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 Although first discovered in viruses, previous studies have identified programmed 

-1 ribosomal frameshifting (-1 PRF) signals in eukaryotic genomic sequences, and 

suggested a role in mRNA stability.  This work improves and extends the computational 

methods used to search for potential -1 PRF signals.  It continues to examine four yeast 

-1 PRF signals and show that they promote significant mRNA destabilization through the 

nonsense mediated (NMD) and no-go (NGD) decay pathways.  Yeast EST2 mRNA is 

highly unstable and contains up to five -1 PRF signals.  Ablation of the -1 PRF signals or 

of NMD stabilizes this mRNA.  These same computational methods identified an 

operational programmed -1 ribosomal frameshift   (-1 PRF) signal in the human mRNA 

encoding CCR5.  A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a 

premature termination codon, destabilizing it through the nonsense-mediated mRNA 

decay (NMD) pathway.  CCR5-mediated -1 PRF is stimulated by at least two miRNAs, 

one of which is shown to directly interact with the CCR5 -1 PRF signal. Structural 

analyses reveal a complex and dynamic mRNA structure in the -1 PRF signal, 

suggesting structural plasticity as the underlying biophysical basis for regulation of -1 

PRF.  
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Preface 

It would not be called research if we knew what we were doing. 
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Chapter 1 

Introduction 

Cells regulate gene expression via diverse mechanisms.  From mRNA 

transcription to protein degradation, many regulatory systems affect the timing, 

localization, and rate of each reaction.  Gene expression is primarily concerned with the 

abundance and translational activity of mRNA; therefore expression is increased when a 

message is transcribed more rapidly, stabilized by the cell, or more available to actively 

translating ribosomes.  Increased mRNA degradation, decreased transcription, 

translational silencing, and the storage of mRNA are the hallmarks of decreased 

expression.  Post-transcriptional regulation of gene expression is a growing field of 

inquiry; it has primarily concentrated on cis-acting elements in the 5’ and 3’ untranslated 

regions (UTRs) of mRNAs, and the trans-acting factors with which they interact.  Protein 

coding regions have not been as closely examined for effects on post-transcriptional 

control; however multiple cis-acting mRNA elements have been found which cause 

elongating ribosomes to recode the mRNA sequence [for review see [1], Appendix 12].  

These include, but are not limited to, sequences responsible for +1 and -1 programmed 

ribosomal frameshifting, termination suppression, stop-start elements, selenocysteine 

incorporation in all kingdoms of life, and pyrolysine incorporation in archaea[2].  More 

recently, programmed recoding has taken on a whole new dimension, as artificial tRNA 

synthetases and codon:anticodon pairs provide the means to literally re-encode the 

genome [introduced in [3]  and reviewed in [4]]. 

At its heart, this work is an attempt to tie together a group of disparate 

observations; each with its own background, literature, and state of the art.  The primary 

determinants of highly transcribed, functional, and stable mRNAs are well established[5].  
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In specific instances the opposite is also true; some destabilizing elements have been 

well characterized.  Similarly, the viral determinants of -1 PRF have been described in 

numerous instances[6].  The mechanisms of -1 PRF are still debated, but center around 

specific stages during translation elongation[7].  Even the contentious fields of NMD[8] 

and ncRNA research[9] are coalescing around relatively well defined hypotheses.  The 

questions remain:  how do these mechanisms interact?   How do we find specific 

examples which demonstrate the interplay between mRNA structure, translational 

fidelity, and mRNA stability?  Finally, what future avenues of research do these 

observations suggest?  No computational nor laboratory methodologies provide the 

answers, but existing tools provide glimpses and opportunities to search for and analyze 

strong candidates.  In the following sections, I will provide the background of these post-

transcriptional processes and the computational methodologies involved. 

This thesis focuses upon -1 programmed ribosomal frameshifting (PRF); which is 

a recoding mechanism historically associated with viruses[10]a and 

retrotransposons[11,12]b.  A PRF signal stochastically redirects translating ribosomes 

into an alternate reading frame.  A cursory glance at Appendix 12 shows that, with the 

notable exception of Thermus thermophilus’ extraordinary poly-U slippage event, -1 PRF 

follows a generally consistent pattern of a stimulatory element immediately downstream 

of a group of weakly pairing bases.  On the other hand, +1 PRF, ribosomal shunting, and 

suppression events intermingle proximal RNA secondary structures, distant RNA 

structures, mixtures of rare 0 frame and “hungry” +1 frame codons, and even alternate 

tRNA species.  This work therefore limits its scope to canonical -1 PRF as initially 

described in the Rous sarcoma virus[10].  In this context, a -1 PRF signal leads to 

                                                
a Jacks and Varmus introduce the first -1 programmed ribosomal frameshifting signal in this 
paper. 
b Craigen et al. describe +1 PRF in the expression of bacterial release factor 2.  In the same year, 
Farabaugh published a speculative paper suggesting +1 PRF in the Ty1 retrotransposon, which 
was later proved in Clare et al. by sequencing cDNA from the Ty1 mRNA. 
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expression of the Gag-pol polyprotein from two overlapping ORFs.  Thus, a viral -1 PRF 

signal allows ribosomes to bypass the 0-frame stop codon and continue synthesis of a 

C-terminal extended fusion protein[13]c.  Though PRF was first described in viruses, we 

now have evidence that organisms in all three kingdoms of life employ PRF[14–16]d, 

opening the possibility for a conserved mechanism affecting the expression of actively 

translated mRNAs[17].  

This peculiar post-transcriptional regulation system ties together the 

mRNA/ribosome interactions which occur in viral -1 PRF (for review, see [18]), with the 

surveillance mechanisms against aberrant, truncated messages (for reviews, see 

[8,19,20]).  While the requirements of PRF are well understood in viruses and a specific 

set of transcripts, the potential of PRF outside these contexts has not been fulfilled.  For 

example, while splicing dependent Nonsense Mediated Decay (NMD) substrates have 

been well characterized[21]e, there remain many more transcripts which are known to be 

up-regulated when NMD is knocked out and cannot be fully explained[22]f.  One final 

observation lays the foundation for this work: more than 95% of predicted genomic -1 

PRF signals are followed not by a C-terminal extension, but by a -1 frame stop 

codon[23,24]; as summarized in Figure 1 for the ORFs of the Homo sapiens genome, 

which is consistent with observations of most other genomes observed (Figure 54).  

Taken together, these disparate observations engender the hypothesis that active 

translation of -1 PRF signal containing mRNAs negatively regulates these messages via 

NMD and/or No-Go Decay (NGD).  This hypothesis assumes that it is possible to find 
                                                
c This paper provides some early examples of PRF in viruses, notably in Table 2. 
d Cobucci-Ponzano observed the frameshift products of the archael α-l fucosidase via Mass 
Spectrometry (MALDIMS) in their first publications, and later provided more examples in the 
following review.  In Brierley’s 2004 paper, they switch the focus from viral PRF to bacterial and 
eukaryotes. 
e ~2,000 of 5,693 mRNAs were found with alternative splicing isoforms which lead to PTCs in the 
coding exons of RefSeq. 
f Microarray experiments with Saccharomyces cerevisiae NMD knockout strains found a set of 
transcripts which are upregulated without explanation, as explained in the text describing Figure 
2. 
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and evaluate novel decay substrates in sequence databases, and that this form of post-

transcriptional regulation is regulated by trans-acting factors.  Work performed in the 

mammalian context adds the observation that non-coding RNAs (ncRNA) provide 

transcript specific regulation of -1 PRF substrates. 

 

Figure 1: The distribution of -1 PRF signal in Homo sapiens. 

Left:  A histogram of the number of potential -1 PRF signals with respect to relative ORF position 
in Homo sapiens.  Middle:  The percent of the total which is predicted to translate the -1 reading 
frame by 30 or more codons.  Of note is the marked decrease of the total from 90-100% and 
simultaneous increase in the percentage which extend by 30 or more codons (left vs. middle).  
Right: The distribution of length of -1 PRF signal encoded peptides in Homo sapiens.  More 
examples may be found in Figure 54. 

The mRNA Life Cycle 

Messenger RNA expression is tightly controlled from transcription until 

degradation.  RNA polymerase II (Pol) recruitment to DNA and activation is controlled by 

binding; these may recruit or block Pol II as well as stimulate or inhibit transcription 

elongation[25].  Maturation of nascent transcripts via m7G addition, splicing, and 

polyadenylation protect these new messages from decay, while the UTRs harbor 

powerful signals which recruit or block mRNA decay.  One example which proved useful 

in this work includes AU rich elements in the 3’ UTR[26]; these promote mRNA 

decay[27]g.  Trans-acting factors are important in other instances; in one particularly 

powerful example, loss of 3’ UTR was shown to activate proto-oncogenes partially 

                                                
g The highlight of this paper is the early time-course assay of β-globin RNA. 
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because these mRNAs no longer contained binding sites for miRNAs which kept them 

under control[28].  Indeed, in the case of the yeast HO endonuclease, two separate PUF 

proteins have been found to simultaneously bind the 3’ UTR such that full repression 

occurs only when both are bound[29].  On the other hand, the amino acid starvation 

response is mediated partially through the relocalization of mRNAs out of processing 

bodies (P bodies) mediated by the 3’ UTR and other miRNA binding sites[30]h.  

 Mature, properly formed, and localized messages remain at risk from attack by 

ncRNAs; including micro-RNAs (miRNA) (reviewed in [31]) and short interfering RNAs 

(siRNA) (reviewed in [32]).  These quickly recruit the cell’s silencing machinery in a 

sequence specific manner, leading to rapid endonucleolytic cleavage, decapping, 

deadenylation, and exonucleolytic decay.  Messages which maintain the balance of 

these transcriptional control elements are translated and subject to a separate set of 

post-transcriptional regulatory mechanisms.  In order to address these mechanisms, it is 

first necessary to address translation as it progresses from initiation, through elongation, 

termination, and eventually recycling. 

Translation Subversion 

The actively translating ribosome coordinates an exquisitely complex series of 

individual activities to complete the cycle of initiation, elongation, and termination 

(Figure 2).  Once the translational reading frame is established during initiation, this 

reading frame must be maintained throughout elongation.  During each cycle, the ternary 

complex (in eukaryotes comprising eEF1A, the tRNA, and GTP) delivers a new 

elongator tRNA to the decoding center of the small ribosomal subunit.  If the amino-acyl 

tRNA anticodon is complementary to the mRNA codon, they form a helix stabilized by  

                                                
h Bhattacharyya et al. used polysome fraction alaysis and immunofluorescence microscopy to 
demonstrate that the CAT-1 3’ UTR determines its translational status and localization.  It goes 
on to demonstrate hsa-miR-122 interacting with the CAT-1 3’ UTR. 
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Figure 2: The translation cycle. 

The current model of the prokaryotic translation cycle includes initiation, elongation, termination, 
and recycling.  The initiation factors bring together the large and small ribosomal subunits (50S 
and 30S respectively in bacteria) with the initiator tRNA located in the small subunit P site on the 
mRNA start codon.  Elongation factors (bacterial EFG and EF-Tu) continue to bring new tRNAs to 
the ribosome and promote translocation through the elongation cycle in a GTP dependent 
manner.  When the elongating ribosome reaches a stop codon, release factors are incorporated 
instead of aminoacyl tRNA, thus freeing the newly synthesized polypeptide.  Finally, ribosomal 
recycling separates the subunits, removes the peptidyl tRNA and mRNA, and leaves the system 
ready for another round of initiation.  This figure is from Marshall et al.[33]. 

interactions among the small subunit (SSU) rRNA and SSU protein S12[34]i.  In turn this 

causes eEF1A to hydrolyze GTP and release the tRNA; it is this process which allows 

                                                
i If you can see stereoscopic images, Figure 3 shows crystal structures of codon:anticodon base 
pairs. 
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the aminoacylated 3’ end to move from the periphery of the large subunit into the A-site 

of the peptidyl transfer center (PTC) via the accommodation corridor. 

Peptidyl transfer catalysis occurs in the PTC via positioning of the incoming tRNA 

and an active (requiring energy from GTP hydrolysis) transesterification reaction 

performed by the ribosome (Figure 3, reviewed in [35]).  During this reaction, the 3’ end 

of the deacylated tRNA moves into the E-site of the large subunit.  Simultaneously, the 

A-site tRNA, which just received the peptide, moves into the P-site; the anticodon loops 

of both tRNAs remain in the small subunit P and A sites respectively, creating the hybrid 

state of the ribosome.  The entire ribosome rotates from the “classical” to “rotated” 

state[36]j during this step.  Translocation follows and defines the next step in reading 

frame maintenance.   Translocation begins when eEF2 is recruited to the ribosome, 

leading to GTP hydrolysis, which provides the energy required to separate the tRNAs 

from the mRNA, and the energy to move the anticodon loops from the P and A sites to 

the E and P sites respectively[37]k.  Upon completion, this leaves the A site empty and 

ready for the next ternary complex.  Recent methodologies, including X-ray 

crystallography, cryo-EM, and single molecule FRET experiments, have elucidated the 

structural features of the ribosome which ensure that the tRNAs remain correctly 

positioned, and ensure that translocation is limited to three nucleotides[38]l.  

Furthermore, actively expressed eukaryotic mRNAs maintain an assembly of 

factors including: the m7G cap and polyA tail circularized by polyA binding protein 

(PABP); initiation factors 4G and 4E (eIF4G, eIF4E) (Figure 4, reviewed in [39]); and the 

                                                
j Figure 1 of this paper has a nice way of demonstrating the rotation of the ribosome, while Figure 
2 shows the extent of tRNA bending from the P/P to the P/E state. 
k Filterbinding assays were performed which suggest that tightly coupled ribosomes harbor 3 
tRNAs / ribosome (Figure 3C), thus beginning the hypothesis of the E-site and a long-term 
disagreement with Wintermeyer. 
l A movie of the cycle of translocation was created from the Cryo-EM data.  It is the best part of 
this paper. 



 8 
 

splicing complex (reviewed in [40]).  These mRNAs must maintain the processivity of 

translating ribosomes to stave off the surveillance complex, lest they be rapidly 

 

Figure 3: Peptide bond formation in the ribosome. 

A new peptide bond is formed when the α-amino group of aminoacyl-tRNA(red) attacks the 
carbonyl carbon (shown by the black arrow on the left) of the peptidyl-tRNA in the P-site (blue).  
This leaves a one amino acid longer peptidyl-tRNA in the A site and a deacylated tRNA in the P 
site.  This figure is from Beringer & Rodnina[35]. 

degraded via the nonsense mediated decay (NMD) [41,42], non-stop decay(NSD)[43,44] 

or no-go decay (NGD)[45] pathways.  

Subverting Initiation 

Given this interplay of individually complex systems, it is no surprise that every 

phase of translation is subverted by so many viral and cellular systems.  Internal 

Ribosome Entry Sites (IRESes) mimic the initiation complex via many methods, such 

that the entire spectrum of initiation factors may or may not be required for translation of 

these RNAs (reviewed in [46]).  The CrPV IRES requires none of the endogenous 

initiation factors, while the polio virus IRES uses all of the endogenous machinery except 

eIF4e (Figure 5).  Viral and endogenous elements derail elongating ribosomes to 

diverse ends.  Two methods are primarily employed in this context: disrupting the 

kinetics of elongation and molecular mimicry.  A programmed ribosomal frameshift event 

is an excellent example of what happens when the normal dynamic of elongation is 

stalled by either a strong mRNA element, (the kinetic parameters are described 
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Figure 4: Visualizing circular mRNA by atomic-force microscopy. 

Microscopy performed by A. Sachs shows complexes formed on capped, polyadenylated mRNAs 
in the presence of eIF4G, poly(A)-binding protein, and eIF4E.  This figure is from Mendez & 
Richter[39]. 

in Figure 9)  or by juxtaposing a very rare codon with a common codon in the +1 reading 

frame[47].   

Restarting Elongation 

The bacterial use of transfer-messenger RNA (tmRNA) to free stalled 

ribosomes[48,49] and the TCV ribosome binding element[50] illustrate two ways in which 

molecular mimics of the translational players promote elongation.  tmRNA performs this 

function by simply combining the separate elements of an initiator tRNA and short 

mRNA into a single molecule.  This accommodates into stalled ribosomes and causes 

elongation over its short message and normal termination.  Similarly, the TCV binding 

element mimics a tRNA in order to recruit the ribosomal large subunit as well as 

competitively bind the RdRp. 
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Figure 5: The spectrum of IRES factor requirements. 

These examples show the spectrum of factors required for IRES translation.  This study noted the 
trend that as viral RNA becomes more structured it requires fewer cellular factors for successful 
translation.  This figure is from Filbin 2009[51]. 

Modifying Termination 

Termination is subverted in multiple ways, leading to suppression and allowing 

viruses to encode multiple peptides from a single mRNA.  The influenza B stop-start 

signal, though still not fully understood[52]m, produces both the M1 and BM2 proteins 

while managing to escape NSD.  The termination suppression activity demonstrated by 

the murine leukemia retrovirus is better understood[53].  It uses a strong pseudoknot 

                                                
m This paper has the unusual distinction of using a tri-cistronic reporter containing two 
fluorescence genes followed by firefly luciferase, each ORF separated by the start-stop element. 
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RNA structure to force ribosomes to pause, this allows its reverse transcriptase to bind 

polymerase[54]n. 

Examples in the Genomic Context 

These few examples illustrate some of the methods employed by viruses to 

disturb normal translational equilibria.  Examples employing these methods are also 

being found in the genomic context with increasing frequency.  The most well 

documented method described to date is the cellular IRES; first described in the 

immunoglobulin heavy chain-binding protein mRNA[55], the cellular IRES has since 

been implicated in many contexts including the transcription factor c-myc, which is 

expressed when cap-dependent translation is otherwise compromised[56]o.  Overlapping 

ORFs which lead to translation reinitiation are common in multi-cistronic bacterial 

messages[57]; but are not generally found in eukaryotes with one glaring exception: 

upstream open reading frames (uORFs).  The most famous example comes from yeast, 

where the ribosomes of starving cells translate through the uORFs preceeding GCN4, 

thus translating this powerful activator of many biosynthetic pathways (Reviewed in [58]).  

While metazoans do not have GCN4 to turn on our stress pathways, the uORFs before 

ATF4 demonstrate the same mechanism[59].  uORFs are important not only because 

they are implicated in an important non-canonical translation system, but also because 

uORF containing messages are strong substrates for nonsense mediated decay. 

This work expands on the hypothesis that there is a linkage between -1 PRF and 

Nonsense Mediated Decay.  Programmed ribosomal frameshifting (PRF) occurs when a 

cis-acting signal in an mRNA directs translating ribosomes into an alternate reading 

                                                
n This paper provides a classic example of the mutagenesis strategy: “Mutate the 5’ side of a 
stem, mutate the 3’ side of a stem, mutate both.” 
o This is notable not only for the immunodepletion of eIF4GI as a stimulator of IRES driven 
translation, but also because it introduced the XIAP IRES, which goes on to test for an IRES 
element in the mammalian dual luciferase reporter system. 
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frame at a much higher rate than the normal 0.06%[60]p or  0.005% frameshift events 

per message transit[61]q.  PRF is most commonly observed to shift ribosomes by one 

base either in the 3’ (+1 PRF) or 5’ direction (-1 PRF) (comparisons in [62]), but may 

also include much larger shifts or ribosomal shunting events.  Ribosomal shunting is 

another means to translate sequences which would normally remain quiescent; instead 

of coding for an overlapping ORF, the shunting target lies far downstream and is often 

triggered when normal, cap dependent translation is impaired.  Adenovirus provides the 

primary example of this mechanism:  its shunting signal uses similarity to 18S rRNA to 

trigger translation over 220 nucleotides downstream[63]. 

Programmed -1 ribosomal frameshifting was first observed in the Rous-sarcoma 

virus; in this viral context, a single mRNA transcript encodes two peptides and expresses 

them at a specific ratio via -1 PRF.  The majority of the translated product consists of the 

shorter, unshifted gag structural protein.  When -1 PRF occurs, translating ribosomes 

bypass the zero-frame stop codon, resulting in translation of the Gag-pol fusion product 

(Figure 6).  Subsequently, it was found that some plus stranded RNA viruses, dsRNA 

viruses, and retroviruses also use -1 PRF.  For example, the dsRNA L-A yeast Totivirus 

was shown to produce of its major coat protein and RNA-dependent RNA polymerase 

using this method[64].  It was further shown that maintenance of the M1 satellite virus of 

L-A requires a specific frameshifting rate[65]r, demonstrating a distinct phenotype 

dependent on ribosomal frameshifting.  Multiple phylogenetically conserved cellular 

mechanisms have first been identified in viruses, this may also be true for -1 PRF. 

                                                
p This value is presumed to be high because it was measured with β-galactosidase activity. 
q Though we cite this value often, the logic of this calculation is problematic in the context of 
programmed -1 ribosomal frameshifting because it is based on observations made with tRNA 
suppressor mutants. 
r This marks the first time the killer assay was used as a way to compare the rate of frameshifting. 
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Figure 6: The organization and results of viral -1 PRF. 

Diagrams of three -1 PRF containing viral genomes show the overlapping open reading frames 
and the resulting peptides which are synthesized if translation stays in the 0 reading frame (gag) 
or shifts into the -1 reading frame (Gag-pol fusion). 

To date, a few -1 PRF signals of viral origin have serendipitously been found in 

metazoan genomes, including the mouse Edr[66] and the human paraneoplastic Ma3 

genes[67]. 

Models of -1 Programmed Ribosomal Frameshifting 

The role of -1 PRF outside the viral context was not clear, but the mechanisms 

have been thoroughly debated.  A -1 PRF signal consists of several conserved 

elements: a “slippery heptamer”, followed by a significantly stable downstream mRNA 

secondary structure, separated by a spacer (Figure 7).  The “slippery heptamer” 

consists of N NNW WWH (spaces delineate reading frame, N, W, H follow IUPAC 

conventions: N is any three identical bases, W is any three identical weak bases, and H 

is not guanine).  All models of -1 PRF agree that the downstream mRNA structure 
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causes elongating ribosomes to pause while the tRNAs are positioned over the slippery 

site.  The nature of the slippery site allows the aminoacyl and peptidyl-tRNAs to form a 

relatively stable mini-helix with the mRNA -1 frame bases[10].  The constituent bases of 

the slippery site are also important for the rate of -1 PRF, and further have different 

effects depending on the translational system expressing the sequence[68].  The mRNA 

secondary structure provides an energetic barrier to translating ribosomes and positions  

 

Figure 7: The elements of a -1 PRF signal. 

A functional -1 PRF signal occurs when an actively translating ribosome is forced to pause at a 
strong mRNA secondary structure, usually an H-type pseudoknot.  The ribosome A and P sites 
are situated over the NNW and WWH nucleotides of the slippery site due to an appropriately 
sized (6 bases in this drawing) spacer. 

them over the slippery heptamer.  H-type mRNA pseudoknots are the most common 

stimulatory structure, but other structures, including proteins bound to stem-loops[69], 

variously sized stem-loops[70], and RNA triplexes[71] promote efficient frameshifting. 

The 'simultaneous slippage' model[72] of -1 PRF states that translating 

ribosomes pause on the downstream structure while the peptidyl-tRNA and aminoacyl-

tRNA are situated over the 'NNW' and 'WWH' bases of the slippery heptamer (Figure 8).  

In the time it takes the ribosomal helicase to resolve the downstream mRNA, the A and 

P site codons break their 0-frame hydrogen bonds and subsequently re-form them in the 

-1 frame, pairing with 'NNN' and 'WWW.'  Finally, elongation resumes normally in the -1 
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frame.  This model provides neither details of the timing nor the position of the ribosome 

at the time of the frameshift event. 

 

Figure 8: A Model Mechanism of -1 PRF. 

Illustration of the ribosomal A and P sites during a -1 Programmed Ribosomal Frameshifting 
event.  First, the ribosome (light blue) is forced to pause before the mRNA secondary structure 
(right knot) while its P site tRNA is situated in the classical conformation over a glycine codon and 
an newly accommodating asparagine tRNA is in the A/P conformation.  The physical strain 
caused on the spacer by the ribosome attempting, but failing to translocate eventually causes the 
tRNAs to re-pair over the GGG and AAA codons.  Finally the ribosomal helicase unwinds the 
downstream structure and elongation proceeds in the -1 reading frame.  The figure is from Plant 
et al.[73] 

Later models have stepped in to fill in these details, in each case the actual 

slippage event is coupled to GTP hydrolysis during elongation.  The “integrated 

model”[62] hypothesized that the shift occurs after the ternary complex delivers the aa-

tRNA to the A-site, but before peptidyl-transfer and therefore translocation by eEF2.  

This model was later refined in an attempt to explain the role of the downstream 

secondary structure[73].  In this model, the downstream element resists the movement 

of the mRNA during translocation, thus causing tension along the mRNA in the entrance 

tunnel and therefore partially blocking accommodation of the incoming aa-tRNA during 

eEF1A hydrolysis.  This tension is released when the A and P site tRNAs break from the 

mRNA, allowing the mRNA to shift one base.  In this model, the aa-tRNA serves as a 

lever and the LSU as a fulcrum to shift the mRNA before peptidyl transfer and 

translocation[74].  A separate model hypothesized that the -1 PRF event occurs during 

translocation.  In this case eEF2 mediated GTP hydrolysis breaks the tRNA/mRNA helix, 

but the downstream mRNA secondary structure frustrates the movement of the 



 16 
 

ribosome, leading to an incomplete translocation of two nucleotides[75]s.  Interestingly, 

this model does not specify during which round of translation the incomplete 

translocation will occur.  In one scenario, the NNW WWH nucleotides are in the E and P 

sites but are forced to slip by the downstream element, leading the incoming tRNA to be 

in the -1 frame in the A site of the ribosome before peptidyl transfer.  The frameshift 

event may also occur during the following translocation, thus the mRNA shifts by only 

two nucleotides as the tRNAs transition from classical P/P and A/A to P/E and A/P 

states. 

 Each of these models has the support of experimental evidence, thus -1 PRF 

does not follow a single mechanism, but may best be explained as a series of kinetic 

partitioning events (for examples, see [76,77]) over the course of the elongation cycle 

such that each type of frameshift event results in a separate off-pathway product.  The 

“kinetic model” of -1 PRF[7] unified these models and illustrated the relative contribution 

during each step of elongation (Figure 9). 

Nonsense Mediated Decay 

 The logical link which makes it possible to hypothesize that -1 PRF affects mRNA 

abundance comes from comparing the fate of translating ribosomes after translating a 

viral -1 PRF signal compared to a putative genomic signal.  This distinction was 

suggested in Figure 1, but may be more explicitly shown by plotting the -1 frame 

extension in codons over the length of genomic mRNA (Figure 10).  While viral -1 PRF 

signals significantly extend an open reading frame, genomic -1 PRF signals are 

predicted to truncate the reading frame.  From this perspective, a functional -1 PRF 

signal in the genomic context acts as a stochastic premature termination codon[78], 

                                                
s Mutagenesis was performed on the three bases before the slippery heptamer and caused 
losses of frameshifting by as much as 80%. 
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Figure 9: Kinetic Partitions which lead to -1 PRF. 

Two elongation cycles are diagrammed showing the on-product 0-frame translation and three 
separate pathways which result in the ribosome reading in the -1 frame.  Thus the aminoacyl-
tRNA mechanically wedges into the A-site during the first translocation event (Pathway I); tension 
of the mRNA caused by the mRNA secondary structure is relieved by slippage during the second 
accommodation event (Pathway II); or the second elongation cycle is frustrated by the mRNA 
secondary structure (Pathway III).  This figure is from Liao et al[7].  

and therefore as a substrate for nonsense mediated decay. 

NMD: Increasing Complexity 

 Diverse mechanisms exist to ensure the fidelity of gene expression; nonsense 

mediated decay (NMD) occurs post-transcriptionally and is among the most thoroughly 

debated.  The name harkens to the observation in yeast that nonsense codons in the 

ura3 ORF reduce the mRNA’s half-life[79]t and steady-state levels by as much as 5 fold.  

Nonsense codons in mRNAs are not unique to eukarya, but bacteria couple transcription 

and translation and do not remodel messages as extensively as eukaryotes.  Thus 

                                                
t Demonstrated with an early example of a pulse chase using [H3]RNA. 
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Figure 10: Genomic -1 PRF signals do not significantly extend the ORF. 

The distribution of length of each -1 frame extension following a slippery heptamer in Homo 
sapiens is plotted with respect to relative ORF position.  Each dot is colored according to the 
identity of the first 3 bases of the slip site (red: AAA, green: UUU, blue: GGG, black: CCC).  
Approximately 0.07% extend more than 30 codons past the 0 frame stop codon. 

bacterial NMD is currently thought to begin when internal cleavage sites are exposed by 

prematurely terminating ribosomes; these unprotected sites are endonucleolytically 

cleaved[80] by RNase E in E. coli, leaving the mRNA a target for rapid decay. 

In eukarya, there are many more proteins involved (Table 3) in NMD, and still more 

models arguing the details; but it is encouraging to note that the general idea that 
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successfully translating ribosomes protect messenger ribonucleoproteins (mRNPs) from 

degradation[81]u is shared with the bacterial model (Figure 11). 

 

Figure 11: Translating ribosomes protect mRNPs from NMD. 

This model summarizes the elements which promote and inhibit nonsense mediated decay.  Thus 
if Upf1 is able to mark mRNAs as having long 3’ UTRs, or the exon junction complex is not 
remodeled efficiently, then the mRNP is a strong candidate for decay.  Conversely, the poly-A 
binding protein complex and ribosomal readthrough protect the mRNP from decay.   This figure is 
from Hogg and Goff [81]. 

The primary sources of disagreement among the eukaryotic models of NMD 

reside with the importance and function of exon junction complex in NMD; the role of 

nuclear export in NMD; and the cap binding complex.  Therefore, if NMD is to be the 

                                                
u Assayed by inserting Murine Leukemia Virus Pseudoknot mutants into the 3’ UTR of a 
constitutively expressed β-globin construct.  Mutants which allow efficient readthrough 
accumulate more mRNA. 
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foundation of a model of post-transcriptional regulation, it is imperative to first 

understand NMD in the context of Saccharomyces cerevisiae. 

NMD:  Current Model in Saccharomyces cerevisiae 

 The complete yeast genome[82] marked a shift in the understanding of the 

complexity of eukaryotic organisms.  As of April 2011v, 6,607 open reading frames 

(ORFs) have been identified across the 16 chromosomes, mitochondria, and the 

endogenous 2-micron plasmid.  The initial report of intron containing genes in yeast 

identified 228 introns[83], a number which has since grown to 282 (4.3% of the genome).  

Amazingly though, nearly 25% of the Saccharomyces cerevisiae transcriptome is 

generated from messages containing introns, including 9,168 mRNA molecules per hour 

per cell (73% of the ribosomal protein mRNAs)[84].  Furthermore, the intron containing 

ribosomal protein mRNAs comprise 90% of all intron containing transcripts in yeast.  In 

contrast, when microarray experiments were performed using cells deficient in the NMD 

machinery, 746 transcripts out of 7,839 (9.5%) were upregulated, including 545 out of 

6,086 protein coding ORFs (9.0%)[85] assayed.  When these transcripts were 

categorized, it was noted that genes involved in protein synthesis were 

underrepresented in the population of NMD regulated transcripts (1.7%).  From these 

observations (summarized in Table 1), it is unlikely that nonsense mediated decay in 

Saccharomyces cerevisiae is mediated primarily by the exon junction complex.  When 

He et al. examined the chromosomal positions of each transcript, 36% of all up-

regulated in NMD deficient cells were positioned within 20 kb of telomere ends; while 

only 8% of the transcripts farther away were similarly up-regulated.  This peculiar spatial 

arrangement of NMD regulated transcripts led to the observation that strains deficient in 

                                                
v The 6,607 ORFs currently assayed at: 
http://www.yeastgenome.org/cache/genomeSnapshot.html were not all available to Ares et al. nor 
He et al.; therefore these are three separate but comparable datasets. 
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NMD express genes normally silenced in telomeric regions[86], at least when tested 

using a telomere localized URA3 and 5-FOA reporter system. 

Class in transcriptome [84]  Number of 
Genes 

Percentage 
Genes 

mRNA/h/cell Percentage 
mRNA 

Ribosomal proteins with 
introns 

95 1.54% 
 

9,168 24.24% 
 

Other proteins with introns 134 2.17% 
 

1,009 2.67% 
 

Ribosomal proteins without 
introns 

37 0.60% 
 

3,414 9.03% 
 

Other proteins without introns 5,922 95.70% 24,226 64.06% 
Total 6,188  37,817  

Table 1: Classifying intron containing genes in Saccharomyces cerevisiae  

Ares et al. catalogued the number of mRNAs transcribed by Saccharomyces cerevisiae per hour 
and observed that a majority of the intron containing messages are from ribosomal proteins.   
Thus 1.5% of the genome is comprised of ribosomal proteins while 24% of the transcriptome is 
ribosomal protein RNA. 

Class in NMD∆ cells [85]  Increased Percentage of 
genome Increased 

Decreased 

Annotated Genomic ORFs 545 8.81% 6 
Mitochondrial, plasmid, unannotated ORFS 150 2.42% 5 

Small RNA, tRNA, rRNA 51 0.82% 8 
Total 746 12.06% 19 

Table 2: Observed RNA abundances for different classes of ORFs 

He et al. catalogued the ORFs which display increased expression in NMD deficient cells by 
micro-array.  If all NMD is due to splicing, then the number of genes expected to be increased in 
an NMD deficient strain should be much lower than the observed  8.81% of the entire genome, 
but closer to 2.17% (bold in Table 1). 

This marks one of the first instances in which NMD is cast in a role not only as a 

protector against deleterious transcripts, but also as a regulator of cellular homeostasis.  

These roles are in turn defined by the underlying mechanism of NMD.  The remaining 

models of NMD attempt to describe how yeast distinguish normal termination from 

premature: the “surveillance complex”[87], and “faux-3’ UTR"[88]w models.  Though the 

latter is now accepted as predominant mechanism in yeast, the surveillance complex 

model remains important because it is the direct antecedent of the currently prevalent 

model of NMD in metazoans, the pioneer round hypothesis[89,90]. 

                                                
w This was first demonstrated with some excellent PABP tethering experiments. 
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The surveillance complex model was posited when it was observed that Hrp1p 

interacts with Upf1p as well as a substrate for NMD[91]x.  A poorly defined downstream 

sequence element (DSE) located 3’ of a PTC leads to rapid degradation via NMD; when 

the DSE was removed these transcripts were no longer degraded.  Furthermore, the 

hrp1-3 allele increased the half-life of NMD substrates by factors of 5-10.  Therefore 

Hrp1p was identified as a recruiter of the surveillance complexy; it binds weakly to the 

DSE upstream of the stop codon and is easily removed by actively translating 

ribosomes.  When ribosomes terminate before the DSE, then Hrp1p is free to bind the 

mRNA and recruit Upf1p, leading to rapid degradation (Figure 12). 

 

Figure 12: The surveillance complex model in yeast. 

A. mRNA binding proteins (including Hrp1p) interact freely with the message inside the nucleus 
but are removed by translocating ribosomes in the cytoplasm.  B. If ribosomes terminate 
prematurely; Hrp1p is free to recruit the surveillance complex, leading to rapid decapping, 
deadenylation, and decay.  This figure is from Czaplinski et al.[8]. 

The primary strength of this model lies in its implicit coupling of active translation 

to the degradation of NMD substrate mRNAs.  Translating ribosomes prevent the 

binding of Hrp1p to the DSE and subsequent degradation.  Thus the weakness of the 

model, the poorly defined DSE (TGYYGATGYYYYY), is used to demonstrate that some 

messages house many separate DSEs[92]; but this model cannot explain rapidly 

degraded NMD substrates which do not contain this motif.  The faux 3’ UTR model fills in 

this logical gap. 
                                                
x This paper serves as a cautionary tale against overinterpreting EMSA data. 
y Hrp1p is generally identified as part of cleavage factor I.  In this role it is responsible for cleaving 
and polyadenylation of pre-mRNAs. 
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 This model does not focus on active elongation as a protector of mRNPs, but 

notes the position of terminating ribosomes in the context of a normal stop codon versus 

premature termination.  Toeprint analyses demonstrated that terminating ribosomes do 

not protect the mRNA 17 bases downstream of a normal stop codon; but do protect the 

same position when a stop codon is recognized as aberrant (Figure 13).  Similarly, the 

+6 position was deprotected in a time dependent manner in the case of premature 

termination; but adding a m7G cap analog attenuated these effects, as did performing 

the experiment in Upf1p deficient cells. 

 

Figure 13: Toeprints of normal and premature termination. 

Significant differences were observed when cycloheximide (CHX) was used to stop translation in 
the context of normal versus premature termination.  In this case, the +17 position is protected 
from transcription elongation by the presence of an abnormally terminating ribosome (lane 7), but 
not when m7G cap analog is supplied (lane 8).  This figure is from Amrani et al. [88]. 

These observations lead to the conclusion that the DSE was not in fact a salient 

feature of the mRNA which explicitly recruits a surveillance complex, but another sign 

that the context of termination and the mRNP is aberrant.  Under this model, NMD is a 

function of the interplay between: the m7G cap, the initiation factors eIF4G and eIF4E, 
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poly-A binding protein (PABP), and the poly-A tail of the mRNP; these in concert with the 

continued successful transition of ribosomes from termination to reinitiation serve to 

ward off the Upf proteins and rapid degradation.  These elements are shared with the 

components involved in the 3’ UTR length surveillance model of NMD[81]. 

 A termination event must be recognized as aberrant in order for the faux 3’ UTR 

model to function (Figure 14).  Normal termination occurs when the elongating ribosome 

encounters a UAA/UAG/UGA codon in the appropriate context.  Class I Release Factors 

(RF) (eRF1 is Sup45p in yeast) recognize these stop codons in the A site and stimulate 

release of the polypeptide chain from the P site tRNA.  Class II RFs (eRF3 is Sup35p in 

yeast) use GTP to stimulate the class I RF; in addition the N-terminal portion of Sup35p 

interacts with PABP, stimulating mRNA decay[93].  One assumption of the faux 3’ UTR 

model is that premature termination affects this interaction.  From the opposite 

perspective, the faux UTR model suggests that the proteins bound to the 3’ UTR are 

important for the stability of the message, specifically the proximity of PABP to the site of 

termination.  To test this implication of the faux UTR hypothesis, Amrani et al. used a 

construct containing the MS2 coat protein binding site with a PTC  used to bind a portion 

of Pabp1[88].  This ‘tethering’ of Pabp1 to the otherwise strong substrate for NMD 

stabilized the message significantly.  Taking one step further, eRF3 was tethered in a 

similar fashion and also stabilized NMD substrates (PGK1 with a PTC); but when eRF1 

was used no effect was observed.  These observations lead to the conclusion that 

termination is normally a process of eRF3 binding near Pabp1, activation by eRF1, and 

efficient ribosomal decoupling.  In contrast, premature termination is inefficient and, 

without Pabp1, leaves time for the Upf proteins to bind and promote decay.  The details 

of this process are not fully understood, but are suggested by the structures of the Upf 

proteins, their interactions with the decapping proteins Dcp1p and Dcp2p, the 5’ 

exonucleases Xrn1p and Rat1p, deadenylase, and the exosome. 
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Figure 14: The Faux 3' UTR Model of NMD. 

The context of termination is the primary determinant of suitability for NMD in the faux 3’ UTR 
model.  This figure is from Brogna et al.[94] 

The Upf proteins 

The primary actors of NMD are Upf1pz, Upf2p, and Upf3p; they are required for 

function and partially conserved among eukaryotic species.  The complete panoply of 

NMD associated factors is difficult to define (Table 1).  Upf1p is the judge of aberrant 

termination; it subsequently interacts with Upf2p and Upf3p to trigger mRNA 

degradation.  This judicial activity is partially demonstrated by Staufen-Mediated Decay 

(SMD).  In this mechanism staufen recruits Upf1p downstream of a termination codon 

and leads to rapid mRNA degradation[95].  These activities are mediated by two 

conserved domains in Upf1p (Figure 15); the Upf2p interacting N-terminal domain and a 

C-terminal helicase region which interacts directly with mRNA.  In addition, this region 

contains 7 superfamily 1 RNA/DNA helicase domains[96].  

Crystal structures of the mammalian UPF1 (RENT1) helicase domain bound to 

ssRNA and AMPPNP[97] provide hints regarding how UPF1 may unwind mRNA 

                                                
z Every effort has been made to follow the yeast[278] and human[279] nomenclature guidelines 
where appropriate. 
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Figure 15: The domains and interactions of UPF1. 

A.  The order and relative positions of the human and yeast Upf1p domains.  This image is from 
Applequist et al.[96]  B.  Depiction of Upf1p interactions with release factors and Upf2p.  This 
image is from Ivanov et al.[98] 

powered by ATP.  Cryo-EM structures (along with SAXS and crystal structures) of UPF1 

with UPF2[99] provide an image of the C-terminus of UPF2 bound to the UPF1 CH-

domain.  In mammalian systems this feeds a model of NMD whereby UPF1 and UPF3 

transiently join eRF1 and eRF3 (the SURF complex).  The EJC in turn meets the SURF 

complex mediated by UPF2.  Once all the components are in place, SMG1 

phosphorylates the C-terminal SQ motifs of UPF1.  This in turn leads to rapid 

degradation, at least partially through SMG6’s endonuclease activity and partially by 

SMG7’s ability to promote destabilization via DCP2 and XRN1.  In addition, 

phosphorylated UPF1 attracts DCP1, leading to a further stimulation of rapid decapping.  

 

A

. 

B

.
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Thus UPF1 stands at the center of a strongly redundant network of interactions which 

serve to rapidly detect and remove NMD substrates. 

UPF2 is usually considered an adaptor protein, bringing either UPF3 or the 

SURF complex to UPF1.  Recent work[100] has illustrated how UPF2 affects the 

ATPase and mRNA unwinding abilities of UPF1.  This model condenses the 7 helicase 

regions of UPF1 into 2 RecA domains and the N-terminal Zn finger into a CH domain.  

Crystal structures with various ATP analogues and UPF2 showed that the CH domain 

inhibits the ATPase activity of UPF1 and binds UPF2.  The two RecA domains of UPF1 

in these structures each have an additional domain (termed 1C and 1B which are an α-

helix and β-barrel respectively) that affects nucleic acid binding to the RecA domains.  

When UPF2 was bound to UPF1 in these crystal structures, the CH domain moved to a 

position almost diametrically opposed to the unbound state (Figure 16).  This surprising 

shift of a relatively large 1500 Å2 surface area was initially thought to be an artifact, but 

eventually shown to be facilitated by a flexible linker.  When the CH domain is bound by 

UPF2, they drive a shift of the CH domain to the other side of 1B, allowing it to relax and 

increasing RNA unwinding activity.  Therefore, UPF2 is not only an adaptor protein as 

previously thought, but has a strong role in activating UPF1. 

UPF3 is both structurally simpler and evolutionarily more complex than the other 

two primary members of the NMD system.  In yeast it contains 387 amino acids, which 

are shuttled between the nucleus and cytoplasm by importin-α in order to maintain fully 

active NMD[101].  However a duplication event during the evolution of higher organisms 

resulted in two paralogous isoforms, UPF3A and UPF3B.  The interactions between 

UPF3 and the other NMD factors are further complicated because UPF3A and UPF3B 

compete for binding to UPF2; in addition UPF3A is downregulated by UPF3B in 
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Figure 16: Long distance movement of UPF1 CH domain upon UPF2 binding 

Crystal structures of UPF1 (red with lime 1b domain, yellow 1c domain, and purple CH domain) 
complexed with UPF2 fragments (blue) suggest that the CH domain travels over 1,500 Å2.  In 
addition, the RecA domains (bottom left) switch from a contracted to relaxed conformation while 
the 1B and 1C domains remain relatively stable.  This image was generated from PyMol using 
PDB accessions 2WJV and 2GJK, descriptions from Chakrabarti et al[100], and the pdb parser 
from Leshin et al.[102]. 

a transcription independent manner[103].  The full purpose of UPF3A/B in mammalian 

NMD is not known, but it has been shown to shuttle between the nucleus and cytoplasm 

along with SMG5 and SMG7. The SMG (suppressor with morphogenetic effects on 

genitalia) proteins were identified in Caenorhabditis elegans because mutants 

suppressed specific nonsense containing alleles, some rearrangements, and aberrant 3’ 

UTR containing genes[104].  Later work showed that these are the same players as the 

yeast Upf proteins with the addition of a phosphorylation control system via SMG1 

(kinase activation of UPF1), SMG5-7 (phosphatase inactivation of UPF1). 
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Gene Name Role 

Primary actors 
(human) 

 

RENT1/UPF1 Target of SMG1 phosphorylation.  Disrupts translation termination. 
UPF2 Interacts with UPF1 and UPF3.  Promotes UPF1 phosphorylation. 
UPF3X (UPF3B) Initial interaction with NMD target, attracts UPF2. 

UPF3 (UPF3A) Early interaction with NMD target, attracts UPF2.  Immunoprecipitates 
with Y14, RNPS1, eIF4AIII. 

SMG1 Kinase of UPF1. 
SMG5 Dephosphorylates UPF1, requires SMG7 to function. 
SMG6 Dephosphorylates UPF1, interacts with Y14. 

SMG7 Dephosphorylates UPF1, Recruits SMG5 to decay foci for 5’ to 3’ decay 
via DCP2 and XRN1. 

SMGL1 / hNAG Unknown, but required for NMD. 
SMGL2 / hDHX34 Unknown, but required for NMD. 
Epistatic factors 
(human) 

 

CBP 
(CBC80/CBC20) Binds mRNA m7G cap upon nuclear export. 

eIF4E / eIF4G Tethers PABP to m7G cap after nuclear export. 
PABP Poly-A binding protein, links m7G cap to poly-A tail after nuclear export. 
eRF1 / eRF3 Peptide release factors, competing with Upf proteins for ribosomes. 
Y14, Magoh Core of the exon junction complex. 
DCP1 / DCP2 The decapping complex. 
XRN1 / RAT1 5’ to 3’ exonuclease, cytoplasmic and nuclear respectively. 
PNRC2 Links UPF1 to DCP1. 
DHH1 and PAT1 Remove mRNAs from active translation and increase decapping rate. 
The Exosome 3’ to 5’ exonuclease. 
Exosome proteins 
(yeast/archaea) 

 

Rrp41, Rrp46, Mtr3 Create a portion of the hexameric ring, each has an RNAse PH domain. 
Rrp42, Rrp43, Rrp45 Also serve to create hexameric ring, their PH domains are inactive. 
Rrp4, Rrp40 Create the S1 ‘pore’ structure to guide incoming RNA. 
Csl4 Also has a S1 domain. 
Rrp44 RNase R domain containing component (RNase II). 
Rrp6 Similar to RNase T/D, only found in nuclear exosome. 
Rrp47 Putative RNA binding protein, only found in nuclear exosome. 
Ski7 GTPase, only found in cytoplasm. 
Table 3: A partial listing of proteins involved in Homo sapiens NMD 

The full catalogue of proteins involved in NMD includes these, the components of the exon 
junction complex, the ribosome, initiation complex, the complexes involved in elongation, RNAi, 
and factors involved in remodeling the mRNA.  With that in mind, these are some of the most 
immediately involved.  Exosome components are transcribed from Houseley et al.[105]. 

Other Factors 

Y14 and Magoh are cytoplasmic shuttling proteins which bind mRNAs in a 

position specific manner with respect to the exon junction complex[106].  Together they 

make an extremely stable heterodimer[107] which is hypothesized to form a clamp 
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around the mRNA and  binding platform for the formation of the rest of the EJC.  If this 

clamp is not removed from an actively translated mRNA, then it becomes a substrate for 

NMD.  

 Important Nucleases  

The factors which encourage NMD are still being identified and examined, but the 

proteins which actually perform the degradation of the mRNA are well established.  The 

degradation of a translationally competent mRNA occurs in two stages: the stabilizing 7-

methyl-guanosine cap and poly-A tail are removed via the decapping complex and 

deadenylase respectively.  First (in yeast), the poly-A tail is shortened via a complex of 

Ccr4p and Pop2p.    Once this is complete, decapping occurs via Dcp1p and Dcp2p.  

This process is in turn affected by a series of trans-acting factors including:  Dhh1p, 

Pat1p/Mrt1p, the Lsm complex, Vsp16p, Edc1p, and Edc2p.[108]  Interestingly however, 

Dhh1p is not required for NMD in yeast while it does interact with the yeast deadenylase; 

thus functionally linking deadenylation and decapping.  A denuded mRNA is an excellent 

substrate for 5’ to 3’ decay via Xrn1p and 3’ to 5’ decay via the ski complex and 

exosome (Figure 17).  These same complexes are required for the decay of mRNAs 

which have been targeted for RNAi[109] and serve to degrade mRNAs in the same 

fashion as occur during NGD (Figure 18).  In these contexts, decapping and 

deadenylation do not  occur, but the mRNA is endonucleolytically cleaved; leaving the 5’ 

fragment available for degradation from the 3’ end via the exosome and the 3’ fragment 

available from the 5’ end via Xrn1p. 
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Figure 17: Crystal Structure of the Archael Exosome 

The exosome from Arcaheoglobus fulgidus[110].  RNA is guided to the centrally located, 
catalytically active PH domains by the (orange) S1 and (red) KH domains.  The archael exosome 
shows the RNAse domains on alternating (blue) Rrp41 and (green) Rrp42 while the RNA binding 
domains are located on the Rrp4 subunits.  Yellow regions are identical to the PNPase of the 
bacterium Streptomyces antibioticus[111].   This figure is from Houseley et al.[105]. 

 

Figure 18: Methods of mRNA decay. 

The various interactions of endo and exo-nucleolytic decay which lead to mRNA degradation.  
The figure is from Parker and Song.[112] 
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If -1 PRF has a regulatory role in shifting the equilibrium of this enormously 

complex degradation machinery, then it too must be regulated.  Ideally, a regulatory 

framework for -1 PRF should be sequence specific and able to be rapidly engaged by 

the cell.  The burgeoning field of RNAi provides excellent candidates to fulfill these 

criteria. 

Small RNAs and Genome Regulation 

Small non-coding RNAs are assuming an increasingly important role in post-

transcriptional regulation.  These classes of molecules are predicted to control 

approximately 1/3 of all protein coding genes in mammals and plants and participate in 

the regulation of every cellular process thus far examined[113,114].  Most characterized 

miRNAs control gene expression by modulating translation and mRNA stability in the 

cytoplasm.  In Arabidopsis, miRNAs have been shown to directly affect methylation on 

the chromosomes[115], setting the precedent for other uses of miRNA.  Since then, hsa-

miR-122 has been shown to directly interact with the Hepatitis C virus (HCV) in liver 

cells[116], while networks of interactions between cellular miRNAs (specifically hsa-miR-

29a) with HIV-1[117] and viral miRNAs with cellular messages[118,119] have been 

identified in human cells. 

Given the multifarious interactions between small RNAs and both endogenous 

and exogenous mRNAs, it is not a difficult transition to hypothesize that similar 

interactions may occur between miRNAs and the regions of mRNA which include -1 PRF 

signals.  In order to make these hypotheses, one first must have a general 

understanding of the lifecycle of miRNAs (Figure 19). 
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Figure 19: miRNA Biogenesis 

miRNA biogenesis often begins with Pol II transcription of large intron containing sequence, 
followed by multiple rounds of processing.  Drosha and Pasha cleave the stem-loop intronic 
sequence away, followed by Dicer to remove the loop sequence, leaving a miRNA duplex, and 
finally an active argonaute bound miRNA.  This figure is from Bushati and Cohen.[114] 

Most miRNAs are transcribed by RNA polymerase II and are comprised of a 

stem-loop which contains one or more primary miRNA (pri-miRNA) sequences.  These 

stem-loop sequences range from 100-10,000+ nucleotides and are found primarily (in 

mammals at least) in intron containing sequences[120].  Processing of these stem-loops 

occurs in the nucleus by the ‘Microprocessor,’ which is a multi-protein complex which 

contains Drosha (an RNase III) and Pasha (which provides dsRNA binding capability).  

These cleave the end of the stem-loop, leaving a pre-miRNA which has 2-3 bases of 
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overhang on one side and the RNA loop on the other.  This is exported into the 

cytoplasm where it is bound by the dsRNA binding protein, TRBP, and again cut by 

Dicer, another RNase III.  The remaining duplex contains a miRNA bound to miRNA* 

(also 5p vs 3p).  Finally, this is split apart and loaded on the RNA-induced silencing 

complex (RISC).  Usually the miRNA strand has less base pairing on the 5’ side; thus it 

is possible to preferentially load the miRNA strand and discard the miRNA*. 

Once the RISC complex is loaded with miRNA, it scans for RNA targets by base-

pairing interactions.  If (near) perfect hybridization occurs, the mRNA target is cleaved by 

Argonaute (Ago2p) and rapidly degraded.  However, imperfect complementarity still 

results in translation repression.  In animals this relationship is particularly skewed, such 

that to date only one mRNA has been reported to be directly cleaved via miRNA[121].  

Instead, most animal miRNAs pair imperfectly and lead to translational repression and 

eventual degradation by deadenylation and decapping[122]. 

The mechanisms through which animal miRNAs repress target mRNAs are not 

completely understood.  Work performed using the dual luciferase reporter system 

containing multiple copies of the CXCR4 miRNA binding site in multiple contexts showed 

that miRNA mediated repression requires capped, polyadenylated messages.  Thus, 

when miRNA was applied to cells the CrPV IRES upstream of a luciferase reporter, it 

had no effect; but when either 5’ cap or 3’ tail were added back the miRNA had 

moderate effect on expression[123].  Completely conflicting evidence suggests, 

however, that mRNA repression occurs during elongation, and that repression requires 

active translation by polysomes.  In this case, adding miRNA to the CrPV IRES was able 

to completely repress expression, and adding miRNA to actively translated messages 

led ribosomes to dissociate from the target mRNA[124].  In both cases, the final result is 

clear:  miRNA binding to the message results in strong translational repression. 
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The scope and process of miRNA repression have been studied primarily by 

mutating known target sites, looking for evolutionarily conserved miRNA target sites, and 

by modifying miRNA expression[125].  These analyses have come to the consensus that 

target identification occurs primarily through a heptameric 5’ “seed” region of perfect 

complementarity.  When mismatches occur in the seed, compensatory bases further 

downstream provide additional specificity.   However, when individual miRNAs have 

been depleted using RNAi or miRNA mutants, the catalog of affected RNAs includes not 

only the predicted targets but also multiple RNAs which contained unanticipated binding 

sites.  Furthermore, depleting cells of a specific miRNA led not only to an increase in the 

expected mRNAs, but also decreased expression of other, unexpected messages[126]. 

Computational Searches for mRNA Structure 

Computational Pipelines to Filter Data 

The technique of combining previous computational methods into more 

descriptive tools has been used in many contexts; one of the most eloquent examples is 

PSI-BLAST[127], a pipeline of BLAST output informing each subsequent database 

search.  Another advantage of implementing a pipeline for performing large-scale 

searches lies in the potential to optimize each individual step and/or perform steps in 

parallel.  Recent improvements to HMMER3[128] provide not only an excellent example 

of this concept at work, but also significant improvements over PSI-BLAST in terms of 

statistical significance and sensitivity.  In a similar fashion, excellent work has been 

performed using RNAMotif[129] in order to implement computational pipelines searching 

for self-cleaving ribozymes[130,131], generic ribozymes[132], or even localization 

signals in mRNA[133].  The following catalogue of algorithms and implementations 

provides a view of some of the choices available for the proposed computational pipeline 

used in this work and is summarized in Table 4. 
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Grammar Searches in Large Datasets (RNAMotif) 

The aspects of RNAMotif which make it such a powerful and widely used tool 

include its pattern language which is able to distinguish each type of base pair (16 types 

of canonical and non-canonical) in any arbitrary configuration.  In addition, it is able to 

score aspects of the motif including GC content, number of mismatches, or number of 

bases paired, among others.  Finally, it is able to use experimentally determined 

thermodynamic parameters[134] in order to approximate the thermodynamic stability of 

each specific sequence motif it finds.  Combined, these attributes make RNAMotif an 

extensible, multi-purpose tool when searching for potential mRNA secondary structures. 

Predictive vs. Statistically Informed Searches 

 The current implementation of the predicted ribosomal frameshift database 

(PRFdb) uses RNAMotif to find candidate sequences which have the potential to form H-

type pseudoknots.  RNAMotif, though powerful, is ill-suited to normalizing its output to 

find an approximation of the most stable secondary structure for a given sequence 

window; nor is it intended to take into account evolutionarily conserved mRNA 

structures.  While the venerable mfold[135] suite accomplishes the former, it has no 

means to search for pseudoknotted sequences. Over time, usage of mfold has migrated 

towards the Vienna RNA folding applications[136].  This exhaustive suite of tools 

includes facilities to fold pre-aligned sequences de-novo predictions (excluding 

pseudoknots), RNA duplex and hybridization calculations, and RNA folding kinetics 

simulation.  One missing piece in this suite of tools is the ability to search RNA 

databases to find similar or homologous sequences; infeRNAl[137] nicely fills this niche 

by implementing stochastic context-free grammars in order to model stem covariance, 
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Name Worst 
case 
Time 

Predict 
ψ 

Statistics / 
Evolutionary 
Information 

Optimal 
or 

heuristic 

Output 
sub-

optimal 
predictions 

CMFinder O(n3) No Yes Heuristic No 

HotKnots O(n4) Yes No Heuristic Yes 

ilm O(n4) Yes No Heuristic Yes 

infeRNAl O(n7) No Yes Optimal Yes 

mFold O(n3) No No Optimal Yes 

NUPACK O(n5) Yes No Heuristic No 

pknots O(n7) Yes No Optimal No 

pknots-

RG 

O(n4) Yes No Heuristic No 

PFinder O(n3) No Yes Heuristic Yes 

rnamotif O(n2) Yes No Heuristic Yes 

TT2NE O(n6) Yes No Heuristic No 

Vienna 

RNA 

O(n3) No No Optimal No 

Table 4:  Summary of some common RNA prediction algorithms 

The most important aspects of a program to be used in a predictive pipeline for sequences 
containing strong secondary structures include:  running time, ability to predict pseudoknots, what 
type of heuristic it uses (if it uses one), whether or not it provides sub-optimal structures, or uses 
statistical or evolutionary information, and its input/output requirements.  Though it is not 
specifically a predictor of structure, the scoring functions of rnamotif make it a useful addition to 
this repertoire.  

thus dissimilar sequences which fold into similar structures may be used to identify and 

align other sequences from a provided database.  Like RNAMotif, these techniques 

depend initially upon a context-free grammar which describes the base pairing 

possibilities at each position, but they then add likelihood estimates for each observed 

base pair (for examples, see pages 233-269 of [138]).  While extremely sensitive, these 

techniques are complex and can be computationally intensive (thus Tornado runs > 

O(n3) with respect to time, even when using the simplest model[139]).  Finally, though 

stochastic context free grammars (SCFGs) can be used to distinguish ambiguous 

characters, the nested structure of an RNA pseudoknot is unavailable to current 

implementations, including Pfold[140] and CMFinder[141]. 
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As the primary purpose of the PRFdb is to identify mRNA sequences which are 

able to fold into pseudoknots, the limitation to only search for stem-loops is 

unacceptable.  This leaves the simpler minimum free energy (MFE) strategies as the 

most likely tool.  Searching in this manner is NP-complete[142], imposing a limit on 

searchable length of sequence.  The classic dynamic programming algorithm solution to 

this problem was implemented in O(n6.8) time by pknots[143]; primarily because this 

implementation iterates through the entire search space for stem-loops and simple 

pseudoknots.  At the time of its implementation, thermodynamic information was 

unavailable for some aspects (dangling bases in multi-loop structures, for example) of 

the nested stems found in pseudoknots and so these were estimated or filled in with 

contemporary values[144].  It is worth noting that the other programs discussed here use 

more current and complete values[134].  The iterative loop matching algorithm[145] and 

NUPACK[146] seek to improve the computational complexity of this problem by 

implementing heuristics to decrease the search space of the dynamic programming 

matrix.  In the first case this is accomplished by initially collecting short optimal 

secondary structures, subsequently building them up until they attempt to include the 

entire sequence of interest; and then using the unpaired bases to perform another round 

of the same process, finally repeating as required for each class of seconday structures 

(pseudoknot, kissing loop, or stem-loop for examples).  Therefore the worst case 

scenario for this algorithm is >= O(n4) (the n3 of a normal secondary structure prediction 

multiplied by another approximate n for the iterative aspect).  HotKnots employs loop 

matching to achieve a similar simplification, but then applies another heuristic to 

determine if each matching loop (hotspot) is promising.  This causes HotKnots to 

examine a slightly smaller subset of the available search space and perform at O(n4) 

time.  On the other hand, HotKnots uses a more complete free-energy model which may 

also be easily replaced with other models (including the covariance models used by 
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Tornado above) in order to add a statistical or phylogenetic aspect to the scoring 

function.  TT2NE is a more recent addition to this list of heuristics[147], performing a 

depth-first search of the available space.  It then applies a branch-and-bound procedure 

(as had been suggested in the publications of every preceding MFE minimization 

algorithm as well as Durbin & Eddy) to skip segments of the search space which cannot 

terminate in a MFE less than the current minimum.  This brings it to O(n3) or O(n4) 

depending on the sequence, with the pathological case running in O(n6) time.  Each of 

these programs uses approximately O(n3) memory. 

Given these competing criteria for successful mRNA structure prediction, the 

PRFdb currently is able to use pknots, NUPACK, HotKnots, Vienna RNAFold, and 

mFold.  TT2NE support is intended but has not been implemented while ilm is functional 

but has not yet had its output passed to a thermodynamic parameter evaluation (Vienna 

RNAeval is an excellent candidate but requires file-format conversion, indeed it should 

be used to re-evaluate the pknots MFE calculations) to provide a better predicted MFE. 

Sequence Randomization Strategies 

Once MFE minimization strategies have been performed and potential mRNA 

secondary structures predicted, the question shifts to one of scoring.  How does one 

decide among 190,000+ predictions (for Homo sapiens) which are the most significant?  

Previous work has compared 6 quantitation methods[148] for scoring mRNA structure 

predictions: MFE/base pair, Z-score, p-value, Shannon entropy, average base-pair 

distance, and the valley index.  This work suggests that MFE/base, Z-score, and p-value 

are sensitive to the strength of the given secondary structure while the Shannon entropy, 

average base-pair distance, and valley index indicate the uniqueness of the given 

structure.  Of the three measurements which are sensitive to the predicted structure’s 

strength, the Z-score was shown to be the most useful; however it depends on the 
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specific sequence randomization strategy employed.  Debate continues regarding the 

optimal sequence randomization strategy; some work suggests that simple Fisher-Yates 

shuffling is sufficient, while others debate the relative merits of maintaining dinucleotide 

frequencies[149,150], mononucleotide frequencies[151], amino-acid frequencies, etc.  

The differences in sensitivity between the Z-scores for these various methodologies are 

relatively small.  The current PRFdb implementation is able to perform them all, but 

defaults to a simple shuffle.   

Storage, Retrieval, and Visualization 

It is important not to lose sight of the primary goal of this work:  implement a 

simple to use method to search genomic sequence for potential -1 PRF signals.  The 

methodologies for searching through large amounts of sequence data for strong mRNA 

structures have been established.  Finding potential pseudoknots is NP-complete, but 

possible for limited cases via heuristics; and methods exist which provide some 

measurement of significance.  The final step is to put these pieces together.  

Bioperl[152], the “LAMP” (Linux, Apache, MySQL, Perl) software stack, and 

HTML::Masonaa provide a simple solution to this problem.  These tools make developing 

a medium-scale database of potential -1 PRF signals (currently containing 525,000+ 

ORFs, easily scalable to the 5,000,000+ of Genbank) simple.  The only remaining puzzle 

lies in how to visualize the results from the various MFE minimization algorithms.  

Bioperl provides methods to convert most of the various output formats, but one might 

want to see a dot-plot of the pseudoknotted sequence, linear Feynman diagram[153], or 

planar drawing[154].  The source code for jViz and accompanying thesis made 

implementing similar visualization strategies possible in Perl. 

                                                
aa http://www.masonhq.com 
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Summary 

Each of the preceeding fields informs one or more aspects of this thesis.  An 

understanding of programmed ribosomal frameshifting depends upon normal elongation; 

so too does creating a pipeline to search for strong mRNA secondary structures depend 

upon an understanding on the dynamic programming algorithm.  Similarly, one cannot 

search for changes in mRNA stability without some idea of the players involved from 

transcription to decay.  The most attractive aspect of the central hypothesis of this work 

lies in its interdependence on so many fields.  This is a two-edged sword: while it 

provides excellent opportunities to explore hypotheses across the spectrum of 

computational and molecular biology, it falls prey to the competing hypotheses of the 

fields and fractious nature of some emergent fields.  Thus changing observations in the 

field of mammalian nonsense mediated decay provide simultaneously worrisome 

changes in how this work will be interpreted as well as opportunities to fine-tune our 

hypotheses and experiments.  Similarly, the competing hypotheses in the field of 

microRNA make it difficult to forsee the best method to direct our hypotheses regarding 

PRF regulation; but provide wonderful new insights into the relationships between 

translational repression versus mRNA decay.  In this environment of astonishingly fast 

paced change, I hope this document provides a useful foundation to formulate new 

hypotheses and interpret future observations. 
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Chapter 2 

A Database of Computationally Predicted Programmed -1 

Ribosomal Frameshift Signals 

Introduction 

 Canonical decoding of the genetic code requires translating ribosomes to convert 

triplets of bases (codons) into amino acid sequences.  Although this is algorithm is 

employed for translation of the vast majority of mRNA sequences, in some special cases 

cis-acting mRNA elements direct ribosomes into alternative reading frames, dynamically 

“recoding” their sequence information (reviewed in [155]).  Programmed -1 Ribosomal 

Frameshifting (-1 PRF) was first discovered in RNA viruses where it enables viral 

genomes to encode multiple peptides from a single mRNA [10].  An individual -1 PRF 

signal consists of a heptameric 'slippery site' usually followed by an mRNA pseudoknot 

secondary structure separated by a suitable spacer region (reviewed in [13,156]).  Unlike 

their viral counterparts, eukaryotic genome-encoded  -1 PRF signals are predicted to 

direct elongating ribosomes into premature termination codons [23].  Such events have 

been shown to initiate rapid mRNA degradation in yeast through the Nonsense Mediated 

Decay (NMD) pathway[78].  As such, -1 PRF is hypothesized to add a novel modality for 

regulation of gene expression at the post-transcriptional level. 

There are currently three databases serving the translational recoding community.  

RECODE (http://recode.genetics.utah.edu/) is a browsable collection of all the published 

translational recoding signals[6,157,158]  RECODE’s strength is as central repository of 

all empirically proven translational recoding signals.  FSDB (http://wilab.inha.ac.kr/fsdb/) 

contains a compilation of a handful of known and predicted viral, prokaryotic and 

eukaryotic -1 and +1 PRF signals, and also allows users to input their own sequences to 
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search for frameshift signals using a program called FSFinder[159].  This site provides 

tools not available through RECODE, in particular it integration of PseudoViewer, a 

powerful graphics tool for that simplifies visualization of H-type pseudoknots[160].  

MLOGD (http://guinevere.otago.ac.nz/aef/MLOGD/index.html) is a suite of software that 

allows detection of new protein-coding sequences by identifying overlapping open 

reading frames[161].  While all three of these sites have their strengths, a common 

weakness it that they do not provide well catalogued, searchable databases of all 

potential recoding signals of any one kind.  To fill this gap, we have created PRFdb as a 

database of predicted -1 PRF signals in eukaryotic genomes.  The methods used to 

search for predicted -1 PRF signals have been previously described, and importantly, we 

have empirically demonstrated that a significant number of -1 PRF signals so identified 

actually promote significant levels of frameshifting[23].  The strength of the PRFdb is that 

it provides a tool for researchers outside of the translational recoding field to use to 

quickly search for and identify potential -1 PRF signals in genes in which they are 

interested.   

Database Description 

In the PRFdb, the predicted -1 PRF signals are represented by: 1) the genes in 

which they reside; 2) the identity and location of their slippery sites; 3) graphical 

representations of their predicted secondary structures; 4) computationally identified 

minimum free energies (MFE); and 5) the thermodynamic significance of these mRNA 

structures as compared to randomized variants.  Currently completed genomes in the 

PRFdb include: Saccharomyces cerevisiae, Homo sapiens, Mus musculus, Rattus 

norvegicus, Bos Taurus, Danio rerio, and Xenopus tropicalis.  A listing of examined 

genomes with more than 400 ORFs may be found in Appendix 11.  
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 Researchers can access data in the PRFdb through four means:  (i) Search 

(Figure 20) provides a way to query a gene of interest using the specific gene name, 

 

Figure 20: The PRFdb Search Interface 

The PRFdb search interface provides searches against the indexed description text, specific 
accessions, specific HGNC[162] gene names, or a BLAST interface which allows one to search 
for genes of interest with nucleotide or protein sequence. 

HGNC id or description.  The search interface also provides a means to use BLAST to 

search for genes in the PRFdb similar to a query sequence.  The initial result from a 

search provides further information about the ORF, other search tools, and a summary 

of the potential -1 PRF signals detected for the given search (Figure 21).  

 

Figure 21: A Representative Search Result. 

The top of this page provides information pertaining to a specific gene (S. cerevisiae EST2), its 
genome database (SGD) entry, a link to perform BLAST searches for similar genes, MFE minima 
graph, and a link to download its sequence. Following this information is a list showing the 
locations of the translational start site, potential slippery sites and the number of secondary 
structure solutions that have been computed for them, and the 0-frame termination codon. At the 
bottom is a display of the gene where the ATG start site is displayed in green, slippery sites are 
shown in blue, and -1 frame termination codons are shown in orange. The specific entry for each 
potential frameshift signal may be viewed by clicking on the slippery site's position or its link in the 
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sequence. In addition, locations of human single nucleotide polymorphisms catalogued in the 
NCBI Single Nucleotide Polymorphism Database rendered in maroon. Clicking these will open 
links to the database http://www.ncbi.nlm.nih.gov/projects/SNP/. 

 ii) Distribution (Figure 22) enables browsing for sequences containing statistically 

significant putative -1 PRF signals through a graphical representation of computed 

minimum free energies with respect to randomized Z scores for all sequence windows.  

It is also possible to limit this distribution to sequences that are preceded by a specific 

slippery site.  iii) Filter prints sequences from a given genome that meet specific criteria 

including: species, pseudoknotted sequence, sequences with a specific number of base  

 

Figure 22: The distribution of Saccharomyces cerevisiae sequences. 

Computed minimum free energy is on the x-axis, Z-score is on the y-axis. Black lines denote the 
mean values and gray lines define sequence windows that are one and two standard deviations 
less than mean. Clicking on any region links to the closest -1 PRF signals with respect to MFE 
and Z score.  Distributions of the numbers of sequences at each MFE and Z sorted by 
pseudoknot status and slippery site identity are along each axis, respectively.  It is possible to 
overlay the values an accession of interest or view the distribution using different MFE 
minimization algorithms using the fields at the top. 
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pairs and/or MFE.  iv) Download provides a format suitable for parsing all sequences of 

a given genome/sequence dataset.  The search, distribution, and filter interfaces lead to 

a detailed description (Figure 23) of individual putative PRF signals.  This provides a 

summary of all data gathered for a given sequence including: background information on 

the gene and location of the  -1 PRF signal, information regarding the program used to 

perform the MFE prediction, multiple methods to view the secondary structure, and a 

comparison of the distribution of randomized sequences to the MFE of the folded 

sequence. 

 

Figure 23: Details of the Homo sapiens CCR5 -1 PRF signal. 

This demonstrates that pknots was used to compute an MFE of -27.7 kcal/mol for the 100 bases 
following the UUUAAAA slippery site at position 473 of the CCR5 ORF. When randomized 100 
times using Fisher-Yates shuffling, a mean MFE of -25.4 kcal/mol was computed for a normal 
distribution of correlation coefficient 0.96. The MFE distribution of the randomized sequences is 
on the right; with the idealized normal distribution in red. The black vertical line marks the mean 
MFE of the randomized sequences, and the green vertical line marks the MFE of the native 
sequence.  This secondary structure is more stable than random (z score = -0.72). The predicted 
mRNA secondary structure of this sequence is shown below using both bracket notation, and 
using a Feynman diagram.  Links below provide download links for png/ps/pdf images, the bpseq 
format for this structure, a circular Feynman diagram, an overlap of all MFE predictions, and a 
microRNA prediction using miRanda.  
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 If a sequence of interest is not currently in the PRFdb, it can be imported via its 

NCBI accession number.  Sequences added in this manner will be filtered within hours 

of import.  Sequences imported into the PRFdb are also folded using sequential 

windows across the entire sequence in order to create a graphical minimum free energy 

'landscape.' This enables users to submit longer or shorter sequence strings for 

computational folding, a particularly useful feature e.g. for eliminating extraneous 

sequence that may not be involved in actual RNA folding.  For example, the 

computational analysis of the 100 nucleotide sequence downstream of the slippery site 

of the mouse Ma3 -1 PRF signal provided by the PRFdb predicts tandem stem loop 

structures.  However, when only 55 nt of downstream sequence are provided, PRFdB 

predicts the empirically documented pseudoknot structure[66]. 

Process 

Sequences to be analyzed by the PRFdb are imported into the database, filtered 

using RNAMotif[129], folded with secondary structure prediction algorithms, randomized 

using one or more randomization methods, and refolded.  To avoid complications of 

untranslated intronic sequences, the PRFdb contains only mature mRNA sequences 

(cDNA sequences primarily).  Sequences are imported into the PRFdb from a web 

interface using Genbank accession numbers, yeast genome accessions, or raw 

sequences.  Each new sequence is first passed through a simple text filter that searches 

for slippery sites following the International Union of Pure and Applied Chemistry 

(IUPAC) pattern 'N NNW WWH' (or X XXY YYZ), where N (X) denotes any three 

identical bases, W (Y) denotes AAA or UUU, H (Z) ≠ G, and spaces indicate the 

incoming (zero) reading frame.  Since the distance between the end of the slippery site 

and the downstream stimulatory sequence is important, a spacer of 1 to 8 nucleotides 

was incorporated into the search. Remaining sequences are passed to RNAMotif with a 



 48 
 

descriptor looking for the potential to form an mRNA pseudoknot.  Sequence windows 

passing this minimal test are passed to multiple pseudoknot predicting mRNA secondary 

structure prediction algorithms, including Pknots[143], Nupack[146,163], Hotknots[164], 

Mfold[165], and the Vienna RNA package[136].  After folding, every sequence is 

randomized using one or more algorithms including: Fisher-Yates shuffling to maintain 

dinucleotide frequencies, codon frequencies, or nucleotide frequencies.  The resulting 

random sequence windows are then refolded without searching for pseudoknots.  This 

process is repeated a fixed number of times (100 by default) to create a distribution of 

sequence specific randomized MFEs.  These resulting  distribution of randomized MFEs 

is then compared the MFE of the original sequence window.  These values are used to 

compute a z score, thus providing a measurement of the significance of the native 

sequence. 

Discussion 

 The BLAST interface to the PRFdb is currently being used to discover Genbank 

sequences similar to the most statistically significant sequences in the database, thus 

providing a means to expand the PRFdb in a depth first manner.  As more similar 

sequences are completed, comparative genomics studies using sequence and/or mRNA 

structure alignments will be incorporated to enable identification of conserved -1 PRF 

signals across species and/or genes.  As time progresses, additional computational and 

empirical information will allow for improved scoring, helping to increase the statistical 

relevance of the predicted secondary mRNA structures.  These improvements will 

continue to make the PRFdb more useful and accessible to the research community, 

providing a resource allowing individual users to identify -1 PRF signals in genes of 

interest, and as a metasource of information for cross referencing with other databases, 

e.g. genomes and DNA microarray databases.  
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Chapter 3 

Endogenous Ribosomal Frameshift Signals Operate as mRNA 

Destabilizing Elements Through at least Two Molecular 

Pathways in Yeast. 

Introduction 

Programmed ribosomal frameshifting (PRF) is has been historically associated 

with viruses. PRF signals stochastically redirect ribosomes into new reading frames, and 

viral PRF promotes synthesis of C-terminally extended fusion proteins. The most well 

defined PRF signals direct ribosomes to slip by one nucleotide in the 5’ (-1) direction.  -1 

PRF signals typically contain three elements: a “slippery site” composed of seven 

nucleotides (N NNW WWH, incoming 0-frame indicated by spaces) where shifting 

occurs; a short spacer sequence; and a downstream stimulatory structure, typically an 

mRNA pseudoknot[1,13].  Current models posit that the pseudoknot directs ribosomes to 

pause with their aminoacyl- (aa-) and peptidyl-tRNAs positioned over the slippery 

sequence, where re-pairing of the non-wobble bases of both tRNAs with the -1 frame 

codons occurs[7,166,167] 

It is now clear that PRF is employed by organisms representing every branch in 

the tree of life, suggesting an ancient and possibly universal mechanism for controlling 

the expression of actively translated mRNAs[17].  The past few years have witnessed 

several reports describing in silico identification of recoding signals using a variety of 

computational approaches[16,23,24,168–171].  While the methodologies of each study 

covered a broad range of bioinformatics techniques, the general goal was to first find 

out-of-frame ORFs followed by the identification of PRF signals in the overlapping region 
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between them. While this can identify new classes of PRF signals, it is based on the 

assumption that PRF outcomes should mimic those observed in viral genomes and thus 

cannot identify new functional outcomes of frameshifting. 

While “outcome-neutral” approaches using mRNA motifs known to promote 

efficient PRF cannot identify new classes of frameshift signals, they enable an 

expansion of our understanding of functional uses for PRF. The seminal study in this 

field  searched the yeast genome for -1 PRF promoting motifs resembling well 

characterized examples of viral -1 PRF signals, identifying ~260 putative such 

elements[24].   This work was limited by incomplete annotation of the yeast genome and 

insufficient computational resources available at the time. New bioinformatics tools were 

subsequently developed and applied using faster and more robust computational 

platforms. The results showed that: pattern matching approaches coupled with a 

predictive method for folding RNA sequences provided a dramatic improvement in the 

results; -1 PRF motifs are widespread in the genome of S. cerevisiae; and many have 

predicted secondary structures with statistically significant measures of free energy[23].  

This analysis showed that ~11% of yeast genes contain at least one high probability -1 

PRF signal. Furthermore, we demonstrated that 9 putative -1 PRF signals selected from 

a variety of S. cerevisiae genes promoted efficient recoding in vivo.  More recently, this 

bioinformatics protocol has been applied to more genomes.  Currently, more than 25 

genomes have been analyzed, and it appears that 8-10% of genes contain at least one 

potential -1 PRF signal (See the PRFdb at: http://prfdb.umd.edu/)[172]. 

A key finding was that the outcome and function of -1 PRF differs significantly 

between the viral and ‘genomic’ contexts.  In viruses, PRF controls the stoichiometries of 

structural versus enzymatic proteins[65].  In contrast, ‘genomic’ PRF events redirect 

elongating ribosomes to premature termination codons, suggesting that -1 PRF is used 

to control cellular mRNA abundance and stability through the nonsense-mediated mRNA 
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decay (NMD) pathway. A proof-of-principle experiment demonstrated that a viral -1 PRF 

signal can function as an mRNA destabilizing element and that mRNA destabilization 

required NMD[78].  Here, rapid degradation of a reporter mRNA by -1 PRF through NMD 

is demonstrated for four genomic yeast -1 PRF signals.  Further, the presence of the 

PRF-stimulating pseudoknot can promote mRNA destabilization through no-go 

decay(NGD)[45].  The EST2 gene, encoding the catalytic subunit of telomerase[173], 

was used to delve deeper into the relationships between -1 PRF and mRNA stability.  

The EST2 mRNA is destabilized by -1 PRF primarily via NMD, and ablation of its five -1 

PRF signals resulted in stabilization of the EST2 mRNA.   

Results 

Genomic -1 PRF signals are mRNA destabilizing elements.  Four functional 

yeast genomic -1 PRF signals derived from the BUB3, EST2, SPR6, and TBF1 genes 

were employed to test the hypothesis that -1 PRF function as mRNA destabilization 

elements. The slippery heptamers for these -1 PRF signals begin at nucleotides 858, 

1653, 279, and 1521 of their respective ORFs.  These were cloned into a yeast PGK1 

reporter gene so that frameshifted ribosomes are directed to PTCs.  All inserts were 

flanked by sequences derived from Renilla and firefly luciferase genes, providing unique 

exogenous sequences for specific detection of the reporter mRNAs. Two additional 

PGK1 reporters without -1 PRF signals, were used as controls:  a readthrough reporter 

encoded a continuous ORF, while a PTC control contained an in-frame UAA termination 

codon (Figure 24). 
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Figure 24: Schematic of PGK1 reporter vectors. 

The indicated Renilla and firefly luciferase derived sequences from pJD375 were cloned into the 
unique Kpn I restriction site in a high copy PGK1 expression vector to create the readthrough 
control (pJD753).  The indicated -1 PRF signals derived from BUB3, EST2, SPR6, and TBF1 
were cloned into Sal I/Bam HI digested pJD753.  Colored arcs depict computationally predicted 
base-paired stems[129].   The premature termination control (PTC) was constructed by 
mutagenizing pJD753 to create an in-frame TAA codon. 

Reporters were introduced into wild-type yeast cells; their steady state mRNA 

abundances were determined by RNA blot analysis and normalized to U3 snoRNA 

controls.  A minimum of three independent blots were performed for all experiments.  In 

wild-type cells, all four of the genomic -1 PRF signals and the in-frame PTC containing 

control destabilized the PGK1 reporter mRNA (Figure 25). 
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Figure 25: Genomic -1 PRF signals can function as mRNA destabilization 
elements in yeast. 

The -1 PRF signals from SPR6, EST2, BUB3, and TBF1 were cloned into a PGK1 reporter such 
that frameshift events would cause elongating ribosomes to encounter premature termination 
codons (PTC).  Readthrough (RT) and in-frame PTC containing reporters are included as 
controls.  Northern blots of total mRNAs extracted from logarithmically growing cells were probed 
with a reporter-specific oligonucleotide (PGK1), stripped and re-hybridized with a U3 snoRNA-
specific probe for normalization.  All blots were repeated at least two times.  A: steady-state 
abundance of reporter mRNAs in wild-type cells.  Each graph shows abundances of test mRNAs 
relative to the readthrough control.  B: Same as panel A, but in upf1∆ cells.  Graph plots 
abundance of specific test mRNAs in upf1∆ versus wild-type cells.  C – F are similar to panel B, 
except that samples were extracted from dom34∆, dcp1∆, xrn1∆, and ski3∆ cells respectively. 

The extent of mRNA destabilization varied from ~0.01 fold of the readthrough 

control (EST2) to ~0.19 fold of wild-type (TBF1).  Experiments were also performed in 

upf1∆ and dom34∆ strains, and the U3-normalized signal intensities were compared 

among the same signals between wild-type and mutant strains to determine the relative 

contributions of NMD and NGD to the ability of the -1 PRF signals to act as mRNA 

destabilization elements.  The PTC containing mRNA was only destabilized through the 
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NMD pathway: 28-fold stabilization in upf1∆ cells relative to wild-type cells, but no 

stabilization in dom34∆ cells.   The TBF1 -1 PRF signal similarly destabilized the 

reporter signal only through NMD (~4-fold).  In contrast, the EST2 and BUB3 -1 PRF 

signals functioned through both pathways: the EST2 signal stabilized the reporter ~35-

fold in upf1∆ cells and ~14-fold in dom34∆ cells, while the values for the BUB3 signal 

were ~7-fold and ~8-fold respectively.  The mRNA destabilization activity of the SPR6 -1 

PRF signal was primarily through NGD (~6.0-fold stabilization in dom34∆ cells).  

Deletion of DCP1, XRN1 and SKI3, all of which are epistatic to UPF1 and DOM34, also 

generally stabilized the reporter mRNAs.  We note however that, in the case of the 

dcp1∆ cells, the continued presence of Dcp2p likely provided residual decapping activity. 

These results establish that endogenous genomic -1PRF signals can function as mRNA 

destabilizing elements in yeast through at least two mRNA degradation pathways. 

The EST2 -1 PRF signal at Nucleotide 1653 is Destabilized by -1 PRF Induced NMD 

Figure 26 suggests that -1 PRF induced NMD is the major cause of mRNA 

destabilization by the EST2 -1 PRF signal beginning at nucleotide 1653.  To confirm this, 

a series of time course mRNA decay assays were performed employing the PGK1-EST2 

-1 PRF reporter, the readthrough control, and the PTC containing construct in cells 

harboring the temperature sensitive rpb1-1 allele of RNA polymerase II.  At the zero 

timepoint, cells were shifted to the nonpermissive temperature (42°) to arrest 

transcription of mRNAs, total cellular mRNAs were extracted at 0, 1, 2, 4, 8, and 16 

minutes following the temperature shift, and RNA blots were hybridized with the firefly 

luciferase and U3 snoRNA probes.  While the readthrough control was stable in wild-

type cells (Figure 26 A, D) both the PTC containing control and the reporter containing 

the EST2 -1 PRF signal promoted rapid exponential decay of the reporter mRNA 

(Figure 26 B, C, D).  In a parallel experiment using rpb1-1 upf1∆ cells, all of the reporter 
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mRNAs remained stable (Figure 26 E-H).  The rapid decay kinetic profile of the EST2 -1 

PRF containing reporter, and its stabilization in NMD-deficient cells are consistent with 

NMD being the major decay pathway triggered by this element[78].  To independently 

test this, the A AAA AAT slippery site was partially inactivated by mutating it to G AAG 

AAC.  This silent mutation stabilized the reporter mRNA ~19-fold compared to the wild-

type slippery site (Figure 26 I).  Interestingly, this is less than the 35-fold stabilization in 

upf1∆ cells.  One would expect that, since this destabilization is dependent on -1 PRF, 

then inactivation of -1 PRF should be quantitatively the same as inactivation of NMD.  

However, this particular slippery site mutant is predicted to have some residual 

frameshifting activity due to the ability of the uracils in the A- and P-site tRNA anticodons 

that base pair with the A residues at the first position of the two 0-frame codons to re-

pair with the G bases in the -1 frame.  Thus, we suspect that some low levels of -1 PRF 

may still contribute to destabilization of this reporter. 

Ablation of -1 PRF Signals Stabilizes the Yeast EST2 mRNA.   

The EST family of yeast genes is named after their “Ever Shortening Telomere” 

phenotype[174].  EST2 encodes the catalytic subunit of telomerase and the other three 

EST genes either encode protein subunits of telomerase (EST1 and EST3) or a 

telomere-associated regulator of telomerase (CDC13/EST4)[175].  Telomere elongation 

occurs in late S phase, although Est2p is associated to varying extents with telomeric 

chromatin throughout the cell cycle, and telomerase defects result in chromosome 

instability and rapid senescence[176].  The very low abundance EST2 mRNA is 

stabilized in NMD-deficient cells[177,178]. 
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Figure 26: The EST2 -1 PRF signal at position 1653 destabilizes mRNA through 
NMD. 

Panels A – H: the readthrough control, in-frame PTC control, and EST2 -1 PRF containing PGK1 
reporters were introduced into either wild-type (A – D) or upf1∆ (E – H) cells harboring the 
temperature-sensitive rpb1-1 allele of RNA polymerase II.  Total mRNAs were harvested from 
cells after temperature shift at the indicated timepoints, and Northern blots were probed using the 
PGK1 reporter-specific and U3 snoRNA specific probes. Graph in panel D plots normalized PGK1 
reporter mRNA abundances in wild-type cells, and graph in panel H plots these data in upf1∆ 
cells. I: the wild-type A AAA AAT slippery site of the EST2 -1 PRF signal in the PGK1 reporter 
was changed to G AAG AAC, and steady state northern blot analyses were performed using 
mRNAs extracted from cells expressing the readthrough control, the in-frame PTC containing 
control, and cells expressing either the wild-type or mutant slippery sites.  Fold-RT denotes fold 
readthrough control.  S.D. (+/-) denotes standard deviation. 

 Computational analyses revealed that EST2 contains four additional high 

confidence -1 PRF signals beginning at positions 72, 1215, 1326, and 1995 (Figure 27).  

The positions of the five predicted -1 PRF signals in the EST2 ORF are shown in Figure 

28 A.  Silent protein coding changes were introduced into the slippery sites of all 5 of the 
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Figure 27: Four additional high confidence -1 PRF signals in EST2. 

The predicted -1 PRF signal beginning at nucleotide 72 contains two overlapping slippery sites (A 
AAU UUA and U UUA AAA).  Slippery sites beginning at nucleotides 72, 1215, 1326, and 1995 
are underlined.  Colored arcs depict base pairing of stems. 

-1 PRF signals in a full-length EST2 clone expressed from a low copy vector 

pEST2wt, pEST2ssmut, and derivative plasmids share the backbone plasmid: pJD641. 

(pEST2ss∆, Figure 29).  Clones expressing either wild-type EST2 (pEST2wt) or 

pEST2ss∆ were introduced into isogenic est2∆ or est2∆ upf1∆ cells, and qRT-PCR 

analyses were performed.  These silent mutations resulted ~8.5-fold stabilization of the 

full-length EST2ss∆ mRNA relative to wild-type EST2 mRNA (Figure 28 B).  Similarly, 

abrogation of NMD stabilized the wild-type EST2 and EST2ss∆ mRNAs ~5.8-fold and 

~7.0 fold respectively, thus demonstrating that -1 PRF induced NMD plays a significant 

role in destabilizing the EST2 mRNA. 
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Figure 28: Silent mutations that disrupt slippery sites in EST2 gene stabilize its 
mRNA. 

A, schematic of the EST2 coding sequence.  Positions of the slippery sites of 5 predicted -1 PRF 
signals and their sequences are indicated.  The full-length gene including native 5’ and 3’ UTR 
sequences were cloned into a low-copy yeast vector to create pEST2.  Silent coding mutations 
that are predicted to inactivate -1 PRF were introduced to produce pEST2ss∆.  B. pEST2 or 
pEST2ss∆ were introduced into est2∆ or est2∆ upf1∆ cells and EST2 mRNA steady state 
abundances were determined by quantitative real-time PCR. 

 

Figure 29: Map of the full length EST2 low-copy plasmids. 

Of particular note is the Centromeric yeast origin of replication (12 o’clock) and the sequence 
flanking the EST2 ORF, this includes the endogenous UTRs and M13, T7, and T3 regions. 
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Programmed -1 Ribosomal Frameshifting, but not Specific -1 PRF Signals, Appears to be 
Conserved Among Yeasts. 

If regulation of gene expression through -1 PRF is biologically significant, then -1 

PRF signals should be present in homologous mRNAs from other budding yeast 

species.  To address this, the BUB3, EST2, SPR6 and TBF1 homologs were identified in 

S. paradoxus, S. mikatae, S. bayanus, S. castellii, S. kudriavzevii and S. kluyveri, and 

analyzed for potentially significant -1 PRF signals as previously described[23].  At first 

glance, these analyses reveal that no single -1 PRF signal is completely conserved 

among the budding yeasts (Appendix 14). 

 

Figure 30: MFE ‘landscape’ of SPR6 and predicted PRF signal at position 279. 

The minimum free energy of the SPR6 ORF decreases from approximately position 200 to 400.  
Though the structure at position 279 was studied, position 348 also appears significant.  

However, closer analysis shows that strong candidate -1 PRF signals can be 

identified in the homologs of all of these genes, although not in every species.  For 

example, as noted above, the S. cerevisiae EST2 mRNA contains 5 potential -1 PRF 

signals.  Similarly, the S. paradoxus homolog also contains 5 potential -1 PRF signals, 

although none share elements identical to S. cerevisiae. S. mikatae EST2 appears to 

harbor two potential -1 PRF signals, S. bayanus has three, and S. castelli contains two. 

However, none were identified in the S. kudriavzevii EST2 homolog, and we were not 

able to identify an Est2p homolog in S. kluyveri.  Turning to SPR6, the S. cerevisiae 
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mRNA contains a second potential -1 PRF signal beginning at nucleotide 348 (Figure 

30) in addition to that identified beginning at nucleotide 279. 

Both the S. paradoxus and S. kudriavzevii SPR6 homologs contains three 

potential -1 PRF signals, but none were identified in the S. mikatae or S. bayanus 

homologs. In addition, BLAST analyses failed to identify SPR6 homologs in S. castelli or 

S. kluyveri.  S. cerevisiae BUB3 contains the functional -1 PRF signal at nucleotide 858, 

plus potential -1 PRF signals beginning at nucleotides 27 and 732.  The homologous 

mRNAs in S. paradoxus, S. bayanus, S. castelli, and S. kudriavzevii each appear to 

have one potential -1 PRF signal, but the none were identified in S. mikatae or S. 

kluyveri. Lastly, the S. cerevisiae TBF1 mRNA has only the single confirmed -1 PRF 

signal.  The S. mikatae and S. kluyveri homologs appear to also have one, S. 

kudriavzevii contains two, but no -1 PRF signals were identified in either S. paradoxus or 

S. bayanus, while no Tbf1p homolog was identified in the S. castelli genome. 

Discussion 

In a prior proof-of-principle experiment, we utilized the well characterized -1 PRF 

signal from the yeast L-A dsRNA virus to demonstrate that these elements can generally 

function as mRNA destabilizing elements through the NMD pathway[78].  Subsequently, 

a bioinformatics approach was used to determine that potential -1 PRF signals are 

widely found in all genomes examined, and that the great majority of these are predicted 

to direct elongating ribosomes to premature termination codons[23,172].  Here, we show 

that these chromosomally encoded, endogenous -1 PRF signals can also function as 

cis-acting mRNA destabilizing elements, both in the context of a reporter mRNA, and 

also in one case in a natural context.  Further, we demonstrated that-1 PRF signals can 

differentially destabilize mRNAs through at least two pathways; NMD and NGD. 
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These are modeled in Figure 31.  In the case of a ribosome shifting reading 

frame into a PTC, the surveillance complex lead by the Upf proteins signals rapid 

decapping by Dcp1p/Dcp2p, followed by deadenylation and exonucleolytic decay via 

Xrn1p and the exosome.  In parallel, the NGD pathway can be activated by ribosomes 

that are stalled at strong secondary structures. are freed from mRNAs by 

Dom34p/Hbs1p, promoting exonucleolytic cleavage at unpaired nucleotides near the 

pause, thus resulting in two mRNA fragments which become substrates for decapping 

and exonucleolytic decay (reviewed in [179]).  The findings presented here suggest that 

cells are not only well equipped to deal with abhorrent messages which contain 

premature termination codons and to clear stalled ribosomes from mRNAs, but have 

also evolved to capitalize upon these functions to post-transcriptionally regulate gene 

expression. 

 

Figure 31: -1 PRF signals can destabilize mRNA via NMD and NGD. 

Left panel:  A -1 PRF event directs an elongating ribosome to encounter a premature termination 
codon (PTC).  This leads to recruitment of the surveillance complex (Upf proteins), leading to 
mRNA decapping and 5’ � 3’ degradation by Xrn1p and deadenylation and 3’ � 5’ degradation 
by the degradasome.  Right panel:  the mRNA pseudoknot in a -1 PRF signals causes 
elongating ribosomes to pause, recruiting the Dom34p/Hbs1p complex, thus initiating No-Go 
Decay. 
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The strength of these signals to function as mRNA destabilizing elements should 

be equal to a combination of 1) their strengths as -1 PRF signals, and 2) their abilities to 

block ribosome progression, i.e. their thermodynamic stability.  The EST2 signal is both 

highly efficient at promoting -1 PRF (~55%, see [23], and is predicted to be quite stable 

(approximately -27 to -24 kcal/mol depending on the particular folding solution).  It is 

important to note however that the software used to predict mRNA pseudoknots can 

neither identify base triples, which make major contributions to frameshifting [71,180–

183], nor calculate their contributions to thermodynamic stability. Regardless, this 

combination of high frameshifting and thermodynamic stability results in very strong 

destabilization via both NMD and NGD (Figure 25 C).  Interestingly, examination of 

Figure 26 D shows that the single exponential analysis of the EST2 data yielded a y-

axis intercept at ~80%.  From Figure 25 B and C, it can be calculated that the 

contribution of NGD to total destabilization of the PGK1 reporter mRNA was 

approximately 30%.  Taken together, these data suggest that the NGD component in the 

degradation of this message is very rapid, likely during the pioneer round of translation.  

In contrast, as discussed previously[78], the exponential decay profile shows that NMD 

can occur beyond the pioneer round. 

In contrast to EST2, the TBF1 signal promoted ~5% frameshifting, but is not 

predicted to be highly stable (-9.5 kcal/mol).  Thus, all of its mRNA destabilization activity 

was through NMD (compare Figure 25 B with C).  The thermodynamic stability of the 

BUB3 signal is predicted to have an intermediate value to EST2 and TBF1 

(approximately -12 kcal/mol), and hence the contribution of NGD to the stability of its 

reporter was significant.  Interestingly, this signal only promoted ~1% frameshifting, yet 

the contribution of NMD to its destabilization was greater than observed for TBF1.  One 

possible explanation for this apparent discrepancy may stem from the fact that, in order 

to measure frameshifting, one base had to be deleted from the spacer region between 
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the slippery site and the stimulatory pseudoknot.  Changes in the length and composition 

of this spacer are known to affect rates of -1 PRF[184], and thus the -1 PRF values so 

determined cannot be taken as absolute.  In contrast, the reporters used to monitor 

mRNA stability contained the native sequences.  In light of this, it is likely that the native 

BUB3 -1 PRF signal promotes more frameshifting than the TBF1 signal.  Lastly, the 

SPR6 -1 PRF signal is predicted to be quite stable (approximately -20 kcal/mol), yet 

promoted very low levels of frameshifting (~0.5%).  Accordingly, destabilization via NMD 

was negligible for this element, while NGD was the major contributor. 

Beyond the pro forma demonstration that -1 PRF signals can destabilize cellular 

mRNAs, it is important to begin to understand the biological function of this 

phenomenon.  As a first step in this direction, we showed that silently mutating the 

slippery sites in 5 predicted -1 PRF signals within a full-length clone of EST2 significantly 

stabilized its encoded mRNA (Figure 28).  Similarly, abrogation of NMD stabilized this 

message.  Est2p is the reverse transcriptase subunit of the telomerase 

holoenzyme[173].  Interestingly, prior studies have demonstrated that this mRNA, along 

with other mRNAs encoding proteins having telomere-associated functions, are 

stabilized in NMD- yeast cells  [85,177].  Analysis of the Programmed Ribosomal 

Frameshift Database (http://prfdb.umd.edu/) reveals that, along with the other 4 putative 

-1 PRF signals in the EST2 mRNA, the mRNAs encoding Est1p, Stn1p, Cdc13p, and 

Orc5p, all components or regulators of telomerase that are stabilized in NMD- cells, also 

contain high confidence -1 PRF signals (Figure 32).  In addition, the EST3 mRNA 

contains a +1 PRF 
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Figure 32: Computationally predicted -1 RF signals in EST1, STN1, CDC13, and 
ORC5. 

EST1 contains three predicted -1 RF signals beginning at nucleotides 1203/1206 (overlapping U 
UUU UUU UUA), 1272, and 1920.  STN1 contains two beginning at nucleotides 885 and 1203.  
CDC13 contains one beginning at nucleotide 2424.  ORC5 has one beginning at nucleotide 93.  
Colored arcs depict base pairing of stems. 
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 signal[185].    Intriguingly, telomerase is limiting in cells: while a yeast cell contains 64 

chromosome ends, there are only ~29 telomerase molecules per cell and that 

telomerase is preferentially recruited to short telomeres[186].  Additionally, Tbf1p is a 

telobox containing general regulatory factor that binds to TTAGGG repeats within 

subtelomeric anti-silencing regions[187].  Intriguingly, ablation of NMD [188] or 

overexpression of single components of telomerase-associated proteins, i.e. the TEL1 

RNA, Est2p, Stn1p, or Cdc13p results in changes in telomere length [186,189,190].   

We hypothesize that yeast cells use -1 PRF to limit the expression of these proteins in 

order to maintain the correct stoichiometric balance among telomere associated 

components.  Corollary to this, mutations that alter -1 PRF and/or NMD should affect 

telomere function, and should thus show phenotypic defects similar to those observed in 

telomerase mutants, e.g. cell cycle progression defects.  Indeed, we have isolated 

numerous such mutants(reviewed in [191]), and have reported that the mof2-1 and 

mof5-1 mutants, which affect both NMD and -1 PRF tend to accumulate large mother-

daughter cells, and/or multiply budded cells, typical of G2/M cell cycle defects[192].  

Similarly, upf1∆ cells have abnormally elongated buds, and decreased telomere lengths 

[193,194].  Intriguingly, mof6-1 mutants, which only affect -1 PRF, arrest as large, 

unbudded cells, typical of M-phase exit defects[192].   These observations suggest that 

stabilization of the mRNAs encoding multiple telomere-associated proteins may have 

dominant negative effects on telomere homeostasis, and that NMD and -1 PRF may 

regulate different aspects of the cell cycle.  Additionally, the central role of Bub3p at the 

mitotic cell cycle spindle assembly checkpoint and the progeroid phenotypes caused by 

Bub3p deficiency suggest a more general role for -1 PRF in control of cell growth and 

division.  Finally, the expression of Spr6p during sporulation[195] suggests a role for -1 

PRF in this developmental process as well.  Future studies will dissect the roles of the -1 

PRF signals in these mRNAs. 
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Finally, if -1 PRF is widely used to regulate gene expression, then it should be 

well conserved.  The major problem associated with attempting a phylogenetic analysis 

of -1 PRF signals is the inherent limitations of the software used to predict them.  In 

short, it is not well enough developed to automatically identify matching motifs.  In an 

attempt to begin to address this issue, BLAST alignments were used to identify the 

homologous BUB3, EST2, SPR6 and TBF1 ORFs in six closely related yeast species, 

their nucleotide sequences extracted, and analyzed for the presence of potential -1 PRF 

signals.  These analyses revealed that while specific -1 PRF signals do not appear to be 

evolutionarily conserved, -1 PRF itself may be relatively well-enough conserved as a 

mechanism to post-transcriptionally regulate the expression of these genes across many 

but not all species examined (See Appendix 11 and Appendix 14).  However, given the 

large degree of divergence among the budding yeast sequences so analyzed, if -1 PRF 

is so conserved, its usage in specific mRNAs would appear to be rapidly evolving. 

Materials and Methods 

Strains, Genetic Manipulations, and Media.   

Escherichia coli DH5α was used to amplify plasmid DNA.  Transformations of E. 

coli were performed as described previously using the calcium chloride method[196].  

Yeast cells were transformed using the alkali cation method[197].  Yeast strains used in 

this study are shown in Appendix 1.  Yeast were grown on YPAD and synthetic 

complete media (H-)[198].  yRP2056, yRP2077 were kind gifts from R. Parker.  YJB2659 

(generously provided by Judith Berman) was sporulated and strains JD1276, JD1281, 

JD1287 and JD1288 were obtained by tetrad dissection.   
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Generation of mRNA Stability Vectors.   

Dual luciferase and mRNA stability plasmids have been previously described[23].  

Oligonucleotide primers were purchased from IDT (Coralville, IA) and are shown in 

Appendix 4, the plasmids created are in Appendix 2.  Computationally identified 

putative -1 PRF signals were amplified from yeast genomic DNA using PCR using 

Oligonucleotide primers which terminated in a Sal I restriction site at the 5’ and Bam HI 

at the 3’.  The zero-frame dual-luciferase reporter plasmid (pJD375) along with the PRF 

signal containing dsDNA fragments were digested using these restriction enzymes and 

ligated together to generate endogenous PRF signal containing dual-luciferase vectors.  

Oligonucleotide primers were chosen to terminate in Kpn I restriction sites and amplify 

41 and 30 bases of Renilla and firefly luciferase derived sequences respectively.  The 

resulting amplicons were cloned into the Kpn I site 492 bases into the PGK1 open 

reading frame of the unmodified PGK1 containing vector (pJD741).  A premature 

termination codon vector (pJD828) was generated by cutting the readthrough (pJD753) 

with Bam HI and backfilling with Klenow fragment.   

Generation of EST2 Open Reading Frame Mutants. 

Full length EST2 in a centromeric plasmid and the diploid S. cerevisiae EST2 

deletion strain were generously provided by the Berman lab and have been previously 

described[86].   Individual mutant strains were obtained by tetrad dissection.  Five 

potentially significant -1 PRF signals were identified in the EST2 open reading frame 

using the Predicted Ribosomal Frameshift Database[172].  The wobble bases of 5 

slippery heptamers were synonymously mutagenized by oligonucleotide site-directed 

mutagenesis using the QuickChange II XL Site-Directed Mutagenesis Kit (Stratagene).  

Oligonucleotide design and reaction conditions were performed as recommended by the 

manufacturer with minor modifications.  All mutations were confirmed by sequencing, the 

oligonucleotides for sequencing are in Appendix 6. 
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Steady State and Time Course RNA Blot Analyses. 

mRNA stability vectors were transformed into wild-type yeast (JD1158), upf1∆ or 

upf2 ∆ (JD1181 or JD1367), xrn1∆ (JD1170), dcp1∆ (JD1122), ski2∆ (JD1345), ski3∆ 

(JD19), and dom34∆ (JD1363)  cells.  The EST2 mRNA stability vector (pJD754) was 

transformed into rpb1-1 (JD977) and rpb1-1/Upf- (JD978) cells and time courses were 

performed as described previously[199].  Total RNA was extracted with acid 

phenol/chloroform (pH = 4.5) from mid-logarithmic cell cultures [200], or with Trizole© 

Reagent following the manufacturer’s directions (Invitrogen, Carlsbad, CA). RNA 

(northern) blotting was performed as previously described[78].  Equal amounts of RNA 

(1 µg, 2 µg, or 4µg) were separated through 1% agarose-formaldehyde gels.  RNA 

samples were transferred and UV cross linked to Hybond-N-membranes (Amersham).  

Blots were hybridized with γ[32P] 5’-end-labeled oligonucleotides specific for U3 snoRNA 

(loading control) and the exogenous Renilla fragment (experimental); these 

oligonucleotides are displayed in Appendix 7.  Messenger RNAs were identified using a 

GeneStorm phosphoimager (Bio-Rad) and quantified using QuantifyOne (Bio-Rad).  

Blots were repeated three or more times and averaged to generate graphs. 

Quantitative Real Time Reverse Transcription PCR.   

Full length EST2 expression vectors (pJD641), EST2 mutant vectors (pJD796), 

and null plasmids (pJD315) were transformed into WT (JD1281), EST2 deletion 

(JD1287), UPF2 (JD1288) and EST2/UPF2 (JD1276) deletion strains. Total RNA was 

extracted with acid phenol/chloroform (pH=4.5) from mid-logarithmic cell cultures. In 

parallel, total RNAs were extracted from isogenic rpl3∆ strains expressing wild-type 

RPL3 (JD1228), the down-frameshifting rpl3-R247A allele (AM-L3R247A), or the up-

frameshifting rpl3-W255C/ P257S allele (JD1229). To prevent amplification from 

contaminating cellular DNA, RNA was treated with DNase I before reverse transcription 

using Turbo DNase (Ambion). cDNA was generated using the Bio-Rad iScript cDNA 
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synthesis kit and used in the LightCycler real-time PCR system. PCR reactions were 

performed with 2 µl of cDNA in 20 µl reactions containing ~10 nM each sense and 

antisense primer, and 1x LightCycler 480 SYBR Green I Master Mix (Roche). PCR 

cycles were run as follows: 1 cycle of 95° for 10 min; 40 cycles of 95° for 10 s, 54° for 20 

s and 72° for 20 s. U3 snoRNA was chosen as a reference gene. 

Comparative Analyses. 

The Spr6p, Est2p, Bub3p, and TBF1p peptide sequences for were extracted from 

the S. cerevisiae genome and local BLAST alignments were performed to identify the 

homologous peptides in the genomes of S. paradoxus, S. mikatae, S. bayanus, S. 

castellii, S. kudriavzevii, and S. kluyveri.  Homologs were identified in all cases except 

for Spr6p in the S. castelii and S. kluyveri genomes, for Est2p in the the S. kluyveri 

genome, or for Tbf1p in the S. castelli genome.  For the remaining cases, the nucleotide 

sequences were analyzed for the presence of potential -1 PRF signals as previously 

described[23,172]. 
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Chapter 4 

Ribosomal Frameshifting in CCR5: Regulation by NMD, miRNAs 

and Conformational Plasticity. 

Introduction 

Gene expression is a metabolic process: rates of mRNA transcription delineate 

the anabolic phase, while rates of mRNA degradation define the catabolic parameters.  

While much attention has been paid to transcription, the impact of mRNA stability on this 

equation is tremendously important.  Many mRNAs are post-transcriptionally regulated, 

and this field has mainly concentrated on identifying cis-acting elements in the 5’ and 3’ 

untranslated regions (UTRs) of mRNAs, and the trans-acting factors with which they 

interact. Less emphasis has been placed on identifying those regulatory elements 

located within protein coding regions.  A variety of cis-acting mRNA elements been 

identified that cause elongating ribosomes to “recode” the primary information contained 

in mRNAs[201].   

Programmed ribosomal frameshifting is one such translational recoding 

mechanism historically associated with viruses and retrotransposons. A PRF signal 

stochastically redirects translating ribosomes into a new reading frame (i.e. by +1 or -1 

nucleotide).  In the viral context, a PRF signal allows ribosomes to bypass the 0-frame 

encoded stop codon and continue synthesis of a C-terminally extended fusion protein.  

PRF is likely employed by organisms representing every branch in the tree of life, 

suggesting an ancient and possibly universal mechanism for controlling the expression 

of actively translated mRNAs [17].  Computational analyses revealed that approximately 
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10-15% of genes in the 20+ eukaryotic genomes analyzed thus far contain at least one 

potential -1 PRF signal [172].  A key observation was that the outcome and function of -1 

PRF differs significantly between viruses and eukaryotic cellular mRNAs.  More than 

95% of ‘cellular’ -1 PRF signals are predicted to direct elongating ribosomes to 

encounter premature termination codons (PTC), suggesting that -1 PRF may be used by 

cells to control mRNA abundance and stability through the nonsense-mediated mRNA 

decay (NMD) pathway.  While this hypothesis has been demonstrated in yeast using -1 

PRF signals of both viral and cellular origin[78,202], it has not yet been tested in higher 

eukaryotes.   Furthermore, if -1 PRF is used to control expression of cellular genes, it 

should be subject to regulation: the issue of how sequence-specific regulation of -1 PRF 

may be achieved has been a central unanswered question in this field. 

This study addresses these questions using a functional -1 PRF signal identified 

in the CCR5 mRNA, which encodes the co-receptor for HIV-1[203].  We demonstrate 

that it is able promote efficient levels of -1 PRF, and that it can function as an mRNA 

destabilizing element which is dependent on both NMD and efficient -1 PRF.  CCR5-

mediated -1 PRF is specifically stimulated by at least two human microRNAs (miRNA), 

hsa-miR-1224-3p (MI0003764) and hsa-miR-141(MI0000457).  miR-1224 specifically 

interacts with the CCR5 -1 PRF signal in vitro and in vivo, suggesting a mechanism 

through which sequence-specific regulation of -1 PRF may be effected.  Chemical 

protection, native polyacrylamide gel electrophoresis (PAGE), and single molecule 

optical trap experiments suggest that the -1 PRF mRNA stimulatory element can 

assume multiple dynamic structures, suggesting inherent structural plasticity as the 

biophysical basis for regulation of -1 PRF.  Importantly, hsa-miR-1224 does not change 

the chemical protection pattern, nor does it result in the presence of new species 

resolvable by PAGE.  Rather, the PAGE analyses show that hsa-miR-1224 alters the 
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distribution of the existing CCR5 -1 PRF signal containing RNA conformers, consistent 

with the optical trap experiments. 

Operational -1 PRF signals were also identified in the mRNAs encoding the 

interleukin 7 α-chain receptor subunits in both humans and in mice, in the mRNAs 

encoding the human IL8 receptor α- and β-chains, and IL27 receptor α-chain.  These 

findings increase our understanding of cytokine receptor expression, how the immune 

response may be controlled at the local level (i.e. by individual cells), and presents a 

potentially new approach to the control of HIV/AIDS and the immune response. 

Results 

A functional -1 PRF signal in the H. sapiens CCR5 receptor mRNA. 

A computational analysis of 18,709 human coding sequences (CDS) revealed 

that 1943 (~10.4%) contain at least one high confidence -1 PRF signal (Figure 33 B).  

The distribution of Homo sapiens signals is shown in Figure 33 A.  High confidence -1 

PRF signals are defined as those having acceptable slippery sites followed closely by 

predicted mRNA pseudoknot structures in which the computed minimum free energies  

(MFE) with respect to randomized sequences result in probabilistic z-scores greater than 

one standard deviation from the population of all sequences.  These criteria revealed a 

strong candidate -1 PRF signal beginning at nucleotide 473 in the human CCR5 mRNA 

(NM_000579) that begins with the classic U UUA AAA slippery site.  This sequence is 

100% conserved in the Pan troglodytes CCR5 mRNA beginning at nucleotide 408. 

Computational analyses predicted two nearly equivalent, highly stable potential 
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Figure 33: Distributions of potential -1 PRF signals from Homo sapiens. 

A. All potential -1 PRF signals from Homo sapiens are plotted as the z-score with respect to 
minimum free energy.  The z-score is defined as the number of standard deviations between the 
predicted minimum free energy and the mean predicted free energy of the same sequence 
shuffled 100 times.  Using these criteria, a significant PRF signal is one which is predicted to form 
a pseudoknot, has a minimum free energy less than one standard deviation from the mean of the 
population of Homo sapiens predictions, and a z-score less than one standard deviation from the 
mean of the population of Homo sapiens z-scores.  B. Pie chart showing number and fraction of 
human genes without predicted -1 PRF signals (no match), with potential, but non-significant -1 
PRF signals, and with predicted significant -1 PRF signals. 

downstream mRNA pseudoknot structures, two less stable pseudoknots, and a stable 

stem-loop.  A dual-luciferase reporter system[204] was used to test the ability of this 

sequence to promote -1 PRF in cultured mammalian cells (Figure 34). 

The putative human CCR5 -1 PRF sequence promoted 8-10% -1 PRF in HeLa 

(Figure 34 B) using an in vivo assay, 4-7% in CHO or Vero cells (Figure 35 see “none”), 

and 20-25% using an in vitro assay (Figure 36).  Mutagenesis of the slippery site from T 

TTA AAA to G CGC GCG (ssM) reduced -1 PRF to 1-4%.  This degree of -1 PRF in the 

mutant was unexpectedly high, and suggested the possibility that an mRNA splicing 

donor site or internal ribosome entry signal (IRES) may have been introduced into the 

reporter with the CCR5 sequence.  To test this, an in-frame termination codon was 

A B 
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introduced into the reporter immediately 3’ of the Renilla luciferase open reading frame, 

but 5’ of the CCR5-derived sequence (PTC control).  This mutation reduced apparent -1 

PRF levels by more than two orders of magnitude. Similarly, placing the firefly luciferase 

reporter out of frame (Oof) with respect to Renilla without any intervening sequences 

resulted in even lower levels of frameshifting (Figure 34B, Oof).  A rabbit reticulocyte 

based in vitro translation assay independently observed that the CCR5 derived 

sequence promoted synthesis of a peptide consistent with a -1 PRF event, and at levels 

comparable to that promoted by the HIV-1 PRF signal(Figure 36).  While they do not 

directly demonstrate -1 PRF, these two independent sets of experiments are consistent 

with the hypothesis that the computationally identified sequence in the CCR5 mRNA 

promotes efficient -1 PRF. 

 

Figure 34: A cis-acting element in the CCR5 mRNA promotes efficient -1 PRF. 

A. Schematic of dual luciferase constructs used to test the CCR5 frameshifting signal.  
Transcription is driven from the SV40 early enhancer/promoter and transcription termination and 
polyadenylation utilizes the SV40 late poly(A) signal. The in-frame control is p2luci[204], encoding 
a firefly/Renilla luciferase fusion protein. In the out of frame reporter (Oof), firefly luciferase lies in 
the -1 reading frame with respect to the Renilla open reading frame.  In the HIV -1 PRF reporter, 
the -1 PRF signal of HIV-1 was cloned in between the two luciferase reporters, and the firefly 
ORF is in the -1 frame with respect to Renilla.  The CCR5 -1 PRF reporter is the same, except 
that it contains the CCR5 -1 PRF signal.  In the CCR5 slip site mutant (ssM), the UUUAAAA 
slippery heptamer of the CCR5 -1 PRF signal was mutated to GCGCGCG.   The PTC reporter is 
based on the CCR5 -1 PRF reporter in which a premature termination codon was inserted 
following the Renilla open reading frame.  B.  Measurements of -1 PRF in HeLa cells using these 
constructs.  Error bars approximate standard error[205].   
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Figure 35: The CCR5 -1 PRF signal is active in CHO and Vero cells. 

Efficient -1 PRF is also promoted by the CCR5 sequence in CHO and Vero cells.  Furthermore, -1 
PRF is stimulated by hsa-miR-141 in these cell types.     

 

 

Figure 36: Rabbit reticulocyte lysates confirm CCR5 frameshifting. 

Efficient -1 PRF promoted by the CCR5 sequence in vitro.  Left: autoradiogram of in vitro 
translation reaction using synthetic mRNAs harboring CCR5 or HIV-1 derived -1 PRF signals.  
Green arrows denote 0-frame encoded products. Red arrows denote -1 PRF encoded peptides.  
RT indicates the readthrough control.  Right:  Percent -1 PRF promoted by CCR5 and HIV-1 
frameshift signals in vitro.  This experiment was designed and performed by Sharmishtha 
Musalgaonkar. 
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The CCR5 -1 PRF Signal Destabilizes a Reporter mRNA through the NMD 
Pathway in Mammalian Cells. 

 
A -1 PRF event at the slippery site is predicted to direct elongating ribosomes to 

a premature termination codon (PTC) 45 codons after the beginning of the slippery site, 

suggesting that this may function as an mRNA destabilizing element through the NMD 

pathway as described in Saccharomyces cerevisiae[202].  To test this hypothesis, the 

human CCR5 -1 PRF signal was cloned into exon 1 of a rabbit β-globin reporter 

construct (Figure 37), and its effects on mRNA stability were assayed in HeLa cells.  A 

reporter containing a TNFα-derived AU-rich element (ARE) cloned into the 3’ UTR was 

employed to independently monitor mRNA destabilization by AUF1[206], this construct 

was mutagenized to contain both the CCR5 -1 PRF signal and ARE, and a fourth 

contained an in-frame PTC at the same site as the CCR5 -1 PRF signal insertion.  All  

 

Figure 37: The rabbit β-globin mRNA stability reporter. 

A rabbit β-globin reporter containing a doxycycline repressible promoter and SV40 derived polyA 
signal is shown.  The native CCR5 -1 PRF signal was cloned into exon 1.  Controls included 
insertion of a PTC at this position, or insertion of the 27 nucleotide TNFα derived A-U rich 
element (ARE) immediately following the rabbit β-globin open reading frame[207]. 

cells were co-transfected with the dual-luciferase readthrough control plasmid to control 

for transfection efficiency variation.  The steady-state mRNA abundance of the CCR5 -1 

PRF containing reporter was ~38% of the control β-globin reporter sample lacking the 
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frameshift signal (Figure 38).  Similarly, the TNFα-derived ARE reduced the steady-

state abundance of the reporter to ~22% of the readthrough control.  In combination, the  

 

Figure 38: The CCR5 -1 PRF signal acts as an mRNA destabilizing element. 

Quantitative reverse-transcriptase PCR (qRT-PCR) analysis of rabbit β-globin steady-state 
abundance in HeLa cells co-transfected with reporters shown in Figure 37, and with the 
readthrough dual-luciferase reporter; reported as fold of the control, native β-globin reporter 
(denoted as C).  The readthrough dual-luciferase reporter mRNA was used to control for 
differences in transfection efficiencies.   Error bars denote standard error. 

CCR5 -1 PRF signal and ARE decreased β-globin reporter mRNA steady state 

abundance to ~6% of the control, suggesting that the two elements promote mRNA 

destabilization by two independent pathways.  As expected, the presence of an in-frame 

PTC strongly decreased reporter mRNA abundance (~1% of readthrough). 

A transcriptional arrest time course experiment employing a Tet-repressible 

system was performed[206,207] to determine whether introduction of the CCR5 -1 PRF 

signal rendered the β-globin reporter a direct substrate for NMD.  This experiment 

revealed that while the native β-globin mRNA was very stable, the CCR5 -1 PRF signal 

lowered the half-life of the reporter mRNA to 80-160 minutes (Figure 39).  The ARE 

containing reporter also promoted rapid decay of its mRNA (t1/2 120-160 minutes).  Time-

course assays were attempted for the PTC containing reporter, but the data were  
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Figure 39: Rabbit β-globin reporter half-life measurements. 

Time course measurements of rabbit β-globin reporter abundances transcriptionally arrested with 
doxycycline.  Measurements of the PTC control were undetermined because its abundance was 
too low to determine after the first time point. 

uninterpretable due to consistently low levels of expression.  Figure 40 shows that 

siRNA depletion of either hUPF1 (hRENT1) or hUPF2 resulted in ~4.4-fold increase in 

the abundance of the CCR5 -1 PRF signal containing reporter mRNA as compared to 

control cells transfected with a scrambled siRNA.  In contrast, the in-frame PTC  

 

Figure 40: siRNA knockdown of NMD increases the amount of CCR5 reporter 
mRNA. 

siRNA transfection experiments for hRent1 (Upf1) and hUpf2.  Rabbit β-globin abundance in cells 
transfected with scrambled, hRent1, or hUpf2 siRNAs.  The differences between un-normalized 
RT abundances compared to one another in the different siRNA-treatments were insignificant.  
Error bars denote standard error.  Knockdown efficiency of hRENT1 and hUPF2 mRNA are 
shown to the right. 
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containing reporter was increased ~8.5 fold.  Figure 40B shows the siRNA depletion of 

hUPF1 and hUPF2 ranged from 30% - 50% in these experiments; interestingly, 

knockdown of either NMD factor significantly increased expression of the other (Figure 

41), as has been recently described[208]. 

 

Figure 41: NMD knockdowns increase other NMD mRNA abundance. 

Successful hUPF2 knockdowns were observed at [5 µM] siRNA but increase the amount of 
hRENT1 mRNA.  Interestingly, hUPF2 knockdown did not significantly affect hRENT1in this 
experiment, but in other trials increased expression by as much as 180% (lower panel).  Other 
trials display a strong inverse relationship between hRENT1 and hUPF1 after knockdown and 
provide a useful benchmark to assay success. 

Specific stimulation of CCR5-mediated -1 PRF by miR-1224 in HeLa cells. 

If -1 PRF is used by cells to post-transcriptionally control gene expression, then it 

is reasonable to hypothesize that this process may be regulated in a sequence-specific 

manner.  One mode includes small ncRNAs that are capable of interacting with the 

frameshift promoting mRNA pseudoknot through base-pairing.  This hypothesis dovetails 

observations that antisense oligonucleotides induce +1 programmed ribosomal 

frameshifting of eukaryotic antizyme genes[209], and observations that antisense 
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oligonucleotides increase rates of -1 frameshifting [210–212].  A search of the NCBI 

miRNA database revealed that hsa-miR-1224, hsa-miR-711, and hsa-miR-141 are 

potentially able to interact with the CCR5 -1 PRF signal in multiple locations (Figure 42 

A).  To test this, HeLa cells were transfected with constructs expressing each of these 

three miRNA precursors [5nM], or with a construct containing scrambled sequences.  A 

 

Figure 42: Stimulation of CCR5-mediated -1 PRF by hsa-miR-1224. 

a.  Sequence of the CRR5 -1 PRF signal is shown.  The UUUAAAA slippery site is italicized, 
stems 1 and 2 of the mRNA pseudoknot are colored blue and red respectively, and unpaired 
bases are black.  Sequences of hsa-miR-1224-5p, hsa-miR-711, and hsa-miR-1413, and their 
predicted hybridization patterns with CCR5 sequence are indicated.  b.  HeLa cells were 
transfected with [5nM] of the indicated miRNA expressing constructs, or mock transfected.  After 
24 hours, cells were transfected with the indicated -1 PRF dual-luciferase reporters, and 
frameshift assays were performed 24-36 hours later.  c.  HeLa cells were transfected with 
indicated concentrations of hsa-miR-1224 miRNA expressing constructs, transfected 24 hours 
later with either HIV-1 or CCR5 -1 PRF dual-luciferase reporters, frameshift assays were 
performed 24-36 hours later.  Error bars approximate standard error. 

control set of cells were also mock transfected.  Either immediately, or 24 hours post-

miRNA transfection, cells were transfected with -1 PRF reporters containing the native 

CCR5 sequence, CCR5PTC, or HIV-1 frameshift signal, and frameshifting assays were 

performed after an additional 24 hour incubation.   Figure 42 B shows that hsa-miR-
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1224 promoted ~1.5-fold enhancement CCR5-mediated -1 PRF (~19.1% PRF compared 

to ~12.8% in mock transfected controls).  HIV-1 frameshifting was affected by neither 

hsa-miR-1224, nor by the scrambled miRNA control.  To determine whether this effect 

was dose-dependent, cells were first transfected with a hsa-miR-1224 precursor at 

[30nM], [10nM], [5nM], and [2nM], and then transfected with either the HIV-1 or CCR5 

reporters.  In this experiment, [30nM] and [10nM] of hsa-miR-1224 greatly enhanced 

CCR5-mediated -1 PRF while [2nM] promoted little to no effect (Figure 42 C). hsa-miR-

1224 did not affect HIV-1 mediated -1 PRF. We note however that the higher doses of 

hsa-miR-1224 were toxic to cells, resulting in much lower baseline levels of the reporter 

proteins.  This added a significant amount of noise into the system as reflected by the 

larger error bars. While neither hsa-miR-141 nor hsa-miR-711 affected -1 PRF in the 

HeLa cell based assay, the presence of endogenous hsa-miR-711, and/or hsa-mIR-141 

in these human derived cells may have masked the ability of these transfected miRNAs 

to affect -1 PRF.  Transfection of these miRNAs at [5nM] into CHO and Vero cells 

revealed that hsa-miR-141 was also able to specifically stimulate CCR5-mediated -1 

PRF (Figure 35). 

hsa-miR-1224 directly interacts with the CCR5 -1 PRF signal. 

Two different assay systems were employed to determine whether the effects of 

hsa-miR-1224 on CCR5-mediated -1 PRF were direct or indirect.  In vitro gel shift 

experiments were performed using increasing concentrations of a 247 nucleotide T3-

RNA polymerase generated transcript containing the CCR5 -1 PRF signal and a 

constant amount of γ[32P]-labeled synthetic hsa-miR-1224-5p.  In one experiment, the 

two RNAs were mixed, incubated at 37° for 30 min, and then resolved through native 

PAGE (“native”).  In parallel, the RNAs were mixed, heated to 90° and then allowed to 

slowly re-fold (“refolded”).  Both experiments show that hsa-miR-1224-5p interacted with 
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the CCR5 -1 PRF signal containing RNA with subnanomolar Kd’s (Figure 43 a-c).  In 

contrast, hsa-miR-1224 did not interact with a 315 nt. transcript containing the HIV-1 

PRF signal (Figure 43 d-f).  The CCR5/miR-1224 gelshift experiments generated some 

additional interesting observations.  First, hsa-miR-1224 interacted with the CCR5-

derived sequence ~ 2-fold more strongly in the “native” as opposed to the “refolded” 

context.  Second, addition of miR-1224 enhanced the appearance of three pre-existing 

conformers, particularly in the “refolded” context.  The significance of these observations 

is discussed below. 

  

Figure 43: hsa-miR-1224 directly interacts with the CCR5 -1 PRF signal in vitro. 

Two-fold dilutions of a CCR5 -1 PRF signal containing transcript were mixed with equal volumes 
of 1.0 nM [32P]-labeled synthetic hsa-miR-1224 RNA, and incubated for 30⁰C for 30 min (a,c, 
Native), or incubated at 90⁰ for 5 sec, cooled quickly to 60⁰ and then slowly to 37⁰ (b,d, 
Refolded).  Samples were separated through 10% native PAGE, dried, and radioactive activities 
were determined using a phosphorimager.  e,f. Single site binding isotherms generated for CCR5 
and HIV-1.  KD values and standard deviations are indicated.  These experiments were performed 
by Dr. Meskauskas. 
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To ascertain whether hsa-miR-1224 interacts with the CCR5 -1 PRF signal in 

vivo, a biotin-labeled hsa-miR-1224 precursor was transfected into HeLa Tzm-BL cells 

expressing CCR5[213], cell lysates were passed through a streptavidin-agarose slurry, 

washed extensively, bound RNAs were eluted, and qPCR was used to quantify the 

amount of CCR5 mRNA relative to a GAPDH loading control[214].  These miRNA-

mediated mRNA pulldown experiments demonstrated ~3-fold enrichment for CCR5 

mRNA (Figure 44 a).  Repetition of the experiment using lysates from HeLa cells 

transfected with the CCR5 PRF signal containing dual luciferase reporter plasmid 

revealed a >2000-fold enrichment for this mRNA as compared to no-miRNA controls 

(Figure 44 b).  In contrast, enrichment of a dual-luciferase reporter harboring the HIV-1 

PRF signal was approximately 10-fold above the no-miR-1224 control.  These findings 

 

Figure 44: hsa-miRNA-1224-5p interacts with the CCR5 mRNA in vivo. 

a. In vivo pulldown of native CCR5 mRNA in live cells. Biotinylated hsa-miR-1224 precursor (+ 
miR-1224) or a scrambled control (- miR-1224) were transfected into HeLa TZM BL cells 
expressing CCR5.  Cell lysates were passed through a streptavidin slurry and bound mRNAs 
were eluted after washing.  qPCR using CCR5 or GAPDH specific primer sets were used to 
quantitate the enrichment of CCR5 mRNA relative to GAPDH in the samples.  b. HeLa cells were 
co-transfected with dual luciferase plasmids containing either the CCR5 or HIV-1 -1 PRF signal 
sequences, and with biotinylated miR-1224 (+) or scrambled precursor  RNAs  (-).  Cell lysates 
were processed and analyzed as in panel a.  Error bars approximate standard error. 

directly demonstrate that hsa-miR-1224 specifically interacts with the CCR5 PRF signal 

in live cells, and not with other sequence elements within the CCR5 mRNA. 
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The Native CCR5 mRNA is Affected by NMD and hsa-miR-1224.     

The 5’ UTR of the CCR5 gene contains two introns, while the CDS and 3’ UTR 

are encoded by a single large exon (Figure 45 a).  The CDS is 3402 base-pairs in 

length, and the -1 PRF signal begins at nucleotide 473.  HeLa Tzm-BL cells expressing 

CCR5 were transfected with siRNAs targeting hUpf1, hSmg1, containing scrambled 

sequences ([5nM] each), or mock transfected.  qPCR analyses of total RNA revealed  

 

Figure 45: Effects of NMD abrogation and miR-1224 on the native CCR5 mRNA. 

a. The full length CCR5 locus is diagrammed, showing two introns in the 5’ UTR, the relative 
position of the -1 PRF signal at position 437, the termination codon at nt 3402, and the long 3’ 
UTR.  b. CCR5 mRNA steady-state abundance in TZM-BL cells was monitored by qPCR.   
hSmg1, hUpf1, and argonaute (Ago) were partially knocked down by siRNA.  miR-1224 indicates 
transfection with precursor expressing this miRNA.  Scrambled denotes transfection with a 
scrambled siRNA precursor, and mock denotes mock transfected cells.  c. Time course 
measurements of native CCR5 mRNA reporter abundances transcriptionally arrested with 
actinomycin D.  Cells were transfected with Smg1 siRNA or scrambled siRNA control. d. 
Immunoblot analysis: HeLa TZM-BL cells were either mock transfected, transfected with siRNAs 
targeting hUpf2, hSmg1, or scrambled RNA controls. Top panel: Immunoblots of total lysates 
were probed with anti-CCR5 or anti-tubulin monoclonal antibodies. Lower panel:  Relative 
abundance of Ccr5p in each sample normalized to tubulin loading controls.  Error bars 
approximate standard error. 
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that partial knockdown of hUpf1 (64% knockdown) or hSmg1 (48% knockdown) 

increased the steady-state abundance of the CCR5 mRNA ~2-fold each relative to 

controls (Figure 45 b), consistent with the previous reporter construct experiments and 

the hypothesis that the native CCR5 mRNA is a substrate for NMD.  Transfection of cells 

with hsa-miR-1224 decreased CCR5 mRNA steady-state abundance to ~40% of 

controls, while co-transfection of cells with hsa-miR-1224 and siRNA directed against 

Argonaute (Ago) reversed this effect.  Transfection with the Ago siRNA alone had no 

effect on CCR5 steady state abundance.  These results are consistent with the notion 

that argonaute-mediated processing of hsa-miR-1224 is required for stimulation of -1 

PRF, and that this stimulation increases the proportion of ribosomes directed to the -1 

frame PTC.  To determine whether the CCR5 mRNA is a direct substrate for NMD, cells 

were transfected with hSmg1 or scrambled siRNAs, transcription was arrested with 

actinomycin D, and mRNAs were harvested at 30 min timepoints.  While the CCR5 

mRNA was decreased to ~50% of initial levels after 3.5 hours in cells transfected with 

the scrambled siRNA control, hSmg1 siRNA transfection stabilized this mRNA.  

Immunoblot analysis showed that abrogation of NMD by transfection of Tzm-BL cells 

with hSmg1 or hUpf2 siRNAs resulted in a nearly 4-fold increase in Ccr5p compared to 

mock or scrambled siRNA controls (Figure 45 d).  These experiments demonstrate that 

the native CCR5 mRNA is directly regulated by NMD, and that the extent of mRNA 

degradation is in turn inversely proportional to frameshifting efficiency. 

The CCR5 -1 PRF Signal Encodes a Complex and Dynamic set of mRNA 
Conformers.   

As previously noted, multiple folding solutions can be predicted for the sequence 

downstream of the slippery site. While the Stem 2 structures of the two most stable 

predicted pseudoknots are identical, the slippery-site proximal ends of the Stem 1 

structures differ in their base-pairing solutions (Figure 46 A).  Three additional mRNA 
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folding solutions for this sequence are also shown.  While denaturing polyacrylamide gel 

electrophoresis (PAGE) of a γ[32P]-3’ end labeled transcript containing this element 

showed that it contained a single transcript of uniform size, native PAGE of the same 

transcription reaction revealed the presence of two major, and multiple minor bands, 

demonstrating that this sequence is able to fold into multiple conformers (Figure 46 B). 

 

Figure 46: Prediction and summary of the CCR5 PRF signal. 

A. Five computationally predicted folding solutions for the CCR5 -1 PRF signal as annotated in 
the PRFdb.  The predicted stems 1, 2 and 3 are displayed as red, blue, and green respectively.  
B.  Native and denaturing PAGE of a CCR5 -1 PRF signal containing RNA and synthetic miR-
1224. C.  miR-1224 does not change the SHAPE pattern of the CCR5 -1 PRF signal.  These 
experiments were performed by Dr. Meskauskas. 

To further investigate its structural aspects, a runoff transcript containing the 

CCR5 -1 PRF signal was subjected to chemical protection methods and the products 

were analyzed by primer extension.  Dimethylsulfate, kethoxyl and CMCT were used to 

probe the solvent accessibility of individual bases (Figure 47 a), while NMIA was  
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Figure 47: Chemical protection analysis of the CCR5 -1 PRF signal. 

a, b. Autoradiograms of reverse transcriptase primer extensions performed on T7 transcribed 
RNA amplified from the CCR5 containing dual luciferase plasmid.  Bands correspond to strong 
RT stops 1 nucleotide 5’ of bases modified by chemical reagents.  a. The CCR5 mRNA was 
either left unmodified (un), or modified with 3 increasing concentrations of dimethyl sulfide (DMS, 
reacts with A and C), 1-cyclohexyl-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate 
(CMCT, reacts with U), or  1,1-Dihydroxy-3-ethoxy-2-butanone (Kethoxal, reacts with G) 
respectively.  b. Primer extension reactions were performed on unmodified samples and samples 
incubated with 30, 65, and 110 nM NMIA (N-methylisatoic anhydride).  These are labeled 1, 2 
and 3 respectively beneath each sample, and un denotes untreated RNA. c. Data from panels a 
and b mapped onto a flat representation of the CCR5 -1 PRF signal.  Stems 1 and 2 (S1 and S2) 
are boxed, and the loop is indicated as L.  Alternative base-pairing schemes for the base of Stem 
1 are indicated by dashed lines.  The five different segments of Stem 1 are labeled a – e.  Sugars 
protected from 2’OH attack by NMIA and bases strongly protected from chemical modification by 
DMS, CMCT, and kethoxal are noted as dark red or blue filled circles respectively.  Weakly 
protected sugars and bases are denoted by light pink or light blue filled circles.  Strongly modified 
(unprotected) sugars and bases are represented as light blue or pink open circles.  d. Cartoon 
representation of the CCR5 -1 PRF signal.  These experiments were performed by Dr. 
Meskauskas. 
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employed to probe ribose 2’-OH groups (Figure 47 b)[215].   Analyses of these data 

revealed a single solution for the structure of Stem 2 that roughly consists of 4 semi- 

helical segments (labeled a, b, d, e in Figure 47 d) and a small segment in the middle 

(c), each of which is separated by unpaired bases.  This stem 2 closely conforms to the 

most stable computationally predicted structure (see the top two examples in Figure 46 

A).  Importantly, these unpaired bases should allow the entire structure to bend,  

enabling U23 to bridge the gap between C22 and U24 (Figure 47 d).  Analysis of the 

Stem 1 forming region was consistent with the computational predictions: that while the 

distal region of Stem 1 is relatively stable, the proximal region is conformationally 

dynamic.  Specifically: G8 and C9 were protected; the 3’ half of Stem 1 (G62 – U66) was 

more deprotected than predicted; and four bases in loop 2 that are predicted to be single 

stranded (G70, and C72 � U75) were protected from chemical modification. These data 

suggest that the 5’ half of the base of Stem 1 can interact with either the 3’ half of the 

base of Stem 1, or with the 3’ bases in the loop (L), thus accounting for the two main 

conformers observed in the native gels (Figure 46 b).  Similarly, when this mRNA was 

stretched many times in an optical trap, two or three main conformers were consistently 

observed (Figure 48).   These alternative interactions are shown as dashed lines in 

Figure 47 c and half cylinders in Figure 47 d.  These experiments probed the structural 

ensemble as it exists in steady-state equilibrium; thus the two alternate conformations 

denoted with an arrow in Figure 47 d are likely represented by the two major, slowly 

migrating species shown in the gelshift experiments.  In contrast, the optical trap 

experiments monitor pre-steady state refolding.  In those experiments, the blue species 

(Figure 48 and Figure 49) correlates very well with the pseudoknot, while the forms 

designated by red, green and yellow may correspond to the minor species observed in 

native gels (Figure 43 b).  Together, these data reveal the presence of a complex and 
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dynamic ensemble of mRNA pseudoknot structures that can be formed by the CCR5 -1 

PRF stimulating sequence.  Importantly, SHAPE analysis did not reveal any 

 

Figure 48: Force-extension curves and dE/dx density plots of the CCR5 structure. 

Black lines: Worm-like chain theory[216] for hybrid DNA/RNA handles with and without 97 
additional bases of extended single-stranded RNA.  Change in energy per opening distance 
(dE/dx) calculated as described previously[217].  Gray scale density plot: The accumulated result 
from all scans.  Colored squares: The result from the single scan shown in the force-extension 
curve.  This work was performed by Michel deMessieres in the LaPorta laboratory. 

differences in protection patterns of the CCR5 -1 PRF signal containing RNA in the 

presence of miR-1224 (Figure 46 c).  This suggests that that hsa-miR-1224 does not 

function to alter the topology of this sequence per se, but that it may help to drive the 

equilibrium toward structures that promotes elevated rates of -1 PRF. This is further 

supported by changes between Figure 43 a/b as well as the distribution changes seen 

in Figure 49 a. 
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Figure 49: Observed sub-steps when pulling apart the CCR5 -1 PRF signal. 

a. An alternate view of the dE/dx data in Figure 48 a. Each disruption path is composed of one or 
more substeps, plotted where x is the initial opened bases and y is the change in bases for that 
substep.  b. Arrows indicate the mean behavior of the disruptions plotted in a.  Numbers indicate 
how many bases were released for the given substep on average.  Double-ended arrows indicate 
substeps which were observed to be reversible.  Thinner arrows indicate substeps observed with 
less frequency.  This work was performed by Michel deMessieres in the LaPorta laboratory. 
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Identification of Additional -1 PRF Signals in Other Human Interleukin 
Receptor mRNAs. 

A search of the PRFdb revealed the presence of putative -1 PRF signals in 

mRNAs encoding seven additional interleukin receptor subunits (Figure 50).  These  

 
Figure 50: Computationally predicted human cytokine receptor -1 PRF signals. 

One predicted solution structure for each predicted -1 PRF signal is shown as a linear Feynman 
diagram.  The name, accession, position, predicted MFE and Z score against randomized 
sequence is provided in the inset table.  Two conserved sequences in the P. troglodytes IL-8 
receptor α-chains are also shown. 

were cloned into dual-luciferase reporters and in vivo frameshifting assays were 

performed in HeLa cells (Figure 51).  Efficient -1 PRF, as defined by the ability of a 

sequence to promote >1% -1 PRF, was effected by six of these sequences.   Sequence  
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Figure 51: Efficient -1 PRF is promoted by sequences in additional cytokine 
receptors. 

Computationally identified putative -1 PRF signals cloned into dual luciferase reporters were 
assayed in HeLa cells.  Numbers in hIL8Rα and hIL22Rα denote the nucleotide positions of the 
slippery sites in the native mRNAs.   Error bars denote standard error. See Appendix 15 for more 
information regarding these sequence elements.  This work was performed by Sharmishtha 
Musalgaonkar, Vivek Advani, and ATB. 

beginning at nucleotide 1012 of the human IL-2 receptor γ-chain mRNA was a strong 

promoter of -1 PRF (8.4%).  The human (9.8%) and mouse (2.5%) IL-7 receptor α chain 

mRNAs contain each contain one functional -1 PRF signal; this mRNA was recently 

identified as an NMD substrate[208].  The human IL-8 receptor α chain mRNA harbors 

two functional -1 PRF signals (3.4% and 4.9%), and like CCR5, these are conserved in 

the P. troglodytes IL8RA mRNA (Figure 50).  The human IL-8 receptor β chain and the 

human IL-27 receptor α chain mRNAs harbor one functional -1 PRF signal each (3.0% 

and 1.9% -1 PRF respectively).  Potential -1 PRF signals identified in the mRNAs 

encoding the human IL-2 receptor γ chain and the human IL-22 receptor α chain were 

not initially functional as defined in this assay, although they did promote frameshifting 

rates approximately 1 order of magnitude above the PTC containing control.  When the 
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IL-2 receptor γ was modified to lengthen rather than shorten the spacer, its rate of 

frameshifting increased from ~1% to >8%. 

 Some informative trends may be gleaned from these data.  While strong stem 1 

structures appear to be important stimulators of -1 PRF, large internal loops may hinder 

this activity.  However, the presence of overlapping slippery sites, e.g. A AAA AAU UUA 

AAU (human IL7RA) and U UUA AAA AAA (mouse IL7RA) may compensate for weaker 

stem 1 structures.   

Discussion 

Prior to the current study, only three -1 PRF signals were known to exist in 

mammalian genomes, all of which are thought to be remnants of ancient retroviral 

insertion events[66,67,218].  The discovery of operational -1 PRF signals in the mRNAs 

encoding 5 different human and one mouse cytokine receptor mRNAs represents the 

first such examples in mammalian genes of non-retroviral origin, and as demonstrated 

with CCR5, the first in which -1 PRF may be used to control gene expression through 

mRNA stability. 

-1 PRF and the Immune System. 

Each of the cytokine receptors identified in the current study have significant 

roles in human health as described in greater detail in Appendix 15.  The discovery of 

operational -1 PRF signals in the mRNAs encoding five cytokine receptors, a subset of 

which appear to be evolutionarily conserved, has a potentially profound impact on our 

understanding of immune homeostasis.  While a robust immune response is critical for 

limiting and controlling infection, left uncontrolled, it can rapidly result in pathology and 

death.  Although there is a large body of literature describing how expression of small 

peptide mediators of the immune response (i.e. cytokines) are regulated at the level of 

mRNA stability, typically through cis-acting elements in their long 3’ UTRs[219], this only 
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provides a global mechanism of immune regulation by controlling production of effector 

molecules.  In contrast, the ability to control expression of cytokine receptors through -1 

PRF induced NMD, and how rates of -1 PRF in turn may be controlled by miRNAs, 

represents a way for individual recipient cells to modulate responses to cytokines; this 

would provide the means to fine tune immune responses at the local level, and suggests 

a novel molecular mechanism underlying immune desensitization. 

Modes of -1 PRF Regulation. 

The central unanswered question in the field of -1 PRF centers on its regulation.   

The characterization of numerous mutants in yeast[220], and the demonstration that 

siRNA knockdown of eRF1 stimulated -1 PRF in human cells[221] suggests that PRF 

could be regulated through production of “specialized ribosomes”[218,222].  However, 

over the course of numerous studies spanning the past 20 years, we have observed that 

mutants and treatments that globally affect -1 PRF generally promote deleterious 

phenotypes[191], suggesting that this may not be the preferred way to regulate -1 PRF.  

Indeed, global increases in -1 PRF in human and mouse cells due to rRNA 

pseudouridylation defects suggests that dysregulation of -1 PRF may contribute to the 

pathology associated with X-linked dyskeratosis congenita and Hoyeraal-Hreidarsson 

syndrome[223].  Alternatively, regulation of -1 PRF could be effected in a sequence-

specific manner by ncRNAs capable of interacting with individual -1 PRF signals.  A 

major advantage of this strategy is that it could enable individual cells to rapidly regulate 

-1 PRF on specific mRNAs by synthesizing or releasing ncRNA species.  Not only does 

this confer sequence specificity, but it is also more rapid and energetically less 

expensive than producing new or modifying pre-existing ribosomes.  The demonstration 

that oligonucleotides capable of disrupting -1 PRF mRNA pseudoknot formation can 

inhibit -1 PRF in vitro provided proof-of-principle for this concept[224].  Similarly, 
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antisense RNAs have been shown to stimulate -1 PRF[209,212,225], while an antisense 

peptide nucleic acid has been used to inhibit SARS-CoV mediated -1 PRF[226].  Here, 

the demonstration that expression of hsa-miR-1224 and hsa-miR-141 specifically 

stimulated CCR5-promoted -1 PRF, and that hsa-miR-1224 can directly interact with the 

CCR5 -1 PRF signal, solves the central, heretofore unanswered question of how -1 PRF 

may be regulated in a sequence-specific manner.  To our knowledge, this is also one of 

the few demonstrations of an miRNA affecting the expression of a cellular gene through 

an interaction with its ORF[227–229].     

Little is known about hsa-miR-1224: its expression is induced by 

lipopolysaccharide[230], consistent with a role in modulating the immune response, and 

its dysregulation may be associated with bladder cancers[231] and lupus nephritis[232].  

has-miR-141 is a member of the miR-200 family: its overexpression has been implicated 

in numerous cancers (see[233–235] and references therein), and post-transcriptional 

regulation of hsa-miR-141 has been implicated in cellular plasticity and remodeling in 

response to changes in cell adhesion[236].  We suggest that -1 PRF is used to control 

the expression of a significant number of mammalian genes through the NMD, is in turn 

regulated by ncRNAs such as miRNAs, and that of changes in rates of -1 PRF through 

dysregulation of miRNA expression may in part contribute to human disease 

phenotypes. 

Structural Plasticity. 

Inspection of (Figure 42a) suggests that the miRNAs may interfere with mRNA 

pseudoknot formation, and thus should inhibit CCR5-mediated -1 PRF.  Thus, the 

observation that hsa-miR-1224 and hsa-miR-141 stimulated CCR5-mediated -1 PRF 

was unanticipated. The computational and experimental observations of multiple CCR5 -

1 PRF signal conformers (Figure 46 and Figure 47) suggest a solution to this problem.  
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While hsa-miR-1224 associates with the CCR5 -1 PRF signals (Figure 43), chemical 

protection experiments did not reveal any structural changes (Figure 46), suggesting 

that hsa-miR-1224 does not stimulate -1 PRF by creating any new RNA conformational 

state.  Consistent with this, the “optical trap” monitored the folding/unfolding dynamics of 

the CCR5 -1 PRF signal revealed 4 major folding/unfolding pathways for this RNA 

(Figure 48). Importantly, addition of hsa-miR-1224 to this system did not create any new 

pathways, but rather altered their relative abundances (Figure 49). Additionally, both 

hsa-miR-1224 and hsa-miR-141 can potentially participate in multiple, non-exclusive 

base-pairing interactions with different segments of the CCR5 -1 PRF signal. While the 

experiments described in this study cannot define the specific binding sites for these 

miRNAs, the finding that hsa-miR-1224 may suppress pseudoknot formation (Figure 49) 

suggests that the slippery-site proximal binding site may be responsible for -1 PRF 

stimulation. In sum, we suggest that: A) the CCR5 -1 PRF signal is structurally plastic; B) 

different conformers promote greater or lesser rates of -1 PRF; and C) different miRNAs 

are used to drive the structural equilibria toward specific conformational states.  Further, 

we hypothesize that RNA conformational plasticity is the underlying biophysical basis 

through which cells may utilize miRNAs to regulate CCR5-mediated -1 PRF.  In support 

of this, pH-dependent switching between mRNA pseudoknot conformers was recently 

shown to control termination codon reassignment and -1 PRF in in Murine Leukemia 

Virus and beet western yellows virus respectively[237].  To borrow a term from the prion 

field, conformational plasticity is ‘enciphered’ within i.e. is an inherent property of, the 

primary mRNA sequences of translational recoding elements such as these and the 

CCR5 -1 PRF signal.  We also suggest that single nucleotide polymorphisms (SNPs) 

that may alter the slippery site or change the conformational dynamics of -1 PRF 

promoting pseudoknots could also affect -1 PRF efficiency, and thus mRNA stability, 

ultimately affecting gene expression.  If so, this may account for disease phenotypes 
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associated with SNPs that do not alter the primary amino acid sequences of their 

encoded proteins. 

Effects on the Viral Context. 

RNA viruses such as retroviruses, coronaviruses, and totiviruses require 

stringent levels of -1 PRF for their propagation[65,238,239]. We suggest that their -1 

PRF promoting structural elements have evolved in two different ways so as to ensure 

set rates of -1 PRF.  First, their -1 PRF stimulatory elements should not interact with any 

ncRNAs present in the cells in which they replicate. Second, these elements should only 

have a single folding solution under physiological conditions.  Thus, minimization of RNA 

conformational plasticity and avoidance of sequence-specific regulation of -1 PRF by 

ncRNAs may explain why -1 PRF-dependent RNA viruses are able to efficiently replicate 

in their hosts.   

  



 98 
 

Chapter 5 

Where do we go from here? 

The amount of data available to those interested in mRNP dynamics is 

increasing at a rate which defies description.  High-throughput SHAPE[240], next-

generation sequencing of RNA and ribosome protected messages[241], and genome-

wide measurements of RNA structure[242] provide three immediate examples of 

fantastically powerful new tools which have the potential to transform observations of 

mRNA structure and function from a view of individual molecules through an opaque, 

dirty lens to clear observations of every RNA molecule, in concert, throughout the life-

cycle of the cell. 

Data provided by these techniques will prove to be a tremendous boon to anyone 

searching for physiologically active RNA species in the cell; and the best part, we have 

not even figured out what to search for.  There are huge new playgrounds of information 

just waiting for someone to come along and ask a new question.  This of course has 

always been true, but at a personal level I never thought the exponential growth of 

information was so dramatic or immediately exciting.  This project attempted to perform 

a predictive search for interesting mRNA secondary structures and develop the results of 

that search in the eukaryotic context.  Transitioning from Saccharomyces cerevisiae to 

cultured mammalian cells provided an opportunity to change the focus of the work 

slightly and observe the effects of ncRNA on -1 PRF.  Each of these three foci has the 

potential to be completely reworked given the new techniques and technologies 

available; and thus provides nearly infinite space for future experimentation.  This text 

aims to provide a glimpse into a few of the possibilities for future work in the context of 

computational searches for interesting mRNA structures, different directions which may 
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be followed in Saccharomyces cerevisiae, and potential new avenues to explore in the 

mammalian context. 

Computational Next Steps 

The current implementation of the PRFdb may be easily extended to: continue 

searching more sequence databases; make use of phylogenetic information, RNA 

alignments, and other statistical measurements to improve the existing set of analyses; 

cross-reference to other datasets to add new metrics of “interesting” to the existing 

predictive criteria; and search itself and other sequence databases for specific functional 

motifs. 

In the first instance, this merely requires pointing the code at a list of GenBank 

accessions and letting it run; as long as database storage needs are met, search times 

should not become a problem until ~108 sequences have been analysed.  If one wishes 

instead to improve the sensitivity of the measurements provided by the PRFdb via a 

solid statistical framework or phylogenetic information, the list of already existing tools 

contains some excellent candidates.  Indeed, some of these are already supported by 

Bioperl and so should be instantly available.  In this context, the challenge lies in 

properly curating a training set of data, or devising a sensitive strategy to infer that 

specific sequences are related and therefore available to use as components of an RNA 

alignment.  Similarly, it is possible with some small improvements to add other metrics of 

“significance;” a primary candidate is the Valley Index score mentioned in Freyhult et 

al.[148].  Another simple but potentially powerful improvement would be to extend the 

existing RNAMotif parser and descriptor generator to automatically perform database 

searches as per Lupták et al.[131].  This approach has the neat side-effect of turning the 

existing dataset into a search space for specific structures of interest. 
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Correlation Studies 

While all of the above approaches have merit, they do not leverage the new 

datatypes and approaches which are so exciting.  The single most potentially sensitive 

search tool for substrates of No-Go decay, NSD, NMD, and functional genomic -1 PRF 

signals already exists in the dataset from Ingolia et al. (Figure 52).  With minor  

 
Figure 52: Position of 28mer reads with respect to reading frame in ribosome 
profiling. 

One search strategy for functional PRF signals includes finding the positions where this ratio of 
ribosomes/mRNA is significantly increased in alternate reading frames.  This figure is from Ingolia 
et al. [241]. 

improvements, and potentially more reads, it is possible to pinpoint every actively 

translated base in the yeast genome upon which a ribosome changes reading frame.  

Furthermore, this same data was recently made available for mouse[243] and 

human[244] cells. 

Using the same data, it is also possible to compare ribosome profiles to predicted 

MFE with respect to ORF (Figure 53).  A simple version of this was implemented as part 

of the PRFdb.  If a given sequence of interest also has a significantly larger number of  
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Figure 53: MFE prediction vs. ribosome footprint density vs. PARS score for 
PDR5. 

Top: The predicted MFE using pknots, Nupack, and RNAFold for a floating window of 115 bases 
along the PDR5 ORF is plotted above.  Only the first 1,400 bases are shown.  Middle:  Below is 
a histogram showing the number of ribosomal footprints detected along the PDR5 ORF.  Using 
this, it is possible to visualize the reads of full mRNA and footprints in yeast cells fed rich or 
amino-acid poor media.  Bottom:  PARS score at each position along the PDR5 ORF.  In this 
implementation, the score is: log2(S1 reads/V1 reads) so that strongly dsRNA is less than 0 in the 
hopes of finding similar trends to the predicted MFE. 

ribosomes protecting the same position, then it is reasonable to hypothesize that the 

mRNA is causing actively translating ribosomes to pause.  In order to properly perform 

this type of analysis, these statistics will need to be more thoroughly developed, 

including metrics to properly exclude ORFs with a low signal/noise ratio as well as 

proper metrics to compare the ratio of footprint reads / mRNA reads.  Another 

application of similar technology was introduced with the PARS score, which provides a 
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measurement of the observed ratio of reads observed after RNAse V1 cleavage (thus 

measuring double-stranded bases) vs. the reads observed after RNAse S1 (single-

stranded).  This data, like the ribosomal footprinting data, needs to be more fully 

developed before any real conclusions can be made, but its potential power is 

astonishing when taken in concert with these other data types.  It is also possible to 

further interpret the information already existing in the database.  For example, Figure 

54 plots the distribution of potential -1 PRF signals with respect to open reading frame 

for a series of genomes.  In many cases, there is a simultaneous sharp decrease in the 

total number of potential -1 PRF signals and an increase in the percentage of those few 

that remain hich are predicted to extend the -1 reading frame by more than 30 amino 

acids.  This observation is one of many which may be found in the existing database by 

only looking more closely at the extant data.  

Possible next steps in Saccharomyces cerevisiae 

Improvements in the strategies for computationally searching for potential -1 PRF 

signals may yield a larger and more accurate set of signals to examine. The signals 

which have already been identified pose far more questions than they answer.  When 

looking at the work performed in Saccharomyces cerevisiae, one candidate ORF stands 

out as particularly interesting: EST2.  As previously noted, this gene harbors five 

computationally identified high-confidence -1 PRF signals.  In addition, there is already a 

tremendous wealth of data which examines cellular homeostasis when telomere 

maintenance is dysregulated, including reporter systems and assays to directly assay 

steady-state telomere length, the rate of telomere shortening, and the proportion of cells 

in each phase of the cell cycle. 
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Figure 54: Histograms of potential genomic -1 PRF signals 

Potential -1 PRF signals are plotted from 12 genomes.  Red lines count the number of potential -1 
PRF signals with respect to ORF.  In green the percentage of -1 PRF signals which are predicted 
to result in a long -1 frame extension with respect to ORF.  In many species there is an increase 
in the percentage instances which extend by more than amino acids at the 3’ end (visible as a 
spike in the green plot).  Simultaneously, these species exhibit fewer total -1 PRF signals at the 
end. 

The EST2 mRNA contains some interesting and strong secondary structures 

(Figure 55) and is illustrative of another potentially powerful future experiment.  It should 

be technically trivial, but expensive, to perform a hybrid experiment of hSHAPE and 

next-generation sequencing.  The results would be analogous to those observed in the 

PARS dataset, but query the relative flexibility of every base.  Depending on the 

experimental conditions, it should be possible to search for nucleotides constricted by 
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Figure 55: The EST2 mRNA is strongly protected position 1653 -1 PRF signal 

SHAPE was performed on EST2 PRF signal containing mRNA showing strong protection from 
attack by NMIA.  When the same assay was performed on sequence 100 bases downstream of 
this, little protection was observed (not shown). 

protein binding (crosslinking as performed in Zhang et al.[245] to find binding partners 

for AUF1), directly observe mRNA dynamics through the cell cycle, or as a function of 

active translation (by adding cycloheximide to stop translation). 

The PGK1 reporter constructs containing the EST2 -1 PRF signal was a strong 

substrate for NMD (Figure 25 A and B, lane 4, and Figure 26).  Furthermore, the full 

length message with silent mutations in each of the 5 putative slippery sites was 

significantly stabilized (Figure 28).  Therefore it is reasonable to hypothesize that the 

slippery site mutant containing full length mRNA should act similarly in vivo from wild-

type to NMD deficient cells. 

Testing this hypothesis is made possible because yeast telomeric regions include 

some well characterized and useful restriction sites[246].  These sites have been used to 

perform Southern blots which are sensitive to relatively small variations in telomere 

length, and therefore changes in aging of the cells.  When this was performed in NMD 

deficient cells, the telomere size was shown to decrease; suggesting that an NMD 

mediated shift in the equilibrium of the telomere cap components leads to deficient 

telomere repair.  The same assay was performed in EST2 deficient cells supplemented 

with either a wild-type or mutant copy of EST2 and a similarly counterintuitive result was 

observed (Figure 56). 
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Figure 56: NMD deficient and EST2 slipsite mutant cells have shorter telomeres. 

The left Southern blot is from Lew et al.[86], genomic DNA of wild-type and NMD deficient cells 
was probed with an end-labeled telomere specific probe and a decrease in telomere length was 
observed (lane 1 compared to lane 3).  When a similar experiment was performed using EST2 
deficient cells supplemented with a low-copy plasmid borne copy of either wild-type or slippery 
site mutant EST2, a similar effect was observed.  The UPF∆ and UPF∆/EST2∆ lanes recapitulate 
the previous result and suggest that the EST2 mutant mediated effects are hypostatic to NMD 
mediated shortening. 

One avenue of future inquiry therefore includes expanding these analyses to attempt to 

understand the relative contributions of each -1 PRF signal from EST2 (Figure 57), or 

the contributions of other telomere associated proteins (as speculated upon in the 

Discussion of Chapter 3 and Figure 32).  It is also possible to ask about how -1 PRF 

mediated changes in EST2 expression affect the yeast cell cycle; in this realm there are 

some wonderful possible experiments using FACS, cellular staining and microscopy, 

and even assays which observe the maximum generation number of yeast strains 

harboring specific EST2 mutations (Figure 58). 
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Figure 57: Initial attempts to quantify the relative contributions of each EST2 PRF 
signal. 

Left: Dual luciferase assays were performed to assess the quality of each of the 5 potential EST2 
-1 PRF signals.  Positions 1215 and 1653 (previously identified) were shown to be strong.  Right: 
qPCR analyses followed and showed minor effects on full length EST2 stability from positions 
1215 and 1653 alone, but a much stronger effect when all were mutated. 

 

Figure 58: Counting the maximum number of generations of mutant EST2 
harboring cells 

While silent mutation containing cells live longer in both the NMD knockouts and mutant 
harboring cells, the surviving cells are significantly sicker, have a slower doubling time, and 
display significant morphological differences from wild-type.  This analysis was performed in the 
laboratory of Dr. Brittenbach-Koller. 
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As these few examples illustrate, there are some exciting possibilities for future 

inquiry of -1 PRF in yeast.  Some of the most interesting seek affects of -1 PRF upon 

cellular homeostasis or use recent technological advances to query the entire yeast 

transcriptome for strong candidates.  The transition from yeast to the metazoan context 

provides an opportunity to reverse this logic and instead ask: how do other regulatory 

systems affect -1 PRF? 

Future Mammalian Work 

We performed some initial experiments which implicate specific miRNA species 

as effectors of -1 PRF in mammalian cells.  The possible questions this allows us to ask 

will certainly increase as the ncRNA field continues to mature.  Likely candidate 

questions include: cell type specificity, effects during development, and changes via -1 

PRF as miRNA species are dysregulated in disease states such as cancer. 

One path we started following in the mammalian context is an attempt to 

correlate predictions from the PRFdb to microarray data from 200 patients with 

hepatocellular carcinoma.  These patients donated one healthy and one cancerous liver 

tissue sample for analysis as well as diagnostic information including: tumor size, AFP, 

viral status for Hepatitis, lifespan post-diagnosis, etc.  The resulting dataset provides 

approximately 14,000 points of expression between healthy and diseased liver cells per 

patient.  Initial analyses focused upon improving the existing HCC subclasses[247].  A 

mixture of PLS and K-means clustering reduced the dataset from 14,000 genes to 

approximately 340 candidates which were then cross-referenced against the PRFdb, 

searching for strong candidates in both sets (Table 5). 
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ORF Position MFE Z Prediction 

ACTL6A 
(NM_178042) 485 -27.0 -2.13 

 

ASNS 
(BC014621) 649 -23.0 -0.54 

 

ATIC (BC008879) 1656 -33.2 -1.59 

BCHE 
(BC018141) 

503 -25.1 -1.89 
 

CKAP5 
(NM_014756) 212[3|6] -20.1 -0.48 

 

CKAP5 
(NM_014756) 2906 -32.2 -4.53 

 

CKAP5 
(NM_014756) 2927 -36.1 -3.23 

DLK1 
(BC014015) 509 -41.0 -0.99 

 

DNAJC9 
(NM_015190) 264 -32.3 -1.20 

FAM21A 
(NM_001005751) 3307 -39.2 -0.30 

FOS (BC004490) 408 -46.8 -1.70 
 

GABRE 
(BC059376) 735 -27.8 -3.63 

GOLT1B 
(NM_016072) 437 -14.3 -0.43 

 

KIF20A 
(BC012999) 2668 -30.9 -1.66 

 

KIN 
(NM_012311) 1083 -18.9 0.42 

 

LPCAT1 
(BC020166) 1110 -41.2 -1.75 

MCM5 
(BC003656) 1004 -38.2 -2.56 
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MYO5C 
(NM_018728) 3527 -23.3 -1.48 

 

NT5DC2 
(BC014550) 841 -33.5 -0.07 

 

NUP37 
(BC000861) 719 -29.1 -2.51 

 

OLA1 
(NM_013341) 513 -27.4 -2.44 

PNMA1 
(NM_006029) 1740 -38.6 -1.52 

 

PPP4R1 
(NM_005134) 2197 -22.4 -1.65 

 

RNASEN 
(BC054003) 284[5|8] -22.3 -0.94 

 

SLC38A 
(BC040342) 981 -23.0 -0.55 

 

TDO2 
(BC005355) 732 -24.0 -3.79 

 

TDO2 
(BC005355) 744 -24.0 -3.66 

 

ZGPAT 
(BC032612) 664 -37.5 -0.76 

 

Table 5: -1 PRF Candidates Significantly Disregulated in HCC 

24 candidates were chosen by cross-referencing microarray data to the existing PRFdb.  11 of 
these were cloned into the dual-luciferase reporter system and analysed. 

 Thus far 11 of the 24 strongest candidates have been successfully cloned into 

the dual-luciferase reporter system.  Two of them, OLA1 and TDO1 promote significant 

levels or frameshifting (Figure 59).  A simple search with miRanda against the 

annotated Homo sapiens miRNA database showed that hsa-miR-101 may hybridize 

strongly with this potential -1 PRF signal (Figure 60).  Interestingly, hsa-miR-101 has 

previously been implicated in HCC[248].   
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Figure 59: Dual luciferase of HCC involved -1 PRF signals 

When the dual-luciferase assay was performed with the successful clones of HCC involved -1 
PRF signals, two candidates displayed significant (> 1%) -1 PRF: OLA1 and TDO1. 

Figure 60: Possible interaction of hsa-miR-101 with the OLA1 -1 PRF signal 

hsa-miR-101, hsa-miR-1182, hsa-miR-1226, and hsa-miR-564 have potentially strong 
interactions with stem 1 of the OLA1 -1 PRF signal (-26.1, -22.5, -28.3, and -27.9 kcal/mol 
respectively). 

Taken as a whole, I find myself a little envious of new students who will get to 

play in the new fields of inquiry which are opening today.  I am certain this experience is 

cliché, but it remains a bittersweet conclusion to a tremendously enjoyable learning 

experience. 
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Chapter 6 

 Experimental Procedures 

Introduction 

 The techniques of Molecular Biology are fundamentally difficult for a new student 

to understand.  It is my hope in this document to provide two apparently contradictory 

things at the same time:  a concise summary for each process suitable for using in a 

scientific publication followed by a longer, explicit, and usable protocol.  A much 

expanded version of this document containing examples, sample results, precursor 

protocols, and buffer recipes is separately maintained and periodically copied to the 

Dinman lab website: http://dinmanlab.umd.edu/Information/protocols/ 

Cell Culture 

The HeLa cell line[249] (ATCC), its derivative cell lines: HeLa Tet-Off[250] 

(Clonetech), Tzm-BL[213] (aidsresearch.org and kindly provided by Dr. J. DeStefano); 

CHO[251] (kindly provided by Dr. D. Mosser); and Vero[252] (kindly provided by Dr. B. 

Frederickson) were cultured according to the manufacturers’ instructions, which are 

summarized here. 

All Vero and HeLa cell lines were cultured at 37° with 5% CO2 using Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% irradiated fetal bovine serum 

(FBS), 1x non essential amino acids (NEAA), and [4 mM] glutamine.  1% 

Penicillin/Streptomycin was neither added when performing assays which are sensitive 

to changes in translation, nor when using Tet-Off cells.  Instead Tet-Off cells received 

200 µg/ml G418 in order to sustain the transactivator protein containing plasmid.  CHO 
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cells were maintained in the same fashion except Modified Eagle’s Medium α (MEM α) 

supplemented with 1x proline, [4 mM] glutamine, and 1x NEAA. 

 These cells are all best passaged when growing exponentially.  In most cases 

this suggests 70-80% confluency, however CHO cells will commonly grow to 100% 

confluency in less than 24  hours.  HeLa derived cell lines will tire after 20-25 passages, 

while the existing Vero cell lines begin at earliest passage 85+. 

 Pre-warm Media, 0.05% trypsin (or EDTA containing PBS) and 1x PBS  to 37°.  

Aspirate old medium from the T75 flask with a sterile pipette tip.  Wash cells with 3-7 ml 

1x PBS to remove residual media and cell debris. 

 Add 3-5 ml 0.05% (w/v) trypsin-EDTA and evenly disperse by rocking.  (Storage 

note:  After thawing, trypsin may be stored at 4° for up to 2 weeks, do not freeze thaw.  

In practice, trypsin may be stored significantly longer)  Incubate at 37° 5-10 minutes to 

detach cells.  If using non-enzymatic PBS-EDTA, a cell scraper may be required to 

detach cells, otherwise most (except Vero) cells are usually detached. 

 Add 5 ml fresh media to wash cells from the plate surface, pipette to dissociate 

cell clumps. (Avoid making foam, it somehow kills my cells)   Remove to 15 ml conical 

tube and spin down 2 minutes at  <= 100 g.  Remove media and resuspend in 1 ml 

DMEM.  Mix gently, add 1 µl cells to hemacytometer with <= 1 µl of trypan blue to count 

viable cells.  100 undiluted cells in the square on our hemacytometer correspond to 

1,000 cells / µl. 

 Aliquot cells according to requirements: 30,000-40,000 / well of a 24 well plate is 

common; 100,000 in a T75 flask.  Fewer cells should be used for longer-term 

transfections. 
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The Dual Luciferase Assay 

Dual luciferase assays were performed as previously described[204] using a 

Turner Biosystems GloMax-Multi Microplate Multimode Reader  with some 

modifications.  Data analysis follows the process outlined in Jacobs et al.[205]. 

The reference material provided by Promega is excellent.  When working with 

mammalian cells, no changes are required.  In yeast however, the provided passive lysis 

buffer should not be used.  When cells are disrupted in the bead-beater, this buffer 

makes a foam which leads to large variance in the final results.  Instead, use a PBS 

buffer with PMSF and (an optional) protease inhibitor cocktail. 

150 mM PMSF:  0.2613 g of PMSF into 10 ml methanol.  PMSF is extremely 

hydroscopic. 

10x PBS:  30.47 g Na2HPO4, 0.155 g NaH2PO4, 2.19 g NaCl, pH this to 7.4 with 

HCl, add water to 250 ml and autoclave. 

Protease inhibitor: 150 µl Aprotinin (2mg/ml), 150 µl leuprotinin (1mg/ml), 150 µl 

Pepstatin A (1mg/ml), 550 µl water. 

3 ml 10x PBS, 0.2 ml protease inhibitor, 0.2 ml 150 mM PMSF, water to 30 ml. 

Grow overnight cultures to exponential growth (This varies from an OD of 0.7-2.0 

depending on strain.  Different strains require different ODs, do a growth curve.  Harvest 

cells by spinning down gently in the Sorvall (1200 rpm for 2 min) and removing media.  

Wash the cells with 1ml lysis buffer and move them to a fresh eppendorf.  Spin them 

gently and remove lysis buffer.  Add 500ul fresh lysis buffer and 500ul glass beads and 

chill on ice/cold room for 5 min.  Vortex in the cold room at minimum 5 minutes or bead 

beat them 5 minutes.  While the cells are lysing, start melting an aliquot of the Luciferase 

Assay Buffer. 
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Flow Cytometry, Fluorescence Activated Cell Sorting and Western Blotting 

FACS 

TZM-BL cells were harvested with a PBS dissociation buffer without enzyme.  

They were washed and stained with: primary antibody Mab hCCR5 (aidsreagent.org part 

numbers: 45531.111, 45523.111), which contains the IgG2a isotype from a Balb/c 

mouse; and secondary antibody Goat Anti-Mouse IgG2a (γ2a chain specific) conjugated 

to Fluorescein (Southern Biotech #1080-02).  Fluorescence intensity was analyzed by 

flow cytometry of 10,000 events (using a BD FACS Canto II). 

 Perform transfections in 12 well plates as if repeating mRNA abundance: [10 nM] 

siRNA applied once per day for two days.  Most printed protocols are for intracellular 

proteins.  As a result they permeabilize the cells with Tween-20 or methanol, then fix 

them with 0.4-1.0% formaldehyde; while some protocols work in reverse order.  In this 

particular case, the CCR5 antibody is theoretically specific to the second extracellular 

loop, but the antibody performs much better when applied to permeabilized cells. 

 After cells grow with siRNA for 48 hours, harvest them into 1.6 ml eppendorf 

tubes by rinsing with non-enzymatic PBS dissociation buffer; aliquot cells to 1 ml and let 

cells incubate 3-8 minutes at 37°.  Fix cells by applying 0.2-0.6% formaldehyde at 25° for 

5-10 minutes as per [203].  Pellet cells at 400 g for 2 minutes, suspend in 100 µl 5% FBS 

in PBS.  Permeabilize cells with either 1 ml PBS-Tween (the same formulation used in 

Western blotting, in my hands both work equivalently) or 1 ml methanol.  Sit on ice for 

20-30 minutes as per[253]. 

 Pre-rinse cells with 5% FBS PBS and pellet.  Block with 10% FBS PBS for 15-30 

minutes.  Rinse with 5% FBS PBS and pellet.  Incubate with 1:500 – 1:5,000 dilution 

primary antibody for 30-60 minutes on ice.  Rinse three times in 5% FBS PBS.  Incubate 

with 1:500 secondary antibody on ice in the dark for 15-60 minutes.  Rinse three times in 
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5% FBS PBS.  Aliquot cells for FACS analysis by resuspending in 500 µl 5% FBS PBS 

in a 12x75 Fisher FACS polystyrene culture tube (14-956-3C) and keep on ice. 

Western Blotting 

 Cell lysates were prepared from TZM-BL cells transiently transfected with siRNA 

against hSmg1, hRent1, hUPF2 and analyzed by sodium dodecyl sulfate-poly- 

acrylamide gel electrophoresis and Western blotting as previously described  [254] with 

changes as per [255]. Westerns were performed with antibodies against 

hCCR5(BioLegend Mouse IgG anti hCCR5  #321702) followed by secondary antibodies 

conjugated to horseradish peroxidase (HRP) (SantaCruz Goat IgG-HRP #sc-2005).   

The lysates were also probed with anti- tubulin antibodies (Mouse IgG anti Tubulin, a 

kind gift from the Song laboratory) followed by secondary antibodies against mouse IgG 

conjugated to HRP.  (unsuccessfully with SantaCruz #sc-20227 Lot # A0307 Goat 

polyclonal  IgG followed by SantaCruz #sc-2020 Donkey anti-goat IgG-HRP)  After 

probing, blots were exposed using Luminol (SantaCruz #sc-2048) and a Fujifilm CCD 

camera. 

Northern Blotting 

All RNA for northern blots was extracted with acid phenol/chloroform (pH = 4.5) 

from mid-logarithmic cell cultures [200], or with TRIzol© Reagent following the 

manufacturer’s directions (Invitrogen). RNA (northern) blotting was performed as 

previously described[78].  Equal amounts of RNA (1 µg, 2 µg, or 4µg) were separated 

through 1% MOPS-formaldehyde-agarose.  RNA samples were bottom-up transferred to 

Hybond-N (Amersham) membranes for 4-10 hours and UV cross linked.  Blots were 

hybridized with γ[32P] 5’-end-labeled oligonucleotides specific for U3 snoRNA (loading 

control) and the exogenous Renilla fragment (experimental) for 4-24 hours at 52-60° in a 

rolling incubator.  End-labelling was performed using the Roche T4 DNA kinase with 1 µl 
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of enzyme and 30-50 mCi γ[32P]-ATP at 25° (this is explicitly in contradiction to the 

protocol listed in the manual for the enzyme which states 37°, but I found 5-10x more 

specific product at RT).  After incubation, blots were rinsed 3-6 times in 2x SSC / 0.1% 

SDS for 15-30 minutes.  Messenger RNAs were identified using a GeneStorm 

phosphoimager (Bio-Rad) and quantified using QuantifyOne (Bio-Rad).  Due to the large 

size differences in the mRNAs observed, no stripping was performed, but blots were 

rinsed with 1x SSC / 0.2% SDS between probes.  Blots were repeated three or more 

times and averaged to generate graphs. 

Plasmid Construction 

Synthetic oligonucleotides (IDT DNA) used for plasmid construction are listed in 

appendices D and E.  The plasmids generated are in appendices B and C.  Insertions 

were amplified using PCR and ligated into appropriate backbone plasmids.  Mutagenesis 

was performed using QuikChange (Agilent) site-directed mutagenesis kits.  Clones were 

confirmed by sequencing (Genewiz).  Examples of each cloning method and site-

directed mutagenesis method follow: 

PCR Amplification, Restriction Enzyme Digestions, and Ligation. 

The PRF signal from Homo sapiens CCR5 was amplified from pCMV-XL4 

(pJD819) containing the CCR5 open reading frame (Origene) using oligonucleotides with 

Bam HI and Sal I restriction sites.  PCR products were ligated into p2luci 

(pJD175e)[204]. 

Choose oligonucleotides in two pieces: the first includes an appropriate spacer 

(often 4A), a restriction enzyme cutting site unique to both the cloned sequence and the 

multiple cloning site of the backbone plasmid; the second includes a region which is 

identical to the sequence of interest.  Take note of the melting temperature (Tm) of the 

identical sequence.  This will define the PCR annealing temperature. 
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The 4-6 nucleotidet spacer is important to ensure that restriction endonucleases 

efficiently cut the resulting dsDNA fragment.  The length of the identical sequence is not 

very important, but should be long enough to be unique against the genome(s) of the 

organisms used to maintain the resulting plasmid.  In practice, a Tm of 55-60° is often 

ideal.  The most common mistake when choosing oligonucleotides is to inappropriately 

reverse or complement the 3’ oligonucleotide.  Dilute the lyophilized oligonucleotides to 

[100 µM] when they arrive. 

Perform a PCR reaction using 10-100 pMol of each oligonucleotide and 10-200 

ng of template (usually plasmid).  The annealing temperature should be 3-7° less than 

the Tm of the overlapping sequence.  Annealing temperatures set too low result in non-

specific products or primer-dimers, while too high results in no product.  When using the 

Taq polymerase, the approximate rate of incorporation is 1 kb/min with an error rate of 1 

base / 11,000 incorporated nucleotides.  Thus products larger than 4 kb might require 

another polymerase. 

The fragment should be gel-purified to remove unincorporated oligonucleotides.  

The gel-purification process uses TAE and may leave behind large amounts of EDTA; 

DNA ligase and some restriction enzymes require Mg+2.  Therefore, ethanol precipitate 

the PCR product and elute in 10-30 µl water. 

Digest the resulting dsDNA fragment and template plasmid with the appropriate 

restriction enzymes.  Clean the resulting linearized plasmid and fragment before ligation.  

This may be done by PCR purification, gel purification, or ethanol precipitation.  Ideally 

the final elution should result in a 3:1 insert:vector molar ratio (This ration may change 

significantly depending on size and restriction site, blunt ends for example use 7:1 while 

very small fragments use 10:1).  Using OD260 to quantify the insert:vector is unreliable if 

the fragment is very short (< 200 bp) due to a skewed extinction coefficient or 
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contaminants from gel purification.  Thus it is often useful to quantify by electrophoresis 

and compare to a DNA ladder. 

Ligate the fragment and plasmid and transform bacteria for amplification.  While 

most  protocols now use rapid ligation (5 minutes at 25°), I have found that difficult 

ligations work best when using T3 DNA ligase (NEB) overnight at 16°. 

Oligonucleotide Annealing and Ligation. 

Oligonucleotides encoding the -1 PRF signals from the hIL2γ, human and mouse 

IL7α, hIL8α, hIL8β, hIL22α, and hIL27α receptor chains were purchased containing 15-

18 bases of internal overlap, PCR extended into a single Bam HI and Sal I containing 

product, and ligated into p2luci. 

This process is effectively the same as above, but the oligonucleotides are 

chosen specifically to anneal to each other and the PCR product is explicitly intended to 

be “primer-dimer.”  Therefore, the oligonucleotides chosen are longer and might need to 

be purified.  Perform all ligations at a 10:1 molar ratio of insert:vector and use T3 DNA 

ligase (NEB) overnight. 

Site Directed Mutagenesis and “Mega-oligo” Mutagenesis. 

pTRE-Rβ (pJD976), pTRE-Rβ-ARE (pJD975), and pTET-Off (pJD979) were kind 

gifts from Dr. G. Brewer[207].  Insertions of the CCR5 -1 PRF signal were performed via 

a modified version of the “mega-oligo” site directed mutagenesis protocol[256].  

Oligonucleotides (IDT) were chosen to include 23 nucleotides of the β-globin exon 1, 36 

nucleotides of Renilla luciferase on the 5’ side; and 23 nucleotides of β-globin exon 1, 15 

nucleotides of firefly luciferase on the 3’ side; and amplified from the CCR5 dual 

luciferase plasmid (pJD827).  The resulting 330+ nucleotide oligos were used with 

pTRE-Rβ template to generate pTRE-Rβ-CCR5 and variants (pJD973, wt CCR5; 
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pJD974, wt CCR5 and ARE; pJD977, synonymous mutation of CCR5 slippery heptamer; 

and pJD1058, mutation of CCR5 slippery heptamer to GCGCGCG). 

Choose primary oligonucleotides so that the 5’ contains all of the mutagenized 

bases and the 3’ is reverse complement of the template.  Secondary oligonucleotide 

generation is performed via PCR using 10-100 pMoles each primary oligonucleotide and 

10-100 ng template plasmid.  30-45 cycles of PCR are used with an appropriate 

annealing temperature (2-6° less than the Tm of the wild-type) and an appropriate 

extension time (often 30 seconds) at 64-68°. 

The resulting short double-stranded DNA product is gel-purified, ethanol precipitated 

and eluted in 5-20 µl water.  50-100% of this purified secondary oligonucleotide is used 

in the agilent Quikchange SDM protocol without modification. 

Quantitative Real Time Reverse Transcription PCR. 

Mammalian Cells 

For qPCR analyses of the β-globin based reporters, assays were performed as 

previously described [207] with the following modifications.  The dual luciferase 

readthrough control was used for co-transfections rather than EGFP.  RNA samples for 

qPCR were isolated using the RNAqueous kit (Ambion), digested with rDNAse (Ambion) 

and assayed for DNA contamination using agarose gel electrophoresis and/or OD260/280 

measurements.  The remaining samples were reverse transcribed using the iScript 

cDNA kit (Bio-Rad).  The resulting cDNAs were diluted to 1:50-10,000 depending on 

mRNA concentration. Reactions were performed using 10 µl of LightCycler 480 SYBR 

Green I Master mix (Roche), 0.2-0.3 µM of each oligonucleotide, 2 µl of cDNA, and 

water to 20 µl/well.  Best results were observed when all volumes were increased by 

10%.  All samples were assayed for genomic DNA contamination by performing the 

assay using wells containing 1-2 µl of digested mRNA instead of cDNA.  Reactions were 



 120 
 

amplified using either a Roche 480 LightCycler or a Bio-Rad CFX 96 thermocycler as 

follows: 25⁰C for 10 seconds, 95⁰C for 5 min, followed by 45-60 cycles of 95⁰C for 10 

seconds, 52⁰C for 15 seconds, and 72⁰C for 15 seconds.  Melting curves were 

monitored by taking readings every 0.5⁰C from 55-95⁰C.  The time-course qPCR 

analyses were performed with a 53⁰C and 54⁰C annealing temperatures and 20 second 

extension times with no significant changes in results.  For qPCR analyses of the full 

length CCR5 mRNA, assays were performed as described for the β-globin assays, but 

using oligonucleotides specific for β-micoglobulin and CCR5 [257].  Reactions were 

amplified using the same conditions as for the β-globin constructs except all reactions 

used 20 seconds at 55⁰C for extension. 

Yeast Cells 

Full length EST2 expression vectors (pJD641), EST2 mutant vectors(pJD796), 

and null plasmids(pJD315)  were transformed into WT(JD1281), EST2 deletion(JD1287), 

UPF2(JD1288) and EST2/UPF2(JD1276) deletion strains.  Total RNA was extracted 

with acid phenol/chloroform from mid-logarithmic cell cultures.  To reduce nonspecific 

amplification, RNA was treated with DNase I before reverse transcription using Turbo 

DNase (Ambion).  cDNA was generated using the Bio-Rad iScript cDNA synthesis kit 

and used in the LightCycler real-time PCR system.  PCR was performed as in 

mammalian cell cultures with the following cycle conditions: 1 cycle of 95°C for 10 min; 

40 cycles of 95°C for 10 s, 54°C for 20 s, and 72°C for 20 s.  U3 snoRNA was chosen as 

a reference gene. 

RNA Extraction 

 Mammalian Cells 

All RNA extractions of mammalian RNA were performed using either the Trizol 

reagent[258] or the Ambion RNAqueous kit with no modifications. 



 121 
 

 Yeast Cells 

RNA extractions from yeast require an initial step to disrupt the cell wall.  This 

may be performed using a lysis buffer and agitating the cells in 200-500 µl of glass 

beads for 1-5 minutes.  Once this is complete, the rest of the extraction process 

continues with no modification. 

SHAPE 

SHAPE was performed as previously described[215] with no known changes.  

RNA for SHAPE was generated by PCR amplifying T7 or T3 containing dsDNA from 

dual-luciferase plasmids and using the mMessage Machine transcription kit.  The 

resulting RNA was passed through a sephadex G-25 column and ethanol precipitated 

before analysis. 

Southern Blotting 

Southern blots were performed to observe telomere differences as previously 

described with changes[86].  Yeast genomic DNA was collected using the bust n’ grab 

method[259].  Instead of end-label synthetic telomere-template oligonucleotides, the 

telomere template was PCR amplified from a plasmid (pJD972) which flanks the 

telomerase region with M13 and T7.  ssRNA was transcribed using the mMessage 

Machine kit (Ambion) and α[32P] ATP to generate probes with high specific activity.  

Unincorporated nucleotides were removed by passing the probe through a sephadex G-

25 (or G-50) column.  Yeast genomic DNA was cut with Pst I (Xho I when Pst I was 

exhausted) and electrophoresed through a 1% agarose gel.  DNA was nicked in a 

crosslinker and denatured in 0.5 M NaOH, 1.5 M NaCl for 30-45 minutes.  The gel was 

rinsed in water before placing in a blotting solution of 0.2 M NaOH, 1.5 M NaCl while 

preparing a bottom-up blotting apparatus (identical to that used for Northerns) with a 

Hybond N+ membrane.  Blots transferred overnight, were rinsed 2-3 times in 2x SSC 
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and crosslinked.  After crosslinking, blots were pre-incubated with Church’s buffer at 65° 

for 15-60 minutes before adding the probe.  Blots hybridized overnight at 57-60°, 

washed 4 times with 1x SSC, 0.5% SDS followed by 1-3 washes with 0.1x SSC, 0.1% 

SDS.  The blots were wrapped in a plastic baggie, sealed, exposed to a phosphoimager 

screen, and analyzed as per a Northern.  Church’s buffer contains:  2 ml 0.5 M EDTA pH 

8.0 (1 mM), 2 ml 85% (w/v) H3PO4, 67.5 g Na2HPO4, 70 g SDS, and water to 1 L.  On at 

least one occasion 200 µl ssDNA as added to the Church’s buffer with no noticeable 

effect. 

Time Course Assays 

Mammalian 

mRNA decay time course assays were performed as previously described with 

minor changes[207].  RNA isolations were performed immediately at each timepoint after 

transcriptional arrest using the RNAqueous kit (Ambion) rather than after freezing 

samples on dry ice. 

Yeast 

mRNA decay time course assays were performed as previously described with 

minor changes[199].  The EST2 mRNA stability vector (pJD754), a readthrough control 

(pJD753) and premature stop codon containing control (pJD828) were transformed into 

rpb1-1 (JD977) and rpb1-1/Upf1∆ cells. 

Transformations of rpb1 mutant cells must be performed entirely at room 

temperature, otherwise the temperature sensitive RNA polymerase may kill the cells.  In 

order to accommodate this strain, transformations were performed with 2-3x more cell 

mass than usual, the ssDNA was boiled and then allowed to return partially to room 

temperature before addition, and the incubation with plasmid before plating was 

extended to 6-8 hours.  Transformed cells were grown at 25° or 30° with no noticeable 
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difference.  At collection time, media was pre-warmed to 52° and added so that the 

average temperature rose to 42°, the non-permissive temperature.  Cells were collected 

and frozen immediately in liquid N2.  mRNA was collected and Northern analyses/qPCR 

were performed as usual.  

Transfections 

Plasmid 

 All plasmid transfections were performed using the Fugene 6 (initially Roche, 

now Promega) reagent.  Most efficient transfections were observed using the 3:1 ratio. 

 Allow cells to grow to 50-100% confluency, trypsinize and split into 6-24 well 

plates.  Let them grow in the plates to 50-75% confluency.  Assuming 24 well plates, 

refresh the media with 500 µl DMEM+ (DMEM supplemented with 10% irradiated fetal 

bovine serum (FBS), 1x non-essential amino acids (NEAA), and [4 mM] glutamine).  In 

eppendorf tubes, mix 20 µl DMEM(without additives), 0.6 µl Fugene, and 300 ng 

plasmid, in that order for every well transfected.  Let sit for 30-90 minutes and add 

dropwise to each well.  Wait 1-2 days and assay. 

miRNA 

 Cells were transfected with the following miRNA precursors:  hsa-miR-141, hsa-

miR-711, hsa-miR-1224-5p, and hsa-miR-1205 using the siPORT reagent (Applied 

Biosystems/Ambion), or Lipofectamine for miRNA pulldowns (Invitrogen).  When 

performing initial miRNA transfections for dual luciferase, [30 nM] was used.  When 

performing the miRNA titration, four 1:10 dilutions were used starting at [5 nM].  

Transfections were performed into 15,000-40,000 cells in 500 µl DMEM+ using 25 µl of 

DMEM and 1 µl of siPORT reagent after incubating for 20 minutes at room temperature 

per well.  Media was replaced with fresh DMEM+ after 8-12 hours.  Dual luciferase 
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plasmid transfections were either performed at the same time or 24 hours later using the 

FuGene 6 reagent. 

siRNA 

Cells were transfected with synthetic RNA oligonucleotides specific to the mRNA 

of interest (AUF1, hRENT1, hUPF2, hSMG1, argonaute, hDKC1) or scrambled 

oligonucleotides using the HiPerFect transfection reagent (Qiagen).  Initial transfections 

were performed at [1, 5,10 nM], and [20 nM] for optimization.  Most final transfections 

were performed at [10 nM], but some used [5 nM].  Transfections were performed into 

30,000-40,000 cells (via hemacytometer) immediately after splitting cells in 500 µl of 

DMEM+ using 100 µl of DMEM and 3 µl of HiPerFect reagent after incubating for 15-20 

minutes at room temperature.  Media was replaced with fresh DMEM+ after 8-12 hours.   

Assays were performed 48-72 hours after siRNA transfection.  When other plasmids 

were also transfected, they were performed separately 24-48 hours after siRNA 

transfection using the Fugene 6 (Roche) reagent. 

Transformations 

Bacteria 

 Transformations of E. coli were performed as described previously using the 

calcium chloride method[196].  When transformations were performed for difficult 

plasmids (larger than 10,000 bp or SDM products), a slightly modified method was using 

as described in the QuikChange SDM manual.  Incubate 20-50 µl of cells with 1-4 µl β-

mercaptoethanol for 10 minutes on ice.   Add plasmid, incubate on ice for 30-120 

minutes.  Heat shock at 42° for 30 seconds.  Incubate again on ice for 10 minutes.  Add 

100-300 µl pre-warmed LB, incubate at 37° for 1 hour, plate. 
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Yeast 

Yeast cells were transformed using the alkali cation method[197] with some changes.  

First check yeast genetic background and plasmid maps to ensure that the proper 

auxotrophies are maintained.  Grow 2-3 ml yeast overnight in appropriate non-selective 

(for your plasmid) media.  Start an aliquot of salmon sperm ssDNA boiling.  Aliquot yeast 

into 1.6 ml eppendorf tubes and spin down at < 500 g.  (2,000 rpm on a desktop 

centrifuge, 1,200 rpm on the Sorval at maximum.)  Remove media and resuspend in 200 

µl 0.1 M LiOAc/TE, repeat and resuspend in 100 µl 0.1 M LiOAc/TE.  Add 15 µl ssDNA 

for each transformation (this is approximately double the original protocol).  Add 500-

2,000 ng plasmid and 500-700 µl PEG/LiOAc/TE (this consists of 8 ml PEG 5,000, 1 ml 

1.0 M LiOAC , and 1 ml 10x TE, which is more PEG than the default protocol due to a 

labeling mistake, but seems to work better).  Incubate 90-900 minutes at 30°.  Heat 

shock at 42° for 15 minutes.  Pellet the cells, rinse and resuspend them in 100-400 µl 

water and plate.  Some strains (as noted) were performed at 25° without a heat shock. 
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Appendices 

Appendix 1: Yeast Strains Used 

Strain 
number 

Phenotype Purpose 

JD1158 BY4742 MATα  his3∆1 leu2∆0 lys2∆0 ura3∆0   WT strain for steady states assays 
and frameshifting 

JD1181 BY4742 MATα upf3::Kan
R
 his3∆1 leu2∆0 lys2∆0 

ura3∆0  
NMD deficient strain for steady 
states 

JD1367 yRP2077  MATa upf1::KanMX4 his3∆ leu2∆ met15∆ 
ura3∆ 

NMD deficient strain for steady 
states, Parker lab 

JD1170 MATα xrn1::Kan
R
 his3∆1 leu2∆0 ura3∆0 5’-> 3’ decay deficient strain for 

steady states 
JD1345 MATα ski2::Kan

R
 his3∆1 leu2∆0 ura3∆0 Exosome / 3’ -> 5’ deficient for 

steady states 
JD19 MATα leu2∆0 ade2∆0 ura3∆0 PEP4::HIS3 

NUC1::LEU2 ski3 [L-AHN M1] 
Exosome / 3’ -> 5’ deficient for 
steady states 

JD1122 MATa lys2∆0 ura3∆0 ho::LYS2 leu2::hisG, his4b  
dcp1::hisG  [L-AHN M1] 

Decapping deficient for steady 
states 

JD1363 yRP2056  MATa;   his3∆ leu2∆ met15∆ ura3∆ 
dom34::KanMX4 

No-go decay deficient for steady 
states, Parker lab 

JD977 MATα ura3-52 trp1-∆1 his4-38 leu2-1 rpb1-1 RNA pol2β, temperature sensitive 
for time courses 

JD978 MATα ura3-52 trp1-∆1 his4-38 leu2-1 rpb1-1 
upf1∆::HISG 

RNA pol2β, temperature sensitive 
and NMD deficient 

JD1263 MAT a/α trp1∆ /trp1∆ leu2∆/leu2∆ can1-100/can1-100 
ade2-1/ade2-1 est2∆::URA3/EST2 upf2∆::HIS3/UPF2 
VR-ADE2-TEL/VR-TEL (YJB2659) 

Parental strain of est2 mutant 
strains used in this study, Berman 
lab 

JD1281 MAT a trp1∆ leu2∆ can1-100 ade2-1 ura3-1 his3-11 
VR-ADE2-TEL 

WT strain for assaying telomere 
activity 

JD1287 MAT α trp1∆ leu2∆ can1-100 ade2-1 est2∆::URA3 
his3-11 VR-ADE2-TEL 

Telomerase deficient strain to 
assay telomeres 

JD1288 MAT a trp1∆ leu2∆ can1-100 ade2-1 ura3-1 
upf2∆::HIS3 VR-ADE2-TEL 

NMD deficient strain to assay 
telomeres 

JD1276 MAT a trp1∆ leu2∆ can1-100 ade2-1 est2∆::URA3 
upf2∆::HIS3 VR-ADE2-TEL 

Telomerase and NMD deficient 
strain to assay telomeres 

Table 6: Yeast strains used in Chapter 3. 
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Appendix 2: Yeast Plasmids 

Plasmid Name Backbone 
Plasmid 

Insertion 

pJD0375[200] pRS316[260] Dual luciferase cassette in pRS316, genomic context (b) 
pJD0376[200] pJD0375 LA frameshift signal sequence inserted in dual luciferase reporter, 

viral context (b) 
pJD0520[23] pJD0375 SPR6 PRF sequence inserted in dual luciferase reporter, viral 

context (c,d) 
pJD0521[23] pJD0375 EST2 PRF sequence inserted in dual luciferase reporter, viral 

context (c,d) 
pJD0519[23] pJD0375 BUB3 PRF sequence inserted in dual luciferase reporter, viral 

context (c,d,a) 
pJD0518[23] pJD0375 TBF1 PRF sequence inserted in dual luciferase reporter, viral 

context (c,d) 
pJD0476[23] pJD0375 PPR1 PRF sequence inserted in dual luciferase reporter, viral 

context (e,a) 
pJD0477[23] pJD0375 NUP82 PRF sequence inserted in dual luciferase reporter, viral 

context (e) 
pJD0478[23] pJD0375 TBF1 PRF sequence inserted in dual luciferase reporter, viral 

context (e) 
pJD0522 pJD0375 FLR1 PRF sequence inserted in dual luciferase reporter, viral 

context (e) 
pJD0523 pJD0375 FKS1 PRF sequence inserted in dual luciferase reporter, viral 

context (e) 
pJD0624 pJD0375 NUP82 PRF sequence inserted in dual luciferase reporter, genomic 

context (e) 
pJD0625 pJD0375 CTS2 PRF sequence inserted in dual luciferase reporter, genomic 

context (e) 
pJD0626 pJD0375 SPR6 PRF sequence inserted in dual luciferase reporter, genomic 

context (e) 
pJD0753[202] pJD0741[78] Readthrough containing small amounts of Renilla and Firefly in 

PGK1 reporter (e) 
pJD0765[202] pJD0753 Premature termination codon in PGK1 reporter (e,a) 
pJD0748[202] pJD0753, 

pJD0520 
SPR6 PRF sequence inserted in PGK1 reporter (a) 

pJD0938[202] pJD0753, 
pJD0520 

SPR6 PRF sequence inserted in PGK1 reporter v2 (a,f) 

pJD0754[202] pJD0753, 
pJD0521 

EST2 PRF sequence inserted in PGK1 reporter (a) 

pJD0755[202] pJD0753, 
pJD0519 

BUB3 PRF sequence inserted in PGK1 reporter (a,e) 

pJD0756[202] pJD0753, 
pJD0518 

TBF1 PRF sequence inserted in PGK1 reporter (a) 

pJD0818[202] pJD0753, 
pJD0520 

SPR6 slipsite mutant in PGK1 reporter (a) 

pJD0806[202] pJD0753, 
pJD0521 

EST2 slipsite mutant in PGK1 reporter (a) 

pJD0812[202] pJD0753, 
pJD0519 

BUB3 slipsite mutant in PGK1 reporter (a) 

pJD0813[202] pJD0753, 
pJD0518 

TBF1 slipsite mutant in PGK1 reporter (a) 
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pJD0638[188] YEplac128 Full length EST2 high copy plasmid 
pJD0641 pJD0638 Full length EST2 low copy plasmid (e) 
pJD0796[202] pJD0641 Mutated full length EST2 low copy plasmid (a,e) 
pJD0972[188] pTNT Yeast telomeric sequence under T7 promoter control 
pJD0659 pJD0375 EST2 PRF sequence (position 72) inserted in dual luciferase 

reporter, genomic context (e,a) 
pJD0660 pJD0375 EST2 PRF sequence (position 1215) inserted in dual luciferase 

reporter, genomic context (e,a) 
pJD0661 pJD0375 EST2 PRF sequence (position 1326) inserted in dual luciferase 

reporter, genomic context (a,e) 
pJD0662 pJD0375 EST2 PRF sequence (position 1653) inserted in dual luciferase 

reporter, genomic context (e,a) 
pJD0667 pJD0375 EST2 PRF sequence (position 1995) inserted in dual luciferase 

reporter, genomic context (a,e) 
pJD0673 pJD0641 Full length EST2 low copy plasmid with mutations to the position 

1215 PRF sequence (e) 
pJD0674 pJD0641 Full length EST2 low copy plasmid with mutations to the position 

1995 PRF sequence (e) 
pJD0685 pJD0641 Full length EST2 low copy plasmid with mutations to the position 

1326 PRF sequence (a) 
pJD0686 pJD0641 Full length EST2 low copy plasmid with mutations to the position 72 

PRF sequence (a) 
pJD0742 pJD0375 PPR1 PRF sequence (position 660) inserted in dual luciferase 

reporter, viral context (a) 
pJD0743 pJD0375 PPR1 PRF sequence (position 1188) inserted in dual luciferase 

reporter, viral context (a) 
pJD0744 pJD0375 PPR1 PRF sequence (position 1260) inserted in dual luciferase 

reporter, viral context (a) 
pJD0745 pJD0375 PPR1 PRF sequence (position 2094) inserted in dual luciferase 

reporter, viral context (a) 
pJD0746 pJD0375 PPR1 PRF sequence (position 525) inserted in dual luciferase 

reporter, viral context (a) 
pJD0757 pJD0753 CTS2 PRF sequence inserted in PGK1 reporter (a) 
pJD0758 pJD0753 PPR1 PRF sequence (position 660) inserted in PGK1 reporter (a) 
pJD0759 pJD0753 PPR1 PRF sequence (position 1188) inserted in PGK1 reporter (a) 
pJD0760 pJD0753 PPR1 PRF sequence (position 1260) inserted in PGK1 reporter (a) 
pJD0761 pJD0753 PPR1 PRF sequence (position 2094) inserted in PGK1 reporter (a) 
pJD0766 pJD0753 EST2 PRF sequence (position 1215) inserted in PGK1 reporter (a) 
pJD0797 pJD0375 SPR6 PRF sequence inserted in dual luciferase reporter, viral 

context, mutated slip site (a) 
pJD0806 pJD0754 EST2 PRF sequence inserted in PGK1 reporter, slip site mutant (a) 
pJD0807 pJD0757 CTS2 PRF sequence inserted in PGK1 reporter, slip site mutant (a) 
pJD0808 pJD0521 EST2 PRF sequence inserted in dual luciferase reporter, viral 

context, mutated slip site (l) 
pJD0811 pJD0754 EST2 PRF sequence inserted in PGK1 reporter, stem 1 mutant (a) 
pJD0812 pJD0755 BUB3 PRF sequence inserted in PGK1 reporter, slip site mutant (a) 
pJD0813 pJD0756 TBF1 PRF sequence inserted in PGK1 reporter, slip site mutant (a) 
pJD0814 pJD0756 TBF1 PRF sequence inserted in PGK1 reporter, stem 1 mutant (a) 
pJD0815 pJD0757 CTS2 PRF sequence inserted in PGK1 reporter, stem 1 mutant (a) 
pJD0816 pJD0759 PPR1 PRF sequence inserted in PGK1 reporter, slip site mutant (a) 
pJD0817 pJD0748 SPR6 PRF sequence inserted in PGK1 reporter, stem 1 mutant (a) 
pJD0818 pJD0748 SPR6 PRF sequence inserted in PGK1 reporter, slip site mutant (a) 
pJD0859 pJD0375 PDR5 PRF sequence (position 300) inserted in dual luciferase 
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reporter, viral context (a) 
pJD0860 pJD0837 PDR5 PRF sequence (position 3027) inserted in dual luciferase 

reporter, viral context (a) 
pJD0972 pBC6 Yeast telomeric sequence flanked by M13 
pJD0984 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1215 PRF sequence (a,j) 
pJD0985 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1215,1326,1653 PRF sequence (a,j) 
pJD0986 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1215,1326,1995 PRF sequence (a,j) 
pJD0987 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1326,1653 PRF sequence (a,j) 
pJD0988 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1215,1995 PRF sequence (a,j) 
pJD0989 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1326 PRF sequence (a,j) 
pJD990 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1215,1653 PRF sequence (a,j) 
pJD0991 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1326,1653,1995 PRF sequence (a,j) 
pJD0992 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

1653 PRF sequence (a,j) 
pJD0993 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

72,1995 PRF sequence (a,j) 
pJD0994 pJD0641 Full length EST2 low copy plasmid with mutations to the positions 

1215,1326 PRF sequence (a,j) 
pJD0995 pJD0984 Full length EST2 low copy plasmid with mutations to the positions 

1215,1326 PRF sequence (a,j) 
pJD0996 pJD0989 Full length EST2 low copy plasmid with mutations to the positions 

72,1326,1995 PRF sequence (a,j) 
pJD0997 pJD0674 Full length EST2 low copy plasmid with mutations to the positions 

1215,1995 PRF sequence (a,j) 
pJD0998 pJD0990 Full length EST2 low copy plasmid with mutations to the positions 

72,1215,1653,1995 PRF sequence (a,j) 
pJD0999 pJD0673 Full length EST2 low copy plasmid with mutations to the positions 

72,1653 PRF sequence (a,j) 
pJD1000 pJD0375 STN1 PRF sequence (position 885) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1001 pJD0375 STN1 PRF sequence (position 1203) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1002 pJD0375 EST1 PRF sequence (position 1203) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1003 pJD0375 EST1 PRF sequence (position 1272) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1004 pJD0375 EST1 PRF sequence (position 1920) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1005 pJD0375 CDC13 PRF sequence (position 1270) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1010 pRS316 CBF5 wild-type in pRS316 (k,a) 
pJD1011 pRS316 CBF5 S36A in pRS316 (k,a) 
pJD1012 pRS316 CBF5 D95A in pRS316 (k,a) 
pJD1013 pJD0685 Full length EST2 low copy plasmid with mutations to the position 

1326,1995 PRF sequence (a,j) 
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pJD1014 pJD0992 Full length EST2 low copy plasmid with mutations to the position 
1326,1995 PRF sequence (j,a) 

pJD1015 pJD0999 Full length EST2 low copy plasmid with mutations to the position 
1326,1995 PRF sequence (a,j) 

pJD1016 pJD0994 Full length EST2 low copy plasmid with mutations to the position 
1215,1326,1995 PRF sequence (j,a) 

pJD1017 pJD0659 EST2 PRF sequence (position 72) inserted in dual luciferase 
reporter, viral context (a) 

pJD1018 pJD0660 EST2 PRF sequence (position 1215) inserted in dual luciferase 
reporter, viral context (a) 

pJD1019 pJD0661 EST2 PRF sequence (position 1326) inserted in dual luciferase 
reporter, viral context (a) 

pJD1020 pJD0667 EST2 PRF sequence (position 1995) inserted in dual luciferase 
reporter, viral context (a) 

pJD1021 pJD0659 EST2 PRF sequence (position 72) inserted in PGK1 reporter (a) 
pJD1022 pJD0992 Full length EST2 low copy plasmid with mutations to the positions 

72,1215,1995 PRF sequence (j,a) 
pJD1023 pJD1014 Full length EST2 low copy plasmid with mutations to the position 

72,1326,1995 PRF sequence (a,j)  CHECK THIS AGAIN 
pJD1024 pJD1014 Full length EST2 low copy plasmid with mutations to the position 

1215,1326,1995 PRF sequence (j,a) 
pJD1025 pJD0994 Full length EST2 low copy plasmid with mutations to the positions 

1215,1326,1653 PRF sequence (a,j) 
pJD1026 pJD0992 Full length EST2 low copy plasmid with mutations to the positions 

1326,1653 PRF sequence (j,a) 
pJD1027 pJD1016 Full length EST2 low copy plasmid with mutations to the position 

1215,1326,1653,1995 PRF sequence (j,a) 
pJD1028 pJD0375 FKS1 PRF sequence inserted in dual luciferase reporter, genomic 

context (a) 
pJD1029 pJD0375 FLR1 PRF sequence inserted in dual luciferase reporter, genomic 

context (a) 
pJD1030 pJD0375 PPR1 PRF sequence (position 660) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1031 pJD0375 PPR1 PRF sequence (position 1260) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1032 pJD0375 PPR1 PRF sequence (position 2094) inserted in dual luciferase 

reporter, genomic context (a) 
pJD1036 pRS314 CBF5 wild-type in pRS314 (a) 
pJD1037 pRS314 CBF5 D95A in pRS314 (a) 
pJD1038 pJD1000 STN1 PRF sequence (position 885) inserted in dual luciferase 

reporter, viral context (a) 
pJD1039 pJD1001 STN1 PRF sequence (position 1203) inserted in dual luciferase 

reporter, viral context (a) 
pJD1040 pJD1002 EST1 PRF sequence (position 1203) inserted in dual luciferase 

reporter, viral context (a) 
pJD1041 pJD1003 EST1 PRF sequence (position 1272) inserted in dual luciferase 

reporter, viral context (a) 
pJD1043 pJD1004 EST1 PRF sequence (position 1920) inserted in dual luciferase 

reporter, viral context (a) 
pJD1048 pRS313 CBF5 wild-type in pRS313 (a,l) 
pJD1049 pRS313 CBF5 D95A in pRS313 (a,l) 
pJD1070 pJD0753 EST2 PRF sequence (position 72) inserted in PGK1 reporter (a) 
pJD1071 pJD0753 EST2 PRF sequence (position 1326) inserted in PGK1 reporter (a) 
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pJD1072 pJD0753 EST2 PRF sequence (position 1995) inserted in PGK1 reporter (a) 
pJD1073 pJD0753 STN1 PRF sequence (position 885) inserted in PGK1 reporter (l,a) 
pJD1074 pJD0753 STN1 PRF sequence (position 1203) inserted in PGK1 reporter (l,a) 
pJD1075 pJD0753 EST1 PRF sequence (position 1203) inserted in PGK1 reporter (l,a) 
pJD1076 pJD0753 EST1 PRF sequence (position 1272) inserted in PGK1 reporter (l,a) 
pJD1077 pJD0753 EST1 PRF sequence (position 1920) inserted in PGK1 reporter (l,a) 
Table 7: Plasmids used with yeast 

The complete sequences of these plasmids may be found at http://github.com/abelew/plasmids/.  
“Genomic context” notes that the downstream ORF is in the same reading frame as the upstream 
ORF; “viral context” notes that the downstream ORF is in the -1 frame with respect to the 
upstream ORF. 

Created by: a.  Ashton Belew;  b. Jason Harger; c. Rasa Rakauskaitė; d. Ewan Plant; e. Jonathan Jacobs; f. Hamid-Reza 
Shahshahan; g. Sharmishtha Musalgaonkar; h. Bryan Fleming; i. Lara Hause; j. Curt Kugel; k. Rachel Niederer; l. Vivek 
Advani; m. Sergey Sulima; n. Jessica Neirermeirer   
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Appendix 3: Mammalian Plasmids 

Plasmid Name Backbone 
Plasmid 

Insertion 

pJD0175e P2luc[204] pJD175e is identical to p2luc 

pJD0175f P2luci [204] pJD175f is identical to p2luci 

pJD0187.wt[261] P2luci Insertion of the HIV-1 PRF signal into the dual luciferase plasmid 

pJD0827 pJD0175e Insertion of the CCR5 PRF signal into the dual luciferase plasmid (a) 

pJD0835 pJD0175e Insertion of the homo sapiens IL7α PRF signal into the dual 
luciferase plasmid (g,a) 

pJD0836 pJD0175e Insertion of the mus musculus IL7α PRF signal into the dual 
luciferase plasmid (i,a) 

pJD0844 pJD0827 Mutation of the CCR5 slip site in the dual luciferase plasmid (n,a) 

pJD0845 pJD0827 Mutation of the CCR5 stem 2, 5’ side in the dual luciferase plasmid 
(n,a) 

pJD0846 pJD0827 Mutation of the CCR5 stem 2, 3’ side in the dual luciferase plasmid 
(n,a) 

pJD0847 pJD0175e Insertion of the homo sapiens IL27 PRF signal into the dual 
luciferase plasmid (a) 

pJD0848 pJD0827 Complementation mutation of the CCR5 stem 2 in the dual luciferase 
plasmid (h,a) 

pJD0850 pJD0827 Partial mutation (3 bases) of the CCR5 stem 1, 3’ side in the dual 
luciferase plasmid (h,a) 

pJD0851 pJD0827 Partial mutation (3 bases) of the CCR5 stem 1, 5’ side in the dual 
luciferase plasmid (h,a) 

pJD0852 pJD0827 Complementation mutation (3 bases) of the partial CCR5 stem 1 in 
the dual luciferase plasmid (h,a) 

pJD0854 pJD0827 Partial mutation (9 bases) of the CCR5 stem 1, 5’ side in the dual 
luciferase plasmid (h,a) 

pJD0855 pJD0827 Complementation mutation (9 bases) of the partial CCR5 stem 1 in 
the dual luciferase plasmid (h,a) 

pJD0856 pJD0827 Partial mutation (12 bases) of the CCR5 stem 2, 5’ side in the dual 
luciferase plasmid (h,a) 

pJD0857 pJD0827 Partial mutation (12 bases) of the CCR5 stem 2, 3’ side in the dual 
luciferase plasmid (h,a) 

pJD0858 pJD0827 Complementation mutation (12 bases) of the partial CCR5 stem 2 in 
the dual luciferase plasmid (h,a) 

pJD0973 pTET Rabbit Β-globin reporter containing CCR5 PRF signal in exon 1 
(a,m) 

pJD0974 pTET Rabbit Β-globin reporter containing CCR5 PRF signal in exon 1 and 
the TNF-α ARE immediately after the stop (a) 

pJD0975 [207] pTET Rabbit Β-globin reporter containing the TNF-α ARE immediately after 
the stop 

pJD0976 [207] pTET Rabbit Β-globin reporter, readthrough 

pJD0977 pTET Rabbit Β-globin reporter containing a mutated CCR5 PRF signal in 
exon 1 (a) 

pJD0978 pTET Rabbit Β-globin reporter containing mutated CCR5 PRF signal in 
exon 1 and the TNF-α ARE immediately after the stop (a) 
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pJD0979 [207] pCMV The Cytomegalovirus transactivator protein used to increase 

pJD1009 pJD175e Insertion of the Dyskerin PRF signal into the dual luciferase plasmid 
(j,a) 

pJD1033 pEGFP GFP plasmid from Clonetech 

pJD1058 pJD973 Rabbit Β-globin reporter containing mutated CCR5 PRF signal to 
GCGCGCG in exon 1 (a) 

pJD1059 pJD1009 Rabbit Β-globin reporter containing dyskerin PRF signal in exon 1 
(j,a) 

pJD1060 pJD827 Insertion of the CCR5 PRF signal into the dual luciferase plasmid 
with slip site mutation to GCGCGCG (a) 

pJD1078 pJD827 Insertion of the CCR5PRF signal into the dual luciferase plasmid 
with a stop codon immediately after Renilla (a) 

pJD1214 pJD175f Insert OLA1(position 513) PRF signal into dual luciferase plasmid 
pJD1215 pJD175f Insert PNMA1(position 1740) PRF signal into dual luciferase plasmid 
pJD1216 pJD175f Insert NT5DC(position 841) PRF signal into dual luciferase plasmid 
pJD1217 pJD175f Insert SLC38A(position 981) PRF signal into dual luciferase plasmid 
pJD1218 pJD175f Insert MCM5(position 1004) PRF signal into dual luciferase plasmid 
pJD1219 pJD175f Insert MYO5C(position 3527) PRF signal into dual luciferase plasmid 
pJD1220 pJD175f Insert TDO2(position 744) PRF signal into dual luciferase plasmid 
pJD1221 pJD175f Insert ZGPAT(position 664) PRF signal into dual luciferase plasmid 
pJD1224 pJD175f Insert ATIC(position 1656) PRF signal into dual luciferase plasmid 
pJD1225 pJD175f Insert GABRE(position 735) PRF signal into dual luciferase plasmid 
pJD1226 pJD175f Insert GOLT1B(position 437) PRF signal into dual luciferase plasmid 

Table 8: Mammalian plasmid list 

The complete sequences of these plasmids may be found at:  http://github.com/abelew/plasmids   

Created by: a.  Ashton Belew;  b. Jason Harger; c. Rasa Rakauskaitė; d. Ewan Plant; e. Jonathan Jacobs; f. Hamid-Reza Shahshahan; g. 

Sharmishtha Musalgaonkar; h. Bryan Fleming; i. Lara Hause; j. Curt Kugel; k. Rachel Niederer; l. Vivek Advani; m. Sergey Sulima; n. 

Jessica Neirermeirer  
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Appendix 4: Cloning Oligonucleotides 

Order # Name Clone Sequence 

  
10882362 

YOR026
W, 
Forward 
(BUB3)  

pJD0521 TCGACAAAAAATTTCGCCAATTTAACGAAGACAGCGTGGTTA

AAATTGCTTGTTCGGACG 

10882363 YOR026,  
reverse 

pJD0521 GATCCGTCCGAACAAGCAATTTTAACCACGCTGTCTTCGTTA

AATTGGCGAAATTTTTTG 

10882364 YER115C, 
forward 
(SPR6) 

pJD0520 TCGACAAAAAAAATAAGGAAACCAATCACTCTGGAGCATGG

TTGCTTGTCAGGACCCGTGACTCTACGTTTCGGAAATTTTGCA

GGAATCAGAGAG 

10882365 YER115C, 
reverse 

pJD0520 GATCCTCTCTGATTCCTGCAAAATTTCCGAAACGTAGAGTCA

CGGGTCCTGACAAGCAACCATGCTCCAGAGTGATTGGTTTCC

TTATTTTTTTTG 

10882366 YLR318W
, forward 
(EST2) 

pJD0521 TCGACAAAAAATCAAATGGGTTTTTCGTTAGATCTCAATATTT

CTTCAATACCAATACAGGTGTATTGAAGTTATTTAATGTTGTT

AACGCTG 

10882367 YLR318W
, reverse 

pJD0521 GATCCAGCGTTAACAACATTAAATAACTTCAATACACCTGTA

TTGGTATTGAAGAAATATTGAGATCTAACGAAAAACCCATTT

GATTTTTTG 

10882368 YBR008C, 
forward 
(FLR1) 

pJD0522 TCGACAAAAAATCATCTTTCAGGGTGGATTGGAACGGCCCCA

GTGATCCTGAGAACCCACAAAACTGGCCCG 

10882369 YBR008C, 
reverse 

pJD0522 GATCCGGGCCAGTTTTGTGGGTTCTCAGGATCACTGGGGCCG

TTCCAATCCACCCTGAAAGATGATTTTTTG 

10882370 YLR342W
, forward 
(FKS1) 

pJD0523 TCGACAAATTTCCACTACTAAGATTGGTGCTGGTATGGGTGA

ACAAATGTTATCTCGTGAATATTATTATCTGGGTACCCAATTA

CCAGTACG 

10882371 YLR342W
, reverse 

pJD0523 GATCCGTACTGGTAATTGGGTACCCAGATAATAATATTCACG

AGATAACATTTGTTCACCCATACCAGCACCAATCTTAGTAGT

GGAAATTTG 

14892443 EST2 
PRF1 

pJD0659 CCCATTTTCGTTCTTCAGGGCATCCTTGAG 

14892444 EST2 
PRF2 

pJD0660 GATACTTGGAATAAACTTATCACTCCATTCATCGTAGAATATT

TTAAGACG 

14892445 EST2 
PRF3 

pJD0661 GCAAAATGAGGATTATACCTAAGAAGAGTAATAATGAGTTC

AGG 

14892446 EST2 
PRF4 

pJD0662 GAGGATACTCAAGGATGCGCTGAAGAACGAAAATGGG 

14892447 EST2 
PRF5 

pJD0667 GCCAGTCCTAGCCAGGACACATTAATATTGAAGCTGGCTGAC

GATTTCC 

14892448 GC - 
EST2 
PRF1 

pJD0659 CGAGGCCATTGAAGTGACCACACTTCAAGTTCTCTTTGTAAG

TACTGTTGG 

14892449 GC - 
EST2 
PRF2 

pJD0660 CGTCTTAAAATATTCTACGATGAATGGAGTGATAAGTTTATT

CCAAGTATC 

14892450 GC - 
EST2 
PRF3 

pJD0661 CCTGAACTCATTATTACTCTTCTTAGGTATAATCCTCATTTTG

C 

14892451 GC - 
EST2 
PRF4 

pJD0662 CCCATTTTCGTTCTTCAGCGCATCCTTGAGTATCCTC 
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14892452 GC - 
EST2 
PRF5 

pJD0667 GGAAATCGTCAGCCAGCTTCAATATTAATGTGTCCTGGCTAG

GACTGGC 

17964081 ppr1_1_L pJD0746 AAAAGTCGACCAAGTCTATGGCAAGCCCAC 

16573903 ppr1_1_R pJD0746 AAAAGGATCCGTCACCAGGAGATGTCCACAGTGTGCGGTG 

15189677 ppr1_2_L pJD0742 CCCCGTCGACCCGAGACAGGCAGCCCTATGAC 

15611268 ppr1_2_R pJD0742 CCCCGGATCCTGGATTGTTTTCAGCCTCTGC 

15611269 ppr1_3_L pJD0743 CCCCGTCGACCAACATGCGTCCGATAGTTG 

15611270 ppr1_3_R pJD0743 CCCCGGATCCCAATGCCTCCAACCTGTCTG 

16573905 ppr1_4_L pJD0744 TTTTGTCGACCATCACCACCAGGTATCCTAGCCTTTTGG 

16573904 ppr1_4_R pJD0744 AAAAGGATCCGATCTCGAGAGCTGGCGGATTGAAACCTAC 

16573906 ppr1_5_L pJD0745 AAAAGTCGACTGGTTACACGTGGGTAGCAGTTCAT 

16573907 ppr1_5_R pJD0745 AAAAGGATCCAACTGATGATAAAATTTTGTAACTCGTG 

15452929 YJL061W 
Left 

pJD0519 CCCCGTCGACCTGTATTAGTCCATGTGAACG 

 

15452930 YJL061W 
Right 

pJD0519 CCCCGGATCCTTTGCATGTCGATTGTAGTTGG 

15452931 YPL128C 
Left 

pJD0518 CCCCGTCGACTCAATCTCCAAATTCGTCAAC 

15452932 YPL128C 
Right 

pJD0518 CCCCGGATCCCATCCCATCTTCTAAATGAGG 

15452933 YDR371W 
Left 

pJD0625 CCCCGTCGACGGAGGGCATCTGGCCTTAC 

15452934 YDR371W 
Right 

pJD0625 CCCCGGATCCAGCTTCACCACATGACTCC 

15452935 YOR026
W Left 

pJD0519 CCCCGTCGACCCTATACACGGCTGGCTCTG 

15452936 YOR026
W Right 

pJD0519 CCCCGGATCCATCAGAAGTTGCCAGACATAG 

15452937 YER115C 
Left 

pJD0520 CCCCCGTCGACGATGAGTCCAAGTAGGAAG 

15452938 YER115C 
Right 

pJD0520 CCCCCGGATCCGGTAGCTTGCTGACATGCAC 

15896741 FKS1 left pJD1028 CCCCGTCGACGCTTCGTGGTGGTCGTATCAAG 

15896742 FKS1 right pJD1028 CCCCAGATCTCAAATGGAAACCAGGATGGGC 

15896743 FLR1 left pJD1029 CCCCGTCGACATCGTGCTCTGAATCCTCTACC 

16201602 FLR1 right pJD1029 CCCCAGATCTTGCCACTACATGACCAACGTG 

17446869 LEFT 
KPN1 
DLR 

pJD0753 CCCCGGTACCTCGTTCGTTGAGCGAGTTC 

17446870 RIGHT 
KPN1 
DLR 

pJD0753 CCCCGGTACCGGCGTCTTCCATGAGCTC 

17447689 left DLR 
MCS 
KPN1 
Amp. 

pJD0753 
based 

CCCCGGTACCTCGTTCGTTGAGCGAGTTC 

17447690 right DLR 
MCS 
KPN1 
Amp. 

pJD0753 
based 

CCCCGGTACCGGCGTCTTCCATGAGCTC 

18409882 EST2 
CDS Left 

pJD0641 CCCCGGATCCCTGATTTATACTCATGAAAATCTTATTCG 
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18409883 EST2 
CDS Right 

pJD0641 CCCCCTGCAGTCCTTATCAGCATCATAAGC 

27608740 CCR5 
PRF_451 
Renilla_S
al 

pJD0827 AAAAAAGTCGACCTGTCGTCCATGCTGTGTTTGCTTTAAAAG

CCAGG 

27608741 rev_CCR5 
PRF_451 
BamH1 
firefly 

pJD0827 AAAAAAGGATCCGACCTTCTTTTTGAGATCTGGTAAAGATGA

TTCCTGGGAG 

32541225 oligo_ile7r 
clone_f_h
s 

pJD0835 CCCCGTCGACACCAAGAAAAAATTTAAATGTGAGTTCAATCC

TGAAAGTTTCCTGGACTGCCAGATTCATAGGGTGGATGACAT 

32541226 oligo_ile7r 
clone_r_h
s 

pJD0835 CCCCGGATCCTTGCTGAGGAAACGTATCTTGCAGAAAACCTT

CCACTTCATCTCTAGCTTGAATGTCATCCACCCTATGAAT 

32944228 Mouse 
ile7r 
forward 

pJD0836 CCCCGTCGACTCACTTGAAAAAGAAATATTTAAAAAAAGAA

AGCATGATGTGGCCTACCGCCCAGCAAGGGGTGAAAGCAAC

TGGACG 

32944229 Mouse 
ile7r 
reverse 

pJD0835 CCCCGGATCCATACATTGCTTTTGGTCGTAGTTTTCTCTGTGG

GATTGTTGTTCTTGTGTGGAATAAAGATACATGCGTCCAGTT

GCTTTCA 

33735073 hs-ile27r 
5prime 

pJD0847 CCCCGTCGACAGGCAGGGGCGCCCCTTTCTGGCTGTGGCCGC

TGCCCAAGCTGGCGCTGCTGCCTCTGTTGTGGGTGCTTTTCCA

G 

33735074 hs-ile27r 
3prime 

pJD0847 CCCCGGATCCCCCAAGGGTCCAACTCCGTAGCACTGCAGTGG

CCCGGCGCTGCCCTGGGGACGCGTCCGCTGGAAAAGCACCCA

C 

36621974 PDR5 300 
3prime 

pJD0859 CCCCGGATCCCTTCCAAGCGCAACCTAAGGAATAAGGCTTAT

AAAAGTCAGGGTCTGCCGCACTTAGGTGAGCCATATTCTTAA

CCCA 

36621975 PDR5 300 
5prime 

pJD0859 CCCCGTCGACTCCAGGCTATGACCCAAAATGGACCCCAACTC

CGAAAATTTTTCTAGTGCCGCCTGGGTTAAGAATATGGCTCA

CCTA 

36621976 PDR5 
3027 
3prime 

pJD0860 CCCCGGATCCCCAAGCAGTTTGAGAATCCAAACCAGAAGTAG

GTTCATCTAAAAAGACCAACAGTTTTGGTTTGGCAGTTAATT

CAAC 

36621977 PDR5 
3027 
5prime 

pJD0860 CCCCGTCGACTGGTGTTGCTGGTGAAGGTTTAAACTTGAACA

AAGAAAAAGATTAACCATTGGTGTTGAATTAACTGCCAAACC

AAAA 

42384192 est2-72 
fwd-
cloning 

pJD1017 AAAAGTCGACCATTGATCTACAGACCAACAGTACTTACAAAG 

42384193 est2-72 
rev-
cloning 

pJD1017 AAAAGGATCCGCCAAATGTTAGTACGTTGTTGTATAATTCG 

42384198 est2-1215 
fwd-
cloning 

pJD1018 AAAAGTCGACTTACTTTAGACATGATACTTGGAATAAACTTA

TCA 

42384199 est2-1215 
rev-
cloning 

pJD1018 AAAAGGATCCTGTGAATTCTTCTTCGTCTGCCC 

42384200 est2-1326 
fwd-
cloning 

pJD1019 AAAAGTCGACGTTGTCCAATTTCAATCATAGCAAAATGAGG 
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42384201 est2-1326 
rev-
cloning 

pJD1019 AAAAGGATCCTATTTGCGTTGGAGAATATATTTTAGTAAAAC

TAGTCG 

42384204 est2-1995 
fwd-
cloning 

pJD1020 AAAAGTCGACTTATAGCGAGTTTAAAGCCAGTCCTAGC 

42384205 est2-1995 
rev-
cloning 

pJD1020 AAAAGGATCCTATGTGCATTGCACAAAATTGAATAACCG 

45726681 clone_5p 
stn1_885 

pJD1000 AAAAGTCGACTGATCAAATTGACAACGGCAATGACG 

45726682 clone_3p 
stn1_885 

pJD1000 AAAAGGATCCCGATGCTAAGCTAGTTACTACGCTGCGTACTT

CC 

45726683 clone_5p 
stn1_1203 

pJD1001 AAAGTCGACATTAAAAGATAAAACAAGTGAGACATTTGATTT

GCTTCC 

45726684 clone_3p 
stn1_1203 

pJD1001 AAAAGGATCCCCACCAATTTTTTAGTACCTCAGGATACTGTTT

CTTTGTCC 

45726685 clone_5p 
est1_1203 

pJD1002 AAAAGTCGACCAAATATGCAGATTTGAGTGAGCGCCAGG 

45726686 clone_3p 
est1_1203 

pJD1002 AAAAGGATCCGCTATATATATTTCCTGAACAATTCAGTGGAC

TATTTATCAAGTCG 

45726687 clone_5p 
est1_1272 

pJD1003 AAAAGTCGACGACGTCGTCATCAAACCCTCCTGGC 

45726688 clone_3p 
est1_1272 

pJD1003 AAAAGGATCCCCTGAAAATAATATCTTCTCTAAAAAGATAGC

TTCTTTTCGG 

45726689 clone_5p 
est1_1920 

pJD1004 AAAAGTCGACGACAGAACTGGAAAAACAATTTGCAAATGTC

CGG 

45726690 clone_3p 
est1_1920 

pJD1004 AAAAGGATCCTGGCACTTGGACGGTGATGTCCTC 

45726691 clone_5p 
cdc13 
1272 

pJD1005 AAAAGTCGACGAGATCGTTATCCCGACGAGAGAGCGAATCT

GTGAGC 

45726692 clone_3p 
cdc13 
1272 

pJD1005 AAAAGGATCCGGGGTCTTTCCTTGCCATTTTGCTCATCC 

46702125 Dyskerin 
clone 
5prime 

pJD1009 GCACGTCGACGAGAGTGATCATGGAGAGAGACACTTACCCTC

GGAAGTGGGGTTTAGTCCAAAGGCAAGTCAGAAGAAGCTGA

TGATCAAGCAGGGCC 

46702126 Dyskerin 
clone 
3prime 

pJD1009 GCACGGATCCGTCAACATACTCCTGCTTCCAGGTGGCAGGTG

TGCTGTCTGTGGGCTTCCCATGCTTGTCCAGAAGGCCCTGCTT

GATCATCAGCTTC 

48453484 dyskerin 
0frame 
reverse 

pJD1059 GCCTTTGGACCTAAACCCCACTTCCGAGGGT 

48453483 dyskerin 
0frame 
forward 

pJD1059 ACCCTCGGAAGTGGGGTTTAGGTCCAAAGGC 

79124738 >DNAJC9 
264f 

 AAAAGTCGACCCAGATCCTGGGAAAATCTATTCCGTTCTCAG

TGACAGAGAACAGAGAGCAGTGTACGATGAGCAGGGAACAG

TGGACGAGGACTCTCC 

79124739 >DNAJC9 
264r 

 AAAAGAGCTCGTCCTCTAAAGATATCTTTTTAAAGAGTAGCC

GCCAATACGCCTCCCAGTCTCGGTCTTGGGTGAGCACAGGAG

AGTCCTCGTCCACTGT 

79124740 >GABRE  AAAAGTCGACCAAGTGGGAAAATTTCAGCTTGAAATCAATG

AGAAGAACTCCTGGAAGCTCTTCCAGTTTGATTTTACAGGAG
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735f TGAGCAACAAAACTGA 

79124741 >GABRE 
735r 

 AAAAGAGCTCGCCAAACCGCCTGCTCACATTGAAGAAAATC

GTCATGACCATGAAGTCACCAACTGGGGTTGTGATTATTTCA

GTTTTGTTGCTCACTCC 

79124742 >SLC38A
2 981f 

 AAAAGTCGACGCTGTTTAGAAATTTAGATATTTGGGATATAC

CAGTGGCCTTTCCTTGTTGTGTATGGTGTTCTTTCTGATTGTG

GTCATTTGCAAGAAA 

79124743 >SLC38A
2 981r 

 AAAAGAGCTCTGGCTGTGTTAAGGTGGTGTTTATTGTTTCGTT

AATTATCAAAGCAGCTTCCACAGGACACGGAACCTGAAATTT

CTTGCAAATGACCAC 

79124744 >IL18R1 
714f 

 TCAAAAATGAACAAATGTCGACGCTTAACCATGTTGCAGTGG

AATTAGGAAAAAACGTAAGGCTAACTGCTCTGCTTTGCTG 

79124745 >IL18R1 
714r 

 CGTCTTCCATGAGCTCCCCGGGGGATCCCATCCAATAAATTA

CATCCTCTTCATTCAGCAAAGCAGAGCAGTTAGCCTTACGTTT

TTTCC 

79124746 >TDO2 
732f 

 AAAAGTCGACTAACTTCTGGGGAAAGCTGAAAAAAATATCA

CCAGAGGCCTGGAAGAGGAATTCATAAGGATTCAGGCTAAA

GAAGAGTCTGAAGAAAAA 

79124747 >TDO2 
732r 

 AAAAGAGCTCTTTCTCATCAAATAAGGACAGTAGCACCTCTT

TTTGCTTCTGAAATTCAGCCACCTGTTCCTCTTTTTCTTCAGAC

TCTTCTTTAGCCTG 

79124748 >TDO2 
744f 

 AAAAGTCGACAAAGCTTGAAAAAAATACACCAGAGGCCTGG

AAGAGGAATTCATAAGGATTCAGGCTAAAGAAGAGTCTGAA

GAAAAAGAGGAACAGGTG 

79124749 >TDO2 
744r 

 AAAAGAGCTCATGTTCATGACGTTTCTCATCAAATAAGGACA

GTAGCACCTCTTTTTGCTTCTGAAATTCAGCCACCTGTTCCTC

TTTTTCTTCAGA 

79124750 >LPCAT1 
1110f 

 AAAAGTCGACCGCCAATCCCAAACGCTTCTGTGCCGATTTCA

GCCCGGAAAACTCAGACGCTGGGCGGAAGCCTGTTCGCAAG

AAGCTGGATTAGGAC 

79124751 >LPCAT1 
1110r 

 AAAAGAGCTCGTCACTCGCAAAGAGGCTCATGGCGGTGATGT

CCACGCGGGAGGGGCCGCGTCTCTCCGCAACCCTGGGTCCTA

ATCCAGCTTCTTGC 

79124752 >OLA1 
513f 

 AAAAGTCGACGGGGAATGCTTTTTTATCCATATTAGTGCCTG

TGATGGCATCTTTCATCTAACACGTGCTTTTGAAGATGATGAT

ATCACGCACGTTGAA 

79124753 >OLA1 
513r 

 AAAAGAGCTCCATTTCCTCATCTTTAAGCTGAAGCTCTTCATG

TATTATTTCTATATCTCGAATAGGATCTACACTTCCTTCAACG

TGCGTGATATCATC 

79124754 >KIF20A 
2668f 

 AAAAGTCGACATTCCTTCGAAATTTACTCCCCGAACACCAAC

CTGCCAAAGCTCAACAGACTGCAGCCCTTATGCCCGGATCCT

A 

79124755 >KIF20A 
2668r 

 AAAAGAGCTCGTACTTTTTGCCAAAAGGCCCAGATTTGAGTA

AAGGGGAACGCCGTGAGCGTAGGATCCGGGCATAAGGGCTG

CAGTCTG 

79124756 >CKAP5 
2126f 

 AAAAGTCGACTGCCCAGAAGGGAAATTTTCCAAAACGTCAG

CTCAGGTTGTATTAGATGGCCTTGTGGACAAGATTGGAGATG

TGAAATGTGGGAACAAT 

79124757 >CKAP5 
2126r 

 AAAAGAGCTCCACAACCTGTTCAGCAGTCCATGGTAACATAC

AGGCTTCGGCTATTGCTGTCATAGCTTCTTTTGCATTGTTCCC

ACATTTCACATCTC 

79124758 >CKAP5 
2906f 

 AAAAGTCGACAGCCATGGGCCCAAATATAAGCAACATGTAA

AAAATTTAGGCATCCCTATCATCACAGTCCTTGGAGACAGCA

AGAACAATGTTCGAGCT 

79124759 >CKAP5 
2906r 

 AAAAGAGCTCATCTTCTCCTTCCAGCCATTCCTTCATGCCAGT

CTGTTCTGCCCAAGCATTCACAGTCGCTAGGGCAGCAGCTCG

AACATTGTTCTTGC 

79124760 >CKAP5 
2927f 

 AAAAGTCGACGCAACATGTAAAAAATTTGGCATCCCTATCAT

CACAGTCCTTGGAGACAGCAAGAACAATGTTCGAGCTGCTGC

CCTAGCGACTGTGAAT 
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79124761 >CKAP5 
2927r 

 AAAAGAGCTCTTCAGAAAGATCTTCTCCTTCCAGCCATTCCTT

CATGCCAGTCTGTTCTGCCCAAGCATTCACAGTCGCTAGGGC

AG 

79124762 >MYO5C 
3527f 

 AAAAGTCGACTCTGGAACATTTAAATGAGATGGAGAACTTTG

GTTTGCTTATGAAGGACTAAAGAAAGCAACACGTGTTTTGGA

GAGCCATTTCCAGTCT 

79124763 >MYO5C 
3527r 

 AAAAGAGCTCGATTTCTTGACTGAGATGCACCACTTTGAAGT

TCAAAGCTTCAATCTCCTTTTCATAGCAATCCTTCTGAGACTG

GAAATGGCTCTCCA 

79124764 >ZGPAT 
664f 

 AAAAGTCGACCTTCCTGGAGGGAAAGTGCGCTTTAAGGAGA

ACTGCAGGTTCTCCCATGGGCAGGTGGTCTCTCTGGATGAGC

TGCGCCCCTTCCAGGAC 

79124765 >ZGPAT 
664r 

 AAAAGAGCTCTGCGTGCCAGAGGCCATCCTGGTGCTTGGCCA

GACACGCAGAGCCGGCCTGCAGGGAGCTCAGGTCTGGGTCCT

GGAAGGGGCGCAG 

79124766 >DLK1 
509f 

 AAAAGTCGACCGGGTACTCGGGAAAGGATGCCAGAAAAAGG

ACGGGCCCTGTGTGATCAACGGCTCCCCCTGCCAGCACGGAG

GCACCTGCGTGGATGAT 

79124767 >DLK1 
509r 

 AAAAGAGCTCCCACGATCTCGCAGAAATTGCCTGAGAAGCC

AGGGGGGCACAGGCAGGAGGCATGGGAGGCCCGGCCCTCAT

CATCCACGCAGGTGCCTC 

79124768 >ATIC 
1656f 

 AAAAGTCGACTGCCTTCTTCCCTTTCCGGATAACGTAGACAG

AGCTAAAAGGAGTGGTGTGGCGTACATTGCGGCTCCCTCCGG

TTCTGCTGCTGACAAA 

79124769 >ATIC 
1656r 

 AAAAGAGCTCGTGGAAGAGCCGAAGGTTCGTATGAGCGAGG

ATGATTCCCAGTTCGTCGCAGGCCTCAATCACAACTTTGTCA

GCAGCAGAACCG 

79124771 >PNMA1 
1740f 

 AAAAGTCGACAGGGCCAGCCCCAAACCTCTTCAGTTGCTGGT

GCAGATCCGTGAGGAGGAAGCCAAGGAGG 

79124772 >PNMA1 
1740r 

 AAAAGAGCTCGAAGTGCCCTTCCAGGCCTAACTGCAGAAGG

GTGGCCTCAGCCTCCTCCTCCTCCTCCTTGGCTTCCTCCTCA 

79124773 >ASNS 
649f 

 AAAAGACTCCCTTTTTAAAAGGGAGCCTTTTCTTCCTGGACA

CTATGAAGTTTTGGATTTAAAGCCAAATGGCAAAGTTGCATC

CGTGGAAATG 

79124774 >ASNS 
649r 

 AAAAGAGCTCAAAGAGTTTCTCCACATTGTCATAGAGGGCGT

GCAGGGGTACATCCCGACAGTGATGATATTTAACCATTTCCA

CGGATGCAACTTTGC 

79124775 >GOLT1B 
437f 

 AAAAGTCGACATCCCTCCTAAATTTACTGGAATTAGATCATT

TGTAGATAAAGTTGGAGAAAGCAACAATATGGTATTACAAC

AAGTGAATTTGAAGACT 

79124776 >GOLT1B 
437r 

 AAAAGAGCTCGTAATTTAATTTTGTGCTGAATATTCTTCGAAT

GACTTTATAAATAACACAATATTTTAAATGAGTCTTCAAATTC

ACTTGTTGT 

79124777 >NT5DC2 
841f 

 AAAAGTCGACCTATCGGCAGGGAAACCGTTTGACTTCTTGCG

CTTGACGGAATGGCGTGGCCCCCGCGTGCTCTACTTCGGGGA

CCACCTCTATAGTGAT 

79124778 >NT5DC2 
841r 

 AAAAGAGCTCCTCACGCTCCAGCTCGGGGATGATGGCGCCTG

TGCGCCAGCCGTGCCGCAGCATGAGATCCGCCAGATCACTAT

AGAGGTGGTCCCC 

79124779 >MCM5 
1004f 

 AAAAGTCGACGGCTGCCCTCCCAAATGCTATGAGGTCATCTC

CAAGAGCATCGCCCCCTCCATCTTTGGGGGCACAGACATGAA

GAAGGCCATTGCCTGC 

79124780 >MCM5 
1004r 

 AAAAGAGCTCGTTGATGTCTCCTCGGCGAGTAAGTCCATCAG

GGAGCCTCTTTCGGGAGCCCCCAAAGAGCAGGCAGGCAATG

GCCTTCTTCATGTCTG 

79124781 >FOS-
408f 

 AAAAGTCGACAGCCCCTCACCCTTTCGAGTCCCCGCCCCCTC

CGCTGGGGCTTACTCCAGGGCTGGCGTTGTGAAGACCATGAC

AGGAGGCCGAGCGCAG 

79124782  >FOS  AAAAGAGCTCGATTCTCCTTTTCTCTTCTTCTTCTGGAGATAA

CTGTTCCACCTTGCCCCTCCTGCCAATGCTCTGCGCTCGGCCT
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408r CCTGTCAT 

79124783 >NUP37 
719f 

 AAAAGTCGACCTGGTGCTTAAAAAACACCTTCAAAGTTGGAG

CCGTTGCAGGAAATGATTGGTTAATTTGGGATATTACTCGGT

CCAGTTATCCTCAAAA 

79124784 >NUP37 
719r 

 AAAAGAGCTCCAGATTTTCACTAATTGTGGACCACCTGAATA

AGCAGGCTCGATCCATGTGAACAGGTCTCTTATTTTGAGGAT

AACTGGACCGAG 

79124785 >FAM21A 
3270f 

 AAAAGTCGACCGCCATTTCCCCAAATGGCATCGGCCACAGCT

CAGAGCAGCCAGTGGAGAAGACAGCACTGAGGAGGCCCTGG

CAGCTGCCGCTGCACC 

79124786 >FAM21A 
3270r 

 AAAAGAGCTCGGAATGACCCAGAGACTTTGCAAAGGGGCTT

CTGTCCACTCCAGGCACAGGACCACCTTCCCAAGGTGCAGCG

GCAGCTGCC 

Table 9: Oligonucleotides used for cloning. 

Full specifications may be found by using the order number at http://www.idtdna.com 
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Appendix 5: Site Directed Mutagenesis Oligonucleotide List 

Order # Name Template Sequence 

15189665 
 

Left EST2 
ss72 
 

pJD0641 
based 

CCCCGTCGACATTCGAGTTCATTCAAGACAAGC 

 

15189666 
 

Right EST2 
ss72 
 

pJD0641 
based 

CCCCGGATCCGTGGCTTAAGTCACCAGGAAGG 

 

15189667 
 

Left EST2 
ss1215 
 

pJD0641 
based 

CCCCGTCGACTCAATTGGCGATTTGTTTC 

 

15189668 
 

Right EST2 
ss1215 
 

pJD0641 
based 

CCCCGGATCCATGATTGAAATTGGACAACGTG 

 

15189669 
 

Left EST2 
ss1326 
 

pJD0641 
based 

CCCCGTCGACCACGTTGTCCAATTTCAATCA 

 

15189670 
 

Right EST2 
ss1326 
 

pJD0641 
based 

CCCCGGATCCAGTCGGCCTTTTGTTTCTTAGG 

 

15189671 
 

Left EST2 
ss1693 
 

pJD0641 
based 

CCCCGTCGACCATACCAAGGATGGAATGTATG 

 

15189672 
 

Right EST2 
ss1693 
 

pJD0641 
based 

CCCCGGATCCTGATAAATGAACCGTCCTCAC 

 

15189673 
 

Left EST2 
ss1995 
 

pJD0641 
based 

CCCCGTCGACTAGCGAGTTTAAAGCCAGTCC 

 

15189674 
 

Right EST2 
ss1995 
 

pJD0641 
based 

CCCCGGATCCATCATCTGATTGGGAGCTTACG 

 

22035998 CTS2 757 
Stem1 
Dis_F 

pJD0815 GATGAAAAAAATTCAATATACTCGAGTTATGATAACACTAAAT

C 

22035999 CTS2 757 
Stem1 
Dis_R 

pJD0815 GATTTAGTGTTATCATAACTCGAGTATATTGAATTTTTTTCAT

CAAAGC 

22036002 EST2 754 
Stem1 
Dis_F 

pJD0811 GGATGCGCTAAAAAATCAAATCCCAAATTCGTTAGATCTC 

22036003 EST2 754 
Stem1 
Dis_R 

pJD0811 GAGATCTAACGAATTTGGGATTTTCATTTTTTAGCGCATCC 

22036006 PPR1 759 
Stem1 
Dis_F 

Incomplete CGACTTTTTTTTTAAACATTTATAAACGAATTTGCGGATGCTA

CGCAGG 

22036006 PPR1 759 
Stem1 
Dis_R 

Incomplete CCTGCGTAGCATCCGCAAATTCGTTTATAAATGTTTAAAAAAA

AAGTCG 

22036010 SPR6 748 
Stem1 

pJD0817 CAAATGTCGACAAAAAAAATCAAGGTTTGGATACACTCTGGAG

CATGG 
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Dis_F 
22036011 SPR6 748 

Stem1 
Dis_R 

pJD0817 CCATGCTCCAGAGTGTATCCAAACCTTGATTTTTTTTGTCGAC

ATTTG 

23810598 pJD759 SS 
SDM_L 

pJD0816 CCGACAAAATTTCACATACCTTATTTCTTCTTGAATATTATAT

TTGCTATTGG 

23810599 pJD759 SS 
SDM_R 

pJD0816 CCAATAGCAAATATAATATTCAAGAAGAAATAAGGTATGTGAA

ATTTTGTCGG 

23810600 pJD754 SS 
SDM_L 

pJD0806 GGATACTCAAGGATGCGCTGAAGAACGAAAATGGGTTTTTCG 

23810601 pJD754 SS 
SDM_R 

pJD0806 CGAAAAACCCATTTTCGTTCTTCAGCGCATCCTTGAGTATCC 

23810602 pJD757 SS 
SDM_L 

pJD0807 GCATATTGCTTTGATGAGAAGAACTCAATATTTATCAGTTATG

ATAACAC 

23810603 pJD757 SS 
SDM_R 

pJD0807 GTGTTATCATAACTGATAAATATTGAGTTCTTCTCATCAAAGC

AATATGC 

23810604 pJD748 SS 
SDM_L 

pJD0797 CGTTAAGAAATTTTTGAAAAAGCAGAAGAAGTCAAGGAAACCA

ATCACTCTGG 

23810605 pJD748 SS 
SDM_R 

pJD0797 CCAGAGTGATTGGTTTCCTTGACTTCTTCTGCTTTTTCAAAAA

TTTCTTAACG 

24059571 pJD521 
SS_F 

pJD0808 CAAATGTCGACGAAGAACCAAATGGGTTTTTCGTTAGATCTC 

24059572 pJD521 
SS_R 

pJD0808 GAGATCTAACGAAAAACCCATTTGGTTCTTCGTCGACATTTG 

24059573 pJD521 
S1_F 

Incomplete
d 

CGACAAAAAATCAAATCCCAAATTCGTTAGATCTC 

24059574 pJD521 
S1_R 

Incomplete
d 

GAGATCTAACGAATTTGGGATTTGATTTTTTGTCG 

24059575 pJD754 
S1_F 

pJD0811 GCTAAAAAATGAAAATCCCAAATTCGTTAGATCTCAATATTTC 

24059576 pJD754 
S1_R 

pJD0811 GAAATATTGAGATCTAACGAATTTGGGATTTTCATTTTTTAGC 

24059577 pJD476 
SS_F 

Incomplete CAAATGTCGACCTTCTTCTTGAATATATATTTGCTATTGGCC 

24059578 pJD476 
SS_R 

Incomplete GGCCAATAGCAAATATATATTCAAGAAGAAGGTCGACATTTG 

24059581 pJD759 
SS_F 

pJD0816 CACATACCTTACTTCTTCTTGAATATTATATTTGCTATTGGCC 

24059582 pJD759 
SS_R 

pJD0816 GGCCAATAGCAAATATAATATTCAAGAAGAAGTAAGGTATGTG 

24059589 pJD757 
SS_F 

pJD0807 GCTTTGATGAGAAGAACTCAATATTTATCAGTTATGATAACAC 

24059590 pJD757 
SS_R 

pJD0807 GTGTTATCATAACTGATAAATATTGAGTTCTTCTCATCAAAGC 

24059591 pJD757 
S1_F 

pJD0815 GATGAAAAAAATTCAATATACTATAGTTATGATAACACTAAAT

CAGTC 

24059592 pJD757 
S1_R 

pJD0815 GACTGATTTAGTGTTATCATAACTATAGTATATTGAATTTTTT

TCATC 

24059593 pJD520 
SS_F 

pJD0797 GAACAAATGTCGACAGAAGAAGTAAGGAAACCAATCACTC 

24059594 pJD520 
SS_R 

pJD0797 GAGTGATTGGTTTCCTTACTTCTTCTGTCGACATTTGTTC 

24059597 pJD748 pJD0818 GAAATTTTTGAAAAAGCAGAAGAAGTCAAGGAAACCAATCACT

C 
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SS_F 
24059598 pJD748 

SS_R 
pJD0818 GAGTGATTGGTTTCCTTGACTTCTTCTGCTTTTTCAAAAATTT

C 

24059599 pJD748 
S1_F 

pJD0817 GCAAAAAAAATCAAGGTTTGGATACACTCTGGAGCATGG 

24059600 pJD748 
S1_R 

pJD0817 CCATGCTCCAGAGTGTATCCAAACCTTGATTTTTTTTGC 

24059605 pJD755 
SS_F 

pJD0812 CCCGCAAGAAAATGAAGAACTTTGCCAAATTTAACGAAGACAG

C 

24059606 pJD755 
SS_R 

pJD0812 GCTGTCTTCGTTAAATTTGGCAAAGTTCTTCATTTTCTTGCGG

G 

24059613 pJD756 
SS_F 

pJD0813 CTATTATGGAACAGAACTTGTCTCAGCATCCTTCATCAGC 

24059614 pJD756 
SS_R 

pJD0813 GCTGATGAAGGATGCTGAGACAAGTTCTGTTCCATAATAG 

24059615 pJD756 
S1_F 

pJD0814 GGAACAAAATTTATCTCACGATCGAAGTTCAGCTGCATCTGC 

24059616 pJD756 
S1_R 

pJD0814 GCAGATGCAGCTGAACTTCGATCGTGAGATAAATTTTGTTCC 

29714981 ccr5 
slipsite mut 
forward 

pJD0844 CGACTGTCGTCCATGCTGTGTTTGCCTTGAAGGCCAGGACGGT

CACCTTTGG 

29714982 ccr5 
slipsite mut 
reverse 

pJD0844 CCAAAGGTGACCGTCCTGGCCTTCAAGGCAAACACAGCATGGA

CGACAGTCG 

29714987 ccr5 stem2 
5_comp 
forward 

pJD0845 CCAGGACGGTCACCAAACTCTACCATTCAAGTGTGATCACTTG

GGTGGTGGC 

29714988 ccr5 stem2 
5_comp 
reverse 

pJD0845 GCCACCACCCAAGTGATCACACTTGAATGGTAGAGTTTGGTGA

CCGTCCTGG 

29714989 ccr5 stem2 
3_comp 
forward 

pJD0846 GCGTCTCTCCCAGGAATCATCTTAGTGGTGAGGGGTTTAAGAA

GGTCTTCATTACACC 

29714990 ccr5 stem2 
3_comp 
reverse 

pJD0846 GGTGTAATGAAGACCTTCTTAAACCCCTCACCACTAAGATGAT

TCCTGGGAGAGACGC 

34647145 ccr5 
stem1core 
5prime fwd 

pJD0851 
pJD0855 

GCTGTGTTTGCTTTAAAAGCCAGGACGCGGTCCTTTGGGGTGG

TGACAAGTGTG 

34647146 ccr5 
stem1core 
5prime rev 

pJD0851 
pJD0855 

CACACTTGTCACCACCCCAAAGGACCGCGTCCTGGCTTTTAAA

GCAAACACAGC 

34647147 ccr5 
stem1core 
3prime fwd 

pJD0852 
pJD0855 

GGTGGTGACAAGTGTGATCACTTGGGTGGACTGTGTGTTTGCG

TCTCTCCCAGG 

34647148 ccr5 
stem1core 
3prime rev 

pJD0852 
pJD0855 

CCTGGGAGAGACGCAAACACACAGTCCACCCAAGTGATCACAC

TTGTCACCACC 

35774131 Stem_2_5' 
Proximal 
mut_fwd 

pJD0856 CCTTTGGGGTGGTGACAAGTTACTACAGGACCCTGGTGGCTGT

GTTTGCGTCTCTCC 

35774132 Stem_2_3' 
Proximal 

pJD0856 GCTGTGTTTGCGTCTCTGGGTTCACAGTGCTTTACCAGATCTC

AAAAAGAAGG 
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Table 10: Oligonucleotides used for Site Directed Mutagenesis 

Full specifications may be found by using the order number at http://www.idtdna.com 

  

mut_fwd 
36894175 hs-spr6 

mutagen 
fwd 

pJD0947 CTCAAAAATGAACAAATGTCGACAAAAAAAATCAAGGAAACCA

ATCACTC 

36894176 hs-spr6 
mutagen 
rev 

pJD0947 GAGTGATTGGTTTCCTTGATTTTTTTTGTCGACATTTGTTCAT

TTTTGAG 

45726676 SDM_5p 
est2 pos72 

pJD1070 GTACTTACAAAGAAAATTTAAAAGTGGTCACTTCAATGGCCTC

G 

45726677 SDM_5p 
est2 
pos1326 

pJD1071 GCAAAATGAGGATTATACCAAAAAAAAGAATAATGAGTTCAGG 

45726678 SDM_5p 
est2 
pos1215 

pJD0766 GGAATAAACTTATCACCCCTTTTTCGTAGAATATTTTAAGACG 

45726680 SDM_5p 
est2 
pos1995 

pJD1070 GCCAGGACACATTAATTTTAAAATGGCTGACGATTTCC 

46659196 SDM_3p 
est2 pos72 
del1bp 

pJD1017 CGAGGCCATTGAAGTGACCACTTTTAAATTTTCTTTGTAAGTA

C 

46659197 SDM_3p 
est2 
pos1326 
del1bp 

pJD1019 CCTGAACTCATTATTCTTTTTTTTGGTATAATCCTCATTTTGC 

46659198 SDM_3p 
est2 
pos1215 
del1bp 

pJD1018 CGTCTTAAAATATTCTACGAAAAAGGGGTGATAAGTTTATTCC 

46659199 SDM_3p 
est2 
pos1995 
del1bp 

pJD1020 GGAAATCGTCAGCCATTTTAAAATTAATGTGTCCTGGC 

49375506 est1 1203 
minus1bp 

pJD1040 GAGTGAGCGCCAGGTTTTTTTTTTAGATTGAGCTTTGATTTTA

TTGC 

49375507 est1 1272 
minus1bp 

pJD1041 CCCTCCTGGCAAAAAAACAGGAAGACTTTCGATATCTAGCC 

49375508 est1 1920 
minus1bp 

pJD1043 GCAAATGTCCGGAGAACAAAAAAATGTCTCCGCTCCCAGAAAA

AGATGG 

49375509 stn1 885 
minus1bp 

pJD1038 GCAATGACGAACAGTTAAAAAAATAGAATATCAAAGCGCTAAT

CTACC 

49375510 stn1 1203 
minus1bp 

pJD1039 GATTTGCTTCCTCTAAAAAATTTTTTGAATATGCTGAAAAACG 

51722417 ccr5 
slipsite 
mut_v2 

pJD1060, 
pJD1058 

CCATGCTGTGTTTGCCGCGCGCGCCAGGACGGTCACCTTTGGG

GTGG 

52856887 CCR5 
IRES_test 

pJD1078 GAACAAATGTCGACTTAAGTCGTCCATGCTGTG 
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Appendix 6: Oligonucleotides Used for Sequencing 

Order # Name Template Sequence 

16027528 DL MCS 
Seq_R 

Dual 
luciferase 

CGTACGTGATGTTCACC 

14892453 EST2 Seq1 pJD0641 
based 

CTTAACCATAACTAACACGCCCTC 

14892454 EST2 seq2 pJD0641 
based 

TGGTCGGTACATACGCATTCG 

14892455 EST2 seq3 pJD0641 
based 

GCAATCACCAAAGGAACGAGTC 

14892456 EST2 seq4 pJD0641 
based 

TCACAAAAATGCTATCCAGCCCAC 

14892457 EST2 seq5 pJD0641 
based 

CAACAGACCAACAGCAAGTG 

14892458 EST2 seq6 pJD0641 
based 

CAGCGGTTGTCCAATTACGAAATG 

14892459 EST2 seq7 pJD0641 
based 

CCTGATTAAATGTGCCCGGTCTC 

15728281 ppr1_seq_1 pJD0746 CGAAGATGATGATTAAATCATG 

15728282 ppr1_seq_2 pJD0742 GAGCGGAAGAGCTAC 

15728283 ppr1_Seq_3 pJD0743 GCTATTGGCCATGCTAC 

15728284 ppr1_seq_4 pJD0744 GACGTTCCCAAAAACTTTG 

15728285 ppr1_seq_5 pJD0745 CGAACTGGAAAAACACAG 

17446871 LEFT 
PGK1/PRF 

pJD0753 
based 

GTCGGTCCAGAAGTTGAAGC 

17446872 RIGHT, 
PGK1/PRF 

pJD0753 
based 

TGAGAACTCGCTCAACGAAC 

17447687 PGK1 3'-5' 
Seq. Primer 

pJD0753 
based 

AACCGACCATAGAAGAGTGAGC 

17447688 PGK1 5'-3' 
Seq Primer 

pJD0753 
based 

AAGGTCAAGGCTTCCAAGG 

17858744 PGK1-3UTR 
Sequencing 
Primer 

pJD0741 GGAATTGCCAGGTGTTGC 

17858745 PGK1-5UTR 
Sequencing 
Primer 

pJD0741 TGGAAGCTGCAATCAATAGG 

42164785 brewer-
5p_ampr 
reading_5pr 

β-globin 
plasmids 

CGTGAACCATCACCCTAATCAAG 

42164786 brewer-
3p_ampr 
reading_3pr 

β-globin 
plasmids 

GTTTGCCGGATCAAGAGCTACC 

45341167 est2_rev 
sequencing 

EST2 GATTCTAGTGTTAAACAGCG 

48871874 cbf5 
seq555_fwd 

CBF5 TTCTGGGCTTCCTGTGAAGCTGGTACTT 

48871875 cbf5 
seq555_rev 

CBF5 AAGTACCAGCTTCACAGGAAGCCCAGAA 

48871876 cbf5 
seq_m6_fwd 

CBF5 AGTTCGTTACAACCTACACAGAGGACCGAT 
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Table 11: Oligonucleotides used for sequencing 

Full specifications may be found by using the order number at http://www.idtdna.com  

 
  

48871877 cbf5 
seq_m6_rev 

CBF5 ATCGGTCCTCTGTGTAGGTTGTAACGAACT 

51122299 Bglob 
seq_exon2 
5p 

β-globin 
plasmids 

GCACGTGGATCCTGAGAACT 

51122300 cole1 
seq_3p 

β-globin 
plasmids 

ACGCCAGCAACGCGGC 

51122301 Bglob 
exon3_seq 
3p 

β-globin 
plasmids 

CACCAACTTCTTCCACATTCACC 
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Appendix 7: Oligonucleotides Used for qPCR and Northern 

Analyses 

Order # Name Template Sequence 

16743856 EST2 qPCR Left Yeast cDNA TGGTCGGTACATACGCATTC 

16743857 EST2 qPCR 
Right 

Yeast cDNA CGGCAGATGAGGTTCGTTAC 

17425701 18S qPCR Left Yeast cDNA GGAATTCCTAGTAAGCGCAAG 

17425702 18S qPCR Right Yeast cDNA GCCTCACTAAGCCATTCAATC 

17470908 Fluc qPCR Left Dual lux cDNA AACATCACGTACGCGGAATAC 

17470909 Fluc qPCR Right Dual lux cDNA TCACTGCATACGACGATTCTG 

17858742 PGK1-DLR 
qPCR Right 

Exogenous 
PGK1 

GTTCGTTGAGCGAGTTCTCA 

These give heterogeneous products. 

17858743 PGK1-DLR 
qPCR Left 

Exogenous 
PGK1 

GGTACCGGCGTCTTCCAT 

These give heterogeneous products. 

19855886 Left, RDN18 1 
qRT-PCR 

Yeast cDNA GGAATTCCTAGTAAGCGCAAG 

19855887 Right, RDN18 1 
qRT-PCR 

Yeast cDNA GCCTCACTAAGCCATTCAATC 

19855888 LEFT PGK1/PRF Yeast RNA GTCGGTCCAGAAGTTGAAGC 

19855889 RIGHT, 
PGK1/PRF 

Yeast RNA TGAGAACTCGCTCAACGAAC 

20699366 PGK1 5' AntiS 
probe 

Yeast RNA TTGACAGCGGCTTCAACTTCTGGACCGACACAGTCG 

20699367 PGK1 AntiS 
probe 

Yeast RNA ACACCGTACTTCTTAGCGACAGTGGCAGTGTCACCAC

CA 

20699368 RenillaMCS 
Antisense Probe 

Yeast RNA CATTTTTGAGAACTCGCTCAACGAACGAGGTACC 

20699369 FireflyMCS 
Antisense Probe 

Yeast RNA TACCGGCGTCTTCCATGAGCTCCC 

22036012 U3_qRTPCR 
Forward 

Yeast cDNA CGACGTACTTCAGTATGTAATATACCCCAA 

22036013 U3_qRTPCR 
Reverse 

Yeast cDNA TTGTCAGACTGCCATTTGTACCCA 

23277727 U3 Forward Yeast cDNA TCCAACTTGGTTGATGAGTCC 

23277728 U3 Reverse Yeast cDNA CGAACCGCTAAGGATTGC 

23277729 UPF1 Forward Yeast cDNA TACTCTGGCATGCAACATCC 

23277730 UPF1 Reverse Yeast cDNA ATGTGAATGTGTCCTGGAAGC 

23277731 UPF2 Forward Yeast cDNA ACACCGAACACAGAGTCAGC 

23277732 UPF2 Reverse Yeast cDNA CATCGTCATCGTCATCATCC 

23277733 UPF3 Forward Yeast cDNA TGGTTGGAACTGGTGATAAGG 

23277734 UPF3 Reverse Yeast cDNA GCTTCTTCTTGCCTCTGTTCC 

26782501 U3_northern 
probe 

Yeast mRNA CCAAGTTGGATTCAGTGGCTCTTTTGAAGAGTCAAAG

AGTGACGATTCC 

27163193 Renilla northern 
probe 

Yeast mRNA TCGACATTTGTTCATTTTTGAGAACTCGCTCAACGAA

CG 

27163194 Firefly northern 
probe 

Yeast mRNA GGCGTCTTCCATGAGCTCCCCGGGGGATCC 

30469750 est2 northern 
probe 

Yeast mRNA GGATGATCGTTGGACCCATTTGGGC 
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Table 12: Oligonucleotides used as probes for qPCR and Northerns 

Full specifications may be found by using the order number at http://www.idtdna.com  

 
  

46469611 Actin qrtpcr 5p H.s. cDNA CCAATTTACGCTGGTTTCTCTCTACC 

46469612 Actin qrtpcr 3p H.s. cDNA CCTTGATGTCACGGACAATTTCTC 

46469614 Bglobin qrtpcr 
3p-changed 

H.s. cDNA ATGATGAGACAGCACAATAACCAG 

46469618 Bglobin qrtpcr 
3p-original 

H.s. cDNA ATGAGTAGACAGCACAATAACCAG 

46469613 Firefly qrtpcr 5p H.s. cDNA GGTTTTGGAATGTTTACTACACTCG 

46469615 Firefly qrtpcr 3p H.s. cDNA CCTGAAGGGATCGTAAAAACAGC 

46469616 Renilla qrtpcr 5p H.s. cDNA GCGTTGATCAAATCTGAAGAAGG 

46469617 Renilla qrtpcr 3p H.s. cDNA GGTTCTAACTTTCTCATGATTTTTGATGG 

46659195 Bglobin qrtpcr-5p H.s. cDNA GTGAACTGCACTGTGACAAGC 

50876065 PGK1 luciferase 
3p_v2 

Yeast cDNA CCGGGGAGCTCATGGAAGACGCCGGTACCGCTCACAG

AGCTCACTC 

50876064 PGK1 luciferase 
5p_v2 

Yeast cDNA CATCAACGATGCCTTCGGTACCTCGTTCGTTGAGCGA

GTTCTC 

49103336 auf1 qpcr_5p H.s. cDNA GCGAAGATTGACGCCAGTAAG 

49103337 auf1 qpcr_3p H.s. cDNA CTGTGATAGGATCTAACTTCAGAGTG 

49103338 upf1 qpcr_5p H.s. cDNA AGCTCGCAGACTCTCACTTTC 

49103339 upf1 qpcr_3p H.s. cDNA CGTCTGGCTAGGAAGAGTAAAG 

49629004 Hs brf1 qpcr_3p H.s. cDNA CTTGAGGCTGCTGAGGAG 

49629005 Hs brf1 qpcr_5p H.s. cDNA GACAGAAAGGCAGTGGGC 

49629006 Hs upf2 qpcr_5p H.s. cDNA CAGTGAGCAGCAAGGAGAG 

49629009 Hs upf2 qpcr_3p H.s. cDNA CTTTTTTCTCTTATCATCTTCCAGTCTC 

50158852 Gapdh 5p_qpcr 
forward 

H.s. cDNA TCGGAGTCAACGGATTTGGTCG 

50158853 Gapdh 5p 
qpcr_reverse 

H.s. cDNA TAAACCATGTAGTTGAGGTCAATGAAGG 

50158854 Gapdh 3p 
qpcr_forward 

H.s. cDNA AAGCTCATTTCCTGGTATGACAACG 

50158855 Gapdh 3p 
qpcr_reverse 

H.s. cDNA TCTTCCTCTTGTGCTCTTGCTGG 

50312511 Renilla 5p 
qpcr_v2 

H.s. cDNA AGGTGAAGTTCGTCGTCCAACATTATC 

50312512 Renilla 3p 
qpcr_v2 

H.s. cDNA GAAACTTCTTGGCACCTTCAACAATAGC 

50312513 eGFP 5p_qpcr H.s. cDNA AGAAGAACGGCATCAAGGTGA 

50312514 eGFP 3p_qpcr H.s. cDNA CGGACTGGGTGCTCAGGTAG 

50312515 Hs u6 5p_qpcr H.s. cDNA CGCTTCGGCAGCACATATAC 

50312516 Hs u6 3p_qpcr H.s. cDNA AAAATATGGAACGCTTCACGA 

52335636 CCR5 forward H.s. cDNA GTCCCCTTCTGGGCTCACTAT 

52335637 CCR5 reverase H.s. cDNA CCCTGTCAAGAGTTGACACATTGTA 

59501271 BAG1 qpcr_F H.s. cDNA TGCCGGGTCATGTTAATTGGG 

59501272 BAG1 qPCR_R H.s.cDNA GCAGAGAGCTTCAGCTTGCAAATCC 
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Appendix 8: RNAi Oligonucleotides 

Table 13: Oligonucleotides used in RNAi studies 

Synthetic dsRNA oligonucleotides include the sense and antisense strands with 2 base pair 
overhangs.  Full specifications for the hsa-miR-1224 oligonucleotides may be found by using the 
order number at http://www.idtdna.com.  The details for the overhang containing nucleotides may 
be found at https://www.qiagen.com/geneglobe/ by searching for the ORF name. 

 
  

Order # Name Sequence 

59828675 1224-5p 5’ GUG AGG ACU CGG GAG GUG G 3’ 

78135739 mir1224_r 5’ CGA CCU CCC GAG UCC UCA C 3’ 

78135740 mir1224_f 
biotin 

5’ /Biotin/ GUG AGG ACU CGG GAG GUG G 3’ 

 hUPF2 Target: 5’ CA CCA TGA GCG TGG AGG CGT A    3’ 

Sense:  5’    CCA UGA GCG UGG AGG CGU Att  3’ 

Anti:   3’ gt GGU ACU CGC ACC UCC GCA U    5’ 

 hHNRPD 
(AUF1) 

Target: 5’ AA CAG CCA AGG TTA CGG TGG T    3’ 

Sense:  5'    CAG CCA AGG UUA CGG UGG Utt  3' 

Anti:   3' tt GUC GGU UCC AAU GCC ACC A    5' 

 hBRF1 Target: 5’ CA CCA GTC AGT TGA CCA TTG A    3’ 

Sense:  5’    CCA GUC AGU UGA CCA UUG Att  3’ 

Anti:   3’ gt GGU CAG UCA ACU GGU AAC U    5’ 

 hMAPK Target: 5’ CC CCG GTA CCT CGT TCG TTG AGC GAG TTC    3’ 

Sense:  5’    CCG GUA CCU CGU UCG UUG AGC GAG UUC tt 3’ 

Anti:   5’ gg GGC CAU GGA GCA AGC AAC UCG CUC AAG    5’ 

 hSMG1 Target: 5’ CA CCA TGG TAT TAC AGG TTC A    3’ 

Sense:  5’    CCA UGG UAU UAC AGG UUC Att  3’ 

Anti:   5’ gt GGU ACC AUA AUG UCC AAG U    5’ 

 hEIF2C1 
(argonaute 1) 

Target: 5’ TA GTC TTA ACA TAA AGC CGA A    3’ 

Sense:  5’    GUC UUA ACA UAA AGC CGA Att  3’ 

Anti:   3’ at CAG AAU UGU AUU UCG GCU U    5’ 

 hRENT1 
(UPF1) 

Target: 5’ CA CCA TGA GCG TGG AGG CGT A    3’ 

Sense:  5’    CCA UGA GCG UGG AGG CGU Att  3’ 

Anti:   3’ gt GGU ACU CGC ACC UCC GCA U    5’ 

 Scrambled Target: 5’ AAT TCT CCG AAC GTG TCA CGT     3’ 

Sense:  5’ UUC UCC GAA CGU GUC ACG Utt     3’  

Anti:   3’ ACG UGA CAC GUU CGG AGA Att     5’ 
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Appendix 9: Oligonucleotides Used for SHAPE / in-vitro 

Translation 

Order # Name Template Sequence 
27598536 RenillaKozak Dual 

luciferase 
plasmids 

TAATACGACTCACTATAGGGAGACCACCATGTTGCCATCAAAAA

TC 

27598537 FireflypolyA Dual 
luciferase 
plasmids 

TTTTTTTTTTTTTTTTTTTTGTTTTTCACTGCATACGACGTTC 

39376817 est2 mrna 
oligo t7kozak 
5prime 

pJD0641 etc CAATATTTTCCTTATCAGCATCATAAGCTGTCAGTA 

39376818 est2 mrna 
oligo 3prime 

pJD0641 etc CAATATTTTCCTTATCAGCATCATAAGCTGTCAGTA 

39376819 EST2 mRNA est2 shape 
10bp-down 

TTGAGATCTAACGAAAA 

39376820 EST2 mRNA est2 shape 
56bp-down 

CAACATTAAATAACTTC 

39376821 EST2 mRNA est2 shape 
113bp-down 

CCGTCCTCACATTATCT 

39376822 EST2 mRNA est2 shape 
170bp-down 

CTGTTTTAAATATTTCC 

39376823 EST2 mRNA est2 shape 
223bp-down 

GAGCCCTGAAAAAGACC 

39714802 Yeast 
genomic 

pdr5 5prime 
with_t7 

TAATACGACTCACTATAGGGAGAATGCCCGAGGCCAAGCTTAAC

AATAACG 

39714803 Yeast 
genomic 

pdr5 3prime 
fulllength 

CCAAGAAATAATAGAATTTTGAATTTGGTTAAGAAAAGAAACTT

ACC 

39714804 Yeast 
genomic 

pdr5 3prime 
3kb 

GGATAGAGCCAACAATAACATAGAAGCGGGAACCATAGC 

39938945 PDR5 mRNA pdr5 3prime 
revcomp 

GTAAGTTTCTTTTCTTAACCAAATTCAAAATTCTATTATTTCTT

G 

39997805 PDR5 mRNA pdr5 200 
revcomp 

GGTTTCAAGATTTGGAAAGTATTGGTTTCTTTAG 

39997806 PDR5 mRNA pdr5 150 
revcomp 

GGATTTTGTATGGAATATTAACC 

39997807 PDR5 mRNA pdr5 100 
revcomp 

GCGGAAGCACCAGAAGCACTTAAGTTC 

39997808 PDR5 mRNA pdr5 50 
revcomp 

GGAATAAGGCTTATAAAAGTCAGGGTCTGCC 

39997809 PDR5 mRNA pdr5 0 
revcomp 

CCCAGGCGGCACTAGAAAAATTTTCGG 

42258371 Dual 
luciferase 
mRNA 

5prime of 
Renilla 
RToligo 

GGGCCTTTCTTTATGTTTTTGGC 

42258372 pJD0835 
mRNA 

ile7r-RToligo GCTTGAATGTCATCCACCCTATG 

42258373 Dual 
luciferase 
plasmid 

5p-renilla t7 
oligo 

TAATACGACTCACTATAGGGAGAAAGGTGAAGTTCGTCGTCC 
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Table 14: Oligonucleotides used for SHAPE and in-vitro transcription 

Full specifications may be found by using the order number at http://www.idtdna.com  

  

42258374 Dual 
luciferase 
plasmid 

3p-firefly RT 
oligo 

TCCCCGACTTCTTTCGAAAGAGGTGCGCCC 

48668279 CCR5 
plasmids 

pJD827 
5p_T7 

TAATACGACTCACTATAGGTTTGCTTTAAAAGCCAGG 

48668280 CCR5 
plasmids 

pJD827_3p GAGATCTGGTAAAGATGATT 

56107905 CCR5 CCR5 
Tweezer 
T7_5prime 

TAATACGACTCACTATAGGGGGAAAATATATCAAATCGTTCGTT

GAGCG 

56107906 CCR5 CCR5 
Tweezer 
3prime 

GATACTGACTGTATGGAAAATGAGAGCTGC 
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Appendix 10: Code Summary 

pymol/plug_helices.py: Top level pymol plugin, reads ribosome PDB publication 
spreadsheet, parses pdb files, labels chains, reads data files containing ribosomal 
helices and base modifications. 
 
pymol/movies/render.py:  Submits pdb sessions for rendering on the University of 
Maryland High Performance Computing cluster. 
 
prfdb/prf_daemon:  Top level perl interface to the prfdb.  Handles importing sequences, 
running them through the filtering pipeline, randomization, and data storage. 
 
prfdb/lib/PRFConfig.pm:  Primary configuration object.  This combines configuration 
file parsing and command line options into a single namespace.  In addition it ensures 
that webservers and compute nodes follow the same configuration. 
 
prfdb/lib/PRFdb.pm and prfdb/lib/PRFdb/*.pm:  Database abstraction layer.  Contains 
interfaces for all database activities and schema. 
 
prfdb/lib/PRFGraph.pm:  Graphing library.  Takes data from PRFdb and uses 
GD::Graph, SVG::TT::Graph, JSON, etc to create graphs. 
 
prfdb/lib/PRFBlast.pm:  Layer for Bio::Tools::Run::Blast*, handles running various blast 
searches against the local database as well as ncbi. 
 
prfdb/lib/SeqMisc.pm:  Reads in sequences and provides various nucleotide 
frequencies, randomizations, translations, etc.  Simpler than Bio::SeqIO. 
 
prfdb/lib/HTMLMisc.pm:  Commonly reused html fragments. 
 
prfdb/handler.pl:  Defines how the apache webserver responds to requests to the 
PRFdb, initializes connections to the databases. 
 
prfdb/lib/MyDeps.pm:  Perl dependency resolver.  Uses CPAN to locally install any 
missing dependencies without user intervention. 
 
prfdb/lib/PRFsnp.pm:  Integrates ncbi SNP data into the PRFdb.  Initially written by Nic 
Hepler. 
 
prfdb/lib/PkParse.pm:  Parser for RNA secondary structure output, provides bpseq, 
parentheses, fasta outputs. 
 
prfdb/lib/Bootlace.pm:  Randomization and refolding library. 
 
prfdb/lib/Agree.pm:  Measures amount of agreement among various RNA structure 
prediction programs. 
 
prfdb/lib/MicroRNA.pm:  Integrates microRNA data into PRFdb. 
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prfdb/lib/RNAMotif.pm:  Provides interfaces to rnamotif. (Should be superseded by 
Bio::Tools::Run::RnaMotif.pm) 
 
prfdb/lib/RNAFolders.pm:  Provides interfaces to various secondary structure 
programs including:  Vienna’s RNAfold, pknots, Nupack, Hotknots, mfold, ilm. 
 
prfdb/lib/MyGenbank.pm: Wrapper for Bio::DB::Universal and Bio::SeqIO to place all of 
the annotation data therein into a single namespace. 
 
prfdb/lib/Overlap.pm:  Computes length of +1 and -1 frame ORF extensions. 
 
prfdb/*.sh:  Maintenance tasks including pbs queues, database backup, etc. 
 
prfdb/*.html:  HTML::Mason objects defining the web interface to the PRFdb. 
 
prfdb/contrib/*.pl: Various testing scripts, database modification, graphing, etc. 
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Appendix 11: Partial Summary of the PRFdb 

Species ORFs Windows 1std_mfe 1std_z 1std_both 

Caenorhabiditis elegans 50,914 46,725 5,731 5,158 4,694 

Branchiostoma floridae 50,729 164 20 24 16 

Strongylocentrotus purpuratus 42,275 66 10 7 7 

Homo sapiens 37,337 62,272 8,428 8,197 6,205 

Danio rerio 33,997 8,731 1,249 1,242 979 

Ricinus communis 28,270 91 13 12 7 

Xenopus laevis 26,537 26,689 3,543 3,514 2,852 

Drosophila yakuba 16,095 21,741 3,056 1,952 1,605 

Mus musculus 15,683 28,948 4,101 3,913 3,193 

Drosophila willistoni 15,426 5,025 649 698 561 

Ciona intestinalis 13,921 34 4 7 4 

Kluyveromyces waltii 10,888 0 0 0 0 

Nasonia vitripennis 9,495 71 7 6 4 

Apis mellifera 9,266 77 11 9 9 

Bos taurus 9,225 16,449 2,242 2,260 1,628 

Saccharomyces paradoxus 8,955 37,274 4,481 4,310 3,891 

Drosophila virilis 7,725 9,497 1,339 52 46 

Saccharomyces cerevisiae 6,354 37,423 4,441 4,133 3,991 

Kluyveromyces polysporous 5,526 80,234 4,451 3,537 3,254 

Rattus norvegicus 5,376 9,035 1,308 1,307 1,020 

Bacillus anthracis 5,287 6,067 771 801 664 

Candida glabrata 5,237 1 3 1 3 

Kluyveromyces 
thermotolerans 

5,171 0 0 0 0 

Kluyveromyces lactis 5,138 10 2 3 2 

Xenopus tropicalis 5,126 14,742 1,968 1,905 1,509 

Schizosaccharomyces pombe 5,091 33,760 3,916 3,620 3,505 

Zygosaccharomyces rouxii 5,051 2 3 1 3 

Drosophila melanogaster 5,013 9,847 1,372 1,216 1,104 

Saccharomyces bayanus 4,970 23,438 2,868 2,782 2,474 

Ashbya gossypii 4,753 0 0 0 0 

Saccharomyces castellii 4,684 24,289 2,936 2,842 2,616 

Gallus gallus 4,450 10,467 1,328 1,361 1,027 

Escherichia coli 4,322 5,446 820 804 633 

Xenopus silurana 3,901 0 0 0 0 

Saccharomyces kudriavzevii 3,778 15,769 2,050 1,937 1,758 

Haloarcula marismortui 3,412 425 69 58 42 
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Saccharomyces mikatae 3,109 13,048 1,729 1,664 1,509 

Salmo salar 2,986 32 7 7 7 

Saccharomyces kluyveri 2,977 11,217 1,433 1,406 1,232 

Arabidopsis thaliana 2,903 73 11 10 10 

Staphylococcus aureus 2,538 10,515 1,298 1,338 1,137 

Thermus thermophilus 1,973 319 45 42 34 

Streptococcus pyogenes 1,939 6,369 848 808 708 

Oncorhynchus mykiss 844 0 0 0 0 

Pan troglodytes 774 1,522 213 210 154 

Oryzias latipes 472 20 6 5 6 

Viral 599 5,850 600 17,700 300 

Total 500,492 583,774 69,380 

(11.9%) 

80,859 

(13.9%) 

54,403 

(9.3%) 

Table 15: A partial summary of the PRFdb 

This summary of the PRFdb counts only those species for which there are more than 450 open 
reading frames.  It shows the number of ORFs, the number of significant folds with respect to 
MFE, Z-score, and both.  Some species have been imported but not examined, notable examples 
include:  Kluyveromyces thermotolerans and Candidata glabrata. 
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Appendix 12: Categorized Recoding Signals 

 Genes/Proteins Occurrence Recoding 
type 

Recoding 
Site 

Stimulators 

C
h

ro
m

o
s
o

m
a
l 

R
e
c
o

d
in

g
 E

v
e
n

ts
 (

N
o

n
-v

ir
a
l)

 

oaz: antizyme From S. pombe 
to invertebrates 

+1 FS YCC UGA 

UUU UGA 
Stop codon, 
polyamines 

oaz1/2: antizymes 1, 2 Mammals +1 FS UCC UGA Stop codon, 
polyamines 

oaz3: antizyme 3 Mammals +1 FS UCC UGA Unknown 
p45: telomerase component Euplotes +1 FS AAA UAA Unknown 
est3: telomerase component S. cerevisiae +1 FS CUU AGU Hungry codon in A site 
Actin-filament binding protein S. cerevisiae +1 FS CUU AGU Hungry codon in A site 
Retrotransposons Ty1, Ty2, Ty4 S. cerevisiae +1 FS CUU AGG Hungry codon 
prfB: Peptide release factor 2 Most bacteria +1 FS CUU AGU U Shine-Dalgarno  
dnaX: DNA pol III E. coli -1 FS A AAA AAG Shine-Dalgarno 
dnaX: DNA pol III T. thermophilus slippage (- n) UUUUUUUUU None! 
cdd: Cytidine deaminase B. subtilis -1 FS A CGA AAG Shine-Dalgarno 
arg1: Ornithine 
carbamoyltransferase 

E. coli +1 FS UUU C Shift into termination 
at 5’ end of ORF 

Multiple viral mobile elements Bacteria -1 FS Various Pseudoknots  
kel: Kelch D. melanogaster suppression UGA Developmental 

regulation 
oaf: Out at first D. melanogaster suppression UGA Developmental 

regulation 
hdc: Headcase D. melanogaster suppression UAA Developmental 

regulation 
topA: DNA topoisomerase I B. firmus suppression UGA Unknown 
Adhesion factors E. coli suppression UAG Unknown 
Selenocycteine incorporation All kingdoms suppression UGA Multiple mechanisms, 

stem-loops, tRNAs 
with long anticodon 
loops 

V
ir

a
l 
R

e
c
o

d
in

g
 

gag-pol, gag-pro-pol HIV, MMTV, etc -1 FS N NNW WWH 3’ pseudoknot/stem-
loop 

gag-pol, gag-pro-pol MuLV, TMV suppression UAG Pseudoknot 
pol: RNA polymerase BYDV -1 FS G GGU UUU Stimulatory element 

3kb downstream! 
gene 60: Topoisomerase 
subunit 

Phage T4 Sequence 
bypassing 
(shunting) 

GGA (47 

bases) 

GGA 

Stem-loop 

Coat protein RNA phage Qβ suppression UGA Unknown 
Coat lysis hybrid RNA phage MS2 +1 FS Unknown Stem loop 
Capsid-RNA replicase Sindbis suppression UGA  
Genes g-t tail assembly proteins Lambdoid 

phages 
-1 FS G GGA AAG  

Gene 10: Major coat protein Phage T7 -1 FS G GUU UUC 3’ stimulatory element 
in UTR 

Table 16: A partial bestiary of recoding signals 

This is a short listing of characterized recoding signals sorted from chromosomal to viral 
elements.  This is mostly transcribed from Baranov et al.[158].  Many hundreds of new examples 
may be found at the much improved Recode2 database[6]. 
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Appendix 13: Observed Viral Origin -1 PRF Signals. 

Family/Group Genus Virus Gene 
Overlap 

References 

Retroviridae Lentivirus Human Immunodeficiency 
Virus type 1 

gag-pol Jacks et al (1998) 

Retroviridae Lentivirus Feline Immunodeficiency 
Virus 

gag-pol Morikawa and Bishop 
(1992) 

Retroviridae ALSV Rous Sarcoma Virus gag-pol Jacks and Varmus 
(1985) 

Retroviridae B-type Mouse Mammary tumor 
virus 

gag-pro Moore et al (1987), 
Jacks et al(1987) 

Retroviridae D-type Simian Retrovirus Type 1 gag-pro ten Dam et al.(1994) 
Retroviridae HTLV Human T cell leukemia 

virus Type 1 
gag-pro Nam et al.(1988) 

Retroviridae HTLV Human T cell leukemia 
virus Type 1 

pro-pol Nam et al.(1993) 

Retroviridae HTLV Human T cell leukemia 
virus Type 2 

gag-pro-
pol 

Mador et al.(1989) 

Coronaviridae Coronavirus Infectious Bronchitis Virus orf1a-
orf1b 

Brierley et al.(1988) 

Coronaviridae Coronavirus Mouse Hepatitis Virus orf1a-
orf1b 

Bredenbeek et 
al.(1990) 

Coronaviridae Coronavirus Human Coronavirus orf1a-
orf1b 

Herold et al.(1993) 

Coronaviridae Coronavirus Transmissible 
gastroenteritis virus  

orf1a-
orf1b 

Eleouet et al.(1995) 

Coronaviridae Torovirus Berne Virus orf1a-
orf1b 

Snijder et al.(1990) 

Coronaviridae Arterivirus Equine Arteritis Virus orf1a-
orf1b 

den Boon et al.(1991) 

Astroviridae Astrovirus Human astrovirus serotype 
1 

orf1a-
orf1b 

Marczinke et al.(1994) 

Totiviridae Totivirus Giardia lamblia virus orf1-orf2 Wang et al.(1993) 
Totiviridae Totivirus Saccharomyces cerevisiae 

L-A 
gag-pol Dinman et al.(1991) 

Totiviridae Totivirus Saccharomyces cerevisiae 
L-1 

cap-pol Diamond et al.(1989) 

Podoviridae T7 phage Bacteriophage T7 10A-
10B 

Condron et al.(1991) 

Siphoviridae Λ phage Bacteriophage Λ gpG-T Levin et al.(1993) 
Luteoviridae Luteovirus Barley Yellow Dwarf Virus 39K-

60K 
Brault and Miller(1992) 

Luteoviridae Luteovirus Beet Western Yellow Virus orf2-orf3 Garcia et al.(1993) 
Luteovirdiae Luteovirus Potato Leaf Roll  orf2a-

orf2b 
Prufer et al.(1992) 

Dianthoviridae Dianthovirus Red clover necrotic mosaic 
virus 

P27-p57 Xiong et al.(1993) 

Family/Group Number of 
Signals 

Non-viral Genus Number  

Potyvirus 59 Drosophila 20  
Alphavirus 20 E. coli 7  
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Poleovirus 12 Salmonella 4  
Lentivirus 12 Neisseria 3  
Deltaretroviru
s 

10 Mus 2  

Coronavirus 9 Bacillus 1  
Betaretrovirus 8 Bombyx 1  
P2-like viruses 7 Ceratitis 1  
Flavivirus 7 Homo 1  
Luteovirus 6 Vibrio 1  
Bymovirus 4    
Tritimovirus 4    
Umbravirus 4    
Rymovirus 3    
Dianthovirus 3    
Ipomovirus 3    
Sobemovirus 3    
Giardiavirus 3    
Mamastroviru
s 

3    

Totivirus 3    
Alpharetroviru
s 

2    

Avastrovirus 2    
Lambda-like 
virus 

1    

T-7 like 
viruses 

1    

Torovirus 1    
Okavirus 1    
Table 17: A catalog of known viral origin -1 PRF signals 

Categorizing the various viral origin -1 PRF signals[6,13] 
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Appendix 14: -1 PRF Signals are not Conserved across Yeast 

Species 

SPR6 -1 PRF signals in Saccharomyces species 

 
S. cerevisiae 
SPR6 PRF signal 
@ 279 

 
MFE: -20.33 
Kcal/mol 

 
Slippery Site: 
AAAAAAA 

 
 

 

 
Yeast species 

 
Slippery site 
location of 

similar 
frameshifting 

signal 

 
Slippery site 

 
Predicted 

MFE 
(Minimum 

Free 
Energy) 
Kcal/mol 

 
Predicted psuedoknot structure  

 
S. paradoxus 

 
243 

 

 
AAAAAAA 

 
-10.7 

 

 
348 

 

 
AAAUUUU 

 
-31.5 

 

 
417 

 

 
CCCAAAA 

 
-29.7 

 

 
S. mikatae 

 
 

No strong 

   

 
S. bayanus 

 

 
No predicted 

 
 

 
 

 

 
S. kudriavzevii 

 
216 

 

 
UUUAAAA 

 
-11.5  

 
279 

 

 
AAAAAAA 

 
-9.6 

 

  
348 

 

 
AAAUUUU 

 
-8.6 

 

 
 

EST2 -1 PRF signals in Saccharomyces species 

 
  
S. cerevisiae 
EST2 PRF signal 
@ 1653 

 
MFE: -16.9 
Kcal/mol 

 
Slippery Site: 

AAAAAAU 
 

 
 

 
Yeast species 

 
Slippery site 
location of 

similar 
frameshifting 

signal 

 
Slippery site 

 
Predicted 

MFE 
(Minimum 

Free 
Energy) 
Kcal/mol 

 
Predicted psuedoknot structure 

 
S. paradoxus 

 
585 

 
UUUUUUU 

 
-13  

 
744 

 
UUUAAAU 

 
-19.7  

 
1131 

 
UUUUUUU 

 
-20.3  



 160 
 

 

 
 

1320 

 
AAAAAAA 

 
-20  

 
1662 

 
UUUUUUU 

 
-12.3  

 
S. mikatae 

 
426 

 
UUUUUUU 

 
-13.75 

 

 
 

 
1995 

 
UUUAAAA 

 
-12.19 

 

 
S. bayanus 

 
933 

 
AAAUUUA 

 
-12.9  

 
936 

 
UUUAAAC 

 
- 15.6  

 
1689 

 
UUUUUUC 

 
-18.6  

 
S. castellii 

 
453 

 
AAAUUUA 

 
-16  

 
2022 

 
AAAAAAU 

 
-5.83  

S. kudriavzevii 
No predicted 

 
 

  

 

BUB3 -1 PRF signals in Saccharomyces species 

 

S. cerevisiae 
BUB3 PRF signal 
@ 858 
 
MFE: -11.71 
Kcal/mol 
 
Slippery Site: 
AAAAAAU 

 

 
Yeast 

species 

 
Slippery site 
location of 

similar 
frameshifting 

signal 

 
Slippery site 

 
Predicted 

MFE 
(Minimum 

Free 
Energy) 
Kcal/mol 

 
Predicted psuedoknot structure 

(nupack) 

 
S. paradoxus 

 
858 

 

 
AAAAAAC 

 
-10.6 

 

 
S. mikatae 

 
No predicted 

   

 
S. bayanus 

 
864 

 
AAAAAAC 

 
-22.3 

 

 
S. castellii 

 
138 

 

 
UUUAAAA 

 
-9.96  

 
S.kudriavzevii 
 

 
417 

 
AAAAAAC 

 
-3.4 

 

 
S. kluyveri 

 
None predicted 

   

 

TBF1 -1 PRF signals in Saccharomyces species 
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S. cerevisiae 
TBF1 PRF signal 

@ 771 
 

MFE: -9.5 
Kcal/mol 

 
Slippery Site: 
AAAUUUA 

 

 
 
 

 
Yeast 

species 

 
Slippery site 
location of 

similar 
frameshifting 

signal 

 
Slippery site 

 
Predicted 

MFE 
(Minimum 

Free 
Energy) 
Kcal/mol 

 
Predicted psuedoknot structure  

 
S. paradoxus 

 
None predicted    

 
S. mikatae 

 
1521 

 

 
AAAUUUA 

 
-18.5 

 

 
S. bayanus 

 
None predicted    

S.kudriavzevii 495 GGGAAAC -12.4 
 

 1080 AAAAAAU -27  

 
S. kluyveri 

 
273 

 

 
AAAAAAA 

 
-27.33 

 

 1293 AAAAAAC  
-22.6  

S. castellii 537 UUUAAAA -20.1 
 

 
Table 18: -1 PRF signals are not conserved across yeast species 

The predicted -1 PRF signals for the ORF homologs in this study are listed; including the location 
of slippery sites, predicted minimum free energies (MFE) and downstream pseudoknots  (3’ of  
the slippery site) from Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. bayanus, S. 
castellii, S. kudriavzevii and S. kluyveri.  S. cerevisiae genes were used as inputs for the PRFdb 
(http://prfdb.umd.edu/) local BLAST database. The resulting homologous genes were queried for 
potentially significant -1 PRF signals as previously described[12].  Downstream stimulatory 
structures were predicted using the hotknots, unpack, or pknots algorithms.  Note that no 
homologs were identified in the S. castelii and S. kluyveri genomes for SPR6, in the S. kluyveri 
genome for EST2, or for TBF1 in the S. castelli genome.  Hyperlinked URLs lead to all potential 
folding solutions for each potential -1 PRF signal.  These analyses were performed by Vivek 
Advani. 
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Appendix 15: Interleukin Receptor Genes Containing -1 PRF 

Signals 

• CCR5 is the co-receptor for HIV-1, and individuals who do not express CCR5 are 
refractory to infection by the virus[262,263].  

• Expression of the IL7RA chain is critical for mounting an effective cellular 
immune response, and for maintaining long term T-cell memory (reviewed in 
[264]).  

• Interleukin-8 is a proinflammatory cytokine that is involved in chemoattraction 
and activation of neutrophils. The IL8 αααα-chain receptor (CXCR1) is a member of 
the G-protein-coupled receptor family that binds to IL8 with high affinity and 
transduces the signal through a G-protein activated second messenger 
system[265]. CXCR1 cleavage represents an important pathophysiologic 
mechanism in Cystic Fibrosis and other neutrophilic airway diseases[266], and 
expression of the CXCR1-Ha allele was found to protect patients against rapid 
progression to AIDS[267].  While CXCR1 only binds IL8, the IL8 β-chain receptor 
(CXCR2) also binds GRO and NAP-2[268].  Gene knockout studies in mice 
revealed a profound increase in the neutrophil and B-cell populations 
accompanied by lymphadenopathy and splenomegaly, suggesting that this 
receptor is the major mediator of neutrophil migration to sites of 
inflammation[269].  

• Interleukin-27 triggers expansion of antigen-specific naive CD4-positive T cells 
and promotes polarization towards a Th1 phenotype, which is critical for cell-
mediated immunity.  The interleukin 27 receptor α-chain (IL27R) is widely 
expressed in the immune system, and IL27R deficient mice were less able to 
control bacterial and parasite infections[270–272].  The hyper-susceptibility of 
IL27R knockout mice to experimental autoimmune encephalomyelitis suggested 
that this receptor may regulate production of proinflammatory cytokines and 
antagonize T cell-mediated immune hyperactivity[271,273].   

• The interleukin-2 γ-chain receptor (IL2RG) is shared among receptors for 
numerous interleukins involved in T-cell memory generation (IL2, IL4, IL7, IL15 
and IL21), and defects in its expression can result in Severe Combined Immune 
Deficiency syndrome (SCID)[264].  

• Interleukin-22 is structurally related to IL10[274], and the IL22 receptor α-1 chain 
(IL22R1) complexes with the IL10 receptor β-chain to serve as a common 
receptor chain for both IL10 and IL22[275].   IL22R1 expression is restricted to 
skin and respiratory and digestive tissues[276]; skin from patients with psoriasis 
or atopic dermatitis expressed high levels of IL22 and β-defensins, and it has 
been proposed that IL22 directly promotes the innate, nonspecific immunity of 
tissues[277].   
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