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This dissertation is a study of the decoherence of a solid-state spin qubit, ei-

ther that of a localized electron spin or a donor nucleus, caused by a nuclear spin

bath relevant to semiconductor quantum computer architectures. In the presence

of an external magnetic field and at low temperatures, the dominant decoherence

mechanism is the spectral diffusion of the qubit spin resonance frequency due to the

temporally fluctuating random magnetic field associated with the dipolar interac-

tion induced flip-flops of nuclear spin pairs. The qubit spin dephasing due to this

random magnetic field depends intricately on the quantum dynamics of the nuclear

spin bath, making the coupled decoherence problem difficult to solve. We pro-

vide a formally exact solution of this non-Markovian quantum decoherence problem

which numerically calculates accurate spin decoherence at short times, of particular

relevance in solid-state spin quantum computer architectures. A quantum cluster

expansion method is motivated, developed, and tested for the spectral diffusion

problem. The method is applicable to any ideal pulse sequence applied to the qubit.



Dynamical decoupling sequences, which aim to prolong qubit coherence, are ana-

lyzed. In particular, concatenated dynamical decoupling sequences are shown to

prolong not only the coherence time over the entire sequence but also the length of

time between pulses necessary to maintain coherence. This is shown to result from

successive low-order cancellations in applicable perturbative expansions with each

level of concatenation. Each cancellation, however, will require the inclusion, in the

cluster expansion, of increasingly large clusters to obtain the lowest-order results.

These larger clusters in the lowest order often dominate decoherence and therefore

invalidate, as being overly optimistic, the pair approximation as a means to study

the effect of concatenated dynamical decoupling. We present numerical results from

our cluster expansion technique for echoes of single (Hahn), concatenated, and pe-

riodic pulse sequences using realistic models of a localized electron in phosphorus

doped Si and in a GaAs quantum dot and of a P donor nucleus in Si or GaAs. In the

Si:P electron spin decoherence problem, we consider, along with spectral diffusion,

the effects of anisotropic hyperfine (AHF) interactions and suggest a technique to

suppress electron spin echo envelope modulations (ESEEM), an additional source

of decoherence resulting from the AHF interactions. Our calculations for the Si:P

Hahn echoes, including the effects of both anisotropic hyperfine interactions and

spectral diffusion, are in excellent agreement with experimental results. Our cal-

culations of concatenated pulse sequence echoes offer important predictions for the

effectiveness of a promising strategy to preserve qubit coherence in semiconductor

quantum computer architectures.



Decoherence and Dynamical Decoupling
in Solid-State Spin Qubits

by

Wayne Martin Witzel

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Sankar Das Sarma, Chair/Advisor
Professor Christopher Jarzynski
Professor Bei-Lok Hu
Professor Victor Yakovenko
Professor Theodore Einstein
Assistant Professor Victor Galitski



c© Copyright by
Wayne Martin Witzel

2007



Dedication

To my mother, Donna Mae Bone Whitney, who instilled in me a curiosity

about the physical and metaphysical world.

To my father, John Witzel III, who gave me an appreciation for science and

technology and from whom I inherited an ability for logic and problem solving.

And to my beloved wife, Sarah, who brings me much joy and whose love and

support during my graduate school years has been greatly appreciated.

ii



Acknowledgements

I appreciate help that I have received from many people in order to accom-

plish this work. First of all, the Condensed Matter Theory Center (CMTC) has

been an enriching environment for my graduate research. I have asked innumerable

questions, from mundane to profound, of present and past CMTC post-docs; par-

ticularly pestering Donald Priour, Vito Scarola, and Chuanwei Zhang. Everybody

has been very helpful and they have often offered profound or useful insight. I have

enjoyed many discussions with Wang Kong (James) Tse, Shaffique Adam, and oth-

ers; over lunch, we would often discuss, share, and offer advice pertaining to our

current research or more general life interests and goals. I also enjoy friendships

and correspondence with former and affiliated CMTC members such as Magdalena

Constantin, Maria Calderon, Belita Koiller, Xuedong Hu, and Rogerio de Sousa.

And, of course, my advisor, Sankar Das Sarma, is intricately linked to the enriching

atmosphere of CMTC.

This work began from the launch-pad of Rogerio de Sousa’s dissertation. He

laid out the problem of spectral diffusion in an understandable way that I could

pick up and carry forward; his insight into the physical process of spectral diffusion

caused by flip-flopping dynamics of nuclear spins in the bath can be considered

a prelude to the cluster expansion approach of this work (relating to the lowest

order pair approximation). His collaboration and correspondence was crucial to this

effort, and he was always asking me tough questions to make me think hard about

the problem and force me to clarify my arguments.

iii



I have also received help from members of other research groups; they have

taken time to help answer my questions without obligation to do so. Members of

Lu Sham’s theory group at UC San Diego have been extremely helpful even while

doing research in competition with our own; Ren-Bao Liu, Semion Saikin, and, in

particular, Wang Yao have all taken time to help me. Experimentalists have also

offered much help. Alexei Tyryshkin provided invaluable incite (pointing out the

effects of strain, in particular) that has allowed me to match his experimental results

so beautifully. Jason Petta was also very willing to entertain my questions regarding

his experiments in double quantum dots in GaAs.

I must also acknowledge ARO, ARDA, and DTO for their generous QuaCGR

(quantum computing graduate student) fellowship and LPS-NSA for their support.

In addition, I appreciate the opportunity that I have had, as a QuaCGR, to attend

their annual Quantum Computing Program Review meetings which were informative

and helpful in terms of networking with people and sharing ideas in the field of

quantum computation.

Finally, I also appreciate the love and support from family and friends. I

have been fortunate in my life to be surrounded by many who have believed in my

potential. Thank you.

iv



Table of Contents

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Reduced Density Matrices and Decoherence . . . . . . . . . . . . . . 6
1.3 Geometrical Representation of a Single Qubit . . . . . . . . . . . . . 8
1.4 Dynamical Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 16
2.1 Solid State Qubit in a Spin Bath . . . . . . . . . . . . . . . . . . . . 16
2.2 The Spectral Diffusion Problem . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Stochastic Theories . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Non-Markovian Quantum Theory . . . . . . . . . . . . . . . . 21

3 The Qubit, the Bath, and Control Pulses 25
3.1 General Free Evolution Hamiltonian . . . . . . . . . . . . . . . . . . . 25
3.2 Types of Interactions (Energies) . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Zeeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Dipolar (Secular and Non-secular) . . . . . . . . . . . . . . . . 29
3.2.3 Hyperfine (Contact and Anisotropic) . . . . . . . . . . . . . . 30
3.2.4 Hyperfine-mediated (RKKY) . . . . . . . . . . . . . . . . . . 32
3.2.5 Indirect Exchange . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Summary of Interactions . . . . . . . . . . . . . . . . . . . . . 35

3.3 The Decoherence Problem Given a Pulse Sequence . . . . . . . . . . 37

4 The Cluster Expansion 41
4.1 Conceptual cluster expansion . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Initial Justification in Terms of Perturbation Theories . . . . . . . . . 46
4.3 Decoherence Via Cluster Contributions . . . . . . . . . . . . . . . . . 48

4.3.1 Decomposing into Cluster Contributions . . . . . . . . . . . . 49
4.3.2 Ideal cluster expansion . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Practical implementation of the cluster expansion . . . . . . . 55

4.4 Cluster Expansion in Summary . . . . . . . . . . . . . . . . . . . . . 60

5 Pulse Sequences for Dynamical Decoupling 63
5.1 Concatenated Dynamical Decoupling . . . . . . . . . . . . . . . . . . 65

5.1.1 Eliminating Successive Perturbative Orders . . . . . . . . . . . 67
5.1.2 Time Perturbation . . . . . . . . . . . . . . . . . . . . . . . . 69

v



5.1.3 Intra-bath Perturbation . . . . . . . . . . . . . . . . . . . . . 71
5.1.4 Magnus Expansion . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Periodic Dynamical Decoupling (e.g. CPMG) . . . . . . . . . . . . . 76

6 Applications in Specific Systems 78
6.1 Phosphorus Donor in Silicon . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Hahn echo spectral diffusion . . . . . . . . . . . . . . . . . . . 81
6.1.2 Cluster expansion convergence . . . . . . . . . . . . . . . . . . 86
6.1.3 Anisotropic hyperfine modulations and comparison with ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.3.1 Remarkable agreement with experiment . . . . . . . 97
6.1.3.2 Suppressing anisotropic hyperfine modulations . . . . 101

6.2 Gallium Arsenide Quantum Dots . . . . . . . . . . . . . . . . . . . . 107
6.2.1 Hahn echo spectral diffusion . . . . . . . . . . . . . . . . . . . 109
6.2.2 Cluster expansion convergence . . . . . . . . . . . . . . . . . . 114
6.2.3 Experiments in GaAs . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Periodic and concatenated dynamical decoupling . . . . . . . . . . . . 119
6.4 Nuclear Spin Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Conclusion 135
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 142

vi



List of Tables

3.1 Interactions and estimated energy scales . . . . . . . . . . . . . . . . 36

vii



List of Figures

1.1 Bloch sphere represention of a single qubit in a pure state. . . . . . . 9

1.2 Dephasing decoherence of a Bloch sphere. . . . . . . . . . . . . . . . 10

1.3 Hahn echo pulse sequence. . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Pulse sequence for the Carr-Purcell-Meiboom-Gill (CPMG) experi-
ment and resulting echoes. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Schematic for the spectral diffusion of a donor electron spin in Si:P. . 17

4.1 Processes in a nuclear spin bath. . . . . . . . . . . . . . . . . . . . . . 42

4.2 Near (not nearest) neighbor approximation and definition of L. . . . . 44

4.3 Clusters of nuclei connected by interactions. . . . . . . . . . . . . . . 46

4.4 Graphical representation of terms in a cluster decomposition. . . . . . 51

4.5 Graphical representation of one possible term in a pair approximation. 55

4.6 Overlapping pairs (2-clusters). . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Theoretical and experimental comparison of the Hahn echo decay for
a bound electron in Si:P. . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Theoretical Hahn echo decay for a bound electron in Si:P as a function
of the isotopic fraction, f , of 29Si. . . . . . . . . . . . . . . . . . . . . 85

6.3 Estimated errors of the calculated Si:P electron Hahn echo decay due
to overlapping clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Successive contributions to the cluster expansion for the Si:P electron
spin Hahn echo for 100% 29Si. . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Successive contributions to the cluster expansion for the Si:P electron
spin Hahn echo for natural Si. . . . . . . . . . . . . . . . . . . . . . . 91

6.6 AHF-induced ESEEM in Si:P fit to the Hahn echo decay experiment
for one particular applied magnetic field direction. . . . . . . . . . . . 98

viii



6.7 AHF-induced ESEEM in Si:P compared to Hahn echo decay exper-
iments at different magnetic field angles with two fitting parameters
per curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Comparison between the spectral diffusion fitting parameters of Fig. 6.7
and the theoretical predictions of Sec. 6.1.1. . . . . . . . . . . . . . . 100

6.9 Calculated maximum AHF-induced ESEEM modulations in natural
Si as a function of applied magnetic field strength. . . . . . . . . . . . 103

6.10 Special applied magnetic field directions that allow effective removal
of ESEEM induced by AHF-interactions with the nearest P donor
neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.11 Calculated Si:P ESEEM as a function of τ showing periodic suppres-
sion due to decoupling from the nearest P donor neighbors. . . . . . . 106

6.12 Theoretical Hahn echo decay times for GaAs quantum dots of various
sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.13 Theoretical Hahn echo decay times for GaAs quantum dots including
and excluding indirect exchange interactions. . . . . . . . . . . . . . . 113

6.14 Successive contributions to the cluster expansion for the GaAs quan-
tum dot spin Hahn echoes. . . . . . . . . . . . . . . . . . . . . . . . . 115

6.15 Theoretical periodic and concatenated pulse sequence echoes of a
donor electron in Si:P. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.16 Contributions to concatenated pulse sequence echoes of a donor elec-
tron in Si:P from different-sized clusters. . . . . . . . . . . . . . . . . 121

6.17 Theoretical periodic and concatenated pulse sequence echoes in GaAs
quantum dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.18 Contributions to concatenated pulse sequence echoes of a GaAs quan-
tum dot from different-sized clusters. . . . . . . . . . . . . . . . . . . 124

6.19 Theoretical nuclear spin echo decay of a P donor nucleus in GaAs. . . 129

6.20 Theoretical nuclear spin echo decay of a P donor nucleus in natural Si.131

6.21 Theoretical nuclear spin echo decay of a P donor nucleus in 100%
pure 29Si. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



List of Symbols and Abbreviations

qubit quantum bit.
SD Spectral Diffusion, dephasing decoherence in a spin bath.
NMR Nuclear magnetic resonance.
ESR Electron spin resonance.
FID Free induction decay.
DD Dynamical Decoupling.
CDD Concatenated Dynamical Decoupling.
CDD# CDD with # levels of concatenation.
CPMG Carr-Purcell-Meiboom-Gill; a periodic pulse sequence.
Si:P Phosphorus-doped silicon.
GaAs Gallium Arsenide.
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〈Ŵ 〉 Statistical average of Ŵ over initial bath states.

vE Echo of a generic pulse sequence, vE =
∥∥∥〈Ŵ 〉
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Chapter 1

Introduction

In order to motivate our work on decoherence, relevant to quantum compu-

tation and quantum information in general, we begin with a brief discussion of the

difference between classical and quantum information. Classical information is rep-

resented by a sequence of ones and zeroes, each known as a bit. Today’s digital

computers process these bits using binary logic and the result is quite powerful.

According to the quantum theory of physics, however, nature somehow stores in-

formation in a much richer, qualitatively different sense. The elements of quantum

information are called qubits (quantum bits) and can represent a superposition (a

mixture) of both zero and one. More importantly, multiple qubits, stored in the

states of different subatomic particles for example, can become entangled so that

their superposition states are interdependent; that is, the state of the system can be

an arbitrary superposition of various possible system states in such a way that may

not be factorable into individual qubit states. This will be explained in more detail

in Sec. 1.1. The important consequence of entanglement for quantum information

theory is that the potential information storage and processing of a quantum system

grows exponentially with the number of qubits (as opposed to linearly, by definition,

for classical bits).

Entanglement is, however, a double-edged sword. While it offers the poten-
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tial for exponential scaling of information, entanglement - with an uncontrolled

environment - causes quantum systems to lose coherent relationships among the

superposition states. This process is called decoherence. Strictly speaking, quan-

tum theory dictates that the quantum superposition and entanglement persists in

the larger system that includes the environment; however, the information of the

environment is assumed to be inaccessible due to its complexity so that the effect is

a loss of quantum information.

Decoherence is inevitable, particularly in a complex environment that would

be required in a quantum computer (a machine that would exploit the aforemen-

tioned exponential scaling of quantum information for computational tasks). On

the other hand, quantum error correction [2] may be employed to allow arbitrarily

long quantum computations in the presence of decoherence as long as the number

of possible coherent quantum operations in a sequence (generally with some par-

allelism) is above some threshold (this threshold depends on the specific quantum

computing architecture under investigation as well as theoretical assumptions made

in the estimate but is usually in the range of 104 to 106 coherent operations [3]).

This threshold is fairly stringent, and it therefore important to thoroughly study

decoherence in specific systems that hold promise for quantum computation if the

lofty goal of building a quantum computer is to be realized.

In this work, we study the decoherence of a solid-state spin quantum bit caused

by its interaction with a bath of nuclear spins. Solid-state semiconductors have been

extremely valuable in the digital revolution of classical computers because of their

scalability (i.e., the vast number of transistors that can be produced per square inch

2



surface of a computer chip). The solid-state environment also holds promise for

quantum information processing and other promising spintronics applications [1].

Furthermore, spin coherence times are expected to be long (& µs) compared with

charge coherence times (. ns) in solids. At achievable mK temperatures, phonons

in solids are frozen out. However, such temperatures are very high compared to the

nK energy scale (relative to Boltzmann’s constant) of dipolar interactions among

nuclear spins (justifying a random-bath treatment for this environment). With this

motivation, we study the decoherence induced by a nuclear spin bath in solid state

materials for the candidate qubits of either a localized electron spin or central nuclear

spin.

The important achievement of this work is our ability to computationally

study nuclear spin bath-induced decoherence with a fully quantum mechanical, mi-

croscopic theory. It is truly remarkable that this is even possible since the state space

of such a spin bath grows exponential with the number of spins (another consequence

of the exponential scaling of quantum information). However, we have devised a pre-

scription for decomposing such a problem into sub-problems that involve clusters of

few nuclear spins, and an expansion that converges (in many relevant regimes) as we

successively include contributions from clusters with increasing numbers of nuclei.

In this way, we can study the rate of decoherence in various solid state environments

as well as the effect of sequences of pulses (that manipulate the qubit at prescribed

times) designed to decouple the qubit from the bath and prolong coherence.
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1.1 Quantum Computation

A quantum computer is a machine that would exploit the exponential scaling,

with the number of qubits, of quantum information. It is not as straight-forward as

simply accessing this exponentially scaled information. The inputs and outputs of

the machine must be classical, ones and zeroes, because this is all we, as macroscopic

beings, can have access to directly. A quantum computer is still more powerful

than a classical computer because in the interim between the classical input and

output states, it may traverse the vast, exponentially expanded, quantum state space

(Hilbert space). To make this mathematically concrete, we can think of the quantum

computer as mapping classical inputs into a quantum state through a unitary (linear

and normalization-preserving) transformation; such a transformation may be used

to describe the time evolution of any quantum system. With N qubits, the input

may be any one of 2N possible bit sequences. The unitary transformation, Û , may

be represented, using the classical states as basis states, by any 2N × 2N complex-

valued matrix such that Û †Û = 1̂ (the superscript † indicates the adjoint operation

or the transpose and complex conjugate of the matrix) so that the normalization

of the transformed vector is preserved. The resulting quantum state can be any

linear combination (superposition) of classical states with complex coefficients. The

classical output is determined probabilistically with probabilities determined as the

squared modulus of the complex coefficient for each corresponding classical state in

the linear combination. In mathematical terms, a classical input, |n〉 (where n is

4



one of 2N possibilities) is transformed into a quantum state

|ψ〉 = Û |n〉 =
∑
m

cm|m〉, (1.1)

where the cm are complex coefficients of a representation of |ψ〉 as a linear com-

bination of classical basis states, |m〉. The probability of the quantum computer

producing an output of |m〉 is simply Pm = ‖cm‖2.

This unitary transformation, Û , is the engine of the quantum computation

and may be generated with quantum logic gates that operate on one or two qubits.

Only a small set of these logic gates are necessary in order to generate any ar-

bitrary unitary transformation; for example, universal quantum computation may

be accomplished by performing the controlled-not two-qubit logic gate in addition

to arbitrary single-qubit (rotation) gates [4]. An alternative approach to quantum

computation that does not use logic gates is to manipulate the system of qubits into

a highly entangled “cluster” state and then perform a sequence of measurements,

each chosen based upon previous measurements [5]. The effect is the same, and

which strategy to use will depend upon what is convenient to implement for a given

physical system.

Although we can not have direct access to the exponentially scaled quantum

information, a quantum computer can be much more powerful than a classical com-

puter for solving certain problems. A quantum computer can factorize numbers

with exponential speedup [6] (with respect to the number of bits in the number to

be factorized) over a classical computer. It could also perform certain search tasks

with a
√
n (n being the number of objects in the search space) [7] improvement over
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a classical computer. A quantum computer would also be naturally useful to per-

form quantum mechanics simulations [8]. These applications, in addition to more

recently discovered quantum algorithms [9], give ample justification for pursuing the

goal of building an actual quantum computer.

1.2 Reduced Density Matrices and Decoherence

The potential information content of a quantum mechanical system is greater

than the sum of the information content in its individual parts. This statement

comes as a trivial corollary to the observation that quantum information scales

exponentially with the number of qubits due to the possibility of entanglement. It

is therefore not possible, even in principle, to ascribe a quantum state to part of

a quantum system if it is entangled with another part of the system because, in a

manner of speaking, there is information contained by the entanglement itself (not

contained in either part independently). It is often desirable, however, to know as

much as possible about part of a quantum system without caring about the rest,

to which it may be entangled. For example, we want to study a quantum system

(e.g., a collection of qubits in a quantum computer) that interacts with a large,

complex bath, and we wish to study the effects of the interaction with the bath

(i.e., decoherence) without caring about the state of the bath itself except to the

extent that it affects the decoherence of the qubit. We can represent the incomplete

information we have about the quantum system without regard to the bath by using

a reduced density matrix.
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A density matrix simply represents a probability distribution over all possible

quantum mechanical states. For example, if, as far as we can say, a quantum system

is in state |ψj〉 with probability Pj for some set of j’s exhausting all possibilities,

then we write the density matrix of this system as

ρ̂ =
∑

j

Pj|ψj〉〈ψj|, (1.2)

where each |ψj〉〈ψj| is an outer vector product forming a second rank tensor. With

〈n|ψ〉 representing the projection of vector (state) |ψ〉 onto |n〉 (an inner product)

and 〈ψ|n〉 its complex conjugate, we may extract the matrix elements of ρ̂ via

ρnm = 〈n|ρ̂|m〉. If the state of the system is known with certainty, then the density

matrix, of the form ρ̂ = |ψ〉〈ψ|, is said to represent a pure state; otherwise, it is said

to represent a mixed state [4].

Suppose we represent the initial state of our quantum system of interest com-

bined with the bath as ρ̂0 in the general form of Eq. (1.2). For any quantum me-

chanical system, evolution through time can be defined by a unitary transformation

map, |ψ(t)〉 = Û(t)|ψ0〉. It follows, then, from the form of Eq. (1.2) that

ρ̂(t) = Û ρ̂0Û
†. (1.3)

This density matrix for the entire system that includes the bath contains much more

information than we want or need and is in general immensely complicated. Instead,

we want to work with a reduced density matrix that gives a probability distribution

for the possible states of the quantum system without regard to the final state of

the bath. This is done by tracing out the degrees of freedom of the bath using an
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operation called the partial trace. That is, given systems A and B, the reduced

density matrix for system A is obtained from the combined density matrix using

ρ̂A = TrB (ρ̂AB), (1.4)

where the partial trace is defined by

TrB (|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2|Tr (|b1〉〈b2|), (1.5)

for any states |a1,2〉 of system A and any states |b1,2〉 of system B [4]. Considering,

again, our system interacting with a bath, our system may start out in a pure

state independent from the bath such that ρ̂0 = ρ̂S ⊗ ρ̂B (with subscripts S and

B for system and bath respectively), but if the system and bath become entangled

through the evolution, Û , then the reduced density matrix of the system, TrB {ρ̂(t)},

will become a mixed state. The pure state becoming a mixed states through its

interactions with a bath is the hallmark of decoherence and represents a loss of

quantum information in the non-isolated system.

1.3 Geometrical Representation of a Single Qubit

A qubit is defined as a two-level quantum system. Given |0〉 and |1〉 as basis

states, its quantum state may be any linear combination of these with complex

coefficients, |ψ〉 = α|0〉+ β|1〉, normalized such that 〈ψ|ψ〉 = 1 ⇒ ‖α‖2 + ‖β‖2 = 1.

The overall complex phase of the state carries no physical meaning, but the relative

phase between the two states is relevant in terms of quantum information. Thus,
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Figure 1.1: Source: www.wikipedia.org. Bloch sphere represention of a single qubit

in a pure state.

we may write the general state of a qubit as,

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (1.6)

The state is thus defined by two angles θ and φ which may be represented by a point

on a sphere [Fig. 1.1]. The representation is conventionally called the Bloch sphere.

Subatomic particles with a spin of 1/2, such as an electron, are natural qubits

in their spin degree of freedom. The spin state of such a particle may be any linear

combination of up or down (with respect to any desired or convenient axis which

is conventionally labelled as the z axis). We use |0〉 ≡ |↓〉 ≡ |−〉 interchangeably

to represent the down state and |1〉 ≡ |↑〉 ≡ |+〉 to represent the up state. The

point on the Bloch sphere that represents the state of this qubit may be literally

interpreted as the direction of the spin.

Using the density matrix representation for a single qubit, allowing for mixed
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Figure 1.2: Source: M.A. Nielsen and I.L. Chuang, pg. 377, Quantum Computation

and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000).

Dephasing decoherence maps a Bloch sphere into a form with reduced x and y

components.

states as well as pure states, we may write

ρ̂ =
1

2

 1 + rz rx − iry

rx + iry 1− rz

 , (1.7)

where ~r = (rx, ry, rz) is a real-valued vector called the Bloch vector. For pure states,

the vector has a length of one and is the point on the Bloch sphere representative

of the state. For mixed states, it has a shorter length so that it lies within the

Bloch sphere. For a spin-1/2 particle, this vector represents the expectation value

of the spin. We can quantify the decoherence of an initially pure state according to

the length of the Bloch vector corresponding to the reduced density matrix after the

qubit and bath evolve. We can think of the decoherence of an arbitrary qubit state as

a map of the Bloch sphere onto a surface within the Bloch sphere. Figure 1.2 shows
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how depolarization (decoherence processes that can flip the spin) and dephasing

(decoherence processes that can change the relative phase, φ, of the up and down

states) affect the Bloch sphere [4]. Using the nomenclature [10] of the literature, T1

is a characteristic depolarization time while T2 is a characteristic dephasing time for

a qubit interacting with a bath.

1.4 Dynamical Decoupling

Quantum information in a system coupled to a bath may be preserved, to some

extent, by applying rapid control pulses to the system of interest in order to decouple

the system from the bath; typically the control is done with electromagnetic pulses

that use spin resonance to “target” desired spins. Such techniques have developed

over many (∼fifty) years in the field of nuclear magnetic resonance where there is a

strong demand for precise spectroscopy of complex molecules [11, 12, 13]. Dynamical

decoupling (DD) via pulse sequences has taken on a new role more recently in the

context of quantum computing [14, 15, 17, 18, 19, 20, 16, 21].

In the simplest case, a Hahn echo [22] is observed by applying a π-rotation

pulse to an ensemble of spins, about an axis perpendicular to a strong applied

magnetic field, midway through the evolution; this is illustrated in Fig. 1.3. The

strong applied magnetic field suppresses depolarization of the spins, so they only

decohere via dephasing. The Hahn echo will recover a signal from an ensemble of

spins that precess at different frequencies due to an inhomogeneous magnetic field

(this dephasing is known as inhomogeneous broadening). That is, an ensemble of
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Figure 1.3: Source: A. Schweiger and G. Jeschke, pg. 183, Principles of Pulse

Electron Paramagnetic Resonance (Oxford University Press, Oxford, NY, 2001).

(a) Pulse sequence for the Hahn echo experiment including a π/2 pulse for initial-

ization (not relevant in DD purposes). Numbers 1, 2, 3, and 4 label points in time

shown in diagram (b); (b) In a typical experiment, after the spins relax to lie along

an applied field, they are rotated by π/2 to lie perpendicular to the applied field

[1], the ensemble of spins dephase via inhomogeneous broadening after waiting for

a time τ [2], the spins are then rotated by π about an axis perpendicular to the

applied field [3], the spins finally refocus after waiting again for time τ [4] resulting

in the “echo” signal.
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Figure 1.4: Source: A. Schweiger and G. Jeschke, pg. 229, Principles of Pulse

Electron Paramagnetic Resonance (Oxford University Press, Oxford, NY, 2001).

Pulse sequence for the Carr-Purcell-Meiboom-Gill (CPMG) experiment and result-

ing echoes including a π/2 pulse for initialization (not relevant in DD purposes).

spins that are initially in phase, with the same φ using notation of Sec. 1.3, will go out

of phase, at a characteristic time-scale denoted [10] as T ∗2 , because they experience

different effective magnetic fields. The π-pulse of the Hahn echo will reverse the

effect of the local magnetic fields and bring the spins back into phase. With static,

inhomogeneous magnetic fields, there is no real decoherence that we are recovering

from (the spins are not entangling with a bath); the qubits individually maintain

coherence but dephase relative to each other in a way that is easily remedied with

the Hahn echo.

If the qubits, on the other hand, interact with a dynamical bath, the Hahn

echo also serves to partially decouple each qubit from its respective bath. It does

this because the effective interaction Hamiltonian averages out to zero over the

duration of the sequence (the first half before the π pulse is opposite that of the

second half). This leads to a cancellation of the first order of a Magnus expan-
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sion [23] of the system’s evolution operator and is the basis for DD schemes used

in NMR and proposed for quantum computation [13]. If the bath causes depolar-

ization as well as dephasing, the WAHUHA-4 sequence [24], which applies π-pulses

about alternating directions, may be used for DD. Periodic sequences, such as the

Carr-Purcell-Meiboom-Gill [25] sequence, illustrated in Fig. 1.4, are used in NMR

and known as the “bang-bang” control in quantum information literature [14]; these

sequences prolong overall coherence times with repetitions that are faster than the

dynamics of the decoherence process. Concatenated sequences [18, 19], with a re-

cursive structure, can do better by successively decoupling the system from the bath

to higher perturbative orders as will be discussed in Ch. 5.

1.5 Outline of the Dissertation

In this introduction, we have presented basic concepts about the problem of

decoherence as it pertains to quantum computation, and explained why the advent

of a quantum computer would hold so much promise. In Ch. 2 we describe the class

of qubit decoherence problems (that of solid-state spin qubits) for consideration in

this dissertation and present some historical background. In Ch. 3 we concretely

formulate the decoherence problems by specifying the various qubit-bath and bath-

bath interactions and discuss how we treat applied pulse sequences. Chapter 4

formulates our cluster expansion that will, quite remarkably, allow us to solve prob-

lems involving mesoscopic baths with full quantum mechanical rigor. Chapter 5

discusses specific pulse sequences that we may apply as a control to the qubit in
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order to decouple the qubit from the bath and prolong qubit coherence. In Ch. 6,

we present and describe results of applying our developed formalism and techniques

to some specific physical systems. We give concluding remarks in Ch. 7 and discuss

possible future work.
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Chapter 2

Background

In this chapter, we describe the type of decoherence problem being consider

in this dissertation, and we provide some historical background of the literature

pertaining to this problem. We consider a qubit represented by the spin of a localized

electron in a solid or by the spin of a donor nucleus in a solid. For now, we describe

the problem in terms of a localized electron spin qubit but nuclear spins have also

been proposed [26, 27, 28] for quantum memory storage and will be discussed later

in Sec. 6.4 where we demonstrate applications to specific systems. In Sec. 2.1, we

discuss the environment of a localized electron spin qubit in a solid state material

at low temperature (required to have any hope of implementing a solid state spin

quantum computer) and with a strong applied magnetic field that will suppress

longitudinal decoherence (e.g., decay in the z direction of the Bloch sphere). In

Sec. 2.2, we discuss some of the history in the study of decoherence for this system;

the applicable decoherence mechanism is known as spectral diffusion (SD).

2.1 Solid State Qubit in a Spin Bath

The spin decoherence mechanism known as spectral diffusion (SD) has a long

history [29, 30, 31, 32, 33, 34], and has been much-studied recently [35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45] in the context of spin qubit decoherence. To provide a physical
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B

Figure 2.1: The electron of a P donor in Si experiences spectral diffusion due to

the spin dynamics of the enveloped bath of Si nuclei. Of the naturally occurring

isotopes of Si, only 29Si has a net nuclear spin which may contribute to spectral

diffusion by flip-flopping with nearby 29Si. Natural Si contains about 5% 29Si or

less through isotopic purification. Isotopic purification or nuclear polarization will

suppress spectral diffusion in Si.
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picture for the theory to be presented in this dissertation we start by considering a

localized electron in a solid, for example, a donor-bound electron in a semiconductor

as in the doped Si:P system. Such a Si:P system is the basis of the Kane quantum

computer architecture [26] although this architecture exploits the P donor nucleus

for quantum information storage as well as the donor electron spin and our current

focus is the electron spin qubit. The electron spin could decohere through a number

of mechanisms. In particular, spin relaxation would occur via phonon or impurity

scattering in the presence of spin-orbit coupling, but these relaxation processes are

strongly suppressed in localized systems and can be arbitrarily reduced by lowering

the temperature. In the dilute doping regime of interest in quantum computa-

tion, where the localized electron spins are well-separated spatially, direct magnetic

dipolar interaction between the electrons themselves is not an important dephasing

mechanism [46]. Interaction between the electron spin and the nuclear spin bath is

therefore the important decoherence mechanism at low temperatures and for local-

ized electron spins. Now we restrict ourselves to a situation in the presence of an

external magnetic field (which is the situation of interest to us in this dissertation)

and consider the spin decoherence channels for the localized electron spin interact-

ing with the lattice nuclear spin bath. Since the gyromagnetic ratios (and hence the

Zeeman energies) for the electron spin and the nuclear spins are typically a factor of

2000 different (the electron Zeeman energy being larger), hyperfine-induced direct

spin-flip transitions between electron and nuclear spins would be impossible (except

as virtual transitions as will be discussed in Sec. 3.2.4) at low temperature since

phonons would be required for energy conservation. This leaves the indirect SD
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mechanism as the most effective electron spin decoherence mechanism at low tem-

peratures and finite magnetic fields. The SD process is associated with the dephasing

of the electron spin resonance due to the temporally fluctuating nuclear magnetic

field at the localized electron site. These temporal fluctuations cause the electron

spin resonance frequency to diffuse in the frequency space, hence the name spectral

diffusion. These fluctuations result from the dynamics of the nuclear spin bath due

to dipolar interactions between each other along with their hyperfine interactions

with the qubit. This scenario is illustrated by Fig. 2.1.

Spectral diffusion is, in principle, not a limiting decoherence process for silicon

or germanium based quantum computer architectures because these can, in princi-

ple, be fabricated free of nuclear spins using isotopic purification. Unfortunately this

is not true for the important class of materials based on III-V compounds, where

SD has been shown to play a major role [46, 35]. There is as yet no direct (e.g.,

GaAs quantum dots) experimental measurement of localized spin dephasing in III-V

materials, but such experimental results are anticipated in the near future. Indi-

rect spin echo measurements based on singlet-triplet transitions in coupled GaAs

quantum dot systems [38] give T2 times consistent with our theoretical results.

2.2 The Spectral Diffusion Problem

Spectral diffusion is a dephasing decoherence (i.e., a transverse or T2-type re-

laxation) process, affecting only component of the Bloch vector that is perpendicular

to the magnetic field. It thus contributes T2 decoherence time rather than T1 the
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decoherence time (Ref. [10] details our definition of T1, T2, and T ∗2 ). The T1 time

for these systems at low temperature is known to be much longer than this T2 time.

Experimentally, this T2-type decay is observed from Hahn echoes in order to remove

the effect of inhomogeneous broadening of an ensemble of spins that is associated

with T ∗2 . There are many different pulse sequences that can remove inhomogeneous

broadening effects and yield different T2 decoherence times, making its definition

somewhat arbitrary. We can, however, define the T2 time as the FID (with no ap-

plied pulses) for a single qubit instead of an ensemble [40, 43, 44]. This characteristic

decay time would be relevant, for example, in a quantum computer that addresses

individual qubits in a calibrated way (to account for the different phase precession

of each qubit). On the other hand, defining such characteristic decay times is an

oversimplification that may hold little relevance in an architecture that employs

sophisticated DD and error correction schemes. The important question for us to

consider with regard to SD is, rather, how the qubit will decohere given a specific

DD pulse sequence.

2.2.1 Stochastic Theories

Previous attempts at analyzing this SD decoherence have been based on quasi-

classical stochastic modeling. Herzog and Hahn [29] assigned a phenomenological

Gaussian probability distribution function for the Zeeman frequency of the investi-

gated spin without considering the dynamics of the nuclear bath. Later, Klauder and

Anderson [32] used a Lorentzian distribution function instead in order to account
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for a power-law time dependence observed in experiments by Mims and Nassau [31].

Zhidomirov and Salikhov [33] devised a more sophisticated theory, with a wider

range of applicability, in which the flip rate of each spin in the bath was charac-

terized by Poisson distributions. Very recently de Sousa and Das Sarma [35], in

considering SD by nuclear spin flip-flops, extended this theory to characterize flip-

flop rates of pairs rather than individual spins within a phenomenological model.

2.2.2 Non-Markovian Quantum Theory

In this dissertation, we present a microscopic theory that is based entirely on

the quantum mechanics of the system without resorting to phenomenological distri-

bution functions. No Markovian assumption nor any assumption about the form of

the solution was used to obtain our results. We formulate the problem in terms of

the reduced density matrix of the qubit that results from time evolution produced by

an approximate but microscopic Hamiltonian. The problem obviously involves too

many nuclear spins to solve directly using exact Hamiltonian diagonalization (with

a state space that grows exponentially with the number of bath spins); however,

the cluster expansion method we devise can give successive approximations to the

exact solution (convergent for short times, but often out to the tail of the decay such

that the full solution is obtained for practical purposes). This cluster expansion,

described in Ch. 4, breaks the problem into smaller problems involving small subsets

of nuclei in the bath and is derived from a mathematically formal cluster decompo-

sition. The fact that we only consider dephasing of the qubit, with no longitudinal
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relaxation, is important to the derivation of this cluster decomposition because it

allows us to formulate the problem solely in terms of the quantum evolution of the

nuclear bath; the qubit enters the problem in a trivial way, involving only its z spin

operator which commutes with all of the operators in the problem. If we had to

include the qubit as a non-trivial quantum object in the quantum evolution, then

the clusters could not be treated independently, each interacting with the qubit in a

non-trivial (non-commuting) way. This will be discussed in more detail in Sec. 4.3.1

but it is important to note this limitation of our technique and remark that this

may be an essential key that allows this problem to be feasibly solved.

Our technique allows us not only to solve the FID problem, but also consider

qubit-controlling pulse sequences that may allow one to decouple the qubit from the

bath using strategies introduced in Sec. 1.4 and expounded upon in Ch. 5. Because

our cluster expansion technique requires that the qubit enter the problem in a trivial

way (such that qubit operators commute with all other relevant quantum operators),

we are restricted to treating ideal, instantaneous pulses; that is, we restrict ourselves

to the regime in which the control pulse operates on a short time-scale relative to

the dynamics of the system.

We first presented our cluster expansion technique in Ref. [39] where we studied

the Hahn echo decay in the Si:P system. We published a more detailed formulation

of this cluster expansion along with additional results applied to GaAs quantum dots

in Ref. [41], and we used this technique to study nuclear spin memory [48]. Our

lowest-order solution, the pair approximation, was reproduced by Yao et al. [40]

using an entirely different approach, providing independent validation. This group
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later developed a formalism that goes beyond the pair approximation using a dia-

grammatic linked-cluster expansion approach [45] that is essentially based upon the

same perturbative arguments as our approach but is computed differently in prac-

tice; their approach offers some insight into the physical processes undergone by the

nuclear spin bath, but our technique is more straight-forward computationally (we

need not theoretically study and examine each possible process individually) and

provides an effective way to answer numerical decoherence questions in a simple way

that is not prone to calculation mistakes.

It is important to study the performance of other DD pulse sequences, beyond

the Hahn echo, for qubit coherence preservation in the nuclear spin bath system. A

number of these different pulse sequences have been tested numerically [47] for small,

artificial systems (with bath sizes on the order of 20 nuclear spins) to give some in-

dication of their performance. We have studied [42] the Carr-Purcell-Meiboom-Gill

(CPMG) [25] periodic pulse sequences in physically relevant mesoscopic baths using

our cluster expansion technique demonstrating improved qubit coherence (over the

total pulse sequence time) with each applied pulses (assuming ideal pulses). Con-

catenations of the Hahn echo sequence were analyzed in Refs. [43, 44] for mesoscopic

quantum-dot baths, and they demonstrated that, with increased concatenation lev-

els, coherence can be maintained while increasing the time between pulses (not just

increasing coherence time for the entire sequence duration). Their analysis, however,

is restricted to the pair approximation which we demonstrate, in this dissertation,

to be insufficient to study decoherence in these schemes; the concatenate sequence

will eliminate lowest perturbative orders successively and therefore require compu-
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tation of higher orders in the cluster expansion to yield the correct solution [49].

This dissertation explores this series of concatenated pulse sequences in Ch. 5 and

presents more accurate decoherence results by evaluating all appropriate orders of

the cluster expansion and testing cluster expansion convergence by evaluating an

additional expansion order.
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Chapter 3

The Qubit, the Bath, and Control Pulses

In Ch. 2 we introduced the basic problem that is the topic of this dissertation:

the decoherence of a spin qubit, either the spin of a localized electron or that of

a donor nucleus, induced by a nuclear spin bath. In this chapter we will describe

the various physical qubit-bath and intra-bath interactions of the system, and show

how we formulate the basic decoherence problem for an arbitrary pulse sequence.

Section 3.1 first presents the form of a general free evolution Hamiltonian that will

be useful in the formulations of subsequent chapters. In Sec. 3.2, we discuss typical

qubit-bath and intra-bath interactions pertaining to physical systems of interest.

Finally, Sec. 3.3 will formulate the decoherence problem in the context of a general

sequence of ideal π-pulses.

3.1 General Free Evolution Hamiltonian

We begin with a general model for our qubit and decoherence-inducing bath.

This model will be used in Chs.4 and 5 in the formulation of perturbative expansions.

Specific types of interactions are discussed in Sec. 3.2, but these specifics will not

be needed in the formulations of these two subsequent chapters.

In general, a qubit can decohere via depolarization as well as dephasing. How-

ever, by splitting the two energy levels of the qubit, depolarization can be effectively
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suppressed in a low-temperature environment because of energy conservation; we are

then left only with dephasing which affects only the transverse component of the

Bloch vector (see Sec. 1.3). For typical solid state spin qubit candidates, this can

be feasibly done by applying a magnetic field on the order of one Tesla (to split

the energies) and refrigerating the device to sub-Kelvin temperatures. With this

as justification, we will disregard interactions that do not preserve the polarization

(longitudinal component of the Bloch vector) of our spin qubit. This will also prove

to be a useful (perhaps necessary) simplification in the formulation of our cluster

expansion in Ch. 4. To be rigorous, one should consider higher-order processes with

virtual spin-flip transitions of the qubit (preserving the polarization by the end of

the process); such a process is considered in Sec. 3.2.4 and is not negligible, in

general, even with a moderately strong applied magnetic field. However, in such

a case, one may use an effective Hamiltonian to account for these processes while

maintaining qubit polarization as a symmetry of the Hamiltonian.

A general Hamiltonian that preserves the qubit polarization may be written

in the form Ĥ =
∑

±|±〉Ĥ±〈±| where Ĥ± acts only upon the bath’s Hilbert space.

We can split Ĥ± into qubit dependent and independent parts, so that, without loss

of generality (considering that constant terms in the Hamiltonian are irrelevant),

Ĥ± = ±Ĥqb + Ĥb, (3.1)

Ĥb = Ĥb0 + εĤbb, (3.2)

where Ĥqb is the qubit-dependent part that plays the role of coupling the qubit to the

bath. The remaining qubit-independent term, Ĥb, is further split into interaction-
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independent energies in Ĥb0 (e.g., Zeeman energy of a spin bath), and interactions

between bath constituents (intra-bath interactions) in Ĥbb. As a bookkeeping pa-

rameter, ε will be useful for carrying out perturbations with respect to intra-bath

interactions.

In the mathematical formulations in Ch. 4, it will be useful to make a further

assumption that the intra-bath interaction in Ĥbb can be formulated as a sum of

bilinear terms, a product of two operators acting on different lattice sites in the bath

(e.g., different nuclear spins). This not a very limiting assumption and is satisfied

by all of the intra-bath interactions discussed in Sec. 3.2.

3.2 Types of Interactions (Energies)

This section discusses typical types of interactions that may occur between a

solid-state spin qubit and the nuclear spin bath or amongst nuclei at different lattice

sites in the bath. Throughout this section, we equate units of energy and inverse

time with ~ = 1. In Sec. 3.2.1, we discuss the Zeeman interaction, which plays the

important role of suppressing qubit depolarization and is responsible for independent

energies of the bath nuclear spins, Ĥb0. Section 3.2.2 specifies the form of the dipolar

interactions which often dominate the coupling between nuclear spins in the bath,

playing the role of Ĥbb; for a donor nucleus qubit, these will also serve as the qubit-

bath interactions, Ĥqb, as well. The hyperfine interactions of Sec. 3.2.3 provide the

qubit-bath interactions, Ĥqb, for the localized electron spin qubit. The hyperfine-

mediated and indirect exchange interactions, of Secs. 3.2.4 and 3.2.5 respectively,
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are additional effective interactions that may couple nuclear spins via electrons in

the solid. The hyperfine-mediated interaction is long-ranged and mediated by the

spin of a localized electron qubit. Its effects, however, are largely cancelled out,

with a sufficiently strong applied magnetic field, by the pulse sequences considered

in this dissertation. Section 3.2.6 provides a summary of all of these interactions

and contains a convenient table showing their estimated magnitudes (scale).

3.2.1 Zeeman

The energy of a spin due to an applied magnetic field is known as its Zeeman

energy. We take the applied field’s direction to be along the z-axis, and its strength

as B. The Zeeman energy of a localized electron is given by

ĤZ
e = γSBŜz = ΩeŜz, (3.3)

with γS as its gyromagnetic ratio and Ŝz is the z-component of the electron spin

operator. The Zeeman energy for a nuclear spin, labelled n, is similarly defined as

ĤZ
n = −γnBÎnz = ωnÎnz, (3.4)

where the conventional sign of γn is defined in an opposite sense of γS.

The Zeeman energy of the qubit serves to suppress depolarization, leaving only

the dephasing decoherence problem (that is, T2 < T1). Typically, γS ∼ 107(s G)−1

and γn ∼ 104(s G)−1; the difference in these orders of magnitude helps to suppress

direct hyperfine flip-flops (discussed in Sec. 3.2.3).
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3.2.2 Dipolar (Secular and Non-secular)

The dipolar interaction among spins in quantum mechanics is a straight-

forward quantization of the classical magnetic interaction between two dipoles. For

two spins, labelled n and m with corresponding spin operators of În and Îm, this is

given by [50]

ĤD
nm =

γnγm~
2

[
În · Îm
R3

nm

− 3(În ·Rnm)(Îm ·Rnm)

R5
nm

]
, (3.5)

where Rnm is the vector joining nuclei n and m. This can be expanded into a

form containing only operators of the type Î+, Î−, or Iz (raising, lowering, and z

projection spin operators respectively) [50]. The dipolar interaction between nuclear

spins in semiconductors has a typical strength of ĤD
nm ∼ 102 s−1, much smaller than

typical nuclear Zeeman energies of about 108 s−1 in an applied field of one Tesla.

Therefore, energy conservation arguments allows us to neglect any term that changes

the total Zeeman energy of the nuclei. This will leave us with the following secular

contribution:

ĤD
nm ≈ bnm


2În+Îm− − 4Înz Îmz , if γn = γm

−4Înz Îmz , otherwise

, (3.6)

bnm = −1

4
γnγm~

1− 3 cos2 θnm

R3
nm

, (3.7)

where θnm is the angle of Rnm relative to the magnetic field direction. Note that the

flip-flop interaction between nuclei with different gyromagnetic ratios is suppressed

by Zeeman energy conservation in the same way that the non-secular part of the

dipolar interaction is suppressed. This occurs, for example, in GaAs because the
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two isotopes of Ga and the one isotope of As that are present have significantly

different gyromagnetic ratios.

3.2.3 Hyperfine (Contact and Anisotropic)

The hyperfine (HF) interaction between the spins of a localized electron and

a nucleus in the lattice consists of a contact part (proportional to the probability

that the electron is at the particular site) and a dipolar part (an expectation value

of the dipolar interaction determined by the electron’s wave-function). These are

dependent upon the spatial wave-function of the electron that we denote as Ψ(x).

In its general form, the hyperfine interaction is ĤHF
n = În ·An · Ŝ, where the tensor

A is

Aij = γIγS

(
8π

3
|Ψ(0)|2 δij +

〈
Ψ

∣∣∣∣3xixj − r2δij
r5

∣∣∣∣Ψ〉) , (3.8)

with the electron’s wave-function, Ψ(x), taken relative to the nucleus in question.

The first term of Eq. (3.8) is the isotropic Fermi-contact HF interaction that is

proportional to the probability of the electron being at the nuclear site. The second

term can be anisotropic and is responsible for the anisotropic hyperfine interaction

(AHF). Which part of the interaction is more important depends on the electron

wave-function. For example, the GaAs conduction band minimum occurs at the Γ-

point of the Brillouin zone and the electron Bloch function is atomic s-type, so that

HF interaction in GaAs between an electron near the conduction band minimum

and the surrounding nuclear spins is essentially isotropic. On the other hand, the

conduction band minimum for Si occurs close to the X-point of the Brillouin zone
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so the electron Bloch function has significant contributions from p- and d-atomic-

orbitals [51, 52] so that, as a result, the HF interaction in such systems has strong

anisotropic characteristics. The effects of the AHF interaction in Si:P will be studied

in Sec. 6.1.3.

Typical HF interaction strengths yield An ∼ 106 s−1. With typical Zeeman

energies of ∼ 1011 s−1 for an applied magnetic field of one Tesla, Zeeman energy

conservation will suppress depolarization effects due to terms in the HF interaction

that involve the Ŝx and Ŝy (or equivalently Ŝ+ and Ŝ−) operators. In low fields, these

so-called direct HF interactions do play a significant role and have been studied

recently [53, 54]. For strong applied fields considered in this work, we use the

following approximate form for the HF interaction between the electron and some

nucleus labelled by n:

ĤHF
n ≈ AnŜz Înz +BnŜz Înx′ . (3.9)

We can often disregard the dipolar part of the HF interaction and therefore neglect

the anisotropic contribution (i.e., Bn ≈ 0); then An is determined solely by the

Fermi-contact energy:

An =
8π

3
γSγn~|Ψ(Rn)|2, (3.10)

where Rn denotes the location of this nth nucleus. The Ŝz Îz part of the dipolar

interaction, when it isn’t negligible, may also contribute to this isotropic part of the

HF interaction. The remaining terms of the dipolar interaction that involve Ŝz will

determine the AHF interaction strength, Bn, and quantization axis, x′, of Eq. (3.9).
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3.2.4 Hyperfine-mediated (RKKY)

Although an applied magnetic field will suppress direct HF interactions that

flip the electron spin, it is important to consider the possibility of virtual electron

spin flips. This can lead to a non-local interaction between any two nuclei in the

bath (mediated by their common interaction to the electron spin). This interaction,

well-known [50, 55] as the RKKY interaction, diminishes with an increased strength

of an applied magnetic field; however, the vast number of possible non-local nuclear

pairings can make the effect significant even in a moderately strong applied magnetic

field.

The HF-mediated interaction emerges perturbatively from the off-diagonal

Fermi-contact HF interaction, V̂ =
∑

nAn(Ŝ+În− + Ŝ−În+)/2, in the limit of a

large electron Zeeman energy. Applying the transformation

P̂ = exp

[∑
n

An

2(Ωe − ωn)

(
Ŝ+În− − Ŝ−În+

)]
, (3.11)

to Ĥ with Ĥ = ĤZ
e +

∑
n ĤZ

n +
∑

n ĤHF
n , Ĥ′ = P̂ ĤP̂−1 produces, in its lowest order

(with respect to An/Ωe), the non-local HF-mediated interaction [40],

ĤHFM
nm =

∑
n6=m

AnmÎn+Îm−Ŝz. (3.12)

In applying this transformation, we must rotate the basis states slightly; this results

in a “visibility” loss of coherence estimated as
∑

n (An/Ωe)
2 [40] and is typically

very small.

Neglecting AHF interactions, which is often small (as in GaAs) or can be

treated separately (as in Si:P), the qubit-bath interaction results from Fermi-contact
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HF interactions. With a large Zeeman energy to suppress electron spin flips, the

qubit-bath interaction is a combination of the diagonal Fermi-contact HF interaction

and the HF-mediated interaction of Eq. (3.12):

Ĥqb =
1

2

∑
n

AnÎnz +
1

2

∑
n6=m

AnmÎn+Îm−. (3.13)

This HF-mediated interaction has a significant impact upon the free induction decay

(FID, free evolution decoherence neglecting inhomogeneous broadening), and it has

been studied recently both analytically [54] as well as numerically [40, 43, 44] (using

cluster-type treatments inspired by our own [39, 41]).

If we neglect any other intra-bath interactions so that Ĥ± = ±Ĥqb, it is easy

to see that Û+
0 Û

−
0 = 1̂. Because of this simple fact, the HF-mediated interactions

are suppressed by the Hahn echo sequence and the other dynamical decoupling se-

quences discussed in Ch. 5. This suppression was earlier [56] observed from exact

numerical simulations of small systems and also discussed [40] in the context of

larger systems using a pair approximation (equivalent to the lowest order of our

cluster expansion [39]). Because we only consider dynamical decoupling sequences

in the results of Ch. 6, we will neglect the HF-mediated interactions and only dis-

cuss the estimated visibility loss,
∑

n (An/Ωe)
2, imparted by the transformation

of Eq. (3.11). This is fully justified in the pair approximation of the echo decay,

but to be completely rigorous, one should consider the possibility that higher order

processes involving a combination of HF-mediated along with other intra-bath in-

teractions (such as dipolar) could play an important role for some pulse sequences

(such as concatenated sequence which cancel out lower order processes, as we will
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see in Sec. 5.1, making higher order processes relevant). Our results (of Ch. 6) are,

however, valid in the limit of a strong applied magnetic field.

3.2.5 Indirect Exchange

Interactions between nuclei may be further mediated via HF interactions with

virtual electron-hole pairs [55, 58, 59, 60, 61]. When this is cause by the Fermi-

contact HF interaction, it is known as the pseudo-exchange interaction and takes

the form [40]

ĤEx
nm = −bEx

nmÎn · Îm. (3.14)

The leading contribution to this pseudo-exchange for nearest neighbors may be

expressed as [58, 59]

bEx
nm =

µ0

4π

γEx
n γEx

m

R3
nm

a0

Rnm

, (3.15)

where γEx
n is the effective gyromagnetic ratio determined by renormalization of the

electron charge density [40]. This interaction has been experimentally studied many

years ago [59, 60, 61].

In GaAs quantum dots, these interactions can be comparable to the direct

dipolar interactions of Sec. 3.2.2. There may be other local interactions between

nuclei in the bath, such as the indirect pseudo-dipolar interaction [55] or intra-

nuclear quadrapole interaction, but the dipolar and indirect exchange interactions

alone account for the line-shapes of NMR [40]. Any such local interactions may be

easily included in our formalism. However, much of our results in Ch. 6 neglect this

interaction which is important in GaAs. Including these interactions, as we do in
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Fig. 6.13, gives a quantitative correction to coherence times that is within an order

of magnitude and has no significant qualitative effect. To be more accurate, the

indirect exchange interactions should be included in applications to GaAs.

3.2.6 Summary of Interactions

Table 3.1 lists the interactions that we have discussed and indicates their

rough energy scales in units of inverse time (using ~ = 1) and units of temperature

(using kB = 1) assuming an applied magnetic field strength on the order of one

Tesla. This table provides a convenient way to compare the magnitude of different

energies in order to justify various perturbations and approximations. For example,

our formalism (particularly the cluster expansion of Ch. 4) requires that we neglect

any interactions that flip the qubit (electron) spin. This is justified by noting that

Ωe � ωn, An. The only caveat is the consideration of higher order processes with

virtual electron spin flips; this is accounted for by the HF mediated interaction,

Anm. The temperature scales in this table are also convenient. Because Ωe ∼ 1 K,

sub-Kelvin temperatures are required to to suppress electron spin flips mediated by

phonons. Also, if T � ωn ∼ 1 mK, we are justified in using a high temperature

approximation for the initial density matrix of an equilibrated nuclear spin bath; if

1 mK & T � bnm ∼ 1nK, we can use a similar high temperature approximation

but should account for some polarization of the bath.

Putting all of these interactions together for the electron spin qubit and relat-
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Table 3.1: Interactions and estimated energy scales for a 1 T applied field. (A

similar table appears in Ref. [44].)

Interaction Symbol Scale (~ = 1) Scale (kB = 1)

Zeeman (electron) Ωe 1011 s−1 1 K

Zeeman (nucleus) ωn 108 s−1 1 mK

Contact HF An 106 s−1 10 µK

Dipolar bnm 102 s−1 1 nK

Indirect exchange bEx
nm 102 s−1 1 nK

HF mediated Anm 10 s−1 10−1 nK

ing these interactions to the formulation of Sec. 3.1, we have

Ĥqb =
1

2

∑
n

AnÎnz +
1

2

∑
n6=m

AnmÎn+Îm−, (3.16)

Ĥb0 =
∑

n

ωnÎnz, (3.17)

Ĥbb =
1

2

∑
n6=m

(
ĤD

nm + ĤEx
nm

)
(3.18)

Because ωn � bnm, it is usually appropriate to use the secular approximation of

Eq. (3.6); this is not necessary in our formalism and we have performed test calcu-

lations without this approximation, but our results in Ch. 6 use the limit of a strong

applied magnetic field where we apply this secular approximation. Furthermore, as

discussed in Ch. 3.2.4, the HF-mediated interaction may be neglected in the limit of

a strong applied magnetic field, particularly for the pulse sequences that we treat.

These HF-mediated interactions (Anm) don’t really fit will into this general form
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anyways because these are simultaneously qubit-bath and intra-bath interactions

(it is possible to incorporate this into our formalism in a more appropriate way but

with some extra complications). Our calculations also neglect the indirect exchange

interaction of Sec. 3.2.5 though this is not entirely justified in GaAs. The model

that we predominantly use in this work, then, uses

Ĥqb =
1

2

∑
n

AnÎnz (3.19)

Ĥbb =
∑
n6=m

bnm


2În+Îm− − 4Înz Îmz , if γn = γm

−4Înz Îmz , otherwise

, (3.20)

and Ĥb0 is treated as a constant and is therefore irrelevant in determining the dy-

namics of the system.

3.3 The Decoherence Problem Given a Pulse Sequence

To formulate our decoherence problem, we will consider a qubit in an initially

pure state (having no initial entanglement with the bath), so that we may write

the initial density matrix as a product of qubit and bath states, ρ̂0 = ρ̂q0 ⊗ ρ̂b. In

order to perform the cluster decomposition of Ch. 4, we must assume that the initial

density matrix of the bath, ρ̂b, has no correlations among different nuclear spins;

that is,

ρ̂b ≡
∑

j

Pj|Bj〉〈Bj| =
∏
⊗ n

(∑
j

pnj|bnj〉〈bnj|

)
(3.21)

where Pj represents a probability for the bath to be in state |Bj〉; in its more specific

non-correlated form, pnj represents a probability for bath state n to be in the state

|bnj〉. It is often appropriate to assume that the initial spin bath is in thermal
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equilibrium with pnj ∼ exp (−ωn/T ) (in kB = 1 units) since the Zeeman energy,

for an applied field on the order of one Telsa, dominates the nuclear energies. In

our calculations, we assuming the limiting case of a completely random initial bath;

that is, we assume the effective nuclear temperature to be infinite which is valid for

T � ωn ∼ mK. With the assumption of infinite nuclear temperature, we simply use

a uniform distribution in the probabilities of nuclear states. When the temperature

is too low for this approximation to be valid, it is not difficult to incorporate the

effect of resulting nuclear polarization in the calculations.

To quantify the dephasing decoherence, as represented in Fig. 1.2, one can

consider the decay of the qubit’s Bloch vector (the spin’s expectation value) over

time with the qubit in an initial state that is perpendicular the z-axis (which de-

fines both the applied magnetic field direction and the quantization axis of the spin);

such an initial state will exhibit maximal decoherence due to dephasing. Such an

initial qubit state has the general form |ψ〉 =
(
|−〉+ eiφ|+〉

)
/
√

2, being in a equal

linear combination of up and down (represented by |+〉 and |−〉 states for future

convenience). Dephasing of this initial state can be considered as the interference

between evolved bath states corresponding to the up, |+〉, versus down, |−〉, com-

ponents of the initial spin qubit state. If we define Û+ and Û− as the evolution of

the bath for any considered pulse sequence with the initial spin qubit being up or

down respectively, the length of the resultant Bloch vector of the reduced density

matrix, quantifying the decoherence or the magnitude of the pulse sequence echo,
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may be written

vE =

∥∥∥∥TrB

(
Û+ρ̂B

[
Û−
]†)∥∥∥∥ (3.22)

=

∥∥∥∥∥∑
j

Pj

〈
Bj|
[
Û−
]†
Û+|Bj

〉∥∥∥∥∥ (3.23)

=

∥∥∥∥〈[Û−
]†
Û+

〉∥∥∥∥ =
∥∥∥〈Ŵ 〉

∥∥∥ , (3.24)

where the 〈...〉 operator in the last line is a shorthand for the appropriate weighted

average of expectation values over the bath states, and Ŵ ≡
[
Û−
]†
Û+. We use vE

to denote a generic pulse sequence echo, or we will use different subscript text for

representing the echo of specific pulse sequences (e.g., vHahn, vCPMG, or vCDD).

In this formulation we assume that the Û± evolution operators may be defined

within the state space of the bath (e.g., no qubit operators). This restricts our

treatment to solely ideal π-rotation pulses in our pulse sequence. A finite width

pulse, for example, would require the inclusion of the qubit in our state space for

evolution operators. As mentioned in Sec. 2.2.2, this restriction is important in the

formulation of our cluster expansion in Ch. 4. It may be possible to extend our

treatment beyond this restriction, but that is beyond the current scope of this work

(it may be important future work).

We assume, therefore, that our pulse sequence consists of ideal π-rotation

pulses; this is a good approximation when the pulses can be applied on a much

shorter time-scale than the dynamics of the system. The Û± operators of an ar-

bitrary pulse sequence may then be constructed in the following way. The free
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evolution operators (with no pulses) are defined as

Û±
0 (t) = exp

(
−iĤ±t

)
, (3.25)

with Ĥ± taken from the general free evolution Hamiltonian in Sec. 3.1. Each π-pulse

effectively switches + and −. The Hahn echo evolution operator is then written

Û±
Hahn = Û∓

0 (τ)Û±
0 (τ), (3.26)

with τ as the time before an after the applied pulse. The evolution operators,

Û± for any pulse sequence, with ideal π-pulses, can be constructed as sequence of

alternating Û±
0 (tn) and Û∓

0 (tn) operators with appropriate delay times, tn.
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Chapter 4

The Cluster Expansion

Our decoherence problem of a solid state spin qubit interacting with a dephas-

ing nuclear spin bath has been reduced, via Eq. (3.24), to the problem of evaluat-

ing 〈Ŵ 〉 ≡
〈[
Û−
]†
Û+

〉
where Û± are the bath evolution operators for an initial

up/down spin qubit for the desired pulse sequence and 〈...〉 averages expectation

values over bath states according to their probability. Because the Hilbert space

grows exponentially with the number of spins in the bath, this problem can not

be feasibly solved without some simplification or approximation. In this chapter,

we describe a cluster expansion of 〈Ŵ 〉 that will yield successive approximations

that are feasibly computable. The convergence of this expansion will depend upon

relative energy scales of the interactions and specifics of the pulse sequence and its

delay times. We demonstrate, however, the utility and versatility of this expansion

by studying specific applications, relevant to quantum computing architectures, in

Ch. 6. In Sec. 4.1, we provide a conceptual description of this cluster expansion;

Section 4.2 provides some justification for why and when we might expect such an

expansion to converge; Section 4.3 supplies the mathematical formalism and practi-

cal implementation of this expansion; finally, Sec. 4.4 gives some concluding remarks

for this chapter.
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Figure 4.1: Some possible nuclear “processes” where the numbered two-sided arrows

represent a sequence of flip-flops between pairs of nuclei. (a) depicts a two-nuclei

process and (b) depicts a three-nuclei process.

4.1 Conceptual cluster expansion

Consider independent, simultaneous nuclear “processes” that may contribute

to the decay of the Hahn echo. For example, a process may involve a pair of nuclei

flip-flopping [Fig. 4.1(a)] which results in fluctuations of the effective magnetic field

seen by the qubit spin, or it may involve three nuclei interdependently [Fig. 4.1(b)],

etc. The dynamics of such a process results from the local coupling between nuclei

(with coupling constants {bnm}), and hyperfine coupling to the electron (with cou-

pling constants {An}). Any number of these processes may occur “simultaneously”

as long as they involve disjoint sets of nuclei and are thus independent of each other

(processes that share a nucleus are not independent and would have to be combined

into a larger process).

Using this (not yet well-defined) concept of nuclear processes, the cluster ex-

pansion may be described, ideally, as follows. The cluster expansion will include

processes that involve a successively increasing number of nuclei. Except when we

consider AHF interactions (Sec. 6.1.3), an isolated nucleus in our model does not
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contribute to spectral diffusion. Thus, at the lowest nontrivial order we include any

simultaneous processes involving two nuclei (pairs); that is, we can involve any num-

ber of pair processes together as long as the pairs do not overlap (i.e., involve the

same nucleus). At the next order, we will additionally include processes that involve

three nuclei. Next, we include four nuclei processes which cannot be decomposed

into two pair processes (these would already have been included). To summarize,

let us say that the kth order of the expansion will include processes of up to k nuclei.

Because all processes involving a given number of nuclei are included at each

order of this expansion, and because these processes are independent (proven for-

mally in Sec. 4.3), rather than working with individual processes, we can work with

contributions due to each given “cluster” of nuclei (for now, simply defined as a set of

nuclei); such a “cluster contribution” includes contributions from all of the processes

involving all nuclei in that cluster in an interdependent way (i.e., not separable into

independent sub-processes). Thus we may say that the kth order of the expansion

includes contributions from clusters up to size k. These “contributions” are not

necessarily additive in the solution because we must account for simultaneous but

independent processes (from disjoint clusters). The idea is simply to include the

possibility of interdependent processes involving clusters of successively increasing

size.

We deliberately use the word “cluster” to imply proximity between the mem-

bers of the set of nuclei involved in interdependent processes. In fact, a near neighbor

approximation, in which the constituent nuclei of a contributing cluster must be in

the same neighborhood, is justified by the 1/R3
nm dependence of the intra-nuclear
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Figure 4.2: L is loosely defined as the average number of neighbors in a near neighbor

approximation that converges to the exact answer. For example, we can include

neighbors up to a distance r0 away such that increasing this maximum neighbor

distance in the near neighbor approximation (where non-neighbor interactions are

neglected) does not significantly change the solution.

coupling constant [Eq. (3.7)]. Consider a near (not necessarily nearest) neighbor

approximation with an adjustable parameter r such that we ignore interactions be-

tween nuclei that are a further apart than r. If a near neighbor approximation is

applicable, the Hahn echo solution in this approximation (in principle, whether or

not it is feasible to compute) will converge with an acceptable level of accuracy at

some finite value of r much smaller than the system size. Let us define r0 to be the

value of r in which this acceptable convergence is achieved. Let L be the number

of nuclei within a range of r0 from any nucleus, on average, as shown in Fig. 4.2.

Applying this near neighbor approximation to our cluster expansion, L determines

the way in which the number of contributing clusters scales with cluster size. This

has important implications for the convergence of the cluster expansion.

To be specific, the convergence of the cluster expansion depends upon two

factors. The first is how the number of contributing clusters scales with cluster size
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(which relates to L as we have already said). The second is how the average contribu-

tion of clusters scales with cluster size. Clusters only contribute via interdependent

processes; thus the set of nuclei in a contributing cluster must form a connected

graph where edges in the graph connect neighbors [Fig. 4.3(a)]. When counting

the number of clusters of a given size, we have N sites to choose from for the first

nucleus, but there are only O (L) possibilities (roughly) for each additional nucleus

because it must neighbor one of the previous choices. This simple analysis does not

compensate for over-counting due to permuting labels and other such details, but

it provides the correct scaling in terms of N and L; that is, there are O
(
NLk−1

)
contributing clusters of size k. Our first scaling factor is then L since the number of

clusters as a function of cluster size scales in powers of L. The other scaling factor

will rely upon some perturbation theory to describe how cluster contributions them-

selves scale with an increase in cluster size. We will show, in Sec. 4.2, that, according

to two complementary perturbation theories, cluster contributions scale, with size,

in orders of some small perturbation parameter, λ. That is, a cluster contribution

of size k, where one or both of these perturbation theories (that will be discussed

shortly) are applicable, will scale as O
(
λk
)
. Thus λ is assigned as the other scaling

factor, and we may loosely argue that we expect the cluster expansion to converge

when λL � 1 because the total contribution from clusters then decreases as we

increase in cluster size. This reasoning will become more rigorous when we go on to

explain how we implement this cluster expansion.
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Figure 4.3: (a) The set of nuclei in a contributing cluster must form a connected

graph. Edges represent neighbor connections. The set of blue nuclei on the left form

a valid cluster. The set of green nuclei on the upper right are not fully connected so

they do not form a valid cluster. (b) A set of bnm factors in a term of an expansion

of 〈Ŵ 〉 determines a set of disjoint clusters (the connected subgraphs formed from

bnm edges).

4.2 Initial Justification in Terms of Perturbation Theories

Before we delve into the details of our cluster expansion, we first discuss when

and why we might expect cluster contributions to diminish with increasing cluster

size. These will be based upon two different perturbation theories: the time pertur-

bation and the intra-bath perturbation. In the time perturbation, we expand Ŵ in

orders of the time between pulses; for example, Taylor expand Û±
0 = exp (−iH±τ)

and collect orders of τ . In the intra-bath perturbation, we treat intra-bath interac-

tions as a perturbation in the Hamiltonian, expanding the Hamiltonian’s eigen-states

and eigen-energies in orders of ε. The former is expected to be convergent (at least,

for small system sizes or with respect to a small cluster) when the time between

pulses is small compared to the dynamics of the system, and the latter is expected
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to be convergent (for a small system or cluster) when the qubit-bath interaction is

strong compared with the intra-bath interactions. For typical cases of an electron

spin qubit, nuclei near the center of the electron’s wave-function tend to have a much

stronger coupling to the qubit than its coupling to other nuclei while the opposite

is true for nuclei further from the electron center. In this case, the intra-bath per-

turbation is applicable to the near nuclei while the time perturbation is applicable

to the far nuclei (since the dynamics of these interactions is relatively slow). In this

sense, the two perturbation theories are complementary.

We assume that the qubit-bath interaction Hamiltonian, Ĥqb is a sum of in-

teractions with individual nuclei in the bath, and that the intra-bath interaction

Hamiltonian, Ĥbb, is a sum of bilinear operators coupling only pairs of nuclei. We

can then relate the size of a cluster contribution to its lowest perturbation order, in

either perturbation theory, by noting that there is a limit to the possible number

of Ĥbb (bilinear operator) factors that can arise in terms of an expanded Ŵ for

a given perturbation order. In the intra-bath perturbation theory, with λ = ε,

there can be at most k factors of Ĥbb in the kth order of the perturbation because

ε accompanies each factor of Ĥbb. The same argument can be used for the time

perturbation, λ = τ ; each factor of Ĥbb must be accompanied by a factor of τ by

dimensional analysis arguments (time versus energy). Tighter restrictions can be

made for specific pulse sequences, but the trend is that more Ĥbb factors implies a

higher perturbative order in either perturbation theory.

The bilinear operators of Ĥbb can be thought of as the “glue” that binds the

clusters together because without them, the lattice sites in the bath act indepen-
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dently of each other. Following this reasoning, a limit in the number of Ĥbb factors

will set a limit on the size of the cluster that can contribute such a term. Conversely,

a cluster contribution must have a minimum number of Ĥbb factors, determined

monotonically by the size of the cluster, which corresponds to a minimum time or

intra-bath perturbation order. Though the details of these bounds will depend upon

the pulse sequence employed and interactions that are treated, the general trend is

that cluster contributions scale, with their size, in orders of λ (used to represent

either perturbation). For simplicity, then, we say that a cluster of size k gives a

contribution of order λk.

4.3 Decoherence Via Cluster Contributions

In Sec. 4.1, we gave a rough, conceptual description of our cluster expansion

to guide the reader’s intuition and present some basic ideas. At this point, we will

develop the rigorous mathematical formalism that relates the idea of simultane-

ous, independent nuclear processes contributing to the Hahn echo directly to the

evaluation of 〈Ŵ 〉 needed to compute the qubit’s decoherence, or pulse sequence

echo. We will decompose 〈Ŵ 〉 into a sum of products of cluster contributions. Each

cluster contribution will effectively contain the sum of contributions from all pro-

cesses involving, inseparably (i.e., interdependently), all nuclei in the cluster. Such

a decomposition requires that processes involving disjoint sets of nuclei are truly

independent and interchangeable. This requirement is met by proving, as we shall,

that a cluster contribution is independent of external clusters.
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These cluster contributions need not be computed by analyzing the various

“processes” involving each set of nuclei. The diagrammatic, linked cluster expan-

sion approach of Ref. [45] does require consideration of these various processes (such

as depicted in Fig. 4.1); while that approach can provide insight into the distinct

physical processes involved, our approach lumps the net result of these processes

together in a simple, automated way. The decomposition of 〈Ŵ 〉 into cluster contri-

butions will be used recursively to define the cluster contributions themselves; this

is shown in Sec. 4.3.1. With these cluster contributions concretely defined, we then

discuss, in Sec. 4.3.2, how we mathematically define the ideal cluster expansion that

we have conceptually described. This ideal expansion is useful for understanding

some basic ideas, but in order to practically perform calculations on large systems,

some further approximation techniques must be used. This practical implementation

of the cluster expansion is explained in Sec. 4.3.3.

4.3.1 Decomposing into Cluster Contributions

Consider expanding Ŵ into a sum of products with respect to intra-bath

coupling such that bilinear operators of Ĥbb appear as factors of each term. For

example, such an expansion could be made by Taylor expanding the exponentials of

U±
0 (τ) = exp (−iH±τ) and then distributing through these sums. Each term in such

an infinite expansion involves a set of nuclei through the bilinear operators. In the

language of graph theory, each bilinear operator factor may be represented by edges

(between nodes n and m); then the clusters are the sets of nuclei in each connected
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subgraph (each of these being involved in an interdependent process). Figure 4.3(b)

illustrates an example of this. In this way we begin to relate our concept of clusters

of interdependent processes to an expansion of 〈Ŵ 〉.

With these concepts in mind, we show how to decompose 〈Ŵ 〉 into independent

contributions from different clusters of nuclei in the bath. We first define ŴS to be

the same as Ŵ when only considering nuclei in the set S. In order to show that

cluster contributions are independent in a factorable way, we consider a particular

cluster (or set) of nuclei contained in S, C ⊆ S, and extract 〈ŴC〉 from 〈ŴS〉. We

note that ŴS − ŴC ⊗ ŴS−C, as expanded in bilinear operators, must involve cluster

that bridge C and S − C; that is, all of its terms will contain bilinear operators

such that one operator is in C and the other in S − C. Therefore, terms of ŴS that

involve cluster C (independent from other clusters) must be contained in ŴC⊗ŴS−C.

Because ŴC and ŴS−C operate on disjoint subspaces of the Hilbert space, it follows

that 〈ŴC ⊗ ŴS−C〉 = 〈ŴC〉 × 〈ŴS−C〉 in a bath that is initially uncorrelated as

in Eq. (3.21). Now if we define Ŵ ′
C as the sum of only those terms in ŴC whose

bilinear operators fully connect all of the nuclei in the set C (such that the terms

each involve all nuclei in C), then 〈Ŵ ′
C〉 defines a cluster contribution. Using the

above arguments, we may then decompose 〈ŴS〉 as

〈ŴS〉 =
∑

{Ci} disjoint,
Ci 6= ∅, Ci ⊆ S

∏
i

〈Ŵ ′
Ci
〉 (4.1)

= 1 +
∑

{Ci}6=∅ disjoint,
Ci 6= ∅, Ci ⊆ S

∏
i

〈Ŵ ′
Ci
〉, (4.2)

where the summation of Eq. (4.1) is over all possible sets, {Ci}, of disjoint nonempty
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Figure 4.4: Set of all possible sets, {Ci}, of disjoint contributing clusters contained

in a set, S, of four nuclei as an example. Contributing clusters are of size 2 or greater

(a single nucleus gives no contribution on its own). The cases on the left involve

2-nuclei, middle ones involve 3-nuclei, and the ones on the right are the trivial cases

of {Ci} = ∅ or {Ci} = {S}. Such possibilities are iterated over in the summation of

Eq. (4.1).

clusters, Ci, each of which is contained in or equal to S. In other words, it iterates

over all possible ways of dividing any part of S into disjoint clusters as depicted in

Fig. 4.4. The product is over all clusters in each set. Despite the index, i, the order

is irrelevant and permutations do not count as distinct cases. Extracting the trivial

{Ci} = ∅ term yields Eq. (4.2), shown explicitly to avoid confusion or ambiguity.

The unique existence of such a decomposition follows from the fact that any 〈Ŵ ′
C〉

must be well-defined independent of any nuclei outside of C.

We can use Eq. (4.1) itself to obtain an unambiguous expression for any 〈Ŵ ′
C〉.

We do this by applying Eq. (4.1) to the case in which S = C and pulling out the term,
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from the summation, in which {Ci} = {C} leaving only sets in which all Ci 6= C:

〈ŴC〉 = 〈Ŵ ′
C〉+

∑
{Ci} disjoint,
Ci 6=∅, Ci ⊂ C

∏
i

〈Ŵ ′
Ci
〉, (4.3)

so that

〈Ŵ ′
C〉 = 〈ŴC〉 −

∑
{Ci} disjoint,
Ci 6=∅, Ci ⊂ C

∏
i

〈Ŵ ′
Ci
〉. (4.4)

Equation (4.4) provides a recursive definition of a cluster contribution. Starting with

the computation of 〈ŴC〉, which may feasibly be calculated by direct diagonalization

of Ĥ±
C for small clusters, one must subtract terms that involve multiple independent

processes and processes that do not involve all of the nuclei in C. It is a direct

consequence of the decomposition given by Eq. (4.1).

To ensure that Eq. (4.4) is well-understood, we show more explicit results

for clusters of size one through four. Apart from AHF-induced effects, a single

isolated nucleus does not contribute to spectral diffusion. In typical uses of the

cluster expansion, therefore, 〈Ŵ ′
C1
〉 = 〈ŴC1〉 − 1 = 0 for any C1 cluster of size one

(|C1| = 1). It follows that for 2-clusters, 〈Ŵ ′
C2
〉 = 〈ŴC2〉−1 (with |C2| = 2), having no

contributing proper sub-clusters. For 3-clusters, we must subtract off contributions

from contained pairs:

〈Ŵ ′
C3
〉 = 〈ŴC3〉 − 1−

∑
C2 ⊂ C3,
|C2|=2

〈Ŵ ′
C2
〉. (4.5)

For 4-clusters, we must also subtract off contributions from contained 3-clusters and
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the products of contributions from contained disjoint pairs:

〈Ŵ ′
C4
〉 = 〈ŴC4〉 − 1−

∑
C2 ⊂ C4,
|C2|=2

〈Ŵ ′
C2
〉 −

∑
C3 ⊂ C4,
|C3|=3

〈Ŵ ′
C3
〉

− 1

2

∑
A

⋃
B = C4,

|A|=|B|=2

〈Ŵ ′
A〉〈Ŵ ′

B〉 (4.6)

The factor of one-half in the last term is needed to compensate for the fact that A

and B may be swapped in the summation; it is only a consequence of the notation

used here (where A and B are interchangeable labels).

4.3.2 Ideal cluster expansion

We are now able to compute cluster contributions to be used in the evaluation

of our cluster expansion. Revising Eq. (4.1) slightly, we may write the following

expression for the ideal cluster expansion up to kth order:

〈Ŵ 〉(k) =
∑

{Ci} disjoint,
Ci 6=∅, |Ci|≤k

∏
i

〈Ŵ ′
Ci
〉. (4.7)

In order to estimate the error of the kth order of the expansion, we can compare it

with the (k+ 1)th order which must include contributions from k+ 1 sized clusters.

One way to convert 〈Ŵ 〉(k) into 〈Ŵ 〉(k+1) is to add additional terms to the sum in

which we replace any k-cluster contribution of an existing term with any (k + 1)-

cluster contribution generated by adding one neighboring nucleus to the original

k-cluster. In doing so, a replacement must be made because the original k-cluster

becomes disqualified when we introduce the new (k + 1)-cluster which contains it

(due to the requirement that the clusters be disjoint). This approach will account
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for all new sets of {Ci} containing a (k + 1)-cluster (since any (k + 1)-cluster can

be made by adding a nucleus to a k-cluster); however, cases will be over-counted

because many k-clusters can be used to build the same (k + 1)-cluster. This is

unimportant because our goal now is to estimate the error of 〈Ŵ 〉(k) relative to

〈Ŵ 〉(k+1) and overestimating this error is just as good. Proceeding along these lines,

we first separate out the k-cluster contributions:

〈Ŵ 〉(k) =
∑

{Ci,Dj} disjoint,
0<|Ci|<k, |Dj |=k

∏
i

〈Ŵ ′
Ci
〉
∏

j

〈Ŵ ′
Dj
〉. (4.8)

This performs the same summation over sets of disjoint clusters as in Eq. (4.7) except

that we label k-clusters as Dj and the smaller clusters as Ci. With these k-clusters

now set apart, we can estimate the error of 〈Ŵ 〉(k) relative to 〈Ŵ 〉(k+1) by noting

that the sum of all (k + 1)-cluster contribution replacements of 〈Ŵ ′
Dj
〉 are roughly

O (λL) × 〈Ŵ ′
Dj
〉. Recall that λ was introduced as a perturbation parameter such

that a cluster contribution of size k scales as O(λk), and L is the average number

of neighbors so that there are, roughly speaking, O (L) (k+1)-clusters that may be

built out of one k-cluster. Thus

〈Ŵ 〉(k+1) =
∑

{Ci,Dj} disjoint,
0<|Ci|<k, |Dj |=k

∏
i

〈Ŵ ′
Ci
〉 ×

∏
j

〈Ŵ ′
Dj
〉 [1 +O (λL)] . (4.9)

If we explicitly include these (k + 1)-clusters, they would have relative corrections

of O (λL) to account for (k + 2)-clusters and so forth. This provides a more rigor-

ous argument for our previous assertion that the cluster expansion converges when

λL � 1.
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Figure 4.5: One possible combination of simultaneously included pair contributions.

The red/dark circles are the nuclei whose processes are being considered.

4.3.3 Practical implementation of the cluster expansion

Equation (4.7) directly implements the conceptual cluster expansion as de-

scribed in Sec. 4.1 (the inclusion of contributions from all clusters up to size k);

however, it is impractical for calculating results in large systems. At the lowest

nontrivial order, we would need to sum over all possible products of disjoint pair

contributions; for example, Fig. 4.5 depicts one such combination of disjoint pairs.

It is simply not feasible for a computer to iterate through all such possibilities when

dealing with the large baths (N & 106) that we treat. However, we can effectively

obtain all possible combinations by making products of the form
∏

C

[
1 + 〈Ŵ ′

C〉
]
.

Distributing through a given factor yields the possibility of excluding, via the 1

term, or including, via the 〈Ŵ ′
C〉 term, that cluster. Therefore, such a product

gives the sum of all possible combinations of simultaneous cluster processes (for the

clusters included in the product). Unfortunately, this will yield combinations that

involve overlapping clusters (that are therefore not independent). These overlapping

clusters will introduce an error that, in principle, may be corrected in successive or-

ders of an approximation.
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With this approach, the lowest nontrivial order of the expansion may be im-

plemented with

〈Ŵ 〉(2) ≈
∏
|C2|=2

[
1 + 〈Ŵ ′

C2
〉
]
, (4.10)

producing all combinations of pair contributions along with some extraneous terms,

such as overlapping pairs as depicted in Fig. 4.6(b). For a moment, let us disregard

these erroneous terms and consider the consequence of this approximation. If we

take the logarithm of both sides, we can convert the product on the right-hand side

of Eq. (4.10) into a convenient sum:

ln
(
〈Ŵ 〉(2)

)
≈

∑
|C2|=2

ln
(
1 + 〈Ŵ ′

C2
〉
)

(4.11)

≈
∑
|C2|=2

〈Ŵ ′
C2
〉
[
1 +O

(
〈Ŵ ′

C2
〉
)]
, (4.12)

where Eq. (4.12) follows from the Taylor expansion of ln
(
1 + 〈Ŵ ′

C2
〉
)

for 〈Ŵ ′
C2
〉 � 1,

which we will shortly justify in a self-consistent way. If we assume that 〈Ŵ ′
C2
〉 is

small for all (or most) of the C2 pairs, then

〈Ŵ 〉(2) ≈ exp [Σ2(τ)], (4.13)

Σ2(τ) =
∑
|C2|=2

〈Ŵ ′
C2
〉. (4.14)

For this discussion, we will assume that the bath is unpolarized so that, by symmetry

of the system with respect to up and down, 〈Ŵ 〉 is always real-valued. It follows that

−1 ≤ 〈ŴC2〉 ≤ 1; therefore, −2 ≤
[
〈Ŵ ′

C2
〉 = 〈ŴC2〉 − 1

]
≤ 0. Because 〈Ŵ ′

C2
〉
∣∣∣
τ=0

=

〈ŴC2〉
∣∣∣
τ=0

− 1 = 0, Σ2(τ = 0) = 0 and becomes increasingly negative (initially at

the very least) as τ is increased. For a large system, we expect Σ2(τ) to decrease

monotonically to a negative value that is −O (LN) [i.e., 〈Ŵ ′
C2
〉 have become random
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and there are O (LN) pairs] so that Eq. (4.13) exhibits a decay form. The first part

of the decay, when Σ2(τ) & −1 so that 〈Ŵ 〉(2) & e−1, is what interests us the most.

When 〈Ŵ 〉(2) & e−1 the average pair contribution will be, at most, O (1/LN), self-

consistently justifying the approximation of Eq. (4.13) relative to Eq. (4.12) when

N is large (as it is for systems of interest). Increasing τ much beyond this point

will bring us to the tail of the decay in which 〈Ŵ 〉 ≈ 〈Ŵ 〉(2) � 1. To state this in

a physically intuitive way, the decoherence of spectral diffusion is caused by many

nuclei collectively such that each potentially flip-flopping nuclear pair contributes

only a small amount to the overall dephasing before coherence is completely lost.

For practical purposes (i.e., for time-scales prior to reaching the tail of the echo

decay), we thus regard each pair contribution to be O (1/LN). Now let us discuss

the extraneous overlapping pairs of Eq. (4.10) that we have thus far disregarded.

We can now think of these cases, and their corrections, in orders of 1/N with each

increase in the number of overlapping clusters. The lowest order correction will

therefore remove cases of two pairs that overlap with each other. For any given

pair, there are O (L) pairs that can overlap with it, each of which has a contribution

of O (1/LN) as discussed above. Therefore in estimating the error of Eq. (4.10) we

may write

〈Ŵ 〉(2) =
∏
|C2|=2

(
1 + 〈Ŵ ′

C2
〉
[
1 +O

(
1

N

)])
. (4.15)

Applying this error estimate to Eq. (4.13), we have

〈Ŵ 〉(2) = exp

(
Σ2(τ)

[
1 +O

(
1

N

)])
. (4.16)

An intuitive way to think about the smallness of this error is to imaging picking a
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few pairs in the bath at random (since these pair contributions are assumed small,

considering many pair contributions multiplied together is unnecessary). For a large

bath, it is very unlikely, with a probability ∼ O (1/N), to pick overlapping pairs (or

the same pair multiple times).

Because a cluster contribution scales in orders of λ as we increase the cluster

size, this approach may be used for higher order cluster contributions provided that

λ � N (typically, λ � 1 where the cluster expansion is applicable). Taking

either λ � 1 or λ ∼ 1, we may write, as an extension of the above approach to

higher orders,

ln
(
〈Ŵ 〉(k)

)
=

k∑
j=2

Σj(τ)

[
1 +O

(
1

N

)]
, (4.17)

Σj(τ) =
∑
|C|=j

〈Ŵ ′
C〉. (4.18)

Note that Σk(τ) ∼ Σk−1(τ) ×O(λL), since there are roughly O (L) times as many

k-clusters as (k − 1)-clusters and on average each k-cluster contribution, by the

definition of λ, is O (λ) times that of the average (k − 1)-cluster. With this in

mind, we see that, under the cluster expansion, ln
(
〈Ŵ 〉

)
is effectively expanded,

additively, in powers of (λL).

In addition to the expansion in cluster size, we may also successively correct

for the O (1/N) errors of overlapping clusters. This is done by starting with the

smallest number of overlapping clusters of the smallest sizes; that is, start with the

case of two overlapping pairs (Fig. 4.6). Each additional cluster included in the set

of overlapping clusters being considered will multiply O (1/N) to the correction, and

each additional nucleus added to any cluster will multiply O (λL) to the correction.
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(      )
2

a) b)

Figure 4.6: The practical implementation of the cluster expansion approximates

the ideal cluster expansion up to errors resulting from overlapping clusters. At the

lowest order, such errors involve overlapping pairs. (a) A single pair multiplied by

itself (i.e., a pair overlapping itself) and (b) two pairs overlapping by sharing a

nucleus.

For our purposes, we will only consider the correction for two overlapping pairs as

a check to verify that the approximation made in Eq. (4.17) is valid.

There are two cases to consider for this lowest order correction of overlapping

clusters: the same pair multiplied by itself [Fig. 4.6(a)] which was introduced by the

approximation of Eq. (4.12), and two different pairs that overlap [Fig. 4.6(b)] which

originates from Eq. (4.10). These cases are, respectively, eliminated, to lowest order

(two pairs and only two pairs that overlap), by adding the following to Eq. (4.17):

Σ∗
2(τ) = −1

2

∑
|C2|=2

[
〈Ŵ ′

C2
〉
]2
, (4.19)

Σ∗
3(τ) = −1

2

∑
|A

⋃
B|=3,

|A|=|B|=2

〈Ŵ ′
A〉〈Ŵ ′

B〉, (4.20)

so that

ln
(
〈Ŵ 〉(k)

)
= Σ2(τ) + Σ∗

2(τ) + Σ∗
3(τ) (4.21)

+
k∑

j=3

Σj(τ)

[
1 +O

(
1

N

)]
.
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Exponentiating Eq. (4.21) then expanding and distributing this exponential into a

sum of products form will yield the sum of all products of disjoint cluster contribu-

tions, as in Eq. (4.7), plus extraneous terms of overlapping clusters. However, all

cases of only two pairs overlapping with each other (including a pair multiplied by

itself) will be removed as a result adding in Σ∗
2(τ) and Σ∗

3(τ). There will remain

higher-order errors with more than two overlapping clusters or overlapping clusters

larger than pairs; in fact, additional higher-order errors are introduced by the Σ∗
2(τ)

and Σ∗
3(τ) corrections itself. For this reason, it is difficult to derive higher-order cor-

rections (you must correct errors introduced by lower order corrections). We can,

however, regard this lowest order correction as an estimate of the error caused by

these extraneous overlapping clusters:

ln
(
〈Ŵ 〉(k)

)
=

k∑
j=2

Σj(τ) +O (Σ∗(τ)) , (4.22)

Σ∗(τ) = Σ∗
2(τ) + Σ∗

3(τ). (4.23)

Note that Σ∗
2(τ) and Σ∗

3(τ) are both ≤ 0 and therefore add constructively (otherwise

we would want to take absolute values in order to estimate the error conservatively).

Fortunately, calculations of Σ∗(τ) indicate that it is a minor correction for practical

purposes. Such calculations verify the argument that these are O (1/N) errors [at

least for practical values of τ for which 〈Ŵ 〉 & e−1].

4.4 Cluster Expansion in Summary

The cluster expansion method that we have developed in this section is very

powerful and quite general. The disjoint cluster decomposition [Eq. (4.1)] could be
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used to take the trace of any evolution operators described by Hamiltonians with

pairwise (or even higher order) interactions. In the context of decoherence problems,

it is important that the qubit enters the problem in a trivial way (only via the Ŝz

operator) to avoid needing to include it as a kind of “super-node” in all clusters;

this would make it difficult to break up the problem into separate and independent

problems that involve small clusters. Furthermore, we must assume that the bath

is initially uncorrelated in order to treat clusters independently. Beyond these as-

sumptions, the decomposition is completely general. This decomposition may then

be used to form an expansion [Eq. (4.7)] that converges when the sum of cluster

contributions decreases with cluster size (i.e., λL � 1). In order to practically

compute this expansion for a large system, we need to use approximations such as

Eq. (4.15) or Eq. (4.17) which have the additional requirement that each cluster

contribution be small [e.g., O (1/N)] so that extraneous overlapping clusters arising

from these approximations are small. This is, in principle, a formally exact, sys-

tematic expansion, and its convergence may be tested by comparing Σj(τ) for at

least j = 2, 3, and 4 as well as Σ∗(τ). It is important to compute Σ4(τ) as well

as Σ3(τ) because, in an unpolarized bath, all odd orders of λ for both the time

and intra-bath perturbation theories are eliminated by symmetry [41]; therefore, 3

cluster contributions are actually O (λ4).

We conclude this section by remarking that, besides being elegant and useful

for understanding the expansion, the natural logarithm form of the Hahn echo given

by Eq. (4.22) has the advantage that it is convenient to compute Σj(τ) and Σ∗(τ)

using statistical sampling (Monte-Carlo) techniques. Rather than computing the
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full sum, randomly selected terms may be sampled and averaged in order to obtain

an estimate for each sum. This can save a lot of computation time and makes this

method powerful for large, complicated systems.

62



Chapter 5

Pulse Sequences for Dynamical Decoupling

The formalism of Ch. 4 is generally applicable to any sequence of ideal π-

rotation pulses as described in Sec. 3.3. Typically, these pulses use electromagnetic

spin resonance to address the qubit spin without affecting the bath directly. Any

technique that will rotate the qubit, as long as this rotation is fast relative to the

dynamics of the bath, is considered a pulse. A pulse sequence refers to a series of

rotations and delays (free evolution), at the end of which the hope is to restore the

qubit to its original state (up to a known rotation) with little decoherence induced

by the bath.

Applying specific sequences of rotating pulses can be an effective strategy to

decouple the qubit from the bath. In this chapter we will discuss the strategy

of using both periodic and concatenated sequences of pulses for the purposes of

dynamical decoupling (DD). We start with the simple Hahn echo [22] sequence that

was illustrated in Fig. 1.3. It is designed to remove the effects of inhomogeneous

broadening, dephasing that results from inhomogeneity of the magnetic field when

measuring the signal from an ensemble of “qubit” spins at different locations. The

decay of the echoes as a function of τ is typically used to measure the “intrinsic”

T2 dephasing time of these spins in order to distinguish it from the T ∗2 time-scale

of the inhomogeneous broadening; a more appropriate T2, however, would be the
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time-scale of free induction decay (FID) [40], the decay of a single spin’s expectation

value (with a known bath polarization) as a result of free evolution.

The Hahn echo decay is not a strictly proper measurement of T2 because

this sequence offers dynamical decoupling beyond refocusing spins that are inho-

mogeneously broadened. This decoupling occurs because there are no interactions

between the qubit and the bath in the time-averaged Hamiltonian (proportional to

Ĥ+ + Ĥ−); as a consequence, the evolution operators preserve qubit coherence in

the lowest order of a Magnus [23] expansion. It is known [14] that repeating such

a sequence, known as periodic dynamical decoupling (PDD), at a rate that is fast

compared to the dynamics of the system will prolong the overall coherence time

of the qubit(s). Concatenating such a sequence, known as concatenated dynamical

decoupling (CDD), can often do a better job of decoupling the qubit from a bath

by preventing the buildup of errors that plague periodic sequences [18].

The effective concatenation of the Hahn echo series was considered in Ref. [43];

there it is asserted that this concatenation successively decouples the qubit from the

bath in orders of a time expansion for the decoherence decay. This CDD series will

be analyzed in Sec. 5.1 where we will show how it eliminates successive orders in

both the time and intra-bath perturbations [49] that relate to the cluster expansion

of Ch. 4. Sections 5.1.2 and 5.1.3 analyze the lowest order echo result in the time and

intra-bath perturbations respectively, and Sec. 5.1.4 discusses the Magnus expansion

in order to relate our work to more standard treatments of DD. Section 5.2 will

discuss the consequences of repeating the evolution of any level of this concatenated

series; such PDD can be used for flexibility if one does not wish to be constrained

64



by the concatenation series’ need for the number of time segments (e.g., between

pulses) to be a power of two. We also relate the discussion to the known CPMG

(Carr-Purcell-Meiboom-Gill) periodic series that we analyzed in Ref. [42].

The time (τ) and intra-bath (ε) perturbations are only consequential, for a

large bath, because of their relationship to the cluster expansion of Ch. 4; the

cluster expansion extends the applicability of these perturbations to large systems

when the system size overwhelms the smallness of the perturbation. In that chapter,

a correspondence was made between an expansion in the size of clusters of lattice

sites to orders in either the time or intra-bath perturbation. Note that as levels

of the concatenated dynamical decoupling (CDD) sequences discussed in Sec. 5.1

eliminate successive orders of either perturbation, there is a corresponding need to

incorporate larger cluster sizes to yield the true lowest-order result. This invalidates

the use of the pair approximation in Refs. [43, 44] to analyze the effectiveness of the

CDD series; clusters larger than pairs (2-clusters) must be included for any CDD

level beyond the first level (i.e., the Hahn sequence) [49].

5.1 Concatenated Dynamical Decoupling

A concatenated pulse sequence is one that is defined by recursion. At level

zero, we have free evolution for a time τ . At the first level, we insert pulses between

τ -length free evolutions in order to compose a dynamical decoupling sequence, one

in which the qubit and the bath are decoupled in the time-averaged Hamiltonian.

The next level replaces the τ -length free evolution embedded in the first level with
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the sequence of the first level itself.

In concatenating the Hahn sequence, we apply an extra π-pulse (either at the

beginning or the end) in order to return the qubit to its original state (apart from de-

coherence). Using X to denote the π rotations around the x axis (arbitrarily chosen

as a direction perpendicular to the applied field) this sequence may be recursively

defined as [19]

pl :=


τ , if l = 0

Xpl−1Xpl−1 , otherwise

(5.1)

With each concatenation, we do to the previous sequence what the Hahn echo does

to free evolution and in this way we obtain improved dynamical decoupling. More

general concatenated sequences [18] apply pulses in multiple directions (not just

X). Such sequences can decouple the qubit from a depolarizing bath as well as

a dephasing bath. Since our treatment only deals with dephasing (as a necessary

approximation for our cluster expansion formalism), we only consider the simple

concatenated sequence of Eq. (5.1) with pulses applied only in one direction, X.

We can simplify the concatenated sequence of Eq. (5.1) by noting that two π

rotations does nothing. Therefore, assuming l > 0, and ignoring any pulse at the

start or end of the sequence (having no consequence in terms of coherence),

pl :=


pl−1Xpl−1 , odd l

pl−1pl−1 , even l

. (5.2)

For the sake of our analysis, we only need to consider how this sequence will impact

the Û+ and Û− evolution operators, the evolution of the bath with an initial up or
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down qubit respectively. These will have the following recursive form [43]:

Û±
l = Û∓

l−1Û
±
l−1. (5.3)

where Û±
0 freely evolves the bath (with electron spin up or down) for a time τ as

defined above.

5.1.1 Eliminating Successive Perturbative Orders

To simplify the arguments of this section, we assume that the spin bath is

unpolarized such that, by symmetry,
〈
Ŵl

〉
=

〈[
Û−

l

]†
Û+

l

〉
=

〈[
Û+

l

]†
Û−

l

〉
=

Re
{〈

Ŵl

〉}
. In general, the CDD echo is vCDD =

∥∥∥〈Ŵl〉
∥∥∥ ≥ Re

{
〈Ŵl〉

}
, and we

may therefore take this real part as a lower bound of coherence in the formulated

problem. The measure of this “minimum” coherence is then given by

Re
{〈

Ŵl

〉}
=

1

2

〈[
Û−

l

]†
Û+

l +
[
Û+

l

]†
Û−

l

〉
(5.4)

= 1−
〈
∆†

l ∆l

〉
, (5.5)

where we define ∆l ≡ Û+
l − Û−

l and note that Û±
l are unitary operators such that[

Û±
l

]†
Û±

l = 1̂. Thus,
〈
∆†

l ∆l

〉
gives a measure of the “maximum” decoherence.

Applying the recursive definitions for the Û±
l evolution operators [Eq. (5.3)],

∆̂l ≡ Û+
l − Û−

l =
[
Û−

l−1, Û
+
l−1

]
=
[
Û−

l−1, ∆̂l−1

]
, (5.6)

noting that Û−
l−1 commutes with itself.

Let us consider a perturbation with a smallness parameter λ in which Û±
l =

1̂ + O (λ) for all l ≥ l0 for some l0. Two such perturbations have λ = τ , with
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l0 = 0, or λ = ε, with l0 = 1 (as long as Ĥb0 may be disregarded); we discuss these

two perturbations in the context of CDD more specifically in Secs. 5.1.2 and 5.1.3

respectively. Because the identity commutes with anything, it is easy to see from

Eq. (5.6) that ∆̂l = O (λ) × ∆̂l−1 for all l > l0; this proves that we get successive

cancellations of the low-order perturbation (τ or ε) with each concatenation of the

sequence. The lowest order result is given by

∆̂l ≈ λ

[
d

dλ
Û−

l−1

∣∣∣∣
λ=0

, ∆̂l−1

]
, ∀ l > l0. (5.7)

Conveniently, for all l > l0,

d

dλ
Û±

l

∣∣∣∣
λ=0

=
d

dλ
Û+

l−1

∣∣∣∣
λ=0

+
d

dλ
Û−

l−1

∣∣∣∣
λ=0

(5.8)

= 2l−l0
d

dλ

(
Û+

l0
+ Û−

l0

)
/2

∣∣∣∣
λ=0

,

so that Eq. (5.7) becomes

∆̂l ≈ λ


2l−l0−1

[
d
dλ

(
Û+

l0
+ Û−

l0

)
/2
∣∣∣
λ=0

, ∆̂l−1

]
, l > l0

d
dλ

(
Û+

l0
− Û−

l0

)∣∣∣
λ=0

, l = l0

. (5.9)

Note that in the l = l0 + 1 case, Eq. (5.6) yields

∆̂l0+1 ≈ λ2

[
d

dλ
Û−

l0
,
d

dλ
Û+

l0

]∣∣∣∣
λ=0

, (5.10)

which is equivalent to the corresponding case in Eq. (5.9) recalling that any operator

commutes with itself.
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5.1.2 Time Perturbation

In the case of the time perturbation, λ = τ , we refer to the general Ĥ±

Hamiltonians of Eq. (3.1) to see that Û±
0

∣∣∣
τ=0

= 1̂ and

d

dτ

(
Û+

0 + Û−
0

)
/2

∣∣∣∣
τ=0

= −iĤb. (5.11)

Thus, Eq. (5.9), with l0 = 0, yields

∆̂1 ≈
[
d

dτ
Û−

0 ,
d

dτ
Û+

0

]∣∣∣∣
τ=0

τ 2 = 2
[
Ĥqb, Ĥb

]
τ 2. (5.12)

Applying the recursion of Eq. (5.9) then gives

∆̂l = −2(l2−l+2)/2
[
...
[[
Ĥqb, Ĥb

]
, Ĥb

]
, ...
]
(iτ)l+1

+O
(
τ l+2

)
, ∀ l > 0, (5.13)

with l nested commutations abbreviated by ...’s. By computing the lowest-order

time perturbation results [Eq. (5.13)] when calculating cluster contributions of the

cluster expansion and comparing them with results from exact cluster contributions,

we can test the applicability of this perturbation. In the results that we present in

Ch. 6, we do make such comparisons and find that the τ perturbation is typically

applicable for quantum dots with assumed Gaussian-shaped wave-functions but not

for donor-bound electrons with exponential-shaped wave-functions. This will be

discussed in more depth in Sec. 6.2.

A reasonable assumption for many solid-state spin baths is that the bath

Hamiltonian, Ĥb, which excludes qubit-bath interactions, is homogeneous. That is,

sites that are equivalent in terms of the Bravais lattice are equivalent with regard
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to bath interactions. A notable exception to this is where isotopes in the lattice

are interchangeable; for example, three different isotopes of Si may occupy any

lattice site in Si, and two different isotopes of Ga may occupy any Ga site in GaAs.

However, if we simply want to know the decoherence that results from averaging

different types of isotopic configurations, then we may regard the bath (apart from

the qubit interactions) as homogeneous and use isotopic probabilities in expressions

for Ĥb. Then the only inhomogeneity is in the interactions with the qubit, Ĥqb. We

can then factor out this inhomogeneous part and compute the rest in a way that is

independent of the qubit interactions. This will be convenient, for example, when

analyzing a quantum dot in which the wave-function of the electron (whose spin

represents the qubit) can take on many shapes and sizes.

If we take Ĥqb to be the isotropic hyperfine interactions discussed in Sec. 3.2.3,

Ĥqb =
∑

nAnÎnz/2, then we can make the following factorization of the homogeneous

and non-homogeneous parts of
〈
∆̂†

l ∆̂l

〉
:〈

∆̂†
l ∆̂l

〉
= (−)(l+1)2(l2−l+2)

∑
n,m

A∗
nAmf

(l)
n,mτ

2l+2 +O
(
τ 2l+4

)
, ∀ l > 0, (5.14)

f (l)
n,m ≡

〈[
...,
[
Ĥ†

b,
[
Ĥ†

b, Înz

]]
...
] [
...
[[
Îmz, Ĥb

]
, Ĥb

]
, ...
]〉
, (5.15)

where the ...’s again denote l nested commutations. The homogeneous part is rep-

resented by f
(l)
n,m, and exploiting this homogeneity, we note that this function is

equivalent when we shift by any Bravais lattice vector, ~R:

f (l)(~rn, ~rm) ≡ f (l)
n,m = f (l)(~rn − ~R,~rm − ~R). (5.16)

The simplification of Eq. 5.14 can be particularly helpful to study the effect of

quantum dot shape upon its decoherence as the electron wave-function dependency
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(the An’s) is factored out. Of course, this is only helpful to the extent that a time

perturbation provides an appropriate approximation.

5.1.3 Intra-bath Perturbation

We treat the intra-bath perturbation, with λ = ε, by using the interaction

representation for bath states. In the standard Schrödinger picture, the states of a

quantum mechanical system evolve in time according to the time evolution operators

(i.e., Û±) while operators for observables remain constant. In the equivalent Heisen-

berg picture, the states remain constant, while the operators for observables evolve

instead. In the interaction representation, the Hamiltonian is split up into an un-

perturbed part, Ĥ0, and an interaction (perturbation), V̂ ; the observable operators

then evolve according to Ĥ0 and the states evolve as necessary to incorporate the

effects of V̂ . In our case, we consider bath states which evolve, in the Schrödinger

representation, as |B±(t)〉 ≡ Û±|B0〉. For the intraction representation, we use

Ĥ±
0 (t) = ±s(t)Ĥqb + Ĥb0 where s(0) = 1 but s(t) changes sign whenever a π-pulse is

encountered in the evolution [Eq. (5.2)], and we use V̂ = εĤbb in order to perform

the perturbation expansion with respect to ε.

We can relate the interaction representation bath states to the corresponding

Schrödinger states in the following way:

Texp

(
−i
∫ t

0

Ĥ±
0 (t′)dt′

)
|B±I (t)〉 = |B±(t)〉, (5.17)

where Texp is the time-ordering exponential operator, which, after taking the expo-

nential of its argument via the expansion, exp (Ô) =
∑∞

n=0 Ô
n/n!, orders operators
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in increasing time order from right to left. In general for any time-dependent oper-

ator, Ô(t),

i
∂

∂t
Texp

(
−i
∫ t

0

Ô(t)dt′
)

= Ô(t) Texp

(
−i
∫ t

0

Ô(t)dt′
)
. (5.18)

Then taking i times the partial derivative of both sides of Eq. (5.17) and invoking

the Schrödinger equation, i ∂
∂t
|B±(t)〉 = Ĥ±(t)|B±(t)〉,

Ĥ±
0 (t)|B±(t)〉+ Texp

(
−i
∫ t

0

Ĥ±
0 (t′)dt′

)[
i
∂

∂t
|B±I (t)〉

]
= (Ĥ±

0 (t) + εĤbb)|B±(t)〉,

(5.19)

Therefore,

i ∂
∂t
|B±I (t)〉 = V̂ ±

I (t)|B±I (t)〉, (5.20)

V̂ ±
I (t) = ε

[
Texp

(
−i
∫ t

0
Ĥ±

0 (t′)dt′
)]−1

Ĥbb Texp
(
−i
∫ t

0
Ĥ±

0 (t′)dt′
)
. (5.21)

From this we derive the evolution operator in the interaction representation:

|B±I (t)〉 = Û±
I (t)|B±I (0)〉 = Û±

I (t)|B0〉, (5.22)

Û±
I (t) = Texp

[
−i
∫ t

0

V̂I(t
′)dt′

]
. (5.23)

This naturally yields perturbative orders by expanding the time-ordered exponential:

Û±
I (t) =

∞∑
n=0

1

n!
T

[(
−i
∫ t

0

V̂I(t
′)dt′

)n]
. (5.24)

After transforming back to the Schrödinger representation for a particular

concatenated sequence,

Û±
l = Texp

[
−i
∫ 2lτ

0

Ĥ±
0 (t′)dt′

]
Ŝ±l , (5.25)
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where we use Ŝ±l to denote the interaction picture evolution operator, Û±
I , cor-

responding to the concatenated sequence [Eq. (5.2)] at level l. This notation is

chosen because the interaction picture evolution operator is traditionally called the

S-matrix; usually this implies evolution from −∞ to ∞ in time with the perturba-

tion turned on adiabatically, but we are clear here in what we mean (evolution for

the duration of the pulse sequence). Using the fact that s(t) is balanced in any of

these pulse sequences, the Ĥqb term cancels in the integral of Eq. (5.25) leaving

Û±
l =


exp

[
−i
(
±Ĥqb + Ĥb0

)
τ
]
Ŝ±0 , l = 0

exp
[
−2liĤb0τ

]
Ŝ±l , l > 0

(5.26)

By its construction, Ŝ±(t) = 1̂ + O (ε); however, Û±
l is not generally of the form

1̂+O (ε) that we require to prove successive dynamical decoupling [Eq. (5.7)] unless

Ĥb0 = 0. Successive dynamical decoupling also results if Ĥb0 commutes with the

Hamiltonian as a whole (in which case it is not relevant in the dynamics of the

electron spin and can therefore be removed from the problem). For example, we

may use the effective Hamiltonian of Eqs. (3.19) and (3.20), using the limit of a

strong applied magnetic field.

Assuming that Ĥb0 = 0 (or an irrelevant constant), we can equate the evolution

operators in the Schrödinger and interaction representations, Û±
l = Ŝ±l , for CDD

sequences with l ≥ 1 according to Eq.( 5.26). Using the general result of Eq. (5.9)

for the lowest order of ∆̂ = Û+
l − Û

−
l with l0 = 1 [since Û±

l = 1̂+O (ε) for l ≥ 1], all

we need to know is Û±
1 = Ŝ±1 to the lowest order in ε. The interaction perturbation
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potential, VI , for the Hahn echo sequence (with Ĥb0 = 0) is given by

V̂ ±
I (t) = ε exp

(
−iĤqb(τ − |τ − t|)

)
Ĥbb exp

(
iĤqb(τ − |τ − t|)

)
, (5.27)

so that

Û±
1 = Ŝ±1 = Texp

[
−iε

∫ 2τ

0

e±iĤqb(τ−|τ−t′|)Ĥbbe
∓iĤqb(τ−|τ−t|)dt′

]
(5.28)

= 1̂− 2iε

∫ τ

0

e±iĤqbt
′Ĥbbe

∓iĤqbt
′
dt′ +O

(
ε2
)
. (5.29)

We can use the above results in Eq. (5.9) with λ = ε and l0 = 1 in order

to obtain the lowest-order results of the intra-bath perturbation. By using the

lowest-order intra-bath perturbation results in calculating cluster contributions of

the cluster expansion and comparing them with results from exact cluster contri-

butions, we can test the applicability of this perturbation. In the results that we

present in Ch. 6, we do make such comparisons and generally find that the intra-

bath perturbation is applicable roughly to the extent that the cluster expansion

converges well.

5.1.4 Magnus Expansion

Dynamical decoupling is typically discussed in terms of its effect upon low

orders of the Magnus expansion [13, 14, 18, 19, 15]. In the Magnus expansion, an

evolution operator that is composed of a product of evolution operators (i.e., evolu-

tion of different parts of the pulse sequences) is expanded via repeated applications

of the Baker-Campbell-Hausdorff relation [13]:

eB̂eÂ = exp

{
Â+ B̂ +

1

2

[
B̂, Â

]
+ ...

}
(5.30)
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In this way, the evolution resulting from a time dependent Hamiltonian may be

expanded as [19]

Û(t) = exp
∞∑
i=1

Âi(t), (5.31)

where

Â1 = −i
∫ t

0

dt1Ĥ(t1), (5.32)

Â2 = −1

2

∫ t

0

dt1

∫ t1

0

dt2

[
Ĥ(t1), Ĥ(t2)

]
, (5.33)

and each subsequent term in the exponential of Eq. (5.31) will involve another com-

mutation and time integration. When dealing with π-pulse sequences, our time

dependent Hamiltonians for Û± will be piecewise constant in time, alternating be-

tween Ĥ+ and Ĥ− for time intervals of τ . Each integration will thus introduce a

factor of τ in the corresponding term. In this way, the Magnus expansion can be

viewed as a τ expansion for the logarithm of Û±. Recalling the logarithmic form

of our cluster expansion, Eq. (4.17), the Magnus expansion leads to an essentially

equivalent perturbation as that of the time perturbation (Sec. 5.1.2) properly placed

within the context of the cluster expansion (that is, the logarithm of the echo ap-

proximated as the sum of cluster contributions expanded up to the desired power

of τ). For this reason, we do not discuss the Magnus expansion beyond pointing

out this equivalence. We note, however, that while our time perturbation (in the

cluster expansion context) emerges from the Magnus expansion alone, our intra-

bath perturbation (Sec. 5.1.3) does not. Our computations results (Ch. 6) indicate

that the intra-bath perturbation is generally applicable whenever we have found the

cluster expansion to be convergent but our τ perturbation is not always applicable;
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we therefore conclude that our cluster expansion does go beyond the Magnus ex-

pansion. Along these lines, our proof that each concatenation successively cancels

low-order terms of the intra-bath perturbation goes beyond the previous [18, 43, 44]

analyses of concatenation that relate to the Magnus expansion.

5.2 Periodic Dynamical Decoupling (e.g. CPMG)

In this section we consider the application of periodic pulse sequences. These

sequences derive their strategy from the argument that repeating a series of decou-

pling pulses at a greater frequency than the pertinent dynamical frequencies of the

system should prolong qubit coherence for extended times. The qubit and the bath

are completely decoupled in the limit of infinitely many pulses in a finite amount

time [15]. In the Carr-Purcell-Meiboom-Gill [25] sequence, illustrated in Fig. 1.4, a

periodic train of π-pulses is applied in some direction perpendicular to the applied

magnetic field; for an even number of pulses, it corresponds to repetitions of the

second level of concatenation discussed above. We studied this sequence in Ref. [42]

using our cluster expansion technique; we showed that, to the extent that the intra-

bath perturbation is applicable, the log of the echo as a function of the intra-pulse

time, τ , scales with the square of the number of pulses applied. While coherence,

with more applied pulses, is enhanced as a function of the total elapsed time, it di-

minishes as a function of τ . Concatenation, on the other hand, can actually improve

the performance as a function of τ as we will be demonstrated in Sec. 6.3.

Concatenation yields better performance because it yields successive cancel-
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lation of the lowest perturbative orders in the time and intra-bath perturbations.

Repetition does not provide this cancellation; however, it is easy to show that the

repetition of a given concatenation order will maintain the same lowest perturbative

order. We can simply express the evolution operators for the periodic sequence, for

n repetitions, as the corresponding concatenated sequence raised to the nth power.

As in Sec. 5.1.1, we will consider an unpolarized bath as a limiting case (giving

minimum coherence): vE =
∥∥∥Ŵ∥∥∥ ≥ Re

{
〈Ŵ 〉

}
. Then we have

Re
{
〈Ŵ 〉

}
=

1

2

〈[(
Û−

l

)†]n [
Û+

l

]n
+

[(
Û+

l

)†]n [
Û−

l

]n〉
(5.34)

= 1− 1

2

〈[
∆

(n)
l

]†
∆

(n)
l

〉
, (5.35)

where

∆̂
(n)
l ≡

(
Û+

l

)n

−
(
Û−

l

)n

(5.36)

=
(
∆̂l + Û−

l

)n

−
(
Û−

l

)n

(5.37)

= O
(
∆̂l

)
. (5.38)

The terms of ∆
(n)
l must contain at least one factor of ∆l; therefore, when repeating

a concatenated sequence of level l, it will maintain the low order perturbation prop-

erties of a single application. Repeating concatenated sequences can offer flexibility

when it is not convenient to be constrained to having 2l time segments in ones pulse

sequence.
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Chapter 6

Applications in Specific Systems

Applying our cluster expansion technique to study dynamical decoupling pulse

sequences in specific systems is a matter of specifying appropriate Ĥqb, Ĥbb, and Ĥb0

Hamiltonians by supplying appropriate interactions and approximations as discussed

in Sec. 3.2. Our first two applications, in Secs. 6.1 and 6.2, will consider a localized

electron spin qubit in a Si or GaAs lattice, respectively. In the former case, the

electron is bound to a P donor, and in the latter case, the electron is confined to

a quantum dot via confining potentials of some sort. In these first two sections,

we consider the Hahn echo decay, while in Sec. 6.3, we consider both PDD and

CDD pulse sequences. In Sec. 6.4, we study the decoherence of a donor nucleus

and disregard HF coupling to any electrons in the system. These applications have

relevance for various quantum computing architectures, and it is therefore important

to study the decoherence of their respective qubits and study the effects of dynamical

decoupling.

Each of these applications are different in the way that the qubit interacts

with the bath, Ĥqb. For the electron spin qubit, except when we consider the AHF

interaction in Sec. 6.1.3, this qubit-bath Hamiltonian will be determined by the

diagonal part of Fermi-contact HF [Eq. (3.19)]. We will neglect the HF-mediated

interactions that couple non-local nuclear spins in the bath [Sec. 3.2.4] which is
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justified in the limit of a strong applied magnetic field, particularly for the pulse

sequences we consider which reverse this effect; we will estimate the corresponding

visibility loss [40, 56, 57] for each application. Unless otherwise stated, we use the

secular part of the dipolar interaction [Eq. (3.20)] for the intra-bath interaction,

Ĥbb, assuming the limit of a strong applied magnetic field in which Ĥb0 is irrelevant

(beyond justifying the approximation). Except in Fig. 6.13 we do not include the

indirect exchange interaction [Sec. 3.2.5] that can actually be comparable to the

dipolar interaction for nearest neighbors in GaAs; any such local intra-bath interac-

tion is easily included in framework but the indirect exchange interaction does not

appear to make a qualitative difference.

For the initial state of the bath, we assume thermal equilibrium in the limit of

high nuclear temperatures and thus use a uniform distribution of bath states. This

is well justified when T � mK (see Sec. 3.2.6); in the mK temperature range, one

should account for polarization in the nuclear bath which could diminish the SD

decoherence (or enhance the coherence).

6.1 Phosphorus Donor in Silicon

Our first application is to consider the decoherence of an electron spin of

a phosphorus donor in natural silicon [35, 34, 37]. Here we take Ψ(Rn) to be the

Kohn-Luttinger wave-function of a phosphorus donor impurity in silicon based upon

an effective mass approximation. This will determine the HF coupling constants,

An [Eq. (3.10)], responsible for the qubit-bath interaction, Ĥqb =
∑

nAnÎnz/2. We
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have [35]

An =
16π

9
γSγ

Si
I ~η [F1(Rn) cos (k0Xn) (6.1)

+F3(Rn) cos (k0Yn) + F5(Rn) cos (k0Zn)]2

−γSγ
Si
I ~

1− 3 cos2 θn

|Rn|
Θ(|Rn| − na),

F1,2(r) =
exp

[
−
√

x2

(nb)2
+ y2+z2

(na)2

]
√
π(na)2(nb)

, (6.2)

with γS = 1.76 × 107(s G)−1, γSi
I = 5.31 × 103(s G)−1, n = 0.81, a = 25.09 Å,

b = 14.43 Å, η = 186, k0 = (0.85)2π/aSi, and aSi = 5.43 Å. The F3,4(r) and F5,6(r)

functions are defined via respective permutations of x, y, and z in Eq. (6.2). The

Si nuclei are located on a diamond lattice [62]. The central 31P nuclear spin does

not contribute to SD because its HF energy is significantly larger than any of its

neighbors, suppressing the spin flips by energy conservation.

In a natural sample of silicon, only a small fraction f = 4.67% of lattice sites

have nonzero nuclear spin. These are the spin-1/2 29Si isotopes, therefore In = 1/2

for all contributing nuclei. We will use 〈Σk(τ)〉 and 〈Σ∗
k(τ)〉 to denote Σk(τ) and

Σ∗
k(τ) averaged, respectively, over isotopic configurations with a fraction, f , of 29Si.

We will also use the convention that Σk(τ) and Σ∗
k(τ) without these angle brackets

gives the f = 100% result. Thus

〈Σk(τ)〉 = fkΣk(τ), (6.3)

〈Σ∗
k(τ)〉 = fkΣ∗

k(τ), (6.4)

where Σk(τ), Σ∗
2(τ), and Σ∗

3(τ) are given by Eqs. (4.18), (4.19), and (4.20), respec-

tively, taking all nuclei to be 29Si. The fact that only a fraction, f , of these nuclei
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contribute to the diffusion is accounted for by the fk factors in Eqs. (6.3) and (6.4)

because fk is the probability that all nuclei in a cluster of size k have nonzero spin.

We will justifiably neglect the HF-mediated interactions (Sec. 3.2.4) because

their effects are reversed in the Hahn echo (or other DD sequences), at least in

the pair approximation; also, the visibility decay associated with the HF-mediated

interactions is estimated as
∑

n f(An/Ωn)2 ∼ 10−5 × f for an applied field strength

of B = 0.35 T (to correspond with the experimental data to which we compare our

results).

6.1.1 Hahn echo spectral diffusion

For the spin-1/2 nuclei that contribute to the Hahn echo, we can write the

following analytical solution for pairs (2-clusters):

vnm(τ) = 1 + v′nm(τ)

= 1− c2nm

(1 + c2nm)2
[cos (ωnmτ)− 1]2 , (6.5)

ωnm = 2bnm

√
1 + c2nm, (6.6)

cnm =
An − Am

4bnm

, (6.7)

This can be obtained by evaluating vHahn =

〈[
Û+

0 Û
−
0

]†
Û−

0 Û
+
0

〉
with τ as the implicit

inter-pulse time (Û+
0 ≡ Û+

0 (τ)) and using a uniform initial bath distribution.

Our numerical calculations of Hahn echo decay in the lowest order of the cluster

expansion, v
(2)
E (τ) = exp (〈Σ2(τ)〉) using Eqs. (6.3), (4.18), and (6.5), are shown for

several magnetic field orientation angles in Fig. 6.1(a) with a direct quantitative

comparison to the experiment [36]. The dipolar coupling [Eq. (3.7)] contains an
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Figure 6.1: Hahn echo decay vE(τ, θ) of a phosphorus donor electron spin in sili-

con due to the dipolar nuclear spin bath dynamics. (a) Theory (solid lines) and

experiment (Ref. [36]) is shown for several orientation angles of the magnetic field

with respect to the crystal lattice, ranging from the [100] to the [110] direction

(θ = 0, 10, 20, . . . , 90). (b) Here we plot − ln vE(τ, θ) + ln vE(τ, θ = 0), allowing for

the removal of any decoherence mechanism which is independent of θ. The qualita-

tive and quantitative agreement between theory and experiment is remarkable, in

contrast to the stochastic approach (dashed) of Ref. [35].
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important anisotropy with respect to the θnm angle formed between the applied

magnetic field and the bond vector linking the two spins (Rnm). This property

leads to a strong dependence of spin echo decay when the sample is rotated with

respect to the applied B field direction. The experimental data is taken for bulk

natural silicon with phosphorus doping concentration equal to 2×1015 cm3 [36]. The

high concentration of phosphorus donors leads to an additional decoherence channel

arising from the direct spin-spin coupling between the electron spins that contribute

to the echo. This contribution can be shown to contribute a multiplicative factor

exp (−τ/1 ms) to the Hahn echo [63]. Because this contribution is independent of

the orientation angle, we can factor it out by subtracting the θ = 0 contribution

from the logarithm of the experimental data taken at angle θ. The result is shown

in Fig. 6.1(b) (log-log scale). Our theory seems to explain the time dependence of

the experimentally observed echo quite well. This result is to be compared with the

recent stochastic theory of Ref. [35] [Dashed line in Fig. 6.1(b) shows the stochastic

calculation for θ = 60◦]. Although the stochastic theory, which assumes a particular

probability distribution of nuclear flip-flop rates, yields roughly correct coherence

times in order of magnitude, it fails qualitatively in explaining the time dependence

[that is, the shape of the decay as can be seen from the incorrect slope of the

stochastic calculation in the log-log plot of Fig. 6.1(b)]. The present method is able

to incorporate all these features within a fully microscopic framework, obtaining

both qualitative and quantitative agreement with experiment. Most importantly,

it does this without any fitting parameters; we solely use well-established values of

magnetic moments for the interacting spins and an effective mass theory-derived
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electron wave-function [determining Eq. (6.1)].

An important issue in the context of quantum information processing is the

behavior of spin coherence at the shortest time scales. The experimental data [36]

in Fig. 6.1 reveals several oscillatory features which are not explained by our current

method. These are echo modulations arising from the AHF coupling and will be

discussed in Sec. 6.1.3 where we show how to substantially reduce this effect by

adjusting the strength and direction of the applied magnetic field and properly time

the pulse sequence.

Isotopic purification can reduce the value of f (fraction of 29Si nuclei). Fig-

ure 6.2 contains information that is useful for understanding how the Hahn echo

curves change as f is changed (i.e., lowered via isotopic purification). In a log-

log plot, ln (vE(τ)) ≈ 〈Σ2(τ)〉 ∝ f 2 simply shifts vertically when f is changed.

Figure 6.2 shows both the f -independent Σ2(τ) (i.e., f = 100%), and 〈Σ2(τ)〉 for

natural Si (f ∼ 5%). Results are shown for magnetic field angles that yield the

extremal slowest and fastest decoherence. For natural Si, in a wide range of τ about

τ1/e, where vE(τ1/e) = 1/e, 〈Σ2(τ)〉 matches τ 2.3 curves very well. In this range of

τ , therefore, we may write

vE(τ) ≈ exp
(
−f 2(τ/τ0)

2.3
)

(6.8)

= exp
(
−(τ/τ1/e)

2.3
)
, (6.9)

where

τ1/e = τ0/f
2/2.3 ∝ f−0.87, (6.10)

providing a formula that allows us to adjust our Hahn echo curves to other val-
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Figure 6.2: Lowest order theoretical results for the natural log of the Hahn echo,

ln (vE(τ)) ≈ 〈Σ2(τ)〉 ∝ f 2, for Si:P in a log-log plot. The solid lines give Σ2(τ) with

f = 1. Dotted lines give 〈Σ2(τ)〉 for natural Si (f = 4.67%). In this log-log plot,

multiplying by f 2 simply shifts the curves vertically. Isotopic purification would

shift these curves up further. The two magnetic field angles shown give extremal

results. Corresponding to θ angles in Fig. 6.1, B || [100] is θ = 0◦ and B || [111]

is θ ≈ 54.7◦. Dashed lines fit the natural Si curves near their −1 values (where

vE ∼ 1/e) with τ 2.3 power law curves (linear in the log-log plot).
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ues of f for a range of τ in which Eq. (6.8) is applicable. This scaling behavior

was predicted in our original submission of Ref. [41] and was confirmed shortly

thereafter in the literature [64] from experimental data produced by Abe et al.

showing echo time scaling ranging between f−0.86 and f−0.89, in remarkable agree-

ment with our prediction [Eq. (6.10)]. Tyryshkin et al. [36] report Si:P Hahn echo

decay forms of exp (τ 2.4±0.1), in agreement with Eq. (6.8), with exception to mag-

netic field orientations near the [100] direction. In the [100] direction, they report

a form of exp (τ 3.0±0.2). By incorporating the effect of AHF interactions which pro-

duces the modulations of the echo, the agreement is somewhat improved as shown

in Sec. 6.1.3.1.

6.1.2 Cluster expansion convergence

We now check the convergence of our cluster expansion for this Si:P system.

Using Eq. (4.22) and averaging over the isotopic configurations yields

ln
(
v

(k)
E (τ)

)
=

k∑
j=2

〈Σj(τ)〉+O (〈Σ∗(τ)〉) . (6.11)

This approximates the ideal cluster expansion [see Secs. 4.3.2 and 4.3.3] with an

error that we may estimate as 〈Σ∗(τ)〉 = 〈Σ∗
2(τ)〉+ 〈Σ∗

3(τ)〉. This error is estimated

by the correction needed to compensate for overlapping pairs [either the same pair

overlapping itself, Σ∗
2(τ), or two different pairs overlapping, Σ∗

3(τ)] in the approxi-

mation. Figure 6.3 shows these relative corrections, Σ∗
2(τ)/Σ2(τ) and Σ∗

3(τ)/Σ2(τ),

to ln (vE(τ)) for both f = 100% and natural Si (f ∼ 5%). The graphs also show

the respective Hahn echoes (in a log time scale which alters their appearance) to
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Figure 6.3: Relative errors (with scales on the right) to the log of the Hahn echo due

to overlapping pairs for both 100% 29Si (top graph) and natural Si (bottom graph).

In these examples, B || [100]. The Hahn echoes themselves are shown, as well, with

the 0 to 1 scales on the left. All curves share the same logarithmic time (τ) scale.

It is apparent that these relative corrections are very small up to the tail of their

respective echo decays.
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show that these relative corrections are very small up to the tail of their respective

echo decays. The argument, given in Sec. 4.3.3, that Σ∗(τ) would be small was only

applicable for vE(τ) & e−1 so it is expected that this approximation approaches

failure out in the tail of the decay. This is irrelevant for practical purposes.

The expansion of Eq. (6.11) is convergent where 〈Σk+1(τ)〉 � 〈Σk(τ)〉 (im-

plying that λL � 1 effectively). The Σk(τ) functions have been calculated (up

to k = 5) using statistical sampling (Monte-Carlo) techniques with cluster contri-

butions, 〈Ŵ ′
C〉, for clusters that are larger than pairs, calculated by numerically

diagonalizing Ĥ± [Eq. (3.1)]. For each Σk(τ) independently, the maximum distance

between neighbors and the maximum distance of nuclei to the donor is increased for

various Monte-Carlo runs until convergence within a desired precision is reached.

To speed up each Monte-Carlo run, clusters are chosen with a heuristic bias for

those that have strong coupling between the constituent nuclei as well as a bias for

clusters closer to the donor. Appropriate weighting factors are used to counteract

these biases.

Figure 6.4 compares f -independent (i.e., f = 100%) Σk(τ) functions in a dual

(showing positive and negative values) log-log plot for Si:P with B || [100]. In other

words, it compares successive orders of the expansion for the natural log of the Hahn

echo, ln (vE(τ)), with the f dependence removed. As one might anticipate by the

fact that Σ3(τ) and Σ4(τ) are both O (λ4) (Ref. [41] proves that there are no odd

orders of λ for either perturbation theory), they are similar orders of magnitude, at

least for the 0.03 ms < τ < 1 ms range. Near τ ∼ 1 ms, however, the perturbation

theory fails [having the condition that max (bnm)τ � 1] as we see that |Σ4(τ)|
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Figure 6.4: Successive contributions to the cluster expansion for the natural log of

the Hahn echo [Eq. (6.11)], computed for Si:P and B || [100], for the 100% 29Si

theoretical scenario. The thick black line gives the lowest order result, Σ2(τ), and

other solid lines give higher order Σk(τ) results. The dotted lines give the negative

of their corresponding functions provided to assist in the absolute value comparison

of these higher order corrections. A failure of convergence occurs near τ ∼ 1 ms

where all of the curves are the same order of magnitude. This occurs well into the

tail of the decay, however, and therefore has no practical consequence.
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surpasses |Σ3(τ)|. Interestingly, all orders approach the same order of magnitude

near τ ∼ 1 ms. We can thus identify the breakdown of the cluster expansion. Note,

however, that this is well into the tail of the decay [where vE(τ) < e−1000] and

therefore this breakdown is irrelevant for practical purposes. It is prudent, in any

case, to understand the limitations of this expansion.

The 〈Σk(τ)〉 curves for some fraction, f , of 29Si will be the same as the Σk(τ)

curves in the log-log plots of Fig. 6.4 except with appropriate vertical shifts [multi-

plying by fk effectively appears as addition by k log (f) in the log plot] due to the f

dependence. Higher orders will be shifted closer to zero than the lower order curves

and therefore these curves will be more separated (actually improving the cluster

expansion convergence). The top graph of Fig. 6.5 is analogous to the bottom (neg-

ative range) graph of Fig. 6.4 for natural Si (dashed lines indicate negated curves,

i.e., where values are actually positive). We show only the low-order corrections to

the log of the Hahn echo, including 〈Σ∗(τ)〉 as well as 〈Σ3(τ)〉 and 〈Σ4(τ)〉 and not

bothering with 〈Σ5(τ)〉. 〈Σ3(τ)〉, with its inclusion of 3-cluster, gives the largest

correction. Although Σ∗(τ) is of a comparable order of magnitude, its correction

partially cancels the Σ3(τ) correction because they are opposite in sign. We may

therefore use Σ3(τ) for a conservative estimate of the error of the lowest order cluster

expansion result. The bottom graph of Fig. 6.5 shows the absolute (as opposed to

relative) error of the lowest order Hahn echo result estimated by the inclusion of

Σ3(τ). The Hahn echo is displayed for reference. At its maximum, this absolute

error is approximately 0.001. Although our cluster expansion fails near τ ∼ 5 ms

[where |〈Σ2(τ)〉| ∼ |〈Σ∗(τ)〉| ∼ |〈Σ3(τ)〉| ∼ |〈Σ4(τ)〉|], the absolute error will stay
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Figure 6.5: Successive contributions to the cluster expansion of the Hahn echo,

vE(τ), computed for Si:P in natural Si (f = 0.0467%) with B || [100]. (top) Log-

log plot of low-order contributions to the natural log of the Hahn echo, ln (vE(τ)).

Ordinate axis is negative as in the bottom graph of Fig. 6.4; however, dashed lines

indicate negated curves (and thus represent positive values). (bottom) Conservative

estimate of the absolute error of the lowest order Hahn echo result (scale on the right)

due to 3-cluster contributions, 〈Σ3(τ)〉. The lowest order Hahn echo result is shown

as a reference (scale on the left). The logarithmic time scale is the same for all plots

(top and bottom).
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small if we assume that our Hahn echo decay is forever monotonically decreasing.

For all practical purposes, the lowest order result is therefore valid up to 0.1% of

the initial vE(0) = 1, and higher order terms only provide corrections beyond 99.9%

accuracy level.

To better understand the reasons for cluster expansion convergence, we have

also compared cluster expansion results where we compute cluster contributions

exactly versus computing them in the lowest order of the intra-bath perturbation

(see Sec. 5.1.3). The agreement in these comparisons clearly shows that the credit for

cluster expansion convergence goes to this intra-bath perturbation (larger clusters

can only contribute higher orders in this perturbation as noted in Sec. 4.2). The

clusters for which the intra-bath perturbation is most applicable are those with

the largest differences in the HF interactions among the nuclei such that cnm ∼

(An − Am)/bnm � 1. Since the intra-bath coupling is essentially homogeneous, the

clusters with the largest differences in their HF interactions will have the highest

frequency dynamics and thus will operate at the shortest time-scales and dominate

the echo decay. This is essentially the reason that the cluster expansion converges

over the relevant decoherence time-scale. In Si:P, the τ perturbation only serves

to keep the clusters with slower dynamics “under control” so that we are safe to

disregard the larger ones (that is, pairs with slow dynamics have little effect upon

the echo decay and 3-clusters with slow dynamics have even less of an effect). In

Sec. 6.2, however, we find that the τ perturbation plays a more significant role in

GaAs quantum dots.
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6.1.3 Anisotropic hyperfine modulations and comparison with exper-

iment

As was discussed in Sec. 3.2.3, the HF interaction between the spin of an elec-

tron and nucleus can contain anisotropic parts due to a dipolar interaction between

the electron and nucleus as it is averaged over the electron wave-function. Because

the conduction band minimum for Si occurs close to the X-point of the Brillouin

zone so that the electron Bloch function has significant contributions from p- and

d-atomic-orbitals [51, 52], the HF interaction between an electron near the conduc-

tion band minimum, such as an electron confined to a donor or a quantum dot,

and the surrounding nuclear spins has strong anisotropic characteristics. Indeed,

AHF interaction has been studied extensively in the Si:P system in the 1960s and

1970s. The strength of AHF has been accurately measured and calculated for the

phosphorus donor electron [51]. In the context of solid state spin quantum compu-

tation, however, much of the existing literature only takes into account the contact

HF [first term in Eq. (3.8)] in considering electron spin decoherence.

In Ref. [70] and in this section, we analyze how the AHF interactions leads

to spin decoherence by considering a single P donor and donor-bound electron in

Si interacting with the P and 29Si nuclear spins. We assume the limit of a strong

magnetic field (> 100 mT is sufficient) applied in the z direction such that electron

spin flips are suppressed due to its large Zeeman energy. Since γS � γI , it is

appropriate to take the limit where Sz is conserved but not Iz (of any nucleus). In
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this limit we write the Hamiltonian (in ~ = 1 units) as Ĥ = Ĥ0 +
∑

n Ĥn with

Ĥ0 = ωSŜz + AP Ŝz Î
P
z − ωP Î

P
z , (6.12)

Ĥn = AnŜz Înz +BnŜz Înx′ − ωI Înz. (6.13)

We separate the Hamiltonian into Ĥ0, involving the electron Zeeman energy and

the donor nucleus, and Ĥn, involving the nth 29Si nucleus in the surrounding lattice

(other Si isotopes have zero spin). In our notation, Ŝ, ÎP , and În denote spin

operators of the electron, P nucleus, and 29Si nucleus n respectively, and Înx′ gives

the nuclear spin operator with x′-axis oriented so that there is no Ŝz Îny′ contribution

(having a different orientation for each n). Given an applied magnetic field strength

of B, we define ω2 = γ2B as the Zeeman frequency for the electron, P nucleus,

or a 29Si nucleus with 2 = S, P, or I respectively. AP denotes the HF coupling

between the electron and the P nucleus. Both contact HF as well as the Ŝz Îz part

of the AHF interaction are contained in An. The remaining AHF interaction in

our strong field limit is contained in Bn and gives the relevant anisotropy mixing

different directional components of Ŝ and Î.

Qualitatively, the anisotropic term, BnŜz Înx′ , in Ĥn dictates that the quanti-

zation axis for the precession of the 29Si nuclear spin is dependent upon the state

of the electron spin; conversely, the electron spin is affected by the precession of

the nuclear spin. The resulting electron spin free induction decay (FID) in Si:P has

been explored in Ref. [71], which shows that the donor electron spin could lose more

than 1% of its coherence only after about 10 µs if a 29Si atom is in one of the nearest

neighbor (E-shell) sites. This will be disastrous for quantum computation, where
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the error rate must stay below 10−4.

A key question, addressed in Sec. 6.1.3.2, is whether this AHF-induced de-

coherence effect can be removed/suppressed. It is well-known that spin echo tech-

niques such as Hahn echo can be used to remove dephasing caused by the spatial

variation of local magnetic fields (the inhomogeneous broadening). However, the

AHF-induced FID is a dynamical effect and, as such, cannot be removed by Hahn

echo. Instead AHF causes the echo envelope to oscillate, which is known within

the electron spin resonance community as Electron Spin Echo Envelope Modulation

(ESEEM) [65, 66, 67]. Our focus in this section is to study ESEEM in the Si:P

system [36, 37, 68] and explore possible ways to significantly reduce the decoherence

effect of AHF interaction with 29Si in the context of spin quantum computation.

This AHF-induced ESEEM effect is observed in Hahn echoes of the Si:P sys-

tem along with the effect of SD studied in Sec. 6.1.1 and was the cause of the

modulations in Fig. 6.1; in Sec. 6.1.3.1 we will show how well the experimental re-

sults can be explained when we combine the theories of ESEEM and SD. In terms of

our cluster expansion, ESEEM can be thought of as a 1-cluster contribution, caused

by interactions with individual nuclei that are near the donor nucleus. These near

nuclei give a negligible contribution to SD (they are few in number, and the strong

HF coupling close to the center of the electron wave-function freezes out flip-flop in-

teractions). We can therefore factor out this 1-cluster AHF effect from the 2-cluster

SD effect and compose the Hahn echo as the product of the two. Treating the AHF

problem independently from SD, then, we can neglect the intra-nuclear interactions;
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the free evolution of the system is therefore factorable into

Û0 = exp

(
−i
∑

n

Ĥnτ

)
=
∏
n

exp
(
−iĤnτ

)
= Û+

0 |↑〉〈↑|+ Û−
0 |↓〉〈↓| (6.14)

because the Ĥn Hamiltonians commute with each other. The Û±
0 operators are

the evolutions of the bath given an electron spin that is up or down. Because

Û0 factorizes independently for each nucleus in the bath, the ESEEM due to each

nucleus factors independently into the echo of Eq. 3.24 (with Û±
Hahn = Û∓

0 Û
±
0 for

the Hahn echo sequence we consider here). Given that only some fraction, f , of

the Si nuclei have non-zero spin (29Si), we have the following ESEEM, derived from

Eq. 3.24 averaged with respect to isotope configurations [65, 69]:

V (τ) =
∏
n

[(1− f) + fVn(τ)] , (6.15)

Vn(τ) = 1− kn

2
(1− cos (ωn+τ)) (1− cos (ωn−τ)) , (6.16)

ωn± =

√(
±An

2
− ωI

)2

+

(
Bn

2

)2

, (6.17)

and kn = (ωIBn)2 / (ωn+ωn−)2 is called the modulation depth parameter in the

literature [69]. The maximum modulation (deviation from one) of Vn(τ) is 2kn so

that kn is a measure of modulation amplitude. To obtain the results shown in

the following sub-sections, we used experimentally determined contact and AHF

coupling constants for 22 nuclear shells (which include about 150 symmetry-related

nuclear sites) taken from Ref. [51].
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6.1.3.1 Remarkable agreement with experiment

By incorporating AHF-induced ESEEM with our theoretical results for SD

[Sec. 6.1.1], we are able to obtain excellent agreement between theory and experi-

ment. Figure 6.6(c) shows excellent agreement of our ESEEM calculations with ex-

periment, though it does use five separate fitting parameters: normalization, strain

distribution width, relaxation time, SD time, and a SD exponent. The first three

of these parameters (described momentarily) may be fixed for all different direc-

tions of the applied magnetic field; thus, in Fig. 6.7, which shows comparison with

experiment for ten different magnetic field directions, we use only two fitting pa-

rameters per curve. These two fitting parameters characterize the SD decay and

are compared with the results of Sec. 6.1.1 in Fig. 6.8. Considering that we use an

approximation for the electron wave-function in Sec. 6.1.1, the agreement is quite

good. There does appear to be, however, some discrepancy between the fit and the

theory for the SD exponent when the applied field nears the [001] lattice direction;

theory expects n = 2.3 and the fit yields n = 2.5. It is probably not coincidental

that the nearest neighbor dipolar coupling vanishes when the applied field points

along the [001] direction. Perhaps we have overlooked some interaction that becomes

important when the dipolar interaction is weak.

We now describe the fitting parameters in more detail. The AHF-induced

ESEEM for a single electron spin is shown in Fig. 6.6(a). Strain effects result in

narrow distributions for the values of HF coupling constants and/or Zeeman fre-

quencies and effectively dampen this signal for an ensemble of spins. This is shown
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Figure 6.6: AHF-induced ESEEM in Si:P with an applied magnetic field in the

[001] direction. (a) Pure AHF-induced ESEEM for a single electron spin. The green

“blob” is one curve with high frequency components. (b) Before matching the ES-

EEM to experiment, we must account for strain effects in the ensemble of donor

electrons (green); we must additionally sample at the same values of τ as the exper-

iment (red) yielding a stroboscopic effect. (c) Comparison with experiment (black).

In the theory, we combine the decoherence effects of ESEEM, SD, and longitudinal

relaxation by simply multiplying them together. The orange curve gives ESEEM

of our theory [red curve in (b)] multiplied by exp [−2τ/TR] exp [− (2τ/TSD)n] where

TR, TSD, and n are fitting parameters for the relaxation time, SD time, and SD

exponent respectively.
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Figure 6.7: AHF-induced ESEEM in Si:P for ten different curves corresponding to

ten different magnetic field angles ranging from the [001] to the [110] directions.

The plots are shifted in order to distinguish each angle. All fits use the same

normalization, strain distribution width (0.4%), and relaxation time (TR = 2.17 ±

0.02 ms) parameters. There are two fitting parameters per curve: the SD time, TSD,

and the SD exponent, n. These fitting parameters are compared with our SD theory

[Sec. 6.1.1] in Fig. 6.8.

99



0 10 20 30 40 50 60 70 80 90
2.2

2.3

2.4

2.5

2.6

2.7

2.8

n,
 e

xp
on

en
t

0 10 20 30 40 50 60 70 80 90

Field Direction θ [degrees]
0

0.1

0.2

0.3

0.4

0.5

0.6

T
SD

 [
m

s]
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theory (2.30 ± 0.05) only at small angles where nearest neighbor dipolar flip-flop

interactions approach zero.

100



in Fig. 6.6(b) where, in order to fit the experimental results, we assume a Gaussian

distribution for HF frequencies with a 0.4% width (similar results are obtained if

the Zeeman frequencies are randomly distributed as well as or instead of the HF

frequencies so this is just one fitting parameter for the strain distribution width).

Also shown in Fig. 6.6(b) is the stroboscopic effect that emerges when we sample

the same values of τ as those reported in the experiment. The theoretical (or-

ange) curve in Fig. 6.6(c) shows the ESEEM result of Fig. 6.6(b) multiplied by

exp [−2τ/TR] exp [− (2τ/TSD)n] to account for independent effects of longitudinal

relaxation (due to interactions between electrons at different donors) and SD. This

agrees well with the experimental results [black curve in Fig. 6.6(c)] after we normal-

ize the signal strength as an additional fit (the experiment only gives the Hahn echo

decay on a relative scale based upon the strength of the observed signal). Again,

we use a total of five fitting parameters in Fig. 6.6; however, we use only two fitting

parameters per curve in Fig. 6.7 and these two SD parameters are compared with

our theoretical results in Fig. 6.8.

6.1.3.2 Suppressing anisotropic hyperfine modulations

In the “worst-case” scenario such that modulations from all nuclei combine

constructively, the maximum possible modulation depth, averaged over isotopic con-

figurations is given by

max (1− V (τ)) = 1−
∏
n

[1− 2fkn] . (6.18)
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We show this maximum modulation as a function of field strength due to various

nuclear shells (symmetry-related sets of lattice sites [51]) in Fig. 6.9 (a).

One interesting feature of the maximum modulations shown in Fig. 6.9 (a) is

that a peak occurs when ωI ∼ An/2 (with An positive) for each shell of atoms. At

each such cancellation condition, as it is dubbed, the Zeeman and HF energies of

nucleus n cancel when the electron spin is up but not down, freeing the nuclear spin

from conservation of energy constraints conditional upon the state of the electron

spin. Mathematically, ωn+ is minimized [Eq. (6.17)] so that kn is at (or very near)

its maximum resulting in modulation depth peaks. Experimental results for two

different magnetic field strengths near the A-shell cancellation condition peak are

shown in Fig. 6.9 (c); these field strengths are labelled α and β in Fig. 6.9 (b). As

expected, stronger modulations are observed for the field strength closer to the peak

center. As it turns out, the experimental results shown in Secs. 6.1.1 and 6.1.3.1

used an applied field strength of 351.5 mT, labelled as χ in Fig. 6.9(b), near the

center of the A-shell peak.

It is clear from Fig. 6.9 and the above discussion that to minimize decoher-

ence by the AHF interaction, cancellation conditions for all the shells with finite

AHF coupling constant should be carefully avoided by properly selecting the ap-

plied magnetic field strength (or, in electron spin resonance, the corresponding

microwave cavity frequency). Furthermore, away from the cancellation condition

peaks, the E-shell nuclei (nearest neighbors to the P nucleus) have the strongest

AHF coupling by far, so that they dominate the echo modulations by more than an

order of magnitude as seen in Fig. 6.9 (a). Remarkably, the echo modulation due
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Figure 6.9: (a) Maximum modulation depth [Eq. (6.18)] in natural Si averaged over

isotopic configurations with an applied magnetic field, B, parallel to the [001] lattice

direction considering all shells (provided in Ref. [51]), just E-shell sites (nearest

neighbors of the P donor), and all shells except the E-shell. Near the cancellation

condition, ωI ∼ An/2, for each shell of nuclei is a peak labelled by the shell letter.

(b) Enlargement of the A-shell peak marking three field strengths, α, β, and χ, used

in experiments for the data we present in Sec. 6.1; χ marks the field strength for the

experimental data shown in Secs. 6.1.1 and 6.1.3.1. (c) Experimental [36] Hahn echo

decay at field strengths α and β in the same Si:P sample. Relatively high doping,

1016 P/cm3, results in fast exponential donor-donor induced relaxation but ESEEM

is still observed.
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to these dominating E-shell nuclei can be effectively removed at special magnetic

field orientations [Fig. 6.10]. This is done be exploiting the periodic restoration

of electron spin coherence in the presence of nuclei that are seen by the electron

as magnetically equivalent. This restoration arises because Vn(τ) = 1 [Eq. (6.16)]

when τ is a multiple of 2π/ωn± (either + or −). Note that such periodic restoration

does not generally occur in the free evolution case (see Eq.(7) of Ref. [71]). For

special magnetic field orientations shown in Fig. 6.10, the contributing E-shell sites

are magnetically equivalent with the same {ωn−, ωn+}; thus, the electron spin is

periodically restored at the same values of τ regardless of isotopic (29Si) configura-

tion. In this way E-shell contributions can effectively be eliminated as exemplified

in Fig. 6.11. By orienting the magnetic field in one of the special directions, the

effects of all E-shell nuclei are simultaneously eliminated at periodic values of τ .

To understand the periodic restoration of ESEEM in the presence of mag-

netically equivalent nuclei, consider the Hahn evolution operators for an initially

up/down electron spin, Û±
Hahn = Û∓

0 (τ)Û±
0 (τ). The Û±

0 (τ) evolution operators simply

precess the spins of the magnetically equivalent nuclei at angular frequencies of ω±

[Eq. (6.17)], and, thus, U±(2πm/ω±) = 1̂ for any integer m. Taking τ = 2πm/ω−,

for example, then Û±
Hahn = Û+

0 (τ). Thus the evolution of the magnetically equiv-

alent nuclei is independent of the electron spin so that the electron qubit is fully

decoupled from these nuclei. If we concatenate (as in CDD) or repeat (as in PDD)

the Hahn sequence, as discussed in Ch. 5, with τ = 2πm/ω−, we generally find

that Û± = Û+(t/2) where t is the total pulse sequence time. These sequences thus

preserve the property of decoupling the electron from magnetically equivalent nuclei
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Figure 6.10: Special applied magnetic field directions that allow effective removal

of echo modulation contributions due to E-shell nuclei (the four nearest neighbors

to the P donor). The arrows and translucent sheets respectively indicate directions

from the P atom parallel and perpendicular to the applied magnetic field. Sites in

these direction give no anisotropic contribution (Bn = 0); in each of the three cases,

the E-shell sites that do contribute are magnetically equivalent.
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Figure 6.11: Echo modulations, 1 − V (τ), in natural Si with an applied field of

1 T in the [001] direction corresponding to Fig. 6.10 (a). When sampling τ at

multiples of 2π/ω+ (or 2π/ω−), the E-shell nuclei give no contribution to the echo

modulations. Error bars, vertically asymmetric because of the log scale, correspond

to the standard deviation resulting from random isotopic configurations; those with

down arrows extend below the visible range.

when using the proper timing. In fact, this property is common to any balanced

sequence in which an initially up or down electron (or the separate components of

a superposition state) spends an equal amount of time being up and down.

We have studied Si:P donor electron spin decoherence due to AHF interaction

which is an important dephasing mechanism in Si. We clarify the electron spin

echo envelope modulation in the Si:P system and the resonance-like contributions

106



from nuclear spins in various shells away from the P atoms, and our theory is in

excellent quantitative agreement with experiment. Most importantly, we suggest

an approach to minimize the decoherence effect of AHF interaction by avoiding the

cancellation conditions and orienting an applied magnetic field along directions that

can periodically eliminate the contributions from the dominant E-shell nuclei.

6.2 Gallium Arsenide Quantum Dots

Our next application is to study the decoherence of a localized quantum dot

electron spin in GaAs. Such quantum dot qubits are exploited by the well-known

quantum computing proposal of Loss and DiVencenzo [72] and many more recent

variants [73, 74]. The decoherence of quantum dot spins has been much studied

recently [41, 40, 47, 75, 76, 77].

For our analysis, we parameterize the quantum dot wave-function, Ψ(R), by

the quantum well thickness, z0, and Fock-Darwin radius, `(B) (a function of the

magnetic field strength), as described in Ref. [35]. This will determine the HF

coupling constants, An [Eq. (3.10)], responsible for the qubit-bath interaction, Ĥqb =∑
nAnÎnz/2, due to the Fermi-contact HF interaction (Sec. 3.2.3). We have [35]

An =
16

3

γSγI~(a3
GaAs/4)

`2(B)z0

d(I) cos2

(
π

z0

Zn

)
(6.19)

× exp

(
−X

2
n + Y 2

n

`2(B)

)
Θ(z0/2− |Zn|)

−γSγI~
1− 3 cos2 θn

|Rn|3
Θ[X2

n + Y 2
n − `2(B)],

with aGaAs = 5.65 Å and γS = 1.76 × 107(s G)−1 (the free electron gyromag-

netic ratio). The GaAs lattice has a zinc-blende structure with two isotopes of
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Ga atoms placed on one fcc lattice and 75As atoms placed on the other fcc lat-

tice [62]. The Ga isotopes are 60.4% 69Ga and 30.2% 71Ga [78]. We used γI =

4.58, 8.16, 6.42× 103(s G)−1 and d(I) = 9.8, 5.8, 5.8× 1025 cm−3 for 75As, 71Ga, and

69Ga, respectively [79]. All of these nuclei have a valence spin magnitude of I = 3/2

which means that Eq. (6.5) is not quite applicable; this exact pair solution can be

made valid for I = 3/2 by simply multiplying by a factor of 25 to account for all

combinations of flip-flopping spin states.

As discussed in Sec. 3.2.4, HF-mediated interactions, effective coupling be-

tween nuclei that results from virtual electron spin transitions, are generally signif-

icant in GaAs even at modest magnetic fields because of their long-range nature.

However, as was also noted in that section, the effect of this interaction largely

cancels out (exactly cancels out in the pair approximation) when applying balanced

pulse sequences (in which the electron spin spends an equal time being up or down)

such as the Hahn echo or the dynamical decoupling sequences discussed in Ch. 5.

There can be an additional visibility loss related to the HF-mediated interaction

that is not cancelled out in these pulse sequence; however, for the quantum dots

represented in Fig. 6.12, this visibility loss is estimated as
∑

n(An/Ωn)2 . 10−5 for

an applied field strength of 1 T (the smaller dots exhibit greater visibility loss by

this estimate due to their concentration of electron probabilities and correspond-

ingly large values of An). It is important to note that FID, which should technically

define the T2 dephasing time, is dominated by this HF-mediated interaction [40].

Most of our results only include dipolar interactions (Sec. 3.5) for the intra-

bath Hamiltonian, Ĥbb and furthermore use the secular approximation for the strong
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applied magnetic field limit. However, indirect exchange interactions [55, 58, 59,

60, 61], discussed in Sec. 3.2.5, between nearest neighbors of GaAs may be of the

same order of magnitude as the dipolar interactions and thus affect SD in this

material [40]. At the end of Sec. 6.2.1, we include these interactions and compare our

results to the pair approximation results of Ref. [40]. The results are not qualitatively

changed by disregarding indirect exchange interactions, and the decay times are in

quantitative agreement well within an order of magnitude.

Ignoring HF-mediated and indirect exchange, except as noted, the dominant

part of the intra-bath Hamiltonian in the limit of a large magnetic field is the secu-

lar part of the dipolar interaction [Eqs. (3.5) and (3.7)]. One must take care not to

include flip-flop terms between nuclei of different species [as prescribed in Eq. (3.6)]

since the gyromagnetic ratios of 75As, 71Ga, and 69Ga are significantly different. Fur-

thermore, in order to account for the random allocation of the two Ga isotopes in the

Ga sub-lattice, these isotopes are chosen randomly, with appropriate probabilities,

while performing the statistical, Monte-Carlo, sampling of cluster contributions in

calculating 〈Σk(τ)〉.

6.2.1 Hahn echo spectral diffusion

The lowest order results, vE(τ) ≈ exp [〈Σ2(τ)〉], for most of our GaAs calcula-

tions show a Hahn echo decay of the form exp [−(2τ/t0)
4]. This differs qualitatively

from the decay for Si:P which, by our calculations, has the form exp [−(2τ/t0)
α]

where α ∼ 2.3 for a range of τ appropriate for natural Si and some range of isotopic
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purification. This exp [−(2τ/t0)
4] form of the GaAs echo decay corresponds to the

lowest order of the τ -perturbation (Sec. 5.1.2); the reason that it has this form re-

lates to our assumed shape for the electron wave-function and will be discussed in

more detail in Sec. 6.2.2.

Figure 6.12 shows the t0 of the initial exp [−(2τ/t0)
4] Hahn echo decay for

various parameter settings of z0 and ` with two different magnetic field orientations.

Also shown is t1/e, defined such that vE(τ = t1/e/2) = e−1. One can think of this t1/e

as an effective T2-time (with respect to the Hahn echo) for the problem although the

echo decay is not a simple exponential. Except for small dots, t0 = t1/e, indicating

that the decay has the form exp [−(τ/τ0)
4]. Small dots deviate from this form,

beginning to have longer t1/e decay times than their initial characteristic times, t0.

It was noted in Ref. [35] that decoherence times become infinite as the size of the

quantum dot approaches zero or infinity with a minimum decoherence time at some

finite size. The former is simply because the electron has no interaction with nuclei

as the quantum dot size approaches zero, and the latter is because the nuclei all

have the same coupling to the electron as the size becomes infinite. For z0 = 5 nm

we begin to approach this maximum decoherence (minimum t1/e) near ` = 10 nm,

but only in the regime where t1/e deviates from t0.

As discussed previously, the flip-flop interactions between the different nuclear

species is suppressed by their Zeeman energies. Because of this, the separate fcc

lattices (one containing Ga and the other containing As) are decoupled in the pair

approximation (2-clusters) that dominates the Hahn echo. In silicon, the asymmetry

of the diamond lattice results in maximum decoherence in the [111] direction. In this
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Figure 6.12: For GaAs quantum dots, t0 (circles), the characteristic initial decay

time, and t1/e (diamonds), the e−1 decay time, versus the Fock-Darwin radius ` for

various quantum well thicknesses, z0 = 5, 10, and 20 nm. The orientation of the

magnetic field is (a) along the z0 confinement of the quantum dot and [100] lattice

direction, or (b) perpendicular to the z0 confinement direction and along [110] of

the lattice.
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case, because the fcc lattice is more symmetric, the angular dependence is primarily

a result of the shape of the quantum dot (not the lattice). Figure 6.12 shows slight

quantitative differences when the magnetic field is along the z0 confinement direction

or perpendicular to it.

We now return to a discussion of the indirect exchange interaction between

nuclear spins (mediated by virtual inter-band electronic transitions) that were ne-

glected in the above calculations. Including the exchange interaction, we should

use

bnm = bDnm + bEx
nm, (6.20)

where bDnm is the dipolar coupling [Eq. (3.7)], and bEx
nm is the indirect exchange

coupling [Eq. (3.15)]. We note that bEx
nm = 0 in the Si:P system to a high degree of

accuracy. Yao et al. [40] performed SD decoherence calculations (using an equation

that is equivalent to our lowest order result) for GaAs quantum dots including the

indirect exchange interaction. As a verification of the correctness of our calculations,

Fig. 6.13 reproduces their Hahn echo results using our method but including the

indirect exchange interactions. Figure 6.13 also shows the results for the same

parameters when the indirect exchange is excluded; it is apparent that this coupling

is quantitatively significant in GaAs quantum dots but not qualitatively significant

(the decay exhibits the short τ behavior either way). The kink in the t1/e curve

for the case of excluded indirect exchange is believed to be a discrete lattice effect

only noticeable for small quantum dots. For such small quantum dots, it is likely

that Eq. (6.19), derived from an approximate electron wave-function, is somewhat
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Figure 6.13: For GaAs quantum dots, t0, the characteristic initial decay time, and

t1/e, the e−1 decay time, versus the Fock-Darwin radius ` for a quantum well thick-
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inaccurate.

6.2.2 Cluster expansion convergence

With our cluster expansion approach, we can estimate the error of our calcu-

lated decay curves by performing higher order calculations. We observe that the

larger quantum dots have larger corrections. For quantum dots with z0 = 20 nm

and ` = 100 nm our calculations indicate maximum correction to the Hahn echo

decay curves on the order of 10−3, 0.1% of the initial vE(0) = 1, just as it was

for natural Si (Fig. 6.5). For dots with z0 = 5 nm and ` = 10 nm, absolute

corrections are on the order of 10−4, 0.01% of the initial vE(0) = 1. Fig. 6.14, analo-

gous to Fig. 6.5, gives these low-order corrections explicitly for an intermediate size

(z0 = 10 nm, ` = 50 nm) GaAs quantum dot.

Because most of our GaAs results are in the form corresponding to the limit

of small τ , it is tempting to think that GaAs is dominated by the cnm ∼ (An −

Am)/bnm � 1 regime appropriate for the τ -expansion (Sec. 5.1.2). However, as

with Si:P (Sec. 6.1.1), we find that the cluster expansion converges because it is

dominated by clusters with cnm � 1 for which the intra-bath perturbation is appli-

cable. This is confirmed by comparing calculations that use exact pair contributions

versus approximate pair contributions using the lowest order of the intra-bath per-

turbation (see Sec. 5.1.3). These different calculations agree very well for small

quantum dots, but deviate slightly for larger quantum dots. Intermediate sized

dots are well-approximated by either perturbation theory. The reason the results
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are well-approximated by the small τ limit is therefore not because cnm � 1 for

dominating clusters, but rather because the dominating clusters, with cnm � 1,

have similar maximal values of cnm (largest cnm implies fastest dynamics and most

significance to the initial echo decay) and thus contribute similar frequencies. These

dominating clusters are located where the electron’s wave-function has the largest

gradient (where ‖An−Am‖ between nearest neighbors is greatest). There are many

such clusters with maximal cnm in quantum dots with Gaussian-shaped electron

wave-functions. In contrast, there are just a few such maximal cnm clusters in Si:P

which has an exponential-type donor electron wave-function; these must be near the

P donor and give negligible contribution to SD. This is the reason that our GaAs

results exhibit short τ behavior but our Si:P results do not.

6.2.3 Experiments in GaAs

Remarkable experiments have recently [38] investigated the coherence proper-

ties of a single qubit in GaAs quantum dots. In the context of these experiments,

the qubit was not the spin of a single electron, but rather a sub-space of two electron

spins, each in separate quantum dots with a controllable exchange interaction be-

tween the two dots. The qubit states are represented by the two-electron spin states

with zero total spin, |↑〉1 ⊗ |↓〉2 and |↓〉1 ⊗ |↑〉2 where the 1 and 2 subscripts label

the dots (and contained electrons). An applied magnetic field protects each electron

spin from depolarization; at the same time, the degeneracy of the zero-spin subspace

is protected from uniform magnetic-field fluctuations [74]. Electrostatic potentials
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are used to manipulate the electrons. State preparation and final readout are per-

formed by biasing the two electrons, with an applied voltage, into the same dot so

that the singlet state, (|↑〉1 ⊗ |↓〉2 + |↓〉1 ⊗ |↑〉2) /
√

2, has the lowest energy because

of the Pauli-exchange interaction [74, 80]. Voltage control is also used to turn on an

exchange interaction by allowing the wave-function of the two electrons on different

dots to overlap; such control can be used to rotate the qubit [74, 80]. Using this

control, one can apply π-pulses in order to perform a Hahn echo sequence or any

other DD sequence (such as those discussed in Sec. 6.3) to prolong the coherence of

the qubit.

We can simply map this two-electron qubit into our single-spin qubit formal-

ism. For convenience, we will define |0〉 = |↑〉1⊗|↓〉2 and |1〉 = |↓〉1⊗|↑〉2 as our two

qubit basis states. Turning on the exchange interaction will split the energies of the

(|0〉+|1|)/
√

2 and (|0〉−|1|)/
√

2 superposition states and thereby rotate the qubit in

a “transverse” direction as required for a DD sequence that combats dephasing. In

order to obtain the free evolution Hamiltonian needed by our formalism, we simply

need to derive the qubit-bath Hamiltonian, Hqb, from the HF interactions in each

of the two dots, ĤHF
1 + ĤHF

2 , by taking its matrix elements in terms of our qubit

basis states. With a strong applied magnetic field, and assuming we can neglect

HF-mediated interactions as we did in the single dot case,

ĤHF
1 + ĤHF

2 =
∑

n

A(1)
n Ŝ1z Înz +

∑
n

A(2)
n Ŝ2z Înz, (6.21)

so that 〈0|ĤHF
1 + ĤHF

2 |1〉 = 〈1|ĤHF
1 + ĤHF

2 |0〉 = 0; we thus have only the following
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dephasing qubit-bath interaction:

Hqb = 〈0|ĤHF
1 + ĤHF

2 |0〉 = −〈1|ĤHF
1 + ĤHF

2 |1〉 =
1

2

∑
n

(A(1)
n − A(2)

n ). (6.22)

During the free evolution part of the pulse sequence, the two electrons must have

essentially no overlap in their wave-functions; therefore, A
(1,2)
n will only be non-zero

when n represents a nucleus in dot 1, 2 respectively. Thus,

Hqb =
1

2

∑
n∈dot 1

A(1)
n − 1

2

∑
n∈dot 2

A(2)
n . (6.23)

Assuming that the intra-nuclear interactions occur only within the same bath (and

that the bath is initially uncorrelated), then the problem fully decouples into spectral

diffusion problems for dot 1 and dot 2 separately [81]. In terms of our cluster

expansion (Sec. 4), we simply need to sum the cluster contributions in the two dots

separately. In a random, unpolarized bath with two equivalent dots, the cluster

contributions in each dot will be identical; then, because the logarithm of the echo

is approximated as the sum of cluster contributions [Eq. 4.17], the resulting echo,

vE, is simply the squared value of the echo for the problem of a single-electron in

just one of the dots. There should, thus, be no qualitative difference between the

spectral diffusion of a single-spin qubit and this double-spin qubit; a prediction of

vE ∼ exp [−(τ/τ0)
4] for a single-spin qubit will carry over to the double-spin qubit.

Although the reported Hahn echo decay time, T2, of Ref. [38] is compatible

with our theory (which disregards other decoherence mechanism) as a limiting case,

it is clear that the experimental echo decay does not match the exp [−(τ/τ0)
4] form.

Therefore, at least one of the assumptions of our theoretical model is not applicable
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to this experiment; for example, it may not be appropriate to treat the applied π-

rotation pulses as ideal [77]. Also, the experimentalists are apparently not operating

in the strong applied magnetic field limit (which we assume) because they find that

the T2 time increases with an increase magnetic field [38]. Preliminary calculations

in which we treat the full dipolar coupling (not using the secular approximation

of the strong applied field limit) in our cluster expansion formalism do not show

any change in qualitative behavior that would account for this discrepancy. More

work needs to be done in order to bring the theory and experiment of quantum dot

dephasing decoherence into agreement.

6.3 Periodic and concatenated dynamical decoupling

In the literature, the performance of various dynamical decoupling schemes

for quantum computation is either estimated with abstract formalism [14, 15, 18] or

small toy models [18, 47]. In Ref. [42], however, we studied periodic CPMG pulse

sequences in realistic mesoscopic solid state systems using our cluster expansion

technique. Using the pair approximation, equivalent to the lowest order of our clus-

ter expansion, concatenated sequences were studied as well in mesoscopic solid state

systems in Refs. [43, 44]. As we have noted, however, the lowest order cancellations

made in concatenation require the inclusion of clusters of increasing size in the clus-

ter expansion; these larger clusters often dominate decoherence and therefore the

pair approximation is not valid for analyzing concatenation sequences [49].

We make a comparison between our computed results, shown in Fig. 6.15, for
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Figure 6.15: Echo decay of an electron bound to a P donor in natural Si with an

applied magnetic field along the [100] lattice direction for different types of dynam-

ical decoupling pulse sequence as a function of the time τ between pulses. Each

concatenation level (CDD1, CDD2, and CDD3) improves the coherence of the qubit

as a function of τ , at least for small τ . For comparison, the even-pulsed CPMG

series (CDD2 being among them) yields progressively worse coherence as a function

of τ (but better as a function of the overall sequence time). The dotted lines give

corresponding results to the lowest order in the intra-bath perturbation.

120



0.01 0.1 1
 τ  [ms]

1e-06

1e-05

0.0001

0.001

0.01

   
co

nt
ri

bu
tio

ns
 to

 th
e 

  n
at

ur
al

 lo
g 

of
 th

e 
ec

ho

CDD1, 2-cluster
CDD2, 2-cluster
CDD2, 3-cluster
CDD3, 2-cluster
CDD3, 3-cluster
CDD3, 4-cluster

Figure 6.16: Contributions from different sized clusters for the concatenated echo

decays in the Si:P system of fig. 6.15. The minimum required cluster size required

to yield the appropriate lowest order result in the cluster expansion increases with

each concatenation, and the larger clusters tend to dominate the decoherence.
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the CDD and CPMG pulse sequence echoes of an electron bound to a P donor in

natural Si. These are plotted as a function of the time τ between pulses. For the

CPMG pulse sequence with 2ν pulses, the total sequence time is t = 4ντ . With an

increasing number of CPMG pulses, the coherence as a function of τ is diminished,

but, as noted in Ref. [42], the coherence as a function of t tends to improved. For

the CDD pulse sequence with l levels of concatenation, the total sequence time

is t = 2l+1τ . With each level of concatenation, coherence as a function of either

τ or t tends to improve. Figure 6.15 shows only the first 90% of the decay as a

way to avoid sections of these curves that do not converge in the cluster expansion.

Dotted lines in this figure show the results when using the lowest order of the intra-

bath perturbation for cluster contributions. The deviation of these perturbative

results from the convergent cluster expansion results correlates with the onset of

the divergence in the cluster expansion as expected assuming that the intra-bath

perturbation provides the reason for the cluster expansion convergence.

Contributions from different cluster sizes are shown for the CDD series in

Fig. 6.16. We must increase the size of clusters that we include for each level of

concatenation. The larger clusters of these concatenated pulses are seen to dominate

the decoherence (concatenation of level l is dominated by cluster of size l + 1),

invalidating the pair approximation used in Refs. [43, 44].

A comparison between different pulse sequences is shown in Fig. 6.17 for a

quantum dot electron in GaAs. Again, the CPMG series decreases in performance

as a function of τ (but not t) but the CDD series shows successive improvements,

at short times, as a function of either τ or t. Contributions from different cluster
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Figure 6.17: Echo decay of a quantum dot electron in GaAs with an applied magnetic

field along the [110] lattice direction for different types of dynamical decoupling

pulse sequence as a function of the time τ between pulses. Each concatenation level

(CDD1, CDD2, and CDD3) improves the coherence of the qubit as a function of τ ,

at least for small τ . For comparison, the even-pulsed CPMG series (CDD2 being

among them) yields progressively worse coherence as a function of τ (but better as

a function of the overall sequence time). The dotted lines give corresponding results

to the lowest order in the intra-bath perturbation. The quantum dot in this example

has a Fock-Darwin radius of ` = 25 nm and quantum well thickness of z0 = 8.5 nm.
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Figure 6.18: Contributions from different sized clusters for the concatenated echo

decays in the Si:P system of fig. 6.17. The minimum required cluster size required

to yield the appropriate lowest order result in the cluster expansion increases with

each concatenation, and the larger clusters tend to dominate the decoherence.
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sizes are shown for the CDD series in Fig. 6.18. Again we see that a concatenation

of level l is dominated by clusters of size l + 1.

We did not include HF-mediated interactions in any of these results (Sec. 3.2.4).

This is justified in the case of the Hahn echo where the effect of HF-mediated interac-

tions are fully reversed (apart from a small visibility loss) in the pair approximation.

However, using CDD sequences, where higher order cluster contributions must be

taken into account, there may be significantly contributing processes that involve

a combination of HF-mediated and dipolar (or other local) intra-bath interactions.

This should be considered in future work.

6.4 Nuclear Spin Memory

The motivation for developing a solid state quantum computer architecture

using localized spins as qubits arises primarily from the presumably long quantum

coherence times for spins even in the strongly interacting solid state environment.

In this respect, nuclear spins are ideal since both spin relaxation (i.e. T1) and

spin coherence (i.e. T2) times are very long for nuclear spins, as compared with

electron spins, due to their weak coupling to the environment. The application

of a strong magnetic field further enhances nuclear coherence by suppressing, at

least, the leading order relaxation and decoherence processes caused by direct HF

coupling between nuclear spins and any surrounding electron spins due to the large

mismatch between electron and nuclear spin Zeeman energies. In this section we

again assume the limit of a strong applied magnetic field. We also neglect, somewhat
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uncritically, all effects of any direct HF coupling between electron spins and nuclear

spins assuming our system to be entirely a nuclear spin system. The existence of

localized electron spins in the environment will further suppress the nuclear spin

coherence, and therefore, our theoretical values for nuclear spin quantum memory

lifetimes should be taken as upper bounds.

Nuclear storage of quantum information in a solid state environment is most

naturally placed on donor nuclei that are easily distinguishable from the surround-

ing intrinsic nuclei. We note that it is imperative that the memory is stored in

a nucleus which is distinct from the surrounding nuclei in some manner so that

the stored information can be recovered. Several quantum computing architecture

proposals [26, 27] exploit the long-term quantum information storage capabilities

which donor nuclei spins can possess. In this section, we present theoretical calcu-

lations of the T2 dephasing of donor nuclear spins in two solid-state environments

of interest for quantum computing: Si:P and GaAs:P. Specifically, we present co-

herence versus time information in the context of single-pulsed Hahn and periodic

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence.

We again apply the cluster expansion technique of Ch. 4. In the localized

electron qubit problems of the previous sections, the strong HF qubit-bath coupling

relative to the dipolar (or other) intra-bath coupling aided the convergence of the

cluster expansion due to the applicability of the intra-bath perturbation. For the

case of the donor nucleus qubit, the qubit-bath coupling is due to intra-nuclear

dipolar coupling with the same order of magnitude as the intra-bath coupling. For

this reason, we will only be able to obtain convergent cluster expansion results for
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the initial part of the decay. We therefore focus on the initial decay and our plots

show memory-loss as a function of time rather than exhibiting full, formally exact,

decay curves.

We again use the secular part of the dipolar interaction for the intra-bath

Hamiltonian (ignoring, as we stated earlier, interactions with any electrons in the

system) [Eqs. (3.5) and (3.6)]. The qubit-bath interactions are also due to dipolar

coupling. However, in this instance we disregard the flip-flop interactions which

are suppressed via energy conservation as a result of the applied magnetic field and

differing gyromagnetic ratios between the qubit and spins in the bath. Instead, we

consider just the InzImz term which will contribute to dephasing:

Ĥqb ≈
∑

n

AnÎnzŜz (6.24)

An = γDγn~
1− 3 cos2 θn

R3
n

, (6.25)

where Ŝz is a nuclear spin operator for the P donor nucleus, γD is the gyromagnetic

ratio of the donor nucleus, Rn is the distance of nucleus n for the P donor, and

θn is the angle of the vector from the P donor to nucleus n relative to the applied

magnetic field.

We have performed cluster expansion calculations to successively approximate

echoes for two different systems. In both systems, we have a P donor atom with

γD = γP = 1.08 × 104(s G)−1, and we have chosen the applied magnetic field to

point along one of the conventional axes directions (e.g., B||[001]). In our figures,

we plot “memory loss” versus total echo time (2τ) where we define memory loss as

one minus the echo envelope, 1− vE(τ), and we only show results where the cluster
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expansion is rapidly convergent.

We show Hahn and CPMG echo results for GaAs:P in Fig. 6.19; in this system,

γn = 4.58, 8.16, 6.42×103(s G)−1 for 75As, 71Ga, and 69Ga, respectively, and all differ

from γP. In the lowest order τ approximation of the GaAs:P Hahn echo,

ln (vHahn(τ)) ≈ −
(

τ

260 µs

)4

(6.26)

≈ − (t/520 µs)4 . (6.27)

In Ref. [42] we showed that the log of the CPMG echo with a even number of pulses

as a function of inter-pulse time scales as the number of pulses squared. With ν

equal to half the number of applied pulses, then, the lowest order τ approximation

of the GaAs:P CPMG echo is

ln (vCPMG(τ)) ≈ −ν2

(
τ

195 µs

)6

= −ν−4

(
t

780 µs

)6

. (6.28)

The corresponding exact (convergent) results plotted in Fig. 6.19 do not visibly differ

from Eq. 6.26 or Eq. (6.28) respectively; therefore, this approximation is valid in

the region in which the cluster expansion converges. This short time approximation

equation may serve as a useful educated guess (estimate) at times beyond cluster

expansion convergence. If we do extrapolate Eq. (6.28) equations and define T2 as

the time in which the extrapolated echo reaches 1/e, then we have T2 = ν0.67 ×

780 µs for even CPMG echoes. This gives a factor of 6.5 increase of nuclear spin

coherence times relative to the electron spin quantum dot coherence times reported

in Ref. [42] and Sec. 6.3. The behavior beyond the point of convergence may be
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Figure 6.19: Numerical results of nuclear spin quantum memory loss for a 31P donor

nucleus that replaces an As atom in bulk GaAs. We define memory loss as one minus

the normalized echo and plot this in a log-log scale as a function of the total echo

time. The dashed line gives the Hahn echo results and the solid lines give CPMG

echo results for two and four pulses. At some point for each type of echo sequence,

the cluster expansion fails to converge.
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an interesting theoretical question in itself. Are the curves well-behaved? Do they

oscillate? Is it feasibly possible to obtain theoretical results in a regime in which

cluster contributions increase with cluster size? These interesting and important

questions are unfortunately beyond the scope of this work.

We additionally show Hahn and CPMG echo results for Si:P in Figs. 6.20 and

6.21; γn = 5.31 × 103(s G)−1 for 29Si which also differs from γP. Unlike GaAs, Si

has stable isotopes (28Si, 30Si) with zero spin. Among its stable isotopes, only 29Si,

which has a natural abundance of 4.67% and a spin of 1/2, has a non-zero spin.

Isotopic purification can reduce the amount of 29Si and thereby diminish SD caused

by the nuclear spin bath. For generality, we define f to be the fraction of Si that

is the 29Si isotope. Figure 6.20 shows results in a natural Si bath (f = 0.0467),

while Fig. 6.21 shows, for comparison, results in a bath of Si isotopically purified to

f = 0.01.

The lowest order τ approximation of the Si:P Hahn echo yields

ln (vHahn(τ)) ≈ −f 2
( τ

1.05 ms

)4

(6.29)

≈ −f 2 (t/2.1 ms)4 . (6.30)

The f 2 dependence simply arises from the fact that, in this approximation, all

contributions are from pairs of nuclei. With ν equal to half the number of applied

pulses and again using the result of Ref. [42] for the scaling of even CPMG echoes

with the number of applied pulses, the lowest order approximation to the Si:P CPMG
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Figure 6.20: Numerical results of nuclear spin quantum memory loss for a 31P donor

nucleus in bulk Si. We define memory loss as one minus the normalized echo and

plot this in a log-log scale as a function of the total echo time. The dashed line gives

the Hahn echo results and the solid lines give CPMG echo results for two and four

pulses. Dotted lines give corresponding results, for comparison, obtained from the

lowest order expansions provided by Eqs. (6.29) and (6.31). At some point for each

type of echo sequence, the cluster expansion fails to converge.
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Figure 6.21: Equivalent to Fig. 6.20 except that results are shown for Si purified to

1% 29Si. Lowest order result given by Eqs. (6.29) and (6.31) are shown by the dotted

lines. Isotopic purification enhances coherence as predicted in these equations.
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echo yields

ln (vCPMG(τ)) ≈ −ν2f 2

[( τ

1.35 ms

)6

+ f
( τ

0.70 ms

)6
]

= −ν−4f 2

(
t

5.4 ms

)6

−ν−4f 3

(
t

2.8 ms

)6

. (6.31)

Dotted lines in Figs. 6.20 and 6.21 show the lowest order τ approximation [Eqs. (6.29)

and (6.31)] for the respective echoes. The exact (convergent) results exhibit a slight

disagreement with the lowest order approximation as the cluster expansion nears

the point of its divergence.

As with Eqs. (6.26) and (6.28), the above equations may serve as a useful

educated guess (estimate) at times beyond cluster expansion convergence. Initially,

at least, Figs. (6.20) and (6.21) show that Eqs. (6.29) and (6.31) provide conservative

estimates. If we do extrapolate these equations and define T2 as the time in which

the extrapolated echo reaches 1/e, then we have, for natural Si, T2 = ν0.67×12 ms for

even CPMG echoes. For a small number of pulses, ν ∼ 1, this gives about factor of

5 increase of nuclear spin coherence times relative to the electron spin quantum dot

coherence times reported in Ref. [42] and Sec. 6.3; this comparison factor increases

as we increase the number of pulses because electron spin decay-time [42] scales

with a smaller power of ν (ν0.53). In the range of cluster convergence, where we

have confidence in the accuracy of our results for the model that we have used, we

observe high fidelity memory retention with a low loss of 10−6 up to 1−2 ms for two

or four-pulse CPMG sequences in natural Si and nearly up to 4 ms for 1% purified

Si.
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By implementing CPMG pulse sequences with just a few even number of

pulses, high fidelity (with loss below 10−6) qubit retention times are theoretically

observed on the order of 100 µs for GaAs systems and on the order of milliseconds

for Si:P systems. We emphasize that although we are unable to achieve convergence

beyond the initial decay which affects the accuracy of our extrapolated estimate for

T2, itself, we accurately estimate the initial-time coherent memory loss (i.e., the loss

of the first 10−4−10−6 fraction of coherence) which is the most important ingredient

for quantum computation considerations.
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Chapter 7

Conclusion

In conclusion, we describe a quantum approach for the decoherence problem

of a solid-state spin qubit in a nuclear spin bath and have studied the effects of

concatenated and periodic dynamical decoupling pulse sequence both numerically

and by classifying them perturbatively. In contrast to former theories, our method

requires no ad hoc stochastic assumption on the complex dynamics of the environ-

ment responsible for decoherence. Hence it provides an important example where

direct integration of the environmental equations of motion provides a systematic

understanding of the loss of coherence which needs to be controlled for quantum

information applications.

The most important theoretical accomplishment of our work is the develop-

ment of the first fully quantum microscopic theory for the localized electron spin

decoherence due to the spectral diffusion induced by nuclear spin bath dynamics.

Our results are formally exact, and our numerical calculations, when the cluster

expansion is convergent, provide an essentially exact quantitative description of

the echo decay for various pulse sequences in various systems. The significance of

our quantum theory lies in the fact that, unlike all other theoretical descriptions

of SD spanning the last 50 years, we do not make any ad hoc phenomenological

stochastic approximation in dealing with the non-Markovian spin dynamics in the
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SD phenomena. We solve the problem essentially exactly using a quantum cluster

decomposition technique, which is then theoretically justified by carrying out cal-

culations to higher orders and tested further by comparing results from the time

and intra-bath perturbation theories. A completely independent verification of our

theory and results in the lowest order (the pair approximation) now appears in the

literature [40, 43]. A linked-cluster expansion using a diagrammatic approach has

also been developed [45] as an equivalent to our cluster expansion; the diagram-

matic approach offers additional insight into the processes that cause decoherence

but requires separate analyses for each of the many processes that are automatically

incorporated into our cluster expansion.

7.1 Discussion

We compare the effects of periodic (PDD) versus concatenated (CDD) dy-

namical decoupling pulse sequences that are based upon the simple Hahn echo. We

show that CDD results in successive low-order cancellations of both the time and

intra-bath perturbations (one or both of these are generally applicable where the

cluster expansion is convergent); for this reason, concatenated sequences far exceed

the performance of periodic pulse sequence in maintaining qubit coherence. Our

calculations show that increasing repetitions of the PDD sequence will increase the

overall coherence time over the entire sequence but comes at the price of needing

to apply pulses more frequently. Increasing the level of concatenation, on the other

hand, can have the effect of increasing the time between pulses that is needed in
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order to maintain coherence. Concatenated sequences do have their limitations,

however, even with the ideal pulses studied in this work. For the systems we have

investigated, it tends to only improve performance when the delay between pulses

is short compared to the intra-bath interaction time-scale. Furthermore, each level

of concatenation requires the inclusion of larger clusters in the cluster expansion;

these larger clusters often dominate the decay and expedite the point of diminish-

ing returns for CDD. Therefore, the pair approximation estimates [43] for the echo

decay of CDD are overly optimistic.

Our numerical studies of spin bath decoherence provide important tests for

DD strategies and take these strategies beyond the level of pure abstract formal-

ism [14, 18] and small toy models [47]. We note that it is a gross oversimplification

to characterize these decoherence problems by a simple T2 time. Their decay is

often not characterized by a simple exponential because the decoherence process is

non-Markovian. Furthermore, the coherence time for a particular qubit-bath sys-

tem will generally depend upon the implemented DD strategy in non-trivial ways.

It is traditional to define T2 as the characteristic decay time of the Hahn echo in

order to distinguish it from the time-scale of inhomogeneous broadening, T ∗2 , when

measuring an ensemble of qubits; however, it is more appropriate to define the T2

time with respect to the free induction decay (free evolution decoherence of a single

qubit with no inhomogeneous broadening) which is dominated by HF-mediated in-

teractions [40]. In this work, we only consider the echo decay for various DD pulse

sequences (including the Hahn echo) where the effects of HF-mediated interactions

are at least partially reversed. We can broadly define T2 as the total sequence time,

137



for a given pulse sequence, at which the echo decay reaches a value of 1/e (or the

time at which an extrapolation of the short time behavior reaches 1/e). Using this

definition, we find the Hahn echo T2 to be about 100 µs for the Si:P system and about

10 µs for the GaAs quantum dot system. But, this T2 can be enhanced indefinitely

(up to tens of milliseconds) in the Si:P system through the isotopic purification of

Si (i.e., by removing 29Si nuclei from the system) whereas in the GaAs quantum

dots, T2 ∼ 10 µs is essentially an absolute upper limit (when using simple Hahn

echo refocusing) since all Ga and As nuclei isotopes have free spins contributing

to the spectral diffusion and isotopic purification is impossible. It is important to

emphasize here that although spin polarizing the nuclei (e.g., through the dynamic

nuclear polarization technique) would, in principle, suppress the nuclear induced

SD decoherence of electron spin, in practice, this would lead only to rather small

enhancement of electron spin coherence since the presence of even a few nuclei with

the “wrong” spin would cause nuclear pair flip-flop processes [82]. Nuclear spins

have much longer coherence times than the those of localized electrons. We find the

Hahn echo T2 to be about 1 ms for a P donor in both Si and GaAs.

Finally, we comment on the fact that the SD process is quite a generic and

general phenomenon in any spin decoherence problem with coupled spin dynamics

(e.g. electron and nuclear spins, different types of nuclear spins, etc.) where the

dynamics of one spin species has nontrivial (i.e., non-Markovian) temporal effects

on the evolution of the spin dynamics of the other species. For example, a trivial

(but not often emphasized in the literature) consequence of SD consideration is

that in systems (e.g., Si:P; GaAs quantum dots) of interest to quantum computer
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architectures, the single flip of the localized electron spin will immediately decohere

all the nuclear spins in its vicinity. Thus, the nuclear spin T2 time in these systems

can at most be the T1 time for the electron spin! The typical low-temperature T1

time for electron spins in the GaAs quantum dots has been measured to be 1 ms

or so, and therefore the nucleus spin T2 time would at most be 1 ms in the GaAs

quantum dots, at least in the neighborhood of the localized electrons in the dot. The

same consideration applies to the Si:P system. We believe that the general quantum

theoretical techniques developed in this paper will be helpful in the studies of the

temporal dynamics of other coupled spin systems wherever one spin species could

act as a “decoherence bath” for the other system.

7.2 Future Work

This work could be extended in a number of different ways. Our methods can

easily be applied to a variety of physical systems. Models could be improved to give

a more accurate account of the various interactions in physical systems of interest.

It is trivial to include any local, qubit-independent, intra-bath interactions (such

as the dipolar or the indirect exchange interactions). However, the HF-mediated

interaction, which is long-ranged and is a qubit-bath as well as intra-bath interaction,

may require a more appropriate treatment. This interaction does not pose any

problem for our cluster decomposition or the cluster expansion in principle, but

it complicates our perturbative descriptions and computations because it is not

compatible with a near neighbor approximation. The HF-mediated interaction has
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been included in a pair approximation for free induction decay [40] where it was

found to be the dominant cause of decoherence; apart from a typically small visibility

loss, the effect of the HF-mediated interaction is completely reversed in the pair

approximation. On the other hand, because it is necessary to consider higher-order

clusters in CDD sequences, it may be necessary to treat these interactions in order

to more accurately test the DD enhancement gained from concatenation.

Our techniques could also be used to examine other promising pulse sequences.

For example, Ref. [83] presents a sequence of π-pulses that gives optimal decoupling

from a bosonic bath in a simple model; in the context of the solid-state spin baths

that we study in this work, this particular sequence could simply be tested using

our formalism (easily adaptable to any π-pulse sequence) or one could search for

an optimized sequence that would suppress the cluster contributions of our cluster

expansion. Finally, it would be desirable to adapt our formalism to treat non-ideal

π-pulses (such as a perturbation to treat finite-width pulses), other types of pulses,

or generally circumvent the restriction of treating only dephasing-type interactions

of the qubit (i.e., make it possible to treat Ŝx,y as well as Ŝz qubit spin operators).

This work has made it possible to study the decoherence of a solid-state qubit

interacting with a large, complex, dynamical spin bath using a microscopic approach

that is formally exact and fully quantum mechanical. It is quite general but has

some limitations (in particular, we can only treat dephasing-type interactions with

the qubit and we must assume that the bath is initially uncorrelated). Our work

holds promise to greatly benefit the study of quantum information in solid-state

spin systems (or perhaps may be extended to other areas), and provides a starting
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place for future work to go beyond the limitations of this formalism.
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