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In this thesis, we quantitatively study the effect of High Performance Computing 

(HPC) novice programmer variations in effort on the performance of the code 
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performance. In addition, we were successful in identifying a daily distribution 

pattern of effort which correlates with performance, suggesting that subjects who 

distribute their workload uniformly across days, pace themselves, and minimize 

interruptions achieve better performance. 
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Chapter 1: Introduction 

 

1.1 Overview 

Many fields of scientific research which aim at studying physical phenomena 

through computer simulation, such as computational science and engineering, have 

entered the mainstream of High Performance Computing (HPC). Single processor 

computers are not capable of efficiently running interesting problems in these fields 

because they involve processing large amounts of data, and performing complex 

calculations, requiring an impractical amount of time to complete. Therefore, 

scientists must write software to run on the more powerful, parallel machines. 

However, while computer performance can be dramatically improved, 

programming these machines remains difficult. Expert programmers in the HPC field 

are rare because HPC code development requires knowledge in both the HPC domain 

and the scientific domain. So scientists find it increasingly costly and time consuming 

to write, port, execute and evaluate software in this domain. Indeed, the consensus in 

the community is that today’s technologies are inadequate to HPC users. For this 

reason, productivity has become as important as performance in the HPC domain. 

For example, the DARPA High Productivity Computing Systems (HPCS) 

project has been concerned with the question: How do HPC hardware, software and 

human factors affect the development of an HPC program? It has focused on the 

issues of low efficiency, scalability, and software tools and environments, in order to 
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provide a petaflop-class computer that is substantially easier to program and use. Its 

view of productivity can be summarized by the following equation:  

Time to solution = development time + execution time 

In this thesis, we are trying to understand the effect of novice HPC 

programmer variations, such as programmer effort, on performance.  Effort and 

performance can obviously be mapped to development time and execution time 

respectively. Therefore, if the hypothesized relationship exists and is strong enough, 

minimizing the time to solution will depend on a balance - probably a delicate 

balance - between development time and execution time. This balance would 

therefore be a potential indicator of success in HPC and a key factor in improving 

productivity. 

1.2 Objectives 

As mentioned earlier, many HPC developers are scientists who are experts in 

their application domain, but have limited knowledge in the HPC domain. For this 

reason, and given the available data we have from participating universities, we focus 

our study’s context on senior and graduate students taking a graduate class on HPC, 

as an approximation to the average HPC developer.  

Our objective is to characterize, in the above mentioned context, the 

relationship between the performance of the written HPC code and the following 

variables: 

- total effort spent by the programmer working on the problem, 
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- distribution of the programmer’s effort over time, 

- distribution of the programmer’s effort over debugging and coding activities, 

- and the size of the written code. 

The results of the study are of interest to many stakeholders and can be useful in 

many perspectives: 

- Vendor perspective: the process of finding and fixing defects (“debugging”) in 

the code is costly and time-consuming. We, therefore, expect that time spent 

debugging doesn’t contribute work towards performance as effectively as time 

spent coding new functionality. Our results can then be used to give advice to 

vendors on the tools needed to improve programmer’s productivity. 

- Programmer perspective: our results concerning the effects of different 

patterns of effort distribution over time can help the programmer decide how 

and where to spend their time. We compare two main effort distribution 

patterns, which we found through our qualitative study of the subjects as will 

be discussed in section 3.2: 

o The slow and steady approach: the programmer works regularly on the 

problem, spending almost equal periods of time every day 

o The fast and furious approach: the programmer works intensely on the 

problem for one or more days, then abandons it for some time, and 

goes back to it later.  
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- Management perspective: one of the differences between the two patterns 

above is the significant break in the middle of development. This can happen 

for many reasons, one of which is the obligation to work concurrently on a 

different problem. Our study can help the task assigner or manager distribute 

the load of different projects on the programmers, with the knowledge that 

giving them many projects to work on might result in the interleaved pattern 

of work, and the effect that has on their productivity. 

- Educational perspective: the managerial perspective can also be applied on a 

smaller scale in classrooms, where professors or instructors of HPC related 

courses can direct students to the most efficient work strategy for their 

assignments and projects. 

1.3 Organization of thesis 

The thesis is organized as follows: Chapter 2 describes related work and 

provides information on tools previously developed for the HPCS studies and that 

were used in this work. Chapter 3 provides the research methodology and hypothesis 

discovery process. Chapter 4 lays out the data results. Chapter 5 provides the 

interpretation and observations drawn from the results. Chapter 6 concludes the thesis 

with a summary of conclusions and future work. 
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Chapter 2: Related work 

 

2.1 Related literature 

Over the years, many programming models and languages have been 

developed for writing HPC applications. Dongarra et. al.  [1] presents some guidelines 

for choosing particular programming models to use. Hochstein  [2] also summarizes 

programming models and languages that are available for writing HPC applications 

today. 

As computer architectures and programming models advance and increase in 

complexity, software development is getting harder. However, empirically 

understanding how practitioners carry out the software process is challenging due to 

lack of an existing body of domain-specific knowledge and difficulty in getting 

subjects and projects to participate in such studies. Hochstein  [2] provides an 

empirical approach for iteratively and incrementally collecting useful knowledge 

about a particular software domain into an experience base. He applies his 

methodology to the HPC domain, and uncovers the following facts: 

- “Students are able to get reasonable performance, despite essentially no 

performance tuning.” 
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- “Problem size is not necessarily related to the difficulty in achieving speedup” 

since students got better performance in their class projects than in their 

assignments.  

- “Experts achieve better performance than novices, but not necessarily with 

less effort” 

- There exists a “measurable reduction in effort with experience with having 

solved that problem before in a different model”. 

- The difference between MPI and OpenMP defects isn’t significant, 

contradicting the hypothesis that “shared memory programs are harder to 

debug”. 

In a more extensive study of HPC defects, Nakamura  [3] presents another 

empirical approach for building, storing and evolving domain-specific knowledge, 

applied in turn to HPC defects. In the process, he identified defect patterns from 

empirical data, developed a corresponding classification scheme and constructed 

HPCBugBase1, which enables these patterns to be stored and shared.  

Of the few studies into programmer productivity in HPC is the survey work of 

Pancake  [4], which discusses the conceptual gap between tool builders and tool users 

in HPC and indicates where the developers should focus their efforts in order to 

attract the parallel users. Pancake also answers questions concerning the allocation of 

                                                 
1 http://www.hpcbugbase.org 
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effort in developing parallel applications and preferences in tool origin based on the 

programmers’ different backgrounds (Computer Science, Engineering and Science). 

The relationships between some HPC domain parameters and variables have 

been studied in specific situations. There have been empirical studies to quantify the 

effect of parallel programming technologies on effort. Szafron & Schaeffer  [5] 

compared the Enterprise Parallel Programming System (PPS) to a message-passing 

library through a controlled experiment. They based their comparison on usability, 

which for PPS was determined by features such as the learning curve, programming 

errors, performance, compatibility with existing software and integration with other 

tools. According to their definition of usability, they found that Enterprise has greater 

usability features but NMP produces better performance. Enterprise required 

considerably fewer lines of code than NMP and saved programmers time during 

coding, so they could focus on the design of the parallel solution without 

unnecessarily distracting details. Hochstein  [6] also compared two programming 

models, OpenMP and MPI, with respect to their impact on development effort. He 

concluded that novice programmers spend significantly less effort with OpenMP 

compared to MPI.  

The effect of the programming models and languages on the performance has 

also been studied, as in the work of Berlin et. al.  [7], which evaluated the impact of a 

number of parallel programming languages (MPI, UPC, OpenMP, Java, C/Pthreads) 

and their features for their performance and ease of use.  Another example is the 

experimental comparison of OpenMP, HPF and MPI conducted by Berthou et. al.  [8] 

on various platforms according to many criteria including efficiency, scalability, and 
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portability. As a conclusion, the authors recommended different parallelization 

strategies for different codes.  

The tradeoffs between performance gains and effort were described by 

Morton  [9] in the context of porting Fortran/PVM code to the Cray T3D. One of the 

lessons reported in this work is that programmers must spend extra work to be able to 

take advantage of the low-level facilities offered by the Cray T3D for attaining 

substantial performance gains. He also notes that encapsulating optimization details 

and incorporating them in applications through high-level routines can reduce coding 

effort and allow researchers to focus on their science objectives instead of spending 

more time on the details of low-level programming.  

Rodman and Brorsson  [10] investigated the programming effort involved in 

integrating message passing into a shared memory program in order to preserve the 

easy implementation of the shared memory approach and take advantage of the 

benefits of message-passing for performance critical tasks.  

2.2 Related tools 

2.2.1 UMDInst 

The data used in this study was collected as part of the HPCS project from 

students in different universities in the United States. The details of the data used will 

be discussed in the methodology section. In this section, we will give an overview of 

the tools used to collect this data.  
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It is important that the tools used provide an objective way of collecting data 

and conserving its accuracy. We therefore used automatic data collection from the 

programmer’s environment, which in addition reduces the overhead on subject side 

and the researcher side. This is supported by our instrumentation package, UMDInst 

which automatically collects software process data in a Unix-based, command-line 

development environment, which is commonly used in HPC.  

UMDInst  [11] is a collection of scripts that wrap programs and tools involved 

in the software development process (compiler, editor…). When one of these 

programs is invoked, the wrapper logs the useful information (such as timestamp, 

username, command used …) before passing execution to the intended program. The 

logged information differs depending on the program that was invoked. For example, 

a compiler invocation captures the following data: 

- a timestamp  

- contents of the source file that were compiled  

- the command used to invoke the compiler  

- the return code of the compiler  

- the time to compile  

The UMDInst package includes Hackystat sensors  [12] to instrument 

supported editors such Emacs and vi, and to capture shell commands and timestamps. 

Whenever subjects are editing, compiling or running their codes, the captured 
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snapshots of their programs and commands are written to a local log file. At the end 

of the study this log file contains all intermediate versions of the whole development 

process of HPC programs. It is then possible to use the collected data to estimate total 

effort as well as to infer development activities (debugging, parallelizing, tuning), as 

will be described in the methodology section.  

 

2.2.2 CodeVizard   

As will be described in subsection 3.1.2, for the purpose of distinction 

between work and rework phases, analysis of a single version of code is not 

sufficient. We need to analyze the progress of versions over time, which would be 

extremely challenging to do manually. We therefore need a tool that supports this 

kind of evolutionary investigation of a software process. Our task is further 

complicated by our need for implicit data, data that is not directly accessible but 

implicitly contained in the code. As will be discussed later, the number of lines of 

code added, deleted, modified and their locations are essential in our approach to 

determine the phase in question.  

For these purposes, we used CodeVizard  [13], which is a visual diff tool 

designed specifically for the needs of HPCS researchers to visualize software 

evolutionary data. CodeVizard displays all versions of the source code lined up with 

transitions describing the amount and location of added, deleted and modified lines of 

code. The strength of CodeVizard is that it allows the user to control the level of 

abstraction and the level of detail at which to show the data. The abstract view allows 

the analyst to quickly capture interesting patterns. However, this high level view is 
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not always sufficient to draw conclusions. Therefore, the interactive features of 

CodeVizard, which allow the analyst to view the code at a lower level of detail, are 

very useful. Its visual and semantic zooming capabilities let the user decide on and 

gradually modify the level of detail needed whenever needed. Figure 1, Figure 2 and 

Figure 3 present three different views that can be obtained of CodeVizard. Green, red 

and blue lines represent added, deleted and modified lines respectively. One of the 

most important features of CodeVizard is that the user is in total control of the 

zooming-level, and that zooming can be increased and decreased in small continuous 

increments.   

 

 
Figure 1: High-level view of a subject’s code throughout development  [13] 

 

 
Figure 2: Medium-level zoom view of a series of versions  [13] 
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Figure 3: Low-level zoom view of a series of versions. The code is actually readable at this level. 

 [13] 
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Chapter 3: Methodology 

 

As mentioned in the related work subsection, there have been many studies 

characterizing the relationship between the programming model, the architecture, the 

effort spent by the programmer and the resulting performance. However, these studies 

were mainly qualitative and based on case studies involving a specific architecture 

and usually one programmer or one programming group working on a problem. Our 

goal is to quantitatively study the relationship between effort and performance in a 

more general context involving many programmers and allowing us to look for 

distinguishing characteristics that have a significant influence on the performance of 

the program. 

Therefore, our methodology for tackling this new territory is iterative. Figure 

4 is a graphical representation of our methodology. The flowchart shows the phases 

that the data goes through from the moment it is collected to the point where it is used 

to draw results. The left-hand side illustrates the data processing phases. We have 

already discussed the automatic data collection tool in subsection 2.2.1. We have also 

presented the features of the CodeVizard tool in subsection 2.2.2. In the following 

subsections, we will discuss an additional tool, APMS which was specifically 

designed and implemented for this study. We will also present the method used to 

distinguish coding and debugging phases using CodeVizard. Finally, we present a 

brief overview of the iterative process in order to illustrate how the hypotheses and 

metrics were generated and used.  
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Figure 4: Flowchart representation of the methodology 

 

We first state the steps of our iterative methodology:  

1. Look at the data: In this step, we look at the data from class 1 in order to identify 

potential relationships and qualitatively characterize the data. In the first iteration 

of this process, we looked at the raw data in order to build a basis for the 

following iterations. After this step, we have some description of the data, which 

allows us to formulate informed hypotheses, test them, define them more clearly 

and generate new hypotheses in later steps and iterations. Therefore, in later 

iterations, we first process the data in a manner that suits our purposes and the 
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perspective that we are planning to look at it. This step consists of a brainstorming 

phase in which we try to identify some interesting patterns. These are then 

informally verified against data from class 1 to become potential relationships (for 

example, does it look like most of subjects in class 1 follow the pattern? Is there a 

notable exception to the pattern? …). Hence qualitative characterization of the 

data is used to determine whether the proposed relationships are promising.  

2. Generate hypotheses and metrics:  in this step, hypotheses are generated based on 

the initial data observations done and potential relationships specified in the 

previous step. In addition, the qualitative data characterization is useful in this 

step because it sheds light on the properties of the subjects and their 

distinguishing features, which serves as the basis for defining the necessary 

metrics needed to verify the hypotheses. Again in this step, the iterative 

methodology allows us to incrementally evolve our hypotheses from a qualitative 

description in the first iteration to a more quantitative model in later iterations. 

3. Test the hypotheses: the hypotheses generated in the previous step are tested. This 

is the last step in each iteration, after which we either exit the process or go back 

to the first step. The decision to reiterate or terminate depends on the quality of 

support we get for the hypotheses. If the tests are unsatisfactory, we go back to 

looking at the data, now from a different perspective, trying specifically to 

identify the outliers in the data, and find out what aspect distinguishes them from 

other data points. This will help us modify the existing hypotheses to take into 

consideration the newly identified patterns, or generate new hypotheses. 
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We will now present the infrastructure needed, hypotheses generated, and 

metrics used in the application of the described methodology. 

3.1 Infrastructure 

3.1.1 Automated Performance Measurement System (APMS) 

Capturing the characteristics of a program’s performance requires running it 

on multiple sets of inputs. Typically in HPC these inputs include: the number of 

processors the program should be executed on, and problem-specific parameters such 

as grid sizes, number of iterations, or convergence thresholds. Furthermore even 

running one set of inputs multiple times can be useful since run time fluctuates 

between runs due to external factors of the runtime environment. Therefore, 

measuring performance of codes by hand, on every combination of inputs, can be 

tedious, time consuming and error prone.  

To complicate matters, we want to perform a longitudinal study across similar 

assignments from different semesters and different universities.   Unfortunately, while 

the assignments from different classes are similar, details such as command line 

arguments, and input file formats often change from assignment to assignment. We 

needed a tool that could automate both running the programs and eliding these minor 

differences. For this reason, we developed the Automated Performance Measurement 

System (APMS) which is a web-based tool that automates the process of running a 

large number of student codes. We will now present the important features of APMS. 

For more information about the system’s design and functionality, consult the 

appendix and/or  [14] 
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APMS is designed to make the job of measuring faster and easier and to 

provide all information the user would get if the program was executed manually. 

This includes process exit status, error and warning messages generated, and output 

produced. The system is accessed through a web browser. The user can select source 

files from the database, define input parameters and a set of possible values for each 

of them, then start the compilation, execution and performance measurement on a 

target cluster, and finally observe the results. 

APMS measures performance metrics for a set of parallel programs on a set of 

input parameters. The system reads source code from and writes results to the HPCS 

database, to enable the user later to aggregate performance data with other data that 

was captured during the classroom studies (e.g. workflow, effort and defect data). The 

system is fully automatic: once the criteria for programs to run are defined, the user 

doesn’t need to interact with the system while the programs are executing.  This 

feature is useful since although individual runs of programs are typically only a few 

seconds, a full performance study could require hundreds or thousands of individual 

program executions.     

Alongside the performance measurement, APMS provides the user with the 

capability of deciding whether program outputs are correct. Even if performance is 

the only variable being studied, correctness must also be verified since performance 

measurement results are only valid if the program produces the correct result. Judging 

the program correctness is not done automatically; instead the tool aims to visually 

display program outputs along side a known good output to facilitate the comparison 
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of their contents, and provides an interface for the users to record their correctness 

decision.  

To collect performance measurement for MPI + C programs, we are using the 

PAPI library  [15], which provides a consistent interface to the performance counter 

hardware found on most parallel machines. The tool currently supports collecting the 

real time, CPU time (time spent in user mode), number of floating point instructions 

(FLOPS), and FLOPS per second. Additional PAPI events could easily be added, 

provided they are supported by the PAPI library and by the cluster that the code is run 

on.  

Performance metrics vary depending on the purpose of measurement. If the 

goal is to measure overall speedup, the user would need to measure the total 

execution time. If the user needs more detailed information (like measures related to 

the machine architecture), lower-level metrics are needed, such as floating point 

instructions per second, memory and cache accesses. For this reason, the tool was 

designed to give the user freedom in choosing the performance metrics that should be 

measured.  

One tricky part of developing such a system is how to specify the adaptation 

layer to manage mapping program parameters and input file formats between the 

formats used in different classes.  In fact, it turned out that frequently the assignment 

for a class was under specified, and even within one class, students did not use the 

same pattern to pass input parameters to their programs. For example, some classes 
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expected input options from a specific file name, while, others read them from 

command line arguments and some had a mix of both techniques.  

To handle these combinations we came up with a simple language that allows 

specifying parameters, their corresponding values, and the format for passing them to 

the program. Our approach is based on the separation between the parameter values 

and their order and format when passing them to the program. For a user, this means 

following these steps: 

1. Specifying the value for each parameter  

2. Specifying for each parameter whether it should be passed on the command-line 

or through a file. 

3. Specifying the order for the command line parameters and input file parameters 

These steps are discussed in further detail and with examples in the appendix. 

3.1.2 Work and rework phase distinction using CodeVizard 

One of our objectives as part of the HPCS project at the University of 

Maryland was the identification of development phases in the recorded student 

programs. Our approach divides the development process into phases of work and 

rework: work being the implementation of new features and rework structural or 

functional modifications to existing features.  

Usually rework is the result of the current program not producing the expected 

output, or running too slowly, which is why it’s closely associated with debugging. 
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For this reason, we base our methods on Nakamura’s reading-based code analysis 

method  [3]. Nakamura developed this method in order to identify what defects exist 

in the code, when they were inserted and when they are fixed. Our goals are more 

general, since we’re not interested in the type of defect, or how it was fixed. On the 

other hand, information about the insertion time of a bug and its fix time can be very 

useful in determining a major subset of the rework periods. We found Nakamura’s 

approach very suitable for our goals, with a few modifications. Below is a summary 

of some heuristics adapted from Nakamura for our purposes: 

- “Familiarize yourself with the code”: we look at the last version of the source 

code to understand the code structure, the algorithm used to solve the 

problem, communication pattern, and language features used. 

- “Look at big changes to determine their intention: a typical pattern of code 

history consists of big changes interspersed between a series of small 

changes.” CodeVizard allows us to see the size of the change by visually 

graphing the lines of code added, deleted and modified. We modified 

Nakamura’s approach in that we don’t look at any kind of big change, but 

specifically big additions. Common activities indicated by big additions are: 

additions of new functionality, addition of comments, debugging (addition of 

many interspersed debug statements). Therefore, inspecting these changes at a 

lower level was necessary to determine their intentions. 

- “Look at small changes before big changes to locate fixes”: since we are not 

interested in locating the fixes, but simply determining when the rework starts 
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and ends, we modified this step to looking at interesting changes between big 

additions changes, again to determine their intention. A common pattern is 

that developers make a big change after they finish debugging. Therefore, the 

changes before the big additions often represent rework activities, such as 

deletion of all debugging code, commenting/uncommenting blocks of code, 

inserting a comment block.  

- Skip rework versions: The number of versions for each file can be up to 

several hundreds. A pattern we noticed is that work usually occurs in only a 

small number of versions, whereas rework occupies significantly more 

versions. Hence, a good strategy to save effort and time was skipping some of 

the rework versions, i.e. not to inspect them at low levels of detail. After 

studying a few subjects, we followed the following guidelines for skipping 

versions: 

o skip one line change versions: usually this turns out to be commenting 

or uncommenting a line of code, inserting or deleting a “printf” 

statement for debugging.  

o skip consecutive versions where changes are collocated: when a series 

of changes occurs in the same block of code is a good indicator of 

rework. 

Figure 5 shows how the high-level view can quickly help us determine what 

versions to skip and what versions to inspect more closely.  
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Figure 5: The use of CodeVizard in distinguishing work and rework phases 

 

3.1.3 Data used 

Our approach is opportunistic. We draw our data from a series of studies 

performed by the University of Maryland  [6] . The data available was collected from 

over 20 HPC classes at several universities in the United States. Some classes focus 

on the HPC systems, while others emphasize parallel algorithms, but all courses 

require a number of programming assignments using several programming models or 

languages.  

A common criticism of classroom based studies is that the problems are not 

representative of the types of problems that HPC practitioners actually solved. 

Choosing more relevant problems is difficult for two reasons: first the students don’t 

have much time to solve their assignments (a couple of weeks) and second the classes 

don’t require numerical computing knowledge. This limits the complexity of the 

assignment problems and differentiates them from actual HPC problems. In order to 

minimize this difference, we chose the assignment that was the most complex to solve 

using the MPI programming model: the conjugate gradient (CG) problem. The CG 
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method is an iterative algorithm for the numerical solution of particular systems of 

linear equations, namely those whose matrix is symmetric and positive definite. 

We chose to study MPI because on one hand it is the most dominant parallel 

programming technology in terms of numbers of users. However, MPI is difficult to 

use because it requires the programmer to deal with communication details at a very 

low level of abstraction. Therefore, MPI is a good representative for the programming 

environments used by scientists, making performance gains attainable, but at a cost.  

Fortunately, MPI assignments compose a significant part of the collected data 

that we have. We found in our database three assignments in which students solve the 

CG problem using MPI with C as base programming language. Class assignments 1, 

2 and 3 emphasize in their statements getting good performance. The class 1 

assignment states that “there will be credit for performance” in the grading policy, 

class 2’s specifies that performance forms 50% or the grade, and class 3’s requires the 

students to report the performance gains they achieved and to comment on them.  

 

Class Number of students with MPI 
versions 

Number of students with correct 
programs 

1 12 7 

2 8 4 

3 5 3 
Table 1: Number of subjects in each class 

 

Using APMS, we ran the last version of each student’s work and inspected the 

outputs to judge correctness. Table 1 shows the number of students who solved the 

problem in MPI and the number of students with correct versions found in every 



 

 24 
 

class. Those last subjects form our sample data. Due to the small number of subjects 

in classes 2 and 3, we decided to aggregate the data. This was possible because both 

assignments required the students to implement only the conjugate gradient routine 

and because the students had the same amount of time (two weeks) to solve the 

problem. The assignment of class 1 on the other hand was different from the others in 

that it also required the students to implement a parallel input generation function in 

addition to the conjugate gradient function. This prevented us from aggregating all 

classes together. The aggregated data from classes 2 and 3 will henceforth be 

referenced as belonging to class 2+3. 

The students differ in backgrounds (Computer Science, different areas of 

engineering, sciences) and hence in experience with generic programming and 

knowledge of related scientific fields. All the students, however, are new to parallel 

programming, and they have to learn the new models in a short period of time in 

order to solve the assignments.  

The combination of elements of assignment, programming model, HPC 

expertise and performance goal makes the subjects our closest available to novice 

programmers in real HPC projects. Of course, studying experts is also interesting. 

However, it has proved hard to get them to participate in such observational studies. 

Experts working in the industry are discouraged from participating to protect the 

work’s confidentiality and possibly the competition from other companies in the 

industry. University professors teaching the HPC classes don’t view themselves as 

experts since they’re not regularly engaged in HPC programming. In addition, experts 

whether working in academic or industry institutions, might also be apprehensive to 
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participating in a study and worried about how much of their time it would take up, 

even though the effort overhead involved in our studies are minimal. 

Fortunately, the CG problem has a well-known benchmark, the NAS CG 

benchmark2. The CG benchmark is designed to test irregular long distance 

communication using unstructured matrix vector multiplication. It is part of a set of 

programs developed by the Numerical Aerodynamic Simulation (NAS) program with 

the objective of evaluating parallel supercomputer performance. The NAS Parallel 

Benchmarks (NPB) are specified as "pencil and paper" benchmarks: their details are 

specified only algorithmically, in order to keep the benchmarks generic. For example, 

the CG benchmark gives the developer the freedom to choose the suitable data 

structures for the particular architecture to be used. However, the nature of the 

computations and the expected results are specified in great detail in order to allow 

verification of result correctness and performance  [16].  

Understanding the difficulty and effort involved in implementing the 

benchmarks from scratch, as well as the possible ambiguities in the technical 

specification, the benchmark developers also provided sample code. In addition, 

benchmark implementations are available from vendors. These implementations were 

verified by the NAS division. We use the NPB 3.2-MPI version for our purposes. For 

the CG benchmark, it is required that the input matrix A be used explicitly and 

generated using the provided subroutine called makea. This subroutine may not be 

changed  [16]. Although using this benchmark won’t give us an idea of the effort of 

                                                 
2 http://www.nas.nasa.gov/Resources/Software/npb.html 
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the programmers, it can be used as a good example of the performance that an expert 

can achieve.  

We used the NAS CG benchmark for another purpose: when comparing 

performance across multiple classes and multiple students, we must make sure that 

the inputs we are using are consistent in all of our tests. Therefore, we use the input 

generating functions of the CG benchmark and plug them into the student code. This 

was possible for classes 2 and 3, because the instructor gave the students a very strict 

harness to work according to and they had also provided the input generating 

functions. In addition, students weren’t allowed to modify the main function of the 

harness. Hence it was easy to simply replace the call to the given input generation 

function with the CG function call in the main code. Class 1’s harness on the other 

hand was looser and the students were required to write their own input generation 

functions which made it impossible to use the benchmark input generation functions 

without significantly modifying the student’s code. Luckily the data generators that 

the students were supposed to write were similar to input set S of the benchmark 

code, i.e. they used the same size matrix and the same number of non-zeroes per row. 

For this reason, assignment 1 code was only tested on set S of the benchmark while B 

and C were tested on sets S, W, A, B and C. Table 2 shows the defining parameters 

for the benchmark classes. As for the number of processors the programs were tested 

on, we used 1, 2, 4, 8 and 16 processors because that is the number of processors 

students were required to report on.  
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Benchmark code input 
set 

Matrix 
size 

Number of non-zeroes per 
row 

Number of 
iterations 

S 1400 7 15 

W 7000 8 15 

A 14000 11 15 

B 75000 13 75 

C 150000 15 75 
Table 2: NAS benchmark code set parameters 

 

3.2 Hypothesis generation process 

Our hypothesis generation process was based on our largest data sample, class 

1. We use this class to generate hypotheses which we test, at a later stage, against all 

classes. At the end of this subsection, all our generated hypotheses will be listed, and 

their numerical verifications will be presented in the data and results sections. In this 

subsection we only present our initial look at the data and how we used it to find 

clues to possible hypotheses.  

We start with the hypothesis that was reported in all studies of effort and 

performance in HPC: achieving performance requires significant effort. To get a 

sense of whether or not this hypothesis is true, we look at raw effort and performance 

data from class 1. Looking at Figure 6, we would expect students 66, 68, 70 and 

possibly 78 to have done better than 69, 71 and 81 with regards to performance.  
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Figure 6: Total effort in hours for subjects in class 1 

 

 
Figure 7: Time spent in CG routines for subjects of class 1 on 1, 2, 4, 8 and 16 processors 

 

Comparing our expectations with the performance graphs for these subjects 

(Figure 7), we find that 66 and 68 do in fact have the best times, 81 has the worst 

times, and 78 is somewhere in the middle of the spectrum. On the other hand, 70’s 

performance is not so good, as it is not consistent and takes much more time on 16 
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processors. Subject 69 doesn’t meet our expectations either: its performance is 

comparable to 66 and 68’s, although the effort spent by that subject is much smaller.   

Although most of the data points seem to adhere to the hypothesis, we found it 

interesting how someone can spend so little effort and get such good performance, 

and someone else can spend so much effort and get such poor performance. Perhaps, 

there is another factor that could explain this, and make our hypothesis even stronger. 

The total effort contribution of the subject wasn’t enough to explain the observed 

differences. Our attention therefore turned to not only the end result (the total effort), 

but how it was reached. In their paper, Numrich et. al.  [16] defined a metric space for 

measuring individual team member contributions to a software development project. 

They note that “two students can contribute equally but follow very different paths”. 

We therefore go back to our first step in iterations, looking at the data, this time 

looking at effort from a different perspective: how it is distributed daily.  

For class 1, this yields the graph shown in Figure 8. The order of subjects has 

been changed to improve the visibility of those with low effort. The day numbers in 

this figure (and in all remaining figures involving the day variable) correspond to the 

number of the day with respect to a year. For example, "133" represents the 133rd day 

of a year.  

We notice two patterns in this graph: 

1. There are 3 kinds of working days: high effort days, medium effort days and low 

effort days.  
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2.  Certain subjects, such as 81, 66 and 70 take a break at some point in the 

development process.  

 

 
Figure 8: Effort per day in hours for each subject in class 1 

 

Using these patterns we distinguish subjects into two categories: 

1. Slow and steady: these are the subjects who work on a regular daily basis, most of 

their days are medium working days and they take at most one break day. 

2. Fast and furious: these are the subjects who are not consistent in distributing their 

effort across days. We see for these students, a significant number of breaks and 

low effort days, and some number of high effort days.  
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Our second hypothesis states that slow and steady wins the race. The closer a 

subject’s effort pattern is to the slow and steady extreme of the spectrum, the better 

their performance. Investigation of this hypothesis is left to later sections. 

A third perspective for looking at the effort data is to analyze the distribution 

of effort over activities, where “each kind of activity corresponds to some work that 

advances the student toward the solution of a problem”  [16]. The extent of 

advancement of each activity can be viewed as a power rating. As a first attempt at 

this problem, we chose to simply divide the student activities into coding and 

debugging. Our coding activity includes writing serial code, parallelizing it and 

adding functionality. The debugging activity is any activity in which the subject is 

trying to locate and/or fix a compile-time error, a run-time error, or a functionality 

error (the code is not behaving as expected). 

We would expect that the coding activity has a higher power rating than 

debugging, i.e. effort spent coding counts more towards performance than effort spent 

debugging. Distinguishing between these two activities is done using CodeVizard, as 

described in subsection 2.2.2.  

Our last hypothesis relates the performance of novices to that of experts. We 

hypothesize that some novices do achieve the performance that experts achieve.  

We conclude this section by a list of all generated hypotheses: 

- For novices, total effort and performance are correlated. 
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- Novices who spend more than 15 hours working on a problem achieve better 

performance.  

- Slow and steady wins the race: novices who spend their time more regularly 

and pace themselves achieve better performance than others.  

- Debugging counts less towards performance than coding. 

- Some of the best novices perform as well as experts. 

3.3 Metrics used 

3.3.1 Effort Scoring 

As mentioned in subsection 2.2.1, our instrumentation package UMDInst 

collects timestamps of various computer events. Therefore, the best method for 

estimating effort is the interval-based method, where effort is estimated by adding up 

time intervals between events. We must however be careful not to count “time 

intervals that represent non-working gaps between work sessions”  [18]. The question 

is: what time interval is long enough to be considered a non-working gap?  A series of 

studies by Hochstein et. al.  [18] revealed that in the presence of sufficient 

automatically collected data (compile, edit, shell events), the most reasonable 

threshold between work and non-work intervals is 45 minutes. Hence, total effort can 

be expressed through the following equations: 

∑=
i

itfE )( where it  represents an interval between two captured consecutive events 
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As for the daily distribution of effort, we need to define a measure that 

captures the steadiness of the student work and its speed. Therefore, we define the 

following quantities: 

- Effective work day: a day in which more than half an hour is spent. 

- Medium work day: a day in which effort between half an hour and 5 hours is 

spent. 

- Break day: a day in which less than half an hour is spent 

- 
dayseffectiveofnumbertotal
daysworkeffectiveofnumberpercentageworkEffective

    
    100   ×=  

- 
dayseffectiveofnumbertotal
daysworkmediumofnumberpercentageworkMedium

    
    100  ×=  

- Break length: number of consecutive break days.  

The medium work ratio and effective work ratio are used to assess the steadiness of 

the subject’s work. The closer they are to 100%, the steadier the work is. The reason 

we are defining two such ratios is that we would like to check whether working for 

too long in a single day is in favor of producing better performance. Our hypothesis is 

that it is not, because at some point, we expect productivity to start decreasing.  



 

 34 
 

Break length is easy to measure since we observed that all students have at 

most one block of consecutive break days, usually slightly after the mid-development 

point in time. An important distinctive feature between the slow and steady approach 

and the fast and furious approach is the break length: on one hand, slow and steady 

subjects don’t usually take breaks; fast and furious subjects, on the other hand, take 

long breaks, especially between two extensive work days. Therefore, we incorporate a 

penalty for breaks in our metric. The break length is used to determine the break 

penalty as follows: 10 points for a break between 1 and 3 days, 20 for break duration 

of 3 and 6 days … The reason we are using a break penalty is our assumptions that 

after a break a certain amount of time is needed to get up to speed to the last status of 

the program, and the longer the break, the more time is needed to catch up. This 

“catching up” time is similar to the debugging activity time in that it doesn’t 

contribute as much as other activities to the performance of the problem. 

Our scoring function for daily effort distribution is then expressed as: 

 penaltyge - breakk percentamedium worEffective/  

Our final effort measure depends on the distribution of effort over the coding 

and debugging activities. Let α1 and α2 be the power rating of the coding and 

debugging activities respectively. Then, following the same derivation process 

described in  [16] and as shown in Figure 9, time is divided into intervals iT  such that 

only one activity is performed in the interval. In general, more than one event occurs 

within these activity intervals, so each interval is also divided into subintervals ijt . 
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The effort spent within each interval is estimated according to equation 1 (i.e. 

subintervals with length more than 45 minutes are assumed non-active intervals).  

 
Figure 9: Interval division in activity-weighted effort estimation 

 

Total work is then calculated as a weighted sum of the estimated effort in each 

interval:  

∑ ×=
i

ii TwW )(α  

where iT  represents an interval, iα is either 1α  or 2α , depending on the interval 

activity (coding or debugging), and ∑=
j

iji tfTw )()(  

where ijt  is a subinterval contained within iT  and )( ijtf  is as defined in equation 1. 

3.3.2 Performance Scoring 

Performance measurement is less straightforward than effort measurement 

because the performance of a particular program depends on many factors, such as 

inputs, machine architectures, compiler and library implementations. For this study, 

as previously mentioned we unified the input to use the benchmark input generation 

code and we have also unified details related to machine architecture, compiler and 

library implementations through the use of APMS, which allowed us to easily run all 

the programs on the same cluster.  
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Another complicating factor is what measure to use. For example, using 

speedup is a measure of scalability, rather than strictly a measure of performance. It is 

possible that, given two programs (A,B), program A exhibits better speedup on N 

processors than program B, but program B actually runs faster than program A  [19]. 

In classroom assignments, both scalability and performance are important. To keep 

our analysis simple, we are looking to use one measure that combines them both.   

Our study of the performance graphs of the subjects over 1, 2, 4, 8 and 16 

processors revealed to us that performance on one processor generally determines 

performance on multiple processors, meaning that in general if subject a did better on 

one processor than subject b, the same can be said about more processors in general. 

In some cases, execution time on a certain number of processors increases 

dramatically and then goes back to the regular trend of the particular subject, as is the 

case for subject 70 in figure 2. As we will see in data from the two remaining classes, 

a subject could have very good performance, but suddenly at some point execution 

time increases, and then later goes back to normal. This kind of behavior is not 

completely bad since it only misbehaves in one case. In addition, if this misbehavior 

occurs on 4 processors, we consider it better than if it occurs on 8 processors, since 

the goal in HPC is to run efficiently on the greatest number of processors possible.  

We are then looking for a metric which rewards good performance from the 

start, increases the reward as we increase the number of processors if the performance 

remains consistent and incurs penalties if performance deteriorates. Rewards and 

penalties should both increase as the number of processors increases. For this 

purpose, we use the following scoring function for performance: 
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168421 16842 TTTTTPF ++++=  

where iT represents the execution time on i processors, for }16,8,4,2,1{∈i . 

PF is a weighted sum of execution times and therefore the smaller this 

performance score, the better the performance. The significance of this function can 

be seen graphically. Figure 10 shows the execution times of three hypothetical 

subjects: ideal, actual 1 and actual 2. In the ideal case, we observe linear speedup, 

where the execution time on two processors is exactly half the execution time on one 

processor and so on. In the actual cases, the subjects don’t achieve linear speedup, 

and as we generally observed from the student data, actual 1 starts with better 

performance than actual 2 and conserves it.  

 

 
Figure 10: Hypothetical execution times for 3 subjects: ideal, actual 1 and actual 2 

 

Figure 11 represents the performance score for the same hypothetical subjects. 

Each bar represents the product of the execution time by the corresponding number of 
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processors. So the performance score can be viewed as the total area contained within 

the bars. 

 
Figure 11: Graphical representation of the performance score 

 

For the ideal case, since 
16842

16842
1

TTTTT ==== , the area is a rectangle with 

height 1T . The performance score of each actual subject can be viewed as the sum of 

two areas: the hashed area and the plain area. The hashed area is rectangular, similar 

to the ideal case performance score graph. In fact, the hashed areas represent the 

performance score of a subject’s program which starts with the same time as the 

actual subject on one processor, but scales ideally (time on 2x processors is half the 

time on x processors). The difference between the two areas is governed by the time 

on one processor. Therefore, the subject with a smaller hashed area has better 

execution times than the subject with a larger hashed area, especially that we 
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observed in our samples better time on one processor implies generally better time on 

all other numbers of processors. The non-hashed areas on the other hand are the 

difference between the actual performance and the corresponding ideal scaling 

performance. Hence it’s a measure of the scaling property of the code: the subject 

with a smaller non-hashed area wrote a program that scales better. Indeed, from 

Figure 11, the non-hashed areas indicate that the ideal subject scales better than actual 

1 and that actual subject 2 scales better than actual subject 1 (which can be easily 

verified from Figure 10 which shows that actual 2 starts at a much higher execution 

time than actual 1, but ends at a slightly higher execution time).Thus, our 

performance score is a sum of a performance measure and a scalability measure.  

Also note that since time on higher numbers of processors has a higher weight 

(equal to the number of processors), inconsistencies on higher numbers of processors 

will count more than inconsistencies on lower numbers of processors. The same 

applies for good performance rewards. Another observation to keep in mind when 

reading the study results is that a high performance score is indicative of bad 

performance and/or bad scalability features.  

As mentioned in the data used subsection, we tested programs from classes 2 

and 3 on five different benchmark input sets. The performance score presented above 

applies for each one of these sets. Moreover, the same reasoning applies with respect 

to the increase in data size. Once again, we want to give more weight to bigger 

problem sizes because they are closer to real life situations and real life goals. 

Therefore, we use a weighted average of the performance scores on all input sets to 

reach the final performance score. The weight for each input set was determined in 
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order to comply with the matrix size ratios of the classes. Table 3 shows the weights 

for each input set.  

 

Benchmark code set S W A B C 

Weight 1 5 10 50 100 
Table 3: Weights given to various input sizes for NAS benchmark in performance scoring 

function  
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Chapter 4: Data and results 

 

In this chapter we will present data and results related to each hypothesis in 

turn, in the same order as they were discussed in the hypothesis generation process 

subsection. 

4.1 Hypothesis 1: Total effort and performance are correlated 

Table 4 shows the execution times in seconds for each student in class 1 on 1, 

2, 4, 8 and 16 processors, as well as the calculated performance score and the total 

effort in hours.  

 

              Subject 

 Number  

 Of processors 

66 68 69 70 71 78 81 

1 0.005 0.003 0.003 0.012 0.003 0.037 0.075 

2 0.073 0.011 0.012 0.027 0.009 0.259 0.191 

4 0.021 0.037 0.046 0.060 0.028 0.477 0.615 

8 0.094 0.133 0.166 5.691 0.105 0.981 2.106 

16 0.255 0.511 0.615 1.453 0.427 3.316 7.932 

Performance score 0.448 0.695 0.843 7.243 0.572 5.069 10.919

Total effort in hours 27.63 41.35 3.92 36.43 5.49 17.45 6.30 
Table 4: Execution time in seconds, final performance score and total effort in hours for subjects 

in class 1 



 

 42 
 

Figure 12 shows the plot of the total effort for subjects in class 1 versus their 

performance. It also includes the linear trendline for this data as well as the 

correlation coefficient squared. The correlation coefficient R is equal to -0.118, 

indicating a weak negative correlation. 
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Figure 12: Scatter plot of total effort versus performance score of subjects in class 1 

 

We now present similar data for class 2+3. Because for these classes, 

performance was tested on 5 input sets of the benchmark, we show in Table 5 the 

performance score of each subject on each one of these input sets, and then the final 

performance score. Finally we show the total effort in hours for the subjects. Figure 

13 is a scatter plot of the total effort of subjects versus their final performance score. 

The correlation coefficient for this set of data is 0.484. The relationship in this set is 

stronger than in the first set. However it is in a direction opposite than hypothesized, 

i.e. as the total effort increases, the performance score increases, meaning that 

performance actually deteriorates. Therefore, we have found no evidence supporting 

our hypothesis.  
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              Subject 

Benchmark 

input sets 

301 302 304 308 219 221 223 

S 0.03 0.06 0.24 0.80 0.11 0.07 0.06 

W 0.09 0.78 0.12 25.36 0.19 0.33 0.32 

A 0.22 4.95 0.30 184.78 0.37 1.11 1.11 

B 1.50 2327.98 4.27 3590.74 5.30 8.58 8.57 

C 15.27 2630.77 15.53 6036.93 19.26 25.99 25.98

Final performance score 9.66 2286.32 10.66 4730.15 13.23 18.31 18.30

Total effort in hours 10.91 21.82 16.23 16.67 10.01 4.32 17.24
Table 5: Execution time in seconds, final performance score and total effort in hours for subjects 

in class 2+3 
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Figure 13: Scatter plot of total effort versus performance score of subjects in class 2+3 
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4.2 Hypothesis 2: Novices who spend more than 15 hours working on a problem 

achieve better performance.  

Our goal is to make inferences about the novice subjects divided into two 

populations, one that spends more than 15 hours working on the problem (population 

1) and one that spends less (population 2). We denote by 1μ  and 2μ   the respective 

means of the two populations and define 21 μμδ −= . The difference between the 

means of our samples provides a point estimate of δ . In our situation, the populations 

variances are not known, but we can assume that they are equal, and hence can be 

estimated by 2
ps : 

)1()1(
)2()1(

21

2
22

2
112

−+−
−+−

=
nn

snsns p  

where 1n  and 2n  denote the size of samples 1 and 2, and 2
1s  and 2

2s  their respective 

variances  [20]. 

We would like to test whether population 1 does on average better than 

population 2 in terms of performance, i.e. whether its mean performance score is less.  

As shown in Table 6 and Table 7, we divide the subjects in each of class 1 and class 

2+3 into two categories, depending on whether they have spent more than 15 hours 

working on the assignments.  
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 Total effort more than 15 
hours 

Total effort less than 15 
hours 

 Subject Performance Subject Performance 

 66 0.45 69 0.84 

 68 0.69 71 0.57 

 70 7.24 81 10.92 

 78 5.07 - - 

Average 3.36 4.11 

Variance 11.20 34.77 

sp
2 20.63 
Table 6: Division of subjects in class 1 depending on the total effort spent 

 

 Total effort more than 15 hours Total effort less than 15 hours

 Subject Performance Subject Performance 

 302 2286.32 301 9.66 

 304 10.66 219 13.23 

 308 4730.15 221 18.31 

 223 18.3 - - 

Average 1761.36 13.73 

Variance 5064169.74 18.88 

sp
2 3038509.40 

Table 7: Division of subjects in class 2+3 depending on the total effort spent 
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 We formulate the following hypothesis test: 

H0: 0=δ  

H1: 0<δ  

and use the pooled t statistic  [20] with a one-tailed distribution to calculate its p-

value. The result is 42% for class 1 and 84% for class 2+3. Because the values are 

large, the evidence suggests that we cannot accept our hypothesis. 

4.3 Hypothesis 3: Slow and steady wins the race 

Our slow and steady hypothesis states that novices who spend their time more 

regularly and pace themselves achieve better performance than others. For this 

hypothesis, we used two different scoring functions, one depending on the medium 

work ratio and the other on the effective work ratio as described in section 3.3.1. Our 

goal is to assess whether working for too long (more than 5 hours) actually 

deteriorates the subject’s productivity.  

The results shown in Table 8 and Table 9 show support for our hypothesis, 

since the correlations with effort score (a) found are large and negative, i.e. the closer 

the effort distribution is to the slow and steady pattern the better the performance. The 

difference however between the correlation of performance and effort scores a and b 

is not consistent: in class 1, the two correlations are almost identical unlike in class 

2+3. Therefore, we have evidence indicating that out hypothesis is true when 

considering medium work while we don’t have any evidence to conclude either way, 

whether working too hard is detrimental. 
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Subject 66 68 69 70 71 78 81 

Total number of work days 13 11 3 13 3 5 10 

Number of medium work 
days 4 4 3 5 2 4 2 

Number of effective work 
days 6 8 3 8 2 5 3 

Break length 2 0 0 1 0 0 7 

Medium work ratio (in %) 30.77 36.36 100.00 38.46 66.67 80.00 20.00 

Effective work ratio (in %) 46.15 72.73 100.00 61.54 66.67 100.00 30.00 

Effort score a (in %) 20.77 36.36 100.00 28.46 66.67 80.00 -10.00 

Effort score b (in %) 36.15 72.73 100.00 51.54 66.67 100.00 0.00 

Performance score 0.448 0.695 0.843 7.243 0.572 5.069 10.919

Correlation of performance 
with effort score a 

-0.58 

Correlation of performance 
with effort score b 

-0.59 

Table 8: Effort score and correlation with performance for subjects in class 1 
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Subject 301 302 304 308 219 221 223 

Total number of work 
days 10 9 7 12 3 2 6 

Number of medium 
work days 5 5 5 5 2 1 4 

Number of effective 
work days 6 7 5 6 3 1 5 

Break length 0 1 1 0 0 0 0 

Medium work ratio (in 
%) 50.00 55.56 71.43 41.67 66.67 50.00 66.67

Effective work ratio (in 
%) 60.00 77.78 71.43 50.00 100.00 50.00 83.33

Effort score a (in %) 50.00 45.56 61.43 41.67 66.67 50.00 66.67

Effort score b (in %) 60.00 67.78 61.43 50.00 100.00 50.00 83.33

Performance score 9.66 2286.32 10.66 4730.15 13.23 18.31 18.30

Correlation of 
performance with effort 

score a 

-0.72 

Correlation of 
performance with effort 

score b 

-0.40 

Table 9: Effort score and correlation with performance for subjects in class 2+3 
 

We also look at the data from a view similar to the one described in section 

4.2: it’s interesting to see whether there is a certain threshold for the effort score, such 

that subjects with higher scores perform better on average than subjects with lower 

scores. 
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Figure 14: Effort scores a and b for classes 1 and 2+3 

 

Looking at Figure 14, we can visually group subjects into those with high 

effort scores (indicated by red circles in the figure) and those with low effort scores. 

From this graph, it seems that 60% is a reasonable number for use as cutoff between 

“high” effort and “low” effort. In addition, since the effort score represents the 

effective fraction of days in which the subjects worked for significant amounts of 

time, it is reasonable to expect that a novice who spends 60% or more of his days 

working significantly on the problem produces an efficient program. For this reason, 

we look at the data in a slightly different manner, with the objective of investigating 

whether there is significance difference in performance between subjects who score 

more and less than 60%. We follow the same approach described in section 4.2 by 

dividing our subjects into two categories accordingly. Effort scores a and b for class 1 

are shown in Table 10 and Table 11 and for class 2+3 in Table 12 and Table 13.  
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 Effort score (a) more than 
60% 

Effort score (a) less than 
60% 

 Subject Performance Subject Performance 

 69 0.84 66 0.45 

 71 0.57 68 0.69 

 78 5.07 70 7.24 

 - - 81 10.92 

Average 2.16 4.83 

Variance 6.36 26.40 

sp
2 18.38 

Table 10: Division of subjects in class 1 depending on effort score (a) 
 
 

 Effort score (b) more than 60% Effort (b) score less than 60%

 Subject Performance Subject Performance 

 69 0.84 66 0.45 

 71 0.57 70 7.24 

 78 5.07 81 10.92 

 68 0.69 - - 

Average 1.79 6.20 

Variance 4.78 28.22 

sp
2 14.16 

Table 11: Division of subjects in class 1 depending on effort score (b) 
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 Effort score (a) more than 
60% 

Effort score (a) less than 
60% 

 Subject Performance Subject Performance 

 304 10.66 302 2286.32 

 219 13.23 308 4730.15 

 223 18.3 221 18.31 

 - - 301 9.66 

Average 14.06 1761.11 

Variance 15.11 5065323.26 

sp
2 3039200.00 
Table 12: Division of subjects in class 2+3 depending on effort score (a) 

 
 
 

 Effort score (b) more than 60% Effort (b) score less than 60%

 Subject Performance Subject Performance 

 304 10.66 308 4730.15 

 219 13.23 221 18.31 

 223 18.3 301 9.66 

 302 2286.32 - - 

Average 582.13 1586.04 

Variance 1290797.29 7414088.62 

sp
2 3740113.82 
Table 13: Division of subjects in class 2+3 depending on effort score (b) 

 



 

 52 
 

Finally, Table 14 shows the p-values calculated for each class and each effort 

score classification. 

                Effort score 

Class 
a b 

1 23% 9% 

2+3 16% 28%
Table 14: P-values calculated with pooled t statistic for classes 1 and 2+3 using effort scores (a) 

and (b) 
 

The numbers presented in Table 14 show some evidence that subjects who 

score above 60% with respect to effort score (a) have on average better performance 

than those who score less. The results using effort score (b) on the other hand are 

inconsistent. They are better for class 1 but worse for class 2+3 in comparison to 

effort score (a). 

4.4 Hypothesis 4: debugging counts less towards performance than coding 

The activity-weighted effort metric discussed in subsection 3.3.1 depends on 

the weights assigned to each of the coding and debugging activities. Since this is the 

first attempt in trying to quantify the effect of these activities on productivity, we 

don’t have any reason to pick these weights. For this reason, we tried a range of 

values for the weights in which debugging has a lower effect than coding. In Table 15 

and Table 16, the different activity-weighted effort calculations for class 1 are shown 

in columns beyond column 2. Each column is titled with the corresponding a/b ratio 

of the activity weights that were used to calculate its values, where a is the coding 

activity weight and b is the debugging activity weight.  



 

 53 
 

Subject Performance 
score 

0.75/ 

0.25 

0.9/ 

0.1 

0.05/ 

0.95 

1/ 

0 

1.05/-
0.05 

1.1/-
0.1 

1.25/-
0.25 

1.5/-
0.5 

66 0.448 6.71 5.84 5.10 4.08 3.22 0.70 0.70 -3.50 

68 
0.695 7.29 5.57 4.20 2.18 0.66 -

4.16 -4.16 
-

12.31

69 0.843 1.07 0.96 0.86 0.74 0.63 0.30 0.30 -0.25 

70 7.243 12.17 11.45 11.19 9.66 9.14 7.25 7.25 3.97 

71 0.572 3.36 3.44 3.53 3.61 3.69 3.93 3.93 4.34 

78 5.069 7.15 6.96 7.09 6.59 6.46 6.00 6.00 5.28 

81 10.919 1.79 1.62 1.47 1.29 1.12 0.62 0.62 -0.20 

Correlation -0.02 0.09 0.15 0.20 0.25 0.30 0.37 0.36 
Table 15: Activity weighted effort and correlation with performance for class 1 

 

Subject Performance 
score 

0.75/

0.25 

0.9/ 

0.1 

0.05/

0.95 

1/ 

0 

1.05/-
0.05 

1.1/-
0.1 

1.25/-
0.25 

1.5/-
0.5 

301 9.66 4.45 3.68 3.41 3.20 2.88 2.63 1.86 0.58 

302 2286.32 2.02 0.77 0.35 0.1 -0.35 -0.76 -2.01 -4.10

304 10.66 6.24 4.89 4.44 4.13 3.44 3.04 1.73 -0.46

308 4730.15 3.61 2.83 2.57 2.35 2.06 1.81 1.05 -0.23

219 13.23 6.35 4.81 4.29 3.92 3.26 2.78 1.28 -1.16

221 18.31 5.25 4.03 3.63 3.27 2.82 2.43 1.23 -0.77

223 18.30 5.14 3.64 3.14 2.73 2.15 1.67 0.21 -2.22

Correlation 0.33 0.22 0.18 0.14 0.09 0.04 -0.10 -0.28
Table 16: Activity weighted effort and correlation with performance for class 2+3 
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As you can see, we experimented with negative weights for debugging, 

basically meaning that time spent debugging doesn’t only contribute less than time 

spent coding, but also decreases the effectiveness of time spent coding. For our 

hypothesis to be verified, the correlation must be negative and large, indicating that 

counting debugging as less powerful than coding accompanies improved 

performance. However, correlation variation in class 1 is going in the opposite 

direction of class 2’s, and neither supports our hypothesis: while in class 1, the 

correlation starts negative and small and ends positive and medium, in class 2 it starts 

positive and medium and ends negative and small.  

4.5 Hypothesis 5: Some of the best novices perform as well as experts  

We ran the CG-NAS benchmark with exactly the same configurations as used 

with the subject programs. Its performance score for input set S was 0.21 (needed for 

comparison against Class 1 subjects) and its final performance score (on all 

benchmark was 90.24. We found two subjects from class 2 who did better than the 

benchmark (301 and 304) and all subjects from class 3 actually did better than the 

benchmark.   
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Chapter 5:  Analysis 
 

 

5.1 Interpretation of results 

Our hypothesis generation process was based on refining initial hypotheses, 

therefore it is not a surprise that hypothesis 1 tested out negatively: the total amount 

of effort doesn’t correlate with performance. Looking at Figure 12 from class 1, we 

can see the reason for that: subjects 69 and 71 spent the least amount of effort but 

their program performance was among the best. Subject 70 on the other hand spent a 

significant amount effort but suffered with performance. Because we only have a 

small set of data available, we can’t be sure why this is so. One possibility is that 

subjects 69 and 71 are exceptionally bright and so they didn’t have trouble, and 

subject 70 was exceptionally weak. Another possibility is that subjects 69 and 71 

have more experience than their classmates, and subject 70 has no experience with 

programming for example: unfortunately we can’t verify that because subjects didn’t 

submit their experience and background questionnaires for this class. Yet another 

possibility is that subjects 69 and 70 did in fact spend a significant amount of time, 

but this time was not captured because they did some of their development on a non-

instrumented machine. A fifth possibility is that our hypothesis is not quite right, that 

more effort doesn’t correspond to better performance, but rather that effort above a 

certain threshold corresponds to performance above a certain threshold. This 

reasoning led to hypothesis 2. 
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Before discussing the results from the second hypothesis, there are a couple of 

remarks to make about class 2+3 with respect to hypothesis 1. From Figure 13, we 

can immediately see two outliers in terms of performance, subjects 302 and 308. 

These are another example of subjects who spend a significant amount of time and 

still suffer with performance. Figure 15 shows the remaining five subjects alone, in 

order to clearly see how the points are dispersed. 
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Figure 15: Scatter plot and trendline of 5 subjects in class 2+3 

 

The correlation for these 5 points alone is -0.21, still a weak correlation with 

the outliers eliminated. The reason is similar to the possible reasons presented for 

class 1. Take subjects 221 and 223, they both have same performance results, even 

though subject 223 spent more than four times the amount of effort that subject 221 

spent. 
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Results from the second hypothesis suggest there is no significant difference 

on average between novices who spend more than 15 hours working on a problem 

and those who spend less. From tables 6 and 7 we see that the outliers from the first 

hypothesis are still outlier for this one. Therefore, we turn to the daily distribution of 

effort; perhaps these novices who are spending a lot of time and still suffering with 

performance are not spending their time “well”.  

Results from the third hypothesis test are promising: we have a strong 

negative correlation between the effort scores and the performance scores, indicating 

that a high level of effort correlates with good performance. The correlation using 

effort score a is stronger, especially in class 2+3 than the correlation with effort score 

b, which gives us an indication that working too hard (we’ve seen subjects who 

worked more than 12 hours a day!) doesn’t improve the productivity: productivity 

either remains the same or decreases. Taking a look at our outliers in this view, we 

see that subjects 69 and 71, who had the least amount of total effort, have high effort 

scores (Table 8). So although they spent a small amount of time in total, they divided 

their time wisely and worked regularly without taking long breaks. The opposite can 

be seen for subject 70, who had spent a significant amount of effort but without 

performance results. The effort score for this subject is among the lowest scores, 

meaning he or she didn’t work regularly and/or took long breaks... The same goes for 

subjects 302 and 308 from class 2+3 (Table 9).  

Our last attempt at explaining the differences was the investigation of the 

effect of the amount of coding and debugging performed on the performance. The 

results from the two classes were contradictory to each other, and neither one strongly 
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supported our hypothesis. Studying the numbers in table 15 and 16 doesn’t indicate 

that the result is skewed by one or two outliers. Therefore, we have no evidence 

supporting hypothesis 4. One possible reason for this negative test is that we did not 

determine the objective of the debugging phase: was the programmer trying to fix a 

functional problem, a compiling error, or a performance defect  [3]? 

Our last hypothesis aimed at characterizing the novice performance patterns in 

order to compare them with expert performance patterns. We found some subjects 

who did better than the benchmark. We noticed however that those subjects are 

confined to class 2+3. This can be justified by Figure 7: none of the student code 

from class 1 actually speeds up over more processors. The main reason for this is that 

we could only run the student code for this class on the smallest size provided by the 

benchmark; therefore the communication overhead is too large given the small 

amount of computation. The benchmark code, on the other hand, does achieve 

speedup. Therefore, none of the subjects from class 1 scored better than the 

benchmark. We can see however that certain students (66, 68, and 69) did do better 

than the benchmark in terms of time to run: even though the execution times kept 

increasing from 1 to 16 processors, the time on 16 processors was slightly less than 

the benchmark time on 16 processors. However, when we continued testing to up to 

64 processors as shown in Figure 16, the performance for these students becomes 

inferior to the benchmark even in terms of pure execution time. 
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Figure 16: Execution times of subjects in class 1 and the benchmark on input set S. Subject 0 

indicates the benchmark 
 

5.2 Threats to validity 

The fact that our studies were run across classroom environments poses 

threats to validity that must be considered when interpreting the results. We 

eliminated as many differences between the classroom as possible, by choosing the 

same assignments and running the student programs on the same machine. Some 

factors however remained outside of our control. For example, there is a slight 

difference between the requirements of the class 1 assignment and class 2+3’s 

assignment: class 1 assignment requires the implementation of two data generators, in 

addition to the CG routine implementation. Apart from the extra effort that this must 

have required from subjects in class 1, this was one of the main reasons why we were 

limited to only testing class 1 programs on one benchmark input set.   
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In terms of internal validity, we faced two main threats to validity: 

instrumentation and selection. As discussed in the methodology section, our effort 

data is collected through automated instrumentation. This instrumentation was 

installed on the parallel machine the students were using. Since it’s highly unlikely 

that students gained access to a machine other than the one provided for the class, we 

can be sure that we have captured all activities related to parallel programming. 

However, it is possible that subjects tackled the problem by first writing a serial 

solution, and then parallelizing it. It is then possible that we have underestimated the 

serial effort, since they could have done the serial programming on any non-

instrumented computer. Another problem with the automated instrumentation is that 

it doesn’t capture the time that was spent thinking about the problem. This could have 

been accounted for by asking the subjects to log their activities, including thinking 

about the problem, and submit their effort logs. Although this has been done in 

certain classroom studies, this wasn’t part of the experimental setup in the classes that 

we are studying.  

Concerning selection, the subjects come from different backgrounds and 

different experience levels. At the beginning of every classroom study, a background 

questionnaire is distributed to the subjects, containing questions about their majors, 

whether they are graduate students, what experience they have in software 

development in general, and in parallel software development in particular… 

Unfortunately, not all subjects submit these forms, and some don’t respond to all the 

questions… therefore, we have neither background nor experience data from class 1, 

but we have some incomplete data from class 2+3, as shown in Table 17.  
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Subject Graduate 
student 

Current major Years of software 
development experience 

301 Yes Computer science 4 

302 Yes Computer science 0 

304 Yes Mechanical engineering 0 

308 Yes Chemical engineering 3 

219 Yes Electrical engineering and 
computer science 

NA 

221 No (senior).  Electrical engineering and 
computer science 

NA 

223 Yes Biology NA 
Table 17: Available background and experience data from class 2+3 subjects 

What we are certain of is that all subjects are new to parallel programming. 

All subjects are graduate students, except one (221) who is a senior. Therefore, we 

don’t see much difference between the subjects from this perspective. Their 

backgrounds vary between computer science, science and engineering. They also vary 

in software development experience. However, due to the incompleteness of the data, 

we couldn’t measure the effect of experience or background within our subject pool. 

For example, we already noted that subjects 302 and 308 were outliers with high 

amounts of effort but poor performance. This could be due to the fact that subject 302 

has no experience in programming, or that subject 308 doesn’t have a computer 

science background. We have also noted that subjects 221 and 223 have similar 

performance scores although subject 221 spends significantly less time. This 

difference might be due to the fact that subject 221 is a computer science major and 

hence more used to programming concepts and methods.  
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The main external validity threat we face is the difference between the goals 

of novices and those of experts and practitioners. While students work on a particular 

problem in order to run it as fast as possible and make it run even faster on increasing 

numbers of processors, practitioners typically want to complete a run on the available 

resources. Students have more flexibility in the queuing systems that they use, 

especially if they’re dedicated to students. Therefore their queue wait time is short 

and their run times are also expected to be short due to the relative simplicity of their 

problems compared to the problems that practitioners try to solve. For practitioners, 

they are given a set of resources and some allocation time, which they have to work 

according to. So, they are less concerned with speedup than getting the job done with 

the given constraints. Therefore, to extend our study and our results to the domain of 

experts and practitioners, a different definition for the performance metric is needed, 

one that suits their incentive and goal. 
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Chapter 6:  Conclusion 

 

6.1 Summary of results 

In this thesis, we study the effect of human programmer variations on the 

performance of the code they produce. Although it’s widely accepted that available 

programming models and languages make it difficult for scientists to write solutions 

for their problems and that improving the performance of a certain parallel program 

requires a significant amount of effort, few studies have attempted to quantify the 

relationship between the effort spent and performance produced. We have 

qualitatively characterized effort spent by novices and their code performance and 

quantitatively studied the relationship between the two. 

6.1.1 Qualitative characterization of effort for novices 

We have identified two dominant patterns in the daily distribution of effort 

among novices: the slow and steady subject spends similar amounts of effort daily 

and rarely takes a break; the fast and furious subject spends great amounts of effort 

some days and minuscule amounts of effort on others, with long breaks.  

6.1.2 Qualitative characterization of performance for novices 

The performance of code written by novices varies on two dimensions: 

execution time and scalability. For a significant data size, subjects achieve speedup, 

i.e. execution time is reduced as the number of processors increases. When the data 

size is too small, however, speedup is harder to obtain to the point that many of the 
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codes lose their scalability properties. Occasionally, execution time suddenly 

increases on a certain number of processors, but returns to normal afterwards. In 

general, we noticed that subjects with better execution time on one processor have 

better execution times on multiple processors. This allowed us to simplify our 

performance scoring function. We also found a few subjects who perform better than 

the benchmark code.  

6.1.3 Relationship between effort and performance for novices 

We investigated the relationship between effort and performance from various 

perspectives: 

- Total effort did not correlate with performance 

- Effort scores, indicating the proximity of subjects to the slow and 

steady approach, correlated with performance 

- Effort spent debugging doesn’t count less than effort spent coding 

towards performance 

6.2 Future work 

In order to confirm our results, the study executed needs to be duplicated. 

Duplication will also allow us to expand our sample size, provided certain conditions 

are preserved, like the problem assigned, the assignment requirement, the time the 

subjects have to solve the problem, the programming model used… This will allow 

researchers to aggregate data easily and minimize threats to validity. As we 

previously discussed, in our small samples, a couple of outliers were able to 
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negatively skew the results. Increasing the sample size will make it clear if we got a 

false negative due to the small sample size, or if the hypothesis is not applicable.  

A second avenue of research is the study of the effect of other programmer 

variations, such as programmer background and serial programming experience, on 

performance. The interaction of the different factors is also an interesting area of 

study. For example, does a computer science student spend less time to attain a 

certain performance level than a science or engineering student? Or does a computer 

science student spend less time debugging the code? From the activity perspective, as 

more is uncovered in the workflow of developers in the HPC domain, the effect of 

different activities on the performance can be studied.  

One of the most important extensions to this research is studying experts in 

the HPC domain. As we already noted, the work environments and the goals of 

experts are different than those of novices. Therefore metrics and hypotheses need to 

be adjusted to their situations. In addition, experts solve more complex problems than 

novices. Studying experts will therefore surely present more questions to the research 

community to answer.  
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Appendix A 

 

In this appendix we will elaborate on two important aspects of the APMS tool: 

the instrumentation module and the adaptation layer language.  

A.1 Instrumentation module 

The instrumentation module in APMS handles the necessary code changes 

needed in order to collect the performance measurements. The PAPI library allows 

the user to specify a list of events to monitor, such as level 1 data cache accesses and 

misses, total cycles, floating point operations and its interface provides a list of high 

level and low level function calls, which are used to start, stop and read the counters 

for the specified list of events. The high level and low level functions differ in the 

degree of flexibility they provide and overhead they require. In general, the low level 

functions are meant for experienced developers wanting fine-grained measurement 

and control of the library. The low level interface can be used in conjunction with the 

high level interface [15]. The instrumentation module essentially inserts the function 

calls in their appropriate positions in the code.  

In order to allow users of APMS to customize instrumentation to their own 

needs, we have encapsulated the PAPI library calls into three functions, shown below: 

1 int SIRONIerror(int num) 
2 {        if ( SIRONIretval < PAPI_OK) 
3   {          printf("error: %d %d\n", num, SIRONIretval); 
4           exit(1);  } 
5         return 0; } 

  Function 1: SIRONIerror() 
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1  int SIRONIinit()  
2 { 
3   SIRONIretval = PAPI_library_init(PAPI_VER_CURRENT); 
4 {  
5   SIRONIretval = PAPI_library_init(PAPI_VER_CURRENT); 
6   if (SIRONIretval != PAPI_VER_CURRENT && SIRONIretval > 0) { 
7     fprintf(stdout,"PAPI library version mismatch\n"); 
8     exit(1); }  
9   if (SIRONIretval < 0) 

10   { 
11           printf ("1\n"); 
12           printf("%s\n",PAPI_strerror(SIRONIretval)); 
13           perror(" ");  
14           exit(1); 
15   }  
16   SIRONIretval = PAPI_is_initialized(); 
17   if (SIRONIretval == PAPI_NOT_INITED) 
18   {  
19     printf ("papi  not initialized!!!! \n"); 
20         exit(1); 
21   }  

22 
  SIRONIretval = PAPI_flips(&SIRONIrtime1, &SIRONIptime1, &SIRONIflpins1, 
&SIRONImflips1); 

24   SIRONIerror(4);  
27   return 0; 
28 }  

  
 Function 2: SIRONIinit() 

 
1 int SIRONIfin()  
2 {  

3 
  SIRONIretval = PAPI_flips(&SIRONIrtime1, &SIRONIptime1, &SIRONIflpins1, 
&SIRONImflips1);  

4   
5   SIRONIerror(6); 
6   int SIRONIrank;  
7 int SIRONIsize;  
8   MPI_Comm_rank(MPI_COMM_WORLD, &SIRONIrank); 
9   

10   char SIRONIfile [1024]; 
11           sprintf (SIRONIfile, "%dMeasurementResults.txt", SIRONIrank); 
12           FILE * SIRONImetrics = fopen (SIRONIfile, "a"); 
13           fprintf (SIRONImetrics,"%f %f %f %lld \n", SIRONIrtime1, SIRONIptime\ 
14 1, SIRONImflips1, SIRONIflpins1); 
15                 MPI_Barrier(MPI_COMM_WORLD); 
16                 close(SIRONImetrics); 
17 } 

 
Function 3: SIRONIfin() 
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These functions are defined in a header file “SIRONIheaderf2.h”. The 

SIRONIerror() function is an error handling function which is not generally called 

directly. Instead, it is used in the other two functions. The SIRONIinit() function call 

is inserted in the user code following the call to MPI_init(). Therefore, this function 

should contain all PAPI library initialization code, event set definitions, and any PAPI 

library calls that start the hardware counters. On the other hand, the SIRONIfin() 

function call is inserted directly before the MPI_finalize() call. Therefore, this 

function should contain all PAPI library calls that stop the hardware counters and 

reads their values. In our case, the SIRONIinit() function initializes the PAPI library, 

and calls the high level function PAPI_flips(), which starts counters for the wall time, 

process time, and number of instructions, and the SIRONIfin() function stops these 

counters, reads their values and writes them to a file. 

Users of APMS can freely modify the code in the header file to suit their 

needs, as long as they retain the prototypes of the 3 function described above and they 

follow the coding constraints of the PAPI library. 

A.2 Adaptation layer language 

We now discuss in detail the use of our adaptation layer language to solve the 

problem of non-uniform input formats across class assignments. As mentioned in 

subsection 3.1.1, the user executes the following three steps: 

1. Specifying the value for each parameter: When users choose the codes they want 

to run, the parameters for the corresponding problems are shown. For instance, if 

the user chooses to run programs that implement the game of life problem, the 
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grid size, number of iterations and initial configuration will appear. For each 

parameter, the user can enter multiple values separated by commas.  This instructs 

APMS to generate multiple input sets, using all possible combinations of the 

specified parameters and to run the selected programs using each one of these 

sets. Figure 17 shows an example where the game of life programs are selected 

and Figure 18 shows the corresponding input parameters shown. In this example 

we see that the programs are to be run on 2, 4, and 8 processors. We also see that 

the number of iterations is specified as a comma-separated list (100, 200). In this 

case, APMS will run two cases: one case with the specified input file, grid size 

and 100 iterations and the other with the same specified input file, and same grid 

size but 200 iterations. Each one of these cases will be run on 2, 4, and 8 

processors respectively.  

2. Specifying for each parameter whether it should be passed on the command-line 

or through a file. The “grid_size” and “iterations” parameters are specified as a 

command line parameter, while the “start_grid file” configuration is passed as an 

input file.  

3. Specifying the order for the command line parameters and input file parameters: 

space is provided for each category of the parameters (command line and input 

file). The order is specified using the parameter names as shown in the parameter 

list. As shown in Figure 19, if the required order for the game of life is grid size, 

followed by number of iterations, and these parameters are to be passed through 

the command line, the order will be specified as: “#grid_size# #iterations#”. The 

initial configuration is usually passed through an input file. It is then specified as 
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“#startgrid_file#”. We also noticed that many programs expect the first line of the 

file to contain the number of lines in the file; therefore we implement a simple 

function which counts the lines that exist in the file and inserts it. To use this 

function in this manner, the syntax is: 

“#startgrid_file.CountLines# 

 #startgrid_file#” 

 

 
Figure 17: Source code selection page 
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Figure 18: Parameter value specification 

 

 
Figure 19: Parameter order specification 
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