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ABSTRACT

We formulate the problem of decomposing a scene into its constituent objects as one of partitioning the current
frame into objects comprising it. The motion parameter is modeled as a nonrandom but unknown quantity and
the problem is posed as one of Maximum Likelihood (ML) estimation. The MRF potentials which characterize
the underlying segmentation �eld are de�ned in a way that the spatio-temporal segmentation is constrained by the
static image segmentation of the current frame. To compute the motion parameter vector and the segmentation
simultaneously we use the Expectation Maximization (EM) algorithm. The E-step of the EM algorithm, which
computes the conditional expectation of the segmentation �eld, now re
ects interdependencies more accurately
because of neighborhood interactions. We take recourse to Mean Field theory to compute the expected value of the
conditional MRF. Robust M-estimation methods are used in the M-step. To allow for motions of large magnitudes
image frames are represented at various scales and the EM procedure is embedded in a hierarchical coarse-to-�ne
framework. Our formulation results in a highly parallel algorithm that computes robust and accurate segmentations
as well as motion vectors for use in low bit rate video coding.

Keywords: Motion-based segmentation, Markov Random Field, Mean Field theory, Expectation-Maximization,
object-based coding

1. INTRODUCTION

Very low bit rate coding of video with a provision for content access is the focus of current research in source coding of
video. Second generation coding techniques1 were proposed as an alternative to block-based approaches to alleviate
the problems occuring at low bit rates such as blocking artifacts, jerky motion etc. One such technique, namely,
the object-based approach deals with extracting moving objects, representing them in terms of parameters which
characterize their shape, motion and texture, and coding these parameters e�ciently such that the original video
frames can be synthesized at the decoder. Object-based representation also facilitates multimedia functionalities
such as content based access.

The fundamental problem that needs to be solved in object-based coding is that of decomposing a scene into
its constituent objects. The most important cue to segmenting a scene comes from visual motion. In order to
code generic scenes, for which no explicit object model is available, implicit models that mix structure and motion
information implicitly have been pointed out to be suitable.2 Such models use the fact that 3-D real world objects
are projected onto the image plane by a camera to connect successive images in the camera plane pertaining to each
object and obtain a description. Image motion can be used to identify areas corresponding to di�erently moving
objects in space and to distinguish these from the background. The objective of motion-based image segmentation is
to partition the current image into regions characterized by coherent motion. Since these motion regions correspond
to di�erent moving objects in the scene, this problem is of fundamental importance in the context of object-based
coding of video. As opposed to the problem of spatial (or static) image segmentation, whose goal is to determine
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regions of uniform luminance, our problem is one of spatio-temporal segmentation. Computing the spatio-temporal
segmentation, like its static counterpart, is a \chicken and egg" problem. The two parts of the problem, motion
estimation and motion segmentation are inextricably coupled. On the one hand, an accurate estimate of the motion
is required to obtain a good segmentation. On the other hand, a good segmentation is needed to precisely estimate
the motion.

To overcome the above dilemma, various approaches have been adopted in the literature. A 3D segmentation based
on constant luminance values does away with the correspondence problem along the time axis.3 However, instead of
motion, uniform luminance is used as the criterion for segmentation. Wang and Adelson4 base their segmentation
on the computation of optical 
ow. Optical 
ow computation itself is an ill-posed problem because of the aperture

problem�. Regularization techniques can constrain the optical 
ow vector, but the smoothness assumptions can
distort the motion boundaries. A properly chosen discontinuity adaptive regularizer5 can be used to preserve motion
boundaries. However, in the context of coding the computation of optical 
ow becomes an intermediate step whose
accuracy plays a crucial role in motion-based segmentation. The high cost of computation that would be incurred
for obtaining an intermediate result suggests a more direct formalism than the two step one. Our approach is one
such and is based on this observation.

Recently, techniques that simultaneously estimate segmentation and motion have been proposed. Such approaches
are usually embedded in Markov Random Fields (MRF). MRF modeling provides a convenient framework to regu-
larize the estimation problem. It is also ideally suited to introduce local and contextual constraints. Further, some
amount of parallelism can be expected in the resulting algorithms. Usually, a Bayesian approach is adopted and
the problem is posed as a MAP estimation of motion and segmentation given the observations.6{8 The equivalence
between MRFs and Gibbs distributions leads to global minimization of an appropriate energy function which can be
performed stochastically or deterministically. While Konrad and Dubois7 and Stiller6 estimate dense motion �elds,
Bouthemy and Francois8 use parametric modeling.

A reliable estimate of motion not only segments objects precisely but also reduces the prediction error information
that needs to be sent to the decoder. Since motion information also needs to be transmitted to the decoder a succinct
representation is desirable. From a coding point of view it is advantageous to have a parametric modeling of the
motion �eld. Unlike most approaches which compute dense optical 
ow �elds and then try to reduce the motion
vector information by quantization for purposes of coding, we use motion to group pixels into objects. Pixels that
move similarly can be represented by a few parameters and are considered to be arising from the same motion model.
A segmentation derived from such a parametric modeling of the motion �eld has the advantage that it can tackle
cases where there is fragmented occlusion by integrating information from pixels that are not necessarily neighbors
but belong to be the same motion model. An example of such a situation would be the branches of a tree occluding
a uniform background. Motion-based segmentation seeks to decompose an image sequence into constituent objects
(or segments) in terms of their motion. In order to describe a scene in terms of its constituent objects we try to
obtain a description of the motion �eld in terms of parametric motion models. To provide for occlusions, such as
the one mentioned above, we model the scene by layers or regions of support. Thus, the segmentation of a scene in
terms of its constituent objects should result in a set of support maps, each corresponding to the region described
using the parametric model. The task of motion-based segmentation is to �nd these support regions automatically.
Our approach is akin to the parametric mixture modeling of motion that was introduced by Darrell and Pentland.9

Based on the observation in2 that implicit 2-D parametric models have the best potential for use in motion-based
video coding Sawhney and Ayer10 used it to represent video in terms of layers. They used techniques from robust
estimation to make their segmentation insensitive to outliers. However, Sawhney and Ayer regarded the observations
to be independent and the underlying segmentation �eld to be i.i.d. We use a more accurate model that captures
the physical constraints of the segmentation �eld by de�ning it in terms of a Markov Random Field.

2. PARAMETRIC MOTION MODELING AND SEGMENTATION

Mathematically, we formulate the problem as follows. The observation consists of two image frames, I(t � 1) and
I(t), captured by the camera at successive instances of time. I(t) is taken as the current frame which needs to
be partitioned into objects comprising the frame based on the motion that took place between t � 1 and t. The
information pertaining to the motion of objects is contained in a parameter vector �(t). �(t) relates I(t) to I(t� 1)

�Only the component of the 
ow vector along the intensity gradient can be recovered.
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by using K motion models, each of which is a 6 or 8 parameter motion model. More particularly, each motion
model is characterized by the parametric velocity vectory, uak(t); k = 1; 2; : : : ;K. I(t� 1) and I(t) are speci�ed on
a collection of N sites (or pixels) where each site is indexed by a single number i, i = 1; 2; :::N . The set of sites is
denoted by S and the Cartesian coordinate location of the ith pixel is denoted by xi = (xi; yi). In order to compute
motions of varying magnitudes the images are represented at multiple scales. It is assumed that I refers to any of
these �ltered representations of the original image. In the following discussion superscript k refers to the kth model
and subscript i refers to the ith pixel location.

To model the intensity I(xi; t) at pixel xi and time t in terms of the parameter vector �(t) we introduce K model
prediction images, f~Ik(t)gKk=1, each of which can be predicted from I(t� 1) using the relation

~Ik(xi; t) = I(xi � uak(xi; t); t� 1); k = 1; 2; : : : ;K: 8i 2 S (5)

To assign each pixel to a unique model, we introduce a K dimensional support vector si(t) where

si(t) = [s1(xi; t) s2(xi; t) : : : sK(xi; t)]
T

(6)

where the binary variables sk(xi; t) (= ski (t)) are de�ned as

sk(xi; t) =

�
1 : I(xi; t) 2 ~Ik(t)

0 : I(xi; t) =2 ~Ik(t)
(7)

To allow for illumination changes, impulse noise, environment clutter etc. we model the intensities of I(t) by means
of a p.d.f for each motion model

pk(I(xi; t)jI(t� 1);�(t)) = pk(I(xi; t)j~I
k(xi; t); �

k(t))

= pk(I(xi; t)jI(t� 1);uak ; �k(t)) (8)

where k = 1; 2; : : : ;K. Each pk(I(xi; t)j~Ik(xi; t); �k(t)) is assumed to be a Gaussian with mean ~Ik(xi; t) and variance
�k, i.e.,

pk(I(xi; t)jI(t� 1);�(t)) � N (~Ik(xi; t); �
k(t)) k = 1; 2; : : : ;K (9)

If we de�ne the prediction error or residual for each of the k motion models at each pixel i, at time t and denote it
by rk(xi; t), then

rk(xi; t) = I(xi; t)� ~Ik(xi; t) (10)

and rk(xi; t) is N (0; �k) Gaussian distributed 8k = 1; 2; : : : ;K. We shall use rk to denote the N dimensional vector
[rk(x1; t); r

k(x2; t); : : : ; r
k(xN ; t)]

T and r to denote frkgKk=1. The parameter vector �(t) = [�(t) �(t)]T where

�(t) = [�1�2 : : : �K ]T (t), and �(t) = [�1�2 : : :�K ]T (t) with �
k = ak(t).

The objective of motion-based segmentation is to automatically assign to each pixel, xi, the vector si(t) on the
basis of motion. Since motion information is implicit in the observations, the parameter �(t) needs to be estimated.

yAt any pixel xi, suppressing the dependence on time, the parametric velocity vector can be expressed as

ua(xi) = X(xi)a (1)

where

ua(xi) =

h
u(xi; yi)
v(xi; yi)

i
(2)

X(xi) =

h
1 xi yi 0 0 0 x

2

i
xiyi

0 0 0 1 xi yi xiyi y
2

i

i
(3)

a = [a1 a2 a3 a4 a5 a6 a7 a8]
T (4)
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We use Maximum Likelihood estimation to compute the ML estimate of �(t), denoted by �̂ML(t).

�̂ML(t) = argmax
�(t)

n
p(I(t)jI(t� 1);�(t))

o

= argmax
�(t)

n
log[p(I(t)jI(t� 1);�(t))]

o
(11)

The ML estimate �̂ML(t) can be interpreted as the value of �(t) which best explains the observation - I(t) and
I(t� 1).

Equation (11) is more general than the classical ML estimation problem, in that, part of the data (correspond-
ing to si(t)) is unobservable or hidden and hence is an instance of an \incomplete data problem". Expectation-
Maximization11 (EM) algorithm is a formal procedure to solve such incomplete data problems. The underlying
assumption of the procedure is that the \complete" data includes not only the observed data, I(t) and I(t� 1), but
also \hidden" data, consisting of labels si(t);8i = 1; 2; : : : ; N . Although this information is hidden we know that
these variables should exhibit certain characteristics. In order to force the output of our segmentation procedure
to re
ect these characteristics we can introduce appropriate prior distributions. Speci�cally, we are interested in
obtaining spatio-temporal segmentations that re
ect the following two facts.

1. Neighboring pixels usually belong to the same object and hence should have the same labels.

2. Object boundaries, i.e., sites where the neighboring pixels of s(t) are not assigned the same labels, usually
coincide with static intensity segmentation boundaries of I(t).

In other words, s(t) should be modeled as a Markov Random Field (MRF). To bias the output segmentations
appropriately, we use the following prior.

p(s(t)) =
1

Z
exp

h
� �

NX
i=1

�
�1

X
j2Ni

[1� 2�(si(t)� sj(t))]�(zi(t)� zj(t))
�i

=
1

Z
exp[��U(s(t)] (12)

where � is the Kronecker delta function and z(t) denotes the assigned label �eld for the static (gray level) image
segmentation of the image frame I(t). We shall assume that we can compute the static image segmentation fast
enough to make it available to the motion-based segmentation procedure. As was pointed out earlier, we can use
EM to simultaneously estimate the motion parameter vector �(t) as well as the segmentation s(t).

2.1. Recovering Motion Vectors and Support Regions Using EM Algorithm

The EM procedure compensates for the lack of \hidden" data by replacing them with their conditional expected
values. To illustrate how the motion-based segmentation problem can be formulated as an incomplete data problem
we introduce additional notation and reinterpret those de�ned before. The new notation subsumes the explicit
dependence on time t and allows us to concentrate on developing the segmentation algorithm based on EM. Let

h = fhi; i 2 Sg denote hidden variables with prior distribution p(hj�h)

o = foi; i 2 Sg denote observations with likelihood p(oj�o;h)

Let � = (�o;�h) denote the parameter vector. Further, we assume that the parameter vectors �o and �h are
separable, i.e. �o

T
�h = � where � is the null set.

In our case,

h = s(t) = fsi(t); i 2 Sg (13)

o = fI(t); I(t� 1)g

�o = �(t)
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The complete data vector is denoted by c, and it includes both the observed data, o and the hidden data, h, i.e.
c = fo;hg. The EM algorithm attempts to solve the ML estimation problem:

�̂ML = argmax
�

log p(oj�) (14)

To do this, it alternates between the following two steps

E step: Compute

Q
�
�j�(p)

�
= E

�
[log p(ojh;�) + log p(hj�)]jo;�(p)

	
(15)

M step: Compute

�(p+1)(t) = argmax� Q
�
�j�(p)

�
(16)

where E[�] denotes expectation and p denotes the pth iteration. It has been shown that under some moderate
regularity conditions, the estimates converge to ML estimates, at least locally.12

2.2. E Step: Computation of Expected Support by Mean Field Approximation

The E step of the EM procedure compensates for the lack of \hidden" data s(t) by replacing it with its conditional
expected value denoted by g(t), where gk(xi; t) 2 [0; 1] although sk(xi; t) 2 f0; 1g. The expected values are based on

the current parameter estimate �(p)(t) and the observations - I(t) and I(t� 1).

gk(xi; t) = E[sk(xi)jI(t); I(t � 1);�(p)(t)]

= Prob[I(xi; t) 2 ~Ik(t)jI(t); I(t� 1);�(p)(t)] (17)

In terms of notation introduced in the previous subsection, E[hijo;�(p)] needs to be computed. Since we have
modeled h as an MRF, it can be shown13 using results from Mean Field (MF) theory that hjo;�(p) is an MRF.
Hence, we can express

E[hijo;�
(p)] = Zmf 0

i

X
hi

hi exp(��U
mf 0

i ) (18)

where Umf 0

i is the local energy given by

Umf 0

i = hTi [
�1

�
W1(oi;�

(p)) + V1(�
(p))] +

X
j2Ni

hTi V2(�
(p))E[hj jo;�

(p)] (19)

and Zmf 0

i is the local partition function. Note that in order to �nd the the mean �eld at i we need to �nd the mean
�eld at the neighbors of i. Since both the E and the M steps are embedded in an iterative procedure the mean �eld
is computed iteratively. The calculation of the mean �eld can be decomposed into local computations using Besag's
coding method and can be implemented in parallel.

2.3. M Step: Estimating Model Parameters

The M step performs the maximization of the Q function to obtain the parameter estimate �(p+1)(t) for the next
iteration. Since si was introduced in Section 2 to assign each pixel xi to a single model we need to recover the

binary labeling. We introduce the K dimensional vector li = [l1i l2i : : : lKi ]
T
at each site i. Each label lji 2 f0; 1g

is binary and follows the notation

lji = 1 i� j = argmaxk21;2;::KE[h
k
i jo;�

(p)] (20)
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In other words, the labels lki ; i = 1; 2; : : : ; N and k = 1; 2; : : : ;K, are used to assign each observation (at site i)
to a motion model k. This information is crucial for updating f�kgKk=1. To make the parameter update step robust,
i.e., insensitive to outliers we use the robust estimate14

�k;(p+1) = 1:4826 mediani:lk
i
=1jr

k(xi; t)j (21)

In our problem of motion-based segmentation we also need to update the motion vector, uak (or corresponding
parameter vector �k), k = 1; 2; : : : ;K, at each M step. From Equation (16) we can write

�(p+1)(t) = argmax
�(t)

NX
i=1

KX
k=1

E[ski jr;�
(p)(t)] log pk(rk(xi; t)j�(t)) (22)

which can be rewritten as

�(p+1)(t) = argmin
�(t)

NX
i=1

KX
k=1

E[sikjr;�
(p)(t)]

�
� log pk(rk(xi; t)j�(t))

�
(23)

To compute a robust estimate, we replace the negative log-likelihood by a robust function � which is related
to the likelihood function through the choice of the distribution of residual or prediction error Thus, we have K
minimizations to perform, one for each motion model, each of which is a weighted nonlinear minimization and can
be expressed as

�
(p+1)
k = argmin

�k

NX
i=1

E[ski jr;�
(p)(t)] �(rk(xi; t); �k) 8k = 1; 2; :::;K (24)

3. ROBUST MOTION-BASED SEGMENTATION

Atypical observations, or outliers, arise in the context of modeling when the brightness constancy constraint, implicit
in Equation (5) is violated. This occurs when there is multiple motion at a pixel (Eg. overlays) or when there is
occlusion/dis-occlusion of pixels. Regardless of the reason why outliers manifest themselves, atypical observations
must be detected and removed from the data so that they do not corrupt the segmentation procedure. To do this,
we apply Chebyshev bounds and validate observations at each iteration. We discard outliers and use only pertinent
observations for the EM procedure.

3.1. The Algorithm

By specializing the EM algorithm to our problem and using a robust estimation formulation we can obtain a robust
motion-based segmentation algorithm. As mentioned before, we embed the EM algorithm in a hierarchical coarse-
to-�ne framework.

Given: Current image frame I(t) and previous image frame I(t� 1) both of dimension X � Y , where usually
X = Y = 2b for some positive integer b.

Preprocessing: Compute the multi-resolution image representation for I(t) and I(t � 1). Let m represent
scale or the level of the multi-resolution pyramid, with m =MAXLEV EL referring to the coarsest level, and
m = 1 referring to the �nest level (corresponding to the original resolution of the frames). The static (gray
level) segmentation is computed at each scale. The initialization step is carried out only at the coarsest level,
i.e., m =MAXLEV EL.

Initialization: We set initial values for �k and �
k = ak; k = 1; 2; : : : ;K where a is of dimension 6 (for a�ne

motion model) and dimension 8 (for quadratic motion model). In particular, we choose each �k to be a large

value and each �
k to be the zero vector. These values are used to set �(0).

Iterative Phase: At each resolution level, m =MAXLEV EL; : : : ; 2; 1:
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FOR p = 0 to P do

1. Compute K prediction frames by warping the previous frame towards the current frame,

~Ik(xi; t) = I(xi � u
(p)
ak
(xi; t); t� 1); k = 1; 2; :::;K: (25)

2. De�ne K residual frames in terms of the pixel residues using

rk(xi; t) = I(xi; t)� ~Ik(xi; t); k = 1; 2; : : : ;K: (26)

3. Validate data using Chebyshev bounds.

4. E step: Compute K dimensional expected support vector E[si(t)jr;�(p)] at each site i using MF equations.

5. M step:

(a) Compute K dimensional label vector li(t) = [l1i (t) l2i (t) : : : lKi (t)]
T
at each site i using Equation

(20).

(b) Compute updates for �(t) and �(t) using Equation (21) and solving Equation (23).

ENDFOR

Project results to next level.

Analyzing the above algorithm reveals steps 4 and 5(b) to be computationally intensive. However, both steps
can be parallelized easily. Hence, the algorithm can be implemented parallely in hardware for real-time applications.
Results obtained through software implementation of the above algorithm are discussed next.

4. RESULTS

In order to test the algorithm we synthesize frames with known motion parameters as the input. We use an input
sequence consisting of a moving block (foreground) against a static background. We start with 4 motion layers
(K = 4) and let the algorithm decide the number of motion layers needed. Fig. 1 shows the two frames of the input

sequence, I(t� 1) and I(t). The two frames have been generated synthetically, using a motion vector of [6 4]
T
for

a bright (textured) block moving against a dark (textured) background. Fig. 2 shows the support layers obtained.
It can be seen that the algorithm converges to 2 motion layers - one each for the foreground and the background.
The pixels belonging to the uncovered background manifest themselves as outliers. The results shown were obtained
after just 10 iterations. The computed motion vector parameters are shown in Table 1.

Object Background

5.9897 0
0.0003 0
0.0001 0
3.9538 0
0.0003 0
0.0016 0

Table 1. Computed parameters

Fig. 3 shows the di�erence between the current frame I(t) and the predicted frame, Î(t) based on support layering
and motion modeling.

Î(t) =

KX
k=1

Îk(t) (27)

=

KX
k=1

sk(t)� ~Ik(t)

where � denotes pixelwise multiplication.
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Previous Frame: I(t−1) Current Frame: I(t)

Figure 1. Two frames of the input sequence

Background Foreground Outliers

Figure 2. Support layers

Predicted Frame Frame Difference

Figure 3. Predicted frame and frame di�erence
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5. CONCLUSIONS

This paper provides a formalism for decomposing video frames into objects based on support layers and parametric
motion models. It establishes the feasibility of using Mean Field approximation within the EM framework to compute
segmentations and motion vectors for use in low bit rate video coding. The results shown here are preliminary and
further research is underway to demonstrate the e�ectiveness of the algorithm in the case of natural sequences.
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