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Abstract: Local feedback stabihizaton and bifurcation control
of nonhnear systems are studied for the case in which the
dritical hnearized system possesses @ simple zero eigeny alue.
Sufficrent conditions are obtamed for local stabilizability of
the equilibnium pomt at coitcabity and for focal stabtafizabiting
of hifurcated cquilibria. These condiions involve assumptions
on the controthabiity of the eritical mode for the hnearnized
sastem Explicit stabilizing feedback controls are constructed.
The Projection Method of analyvsis of stavonary bifurcations is
cmploved This wark complements an carher study by the
same authors ¢ Svavems Control Lert T (19863 11217y of stabih-
zaton and bifurcation control n the (Hopf brfurcadon) case of
two pure imaginars crgemvalues of the hinearized ssstem at

criucality,

KNevwords: Bifurcation, Stabiluv. Stabilizauon, Controb svs-
tems, Nonhnear systems, Feedback control.

1. Introduction

Consider a one-parameter family of nonlincar
control svstems

x=f(x. u) (1)

where x € R”, v is a scalar control. g 1s a real-val-
ued parameter. and the vector field f, is suffi-
ciently smooth. Suppose that for v =0 Eq. (1) has
an equilibrium  point  x () which depends
smoothly on p. In the sequel the system

X = fulxs w). {
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which 1s simplv (1) with p=0. will also be of
mterest. ’

This paper 1s concerned with the synthesis of
feedback controls u = w(x) achieving certain sta-
bility properties- for each of the descriptions (1)
and (2). The resuits apply under the following
hvpothesis. which ensures that new  stationary
solutions of (1) bifurcate from x,(p) at p=0:

(S) Eqg. 1) has an equilibrium v, (p) when v =0.
Furthermore, the lincarization of (1) near x,. p=10
possesses a simple eigenvalue A (p) with A (0)
=0. A0y # 0. with the remamning eigenvalues
Ay ALy in the open left half complex

plane.

The assumption that A}(0) # 0 is the familiar
strict-crossing  (transversality)  condition  intro-
duced by Hopf [13].

As 1s well known, hypothesis (S) leads to a
stationary (or staticy bifurcation for Eq. (1). i.e. a
bifurcation involving only equilibrium points. Two
stabilization problems are constdered in the sequel.
One of these pertains to Eq. (1) and the other to
Eqg. (2). For Eq. (1). the goal is to ensure local
asvmptouce stability of the bifurcated equilibria.
This wil be referred to as the local stationary
bifurcation control problem. For the description (2).
it is desired to solve the-standard local feedback
stabtlizarion problem at” the  equilibrium  point
Ay (0). Note that under hypothesis (S). (2) 15 an
example of a critical nonhinear system since its
himearization possesses an eigenvalue with zero real
part. Continuing in the spint of {1}, elementary
results from bifurcation theory are used to solve
both of these local feedback control problems
stmultancously. -

The Projection Method (see [14.15]) will be
cmploved to obtain generally applicable formulae
for coefficients in the series expansions of the
bifurcated equilibrium. These bifurcation formulae
are then applied to determine sufficient conditions
for bifurcatuon controllabihity and feedback stabi-
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lizabihitv. and to derive explicit stabilizing feed-
back controls.

The development of the paper is as follows,
The problems of local feedback stabilization and
local bifurcation control and their connection are
discussed 1n Section 2. Section 3 contains a deriva-
tion of the bifurcation formulae needed in the
paper. Their apphication to the stationary bifurca-
tion control problem described above is contained
in Scction 4. In Section 5. the question of generic-
ity of the results with regard to perturbations in

the model is discussed.

2. Stability of critical systems and bifurcation anal-

yais

U nder the stationary bifurcation hvpothesis (S).
itis well known [S] 120 T4 1S) 18] that Eg. (1)
exhibits o stationary (or static) bifurcation from
Ay, at g O That is, new stationary sofutions (1 ¢
cauwhbrium points) bifurcate from x,, at jo= 0
The stabiliey characteristies of the new solutions
are mumately related to those of v () at enucal-
i e at =00 Teis this itrinsic relationship that
allows the joint consideration of local stabilization
for Eq. (2) and bifurcation control for Eg. (1).

To establish this relationship and motivate the
derivations to follow. consider a general one-
parameter family of nonlincar ordinary differen-
tial cquations

X =/ A{x) (3)

having an equilibrium pomnt x () at which by
pothesis (S) holds. Then near 1, (0). 10— 0 (v o)
space there exists a locally unique curve of pomnts
{(x(e) (e disunct from the poaxis and passing
through (0. 0), such that for all sufficiently smull
le]. x(e) s an equilibrium point of (3) when
o= te). Moreover, the parameter € mav be cho-
sen ~o that x(e) and p(e) are smooth.
Denote the series expansions of p(e). v(e) by

,u(();"ll_ll‘—F‘lJ.:F:#"-". (1)
,\'(l')‘:,\‘li+,\‘:t:+ {3)
respectively, Generically, gy # 0. and there s a
second equilibrium point besides x () for all
small [}, However, if ;=0 and p- >0 (resp.

1~ < 0). then there are two new equilibrium ponts,
one for positive and negauve values of ¢ These

occur only for sufficiently small positive (resp.
negative) values of p. The new equilibrium points
also have an eigenvalue 8 which vanishes at p =0,
with a series expansion

Ble)=Pe+Bre+ . (6)
Moreover, the exchange of stability formula [13.14)
/31 = ‘}Ll)\'l(()) . (7)

holds. IT ;=0 and p, # 0. the appropriate ex-
change of stability formula 1s [13)}

Br= =20 X(0). (8)

(Note: Egs. (7) and (8) may: be derived using the
Factorizatton Theorem in looss and Joseph [15.
pp. 90 91]) Suppose, X (0) > 0. Then thesc facts
imply that superceritical solution branches are sta-
ble while suberitical branches are unstable.

The folfowing result follows from an apphcea-
ton of the Center Manifold Theorem [6,10.12.18]
o a suspended version of Eq. (3) at x (0), p= 0.

Theorem 1. If w, # 0. then the equilibrium pomt
VO) aswnstable for Eq. (3). 1f =0 and o # 0,
then x(0) i asymproncally stable if B, <0 b is
unstable 1f B> ().

Thus, the equilibrium point x,(0) will be as-
sured asymptotically stable if one can arrange that
B, =0 and B, <0. If explicit formulae can be
derived for B8, and f,. this provides a starting
point for the construction of locally stabilizing
feedback controls for the critical system (2). In
fact. by the exchange of stability formulae, 1t is
clear that this also ensures the stability of the
bifurcated stationary solution, by ensuring that
the bifurcation is a supereritical pichfork bifurca-
ron. This is a desirable outcome, as compared to
the  transcritical bifurcation which would occur if
By#00 10w hich the bifurcated equilibrium point
in stable on one side of p = 0 and unstable on the
other. Indeed. under hypothesis (S). a supercritical
pitchfork bifurcation ensures that. even though
the nonnnal equilibrium solution _\"”(p) loses sta-
bilitv as povares through 0. the new equilibrium
solution attracts a neighborhood of initial*condi-
tions about v,(0). This can also be shown through
an application of the Center Manifold Theorem
and the theory of normal forms (sce [10] for

details).
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3. Bifurcation formulae

In this section bifurcation formulae for Eq. (3)
are derived. The results will be the main tool in
the construction of stabilizing feedbacks for Egs.
(1) and (2) in Section 4. The Projection Method.
as eclaborated n (15}, will be emploved in the
derivation.

By assumption. the Jacobian matrix D_F(x,(0))
of (3) at criticality possesses a simple zero ei-
genvalue A(0). Denote by r (resp. ) the night
column (resp. left row) cigenvector of the critical
Jacobian matrix corresponding to this eigenvalue.
Using the fact that 0 is a simple eigenvalue, 1t 1s
not difficult to see that the vectors / and r mayv be
chosen to have only real elements. To be more
spectfic, set the first component of » to 1 and then
choose 1 so that /r=1.

Without loss of generality, assume that for small
[0} the known equilibrium point x,(g) of (3) is
the origin. e, x () =0 for small |pc]. This can
alwavs be achieved by a smooth change of vari-
ables v — x4y (). Rewrite (3) in the series form

!

X L)X+ O, (x x) + Gl xo x )+ e
=L X+ pl X+ L+ o
FQ0(x. X} pQ (o x)+ -
+Colx, x.x)+ . (9)

Here, Lep). L. L, are n X n matrices, Qﬂ(.\‘. X))

Q,(x. x) Q(x. x) are vector valued quadratic
forms generated by symmetric bitinear forms @ (.
¥)Qulx v Q{x. p). respectivelv.and Cy(x. X,
x) is a vector valued cubic form generated by a
svmmetric trifinear form C(x. v. z). The terms
not explicitly written in (9) are of higher order in
x and p than those which are.

A convenient outcome of this representation is
the formula

N (0) = IL,r. (10)

See [14] or {15] for a proof.
{f x is any real (unknown) solution of L (x)=0,
define the parameter € by

€= /x, (11)
and attempt a series expansion of the form

- £l

nie B I

Substituting the expansion (12) in the equation
obtained by equating the right side of (9) to 0. and
equating coefficients of like powers of ¢ vields the
following relationships:

0=1L,x,. (13)
O=Lyxs+p, Lix, +0,(x,. x)). (14)
0= Loxy+p, Lyxs + oLy x, = @lon,
+20,(x . x0) + 0L )
+Colxy a0 x)). 7 (15)

By Eqs. (11) and-(12).

e =Ix(r)

=elx 4 e, ey o (16)
Hence.
Ixy =1 and Ix =0for k =2 (17)

Egs. (13) and (17} and the assumption that 0 is a
stmple crgenvalue of £, now imph

Ny = {18)

Substituting this in Eq. (14) gives the following
cquation, which should evidently be solved for

both x5 and p:
Loxs= —p Lir—Qu(r.r). (19)

Recall that £, 18 singular. From elementary linear
algebra (or the Fredholm Alternative). this equa-
tion has a solution x, if and only if the right side
of (19) 15 orthogonal to all left eigenvectors of L,
corresponding to the zero eigenvalue. Since zero is
a simple eigenvalue of L. one need only require
that

p Ly r +1Q,(r. r) =0, . (20)
so that g, 1s determined as
1
=~ ] r.r 21
P'l All(()) QH( ) ( )

where Eq. (10) has been emploved.

Since the Fredholm Aliernative conditions are
now satsfied. Egs. (14) and (17) for X, have a
solution. This solution s casilv verifigd to be
unique. Equations (14), (17) are conveniently ex-
pressed as the single equation
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Since (22) has a unique solution. the coefficient
matrix

e (] )

is full rank. Hence. R'R is a nonsingular square

matrix and x5 is given by

= Lyr— Q,(r. ry
0

.x-2=(RTR)"‘RT( (24)

With x, now available. one applies the Fred-
holm Alternative to Eqg. (15) to solve for the
coefficient p,. Muluplving both sides of (15) by /
and solving for p,. one obtains

1 5
L= - o x4 it e +200,(r. x,
#2 ,\’1(0){“l Pl 20, )
= 0O, (rory UG, o) )
(23)
Using the exchange of stability formula (7) and
Eq. (21) for g, the coefficient 3, 1~ found to be
B, =10,(r.r). (26)
If g, = 0 (tmplying also 3, = 0). then the exchange
of stability formula (8) 1s valid. In that case. one
finds that f8, 1s given by
.BZ = 2[(2Q()(r- -\.2) + C‘u(r~ r. ’))
(if w, =0 onh). (27)
The formulae (21), (24)-(27) will be emploved
in the next section to obtain sufficient conditions

for bifurcation controllability and local stabihza-
bility for Egs. (1) and (2). respectively.

4. Stationary bifurcation contro!

Motivated by the bifurcation formulae derived
above. and by the results of [1]. one expands the
vector field of Eq. (1) as

Xo=f(x )
=Ly +pl,x+ulx+uy+Q,(x. x)
Ly x4 pQy (x. x) 4 uQ, (x. x)
+C(x.xox) o (28)

The notation here s stmilar to that in Eq. (9). As
in {1]. a feedback control consisting of quadrauc

and cubic terms is assumed. That is, w = u(x) is
taken as

u(x)=xTQ v+ C (x. x. x). (29)

where @, is a real symmetric # X n matrix and
C,(x. x. x) is a cubic form generated by a scalar
valued symmetric trilinear form. Note that u(x)
contains no terms hinear in x. This ensures that
the left and right eigenvectors corresponding to
the zero eigenvalue. and the value of g at critical-
itv. will be unaffected by the feedback control.
(Further discussion on this choice follows Theo-
rem 2 below.) The closed loop dynamics with a
feedback of the form (29) become (starred quanti- -
ties below denote values after feedback)

N=Lix+ 07X, xX)+ C()*(\ A -\')
ol S LA+ pQF (X XY+ - (30)

where the matrices L*. 7= 0. 1. 2. the quadratic
forms QF(x. ). OF(x, x) and the cubic form
C,r(x. x, x)are

L* =1, (=0.1.2. (31a)

O (x.x) = (x'Q,x )y + Qu(x. x). (31b)

OF (x.x) = Qy(x. x). (31c)

and

Crix. x. x)=Cx. x, x)y+ Cy{x. x. x)
+(.\'">Qu_\')1~41\' (31d)

Svmmetric  bilinear and trilinecar forms QfF
(x. v). CF(x. v. 2) generating the quadratic and
cubic forms QX(x. x) and Cf(x, x, x). respec-
tivelv. are now chosen:

Orlxov)= (-“TQu.V)Y + Qolx, »), (32)
Cr{x. v, 2)=Clx. y, 2)y ¥ Clxo . 2)

{10 Lix+ (5TQ ) Ly

+ (7O VL), (33)

After feedback. the coefficient 8, becomes.
using Eq. (26). ’

Br =10%(r. 1) B
= 1{Qy(r. )+ (710 )y)
=B, +(r'Q,r)iy. ‘ (34)

where f, denotes the value of 8, with no feed-
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stabiiize a bifurcation and not merely to stabilize
an equilibrium point for a fixed parameter value.
Second. it should not be surprising that in some
situations a linear feedback which locally stabi-

lizes an equilibrium may result in globallv un--

bounded behavior. whereas nonlinear feedbacks
exist which stabilize the equilibrium both locally
and globally. For an example. see Moon uand
Rand {20]. Hence. even 1f stabilization. rather than
bifurcation control. is the issue being studied.
nonlinear feedback controls can be superior. These
comments apply also to Theorem 1 of {1].

Now consider the case /y = 0. i.e. let the critical
(zero) eigenvalue be wuncontrollable for the lin-
earized system. In the setting of [1]. under the
analogous assumption it was found that generi-
cally local feedback stabilization of the nonlinear
system is achievable. However, Eq. (34) reveals
that in the present setting feedback has no effect
on the value of 8, in case [y = 0. The discussion
in Section 2 therefore implies that the local feed-
back stabilization problem for Ey. (2) will then be
wnsolrable. unless perhaps 1t happens that 3, =0
in the absence of a control effort (a4 nongeneric
assumption). Similarlyv. the local stationary bifur-
cation control problem is also generically unsolva-
ble 1 case {y = 0.

Theorem 3. Let hypothesis (S) hold and uassume
Iy = 0. that is. the critical zero eigencalue is uncon-

trollable for the linearized version of (2). Then if

B, #0 for Eq. (1) with u(x)y=0. both the local
stationary bifurcation control problem for Eq. (1)
and the local feedback stabilization problem for Eq.
(2) are not solcable by a smooth feedback control
with vamshing linear part.

It 1s patural. given the negative conclusion of
this theorem. to consider the possibility of con-
struciing ‘nearlyv stabilizing’ feedback controls for
the case [y = 0. For the local stabihization problem
for Eq. (2). this would correspond to rendering a
neighborhood of the equilibrium point attracting
[4). For the local stationary bifurcation control
problem. it is of interest to consider the possibility
of controlling the bifurcation in Eq. (1) so that it
approximates a supercritical (1.e. stable) pitchfork
bifurcation to any desired degree of accuracy. This
avenue of investigation is currently being pursued
by the authors.

5. Remarks on genericity

The goal pursued in this paper of using feed-
back to transform a given transcritical bifurcation
into a supercritical pitchfork bifurcation deserves
some scrutiny. Neither transcritical bifurcations
nor pitchfork bifurcations are robust to perturba-
tions in the vector field. Under small perturba-
tions. it is well known [3.11.15] that these bifurca-
tions tend to be destroved and replaced by either
two saddle—node bifurcarions or a single saddle-
node bifurcation and a nonbifurcating equilibrium
path. Recall [8.10} that a saddle-node bifurcation
is typified by the bifurcation diagram of [ (x) =
X7 — . Here. there are no equilibria for p < 0. one
for p = 0 and two equilibrium points (a saddle and
a node of the associated differential system) for
p > 0. Arnold [3] discusses this situation in detatl,
and shows that the saddle-node bifurcation is the
onlv  generic bifurcation  for  one-dimensional
equations. Since a simple zero eigenvalue has been
assumed in this paper. a reduction of the dv-
namics to a center mantfold shows that this bifur-
cation problem i~ itrinsically one-dimensional.
(For more details on this hine of reasoning. the
reader 1s referred  to the discussions of  the
Shoshitaishvili Reduction Theorem in Arnold [3.
pp. 265-267] and Kubicck and Marek [17. p.
216).)

These considerations lead to the conclusion that
the assumed nominal equilibrium point x,(p) will
no longer depend smoothly on g near a bifurca-
tion point for small perturbations in the system
model. This equilibrium path will, instead, exhibit
a jump for some value of the parameter p near 0.
The conclusions of this paper should be consid-
ered as a first approximation in the design of
bifurcation control laws for systems whose models
may be subject 1o some error. .
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