is somewhat unique among the sampled 

populations.  Indeed, allele frequency plots along the present transect show a reversal to 

Altantic-type frequencies at PCH in an otherwise generally clinal pattern for a handful of 

loci (data not shown).  These results suggest that PCH may not be truly representative of 

the Gulf-type and underscore the importance of sampling many loci before drawing 

conclusions about population structure at the genome level. 

 

Despite the heterogeneity in the south, the phylogenetic population trees indicate an 

incomplete signal of parapatry between Atlantic and Gulf type populations.  Except for 

FTP being placed between Atlantic and Gulf type populations, the division between these 

two types was strong.  This division may reflect the system’s history of vicariance.  The 

non-outlier population tree exemplifies this demographic legacy, providing the only 

strong bootstrap support at the node dividing the populations north of the step cline from 

those to the south.  Whether or not the allopatric evolution of Atlantic and Gulf 

populations involved divergent selection in different environments, it appears a neutral 

legacy of vicariance remains (Reeb & Avise 1990; Avise 2004).  Indeed, the 

biogeographic province boundary between range edges of temperate and subtropical 

assemblages and the concordant boundary zones within species along the Florida 

coastline (e.g., Ammodramus maritimus, Cicindela dorsalis, Geukensia demissa, Limulus 

polyphemus, Malaclemys terrapin) are the strongest evidence for a history of vicariance 

(Briggs 1974; Avise 2000; Avise 2004).  The genetic fingerprints of local adaptations and 

genomic incompatibilities that likely arose while populations were allopatric may be 
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retained due to history and/or due to contemporary selection (Avise 2004).  The general 

parapatric pattern of differentiation observed in this study may have arisen through 

secondary contact and be sustained by regionally divergent selection along an ecotone, 

genomic incompatibilities, and/or contemporary barriers to dispersal (Reeb & Avise 

1990; Bert & Arnold 1995; Hare & Avise 1996; Arnold 1997). 

 

The similarity of FTP to the two northern populations was unexpected, but not 

inconsistent with the previous finding that this location exhibited some of the highest 

Atlantic allele frequencies of sites south of the Cape Canaveral region (Hare & Avise 

1996).  Additional support for a northern genetic signature in FTP comes from two 

phylogenetic studies (Cunningham & Collins 1994; Hoover & Gaffney 2005).  The 

predominantly northern genetic signature of this population could be a relict of a 

northward moving hybrid zone (Barton & Hewitt 1985) or past contact events during 

glacial cycles (Hewitt 1996).  If the hybrid zone moved, it may have left remnants of the 

Atlantic type along its path until stabilizing its position at Cape Canaveral.  The higher 

mixed ancestry and intermediate genetic distance between northern and other southern 

populations may be the result of gene flow and introgression from neighboring southern 

populations into a relict Atlantic population or more effective southward gene flow than 

northward.  There is an inlet at Fort Pierce, which would allow localized immigration.  In 

consideration of the possibility of plate effects, FTP may have had a more northern 

signature because a third of these samples were run on the same experimental plates as 

northern samples.  However, this explanation does not seem valid because a plate effect 

pattern was not observed in the other FTP samples or in other populations run with 
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samples from across the cline (See Appendix Fig. A-1).  Furthermore, positive controls 

on each plate minimized potential plate biases.  It is unknown whether the FTP 

population is a localized anomaly or indicative of a yet unsampled pattern. 

 

According to tension zone theory, cline centers will move until dispersal barriers and 

density troughs entrap and stabilize their location (Barton & Hewitt 1985; Endler 1977).  

Differentiation is highest in Cape Canaveral, the cline center.  This is true even for 

neutral loci, indicating that neutral processes have a stronger influence in this region than 

other areas.  Aside from the neutral contribution of historical vicariance legacy, strong 

dispersal barriers in Cape Canaveral are consistent with the physical attributes of the 

lagoons in this region.  Cape Canaveral is the region in eastern Florida most isolated from 

the Atlantic Ocean.  The nearest inlets to the north and south are at distances of 

approximately 70 and 80 km, respectively.  As a result of the isolation, tidal flow in Cape 

Canaveral lagoons is very weak (5 cm tidal height, Smith 1987) and would limit dispersal 

of planktonic larvae.  Indeed, tidal mixing extends only 1.6 km from an inlet (Smith 

1987), and residence times in the region range from 0.04 to 0.62 yr (Florida Department 

of Environmental Protection).  Furthermore, the Mosquito lagoon is connected to 

northern lagoons by only a narrow canal.  Land separates this lagoon from Banana River 

lagoon, located on the eastern side of the Cape.   

 

In addition, there is a comparatively low density of oysters in the Cape Canaveral region 

(Hare & Avise 1996; pers. obs.).  This density trough may limit the number of potential 

migrants, thereby easing the gene flow – selection balance and reducing the rate of 
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neutral cline decay.  A severely low density in oysters potentially can produce an allee 

effect as a byproduct (Stephens & Sutherland 1999; Liermann & Hilborn 2001; Berec et 

al. 2007).  Oyster sperm and eggs have a limited life span of 1-5 hours in seawater 

(Galtsoff 1964).  If the distance between potential mates is too great to allow adequate 

travel of gametes, fertilization will not succeed.  The resulting dearth of progeny would 

also result in a lower number of potential recruits, only continuing the density trough 

through a negative feedback loop.   

 

In accord with the above highlighted physical and biological conditions that attract hybrid 

zones, this region exhibits elevated population differentiation among all locus classes and 

is the location where the majority of loci with single allele frequency shifts greater than 

0.3 and all shifts greater than 0.5 occur.  Clearly, oysters in the Cape Canaveral region 

experience reduced gene flow.  The physical geography and species density of Cape 

Canaveral lagoons likely facilitates the genetic distinctiveness of the TTV site by 

enabling it to evolve in more isolation.  It is important to note that for non-outliers FST 

between TTV and the adjacent sample sites was about 0.05, which indicates reduced gene 

flow relative to other adjacent population pairs but does not support strong restrictions to 

gene flow.  It is also possible that TTV samples exhibited distinctiveness because they 

may not have amplified as well in the laboratory as other samples for biological or 

experimental reasons.  This site had the lowest average band-present allele frequency, but 

the difference was not significant.  Another experimental difference was that TTV was 

the only set of samples analyzed on the ABI 3730 because these samples were acquired 

late in the study, but positive controls helped reduce any run differences.  However, if the 
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later sampling of this site made TTV less comparable to other samples, it may indicate 

less stability in allele frequencies along the cline than previously thought (Murray & Hare 

2006).  This seems like an unlikely explanation because the interval between samples in 

this study is much less than the one Murray & Hare examined.  These potential 

experimental differences in TTV samples did not result in a consistent effect across 

primer pairs or across loci within primer pairs, and therefore should not be driving the 

overall patterns observed. 

 

It appears that a combination of neutral and selection-related processes, both historical 

and contemporary, play a role in shaping the patterns of geographic differentiation 

observed in this study.  Many of the maritime contact zones in Florida do not have cline 

centers in the same location (e.g., ribbed mussel in Sarver et al. 1992; weakfish in Cordes 

& Graves 2003; killifish in Duggins et al. 1995; hard clams in Bert & Arnold 1995).  

Indeed, the broader, well-recognized biogeographic province boundary spans clusters of 

species range limits between the Georgia-Florida border and Palm Beach, FL (Briggs 

1974; Engle and Summers 1999).  Neutral processes limiting dispersal likely have similar 

effects on species with similar life cycles.  The differences in contact zone locations 

imply that neutral processes are not the only factors determining cline shape and center in 

these species.  A combination of neutral forces, endogenous selection, and exogenous 

selection has been demonstrated in another concordant bivalve hybrid zone (hard clams 

Mercenaria spp.: Dillon & Menzi 1989; Bert & Arnold 1995). 
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Divergent Selection Drives the Genomic Pattern of Differentiation 

The second goal of this study was to determine if selection shapes the genomic landscape 

of differentiation, using a null hypothesis of genome-wide neutral differentiation 

processes.  This null hypothesis was rejected, as it was in a study by Emelianov and 

colleagues (2004).  There was clear evidence here for a porous genome, as theory 

predicts in a system of divergence with gene flow (Hodges & Arnold 1994; Feder 1998; 

Wu 2001; Nosil et al. 2009).  In this study, approximately 39% of loci were detected as 

highly diverged FST outliers in at least one population comparison putatively due to the 

effects of divergent selection, leaving nearly 61% as putatively neutral across all 

populations.  This large percentage of outlier loci is higher than those found in most other 

genome scans (e.g., Wilding et al. 2001; Bonin et al 2006; Egan et al. 2008; reviewed in 

Nosil et al. 2009), possibly due to the larger number of population comparisons 

performed to detect outliers here.  Sampling sites may include additional sources of 

environmental heterogeneity produced by strong selective parameters found in intertidal 

estuaries.  This is consistent with the large majority of outliers being site-specific (SD 

outliers).  Nonetheless, the percentages should be cautiously interpreted with the 

realization that they likely include false positives at the  = 0.05 level and less so at the  

= 0.01 threshold (see below for further discussion).  Indeed, the percentage of outlier loci 

drops to 22.6% when  = 0.01.  The average proportion of loci detected as outliers within 

individual comparisons was 6.7% for  = 0.05 and 3.1% for  = 0.01.  These per-

comparison outlier proportions are consistent with those found in other studies (see above 

references), including the previous Florida oyster study (Murray & Hare 2006). 
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Although it is sometimes done in genome scan studies (e.g., Galindo et al. 2009; Nosil et 

al. 2008; Nosil et al. 2009), the percentage of loci found to be outliers must not be 

inferred to represent the proportion of the genome under selection.  Without a genetic 

map of the markers, the anonymous nature of AFLPs precludes an understanding of their 

genomic distribution and the magnitude of hitchhiking effects.  As the strength of 

selection increases and/or recombination decreases, the genomic region experiencing 

indirect hitchhiking effects of selection broadens (Maynard Smith & Haigh 1974; 

reviewed in Barton 2000; and Andolfatto 2001).  Although studies have demonstrated 

general genomic dispersion of AFLP loci (reviewed in Black et al. 2001), the likelihood 

of a differentiated region including more than one AFLP locus increases with the size of 

the hitchhiking region and number of loci.  Therefore, the possibility exists that more 

than one locus sample the effects of divergent selection on a single genetic target, though 

the linkage index threshold minimized this potential. 

 

In addition, various strategies commonly employed in multiple-population genome scans 

can lead to increased false positives (Bonin et al. 2006; Excoffier 2009).  Significance 

criteria are rarely corrected for multiple comparisons (except Eveno et al. 2008; Galindo 

et al. 2009), yet interpreted as though there is no increased possibility of false positives.  

Excoffier et al. (2009) recently pointed out that ignoring population substructure 

produces high levels of false positives when comparing populations in aggregate, but that 

performing pairwise comparisons is one way of addressing this.  However, the software 

Dfdist does implement algorithms to reduce type I error (Beaumont & Balding 2004; 

Nosil et al. 2008).  Necessarily, I cautiously interpret the identity of any given locus and 
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the percentage of outlier loci as putatively being under the influence of selection.  

Furthermore, non-outliers quite possibly represent a mixture of truly neutral loci and loci 

under the influence of weak selection that is either uniform, balancing, or weak and 

divergent.  It is important to note, though, that the probability of a given locus truly being 

under the influence of divergent selection increases with the number of independent 

comparisons in which it was identified as an outlier.  In this way, larger patterns across 

multiple comparisons can be more reliable indicators of broader divergent selection 

regimes. 

 

Multiple Independent Outliers 

Likewise, the statistical likelihood of repeatedly identifying a given locus by chance 

drops dramatically as the number of comparisons detecting the locus increases.  Other 

genome scan studies have used repeated outliers as their most reliable indicators for 

patterns of divergent selection (Bonin et al. 2006; Nosil et al. 2008; Egan et al. 2008).  

Indeed, false-positive outliers are not expected to exhibit parallel behavior in several 

comparisons (Bonin et al. 2006).  This study goes one step further by distinguishing 

between outliers detected in multiple independent population comparisons and those that 

are only repeated when a population is shared in all detecting comparisons.  Such 

multiple independent (MI) outliers represented 15% of all loci at the  = 0.05 level and 

7% of loci when  = 0.01, percentages consistent with those found in other studies (e.g., 

Wilding et al 2001; Egan et al. 2008).  However, having at least two population 

comparisons that do not share any sites is purely a statistical argument here and does not 

imply replicated, independent divergence among population pairs.  While some contact 
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zones have this replication in nature, the eastern oyster does not.  Furthermore, this locus 

class contained outliers detected in population pairs on the same side of the cline and on 

different sides.  In this study, continued selection regimes in nature, whether patchy or 

monotonic, have non-negligible effects on the genomic structure of genetic 

differentiation.   

 

Loci under the influence of divergent selection appear to drive population structure, as 

the striking similarities between results from all 217 loci and MI outliers indicate.  

Although population structure was assessed using a variety of methods, results 

consistently documented weak population differentiation for non-outliers and SD outliers 

distinct from the stronger pattern observed in all loci and MI outliers in particular.  The 

reduced differentiation found in non-outlier loci is not a surprise because FST-based 

criteria were used to distinguish outliers from non-outliers.  However, population-level 

FST values of non-outlier and MI outliers were not correlated (correlation analysis not 

shown), suggesting differentiation at the two sets of loci is governed by a different 

balance of evolutionary forces. 

 

Cautions considered, the MI outliers represent the strongest candidates for divergent 

selection (Bonin et al. 2006; Nosil et al. 2008).  These outliers are putative markers for 

genomic regions that either are targets for divergent selection or facilitate reproductive 

isolation along the speciation continuum.  These regions are selection-based barriers to 

the gene flow that occurs freely across the remainder of the genome.  The high number of 

these outliers may indicate that the divergent populations are farther along on the 
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speciation continuum compared to other outlier studies (Wu 2001).  Because they were 

outliers in at least two independent comparisons, they show that divergent selection has 

the same genetic basis in multiple populations along the transect.  Although the contact 

zone is not a case of parallel evolution driven by the same selective regimes (e.g., 

whitefish: Pigeon et al. 1997; sticklebacks: Rundle et al. 2000; Colosimo et al. 2005; 

Littorina saxatilis: Johannesson et al. 2009), selective differences within regions or that 

may or may not have arisen in allopatry are being maintained consistently in the face of 

gene flow at other parts of the genome.   

 

Non-outliers 

Non-outlier loci indicate the presence of gene flow through their extremely low genetic 

differentiation, low resolution of their phylogenetic tree, and the inability of assignment 

tests to identify robust clusters.  The scale of gene flow is unclear, but previous estimates 

of dispersal in Chesapeake Bay eastern oysters indicate the evolutionary scale of 

dispersal is 479 km2 (Rose et al. 2006).  In the Florida lagoons, dispersal distances are 

likely much less given the longer retention times in this shallow system with weak tidal 

influences (Smith 1987).   

 

Completely neutral explanations may not explain the extremely low differentiation 

observed in some non-outliers.  Instead, some of these loci may be under the influence of 

balancing or uniform selection between population pairs (Lewontin & Krakauer 1973; 

Beaumont & Nichols 1996).  Genome scans are most often performed as one-tailed tests 

to search for extraordinarily high levels of differentiation.  The method is not as powerful 
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for detecting uniform selection (Beaumont & Nichols 1996).  Ignoring the likelihood of 

uniform selection affecting a data set potentially biases the genomic FST downward, 

which is used to create the simulated neutral data set.  However, Dfdist does account for 

this possibility by trimming extremely low and high values of FST before calculating the 

mean (here, upper and lower 30% trimmed).  Though this reduces the probability of false 

positives due to a downwardly biased estimate of genomic differentiation, the one-tailed 

nature of the test still limits the ability to distinguish between truly neutral loci and those 

under uniform or balancing selection (Beaumont & Nichols 1996; Beaumont & Balding 

2004).  Therefore, non-outliers should be interpreted as just that, not necessarily neutral 

loci. 

 

Although the vast majority of genetic variation observed in non-outliers was contained 

within populations, the subtle structure that was found reflected the pronounced structure 

found in MI outliers.  Differentially adapted loci can potentially drive differentiation at 

unlinked neutral loci by creating general barriers to gene flow when divergent selection 

against immigrants is strong, thereby facilitating drift (Barton & Bengtsson 1986; Nosil 

et al. 2009).  Though gene flow at neutral loci breaks down much of the adaptive 

genomic associations found, it may not be strong enough to counteract this phenomenon 

of isolation by adaptation completely (Nosil et al. 2009).  Alternatively, the weak 

structure observed in non-outliers could be the result of statistical categorization of 

selection, which varies continuously.  Although most analyses here focused on the locus 

classes produced by  = 0.05 criterion in order to create a more neutral data set, non-

outliers likely still contain loci under the influence of weak divergent selection and loci 
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that are more loosely linked to target loci.  Under these circumstances, the effects of 

selection are too weak to elevate the loci to outlier status.  In such cases, some loci are 

false negatives because they carry a faint signal of differentiation based on divergent 

selection.  The hitchhiking effect depends greatly on the ratio of recombination frequency 

and strength of selection (r/s), such that higher recombination rates and weaker selection 

produces smaller hitchhiking effects on loci linked to fitness-related loci (Barton 2000; 

Andolfatto 2001; Ortiz-Barrientos et al. 2002; Butlin 2005; Via & West 2008).  Other 

possible explanations for the weak but present structure at putatively neutral loci include 

the strengths and balance of gene flow and selection and insufficient time since 

secondary contact.  Given the porous nature of the genomic structure of differentiation 

and the subtle signals of differentiation in non-outliers, gene flow is most likely large 

enough to break down the bulk of differentiation through recombination but may be too 

weak to overcome the effects of divergent selection entirely. 

 

Singleton and Dependent Outliers 

The moderate differentiation observed in SD outliers has several potential explanations.  

These outliers may indicate localized selection, specific to individual populations or fine-

scale habitat differences not repeatedly sampled here.  Alternatively, the influence of 

divergent selection may be relatively weak at these loci, only elevating them to outlier 

status in a limited number of comparisons.  Finally, multiple comparisons elevate the 

chances of type I error, or false positives.  It is likely that some SD outliers are statistical 

artifacts, particularly in the case of outliers detected in only one comparison (Bonin et al. 

2006; Nosil et al. 2008).  Considering only outliers detected by the 0.01  level reduces 
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the possibility of type I error in inferring selection at particular loci.  However, the 

purpose of this study was not to identify specific loci influenced by divergent selection, 

but rather to characterize genomic and geographic patterns of differentiation through the 

behavior of multiple locus classes. 

 

Mixed Ancestry 

Contact zones are sometimes categorized by the distribution of genotypic classes 

(Harrison & Bogdanowicz 1997; Howard 1993).  Hybrid swarms, where intermediate 

genotypes dominate, are called ‘unimodal’ (e.g., Bombina frogs: Szymura & Barton 

1991).  ‘Flat’ hybrid zones have a relatively even representation of genotypic classes (e.g. 

crickets, Howard & Waring 1991; Cyprinid fishes: Meagher & Dowling 1991; leopard 

frogs: Sage & Selander 1979; and oaks: Howard et al. 1997).  When parental genotypes 

dominate and intermediates are rare, the hybrid zone is termed ‘bimodal’ (e.g., 

Heliconius butterflies: Jiggins et al. 1997; Louisiana irises: Cruzan & Arnold 1994).  This 

continuum of genotypic distributions ends with speciation.  Bimodal contact zones are 

strongly associated with prezygotic barriers, assortative fertilization or assortative mating 

(Jiggins & Mallet 2000).  Despite the low ratio of hybrids, bimodal zones show no 

association with postzygotic incompatibilities, ranging from hybrid breakdown to hybrid 

vigor (reviewed in Jiggins & Mallet 2000).  As a result, endogenous postzygotic selection 

can be weak in these systems, suggesting a prominent role for exogenous postzygotic 

selection and/or other premating barriers to gene flow in bimodal zone maintenance.   
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Past studies on the oyster step cline all used population-level statistics to describe 

geographic and genomic patterns of differentiation (Buroker 1983; Reeb & Avise 1990; 

Karl & Avise 1992; Hare & Avise 1996; Murray & Hare 2006).  Individual assignment 

approaches can answer additional questions regarding the role divergent selection plays 

in shaping genomic differentiation.  The strong barriers to gene flow found at the 

population level for MI outliers are consistent with reduced levels of mixed ancestry at 

the individual level found in this class of loci compared to other classes.  Comparing bar 

plot results from DISTRUCT analyses for the different locus classes further supports a 

porous genomic landscape, whereby individuals appear to have greater mixed ancestry at 

non-outlier and SD outlier loci than at MI outliers. 

 

The low levels of mixed ancestry in most populations suggest the oyster contact zone is 

genotypically bimodal.  Because bimodality is associated with prezygotic barriers and 

exogenous selection, the few migrants detected here may be explained by reduced 

migrant fitness, but may simply be the result of weak hydrodynamics.  These inferences 

of low levels of mixed ancestry and migration should be interpreted with caution because 

these analyses of population structure were not designed to test ancestry specifically or 

vigorously.  Nonetheless, the possibility of pre- and post-zygotic barriers should be 

investigated.  Though behaviorally based assortative mating is unlikely in a broadcast 

spawner, a recent fertilization trial between two populations located on opposite sides of 

the step cline failed to demonstrate any strong reproductive barriers for embryo survival, 

fertilization success, and paternity (Zhang et al. 2010).  The authors of this study suggest 

that prezygotic and early postzygotic genetic incompatibilities do not maintain the step 
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cline, leaving physical dispersal barriers and exogenous selection as possible mechanisms 

for cline maintenance.  However, endogenous selection may play a role at a life stage 

later than the embryo and cannot be ruled out. 

 

Geographic Pattern of Selection along the Ecotone 

The third goal of this study was to determine whether selection produces a clinal 

geographic pattern along the ecotone.  In general, the geographic pattern along the 

transect was not smoothly clinal, even for most loci putatively under the influence of 

divergent selection.  The broad range of allele frequency patterns along the transect 

reflect the mosaicism of genomic regions under geographically variable balances of 

evolutionary forces.  In parapatric contact zones, clinal loci are of particular interest 

because they provide insights into the evolutionary dynamics of gene flow and selection 

(Barton & Hewitt 1985; Harrison 1990).  In this AFLP study, some loci did show overall 

clinal patterns in allele frequency with occasional local reversals, particularly involving 

FTP.  Although the vast majority of such loci are classified as MI outliers, several are 

classified as SD outliers and even as non-outliers.  However, not all MI outliers were 

clinal.  Many MI loci exhibited multiple large allele frequency shifts along the transect, 

providing further indication that ecotonal selection may not be the only form of divergent 

selection operating in this system. 

 

Clinal Selection 

Although the hypothesis of two parapatric populations corresponding to Atlantic and 

Gulf clades (Reeb & Avise 1990) proved incomplete across the genome, it can still be 
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used as a framework to examine divergent selection on regional scales.  By comparing 

trends in outliers for population pairs on opposite sides of the previously described step 

cline versus those on the same side, it appears that divergent selection between these 

regions is affecting genetic differentiation at some loci.  The nearly four-fold more MI 

outliers versus SD outliers observed in population pairs across regions demonstrate that 

selection differences between regions have a strong influence over the patterns of 

geographic differentiation observed at many loci.  Furthermore, examination of outliers 

detected in multiple comparisons only on opposite cline sides and no comparisons on the 

same side revealed several candidate loci for regional selection.  Two of the three outlier 

loci identified by Murray & Hare (2006) at the  = 0.01 level were MI outliers in this 

study using the same significance criteria.  In fact, these loci were identified in at least 

five comparisons of populations on opposite sides of the cline and zero comparisons on 

the same side.  The third locus was not examined in this study.  These loci are also clinal, 

demonstrating that these criteria are a promising way to identify clinal loci involved in 

regionally divergent selection (Wilding et al. 2001; Campbell & Bernatchez 2004; Bonin 

et al. 2006; Egan et al. 2008; Nosil et al. 2008). 

 

For those MI outliers that are generally clinal along the transect, the possible processes 

governing their geographic pattern of differentiation are most likely ecotonal or 

endogenous selection.  Barriers to dispersal between two historically vicariant 

populations, the Atlantic and Gulf types, may play some role (Avise 2004).  However, the 

broad admixture occurring at most non-outlier loci indicates that gene flow and time have 

been sufficient to erase nearly all neutral divergence that drift may have generated in 
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vicariance.  Clinal outliers may be tracking latitudinal ecotone transitions in biotic 

composition or the latitudinal gradient in temperature. 

 

Hybrid zone theory offers multiple explanations for the geographic location of clines, 

depending on whether selection is predominantly exogenous or endogenous.  For 

exogenous selection, sharp clines are generated and maintained by steep environmental 

changes and low gene flow between differentially adapted populations (Endler 1977).  

The geography, hydrography, and low oyster density of Cape Canaveral lagoons serve as 

a physical backdrop that likely limits planktonic larval dispersal, as mentioned above.  

Indeed, the Cape Canaveral region experiences extremely low recruitment success and 

high mortality in the sporadic recruitment events that do occur (pers. obs., see Chapter 3).  

Neutral processes physically limiting dispersal are probably working in concert with a 

strong selective regime in this area (Bert & Arnold 1995) and ease cline maintenance at 

selected loci.  Populations nearest to dispersal barriers are usually the most differentiated 

(Endler 1977).  The comparatively higher differentiation observed in TTV non-outliers 

and SD outliers exemplify this.  Furthermore, TTV has most of the large, single allele 

frequency shifts.  Genetic isolation in this population can facilitate local adaptation at this 

site and regional adaptation beyond it.  

 

Tension zone theory predicts that reduced hybrid fitness due to intrinsic barriers, or 

genomic incompatibilities between divergent parental populations, produces a pattern of 

linkage disequilibrium (LD) in the region of transition (Barton & Hewitt 1985).  

Although intrinsic barriers to gene flow have not been explicitly tested here, Hare & 
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Avise (1996) tested LD in codominant loci and found low to no LD and Hardy-Weinberg 

equilibrium genotypic proportions within sites.  They determined that there was free 

interbreeding within sites and predominantly local recruitment.  Furthermore, Zhang and 

colleagues recently found no early postzygotic barriers existed between Atlantic and 

Gulf-type samples (2010).  A similar lack of LD was found in a study of the co-

distributed Fundulus hybrid zone, leading the authors to conclude that this was not a 

tension zone (Duggins et al. 1995).  Increasing evidence shows that hybrid zones do not 

conform completely to the tension zone cline model of dispersal balanced by 

endogeneous selection against genomic incompatibilities (reviewed in Arnold 1997). 

 

Though not examined in Florida populations, several studies show evidence of local 

adaptation in the form of physiological races in the eastern oyster.  Newkirk (1977) 

observed races adapted for salinity tolerance.  In a common garden environment, Long 

Island Sound (LIS) oysters exhibited earlier gametogenesis and spawning than Delaware 

Bay (DB) oysters, allowing them to begin reproduction in colder conditions and closer to 

the time of their southern counterparts (Barber et al. 1991).  LIS oysters also had higher 

gill ciliary activity at lower temperatures than DB oysters, enabling them to feed at the 

lower temperatures found more northward (Dittman 1997).  Although growth rate is 

predominantly considered highly phenotypically plastic in the species, LIS oysters 

exhibited countergradient or physiological compensation through higher growth rates 

than DB and Chesapeake Bay (CB) oysters in common gardens (Conover & Schultz 

1995; Dittman et al. 1998).  The results of these studies are more profound given the lack 

of physical or known hydrographic barriers between CB, DB, and LIS.  This 



117 

demonstration of local adaptation in this broadcast spawner suggests the lagoon 

geography and hydrography in Florida should provide greater facilitation for local 

adaptation in this contact zone.  Certainly these environmental parameters vary in Florida 

estuaries (Smith 1993; Southeast Regional Climate Center, 

http://www.sercc.com/climateinfo/historical/historical_fl.html) and could be acting as 

selective agents for countergradient and local adaptation. 

 

Broad variation in geographic differentiation patterns among loci is not unique to this 

system.  Different selection regimes can cause differential introgression among loci 

within the same contact zone (Stuckus et al. 2009).  Differentiation was strongly 

heterogeneous among chromosomes of larch moth ecotypes when comparing different 

host populations but not within the same host (Emelianov et al. 2004).  Introgression was 

highly variable across the genome in a mouse hybrid zone and produced significant 

differences in cline widths and centers, despite purposeful selection for loci that were 

alternately fixed between parental subspecies (Teeter et al. 2008).  For a marine clam, 

Macoma, the general clinal pattern between hybridizing populations had locus-specific 

deviations, including local reversals in allele frequency and strong similarities among 

distant populations (Nikula et al. 2008).  These patterns were particularly similar to that 

found in this study.  Nikula and colleagues implicated hydrographic patterns and salinity 

gradients in the broad clinal pattern, but did not offer an explanation for the smaller scale 

inconsistencies.   
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Within-region Heterogeneous Selection 

Indeed, spatially heterogeneous selection has been implicated as a possible explanation 

for the southern heterogeneity observed in the oyster system (Hare & Avise 1996).  In the 

Hare & Avise study, the region from Cape Canaveral to Miami showed allele frequency 

heterogeneity for a few markers that were strongly differentiated between Atlantic and 

Gulf clades.  The authors offered additional potential explanations for this southern 

heterogeneity.  Through the resulting sea level changes, repeated cycles of glaciation and 

recession of glaciers during the Pleistocene might have provided the opportunity for 

multiple secondary contact events, each of which could leave relict populations.  

Idiosyncratic demographic events like occasional long distance dispersal could also 

generate this geographic pattern.  Finally, the authors suggested spatially heterogeneous 

selection also could play a role.  A similar pattern of southern heterogeneity was found in 

the collocated Fundulus hybrid zone (Duggins et al. 1995). 

 

In contrast to generally clinal loci, some MI outliers exhibited multiple allele frequency 

shifts along the transect.  These loci are likely targets or linked to targets of finer-scale 

environmental selection.  The characteristic population-specific differentiation observed 

in SD outliers, particularly those detected in multiple dependent comparisons, also is 

evidence for localized selection.  Estuarine intertidal environments experience broad 

variation in numerous abiotic and biotic parameters over small and large temporal and 

spatial scales.  Key parameters affecting survival in oysters and other intertidal sedentary 

organisms include: salinity, temperature, dissolved oxygen, tidal height affecting 

exposure to desiccation, rate of hydrographic flows, community interactions, 
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sedimentation, and turbidity (Shumway 1996; Pennings & Bertness 2001).  Because the 

sampling scheme here did not attempt to hold any of these parameters constant, there is 

potential for one or more of them to act as divergently selective agents among sample 

sites.  Given that local recruitment is likely for Florida oysters (Hare & Avise 1996), 

populations could be locally adapted to their population-specific environments.  The 

mosaic model of hybrid zones has several characteristics: (1) geographically mosaic 

genotype frequencies, (2) parental types adapted to different environments that are 

patchily distributed, (3) the presence of exogenous selection, and (4) reduced hybrid 

fitness (Howard 1986; Harrison 1990).   This study of adult oysters along the contact 

zone in Florida supports for the first two of these characteristics for some loci and hints at 

the last two, indicating that this contact zone has some characteristics of a mosaic hybrid 

zone in addition to those of an ecotonal zone at different parts of the genome. 

 

Although the formerly mentioned neutral scenarios could contribute to the southern 

heterogeneity and cannot be excluded, this study implicates spatially heterogeneous 

selection in southern genetic differentiation for outlier loci.  This is particularly 

exemplified by the northern genetic signature observed at FTP, which groups between 

Atlantic clade populations and other Gulf sites in population trees for MI outliers and SD 

outliers and has mixed ancestry among MI outliers.  Fort Pierce exhibited relatively more 

northern genetic signatures in other studies as well (Cunningham & Collins 1994; Hare & 

Avise 1996; Hoover & Gaffney 2005).  The fact that genome scans between Fort Pierce 

and its adjacent sample sites returned the greatest number of outliers over all other 

comparisons, with MI outliers outnumbering SD outliers two to one at  = 0.05, 
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demonstrates the uniqueness of the Fort Pierce selective regime from other southern sites 

sampled here.  Exogenous selection may be driving these outlier characteristics.  Pure 

parental genotypes may be selected against in the Fort Pierce area.  Under a bounded 

hybrid superiority model, hybrids are more fit in intermediate environments than parental 

genotypes (Moore 1977).  The Fort Pierce site may have more northern-like physical 

and/or biotic regime than its southern counterparts.  Patterns of mixed ancestry depending 

on locus class may be shared at other populations beyond Fort Pierce, but were not 

sampled elsewhere in this study.  It is possible that the anomalous patterns observed in 

FTP may be representative of fine-scale, patchy, or mosaic selection regimes. 

 

Though previous population genetic analysis of a few loci across the majority of the 

oyster range revealed a clinal transition from Atlantic to Gulf types (Karl & Avise 1992), 

more focused analyses at these loci (Hare & Avise 1996) and at hundreds of anonymous 

loci (here) reveal mosaically patterned large allele frequency reversals within the zone of 

contact, even at most generally clinal loci.  Thus, there is good evidence in Florida 

oysters for selection driving and/or maintaining differentiation in the presence of gene 

flow on various spatial scales.  While some loci most likely represent historical genomic 

incompatibilities or are responding to ecotonal and/or latitudinal gradients, others are 

likely responding to selective pressures that operate at finer scales like those often found 

in intertidal estuaries.   
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Future Prospects 

Some genome scan studies have benefitted from geographically replicated contact zones, 

enabling comparison among evolutionarily independent events of divergent selection 

(e.g., whitefish: Pigeon et al. 1997; sticklebacks: Rundle et al. 2000; Colosimo et al. 

2005; Littorina saxatilis: Johannesson et al. 2009).  The oyster contact zone involves only 

one geographic zone of historically vicariant populations.  As a result, population 

comparisons are not evolutionarily independent laboratories to test for similar regimes of 

divergent selection.  This population genomic study of differentiation along a previously 

reported cline revealed complex geographic patterns at regional and local scales.  

Although this study examines more sites than most genome scan studies, some of the 

patterns observed will require examination of additional sites to eliminate possible 

explanations.  With denser sampling along the transect, it will be easier to identify 

behaviors of some populations (e.g., FTP, TTV) as site-specific, anomalous, or 

representative of a yet undiscovered pattern.  Including multiple samples at each locale 

will illuminate the lower limit of the geographic scale of selection in this intertidal 

estuarine system.   

 

A more powerful geographic sampling scheme would be greatly enhanced by 

incorporation of environmental data.  As of yet, both the targets and agents of selection 

remain unknown in this system.  When no documented phenotypic differences exist, one 

way to investigate selective agents is by looking for genetic associations with 

environmental factors.  In particular, landscape genetic approaches can address whether 

there are geographic relationships between environmental parameters and outlier allele 
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frequencies (Manel et al. 2003; Storfer et al. 2007).  Some features of the environment 

may explain a clinal allele frequency pattern, while others may explain some of the 

localized frequency reversal patterns observed.  For the previously described clinal 

pattern and collocated biogeographic province boundaries, several studies implicate the 

role of a latitudinal temperature gradient.  In this case, the best candidates for genetic 

associations with temperature or biological community are outliers that were identified in 

multiple independent comparisons only between populations on opposite sides of the step 

cline.  Other MI outliers and those from multiple dependent comparisons are well suited 

for studies examining environmental parameters that vary patchily on smaller scales, such 

as dissolved oxygen, salinity, and turbidity. 

 

An association between genetic differentiation and exogenous variables should help to 

identify the phenotypic characters that are under selection.  Such associations with 

phenotype have identified adaptive variation in several systems (e.g., lizards: Rosenblum 

2006; pocket mice: Nachman et al. 2003).  In the intertidal zone, local selection gradients 

for desiccation risk, predation, and wave action have all produced thicker shells in several 

mollusks (e.g., littorinid snails: Hull et al. 1996;  Mytilus: Bierne et al. 2002).  Along the 

latitudinal temperature gradient in Florida, regional adaptation might manifest in 

temperature tolerance thresholds, particularly for seasonal extremes like freezing 

conditions during winter temperature minimums.  Outside of Florida populations, there is 

already evidence of phenotypes that show local adaptation along a latitudinal temperature 

gradient.  An investigation into such physiological tolerance thresholds might yield 

interesting results that could link genotype, phenotype, and environment.  To identify loci 
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underlying adaptive traits, it would be helpful to have loci mapped to a sequenced and 

annotated genome for this commercially important species. 

 

The genomic mosaic caused by the opposing forces of gene flow and selection during 

adaptive divergence has revealed a great deal about the genic view of speciation (Wu 

2001).  This genome scan and study of locus class behavior is a step toward determining 

whether divergent selection plays a role in maintenance of the oyster step cline.  

However, these statistical arguments must be verified through additional study.  

Reciprocal transplant field studies could conclusively evaluate if exogenous and/or 

endogenous selection reduces fitness of immigrants and hybrids, thus maintaining the 

cline.  Such environmentally based local adaptations can cause strong differentiation 

observed at outlier loci.  Through cohort analyses of spat, allele frequency changes over 

time would indicate whether post-settlement selection plays a role in the variable patterns 

of differentiation across space and would help distinguish when that selection occurs in 

the life cycle (e.g. Koehn et al. 1980; Bert & Arnold 1995).  Newly settled spat also will 

reveal temporal and geographic patterns in dispersal and how much gene flow must be 

overcome by selection. 
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Conclusions 

 

Although transect studies of the oyster contact zone conducted by Avise and colleagues 

demonstrate dramatic genetic clines (Reeb & Avise 1990; Karl & Avise 1992; Hare & 

Avise 1996), this study builds on a previous two-population genomic study (Murray & 

Hare 2006) to clearly demonstrate a genomic and geographic mosaic of differentiation in 

these populations.  Divergent selection plays a large role in patterning these mosaics and 

is countered by gene flow at neutral loci.  In contrast to the two-population approach 

(McDonald et al. 1996; Murray & Hare 2006), combining genomic and geographic 

approaches enabled the identification of specific loci that had clinal frequency patterns 

echoing those documented by Avise and colleagues and highlighted candidate loci for 

regional and fine-scale selection for further examination. 

 

Because the geographically mosaic population structure does not completely agree with a 

simple cline, using the mitochondrial dichotomy of “Atlantic” and “Gulf” types may not 

be universally appropriate at the nuclear genome scale.  Indeed, this population 

classification for the oyster contact zone must be reconsidered for contemporary 

population structure in light of the complex substructure observed among and within 

locus classes, but is informative regarding the vicariant history of the zone and its clinal 

selection.  The selection-based mosaicism raises questions about the various scales on 

which environmental divergent selection may be acting and how these interact with local 

gene flow patterns, particularly south of Cape Canaveral.  Selection likely is occurring on 

a smaller scale than the dispersal potential of planktonic oyster larvae because divergent 



125 

selection on local and regional scales maintains differentiation at some loci despite gene 

flow over the remainder of the genome.  The identification of adaptively distinct genetic 

groups made here will be important in formulating conservation strategies for this 

economically important keystone species. 
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Figures 

 
Fig. 2-1:  Map of adult transect sites.  Site abbreviations are as follows: WHI, Whitney 
Lab Dock, Marineland; NSB, New Smyrna Beach; TTV, Titusville; LPA, Launch Pad A, 
Cape Canaveral; FTP, Fort Pierce; HOB, Hobe Sound; PCH, Port Charlotte. 
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Fig. 2-3:  Number of loci displaying a single allele frequency shift over adjacent 
population pairs.  Loci counted when the allele frequency differences between adjacent 
population pairs were greater than 0.3, 0.4, 0.5, and 0.6, respectively.  Note: the 
documented step cline occurs between NSB and TTV (Hare & Avise 1996).
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A) 

 
 
 
 
 
B) 

 
 

C) 

 
 
 
 
D) 

 
 
 
Fig. 2-4: Neighbor-joining consensus trees for each locus class using 50% majority rule.  
Bootstrap values above 0.5 are indicated at internodes.  (A) All 217 loci.  (B) Non-outlier 
loci at the 0.05  threshold.  (C) Outliers in multiple independent population comparisons 
(MI) at the 0.05  threshold.  (D) Outliers in single or multiple dependent population 
comparisons (SD) at the 0.05  threshold.
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Fig. 2-5: Assignment tests using CLUMPP summary results for each class of loci at each 
K value greater than 1, where i – vi represent K=2, 3, 4, 5, 6, and 7, respectively.  
Individual bars represent individuals, which are grouped by collection site.  Colors 
correspond to clusters, where multiple colors in a single individual represent proportions 
of mixed ancestry.  (A) All 217 loci. 
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iii) 
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Fig. 2-5 continued.  (B) Non-outlier loci at the 0.05  threshold. 
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vi) 
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Fig. 2-5 continued.  (C) Outliers in multiple independent population comparisons (MI) at 
the 0.05  threshold. 
 
 

C) 
i) 
 
 
 
 
ii) 
 
 
 
 
iii) 
 
 
 
 
iv) 
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Fig. 2-5 continued.  (D) Outliers in single and multiple dependent population 
comparisons (SD) at the 0.05  threshold. 

D) 
i) 
 
 
 
 
ii) 
 
 
 
 
iii) 
 
 
 
 
iv) 
 
 
 
 
v) 
 
 
 
 
vi) 
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Fig. 2-6: Assessment of the optimal K values from STRUCTURE run data within each K.  
All 217 loci, non-outlier loci at the 97.5 threshold, outliers in multiple independent 
population comparisons (MI), and outliers in single and multiple dependent population 
comparisons (SD) are represented in i - iv, respectively.  (A) Using the maximum log 
probability of the data method where the line begins to plateau (Pritchard et al. 2000).  
(B) Using the mode of the rate of change in log probability for consecutive K values 
(Evanno et al. 2005).
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Fig. 2-7:  Mean maximum ancestry proportion at each site for K=2 (dark gray) and K=4 
(light gray) clusters.  Error bars are for 1.96 times the standard error.  Different letters 
over columns indicate significant difference after means comparisons for all pairs within 
a STRUCTURE analysis (K=2 or K=4) using a Tukey-Kramer HSD adjustment for 
multiple comparisons. 
 
 

 A       AB             BC      A               C       A             A  
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Fig. 2-8: Principal coordinate analysis results.  For each site, the mean eigen value among 
individuals is shown by a dot, with error bars representing 1.96 times the standard error.  
Key: dark blue square = WHI; light blue square = NSB; green triangle = TTV; yellow 
triangle = LPA; orange circle = FTP; red circle = HOB; and pink diamond = PCH.  (i) 
Axis 1 (x) versus Axis 2 (y).  (ii) Axis 1 (x) versus Axis 3 (y).  (iii) Axis 2 (x) versus 
Axis 3 (y).  (A) All 217 loci.  (B) Non-outlier loci at the 0.05  threshold.   
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Fig. 2-8 continued.  (C) Outliers in multiple independent population comparisons (MI).  
(D) Outliers in single and multiple dependent population comparisons (SD).
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Fig. 2-9: Cumulative percentage of total variance explained by each axis of the principal 
coordinate analysis for each locus class.  Black bars indicate the percent variance 
explained by axis 1.  Light gray bars indicate the percent variance explained by axis 2.  
Dark gray bars indicate the percent explained by axis 3.  Axes are not comparable among 
locus class data sets and do not necessarily describe the same aspects of the data signal.  
Rather, axes are labeled in order of the proportion of the variance within each locus class 
they each explain. 
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CHAPTER 3: Exogenous Post-settlement Selection Against Non-

native Genotypes in the Eastern Oyster Hybrid Zone 

 

Abstract 

 

Hybrid zones exhibit variation in the mechanisms maintaining them.  Examples of pre- 

and post-zygotic isolation barriers as well as of environment-independent and 

environment-dependent selection all can be found in nature and are not mutually 

exclusive.  To assess the timing and mode of selection, it is necessary to determine 

whether selection acts exclusively against hybrids and to assess hybrid fitness relative to 

parental types across the hybrid zone and over the life cycle.  The eastern Florida contact 

zone between Atlantic and Gulf populations of the eastern oyster (Crassostrea virginica) 

exhibits a sharp step cline at Cape Canaveral, despite the fact that a two to three week 

planktotropic larval phase gives this species a high potential for gene flow.  Although the 

phylogeography and population genetics of this contact zone are well studied, it remains 

unknown whether the two populations hybridize and how selection acts to maintain this 

sharp differentiation.   

 

In this study, I seek to determine the levels of hybridization in this contact zone, the 

timing of selection in the life cycle, and the nature of isolation barriers by conducting a 

static cohort analysis of wild juveniles (spat) and adults across the contact zone.  

Specifically, I first tested for the presence of a demographic barrier by measuring 
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recruitment across the reproductive season and along the contact zone.  Using 217 AFLP 

loci, including seven candidate loci for differential selection between the two 

populations, I genotyped 1,011 spat over two seasons and 274 adults at sites along the 

contact zone.  I tested for differences in the level of regional differentiation versus 

within-region differentiation among the life stages and examined how the genotypic 

distributions changed geographically and among life stages.  I then tested for a difference 

in the proportions of hybrid-like and migrant-like genotypes across the two life stages 

and among three regions of the contact zone (North, Cape Canaveral, and South).  

Finally, I used genome scans to determine whether the same adult outlier loci were 

detectable as outliers in the spat stage.  Results demonstrated: (1) lower recruitment and 

some mortality in the Cape Canaveral region; (2) significantly stronger regional genetic 

differentiation in adults than in spat; (3) distribution shifts from intermediate genotypes in 

spat to more parental genotypes in adults; (4) substantial intermediates present at the spat 

stage (~40%) dropped to 12% in adults, a similar reduction in migrant-like genotypes 

from spat (22-30%) to adult (3%) stages, and geographic differences in the pattern of 

these genotypic shifts over the life cycle; and (5) most regionally selected adult outlier 

loci were not repeated as outliers in spat.  Overall, these results point to a major role for 

post-zygotic, environment-dependent selection in the maintenance of the hybrid zone 

between Atlantic and Gulf-type oyster populations. 
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Introduction 

 

Determining how selection operates to maintain differentiation in the face of persistent 

gene flow is important to deciphering the role adaptation plays in diversification.  The 

broad suite of naturally occurring recombinants found in hybrid zones can be used to test 

how and when selection acts on different genotypes.  A hybrid zone is defined as a region 

where genetically distinct groups meet, interact, and mate to produce at least some 

offspring of mixed ancestry (Harrison 1990; Arnold 1997).  Such natural interbreeding 

between distinct groups occurs in a variety of taxa (Arnold 1997).  In order for hybrid 

zones to be stable over time, they must involve some level of incomplete isolation.  If 

selection is too weak or non-existent, persistent and free introgression will collapse the 

hybrid zone and result in the two groups becoming one unit.  If isolation becomes very 

strong, separate species or subspecies may form.  Understanding the nature of isolation 

barriers and balance of evolutionary forces in stable hybrid zones provides insight into 

the processes that generate and dissolve biological diversity when the balance is 

disrupted.  In particular, hybrid zones are informative about certain types of speciation, 

especially for the selective divergence that occurs despite gene flow in ecological and 

parapatric speciation.  Exploring how selection varies geographically, among genotypes, 

and over the life cycle in hybrid zones can illuminate mechanisms maintaining 

differentiation through a dynamic interplay between selection and gene flow. 
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Evaluating Isolation Barriers in Hybrid Zones 

These isolation barriers in hybrid zones are the same classes of barriers that occur 

between biological species not experiencing gene flow and can be endogenous or 

exogenous (Dobzhansky 1951).  Endogenous barriers are based on reduced hybrid fitness 

due to genetic incompatibilities between the hybridizing populations and act 

independently of the environment (Barton & Hewitt 1985).  Barton and Hewitt termed 

these hybrid zones under endogenous selection ‘tension zones’.  Alternatively, the 

environment fully drives exogenous barriers, whereby hybrids and immigrants experience 

reduced fitness due to a mismatch between their phenotypes and their environment 

(Endler 1977).  Implicit in exogenously maintained hybrid zones is that a geographic 

ecological gradient produces corresponding geographic variation in fitness (Slatkin 

1973).  Because hybrids, especially F1 generation hybrids, often have intermediate 

phenotypes, they potentially could succeed in an intermediate environment if one exists 

(Moore 1977).  It is the exogenous barriers to genetic exchange that are uniquely relevant 

to ecological speciation, where ecologically driven divergent selection causes isolation 

barriers to evolve between populations (Coyne & Orr 2004; Rundle & Nosil 2005).   

 

Distinguishing between endogenous and exogenous selection in contact zones is critical 

to understand the role of adaptation in divergence.  When a hybrid zone is associated with 

complex habitat structure or is geographically associated with climatic features, it is 

common to invoke environmental gradient models (Rand & Harrison 1989; Moore & 

Price 1993; Bert & Arnold 1995).  Alternatively, signs of developmental abnormalities, 

reduced fertility or viability, and increased susceptibility to parasites or disease in hybrids 
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are often indicative of endogenous selection against hybrids (Barton & Hewitt 1989; 

Harrison 1990; Bert et al. 1993).  In practice, these models are a challenge to distinguish 

because tension zone theory predicts that the hybrid zone will move until it reaches a 

barrier to gene flow (Barton & Hewitt 1985; Hewitt 1988), which can co-locate the zone 

with an ecotone (Wilhelm & Hilbish 1998).  Therefore, it is not enough merely to show 

that a hybrid zone occurs in an area of environmental transition.  One straightforward 

question that addresses a distinguishing feature of tension zone and ecological gradient 

models is whether selection varies spatially, because selection does not vary spatially 

within genotypes in tension zones but does in hybrid zones maintained by exogenous 

selection.  However, endogenous and exogenous barriers to gene flow in hybrid zones are 

not mutually exclusive and have been observed to operate simultaneously within the 

same contact zone (Hewitt 1988; Bert & Arnold 1995; Nurnberger et al. 1995; Dorken & 

Pannell 2007).   

 

Isolation barriers also can be classified depending on when they occur in the life cycle.  

Pre-mating barriers to gene flow include temporal, spatial, mechanical, and behavioral 

forms of isolation (Dobzhansky 1951).  Post-mating barriers, on the other hand, involve 

gametic incompatibilities, local adaptation, and various types of reduced hybrid fitness, 

including inviability, sterility, and breakdown.  Tracking the frequency of hybrids across 

the life cycle can clarify the relevance of pre- and post-zygotic barriers to the 

maintenance of a contact zone.  If the frequency of hybrids in the populations is constant 

over the life cycle, then post-zygotic isolation is not important to the differentiation 

observed.  Alternatively, if the frequency of hybrids reduces over the life cycle, then 
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selection likely acts against hybrids.  The presence of later generation hybrids points to at 

least some viability and fertility of F1 hybrids.  If hybrids are less fit, mechanisms for 

reinforcement could evolve, whereby pre-mating reproductive isolation mechanisms 

evolve to reduce the frequency of hybridization and prevent genetic waste (Dobzhansky 

1940).  However, as long as even some hybrids are viable and fertile, they present 

opportunities for introgression among populations and for subsequent novel genetic 

variation (Arnold 1997; Rieseberg et al. 2003).   

 

Examining patterns and distributions of genetic variation among populations can confirm 

whether, and the level at which, hybridization occurs in a contact zone and can place the 

system on the continuum from unimodal to bimodal hybrid zones.  The existence of a 

contact zone between differentiated populations does not necessarily imply that these 

populations hybridize.  For example, pre-mating isolation barriers may be strong enough 

to completely eliminate the possibility of intermating.  If hybridization does occur, the 

prevalence may be so great as to indicate a lack of pre- and post-mating barriers or that 

hybrids have equal or higher fitness of compared to parent individuals.  In contrast, the 

frequency of hybrids may be so low as to indicate the rarity of hybridization or drastically 

lower hybrid fitness.  Jiggins & Mallet (2000) characterized the continuum of hybrid 

zones from unimodal to bimodal with the processes that maintain them.  Unimodal hybrid 

zones, or hybrid swarms, exhibit weak pre-zygotic isolation and weak endogenous and 

exogenous selection against hybrids.  Bimodal hybrid zones are further along in the 

speciation process and generally exhibit well developed, but incomplete, pre-zygotic 

isolation or selection against hybrids.  Therefore, documenting the distribution of parental 
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and hybrid genotypes in a contact zone can reveal the types of isolating mechanisms 

maintaining a hybrid zone. 

 

Understanding How Selection Acts on Hybrid Zones in the Wild 

Despite the theory and growing study of the genetic structure of hybrid zones, there is 

still a need for a better understanding of how selection acts on hybrids in wild 

populations.  Hybrid zones offer a wide variety of recombinant genotypes, which can be 

analyzed to determine how selection maintains differentiation among populations in the 

face of genetic exchange (Barton & Hewitt 1985; Barton & Hewitt 1989; Harrison 1990; 

Moore & Price 1993; Bert & Arnold 1995).  Careful sampling schemes can exploit this 

spectrum of recombinants to reveal fitness heterogeneities in space and time among 

genotypes, enabling a dissection of post-mating, endogenous and exogenous isolation 

barriers (Grant & Grant 1996; Albert et al. 2006).  In a meta-analysis of the limited 

instances where studies measure fitness of hybrids in nature to date (1995), Arnold & 

Hodges discovered hybrids are not always unfit relative to that of the parental taxa, as 

predicted by the predominantly used tension zone model.  Rather, the authors found a 

mixture of increased, equivalent, and, in fewer cases, decreased fitness of hybrids relative 

to one or both parental taxa.  They advocate a need for more studies of hybrid zone 

genotype classes in the wild to distinguish between hybrid zone models. 

 

Indeed, obtaining information on hybrid fitness is critical for distinguishing between the 

primary models that describe hybrid zone maintenance and position (Moore 1977; Endler 

1977; Barton & Hewitt 1981; Barton & Hewitt 1985; Howard et al. 1993).  In particular 
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by tracking whether the relative frequency of hybrids and parental taxa changes across 

the life cycle using multilocus data, cohort analyses can be used to determine if selection 

acts against hybrids only to maintain hybrid zones.  In a cohort analysis, genotype 

frequencies or hybrid frequencies are compared across the life cycle.  Dynamic cohort 

analyses resample a single cohort through time (e.g., Dowling & Moore 1985; Kocher & 

Sage 1986; Howard et al. 1993).  An alternative is the static cohort analysis, which 

compares genotype frequencies across cohorts (e.g., Bert & Arnold 1995; Wilhelm & 

Hilbish 1998).  In either type of analysis, a significant reduction in the proportion of 

hybrids from younger to older individuals indicates selection against hybrids.   

 

While field measurements of fitness are often challenging, cohort analyses are a powerful 

way to assess hybrid fitness because they estimate relative viability of hybrid and 

parental genotypes under natural conditions (Howard et al. 1993).  However, cohort 

analyses have their limitations, too.  Unless it is possible to sample embryonic and larval 

stages (but see Cruzan & Arnold 1994), the test is blind to the potential selection 

occurring in these early life stages.  It also cannot assess mating pattern and mating 

success (Howard et al. 1993).  Rather than simply sampling a single location for a cohort 

analysis, expanding the cohort analysis spatially along the hybrid zone can distinguish 

between endogenously and exogenously maintained hybrid zones (e.g., Bert & Arnold 

1995; Albert et al. 2006).   

Cohort analyses have not been employed frequently to examine hybrid zones.  However, 

in the studies that do exist, results indicate a mixture of genotypic distributions and 

timing and form of selection.  Early cohort studies in freshwater hybrid zones found 
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strong selection against hybrids and concluded that the hybrid inviability was due to 

intrinsic selection (cyprinid fish, Dowling & Moore 1985; leopard frogs, Kocher & Sage 

1986).  However, these studies lacked robust sampling designs, such as tracking relative 

proportions of each parental species over the life cycle or multiple sample sites over 

multiple years, which could distinguish between endogenous and exogenous selection.  A 

more recent cohort analysis of a trout hybrid zone found genotype frequency distributions 

consistent with a hybrid swarm and no strong selection against hybrids, thereby 

eliminating the possibility of endogenous selection (Rubidge & Taylor 2004).  

Exogenous selection likely causes the hybrid reductions over the life cycle to maintain 

the hybrid zones in threespine sticklebacks (Gow et al. 2007).   

 

In two terrestrial studies, hybrid zones of ground crickets (Howard et al. 1993) and irises 

(Cruzan and Arnold 1994) exhibited genotype-dependent viability where the various 

hybrid genotypes were not consistently less fit than parentals.  Both of these studies infer 

that assortative mating maintains the hybrid zones and not hybrid inviability.  A cohort 

analysis of an Atlantic eel hybrid zone showed geographically dependent increased 

hybrid survival relative to parentals and inferred a latitudinal temperature gradient as the 

exogenous selection agent (Albert et al. 2006).  Similarly, intermediate genotypes did not 

exhibit lower fitness than both parents in two marine mussel hybrid zones (Wilhelm & 

Hilbish 1998; Toro et al. 2004).  For both of these systems, it appears ecological selection 

on morphology gives a parental mussel species lowest survivorship.  Toro and colleagues 

point out that, for species with a long planktonic larval stage, it cannot be assumed that 

local adults produced larvae and juveniles sampled at a particular site.   
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Having genetic markers that distinguish between parental types is critical for cohort 

analysis.  In wild, non-model systems, amplified fragment length polymorphisms 

(AFLPs) are useful for providing a randomized genomic view of differentiation, 

especially in cases where that differentiation is morphologically cryptic (Brattstrom et al. 

2010).  They are ideal for intraspecific studies and for hybrid zones (Meudt & Clarke 

2007).  Moreover, they have been used to unravel the genetic architecture underlying 

differentiation and to isolate genomic regions important to adaptation (Hawthorne & Via 

2001; Rogers et al. 2001; Rogers et al. 2007; Wood et al. 2008).  AFLPs also can be used 

to identify hybrid individuals (Bensch et al. 2002; Bensch & Akesson 2005; Albert et al. 

2006; Bonin et al. 2007).  In addition, multilocus data are required to assess bimodality of 

genetic distributions of hybrid populations.  Utilizing genomic regions under strong 

divergent selection is ideal for such a study because these loci should show clearer and 

greater bimodality (Rieseberg et al. 1999; Jiggins & Mallet 2000). 

 

The System 

The eastern oyster, Crassostrea virginica (Gmelin), serves as a test system for 

investigating isolation barriers.  The species reproduces through external fertilization 

after broadcast spawning.  The planktonic larval period of 14-21 days is the only 

opportunity for dispersal because larvae settle and affix themselves permanently to hard 

substrate.  Over this larval period, dispersal can be tens to hundreds of kilometers (Kinlan 

& Gaines 2003) and was estimated to be 472 km2 in the Chesapeake Bay (Rose et al. 

2006).  With such high dispersal potential, regional genetic differentiation is low across 
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much of the broad eastern oyster distribution from Maine to the Yucatan Peninsula.  

However, several loci exhibit a sharp genetic step cline located near Cape Canaveral, 

Florida (Chapter 2, Reeb & Avise 1990; Karl & Avise 1992; Hare & Avise 1996; Murray 

& Hare 2006).  This regional differentiation has remained stable for at least 15 years 

(Murray & Hare 2006), but the mechanisms for its maintenance in a species with high 

gene flow potential are unknown. 

 

The oyster step cline coincides with a biogeographic province boundary, an ecotonal 

transition along a temperature gradient, and a decrease in adult oyster density (Hare & 

Avise 1996; Avise 2004).  The reason for this density trough is currently unknown.  

However, tension zone theory predicts that hybrid zones move toward isolation barriers 

and are, thus, attracted to density troughs and environmental transitions (Barton & Hewitt 

1985).  For the oyster populations, it is unclear whether the decrease in density indicates 

reduced recruitment due to a dispersal barrier or due to localized reductions in 

survivorship following strong larval settlement.    

 

Avise and colleagues documented sharp differentiation between two groups they termed 

“Atlantic” and “Gulf” for populations north and south of northern Cape Canaveral, 

respectively (Reeb & Avise 1990; Karl & Avise 1992; Hare & Avise 1996).  The extent 

of hybridization between these two groups has never been documented, leaving question 

to whether the two hybridize at all.  Individual-based assignment tests of adult oysters in 

Florida did document some signal of individuals with mixed ancestry, but did not 

explicitly test for this (see Chapter 2).  In addition, this study did not focus on regionally 
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differentiated loci and did not classify individuals as hybrids or parentals.  Therefore, 

examining the extent of inter-region hybridization in this system requires additional study 

of regionally differentiated loci. 

 

While a sharp step cline has been documented in several loci, many other loci 

demonstrate geographic allele frequency patterns that are not consistent with this regional 

differentiation (see Chapter 2; Karl & Avise 1992; McDonald et al. 1996; Murray & Hare 

2006).  AFLP studies revealed that allele frequency differences at most loci are consistent 

with neutral processes (see Chapter 2; Murray & Hare 2006).  Allele frequencies at other 

loci fluctuated greatly along the east coast of Florida and demonstrated a pattern of 

divergent selection over local scales within regions (see Chapter 2).  Still, some loci do 

show a geographic pattern in allele frequency that indicates divergent selection between 

regions.  Although the system exhibits genetic signals of adaptation at different spatial 

scales among loci, it is those loci involved in regional adaptation that can reveal how 

selection maintains clinal differentiation in this species with a high gene flow potential.  

These loci are the best candidates to test for regional hybridization, for the life cycle 

timing of selection maintaining regional differentiation, and for spatial patterns of 

selection among genotypes. 

 

Similar tests were conducted using a static cohort analysis in another coinciding bivalve 

hybrid zone (Bert & Arnold 1995).  While this hybrid zone was between two species of 

hard clams that live in different habitats (Mercenaria mercenaria in the estuarine lagoons 

and M. campechiensis in the open water), the hard clam life cycle is very similar to that 
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of the eastern oyster.  In an examination of the isolation barriers maintaining this hybrid 

zone, the authors found evidence for both endogenous and exogenous selection.  

Supporting endogenous selection, hybrid frequency decreased with age; linkage 

disequilibrium was highest at intermediate ages; and Hardy-Weinberg equilibrium 

decreased with age.  However, selection on hybrids and adults changed spatially and 

among hybrid genotypes, which the authors interpreted as evidence for exogenous 

selection.  Indeed, a separate study also documented increased hybrid susceptibility to 

disease, supporting an endogenous selection cause of the hybrid breakdown (Bert et al. 

1993).  Although the results of this study cannot be transferred automatically to another 

species, they do provide insight into what types of selection to investigate in the eastern 

oyster contact zone. 

 

This study will address the following questions: 

 

1. Is there successful recruitment in the Cape Canaveral area? 

2. To what extent does hybridization occur between Atlantic and Gulf types? 

3. Does selection occur pre-settlement or post-settlement? 

4. Is selection endogenous or exogenous?  That is, does selection vary 

geographically across the zone of contact? 
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Materials and Methods 

 

Sample Collection 

A total of 274 adult oysters and 2945 spat were collected from multiple locations in 

Florida estuaries between 2002 and 2006 (Table 3-1).  Adult oysters were collected as 

detailed in Chapter 2.  I chose to collect spat during the springs and summers of 2005 and 

2006 because natural spat settlement peaks during these months (Wilson et al. 2005).   

 

For spat collected in 2005, I posted two slate plates in the low intertidal to shallow 

subtidal shoreline regions of sites between Jacksonville and West Palm Beach to collect 

natural spat settlement.  After minimally one-month intervals between March and 

August, these plates were retrieved and inspected for spat settlement.  If spat settled, they 

were counted and collected.  Then plates either were cleaned and reposted if no spat 

settled or were replaced with new plates to collect new potential settlement over the next 

period.  Up to 60 individual spat were counted and collected per collection site and 

period.  Depending on the individual size, the entire spat tissue or just the gill and mantle 

were dissected from shells and preserved in 95% ethanol.   

 

To collect spat between April and August of 2006, I used a similar procedure to the one I 

used in 2005, except: 1) net bags filled with 3-4 L of clean oyster shell were the 

settlement substrate, 2) up to 100 individual spat were collected per site and settlement 

period, and 3) all bags were removed and replaced with new ones at each site visit.   
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Observational Data Collection and Analysis 

During each visit to a spat collection site, I recorded the water temperature, salinity, 

number of spat collected, quantity of mortality if any, categorical quantities of types of 

other settled organisms, and any qualitative observations about the site.  Temperature and 

salinity measurements were taken using a YSI 30 (YSI Incorporated).   

 

To determine whether recruitment success varied temporally and spatially, I analyzed the 

number of spat samples collected per site visit within each transect.  I calculated the 

proportion of the collection goal that actually settled for each year, where the collection 

goal was the maximum number of spat that I would possibly collect (60 and 100 spat per 

site visit in 2005 and 2006, respectively).  To test for a temporal effect on settlement 

success, I performed a Wilcoxon non-parametric one-way comparison of means on the 

proportion of site settlement success using the spat year as the treatment.  Unless 

otherwise stated, all statistical analyses were conducted using JMP® 9.0 software (SAS 

Institute, Inc.).  For all statistical tests performed in JMP, the validity of any equal 

variance assumption was tested.  If treatments had unequal variance, I employed 

nonparametric statistical methods.  

 

To test whether recruitment differed among regions, I labeled sites north of Cape 

Canaveral (North), sites within Cape Canaveral (Cape Canaveral), and sites to the south 

(South) as regional treatments.  I then specifically tested whether recruitment was lower 

in the Cape Canaveral region than in the North and South regions with a one-way 

analysis of means for each year to determine if Cape Canaveral is a barrier to gene flow 
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due to a lack of oyster supply.  If variances were unequal among regions, the one-way 

analysis was nonparametric and used a Steel-Dwass correction for all possible 

comparisons among regions.  If variances were equal, the one-way analysis compared all 

regions using a Tukey-Kramer HSD correction for multiple comparisons. 

 

AFLP Data Collection 

For all further analyses, I included all AFLP data on 274 adults collected from seven sites 

found in Chapter 2.  For all samples, whole genomic DNA was extracted and diluted 

following procedures in Chapter 2.  I performed a modified version of the AFLP assay 

outlined by Vos and colleagues (1995) on spat DNA samples following the protocol set 

forth by Murray & Hare (2006).  I scored the same loci as the final set of 217 loci in 

Chapter 2 for utility of and comparison to the adult oyster AFLP data set.  Allele scoring 

and use of duplicate samples followed the procedures outlined in Chapter 2. 

 

Only certain spat samples were chosen for AFLP analysis (Table 3-1, Fig. 3-1).  These 

samples contained the greatest number of individuals at the greatest number of sites for a 

given collection interval within each year’s transect.  For spat collected in 2005, I chose 

to analyze 254 individuals collected in August from six populations.  For spat collected in 

2006, I performed the AFLP analysis on 757 individuals collected in July from eight 

populations.  Subsequent AFLP and RFLP (M. Hare pers. comm.) analysis of these 

populations revealed that Ostrea equestris dominated one site collection (John U. Lloyd 

Park, Fort Lauderdale in July 2006).  I removed this set of samples from further analyses, 

resulting in seven final sites for 2006 spat. 
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Allele Frequency Differences between Life Stages 

I used the program AFLP-SURV 1.0 (Vekemans 2002) to estimate allele frequencies, 

genetic diversity, and population differentiation (FST) of all AFLP data for all 217 loci 

among sites within transects following procedures outlined in Chapter 2.  AFLP-SURV 

generated the global FST estimates over all 217 loci between each site.  For the adult 

transect, I used allele frequencies and global FST estimates from Chapter 2.  To test 

whether overall genomic differentiation increases between spat and adult life stages, I 

performed t-tests to determine if global FST estimates across all sites differed among 

transects using a nonparametric one-way comparison with the Steel-Dwass method of 

correction for multiple comparisons.   For each transect, I also asked whether genomic 

differentiation was higher among sites on opposite sides of the cline than for those on the 

same side of the cline using one-tailed t-tests assuming unequal variances. 

 

To answer questions addressing whether post-settlement selection shapes the regional 

differentiation in allele frequencies between life stages, I compared summary genetic data 

between adults and spat.  For these analyses, I restricted the genetic data to the best 

candidate loci determined to be influenced by regional divergent selection (outliers 

detected at the  = 0.01 level only in adult population comparisons on different sides of 

the cline (DSO outliers, see Chapter 2 genome scan results).  I took the following steps to 

calculate the regional allele frequency difference (RAFD) between sites on opposite sides 

of the cline for each transect.  1) I calculated the mean allele frequency among sites on 

the same side of the cline (or within a region).  2) I calculated the absolute value of the 

difference in these regional means; this value is the RAFD.  I also calculated regional 
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genetic differentiation estimates (FRT; Hartl & Clark 1997; Hedrick 2004) for each 

transect weighted by the number of sample sites.  I chose to use both RAFD and FRT as 

estimates of regional differentiation because the FRT calculation assumes that the number 

of samples in subpopulations is proportional to the proportion of the population 

represented by a subdivision and that this proportion is reflected by the number of 

populations, which may not be valid in this system.  To address whether RAFD and FRT 

are higher in adults than spat, I performed one-tailed, paired t-tests, where estimates were 

matched by locus.  Specifically, I was interested in whether RAFD changed between life 

stages in directions to produce a steeper cline between regions in adults than spat and 

whether FRT estimates were higher in adults than spat.  I performed similar tests for 

differences in RAFD and FRT between spat transects using two-tailed paired t-tests.  Over 

all tests each for RAFD and FRT I used a Bonferroni adjustment to correct for multiple 

comparisons (corrected  = 0.0167). 

 

Outlier Repetition among Life Stages 

In order to determine whether previously described genomic signals of divergent 

selection (see Chapter 2) are established early in the life cycle or in the months and years 

post-settlement, I performed genome scans on all pairwise spat population combinations 

within a transect using genotype data for all 217 AFLP loci.  I generally followed 

procedures outlined in Chapter 2.  However, I chose to use only 0.01 as the  value to 

reduce the probability of type I error.  For a one-tailed test, this equates to the 99.5 

quantile of the null distribution simulated by Dfdist (Beaumont & Nichols 1996; 

Beaumont & Balding 2004).  A total of 15 and 21 pairwise population comparisons were 
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performed in triplicate for the 2005 and 2006 transects, respectively.  The mean statistics 

from these triplicates were calculated and summarized as in Chapter 2.  For the results 

from each transect, I then divided loci into two locus classes: NS (non-outliers and 

outliers appearing in only a single comparison) and MO (outliers identified in multiple 

comparisons). 

 

Using the list of MO loci generated in adult genome scans at the  = 0.01 level in 

Chapter 2, I asked whether genome scans among spat identify the same loci as MO.  

Specifically, I used a one-sided, two-sample test for proportions (Agresti & Caffo 2000) 

with a Bonferroni  adjustment for two tests ( = 0.025) to determine whether MO loci 

from each spat transect are more likely to have been MO than NS loci in the adult 

transect.  A lack of congruence between outlier sets would indicate that selection occurs 

post-settlement and later in the spat to adult life.  On the other hand, if there is high 

correspondence between the identity of adult MO loci and spat MO loci, selection either 

occurs pre-settlement, soon after settlement, or in the presence of local recruitment and 

low gene flow.   

 

In order to have enough data in each contingency table, I had to group multiple outliers 

that all shared a single population among the significant population comparisons with 

those that were detected in at least two population comparisons without any populations 

in common (MD and MI outliers, respectively, in Chapter 2).  Ideally, only MI outliers 

would be used in this analysis because these are the best candidates for divergent 
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selection and are not likely to be anomalies, experimental or biological, of a single 

sample site. 

 

Genotype Index Distribution among Life Stages 

For each individual, I calculated a genotype index score to evaluate the multilocus 

genotype distribution shapes and trends of the transects.  When constructing multilocus 

genotype distributions, studies often assign an arbitrary -1, 0, or +1 to parental type 

alleles and sum these over all loci for each individual, regardless of the allele frequencies 

in the parental populations (e.g., Howard et al. 1993; Cruzan & Arnold 1994; Wilhelm & 

Hilbish 1998; Rubidge & Taylor 2004).  However, this approach may not be the most 

appropriate when opposing alleles are not differentially fixed at each locus.   

 

Because no AFLP locus in Chapter 2 exhibited fixed differences between Atlantic and 

Gulf-types, I assigned each allele of every DSO outlier locus a representative allele 

diagnostic value (RADV) generally following Bert & Arnold (1995).  First, I created 

representative parental pools for ‘Atlantic’ and ‘Gulf’ types using adults that had a 90% 

or greater inferred ancestry to one cluster based on the two-cluster STRUCTURE results 

from all 217 loci in Chapter 2.  After assigning each of these mostly-pure individuals to 

Atlantic or Gulf populations, I ran the DSO genotypes for these parental representatives 

through AFLP-SURV to calculate the allele frequencies for these loci in the Atlantic and 

Gulf pools.  I assigned each allele to Atlantic or Gulf, depending on the pool in which it 

was most common.  The RADV for each allele was equal to the frequency of the allele in 
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the Gulf pool minus its frequency in the Atlantic pool.  For each individual, I calculated 

its multilocus genotype index as the sum of its RADVs over all DSO loci. 

 

To visualize the genetic index distributions for each transect, I graphed histograms 

summarizing genotype index scores over all individuals within each transect and for each 

site within each transect.  To determine whether there was a geographic association along 

the transects with individual genotype indices, I conducted a linear regression of genetic 

index on transect position for each transect and tested whether the slope was not equal to 

zero and how much of the data variance the geographic model explained. 

 

Hybridity among Life Stages 

To estimate the admixture proportions for each individual, I ran the AFLP data through 

STRUCTURE v. 2.2.3 (Pritchard et al. 2000), applying the extension for dominant data.  

This software utilizes Markov Chain Monte Carlo-based Bayesian algorithm to assign 

individuals to genetic clusters based on their multilocus genotypes.  I chose to analyze the 

spat and adult data for two clusters, or populations, based on the Atlantic and Gulf 

parapatric clusters determined in Chapter 2.  Using the admixture proportions of adult 

individuals in the K=2 analysis of all 217 loci in Chapter 2, I assigned individuals as 

Atlantic or Gulf if their estimated ancestry was greater than 90% of one of the two 

clusters.  Individuals exhibiting greater admixture were not assigned to either cluster.  I 

ran the K=2 model 20 times with the option to use this prior adult assignment information 

in parameter estimation on all individuals (spat and adults) for DSO genotype data only.  

Other options applied to this analysis included the admixture model and correlated allele 
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frequencies.  Each run incorporated a burn-in period of 105 MCMC iterations and a data 

collection period of 5 x105 iterations.  Results across runs were summarized and 

graphically displayed using the software CLUMPP v. 1.1.2 (Jakobsson & Rosenberg 

2007) and Distruct v. 1.1 (Rosenberg 2004), respectively.   

 

I used the CLUMPP results to estimate the admixture proportion of each individual as the 

proportion of ancestry belonging to the Atlantic-type cluster ,which STRUCTURE 

calculated.  To estimate the level of hybridity of individual multilocus genotypes, I 

transformed these admixture proportion values to hybridity values (hi) using the formula 

 (Carney et al. 2000; Duvernell et al. 2007).  This hybridity value 

ranges from 0 in pure parental individuals to 0.5 for F1 hybrids.  To test whether hybridity 

differed among transects, I performed pairwise non-parametric comparisons of means 

tests using the Steel-Dwass method, which corrected for multiple comparisons.  To 

distinguish this hybridity estimate from the allele frequency-based genotype index 

estimate mentioned above, I hereafter refer to hybridity estimates as CLUMPP-based 

hybridity. 

 

I also categorically assigned individuals to an ancestry status (Atlantic, Gulf, Hybrid), 

depending on the individual’s STRUCTURE-generated 90% posterior probability 

interval (90% PI) of its admixture proportion for DSO loci (Albert et al. 2006; Gow et al. 

2007).  If the 90% PI did not overlap 0 and did overlap 1, the individual was assigned to 

the Atlantic (ATL) category.  If the 90% PI did not overlap 1 and did overlap 0, the 

individual was assigned to the Gulf (GLF) category.  All other individuals were assigned 
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as Intermediates (INT).  I then assigned ATL and GLF individuals to source classes as 

Native-like (NTV) or Migrant-like (MGR), depending on whether the individual’s ATL 

or GLF assignment agreed with the cline side of its sample site.  Using these 

assignments, I calculated the frequency of Intermediates at each site for each transect.  It 

is important to note that the combination of the extensive recombination that occurs in 

oysters and the lack of loci with fixed differences prevents absolute categorization of 

hybrids, migrants, and natives.  To represent this uncertainty, I have chosen to use the 

following proxy source classes: Intermediates, Migrant-like, and Native-like, 

respectively. 

 

To determine whether the proportion of hybrid-like and migrant-like multilocus 

genotypes differed between each transect and between spat and adults, I performed a 

static cohort analysis using an R X C G-test for an effect of transect (Sokal & Rohlf 

1995).  I also tested for such an effect within the North, Cape Canaveral, and South 

regions to determine if the pattern varied geographically, using Bonferroni  adjustment 

for three tests ( = 0.0167).  For these analyses, I used a combination of R X C G-tests 

and a Fisher’s exact test, using the Fisher’s exact test when there were small expected cell 

values in the contingency table.  Regional differences in the life stage patterns of 

hybridity would point to exogenous selection because endogenous selection against 

Intermediate genotypes should not vary geographically.  
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Results 

 

Environmental Trends 

Water temperature and salinity measurements taken during spat site visits may have been 

influenced by time of day and/or recency of rain events (Table 3-1.B).  I present regional 

means here to mitigate the time of day influence.  During 2005, temperature was most 

strongly inversely proportional to latitude in late March over a range of 6.7OC (regional 

means: 17.9OC in the North, 23.1OC in Cape Canaveral, 24.6OC in the South).  This 

relationship gradually diminished over time through May, spanning less than 3.5OC each 

month (late April regional means: 22.0OC in the North, 23.8OC in Cape Canaveral, 

25.4OC in the South; late May regional means: 26.3OC in the North, 29.3OC in Cape 

Canaveral, 29.5OC in the South).  During 2006 temperature showed no relationship with 

latitude and spanned less than 1.5OC each month, however these site visits occurred later 

in the year (late May regional means: 29.8OC in the North, 30.3OC in Cape Canaveral, 

30.2OC in the South; mid July regional means: 29.8OC in the North, 30.3OC in Cape 

Canaveral, 30.4OC in the South; late August regional means: 31.0OC in the North, 30.9OC 

in Cape Canaveral, 29.7OC in the South). 

 

A comparison of field measurements of water temperature to climate data on air 

temperature over similar geographic sites (Southeast Regional Climate Center, 

http://www.sercc.com/climateinfo/historical/historical_fl.html) showed strong 

consistency between the two data sets for corresponding months.  Because climate data 

are more comprehensive and less susceptible to the short-term effects of time of day and 
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recency of rain, I concentrated analyses on climate data.  Climate data for monthly 

averages show large variance among months for: minimum temperature, maximum 

temperature, number of days reaching a minimum temperature below freezing, and 

number of days reaching a maximum temperature above 90OF (Fig. 3-2).  I did not 

present statistical analysis of the relationship between temperature and latitude because 

this is well-established (e.g., Brocklesby 1868).  Winter months exhibit strong negative 

correlation between latitude and temperature and strong positive correlation between 

latitude and number of days reaching freezing temperatures.  These associations diminish 

during spring and fall months, while summer months show relatively equivalent 

temperatures across latitudes. 

 

Field data on salinity demonstrated high variation among sites (Fig. 3-3; 2005 mean = 

25.9 ppt, 2006 mean = 26.4 ppt).  There was no relationship between salinity and latitude 

averaged over 2005 measurements.  In 2006, there was a significant positive relationship 

between mean salinity and latitude, but much of the variation in the data was not 

explained by the relationship (R2 = 0.2283, p = 0.0285).  Differences between 2005 and 

2006 salinity data demonstrate temporal variability that may be indicative of variation 

among years and/or between seasons (March-May 2005 versus May-August 2006). 

 

Mortality and Recruitment 

Mortality of settled spat was negligible for nearly all collections.  However, in August 

2005 approximately 25 gaped, empty spat shells were found at East Haulover Canal on 

Merritt Island in Cape Canaveral.  In addition, at three other sites in the Cape Canaveral 
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region (Port St. John, Banana River, and Palm Shores) there were some half and some 

gaped adult oyster shells and no living oysters visible.  While not all spat transect sites 

had adult oysters, adults were alive at all other sites where adult shells were present.  All 

evidence of adult and spat mortality was isolated to the Cape Canaveral region. 

 

Settlement success differed among regions (Fig. 3-4).  The Cape Canaveral region 

exhibited a significantly lower mean percentage of the sample size goal than the North 

and South regions during 2005 (p = 0.0064 and 0.0004, respectively).  While the percent 

of the sample size goal was lower in Cape Canaveral than in the North and South during 

2006, the differences were not significant (p = 0.2173 and 0.1799, respectively, using 

Tukey-Kramer HSD).  The lack of significance for these tests among 2006 regions was 

possibly due to the small number of sites within each region.  For both spat transect 

years, there was no difference in settlement success between North and South regions 

(2005: p = 0.9994, 2006: p = 0.9563).  In general, settlement was significantly more 

successful in 2006 than in 2005 (mean percentage of sample size goal = 0.6252 and 

0.1674, respectively; p < 0.0001), though these transects differed in the amount and 

quality of settlement substrate.  Overall, both mortality and recruitment observations 

indicated that the Cape Canaveral region does not have prolific oyster populations. 

 

Allele Frequency Differences between Life Stages 

As expected, allele frequency differences between Atlantic and Gulf populations and 

regional population differentiation (FRT) gave similar results, even though the latter 

measure makes more assumptions (Table 3-2).  For DSO outliers, both regional allele 
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frequency differences (RAFD) and FRT were highly significantly greater in adults than in 

either spat transect (Table 3-2).  Because adult RAFD and FRT estimates were highly 

significantly greater than those in each spat transect, there was no need to pool spat 

transect data.  In contrast to adult-spat comparisons, the RAFD and FRT values were very 

similar between 2005 and 2006 spat.  Taken together, these results indicate regional 

genetic differences are strengthened by selection as young spat mature to adulthood 

because DSO loci are the best candidates for regional selection (Fig. 3-5). 

  

While calculated based on all 217 loci, global FST results tell a similar regional story (Fig. 

3-6).  For the adult transect, the mean of the global FST estimates for population pairs on 

opposite sides of the cline was significantly higher than the mean for population pairs on 

the same side of the cline (p = 0.0224).  No such significant difference existed for either 

spat transect, though the 2006 transect exhibited marginal significance for a higher mean 

global FST for populations on the opposite cline side (p = 0.0652).  While there was a lack 

of significance for 2005 spat (p = 0.3595), mean global FST was higher among population 

pairs on opposite cline sides.   These quantitatively different, though nonsignificant, 

regional patterns in spat indicate that some overall regional genomic differentiation does 

exist at the spat stage. 

 

Mean global FST across all populations within a transect was significantly lower in the 

2006 spat transect than both 2005 spat and adult transects (p = 0.0011 and 0.0009, 

respectively; Fig. 3-6).  There was no significant difference in mean global FST between 

adult and 2005 spat transects (p = 0.2435).  These patterns were not driven by genetic 
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diversity, as within-population gene diversity was highly similar among transects 

(0.2232, 0.2127, and 0.2177 for adults, 2005 spat, and 2006 spat, respectively).  The 

difference in mean global FST between the two spat transects indicate that migration may 

be variable over time.  The unexpected similarity between 2005 spat and adult transects 

suggest recruitment was largely local in August of 2005. 

 

Outlier Repetition among Life Stages 

Genome scan results were not congruent between life stages.  Spat multiple outliers (MO) 

were adult MO more than expected and were adult non-outliers or singleton outliers (NS) 

less than expected (Spat 85 vs. Adult: p = 0.0239; Spat 76 vs. Adult: p = 0.0003).  

However, a larger proportion of spat MO loci were adult NS loci than were adult MO.  

For 2005 spat, only six of 16  (37.5%) MO loci were MO in adult genome scans.  

Similarly, 14 of 36 (41.2%) of 2006 spat were MO in adult genome scans.  These results 

demonstrate that most of the adaptive population genetic differentiation in adults was not 

established in these early spat transects, suggesting at least some selection occurs later in 

the life cycle.  

 

Examining the outlier status of the adult DSO loci revealed additional disparities.  While 

four of the seven DSO loci were MO loci in the 2006 spat transect, only one was detected 

as MO in the 2005 spat transect.  This latter locus was the only one identified as MO in 

genome scans for both transects.  Although a large portion of DSO loci were not repeat 

MO loci in spat, three of the four that were repeated were detected only in spat 
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population pairs on different sides of the cline.  Therefore regional selection may occur 

before spat were sampled in the life cycle, or recruitment may be largely regional.  

 

Genotype Index Distribution among Life Stages 

Transects differed in their genotype index distributions (Fig. 3-7).  The adult distribution 

was more bimodal than the spat transects, indicating more Atlantic- and Gulf-like 

individuals and less intermediate genotypes in adult populations.  While the 2005 spat 

distribution exhibited a hint of bimodality, it was mainly platykurtotic.  Both spat 

transects were largely unimodal, with greater representation of genetic indices near zero 

than near the extremes.  Overall, there was greater representation of moderately Gulf-like 

indices, likely due to the larger number of Gulf sites for all transects.   

 

Breaking these transect distributions down by site revealed geographic patterns (Fig. 3-

8).  For all transects, the distribution shifts from lower genotype indices at the northern 

end of the transect to larger indices at the southern end.  Notably, adult sites, as compared 

to both spat transects, show a sharper transition in genotype indices between northern and 

Cape Canaveral regions.  In addition, adults have more native types and less non-natives 

at the extreme ends of the transect compared to spat.  Unexpectedly, non-native 

genotypes were not uncommon in northern spat sites, indicating non-negligible 

northward migration of southern genotypes in spat populations.  Furthermore, extreme 

native genotypes were rare at these northern spat sites.  The strongest shift in genetic 

index distribution across life stages occurs at these northern sites, where Gulf-like 
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genotypes present at the spat stage are eliminated by the adult stage and frequencies of 

Atlantic-like genotypes are boosted. 

 

Linear regression analysis confirmed a geographic relationship with genetic index (Fig. 

3-9).  Site distance from St. Augustine (the northern-most site, BNB76) explained a 

highly significant amount of the variation in genetic index for all transects (p < 0.0001).  

The coefficient of determination (R2) for adult transect data was more than twice that for 

spat and comparable among the two spat transects.  Although the slopes of the linear 

regressions were small due to the difference in scale between the two variables, the 

increase in genetic index over southward distance was highly significant for all transects.  

Slopes were comparable among all transects.  The smaller amount of unexplained 

variation in adult data and similarity in slope among transects indicate selection refines 

the genotypes across life stages.  Note: a linear model may not be the most appropriate 

for data that has more of a sigmoid shape, as in the adult transect.  However, no common 

data transformations, including logit, were appropriate for these genetic index data, nor 

did a single transformation fit all transects well. 

 

Hybridity among Life Stages 

Life stage had a strong effect on CLUMPP-based hybridity (Fig. 3-10).  Mean CLUMPP-

based hybridity for the adult transect was approximately half that measured in each spat 

transect.  This difference was highly significant (p < 0.0001), demonstrating a higher 

proportion of hybrids in spat than adults.  In contrast, mean CLUMPP-based hybridity 

scores of 2005 and 2006 spat were essentially equivalent (p = 0.9987).  The consistency 
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in higher levels of CLUMPP-based hybridity for two different spat transect times 

supports a reduction in hybrids between life stages. 

 

Transects also differed strongly in their frequencies of the source classes (Fig. 3-11.A, p 

< 0.0001).  In particular, the adult transect had the greatest differences between observed 

and expected values.  The observed number of adult Intermediate (INT) and Migrant-like 

(MGR) genotypes (33 and 8, respectively) were much lower than the expected values 

(77.86 and 30.83, respectively).  Correspondingly, the number of adult Native-like 

individuals was much higher than expected (233 observed versus 165.31 expected).  In 

contrast, the observed numbers of INT and MGR were higher than expected, and number 

of NTV lower than expected, for both spat transects.  These results suggest that a 

significant portion of Intermediate and Migrant-like individuals perish as oysters age 

from young spat to adults. 

 

When I analyzed North, Cape Canaveral, and South regions separately for a transect 

effect on source class composition, the pattern of transect effect differed among regions 

(Fig. 3-11.B-D).  North of Cape Canaveral, transect had a highly significant effect on 

source class proportions (p < 0.0001).  MGR were completely absent in the adult transect, 

but represented 22% and 30% of 2005 and 2006 spat, respectively.  Furthermore, INT 

were only 4% of adults, while they were 39% and 41% of 2005 and 2006 spat, 

respectively.  In the North, there were strong conversions from INT- and MGR-

dominated spat populations to adult populations consisting of nearly all NTV (p < 

0.0001).  Results were somewhat similar in the Cape Canaveral region, with a highly 
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significant transect effect (p < 0.0001).  However, 2006 spat contained very few MGR 

(3%) and much more NTV (68%).  It should be noted that there was only one 2005 spat 

site to analyze in this region, versus two sites in the other transects.  In contrast to the 

North and Cape Canaveral regions, there were relatively similar source class 

compositions among transects for sites south of Cape Canaveral (p = 0.0376, non-

significant after Bonferroni correction for multiple tests).  In the South, there were few 

MGR and 21-29% INT individuals.  The maintenance of source class proportions across 

life stages and presence of adult MGR suggests a higher tolerance of INT and MGR in 

the South region.  The great reduction in INT and elimination of MGR from spat to adult 

stages at sites in the North and Cape Canaveral regions indicate stronger selection against 

these genotypes than in the South region. 
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Discussion 

 

This static cohort analysis, coupled with observational study of recruitment patterns, 

improved understanding of how selection is acting in these wild Florida oyster 

populations.  Poor recruitment and increased mortality in the Cape Canaveral region 

demonstrated that this area has feeble populations, is less hospitable, and thus may serve 

as an incomplete barrier to gene flow between Atlantic and Gulf populations.  This study 

serves as the first estimation of hybridization among these populations and demonstrates 

that the frequency of intermediates is non-negligible and is not geographically isolated to 

the immediate area spanning the Cape Canaveral step in the cline.  Prezygotic and early 

endogenous selection against hybrids is weak if it exists at all, as indicated by large 

proportions of intermediates surviving to the spat stage.  While non-significant regional 

differentiation was present in spat, adults exhibited strong regional differentiation.  

Furthermore, proportions of intermediate and non-native genotypes were drastically 

reduced in adults compared to spat, though the strength of this pattern varied among 

regions.  Evidence presented here points to post-settlement, exogenous selection against 

intermediates and non-natives as the dominant, though perhaps not exclusive, player 

maintaining regional differentiation in this contact zone. 

 

Static cohort analyses sometimes cannot distinguish between variation in initial 

abundance among cohorts and mortality within a cohort because they assume equal 

abundance among cohorts (Wilhelm & Hilbish 1998).  In marine invertebrates, 

recruitment success can vary greatly among cohorts (Gaines & Bertness 1992; Levin 
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2006; Siegel et al. 2008).  However, the adult cline has been stable for over 20 years 

(Reeb & Avise 1990; Karl & Avise 1992; Hare & Avise 1996), demonstrating that the 

allele frequencies are spatially stable and likely would be found in adult populations from 

cohort to cohort.  In this study, the two years of spat cohorts generally exhibited 

equivalent patterns in most analyses.  While these two cohorts differed greatly in 

abundance/recruitment and likely in environmental conditions, they had similar genetic 

composition.  Though it is possible the spat cohort(s) that led to the adults sampled here 

had very different composition from the two spat cohorts sampled here, it seems unlikely 

given these lines of evidence. 

 

Feeble Oyster Populations in Cape Canaveral 

Compared with sites to the north and south, recruitment was not successful in Cape 

Canaveral.  Summed over both years of spat collections, more than 4.5 and seven times 

as many spat recruited to settlement traps at North and South sites, respectively, than to 

Cape Canaveral sites.  The low numbers of spat collected in Cape Canaveral were 

unbiased by number of sites (summed over both years: 17 North sites, 22 Cape Canaveral 

sites, 24 South sites).  The causes of reduced recruitment in this region are unknown.  

However, the region is home to a density trough of oyster populations (Hare & Avise 

1996).  Fewer adult oysters likely result in fewer progeny compared to more robust 

populations.  In some spots, densities may be so low that populations are unsustainable, 

possibly due to an allee effect (Allee 1931; Courchamp et al. 1999; Stephens et al. 1999).  

On the other hand, the collection sites may not have been positioned where healthy 

populations exist in the Cape Canaveral region.  Tidal amplitudes in the Indian River 
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lagoon range from 0-15 cm and less than 0.5 cm in the Banana River lagoon (Smith 

1996).  In addition, flushing time has been estimated to range from less than one week in 

the southern stretches of the lagoon to over a year in northern parts (Smith 1993).  

Because the region’s hydrography is so weak, recruitment may be extremely localized to 

the immediate vicinity of these healthy populations.  This scenario is unlikely to explain 

the broader regional patterns, as sites were chosen in the same fashion as in the other 

regions.  Furthermore, a two to three week larval period is likely ample time to disperse 

larvae beyond the immediate area (Kinlan & Gaines 2003; Rose et al. 2006). 

 

The higher mortality observed among Cape Canaveral spat and adults provides further 

insight into the region’s density trough.  The region likely does not provide a highly 

hospitable environment to support healthy oyster populations.  For instance, the region is 

also a biogeographic province boundary, where the range limits of many species meet 

(northern limit for subtropical and southern limit for warm temperate species; Briggs 

1974).  Perhaps the same ecological conditions that prevent the spread of these species 

beyond the region also make it a challenging environment for C. virginica.  Indeed, 

ranges are determined by ecological tolerances, with the highest densities found at 

optimum and intermediate positions leading to lower abundance as tolerance thresholds 

are reached (Endler 1977; Bridle & Vines 2007).  The weak hydrography in the region 

could be suboptimal for feeding and fighting disease.  Cape Canaveral is located along 

the frost line of central Florida, south of which the maximum depth of frost penetration is 

zero (Floyd 1978).  This frost line may be one such threshold.  Clines form where the 

direction of selection changes between genetic optima (Endler 1977).  Migration load 
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from northern and southern regions of differential optima into the depauperate and 

geographically intermediate populations of Cape Canaveral may be limiting the ability of 

local populations to adapt and flourish in this zone of ecological transition (Garcia-

Ramos & Kirkpatrick 1997).  Therefore, populations in this region may be maladapted 

relative to the local phenotypic optimum, which may explain the higher mortality 

observed.  Thus, there may be a habitat gap at Cape Canaveral.  Due to feeble local 

populations, weak hydrography, and the linear nature of the Florida lagoons, Cape 

Canaveral indeed may be an incomplete barrier to gene flow between Atlantic and Gulf 

populations.  Such features attract clines (Barton & Hewitt 1985).  The confluence of 

numerous intraspecific, environmental, and ecological factors may determine the location 

of the cline and the robustness of local oyster populations. 

 

Frequent Hybridization and Lack of Pre-zygotic and Pre-settlement Selection 

Intermediates represented approximately a third of all spat genotyped in 2005 and 2006 

and about one tenth of adults, demonstrating that intermediates are far from rare.  To my 

knowledge, this is the first estimation of intermediate frequencies in this well studied 

contact zone.  I was unable to resolve Intermediates into different hybrid classes (e.g. F1, 

F2, and backcross) due to the lack of fixed allele frequency differences in dominant DSO 

loci.  Such resolution would have would have enabled direct estimation of hybridization 

and a study of differential selection pressure among recombinant types (e.g., Cruzan & 

Arnold 1994; Bert & Arnold 1995; Wilhelm & Hilbish 1998; Rubidge & Taylor 2004; 

Albert et al. 2006).  This may be facilitated in the future by converting DSO or other 

differentially distinguishing loci into codominant markers.   Nevertheless, the existence 
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of Intermediates at spat and adult stages suggests that strong pre-settlement selection 

against hybrids is unlikely. 

 

Because oysters do not have well-established sexual behavior or other forms of mate 

recognition systems, pre-zygotic barriers are not major factors to consider.  The same 

inference has been made for the coincident hard clam hybrid zone (Bert & Arnold 1995).  

As broadcast spawners, mating is likely to be random among neighboring individuals 

because spawning of one individual induces its neighbors to reciprocate, provided the 

neighbors have evolved similar responses to environmental cues.  Genetically based 

differences in spawning cues have been documented for oysters from Long Island Sound 

and Delaware Bay in a common garden experiment (Barber et al. 1991).  These 

differences likely evolved as countergradient adaptations to latitudinal gradients 

(Conover & Schultz 1995) and may operate in the Florida populations studied here.  Such 

differentially adapted timing can contribute to assortative mating (Coyne & Orr 2004).  

Given the high prevalence of Intermediates, such differences, if pre-zygotic barriers do 

exist among Florida oysters, may not causing strong assortative mating.   

 

Indeed, an investigation of gametic compatibility between Marineland and Vero Beach 

(the WHI and VER sites in this study, respectively) found no strong barriers to 

fertilization between these populations on opposite sides of the cline (Zhang et al. 2010).  

The authors did not detect any differences in fertilization success, paternity, or embryo 

survivorship and suggested that mechanisms other than strong reproductive barriers must 

be maintaining the oyster cline.  Paternity did show subtle advantage for local sperm and 
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egg pairings over non-native crosses.  Slight advantages for sperm from northern males in 

competition with southern male sperm hint at a possible mechanism for the asymmetry of 

the cline, with northern alleles present in southern adult populations.  Similar results were 

found in an earlier study of single-pair crosses (Gaffney et al. 1993).  However, it is 

difficult to determine whether the results of Zhang and colleagues can be extrapolated to 

a regional story because only one site on each side of the cline was used for broodstock 

sampling.  Previous genetic evidence of localized adaptation within regions (see Chapter 

2) and the increased variation in allele frequencies of southern populations (Hare & Avise 

1996) open the possibility to the broodstock being unrepresentative of their source 

regions.  Nonetheless, the lack of strong reproductive barriers documented by Zhang and 

colleagues (2010) corroborate the large proportions of Intermediates sampled here.   

 

As a third of all sampled spat, Intermediates are unlikely to suffer strong pre-settlement 

selection.  However, the possibility of some level or pre-settlement or early post-

settlement (i.e., after settlement but before sampling) cannot be completely ruled out by 

this study because no samples were taken of planktonic larvae populations.  The 

frequency of Intermediates and hybrids in the plankton remains unknown.  If substantial 

selection occurs against hybrids pre-settlement or early post-settlement, positive linkage 

disequilibrium and Hardy-Weinberg disequilibrium would exist in spat and adult 

samples.  Using dominant markers, I was unable to test for such patterns.  In a previous 

study, Hardy-Weinberg proportions were not significantly different than equilibrium 

expectations among adults (Hare & Avise 1996).  Linkage disquilibrium patterns were 

not consistent across sites, but did reveal positive linkage disequilibrium (excess of 
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parental genotypes) for adults and genotypic independence for spat in Sebastian, Florida.  

However, these estimates have been shown to vary across life stages in other hybrid 

zones (Kocher & Sage 1986; Cruzan & Arnold 1994; Bert & Arnold 1995; Wilhelm & 

Hilbish 1998; Rubidge & Taylor 2004).  Based on the results of Hare & Avise (1996) and 

the large proportions of Intermediates spat sampled here, planktonic selection against 

hybrids is not strong.  If pre-zygotic barriers or pre-settlement selection do exist, it is 

unlikely that they play prominent roles in the maintenance of this hybrid zone. 

 

The Dominant Phase of Regionally Divergent Selection is Post-settlement 

Focusing on the loci that are the best candidates for regional divergent selection (DSO 

outliers) permitted detection of differential selection between life stages.  Because adults 

exhibited much stronger regional differences at DSO loci than spat, it is clear that the 

majority of regionally divergent selection occurs post-settlement.  Indeed, weak clines in 

spat were sharper in the adult stage.  These results are consistent with previous work 

demonstrating that the anonymous, codominant nDNA locus CV-7.7, which was detected 

as having a signal of divergent selection in a genome scan (Murray & Hare 2006), 

exhibited a significantly shallower cline in spat when compared to adults and strong 

heterozygote deviations from Hardy-Weinberg expectations (Cammen honors thesis; 

Hare & Avise 1996).  It appears that oyster populations are more genetically homogenous 

at the early spat stage than as adults and are subject to subsequent regional selection, 

whereby non-Native-like alleles are removed from the population over the life cycle. 
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However, low levels of regional differentiation were present in the spat stage for DSO 

loci.  It is possible that some regional selection takes place pre-settlement or in the early 

spat stage.  Oysters and other highly fecund, low-parental-care marine organisms are 

known to suffer high mortality in early life stages (Kennedy 1996; Karleskint et al. 2010).  

Because the analyses of all 217 loci included DSO loci and other loci putatively subject 

to the effects of pre-settlement or pre-sampling regional and local divergent selection (see 

Chapter 2), non-neutral processes indeed may have influenced the observed levels of 

differentiation in spat.  A non-exclusive, alternative reason for the low levels of regional 

differentiation in spat is that there may not be complete admixture in reproduction 

between the regions.  Local or even regional recruitment patterns are often the primary 

explanation offered for population differentiation in marine organisms with high dispersal 

potential (Swearer et al. 1999; Barber et al. 2002; Cowen et al. 2006).  These types of 

studies implicate oceanographic patterns as physical barriers to dispersal, which cannot 

be ruled out in this Florida system.  Furthermore, if regionally differentiated adults have 

local mates due to limited gamete survival duration (1-5 hours; Galtsoff 1964), they 

would hybridize less frequently with more rare non-native genotypes in the vicinity.  

Alternatively, It is highly possible that recombination among non-fixed DSO alleles from 

native parents can generate the broad representation of Intermediate, Native-like, and 

Migrant-like spat genotypes.  However, these broad genotypic distributions are narrowed 

by adulthood.  Given the much greater adult regional differentiation in DSO loci, the 

majority of adaptive cline maintenance is due to regional post-settlement selection in 

these oysters.   
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In contrast, the high global differentiation observed in 2005 spat when all 217 loci were 

included was not expected.  Although this differentiation was as high as in adults, the 

regional pattern of differentiation in the later life stage was largely absent in spat, 

suggesting that the differentiation observed in 2005 spat was geographically uniform or 

random.  The fact that 2005 and 2006 spat regional differentiation was very low at DSO 

loci and no different from within region differentiation for all 217 loci does suggest that 

the high overall differentiation was due to neutral processes and not driven by regional 

selection.  Random genetic drift may be the cause of this geographically independent 

differentiation observed in 2005 spat and may be in the form of the sweepstakes effect, a 

special form of genetic drift (Hedgecock 1994; Hedgecock & Pudovkin 2011).  Under the 

sweepstakes hypothesis, chance events create a high variance in reproductive success 

among individuals of highly fecund marine populations subject to high early mortality.  

In fact, the development of this hypothesis was inspired by patterns observed in Pacific 

oysters, Crassostrea gigas.  The sweepstakes hypothesis predicts: 1) significant, random 

allele frequency shifts among cohorts, and 2) reduced genetic diversity in recruits as 

compared to their source adult populations.  The first prediction may be one possible 

explanation for the significant differences in global differentiation between the two spat 

transects.  It is possible that the number of individuals effectively contributing to the spat 

populations was much lower in the 2005 samples than the 2006 spat, leading to random 

differentiation in 2005 and greater admixture in 2006 samples.  However, the very similar 

levels of gene diversity among all transects, regardless of life stage, are not consistent 

with the second prediction of the sweepstakes hypothesis.  Indeed, there has been limited 

empirical support of the sweepstakes hypothesis (Flowers et al. 2002; but see Hedgecock 
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& Pudovkin 2011).  Whether the oyster populations in Florida are subject to sweepstakes 

events, even sporadically, is a question that deserves further investigation. 

 

These discrepancies between differentiation patterns among spat transects likely are due 

to neutral processes.  Local recruitment or lower recombination at DSO loci in 2005 spat 

could easily generate the higher global differentiation observed in this spat transect 

because recruits would be the non-recombinant progeny of the local populations, thereby 

carrying over any local differentiation that exists in adults to this 2005 set of progeny.  In 

contrast, geographically broader recruitment or recombination may have kept global FST 

low in the 2006 spat sample by reducing local differentiation through migration or 

recombination.  Environmental variation between 2005 and 2006 or even within the 

recruitment seasons could have caused these temporal differences in dispersal and 

recruitment.  Smaller sample sizes in 2005 spat compared to 2006 spat could lead to error 

in population-level estimates and caused sites to appear more divergent.  However, 

regional differentiation was consistently low in both spat transects and was much greater 

in the adults.  The differences among types of loci and temporal and life stages indicate 

regional selection in this system is strong enough to override these sporadic neutral 

processes and re-sharpen the step cline at target loci after settlement but before 

adulthood. 

 

Outlier repetition analyses offered mixed evidence for post-settlement selection.  Most 

adult multiple outliers were detected as outliers in zero or one spat population 

comparison out of a total of 36 spat site comparisons.  However, the detection of some 
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outliers suggests the possibility that not all selection is entirely post-settlement.  The lack 

of identity between spat and adult multiple outliers does suggest that some of the 

statistically detected selection in spat may be temporally variable and not consistently 

sustained through adulthood among all cohorts.  Furthermore, if clinal selection was 

established pre-settlement or in the early spat stage, adult DSO loci would be multiple 

outliers and even DSO outliers in both spat transects.  This was not the case for six out of 

seven adult DSO loci, indicating that post-settlement selection establishes regional 

differentiation.  Some signal of post-settlement selection may be generated through local 

recruitment by retaining selected loci near to the parent populations.  Such local 

recruitment and resulting reduction in gene flow have the potential to ease the way for 

selection to generate or maintain regional adaptations (Bertness & Gaines 1993; Swearer 

et al. 1999; Thorrold et al. 2001; Conover et al. 2006).  While outlier patterns suggest that 

some local recruitment and/or pre-settlement selection exists, they demonstrate that most 

of the regional selection is largely post-settlement.   

 

Regionally Dependent Selection Against Intermediate and Migrant-like Genotypes 

 

Selection is against Intermediates 

As compared to the general adult population, larger proportions of the spat populations 

had Intermediate-like genotypes at DSO loci, both measured by genotype index and 

CLUMPP-based source class.  As Florida oysters transition from spat to adults, 

individuals with intermediate genotypes at loci subject to regionally divergent selection 

are removed from the general population.  Bimodal genotypic distributions such as those 
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found in adults are indicative of strong reproductive barriers, either in the form of pre-

zygotic isolation or disruptive selection against hybrids (Jiggins & Mallet 2000).  It 

should be noted that the general adult population here exhibited a weakly bimodal 

distribution, which may be the result of less well-developed isolation barriers.  While 

incomplete isolation likely plays a role (Zhang et al. 2010), the weak bimodality also may 

be a symptom of using non-diagnostic loci.  The scarcity of diagnostic nuclear markers in 

these populations possibly is the result of: 1) incomplete lineage sorting due to 

insufficient time in allopatry between vicariant Atlantic and Gulf populations, 2) 

balancing selection for multiple alleles, or 3) secondary gene flow between Atlantic and 

Gulf populations (Hare & Avise 1998).  This may have decreased the ability to resolve 

differences between pure Atlantic and pure Gulf genotypes, if they exist in natural 

Florida populations. 

 

In contrast to the weak bimodality of adult genotypic distributions, broad unimodal 

distributions characterized both years of spat samples.  Though there were slight 

differences in the two spat distributions, the consistency of broad distributions heavily 

concentrated in moderate genotype index values demonstrates the intermediacy of spat 

populations and their dearth of genotypically parental-like individuals.  Unimodal 

distributions are associated with largely incomplete pre-reproductive isolation and/or an 

absence of selection, endogenous or exogenous, against hybrids (Jiggins & Mallet 2000).  

In the case of the oyster, intermediate multilocus genotypes of non-diagnostic loci also 

can be generated through recombination within a parental type.  Higher CLUMPP-based 

hybridity, proportion of Intermediates, and frequency of intermediate genotype indices 
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present in spat demonstrate that intermediate-like individuals live to reach the spat stage.  

Furthermore, the presence of Intermediate CLUMPP-based source class individuals in 

adult populations demonstrates that they are viable through adulthood.  Because further 

categorization of Intermediates could not be resolved to conclusively identify hybrids or 

distinguish F1, F2, and backcrosses, it is unclear whether certain hybrid classes vary in 

this viability.  While much of the selection against intermediate genotypes appears to 

occur before adulthood, that selection is incomplete and occurs post-settlement.  As a 

result, if these intermediates are genuine proxies for hybrids and if adult hybrids are even 

slightly fertile, they can serve as genetic bridges between the divergently selected 

Atlantic and Gulf populations.  This gene flow would permit neutral and universally 

advantageous alleles to pass more freely across the cline than loci under the influence of 

divergent selection (Luikart et al. 2003; Emelianov et al. 2004; Teeter et al. 2008).  

Because low levels of intermediates survive to adulthood, it is possible that this regional 

differentiation is maintained in the face of at least some gene flow. 

 

While information continues to grow about the genetics underlying post-zygotic isolation 

(Coyne & Orr 2004), knowledge is limited regarding outcomes of hybrids and post-

zygotic isolation in the wild (Gow et al. 2007).  Marrying the cohort analysis with 

genotypic distribution analysis enabled interpretation of both the timing of selection and 

the nature of it.  At the spat stage, isolation barriers are weak to non-existent.  However, 

isolation barriers are not absent from the system altogether, which would have been the 

interpretation if I had only examined spat.  Instead, the bimodal and site-specific 

genotypic distribution of adults suggests isolation barriers present themselves later in the 



195 

life cycle.  Extreme or native genotypes, which are more rare in spat, survive while 

intermediates or hybrids perish, shifting genotypic distributions somewhat toward the 

extremes through the life cycle.  The elimination of most intermediates before the adult 

stage means that they are less likely to contribute reproductively to future generations 

(e.g., Kocher & Sage 1986; Cruzan & Arnold 1994; Gow et al. 2007).  This life stage-

dependent presence of isolation barriers rules out strong pre-zygotic barriers and supports 

substantial disruptive selection against intermediates.  These distribution results are 

consistent with the lack of strong reproductive barriers observed by Zhang and colleagues 

(2010) and the significant reductions between spat and adult life stages in CLUMPP-

based hybridity and in the proportion of Intermediate CLUMPP-based source class 

individuals observed here.  Therefore, disruptive selection against intermediates or 

hybrids appears to contribute to the maintenance of this hybrid zone.   

 

Selection is also against Migrant-like Genotypes: 

This study represents the first documentation that individuals with migrant-like genotypes 

do recruit to the alternate region from their ancestry and do so at non-trivial levels.  

However, it remains unclear if these individuals with genotypes similar to migrants: (1) 

actually have migrated across the cline, (2) are simply the progeny of local individuals 

with non-native genotypes, or (3) are recombinants of local individuals with native-like 

genotypes.  With a 14 to 21 day planktonic larval stage, oysters have a high potential for 

long distance dispersal (Galtsoff 1964).  For these types of marine species, dispersal 

distance can be 20-120 kilometers (Kinlan & Gaines 2003; Shanks et al. 2003; Siegel et 

al. 2003; Shanks 2009).  This level of dispersal would permit migration across this cline’s 
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sharp step that exhibits dramatic allele frequency shifts over only 20 km (Hare & Avise 

1996).  Prevailing near-shore currents converge in the Cape Canaveral region (Bumpus 

1973), facilitating dispersal of Atlantic and Gulf genotypes toward each other if larvae 

exit and re-enter the lagoons through inlets to the ocean.  Even if gene flow occurs in a 

stepping stone fashion and not through long distance migration, substantial selection 

would be required to maintain the hybrid zone at these potential levels of migrant 

recruitment. 

 

Generally, the proportion of migrants-like individuals was higher in spat than adults.  The 

reductions in migrant-like individuals observed between life stages demonstrate selection 

against non-native-like genotypes.  Combining this with the observation that 

intermediates also suffer mortality implicates the role of exogenous viability selection in 

cline maintenance.  This creates the subtly bimodal adult genotype distribution and a 

geographic pattern of site genotype index distributions that moves from one extreme to 

the other with more intermediate genotypes near the center of the cline.  The most used 

model for describing hybrid zone dynamics, the tension zone model, states that clines are 

maintained by a balance of gene flow from parental populations and selection against 

hybrids due to genomic incompatibilities between cohesively evolved parental genomes 

(Barton & Hewitt 1985).  Although I cannot rule out effects of endogenous selection 

here, it seems unlikely that genomic incompatibilities are the primary cause of reduced 

fitness in intermediates because migrant-like individuals with parental genotypes also 

suffer elimination, which would not be an effect of endogenous selection.  Intermediates 

and migrant-like individuals exhibit signs of reduced fitness due to a mismatch between 
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their genotypes and the environment.  The increase in native-like genotypic proportions 

from spat to adult life stages suggests that parental-type individuals experience increased 

fitness in their home environment.  Outside of their native environment, these same 

parental genotypes are removed from the population over this span of the life cycle. 

 

However, selection is not likely to completely eliminate non-native-like genotypes before 

spat become reproductively competent, especially in the South.  Spat can reach sexual 

maturity/adulthood in their first season in lower latitudes (i.e., by the end of the summer; 

Thompson et al. 1996; Shumway 1996; personal observation), making gene flow 

possible.  The presence of migrant-like and hybrid-like individuals may indicate that the 

cline is maintained minimally in the face of dispersal, if not gene flow.  Dispersal from 

areas of higher fitness to those of lower fitness can cause maladaptation due to migration 

load of unfit immigrants (Lenormand 2002).  If the selection gradient is broader than the 

characteristic length, the ratio of the standard deviation of parent-offspring distance () to 

the square root of selection strength (s), then maladaptation can be avoided (Slatkin 

1973).  This may be true in the Florida system because the transition from salt marsh 

grass to mangroves occurs over a distance of 400 km between St. Johns and Palm Beach 

counties (USDA 2011), whereas dispersal distance estimates for Chesapeake Bay eastern 

oysters was 21.9 km (Rose et al. 2006, where this is the linear square root of the 

estimated 479 km2 average squared dispersal distance).  Florida oysters may experience 

longer distance dispersal more often by exiting the lagoons through inlets and re-entering 

after riding nearshore currents to more distant inlets or by riding occasionally well timed 

hurricanes (Bert & Arnold 1995).  Viability selection due to environmental gradients 
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maintains divergence in the face of dispersal for other marine species with high fecundity 

and larval dispersal (Koehn et al. 1980; Diehl & Koehn 1985; Bertness & Gaines 1993; 

Wilhelm & Hilbish 1998).  It seems exogenous divergent selection counteracts the 

potential for homogenizing dispersal in multiple coastal marine organisms and supports 

the environmental-dependent model of hybrid zone dynamics (Endler 1977). 

 

Indeed, an unexpected pattern of what could be long-distance migration emerged here.  

Gulf-like spat were found in North sites, whereas the opposite occurred with comparative 

rarity.  The moving hybrid zone hypothesis and the geological history of the area would 

predict northward movement of the hybrid zone, leaving Atlantic-like populations in 

southern sites (Hare & Avise 1996).  While data in this study do not refute and some data 

support this prediction, the presence of Gulf genotypes in North spat does not fall under 

this hypothesis.  Such northward migration may be stepwise within the lagoons or may 

use nearshore currents.  The Florida Current also moves northward, but moves farther 

away from shore near Cape Canaveral and becomes the Gulf Stream.  However, this 

unexpected pattern could be generated through recombination of local individuals 

without the need to invoke long-distance migration.  Although these genotypes were 

eliminated in adult samples, the possibility of an intriguing dispersal patterns in spat 

warrant further study.  The differences between each of these life stages have 

implications for what may be interpreted about migration, gene flow, recombination, and 

selection.  Future studies should be careful to look at spat to examine migration questions 

and adults to examine gene flow. 
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Selection is not Spatially Homogeneous: 

Further evidence supporting a dominant role for exogenous selection in the maintenance 

of the oyster cline comes from geographic differences in cohort composition.  By 

definition endogenous selection is independent of environmental heterogeneity (Barton & 

Hewitt 1985).  This cohort analysis revealed differences among North, Cape Canaveral, 

and South regions in the magnitude of reduction in hybrid- and migrant-like genotypes 

between life stages.  This argues against spatially uniform selection and therefore against 

an endogenous selection-only model. 

 

One model of selection maintaining hybrid zones exogenously is the bounded hybrid 

superiority model (Moore 1977; Moore & Price 1993).  This predicts superior fitness for 

hybrids over parental types in intermediate environments.  In the case of the oyster hybrid 

zone, the identity and nature of the selection agents remains unclear.  Therefore, it is 

difficult to test for superior hybrid fitness in an intermediate environment.  However, 

there is some evidence here that intermediates are at least less unfit in the South than in 

the North and Cape Canaveral because they are present at higher proportions in the adult 

stage in the South.  While this study focused mainly on eastern Florida sites, it is possible 

that the environment in southern Florida is intermediate to those found toward the north 

and in the Gulf of Mexico.  The limited study sites in the Gulf of Mexico preclude 

determination of whether hybrids have increased fitness in southern Florida only or if 

their fitness is similar to that of GLF types south of Cape Canaveral and in the Gulf of 

Mexico.  Despite the unknown intermediacy of the environment in South sites, the 

maintenance of migrant- and hybrid-like genotype proportions through the adult stage 
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suggests that selection pressures are weaker in this region than in the North and Cape 

Canaveral and that they tolerate a variety of genotypes. 

 

Spatially fluctuating allele frequencies can be indicative of patchy selection pressures.  

Such genetic patterns are present in the oyster cline system and are prevalent particularly 

in the region south of Cape Canaveral (Chapter 2; Karl & Avise 1992; Hare & Avise 

1996).  Although fluctuating allele frequencies in the South could be due to remnant 

Atlantic-type populations after northward movement of the hybrid zone (Hare & Avise 

1996), this neutral process does not explain the signal of selection observed in several 

loci, including the DSO loci examined here.  Indeed, many of the outliers detected in 

multiple genome scans (MI outliers in Chapter 2) are candidates for indicators of smaller-

scale, localized selection.  While these loci demonstrated signals of divergent selection, 

they did not show strong regional differentiation.  Rather, these loci likely are subject to 

the influence of spatially heterogeneous selection, which shapes their fluctuating allele 

frequencies.  In particular, the South pattern of non-native-like genotypes surviving into 

adulthood may be driven largely by unique conditions at one of the adult sample sites 

(FTP), where most of the Atlantic-like adult genotype indices sampled in the South 

existed.  This site may exhibit a unique selective regime within this patchwork.   

 

This type of patchy selection underlies the maintenance of mosaic hybrid zones, another 

form of exogenously maintained hybrid zones whereby genotypes and environmental 

factors covary over microgeographic scales (Arnold 1997).  For example, ground crickets 

Allonemobius fasciatus and A. socius exhibit patchy and mixed distributions in their 
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hybrid zone due to patchy distributions of different climatic regimes (Howard & Waring 

1991).  A classic, well-studied cricket hybrid zone features striking mosaic patterns 

associated with loam and sand soil habitats on small spatial scales (Gryllus 

pennsylvanicus and G. firmus, respectively; Rand & Harrison 1989; Ross & Harrison 

2002).  Habitat specialization also controls genotype distributions in a mussel hybrid 

zone featuring high gene flow potential, where Mytilus edulis dominates open sea and 

sheltered habitats and M. galloprovincialis dominates exposed and wave-beaten sites 

(Bierne et al. 2002).  Therefore, regional selection may overlay smaller scale exogenous 

selection particularly south of Cape Canaveral in the oyster hybrid zone. 

 

Finally, the geographic shift from low to high genotype indices (Atlantic- to Gulf-like 

genotypes) along the transects follows the inverse relationship between winter low 

temperatures and latitude.  Indeed, gradients in mean temperature and number of days 

reaching freezing temperatures are steepest in the winter.  Although I did not conduct any 

tests for selective agents, winter low temperature is a potential candidate for an agent of 

selection.  Its geographic pattern is consistent with adult shifts from Atlantic alleles to 

Gulf alleles in putatively selected loci.  While summer temperatures are similar along the 

transect, fall and winter temperatures have strong, inverse relationships with latitude.  

Even though the climate data demonstrated a broader latitudinal temperature gradient 

than the stepped oyster cline, clines along a shallow environmental gradient may be 

steepened by other factors including convergent or partial barriers to gene flow and 

density troughs (Barton & Hewitt 1985; Hare et al. 2005).  The timing of fall and winter 

lows also is consistent with evidence here for post-settlement selection acting after the 
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summer collection dates of spat here.  Freezing conditions in the North could make it 

difficult for southern-like individuals, adapted to a warmer climate, to establish 

themselves.  Meanwhile non-native-like genotypes may have higher fitness in the South 

than in the North and Cape Canaveral because the Atlantic-type genotypes are already 

adapted to similar summer temperatures and are able to tolerate any occasional cold 

spells that they may encounter in the South.  This could explain the relatively greater 

reduction in, and therefore stronger selection against, hybrid- and migrant-like 

individuals over the life cycle at North and Cape Canaveral sites compared to South sites.  

If fall and winter cold temperatures are a selection agent in this system, they would create 

a selection gradient that is strongest in the North and decreases southward.  

 

Future Prospects 

While this study made strides toward uncovering the mechanisms maintaining this oyster 

hybrid zone with the timing and general targets of selection, the agents of selection 

remain unknown.  One possibility discussed above is that the latitudinal temperature 

gradient, where temperature increases with decreasing latitude (Brocklesby 1868), may 

cause viability selection against genotypes not appropriately adapted to local conditions.  

However, a latitudinal temperature gradient exists throughout the range of Crassostrea 

virginica, which spans from the Gulf of St. Lawrence, Canada through the Yucatan 

Peninsula, Mexico and exhibits the strongest genetic homogeneity at clinal loci in the 

portion north of Cape Canaveral (Hare & Avise 1996).  At these loci, there is no 

continuous change in allele frequency that follows the temperature gradient along its 

length.  It is possible, however, that oysters populations reach a temperature threshold in 
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eastern Florida.  The frost line cutting across Cape Canveral may be such a threshold 

(Floyd 1978; Hull & the Federal Geodetic Control Committee 1989).  There is some 

evidence of adaptation among oyster populations to different temperatures (Long Island 

Sound versus Delaware Bay and Chesapeake Bay populations: Barber et al. 1991; 

Dittman 1997; Dittman et al. 1998).  Temperature tolerance experiments should be 

conducted on Atlantic, Gulf, and hybrid individuals to determine if temperature is a 

selection agent contributing to the maintenance of the hybrid zone.  These should be 

designed with careful consideration of documented short-term tolerances (Shumway 

1996) and may require long-term temperature stress. 

 

Beyond temperature gradients, the hybrid zone coincides with an ecotone, or transition 

from warm temperate to subtropical ecologies (Engle & Summers 2000).  While this is 

visible as a transition from salt marsh cordgrass to mangroves, the ecological transitions 

go beyond these plants.  It is a biogeographic province boundary, where the ranges of 

many species meet (Briggs 1974; Engle & Summers 1999; Avise 2004).  Many of these 

transitions and range limits occur within the Canaveral National Seashore 

(www.nps.gov/cana; personal observation).  Therefore, it will be difficult to test which of 

the many changing elements may play a role in the selection gradient acting on this 

system.   A multivariate landscape genetics study could illuminate which ecological 

factors act as selection agents (Manel et al. 2003; Joost et al. 2007; Kozak et al. 2008; 

McCairns & Bernatchez 2008; Schmidt et al. 2008; Manel et al. 2010).  To confirm the 

role of selection agent, landscape genetics should be followed up with formal common 

garden experiments using the potential agents as treatments (Kawecki & Ebert 2004). 
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Although this study suggests that the Cape Canaveral region suffers from poor 

recruitment success, the causal factors remain unknown.  The possibility that low flow 

experienced in the local lagoons creates a dispersal barrier for the area should be tested, 

at the minimum through modeling.  Such a model ideally would incorporate the 

hydrographic patterns of Florida lagoons, oyster densities, and what dispersal patterns 

might be for oyster larvae at different times in the reproductive season.  Common garden 

experiments located in situ of Cape Canaveral lagoons also should be conducted to 

determine whether the habitat is inhospitable and causes mortality of Atlantic, Gulf, and 

hybrid spat and adults.   

 

Improvements can be made on this study to address certain questions about the nature 

and timing of selection more directly.  A dynamic cohort analysis that incorporates more 

continuous spatial sampling of spat over multiple years through adulthood and at 

different times within each year might reveal at which age(s) viability selection occurs.  

Distinguishing different spat cohorts from the same season will require great care.  

Ideally, such a study would sample the larval life stage as well to determine whether any 

selection takes place early in the life cycle (e.g., Bierne et al. 2003).  In addition, using 

codominant loci and following subclasses of hybrids in a cohort analysis would help 

distinguish differential selection among hybrid genotypes (Arnold & Hodges 1995).  

Tying this extensive of a dynamic cohort analysis with landscape genetics using 

ecological data over the course of the study could help identify selection agents (Gow et 

al. 2007). 
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The results of this study have management and conservation implications.  Similar types 

of studies should be performed when designing restoration and conservation projects for 

other hybrid zones.  Although most oyster restoration efforts in Florida focus of reef 

construction, there are some ongoing efforts to restore Florida oyster populations through 

oyster gardening and stock enhancement, or outplantings of young individuals bred and 

preliminarily raised in laboratories (e.g., Oyster Gardening and Restoration Project and 

Florida Oceanographic Oyster Restoration project through the Florida Oceanographic 

Society; Brumbaugh & Coen 2009).  However, much effort should be made to ensure 

broodstock are from the region of the planned transplant location.  The native conditions 

also should be taken into consideration when optimizing the hatchery conditions.  

Otherwise, resources will go to waste when maladapted, non-native genotypes suffer 

viability selection.  Although these regionally adapted populations of Crassostrea 

virginica are considered a single species currently, their status (i.e., as subspecies, 

ecotypes, or races) may need to be reviewed to ensure appropriate conservation measures 

can be enacted.   

 

This study supports growing evidence that the tension zone model does not explain 

universally how all hybrid zones are maintained.  A meta-analysis of hybrid zone studies 

concluded that hybrids are not uniformly unfit across all hybrid zones, as the tension zone 

model would predict (Arnold & Hodges 1995).  The variation in mechanisms maintaining 

hybrid zones calls for additional in-depth studies in nature.  Indeed, one coincident hybrid 

zone is controlled by a complex suite of endogenous and exogenous selection and fits 
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both tension zone and environmental gradient models (Bert & Arnold 1995).  Because the 

hard clam and oyster hybrid zones share several characteristics and are geographically 

co-located with other phylogeographic transitions (Avise 1992; Avise 2004), their further 

study should help illuminate selection and dispersal mechanisms affecting the 

distributions of other species in the area.  Furthermore, these systems highlight the need 

for researchers to consider the interplay between dispersal and endogenous and 

exogenous selection as they design their studies and draw conclusions from their results.   
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Conclusions 

 

Interest in hybrid zones stems from their characteristic of differentiation despite gene 

flow.  Understanding the balance between selection and gene flow in hybrid zones is 

informative about the process of divergence.  However, documentation of the nature and 

timing of selection in nature has been relatively limited among hybrid zone studies.  

Cohort analyses have proved useful for distinguishing between endogenous and 

exogenous isolation barriers in hybrid zones.  Such studies of hybrid zones in the wild 

can illuminate the mechanisms mediating differentiation in the face of gene flow and the 

role of selection in biological diversification in nature. 

 

Exogenous, post-settlement selection appears to play a prominent role in the maintenance 

of the well-studied eastern oyster hybrid zone in Florida.  In Cape Canaveral, the region 

spanning the sharpest differentiation in the cline, recruitment is substantially lower than 

in the North and South and likely assists in creating an incomplete barrier to gene flow.  

This study represents the first documentation of the levels of intermediate individuals in 

spat and adults for this hybrid zone.  Substantial levels of intermediates surviving to the 

spat stage, and some even to adulthood, argue against strong endogenous viability 

selection.  Further study of candidate loci for regionally selective differentiation in a 

cohort analysis detected strong viability selection against non-native-like genotypes 

between spat and adult life stages.  This regional dependence on the direction of selection 

in intermediate and parental genotypes suggests environmental differences play a larger 

role than endogenous genomic incompatibilities to maintain differentiation in the face of 
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possibly broad dispersal and gene flow.  The documentation of natural intermediates and 

viability selection against non-native-like genotypes will be useful for designing 

appropriate and successful conservation and restoration projects for Crassostrea 

virginica, a species that provides important economic and ecosystem services. 
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Table 3-2: A) Regional differences for each transect using DSO loci for the absolute 
value of the difference in regional mean allele frequencies (regional allele frequency 
difference, RAFD) and regional differentiation (FRT).  FRT estimates are weighted by the 
number of sites within each region.  Here regions are divided by the cline (Atlantic, north 
of the cline; Gulf, south of the cline).  B) P-values of paired t-tests among transects, with 
significant comparisons in bold.  Comparisons between adult and spat transects are one-
tailed tests.  Comparisons between 2005 and 2006 spat are two-tailed tests.  P-values 
reflect the level of significance for the appropriate number of tails. 
 
A) 

 RAFD FRT 

Locus Adult Spat 85 Spat 76 Adult Spat 85 Spat 76 
13 0.4652 0.2185 0.2341 0.1835 0.0646 0.0627 
31 0.4506 0.2569 0.2081 0.1754 0.0859 0.0543 
51 0.3181 0.0066 0.0280 0.1792 0.0034 -0.0024 
64 0.5085 0.1109 0.1791 0.2571 0.0037 0.0481 
80 0.3586 0.1592 0.1594 0.1239 0.0378 0.0258 
146 0.2727 0.2554 0.2010 0.0954 0.0385 0.0593 
170 0.2654 0.0143 0.0386 0.0932 -0.0104 -0.0010 

Mean 0.3770 0.1460 0.1498 0.1582 0.0319 0.0353 
 
B) 
  p-values 
Transect A Transect B RAFD FRT 

Adult Spat 85 0.0001 0.0002 
Adult Spat 76 < 0.0001 0.0002 

Spat 85 Spat 76 0.4061 0.3300 
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Figures 
 
 
 

 
 
 
Fig. 3-1: Sampling sites for genetic studies.  Adult, 2005 spat, and 2006 spat are 
represented by three-letter codes, three-letter codes followed by 85, and three-letter codes 
followed by 76, respectively.  Sites sampled for multiple transects have a list of those 
transects.
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A) 

 
B) 

 
C) 

 
D) 

 

E) 

 
F) 

 
G) 

 
H) 

 
 
Fig. 3-2: Climate data for temperature statistics across latitudes for 1971-2000.  A-D) Mean 
minimum (blue) and mean maximum (red) temperatures (oF).  E-H) Number of days when the 
maximum temperature reached or surpassed 90oF along the left y-axis (red); number of days 
when the minimum temperature was equal or less than 32oF along the right y-axis (blue).  A,E) 
Spring: March – May.  B,F) Summer: June – August.  C,G) Fall: September – November.  D,H) 
Winter: December – January.  Data source: Southeast Regional Climate Center, 
www.sercc.com/climateinfo/historical/historical_fl.html). 
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A) 

 
 
B) 

 
 
 
Fig. 3-3: Mean measured salinity at field sites for 2005 and 2006 by latitude (oN).  Each 
dot indicates the mean salinity for a single field site.  The solid gray line indicates the 
linear regression line.  A) 2005 transect data: R2 = 0, p = 0.9742; y = 24.67 + 
0.0347(Latitude).  B) 2006 transect data: R2 = 0.2283, p = 0.0285; y = -45.4769 + 
2.6172(Latitude). 
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Fig. 3-4: Mean percent of the sample size goal met, averaged among sites within each of 
three regions, for settled spat collected from transects in 2005 and 2006.  Letters over 
bars indicate significant differences among regions in 2005.  Mean percents were not 
significantly different among regions in 2006. 

A 
A 

B 

NS 
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A) 

 
B) 

 
C) 

 
D) 

 

E) 

 
F) 

 
G) 

 

Fig. 3-5: A-G) Allele frequencies of the presence allele for each DSO locus along each 
transect.  Solid, dashed, and dotted lines represent adult, 2005 spat, and 2006 spat, 
respectively.  Note: The center of the previously documented step cline is 142 km from BNB 
(Hare & Avise 1996). 
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Fig. 3-6: Mean global FST.  Global estimates averaged over all pairwise population 
comparisons, comparisons between populations on different sides of the cline, and 
those on the same side.  Letters indicate significant differences among all pairwise 
comparison estimates among transects.  Asterisk over bar indicates one-tailed 
significantly greater global FST for adult pairwise comparisons on different sides of 
the cline than for those on the same side.  NS over bars indicates nonsignificant 
difference in global FST between population comparisons on the same and different 
sides of the cline. 
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A) 

 
 
B) 

 
 
C) 

 
 
Fig. 3-7: Distribution of genetic index values for each transect.  Proportion of 
individuals with a genetic index value in a given binned range is shown along the y-
axis.  A) Adult transect; B) 2005 spat transect; C) 2006 spat transect. 
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A) 

 

 

 

 

 

 

 
 

B) 

 

 

 

 

 

 
 
 

C) 

 

 

 

 

 

 

 

 

Fig. 3-8:  Genotype index distributions for each site in each transect.  The x-axis 
represents genotype index bins for DSO loci.  The y-axis represents the proportion of 
individuals having genotype indices for each corresponding bin.  Transects displayed 
from north to south: (A) Adult: WHI, NSB, TTV, LPA, FTP, HOB, PCH; B) Spat 85: 
WHI85, EDG85, PSH85, VER85, HOB85, WPB85; C) Spat 76: BNB76, WHI76, 
EDG76, PSJ76, PSH76, VER76, JUP76).   
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A) 

 
B) 

 
C) 

 
 
 
Fig. 3-9: Individual genetic index scores for DSO loci plotted on sample site distance 
(km) from St. Augustine (BNB).  Best linear regression line in gray.  A) Adult transect: 
R2 = 0.3975, p < 0.0001; y = -0.8595 + 0.0043(Distance).  B) Spat 85 transect: R2 = 
0.1648, p < 0.0001; y = -0.5317 + 0.0040(Distance).  C) Spat 76 transect: R2 = 0.1887,    
p < 0.0001; y = -0.2468 + 0.0043(Distance). 
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Fig. 3-10: Mean CLUMPP-based hybridity for each transect.  Adult comparison to each 
spat transect: p < 0.0001.  Spat 85 to Spat 76 comparison: p = 0.9610. 
 

A 

B B 
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A) 

 
B) 

 

C) 

 
D) 

 
 

Fig. 3-11: Proportion of individuals in each transect belonging to Native-like (black), 
Intermediate (gray), and Migrant-like (white) source classes based on CLUMPP 
summary results.  A) All regions grouped together.  B-D) North, Cape Canaveral, and 
South regions, respectively. 
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